|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from abc import ABC, abstractmethod |
| 4 | +from typing import Any, List, Optional, Union |
| 5 | + |
| 6 | +from pandas import DataFrame |
| 7 | + |
| 8 | +from graphdatascience.procedure_surface.api.base_result import BaseResult |
| 9 | +from graphdatascience.procedure_surface.api.catalog.graph_api import GraphV2 |
| 10 | +from graphdatascience.procedure_surface.api.estimation_result import EstimationResult |
| 11 | + |
| 12 | + |
| 13 | +class TriangleCountEndpoints(ABC): |
| 14 | + @abstractmethod |
| 15 | + def mutate( |
| 16 | + self, |
| 17 | + G: GraphV2, |
| 18 | + mutate_property: str, |
| 19 | + *, |
| 20 | + concurrency: Optional[int] = None, |
| 21 | + job_id: Optional[str] = None, |
| 22 | + label_filter: Optional[List[str]] = None, |
| 23 | + log_progress: bool = True, |
| 24 | + max_degree: Optional[int] = None, |
| 25 | + node_labels: Optional[List[str]] = None, |
| 26 | + relationship_types: Optional[List[str]] = None, |
| 27 | + sudo: Optional[bool] = False, |
| 28 | + username: Optional[str] = None, |
| 29 | + ) -> TriangleCountMutateResult: |
| 30 | + """ |
| 31 | + Executes the Triangle Count algorithm and writes the results to the in-memory graph as node properties. |
| 32 | +
|
| 33 | + The Triangle Count algorithm computes the number of triangles each node participates in. |
| 34 | +
|
| 35 | + Parameters |
| 36 | + ---------- |
| 37 | + G : GraphV2 |
| 38 | + The graph to run the algorithm on |
| 39 | + mutate_property : str |
| 40 | + The property name to store the triangle count for each node |
| 41 | + concurrency : Optional[int], default=4 |
| 42 | + The number of concurrent threads. Setting this to 1 will run the algorithm single-threaded. |
| 43 | + job_id : Optional[str], default=None |
| 44 | + An identifier for the job that can be used to cancel or monitor progress |
| 45 | + label_filter : Optional[List[str]], default=None |
| 46 | + Filter triangles by node labels. Only triangles where all nodes have one of the specified |
| 47 | + labels will be counted. |
| 48 | + log_progress : bool, default=True |
| 49 | + Whether to log progress information during execution |
| 50 | + max_degree : Optional[int], default=None |
| 51 | + Maximum degree of nodes to consider. Nodes with higher degrees will be excluded from |
| 52 | + triangle counting to improve performance. |
| 53 | + node_labels : Optional[List[str]], default=None |
| 54 | + The node labels used to select nodes for this algorithm run. If None, all nodes are used. |
| 55 | + relationship_types : Optional[List[str]], default=None |
| 56 | + The relationship types used to select relationships for this algorithm run. If None, all |
| 57 | + relationship types are used. |
| 58 | + sudo : Optional[bool], default=False |
| 59 | + Override memory estimation limits. Setting this to True allows running the algorithm |
| 60 | + even if the estimated memory requirements exceed available memory. |
| 61 | + username : Optional[str], default=None |
| 62 | + The username to attribute the procedure run to |
| 63 | +
|
| 64 | + Returns |
| 65 | + ------- |
| 66 | + TriangleCountMutateResult |
| 67 | + Algorithm metrics and statistics including the global triangle count and processing times |
| 68 | + """ |
| 69 | + |
| 70 | + @abstractmethod |
| 71 | + def stats( |
| 72 | + self, |
| 73 | + G: GraphV2, |
| 74 | + *, |
| 75 | + concurrency: Optional[int] = None, |
| 76 | + job_id: Optional[str] = None, |
| 77 | + label_filter: Optional[List[str]] = None, |
| 78 | + log_progress: bool = True, |
| 79 | + max_degree: Optional[int] = None, |
| 80 | + node_labels: Optional[List[str]] = None, |
| 81 | + relationship_types: Optional[List[str]] = None, |
| 82 | + sudo: Optional[bool] = False, |
| 83 | + username: Optional[str] = None, |
| 84 | + ) -> TriangleCountStatsResult: |
| 85 | + """ |
| 86 | + Executes the Triangle Count algorithm and returns statistics about the computation. |
| 87 | +
|
| 88 | + This method computes triangle counts without storing results in the graph, providing |
| 89 | + aggregate statistics about the triangle structure of the graph. |
| 90 | +
|
| 91 | + Parameters |
| 92 | + ---------- |
| 93 | + G : GraphV2 |
| 94 | + The graph to run the algorithm on |
| 95 | + concurrency : Optional[int], default=4 |
| 96 | + The number of concurrent threads. Setting this to 1 will run the algorithm single-threaded. |
