|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "metadata": { |
| 7 | + "id": "ssCOanHc8JH_" |
| 8 | + }, |
| 9 | + "source": [ |
| 10 | + "## Demo for step-by-step training with PPO" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": null, |
| 16 | + "metadata": { |
| 17 | + "id": "_sOmCoOrF0F8" |
| 18 | + }, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "from datetime import datetime\n", |
| 22 | + "import functools\n", |
| 23 | + "import os\n", |
| 24 | + "from os import getcwd\n", |
| 25 | + "from os.path import join\n", |
| 26 | + "from IPython.display import HTML, clear_output\n", |
| 27 | + "\n", |
| 28 | + "import jax\n", |
| 29 | + "import jax.numpy as jnp\n", |
| 30 | + "import matplotlib.pyplot as plt\n", |
| 31 | + "\n", |
| 32 | + "try:\n", |
| 33 | + " import brax\n", |
| 34 | + "except ImportError:\n", |
| 35 | + " !pip install git+https://github.com/google/brax.git@main\n", |
| 36 | + " clear_output()\n", |
| 37 | + " import brax\n", |
| 38 | + "\n", |
| 39 | + "from brax import envs\n", |
| 40 | + "from brax import jumpy as jp\n", |
| 41 | + "from brax.io import html\n", |
| 42 | + "from brax.io import model\n", |
| 43 | + "from brax.training.agents.ppo import train as ppo\n", |
| 44 | + "\n", |
| 45 | + "from IPython.core.interactiveshell import InteractiveShell\n", |
| 46 | + "InteractiveShell.ast_node_interactivity = \"all\"\n", |
| 47 | + "\n", |
| 48 | + "if 'COLAB_TPU_ADDR' in os.environ:\n", |
| 49 | + " from jax.tools import colab_tpu\n", |
| 50 | + " colab_tpu.setup_tpu()" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "attachments": {}, |
| 55 | + "cell_type": "markdown", |
| 56 | + "metadata": { |
| 57 | + "id": "Tm8zbPBcJ5RJ" |
| 58 | + }, |
| 59 | + "source": [ |
| 60 | + "#### Environment" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": { |
| 67 | + "colab": { |
| 68 | + "base_uri": "https://localhost:8080/", |
| 69 | + "height": 480 |
| 70 | + }, |
| 71 | + "id": "NaJDZqhCLovU", |
| 72 | + "outputId": "50994b20-d788-4264-af00-a3f06d58f943" |
| 73 | + }, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "SEED = 0\n", |
| 77 | + "env_name = \"grasp\"\n", |
| 78 | + "env = envs.get_environment(env_name=env_name)\n", |
| 79 | + "state = env.reset(rng=jp.random_prngkey(seed=SEED))\n", |
| 80 | + "\n", |
| 81 | + "HTML(html.render(env.sys, [state.qp]))" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "attachments": {}, |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "#### Helper functions" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": null, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "def train_ppo(num_timesteps, env_name):\n", |
| 99 | + "\tprint(f\"Training PPO for '{num_timesteps}' timesteps'\")\n", |
| 100 | + "\n", |
| 101 | + "\tenv = envs.get_environment(env_name=env_name)\n", |
| 102 | + "\tstate = env.reset(rng=jp.random_prngkey(seed=SEED))\n", |
| 103 | + "\n", |
| 104 | + "\ttrain_fn = functools.partial(ppo.train, num_timesteps=num_timesteps, num_evals=10, reward_scaling=10, episode_length=1000, normalize_observations=True, action_repeat=1, unroll_length=20, num_minibatches=32, num_updates_per_batch=2, discounting=0.99, learning_rate=3e-4, entropy_cost=0.001, num_envs=2048, batch_size=256)\n", |
| 105 | + "\n", |
| 106 | + "\tmax_y = 100\n", |
| 107 | + "\tmin_y = 0\n", |
| 108 | + "\n", |
| 109 | + "\txdata, ydata = [], []\n", |
| 110 | + "\ttimes = [datetime.now()]\n", |
| 111 | + "\n", |
| 112 | + "\tdef progress(num_steps, metrics):\n", |
| 113 | + "\t\ttimes.append(datetime.now())\n", |
| 114 | + "\t\txdata.append(num_steps)\n", |
| 115 | + "\t\tydata.append(metrics['eval/episode_reward'])\n", |
