diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000..d748b27
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,2 @@
+* text=auto eol=lf
+*.ipynb filter=nbstripout
\ No newline at end of file
diff --git a/README.md b/README.md
index 583486b..1048e8f 100644
--- a/README.md
+++ b/README.md
@@ -1,95 +1,85 @@
-# 昇思MindSpore技术公开课
+
-- ***探究前沿***:解读技术热点,解构热点模型
-- ***应用实践***:理论实践相结合,手把手指导开发
-- ***专家解读***:多领域专家,多元解读
-- ***开源共享***:课程免费,课件代码开源
-- ***大赛赋能***:ICT大赛赋能课程(大模型专题第一、二期)
-- ***系列课程***:大模型专题课程开展中,其他专题课程敬请期待
+Brief introduction to repository.
-## 报名方式
+## 📢 News
-报名链接:https://xihe.mindspore.cn/course/foundation-model-v2/introduction
+- **2025-10-21 [Course Update]**:The XXX course has been updated with a new chapter on XXX, including complete videos, slides, and code examples. ([*View details*](xxx))
+- **2025-10-18 [Feature Optimization]**:Repository refactored for clearer course resource navigation; added CI pipeline for more standardized contributions. ([*View details*](xxx))
+- **2025-10-10 [Bug Fix]**:Fixed the xxx issue — thanks to @username for the PR contribution. ([View details](pr_link))
-(注:参与免费课程必须报名哦!同步添加[QQ群](./assets/groupchat_qq.png),后续课程事宜将在群内通知!)
+## Prerequisites
-## 大模型专题第一期(已完结)&第二期(进行中)
+Before starting this course, you should be familiar with:
-第二期课程10月14日起每双周六14:00-15:00在[b站](https://live.bilibili.com/22127570?broadcast_type=0&is_room_feed=1&spm_id_from=333.999.to_liveroom.0.click&live_from=86002)进行直播。
+- Basic Python programming
+- Basic Linux commands
+- Using Jupyter Notebook
+- Using Docker images
-每节课程的ppt和代码会随授课逐步上传至[github](https://github.com/mindspore-courses/step_into_llm),系列视频回放归档至[b站](https://space.bilibili.com/526894060/channel/seriesdetail?sid=3293489),大家可以在[昇思MindSpore公众号](./assets/wechat_official_account.png)中获取每节课的知识点回顾与下节课的课程预告,同时欢迎大家在[MindSpore社区](https://gitee.com/mindspore/community/issues)领取大模型系列任务进行挑战。
+You can take the Prerequisite Test (*Coming Soon*) to assess your readiness.
-> 因为课程周期较长,课节安排可能会在中途出现微调,以最终通知为准,感谢理解!
+## Environment Setup
-> 热烈欢迎小伙伴们参与到课程的建设中来,基于课程的趣味开发可以提交至[昇思MindSpore大模型平台](https://xihe.mindspore.cn/)
+To ensure all example code runs smoothly, set up your environment using one of the following methods. For details, see [Set Up Development Environment](https://github.com/mindspore-courses/step_into_llm/wiki/Set-Up-Development-Environment) in Wiki.
-> 如果在学习过程中发现任何课件及代码方面的问题,希望我们讲解哪方面的内容,或是对课程有什么建议,都可以直接在本仓库中创建issue
+### Install Dependencies
+Confirm your Python version meets the course requirements, then run:
-### 教研团队
+```bash
+pip install -r requirements.txt
+```
-
+### Use Docker Image (*Coming Soon*)
-### 课前学习
+Prebuilt Dockerfiles are provided to simplify environment setup.