| 97 | + job_id : Optional[str], default=None |
| 98 | + An identifier for the job that can be used to cancel or monitor progress |
| 99 | + label_filter : Optional[List[str]], default=None |
| 100 | + Filter triangles by node labels. Only triangles where all nodes have one of the specified |
| 101 | + labels will be counted. |
| 102 | + log_progress : bool, default=True |
| 103 | + Whether to log progress information during execution |
| 104 | + max_degree : Optional[int], default=None |
| 105 | + Maximum degree of nodes to consider. Nodes with higher degrees will be excluded from |
| 106 | + triangle counting to improve performance. |
| 107 | + node_labels : Optional[List[str]], default=None |
| 108 | + The node labels used to select nodes for this algorithm run. If None, all nodes are used. |
| 109 | + relationship_types : Optional[List[str]], default=None |
| 110 | + The relationship types used to select relationships for this algorithm run. If None, all |
| 111 | + relationship types are used. |
| 112 | + sudo : Optional[bool], default=False |
| 113 | + Override memory estimation limits. Setting this to True allows running the algorithm |
| 114 | + even if the estimated memory requirements exceed available memory. |
| 115 | + username : Optional[str], default=None |
| 116 | + The username to attribute the procedure run to |
| 117 | +
|
| 118 | + Returns |
| 119 | + ------- |
| 120 | + TriangleCountStatsResult |
| 121 | + Algorithm statistics including the global triangle count and processing times |
| 122 | + """ |
| 123 | + |
| 124 | + @abstractmethod |
| 125 | + def stream( |
| 126 | + self, |
| 127 | + G: GraphV2, |
| 128 | + *, |
| 129 | + concurrency: Optional[int] = None, |
| 130 | + job_id: Optional[str] = None, |
| 131 | + label_filter: Optional[List[str]] = None, |
| 132 | + log_progress: bool = True, |
| 133 | + max_degree: Optional[int] = None, |
| 134 | + node_labels: Optional[List[str]] = None, |
| 135 | + relationship_types: Optional[List[str]] = None, |
| 136 | + sudo: Optional[bool] = False, |
| 137 | + username: Optional[str] = None, |
| 138 | + ) -> DataFrame: |
| 139 | + """ |
| 140 | + Executes the Triangle Count algorithm and returns a stream of results. |
| 141 | +
|
| 142 | + The Triangle Count algorithm computes the number of triangles each node participates in. |
| 143 | + This method returns the triangle count for each node as a stream. |
| 144 | +
|
| 145 | + Parameters |
| 146 | + ---------- |
| 147 | + G : GraphV2 |
| 148 | + The graph to run the algorithm on |
| 149 | + concurrency : Optional[int], default=4 |
| 150 | + The number of concurrent threads. Setting this to 1 will run the algorithm single-threaded. |
| 151 | + job_id : Optional[str], default=None |
| 152 | + An identifier for the job that can be used to cancel or monitor progress |
| 153 | + label_filter : Optional[List[str]], default=None |
| 154 | + Filter triangles by node labels. Only triangles where all nodes have one of the specified |
| 155 | + labels will be counted. |
| 156 | + log_progress : bool, default=True |
| 157 | + Whether to log progress information during execution |
| 158 | + max_degree : Optional[int], default=None |
| 159 | + Maximum degree of nodes to consider. Nodes with higher degrees will be excluded from |
| 160 | + triangle counting to improve performance. |
| 161 | + node_labels : Optional[List[str]], default=None |
| 162 | + The node labels used to select nodes for this algorithm run. If None, all nodes are used. |
| 163 | + relationship_types : Optional[List[str]], default=None |
| 164 | + The relationship types used to select relationships for this algorithm run. If None, all |
| 165 | + relationship types are used. |
| 166 | + sudo : Optional[bool], default=False |
| 167 | + Override memory estimation limits. Setting this to True allows running the algorithm |
| 168 | + even if the estimated memory requirements exceed available memory. |
| 169 | + username : Optional[str], default=None |
| 170 | + The username to attribute the procedure run to |
| 171 | +
|
| 172 | + Returns |
| 173 | + ------- |
| 174 | + DataFrame |
| 175 | + A DataFrame with columns: |
| 176 | + - nodeId: The node identifier |
| 177 | + - triangleCount: The number of triangles the node participates in |
| 178 | + """ |
| 179 | + |
| 180 | + @abstractmethod |
