|
19 | 19 | "- Temporal generalization by down-sampling, i.e. increasing the time interval between records\n", |
20 | 20 | "- Spatiotemporal generalization, e.g. using Top-Down Time Ratio algorithm\n", |
21 | 21 | "\n", |
22 | | - "[Documentation](https://movingpandas.readthedocs.io/en/main/trajectorygeneralizer.html)\n", |
| 22 | + "[Documentation](https://movingpandas.readthedocs.io/en/main/api/trajectorygeneralizer.html)\n", |
23 | 23 | "\n", |
24 | | - "A closely related type of operation is [trajectory smoothing which is coverd in a separate notebook](./10-smoothing-trajectories.ipynb). " |
| 24 | + "A closely related type of operation is [trajectory smoothing which is covered in a separate notebook](./10-smoothing-trajectories.ipynb). " |
25 | 25 | ] |
26 | 26 | }, |
27 | 27 | { |
|
199 | 199 | "dp_generalized.plot(ax=axes[1], column='speed', vmax=20, **plot_defaults)" |
200 | 200 | ] |
201 | 201 | }, |
| 202 | + { |
| 203 | + "cell_type": "markdown", |
| 204 | + "metadata": {}, |
| 205 | + "source": [ |
| 206 | + "Let's compare this to the MinTimeDelta result:" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": null, |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [], |
| 214 | + "source": [ |
| 215 | + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(19,4))\n", |
| 216 | + "tdtr_generalized.plot(ax=axes[0], column='speed', vmax=20, **plot_defaults)\n", |
| 217 | + "time_generalized.plot(ax=axes[1], column='speed', vmax=20, **plot_defaults)" |
| 218 | + ] |
| 219 | + }, |
202 | 220 | { |
203 | 221 | "cell_type": "code", |
204 | 222 | "execution_count": null, |
|
223 | 241 | "name": "python", |
224 | 242 | "nbconvert_exporter": "python", |
225 | 243 | "pygments_lexer": "ipython3", |
226 | | - "version": "3.10.10" |
| 244 | + "version": "3.10.14" |
227 | 245 | } |
228 | 246 | }, |
229 | 247 | "nbformat": 4, |
|
0 commit comments