-- python
-- 人工智能基础、深度学习基础(重点学习自然语言处理):[MindSpore-d2l](https://openi.pcl.ac.cn/mindspore-courses/d2l-mindspore)
-- OpenI启智社区基础使用(可免费获取算力):[OpenI_Learning](https://openi.pcl.ac.cn/zeizei/OpenI_Learning)
-- MindSpore基础使用:[MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/r2.2/index.html)
-- MindFormers基础使用:[MindFormers讲解视频](https://www.bilibili.com/video/BV1jh4y1m7xV/?spm_id_from=333.999.0.0)
+You can find all course images in the [dockerfile](./dockerfile/) directory and pull the one that fits your hardware:
+For details, see [Using Docker Images](https://github.com/mindspore-courses/step_into_llm/wiki/Set-Up-Development-Environment) in Wiki.
+## Course Content
-### 课程介绍
+| No. | Lesson | Description | Learning Resource | Certification |
+| :-- | :------ | :--------------- | :----------------------- | :---------- |
+| 1 | xxx | xxx | [Slides](link) · [Code](link) · [Video](link) · [Cloud Lab](link) · [Learning Path](link) | |
+| 2 | xxx | xxx | [Slides](link) · [Code](link) · [Video](link) · [Cloud Lab](link) · [Learning Path](link) | [Beginner Certification](link) |
+| 3 | xxx | xxx | [Slides](link) · [Code](link) · [Video](link) · [Cloud Lab](link) · [Learning Path](link) | |
+| 4 | xxx | xxx | [Slides](link) · [Code](link) · [Video](link) · [Cloud Lab](link) · [Learning Path](link) | [Intermediate Certification](link) |
-昇思MindSpore技术公开课火热开展中,面向所有对大模型感兴趣的开发者,带领大家理论结合时间,由浅入深地逐步深入大模型技术
+*“Cloud Lab” = interactive sandbox with prebuilt environment & resources.*
-在已经完结的第一期课程(第1讲-第10讲)中,我们从Transformer开始,解析到ChatGPT的演进路线,手把手带领大家搭建一个简易版的“ChatGPT”
+## Version Management
-正在进行的第二期课程(第11讲-)在第一期的基础上做了全方位的升级,围绕大模型从开发到应用的全流程实践展开,讲解更前沿的大模型知识、丰富更多元的讲师阵容,期待你的加入!
+This repository is updated in sync with **MindSpore** and the **MindSpore NLP** Suite.
-| 章节序号 | 章节名称 | 课程简介 | 视频 | 课件及代码 | 知识点总结 |
-|:----:|:----:|:--------------------------------------------|:----:|:----:|:----:|
-| 第一讲 | Transformer | Multi-head self-attention原理。Masked self-attention的掩码处理方式。基于Transformer的机器翻译任务训练。 | [link](https://www.bilibili.com/video/BV16h4y1W7us/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f4290) | [link](./Season1.step_into_chatgpt/1.Transformer/) | [link](./Season1.step_into_chatgpt/0.Course-Review/1-Transformer.md) |
-| 第二讲 | BERT | 基于Transformer Encoder的BERT模型设计:MLM和NSP任务。BERT进行下游任务微调的范式。 | [link](https://www.bilibili.com/video/BV1xs4y1M72q/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/2.BERT/) | [link](./Season1.step_into_chatgpt/0.Course-Review/2-BERT.md) |
-| 第三讲 | GPT | 基于Transformer Decoder的GPT模型设计:Next token prediction。GPT下游任务微调范式。 | [link](https://www.bilibili.com/video/BV1Gh411w7HC/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/3.GPT/) | [link](./Season1.step_into_chatgpt/0.Course-Review/3-GPT.md) |
-| 第四讲 | GPT2 | GPT2的核心创新点,包括Task Conditioning和Zero shot learning;模型实现细节基于GPT1的改动。 | [link](https://www.bilibili.com/video/BV1Ja4y1u7xx/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/4.GPT2/) | [link](./Season1.step_into_chatgpt/0.Course-Review/4-GPT2.md) |
-| 第五讲 | MindSpore自动并行 | 以MindSpore分布式并行特性为依托的数据并行、模型并行、Pipeline并行、内存优化等技术。 | [link](https://www.bilibili.com/video/BV1VN41117AG/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/5.Parallel/) | [link](./Season1.step_into_chatgpt/0.Course-Review/5-Parallel.md) |