| 181 | + def write( |
| 182 | + self, |
| 183 | + G: GraphV2, |
| 184 | + write_property: str, |
| 185 | + *, |
| 186 | + concurrency: Optional[int] = None, |
| 187 | + job_id: Optional[str] = None, |
| 188 | + label_filter: Optional[List[str]] = None, |
| 189 | + log_progress: bool = True, |
| 190 | + max_degree: Optional[int] = None, |
| 191 | + node_labels: Optional[List[str]] = None, |
| 192 | + relationship_types: Optional[List[str]] = None, |
| 193 | + sudo: Optional[bool] = False, |
| 194 | + username: Optional[str] = None, |
| 195 | + write_concurrency: Optional[int] = None, |
| 196 | + ) -> TriangleCountWriteResult: |
| 197 | + """ |
| 198 | + Executes the Triangle Count algorithm and writes the results back to the database. |
| 199 | +
|
| 200 | + This method computes triangle counts and writes the results directly to the Neo4j database |
| 201 | + as node properties, making them available for subsequent Cypher queries. |
| 202 | +
|
| 203 | + Parameters |
| 204 | + ---------- |
| 205 | + G : GraphV2 |
| 206 | + The graph to run the algorithm on |
| 207 | + write_property : str |
| 208 | + The property name to store the triangle count for each node in the database |
| 209 | + concurrency : Optional[int], default=4 |
| 210 | + The number of concurrent threads. Setting this to 1 will run the algorithm single-threaded. |
| 211 | + job_id : Optional[str], default=None |
| 212 | + An identifier for the job that can be used to cancel or monitor progress |
| 213 | + label_filter : Optional[List[str]], default=None |
| 214 | + Filter triangles by node labels. Only triangles where all nodes have one of the specified |
| 215 | + labels will be counted. |
| 216 | + log_progress : bool, default=True |
| 217 | + Whether to log progress information during execution |
| 218 | + max_degree : Optional[int], default=None |
| 219 | + Maximum degree of nodes to consider. Nodes with higher degrees will be excluded from |
| 220 | + triangle counting to improve performance. |
| 221 | + node_labels : Optional[List[str]], default=None |
| 222 | + The node labels used to select nodes for this algorithm run. If None, all nodes are used. |
| 223 | + relationship_types : Optional[List[str]], default=None |
| 224 | + The relationship types used to select relationships for this algorithm run. If None, all |
| 225 | + relationship types are used. |
| 226 | + sudo : Optional[bool], default=False |
| 227 | + Override memory estimation limits. Setting this to True allows running the algorithm |
| 228 | + even if the estimated memory requirements exceed available memory. |
| 229 | + username : Optional[str], default=None |
| 230 | + The username to attribute the procedure run to |
| 231 | + write_concurrency : Optional[int], default=None |
| 232 | + The number of concurrent threads for writing results to the database |
| 233 | +
|
| 234 | + Returns |
| 235 | + ------- |
| 236 | + TriangleCountWriteResult |
| 237 | + Algorithm metrics and statistics including the global triangle count and processing times |
| 238 | + """ |
| 239 | + |
| 240 | + @abstractmethod |
| 241 | + def estimate( |
| 242 | + self, |
| 243 | + G: Union[GraphV2, dict[str, Any]], |
| 244 | + *, |
| 245 | + concurrency: Optional[int] = None, |
| 246 | + label_filter: Optional[List[str]] = None, |
| 247 | + max_degree: Optional[int] = None, |
| 248 | + node_labels: Optional[List[str]] = None, |
| 249 | + relationship_types: Optional[List[str]] = None, |
| 250 | + ) -> EstimationResult: |
| 251 | + """ |
| 252 | + Estimate the memory requirements for running the Triangle Count algorithm. |
| 253 | +
|
| 254 | + This method provides memory estimates without actually running the algorithm, helping you |
| 255 | + determine if you have sufficient memory available. |
| 256 | +
|
| 257 | + Parameters |
| 258 | + ---------- |
| 259 | + G : Union[GraphV2, dict[str, Any]] |
| 260 | + The graph to estimate for, or a graph configuration dictionary |
| 261 | + concurrency : Optional[int], default=4 |
| 262 | + The number of concurrent threads. Setting this to 1 will run the algorithm single-threaded. |
| 263 | + label_filter : Optional[List[str]], default=None |
| 264 | + Filter triangles by node labels. Only triangles where all nodes have one of the specified |
| 265 | + labels will be counted. |
| 266 | + max_degree : Optional[int], default=None |
