|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Centrality Algorithms" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "<a target=\"_blank\" href=\"https://colab.research.google.com/github/neo4j/graph-data-science-client/blob/main/examples/centrality-algorithms.ipynb\">\n", |
| 15 | + " <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n", |
| 16 | + "</a>" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "This Jupyter notebook is hosted [here](https://github.com/neo4j/graph-data-science-client/blob/main/examples/centrality-algorithms.ipynb) in the Neo4j Graph Data Science Client Github repository.\n", |
| 24 | + "\n", |
| 25 | + "Centrality algorithms are used to understand the role or influence of particular nodes in a graph. The notebook shows the application of centrality algorithms using the `graphdatascience` library on the Airline travel reachability network dataset that can be downloaded [here](https://snap.stanford.edu/data/reachability.html).\n", |
| 26 | + "\n", |
| 27 | + "< TALK ABOUT TASKS >\n", |
| 28 | + "\n", |
| 29 | + "### Setup\n", |
| 30 | + "\n", |
| 31 | + "We start by importing our dependencies and setting up our GDS client connection to the database." |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 2, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "# Install necessary dependencies\n", |
| 41 | + "#%pip install graphdatascience pandas" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 3, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [ |
| 49 | + { |
| 50 | + "name": "stderr", |
| 51 | + "output_type": "stream", |
| 52 | + "text": [ |
| 53 | + "C:\\Users\\kedar\\anaconda3\\envs\\graph_stuff\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", |
| 54 | + " from .autonotebook import tqdm as notebook_tqdm\n" |
| 55 | + ] |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": [ |
| 59 | + "from graphdatascience import GraphDataScience\n", |
| 60 | + "import pandas as pd\n", |
| 61 | + "import os" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": null, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [], |
| 69 | + "source": [ |
| 70 | + "# NEO4J_URI = os.environ.get(\"NEO4J_URI\", \"bolt://localhost:7687\")\n", |
| 71 | + "# NEO4J_AUTH = None\n", |
| 72 | + "# if os.environ.get(\"NEO4J_USER\") and os.environ.get(\"NEO4J_PASSWORD\"):\n", |
| 73 | + "# NEO4J_AUTH = (\n", |
| 74 | + "# os.environ.get(\"NEO4J_USER\"),\n", |
| 75 | + "# os.environ.get(\"NEO4J_PASSWORD\"),\n", |
| 76 | + "# )\n", |
| 77 | + "\n", |
| 78 | + "# gds = GraphDataScience(NEO4J_URI, auth=NEO4J_AUTH)\n", |
| 79 | + "\n", |
| 80 | + "# # Replace with the actual connection URI and credentials\n", |
| 81 | + "NEO4J_CONNECTION_URI = \"bolt://XXXXXXXXXXXXX\n", |
| 82 | + "NEO4J_USERNAME = \"neo4j\"\n", |
| 83 | + "NEO4J_PASSWORD = \"XXXXXXXXXXXXX\"\n", |
| 84 | + "\n", |
| 85 | + "# Client instantiation\n", |
| 86 | + "gds = GraphDataScience(\n", |
| 87 | + " NEO4J_CONNECTION_URI,\n", |
| 88 | + " auth=(NEO4J_USERNAME, NEO4J_PASSWORD)\n", |
| 89 | + ")\n" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "markdown", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "### Importing the dataset\n", |
| 97 | + "\n", |
| 98 | + "We import the dataset as a pandas dataframe first. " |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": 6, |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [ |
| 106 | + { |
| 107 | + "data": { |
| 108 | + "text/html": [ |
| 109 | + "<div>\n", |
| 110 | + "<style scoped>\n", |
| 111 | + " .dataframe tbody tr th:only-of-type {\n", |
| 112 | + " vertical-align: middle;\n", |
| 113 | + " }\n", |