-| 第六讲 | 代码预训练 | 代码预训练发展沿革。Code数据的预处理。CodeGeex代码预训练大模型。 | [link](https://www.bilibili.com/video/BV1Em4y147a1/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/6.CodeGeeX/) | [link](./Season1.step_into_chatgpt/0.Course-Review/6-CodeGeex.md) |
-| 第七讲 | Prompt Tuning | Pretrain-finetune范式到Prompt tuning范式的改变。Hard prompt和Soft prompt相关技术。只需要改造描述文本的prompting。 | [link](https://www.bilibili.com/video/BV1Wg4y1K77R/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/7.Prompt/) | [link](./Season1.step_into_chatgpt/0.Course-Review/7-Prompt.md) |
-| 第八讲 | 多模态预训练大模型 | 紫东太初多模态大模型的设计、数据处理和优势;语音识别的理论概述、系统框架和现状及挑战。 | [link](https://www.bilibili.com/video/BV1wg4y1K72r/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | / | / |
-| 第九讲 | Instruct Tuning | Instruction tuning的核心思想:让模型能够理解任务描述(指令)。Instruction tuning的局限性:无法支持开放域创新性任务、无法对齐LM训练目标和人类需求。Chain-of-thoughts:通过在prompt中提供示例,让模型“举一反三”。 | [link](https://www.bilibili.com/video/BV1cm4y1e7Cc/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/8.Instruction/) | [link](./Season1.step_into_chatgpt/0.Course-Review/8-Instruction.md) |
-| 第十讲 | RLHF | RLHF核心思想:将LLM和人类行为对齐。RLHF技术分解:LLM微调、基于人类反馈训练奖励模型、通过强化学习PPO算法实现模型微调。 | [link](https://www.bilibili.com/video/BV15a4y1c7dv/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season1.step_into_chatgpt/9.RLHF/) | 更新中 |
-| 第十一讲 | ChatGLM | GLM模型结构,从GLM到ChatGLM的演变,ChatGLM推理部署代码演示| [link](https://www.bilibili.com/video/BV1ju411T74Y/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) |[link](./Season2.step_into_llm/01.ChatGLM/)|[link](https://mp.weixin.qq.com/s/ZUoga1poFj49QPE3UNwE_w)|
-| 第十二讲 | 多模态遥感智能解译基础模型 | 本次课程由中国科学院空天信息创新研究院研究员 实验室副主任 孙显老师讲解多模态遥感解译基础模型,揭秘大模型时代的智能遥感技术的发展与挑战、遥感基础模型的技术路线与典型场景应用| [link](https://www.bilibili.com/video/BV1Be41197wY/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | /| [link](https://mp.weixin.qq.com/s/gx4KxpSfqDooIKvS8sN2fA)|
-| 第十三讲 | ChatGLM2 | ChatGLM2技术解析,ChatGLM2推理部署代码演示,ChatGLM3特性介绍| [link](https://www.bilibili.com/video/BV1Ew411W72E/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season2.step_into_llm/02.ChatGLM2/) |[link](https://mp.weixin.qq.com/s/Mu29b7E4TxtJBkONOJQdEA)|
-| 第十四讲 | 文本生成解码原理 | 以MindNLP为例,讲解搜索与采样技术原理和实现| [link](https://www.bilibili.com/video/BV1QN4y117ZK/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](./Season2.step_into_llm/03.Decoding/) |[link](https://mp.weixin.qq.com/s/1WpiKb_1hPck_0EDnThmtA)|
-| 第十五讲 | LLAMA | LLaMA背景及羊驼大家族介绍,LLaMA模型结构解析,LLaMA推理部署代码演示| [link](https://www.bilibili.com/video/BV1nN41157a9/?spm_id_from=333.999.0.0) | [link](./Season2.step_into_llm/04.LLaMA/) | [link](https://mp.weixin.qq.com/s/9QdP062-agcIbsR0_a-b3g) |
-| 第十六讲 | LLAMA2 | 介绍LLAMA2模型结构,走读代码演示LLAMA2 chat部署| [link](https://www.bilibili.com/video/BV1Me411z7ZV/?spm_id_from=333.999.0.0) | [link](./Season2.step_into_llm/05.LLaMA2/) | [link](https://mp.weixin.qq.com/s/kmuMocA2oPJQNTXAjBKZ9A) |
-| 第十七讲 | 鹏城脑海 | 鹏城·脑海200B模型是具有2千亿参数的自回归式语言模型,在中国算力网枢纽节点'鹏城云脑II'千卡集群上基于昇思MindSpore的多维分布式并行技术进行长期大规模训练。模型聚焦中文核心能力,兼顾英文和部分多语言能力,目前完成了1.8T token量的训练 | [link](https://www.bilibili.com/video/BV1AT4y1p7bJ/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | / | [link](https://mp.weixin.qq.com/s/BVzOzP_EEV3b-CNnqiRNXA) |