| 267 | + Maximum degree of nodes to consider. Nodes with higher degrees will be excluded from |
| 268 | + triangle counting to improve performance. |
| 269 | + node_labels : Optional[List[str]], default=None |
| 270 | + The node labels used to select nodes for this algorithm run. If None, all nodes are used. |
| 271 | + relationship_types : Optional[List[str]], default=None |
| 272 | + The relationship types used to select relationships for this algorithm run. If None, all |
| 273 | + relationship types are used. |
| 274 | +
|
| 275 | + Returns |
| 276 | + ------- |
| 277 | + EstimationResult |
| 278 | + The memory estimation result including required memory in bytes and as heap percentage |
| 279 | + """ |
| 280 | + |
| 281 | + |
| 282 | +class TriangleCountMutateResult(BaseResult): |
| 283 | + """ |
| 284 | + Result object returned by the Triangle Count mutate operation. |
| 285 | +
|
| 286 | + Attributes |
| 287 | + ---------- |
| 288 | + compute_millis : int |
| 289 | + Time spent on computation in milliseconds |
| 290 | + configuration : dict[str, Any] |
| 291 | + The configuration used for the algorithm execution |
| 292 | + global_triangle_count : int |
| 293 | + The total number of triangles in the graph |
| 294 | + mutate_millis : int |
| 295 | + Time spent on mutating the graph in milliseconds |
| 296 | + node_count : int |
| 297 | + The total number of nodes processed |
| 298 | + node_properties_written : int |
| 299 | + The number of node properties written to the graph |
| 300 | + post_processing_millis : int |
| 301 | + Time spent on post-processing in milliseconds |
| 302 | + pre_processing_millis : int |
| 303 | + Time spent on pre-processing in milliseconds |
| 304 | + """ |
| 305 | + |
| 306 | + compute_millis: int |
| 307 | + configuration: dict[str, Any] |
| 308 | + global_triangle_count: int |
| 309 | + mutate_millis: int |
| 310 | + node_count: int |
| 311 | + node_properties_written: int |
| 312 | + post_processing_millis: int |
| 313 | + pre_processing_millis: int |
| 314 | + |
| 315 | + |
| 316 | +class TriangleCountStatsResult(BaseResult): |
| 317 | + """ |
| 318 | + Result object returned by the Triangle Count stats operation. |
| 319 | +
|
| 320 | + Attributes |
| 321 | + ---------- |
| 322 | + compute_millis : int |
| 323 | + Time spent on computation in milliseconds |
| 324 | + configuration : dict[str, Any] |
| 325 | + The configuration used for the algorithm execution |
| 326 | + global_triangle_count : int |
| 327 | + The total number of triangles in the graph |
| 328 | + node_count : int |
| 329 | + The total number of nodes processed |
| 330 | + post_processing_millis : int |
| 331 | + Time spent on post-processing in milliseconds |
| 332 | + pre_processing_millis : int |
| 333 | + Time spent on pre-processing in milliseconds |
| 334 | + """ |
| 335 | + |
| 336 | + compute_millis: int |
| 337 | + configuration: dict[str, Any] |
| 338 | + global_triangle_count: int |
| 339 | + node_count: int |
| 340 | + post_processing_millis: int |
| 341 | + pre_processing_millis: int |
| 342 | + |
| 343 | + |
| 344 | +class TriangleCountWriteResult(BaseResult): |
| 345 | + """ |
| 346 | + Result object returned by the Triangle Count write operation. |
| 347 | +
|
| 348 | + Attributes |
| 349 | + ---------- |
| 350 | + compute_millis : int |
| 351 | + Time spent on computation in milliseconds |
| 352 | + configuration : dict[str, Any] |
| 353 | + The configuration used for the algorithm execution |
| 354 | + global_triangle_count : int |
| 355 | + The total number of triangles in the graph |
| 356 | + node_count : int |
| 357 | + The total number of nodes processed |
| 358 | + node_properties_written : int |
| 359 | + The number of node properties written to the database |
| 360 | + post_processing_millis : int |
| 361 | + Time spent on post-processing in milliseconds |
| 362 | + pre_processing_millis : int |
| 363 | + Time spent on pre-processing in milliseconds |
| 364 | + write_millis : int |
| 365 | + Time spent on writing results to the database in milliseconds |
| 366 | + """ |
| 367 | + |
| 368 | + compute_millis: int |
| 369 | + configuration: dict[str, Any] |
| 370 | + global_triangle_count: int |
| 371 | + node_count: int |
| 372 | + node_properties_written: int |
| 373 | + post_processing_millis: int |
| 374 | + pre_processing_millis: int |
| 375 | + write_millis: int |
0 commit comments