| 114 | + "\n", |
| 115 | + " .dataframe tbody tr th {\n", |
| 116 | + " vertical-align: top;\n", |
| 117 | + " }\n", |
| 118 | + "\n", |
| 119 | + " .dataframe thead th {\n", |
| 120 | + " text-align: right;\n", |
| 121 | + " }\n", |
| 122 | + "</style>\n", |
| 123 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 124 | + " <thead>\n", |
| 125 | + " <tr style=\"text-align: right;\">\n", |
| 126 | + " <th></th>\n", |
| 127 | + " <th>node_id</th>\n", |
| 128 | + " <th>name</th>\n", |
| 129 | + " <th>metro_pop</th>\n", |
| 130 | + " <th>latitude</th>\n", |
| 131 | + " <th>longitude</th>\n", |
| 132 | + " </tr>\n", |
| 133 | + " </thead>\n", |
| 134 | + " <tbody>\n", |
| 135 | + " <tr>\n", |
| 136 | + " <th>0</th>\n", |
| 137 | + " <td>0</td>\n", |
| 138 | + " <td>Abbotsford, BC</td>\n", |
| 139 | + " <td>133497.0</td>\n", |
| 140 | + " <td>49.051575</td>\n", |
| 141 | + " <td>-122.328849</td>\n", |
| 142 | + " </tr>\n", |
| 143 | + " <tr>\n", |
| 144 | + " <th>1</th>\n", |
| 145 | + " <td>1</td>\n", |
| 146 | + " <td>Aberdeen, SD</td>\n", |
| 147 | + " <td>40878.0</td>\n", |
| 148 | + " <td>45.459090</td>\n", |
| 149 | + " <td>-98.487324</td>\n", |
| 150 | + " </tr>\n", |
| 151 | + " <tr>\n", |
| 152 | + " <th>2</th>\n", |
| 153 | + " <td>2</td>\n", |
| 154 | + " <td>Abilene, TX</td>\n", |
| 155 | + " <td>166416.0</td>\n", |
| 156 | + " <td>32.449175</td>\n", |
| 157 | + " <td>-99.741424</td>\n", |
| 158 | + " </tr>\n", |
| 159 | + " <tr>\n", |
| 160 | + " <th>3</th>\n", |
| 161 | + " <td>3</td>\n", |
| 162 | + " <td>Akron/Canton, OH</td>\n", |
| 163 | + " <td>701456.0</td>\n", |
| 164 | + " <td>40.797810</td>\n", |
| 165 | + " <td>-81.371567</td>\n", |
| 166 | + " </tr>\n", |
| 167 | + " <tr>\n", |
| 168 | + " <th>4</th>\n", |
| 169 | + " <td>4</td>\n", |
| 170 | + " <td>Alamosa, CO</td>\n", |
| 171 | + " <td>9433.0</td>\n", |
| 172 | + " <td>37.468180</td>\n", |
| 173 | + " <td>-105.873599</td>\n", |
| 174 | + " </tr>\n", |
| 175 | + " </tbody>\n", |
| 176 | + "</table>\n", |
| 177 | + "</div>" |
| 178 | + ], |
| 179 | + "text/plain": [ |
| 180 | + " node_id name metro_pop latitude longitude\n", |
| 181 | + "0 0 Abbotsford, BC 133497.0 49.051575 -122.328849\n", |
| 182 | + "1 1 Aberdeen, SD 40878.0 45.459090 -98.487324\n", |
| 183 | + "2 2 Abilene, TX 166416.0 32.449175 -99.741424\n", |
| 184 | + "3 3 Akron/Canton, OH 701456.0 40.797810 -81.371567\n", |
| 185 | + "4 4 Alamosa, CO 9433.0 37.468180 -105.873599" |
| 186 | + ] |
| 187 | + }, |
| 188 | + "execution_count": 6, |
| 189 | + "metadata": {}, |
| 190 | + "output_type": "execute_result" |
| 191 | + } |
| 192 | + ], |
| 193 | + "source": [ |
| 194 | + "df = pd.read_csv('https://snap.stanford.edu/data/reachability-meta.csv.gz', compression='gzip')\n", |
| 195 | + "df.head()" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": null, |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [], |
| 203 | + "source": [] |
| 204 | + } |
| 205 | + ], |
| 206 | + "metadata": { |
| 207 | + "kernelspec": { |
| 208 | + "display_name": "Python 3 (ipykernel)", |
| 209 | + "language": "python", |
| 210 | + "name": "python3" |
| 211 | + }, |
| 212 | + "language_info": { |
| 213 | + "codemirror_mode": { |
| 214 | + "name": "ipython", |
| 215 | + "version": 3 |
| 216 | + }, |
| 217 | + "file_extension": ".py", |
| 218 | + "mimetype": "text/x-python", |
| 219 | + "name": "python", |
| 220 | + "nbconvert_exporter": "python", |
| 221 | + "pygments_lexer": "ipython3", |
| 222 | + "version": "3.10.11" |
| 223 | + } |
| 224 | + }, |
| 225 | + "nbformat": 4, |
| 226 | + "nbformat_minor": 2 |
| 227 | +} |
0 commit comments