-| 第十八讲 | CPM-Bee | 介绍CPM-Bee预训练、推理、微调及代码现场演示 |[link](https://www.bilibili.com/video/BV1VZ4y1n7t9/?spm_id_from=333.999.0.0) | [link](https://github.com/mindspore-courses/step_into_llm/tree/master/Season2.step_into_llm/07.CPM) | [link](https://mp.weixin.qq.com/s/lalEtEzUTQRqS1M-6AEVow) |
-| 第十九讲 | RWKV1-4 | RNN的没落和Transformers的崛起 万能的Transformers?Self-attention的弊端 “拳打”Transformer的新RNN-RWKV 基于MindNLP的RWKV模型实践 | [link](https://www.bilibili.com/video/BV1K4421w7Ha/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | / | [link](https://mp.weixin.qq.com/s/n9uxjENUA-XQEXXO3BJiPA) |
-| 第二十讲 | MOE | MoE的前世今生 MoE的实现基础:AlltoAll通信; Mixtral 8x7b: 当前最好的开源MoE大模型,MoE与终身学习,基于昇思MindSpore的Mixtral 8x7b推理演示。 | [link](https://www.bilibili.com/video/BV1jH4y177DL/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](https://github.com/mindspore-courses/step_into_llm/tree/master/Season2.step_into_llm/08.MoE) | [link](https://mp.weixin.qq.com/s/QubiOzpEau6dqMgFAVhxog) |
-| 第二十一讲 | 高效参数微调 | 介绍Lora、(P-Tuning)原理及代码实现 | [link](https://www.bilibili.com/video/BV11D421j7fZ/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](https://github.com/mindspore-courses/step_into_llm/tree/master/Season2.step_into_llm/09.PEFT) | [link](https://mp.weixin.qq.com/s/EAge4XZEG8vsyAvQFXZrhA) |
-| 第二十二讲 |Prompt Engineering | Prompt engineering:1.什么是Prompt?2.如何定义一个Prompt的好坏或优异? 3.如何撰写优质的Prompt?4.如何产出一个优质的Prompt? 5.浅谈一些我们在进行Prompt的时候遇到的问题。 | [link](https://www.bilibili.com/video/BV1aD421W73q/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | / |[link](https://mp.weixin.qq.com/s/CTVpcpKZA3E6oZftwpdgEA) |
-| 第二十三讲 | 多维度混合并行自动搜索优化策略 | 议题一·时间损失模型及改进多维度二分法/议题二·APSS算法应用 | [上](https://www.bilibili.com/video/BV1if421X7jB/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) [下](https://www.bilibili.com/video/BV1QM4m1z7FV/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | [link](https://mp.weixin.qq.com/s/8OufiPX4FLbgj8ztnckcWQ) |
-|第二十四讲 | 书生.浦语大模型开源全链工具链简介与智能体开发体验| 在本期课程中,我们有幸邀请到了书生.浦语社区技术运营、技术布道师闻星老师,以及昇思MindSpore技术布道师耿力老师,来详细解读书生.浦语大模型开源全链路工具链,演示如何对书生.浦语进行微调、推理以及智能体开发实操。| [link](https://www.bilibili.com/video/BV1K4421w7Ha/?spm_id_from=333.999.0.0&vd_source=eb3a45e6eb4dccc5795f97586b78f429) | / | [link](https://mp.weixin.qq.com/s/uh_RIThOEzkkWVbK_RBALQ) |
-| 第二十五讲 | RAG | | | | |
-| 第二十六讲 | LangChain模块解析 | 解析Models、Prompts、Memory、Chains、Agents、Indexes、Callbacks模块,及案例分析 | | | |
-| 第二十七讲 | RWKV5-6 | / | | | |
-| 第二十八讲 | 量化 | 介绍低比特量化等相关模型量化技术| | | |
+New releases of this repository are published approximately **every six months**.
+| Branch/Version | Python | MindSpore | MindSpore NLP |
+| :------ | :----- |:------ |:------ |
+| master | xxx | xxx | xxx |
+| r1.0 | xxx | xxx | xxx |
+## FAQ
-### 昇思资源一览:生态与伙伴共建、共享、共荣
+See the [FAQ](https://github.com/mindspore-courses/step_into_llm/wiki/Developer-FAQ) in the Wiki.
-
+## Contributing
-### 加入我们
+We welcome bug reports, suggestions, and code contributions via [Issues](Issue_link) or [PRs](PR_link). Please follow our submission guidelines — all PRs are reviewed and merged by @username. Your contributions make the project stronger!