| 116 | + "\t\tclear_output(wait=True)\n", |
| 117 | + "\t\t# plt.xlim([0, train_fn.keywords['num_timesteps']])\n", |
| 118 | + "\t\t# plt.ylim([min_y, max_y])\n", |
| 119 | + "\t\t# plt.xlabel('# environment steps')\n", |
| 120 | + "\t\t# plt.ylabel('reward per episode')\n", |
| 121 | + "\t\t# plt.plot(xdata, ydata)\n", |
| 122 | + "\t\t# plt.show()\n", |
| 123 | + "\n", |
| 124 | + "\tmake_inference_fn, params, _ = train_fn(environment=env, progress_fn=progress)\n", |
| 125 | + "\tprint(f'time to jit: {times[1] - times[0]}')\n", |
| 126 | + "\tprint(f'time to train: {times[-1] - times[1]}')\n", |
| 127 | + "\n", |
| 128 | + "\treturn make_inference_fn, params, times, xdata, ydata\n", |
| 129 | + "\n", |
| 130 | + "def visual_rollout(inference_fn, env_name, steps=100, seed=0):\n", |
| 131 | + "\tenv = envs.create(env_name=env_name)\n", |
| 132 | + "\tjit_env_reset = jax.jit(env.reset)\n", |
| 133 | + "\tjit_env_step = jax.jit(env.step)\n", |
| 134 | + "\tjit_inference_fn = jax.jit(inference_fn)\n", |
| 135 | + "\n", |
| 136 | + "\trollout = []\n", |
| 137 | + "\trng = jax.random.PRNGKey(seed=seed)\n", |
| 138 | + "\tstate = jit_env_reset(rng=rng)\n", |
| 139 | + "\tfor _ in range(steps):\n", |
| 140 | + "\t\trollout.append(state)\n", |
| 141 | + "\t\tact_rng, rng = jax.random.split(rng)\n", |
| 142 | + "\t\tact, _ = jit_inference_fn(state.obs, act_rng)\n", |
| 143 | + "\t\tstate = jit_env_step(state, act)\n", |
| 144 | + "\n", |
| 145 | + "\treturn env.sys, [s.qp for s in rollout]" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "attachments": {}, |
| 150 | + "cell_type": "markdown", |
| 151 | + "metadata": {}, |
| 152 | + "source": [ |
| 153 | + "#### Training (step-by-step)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": null, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "training_num_timesteps = [1_000, 1_000_000, 100_000_000]\n", |
| 163 | + "vis_steps = [100, 150, 300]\n", |
| 164 | + "\n", |
| 165 | + "env_sys = []\n", |
| 166 | + "rollouts = []\n", |
| 167 | + "\n", |
| 168 | + "for idx, num_timesteps in enumerate(training_num_timesteps):\n", |
| 169 | + "\tmake_inference_fn, params, times, xdata, ydata = train_ppo(num_timesteps, env_name)\n", |
| 170 | + "\tinference_fn = make_inference_fn(params)\n", |
| 171 | + "\tsys, rollout = visual_rollout(inference_fn, env_name, steps=vis_steps[idx], seed=SEED)\n", |
| 172 | + "\tenv_sys.append(sys)\n", |
| 173 | + "\trollouts.append(rollout)" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "attachments": {}, |
| 178 | + "cell_type": "markdown", |
| 179 | + "metadata": {}, |
| 180 | + "source": [ |
| 181 | + "#### Visualise learning" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "code", |
| 186 | + "execution_count": null, |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "for i, sys in enumerate(env_sys):\n", |
| 191 | + "\tHTML(html.render(sys, rollouts[i]))" |
| 192 | + ] |
| 193 | + } |
| 194 | + ], |
| 195 | + "metadata": { |
| 196 | + "accelerator": "TPU", |
| 197 | + "colab": { |
| 198 | + "name": "Brax Training.ipynb", |
| 199 | + "provenance": [] |
| 200 | + }, |
| 201 | + "gpuClass": "standard", |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "reinforcement_learning", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "name": "python", |
| 209 | + "version": "3.10.8 (main, Nov 24 2022, 14:13:03) [GCC 11.2.0]" |
| 210 | + }, |
| 211 | + "vscode": { |
| 212 | + "interpreter": { |
| 213 | + "hash": "b329387e251b95764b8f65684563519503b45dc8027da482b0a7bdbaa4a30d3e" |
| 214 | + } |
| 215 | + } |
| 216 | + }, |
| 217 | + "nbformat": 4, |
| 218 | + "nbformat_minor": 0 |
| 219 | +} |
0 commit comments