-
-
-
-
-
-
+**Guidelines**: [Issue & PR Submission](https://github.com/mindspore-courses/step_into_llm/wiki/Contributing-Guidelines)
+
+## Contributors
+
+Special thanks to all contributors for improving this project!
+
+
diff --git a/README_ZH.md b/README_ZH.md
new file mode 100644
index 0000000..18d29b3
--- /dev/null
+++ b/README_ZH.md
@@ -0,0 +1,81 @@
+
+
+(1-2句话点名项目核心价值)项目仓介绍。
+
+## 📢 最新消息
+
+- 2025-10-21 「课程更新」:新增XXX课程,包含完整视频、课件及代码案例。([查看详情](xxxx))
+- 2025-10-18 「功能优化」:项目仓完成重构,查找课程资源更清晰,新增PR检查门禁,合入内容更规范。([查看详情](xxx))
+- 2025-10-10 「Bug修复」:修复xxxxxx问题,感谢@username的PR贡献。([查看详情](xxxx))
+
+## 前置知识
+
+在学习本门课程之前,您需要掌握:
+
+- Python基础
+- Linux命令基础
+- Jupyter基础
+- Docker镜像使用
+
+您可以通过前置学习考试(*待上线*)进行自检。
+
+## 环境准备
+
+为确保项目仓中实践代码可正常运行,推荐以下环境准备方式。更详细的环境准备指导详见[Wiki](https://github.com/mindspore-courses/step_into_llm/wiki/Set-Up-Development-Environment)。
+
+### 直接安装依赖
+
+请先确保 Python 版本符合[课程要求](#版本维护)后,进入仓库根目录,执行:
+
+```bash
+pip install requirements.txt
+```
+
+### 使用Docker镜像(*待发布*)
+
+为方便开发者更加便捷地进行代码实践,节约环境准备的时间,我们提供了预装好的基础Dockerfile文件。课程的所有镜像可从[dockerfile](./dockerfile/)获取。本课程镜像文件信息如下,开发者可根据实际需求进行拉取:
+
+镜像基础使用教程详见环境准备Wiki中的[Docker镜像使用](https://github.com/mindspore-courses/step_into_llm/wiki/Set-Up-Development-Environment)部分。
+
+## 课程内容
+
+| 序号 | 课节 | 简介 | 课程资源 | 能力认证入口 |
+| :-- | :------ | :--------------- | :----------------------- | :---------- |
+| 1 | xxx | xxx | [PPT](跳转链接) · [代码](跳转链接) · [视频](跳转链接) · [云沙箱实验](跳转链接) · [学习路径](跳转链接) | |
+| 2 | xxx | xxx | [PPT](跳转链接) · [代码](跳转链接) · [视频](跳转链接) · [云沙箱实验](跳转链接) · [学习路径](跳转链接) | [初级认证入口](xxxx) |
+| 3 | xxx | xxx | [PPT](跳转链接) · [代码](跳转链接) · [视频](跳转链接) · [云沙箱实验](跳转链接) · [学习路径](跳转链接) | |
+| 4 | xxx | xxx | [PPT](跳转链接) · [代码](跳转链接) · [视频](跳转链接) · [云沙箱实验](跳转链接) · [学习路径](跳转链接) | [中级认证入口](xxxx) |
+
+## 版本维护
+
+项目随昇思MindSpore及昇思MindSpore NLP套件迭代同步发布版本,本项目仓每**半年**进行版本发布。
+
+| 版本名 | Python | MindSpore | MindSpore NLP |
+| :----- | :----- |:------ |:------ |
+| master | xxx | xxx | xxx |
+| r1.0 | xxx | xxx | xxx |
+
+## 常见问题(FAQ)
+
+详见Wiki中[FAQ](https://github.com/mindspore-courses/step_into_llm/wiki/Developer-FAQ)。
+
+## 贡献与反馈
+
+欢迎各位开发者通过 [Issue](https://github.com/mindspore-courses/step_into_llm/issues) 提交建议或 bug 反馈,也可直接发起 [PR](https://github.com/mindspore-courses/step_into_llm/pulls) 进行Bug修复或代码贡献(提交前请参考提交规范,由Committer @username 完成评审合入),你的每一份参与都能让本项目更加完善。
+
+### 提交规范
+
+详见WIKI:[Issue与PR提交规范](https://github.com/mindspore-courses/step_into_llm/wiki/Contributing-Guidelines)
+
+### 贡献者展示
+
+向本项目的贡献者们致以最诚挚的感谢!
+
+
diff --git a/Season1.step_into_chatgpt/0.Course-Review/3-GPT.md b/Season1.step_into_chatgpt/0.Course-Review/3-GPT.md
index 8237000..5840162 100644
--- a/Season1.step_into_chatgpt/0.Course-Review/3-GPT.md
+++ b/Season1.step_into_chatgpt/0.Course-Review/3-GPT.md
@@ -9,7 +9,7 @@ GPT-1是更早于BERT提出了预训练语言模型(Pre-train+Fine-tune)的
## 1. 课程回顾
- Semi-Supervised Learning
-- Unsupervised Pretraining
+- Unsupervised Pretraining
- 模型预训练优化目标
- 模型结构
- Supervised Fine-tuning
diff --git a/Season1.step_into_chatgpt/0.Course-Review/5-Parallel.md b/Season1.step_into_chatgpt/0.Course-Review/5-Parallel.md
index a6898e6..61e4f0f 100644
--- a/Season1.step_into_chatgpt/0.Course-Review/5-Parallel.md
+++ b/Season1.step_into_chatgpt/0.Course-Review/5-Parallel.md
@@ -50,13 +50,13 @@
- 内存优化
1. 重计算
-
+
时间换空间:重计算技术可以不保存正向计算结果,让该内存可以被复用,然后在计算反向部分时,重新计算出正向结果。
-
+
2. 优化器并行——ZeRO
-
+
将参数和梯度分组放到不同卡上更新,再通过通信广播操作在设备间共享更新后的权值。
diff --git a/Season1.step_into_chatgpt/0.Course-Review/6-CodeGeex.md b/Season1.step_into_chatgpt/0.Course-Review/6-CodeGeex.md
index a4b8883..2d5fce9 100644
--- a/Season1.step_into_chatgpt/0.Course-Review/6-CodeGeex.md
+++ b/Season1.step_into_chatgpt/0.Course-Review/6-CodeGeex.md
@@ -70,11 +70,11 @@
2. 目前的基准从多任务及多语言两个方面对模型进行评价
- 多任务
-
+
通过不同应用场景进行评价,多使用CodeBLEU/BLEU评价相似性
- 多语言
-
+
在不同编程语言下评价代码正确性,如HumanEval(仅支持Python)、MultiPL-E(支持16种语言,但为自动翻译并不支持多任务)
3. HumanEval-X:新的多语言代码生成基准
diff --git a/Season1.step_into_chatgpt/1.Transformer/transformer-new.ipynb b/Season1.step_into_chatgpt/1.Transformer/transformer-new.ipynb
index a9bb5e4..e0b64a7 100644
--- a/Season1.step_into_chatgpt/1.Transformer/transformer-new.ipynb
+++ b/Season1.step_into_chatgpt/1.Transformer/transformer-new.ipynb
@@ -66,7 +66,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -104,102 +104,9 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[33mWARNING: Skipping mindspore-gpu as it is not installed.\u001b[0m\u001b[33m\n",
- "\u001b[0mLooking in indexes: http://pip.modelarts.private.com:8888/repository/pypi/simple\n",
- "Requirement already satisfied: download in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (0.3.5)\n",
- "Requirement already satisfied: tqdm in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from download) (4.66.4)\n",
- "Requirement already satisfied: six in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from download) (1.16.0)\n",
- "Requirement already satisfied: requests in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from download) (2.27.1)\n",
- "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->download) (1.26.7)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->download) (2024.7.4)\n",
- "Requirement already satisfied: charset-normalizer~=2.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->download) (2.0.12)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->download) (2.10)\n",
- "\u001b[33mWARNING: Error parsing dependencies of moxing-framework: Invalid version: '2.2.8.0aa484aa'\u001b[0m\u001b[33m\n",
- "\u001b[0m\u001b[31mERROR: Exception:\n",
- "Traceback (most recent call last):\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/base_command.py\", line 105, in _run_wrapper\n",
- " status = _inner_run()\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/base_command.py\", line 96, in _inner_run\n",
- " return self.run(options, args)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/req_command.py\", line 67, in wrapper\n",
- " return func(self, options, args)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/commands/install.py\", line 483, in run\n",
- " installed_versions[distribution.canonical_name] = distribution.version\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/metadata/pkg_resources.py\", line 192, in version\n",
- " return parse_version(self._dist.version)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_vendor/packaging/version.py\", line 56, in parse\n",
- " return Version(version)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_vendor/packaging/version.py\", line 202, in __init__\n",
- " raise InvalidVersion(f\"Invalid version: '{version}'\")\n",
- "pip._vendor.packaging.version.InvalidVersion: Invalid version: '2.2.8.0aa484aa'\u001b[0m\u001b[31m\n",
- "\u001b[0mLooking in indexes: http://pip.modelarts.private.com:8888/repository/pypi/simple\n",
- "Requirement already satisfied: nltk in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (3.8.1)\n",
- "Requirement already satisfied: click in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from nltk) (8.1.7)\n",
- "Requirement already satisfied: joblib in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from nltk) (1.4.2)\n",
- "Requirement already satisfied: regex>=2021.8.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from nltk) (2024.7.24)\n",
- "Requirement already satisfied: tqdm in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from nltk) (4.66.4)\n",
- "\u001b[33mWARNING: Error parsing dependencies of moxing-framework: Invalid version: '2.2.8.0aa484aa'\u001b[0m\u001b[33m\n",
- "\u001b[0m\u001b[31mERROR: Exception:\n",
- "Traceback (most recent call last):\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/base_command.py\", line 105, in _run_wrapper\n",
- " status = _inner_run()\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/base_command.py\", line 96, in _inner_run\n",
- " return self.run(options, args)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/req_command.py\", line 67, in wrapper\n",
- " return func(self, options, args)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/commands/install.py\", line 483, in run\n",
- " installed_versions[distribution.canonical_name] = distribution.version\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/metadata/pkg_resources.py\", line 192, in version\n",
- " return parse_version(self._dist.version)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_vendor/packaging/version.py\", line 56, in parse\n",
- " return Version(version)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_vendor/packaging/version.py\", line 202, in __init__\n",
- " raise InvalidVersion(f\"Invalid version: '{version}'\")\n",
- "pip._vendor.packaging.version.InvalidVersion: Invalid version: '2.2.8.0aa484aa'\u001b[0m\u001b[31m\n",
- "\u001b[0menv: no_proxy='a.test.com,127.0.0.1,2.2.2.2'\n",
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.4.0\n",
- " Using cached https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp39-cp39-linux_aarch64.whl (333.7 MB)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.22.0)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (3.20.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (2.4.1)\n",
- "Requirement already satisfied: pillow>=6.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (10.0.1)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.10.1)\n",
- "Requirement already satisfied: packaging>=20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (24.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (5.9.5)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.6.3)\n",
- "Requirement already satisfied: safetensors>=0.4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (0.4.5)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore==2.4.0) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.4.0) (0.38.4)\n",
- "\u001b[33mWARNING: Error parsing dependencies of moxing-framework: Invalid version: '2.2.8.0aa484aa'\u001b[0m\u001b[33m\n",
- "\u001b[0m\u001b[31mERROR: Exception:\n",
- "Traceback (most recent call last):\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/base_command.py\", line 105, in _run_wrapper\n",
- " status = _inner_run()\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/base_command.py\", line 96, in _inner_run\n",
- " return self.run(options, args)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/cli/req_command.py\", line 67, in wrapper\n",
- " return func(self, options, args)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/commands/install.py\", line 483, in run\n",
- " installed_versions[distribution.canonical_name] = distribution.version\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_internal/metadata/pkg_resources.py\", line 192, in version\n",
- " return parse_version(self._dist.version)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_vendor/packaging/version.py\", line 56, in parse\n",
- " return Version(version)\n",
- " File \"/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/pip/_vendor/packaging/version.py\", line 202, in __init__\n",
- " raise InvalidVersion(f\"Invalid version: '{version}'\")\n",
- "pip._vendor.packaging.version.InvalidVersion: Invalid version: '2.2.8.0aa484aa'\u001b[0m\u001b[31m\n",
- "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# %%capture captured_output\n",
"!pip uninstall mindspore-gpu -y\n",
@@ -302,36 +209,13 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.514.701 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.514.758 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.514.777 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.514.964 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtGetMemUceInfo failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtGetMemUceInfo\n",
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.514.980 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtDeviceTaskAbort failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtDeviceTaskAbort\n",
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.514.994 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtMemUceRepair failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtMemUceRepair\n",
- "[WARNING] GE_ADPT(7763,ffff8a17c0b0,python):2024-12-03-14:44:58.516.881 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol acltdtCleanChannel failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libacl_tdt_channel.so: undefined symbol: acltdtCleanChannel\n",
- "[WARNING] ME(7763:281472998555824,MainProcess):2024-12-03-14:44:58.669.269 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindspore import nn\n",
@@ -353,14 +237,14 @@
"\n",
" embed_size = query.shape[-1]\n",
" scaling_factor = self.sqrt(Tensor(embed_size, mstype.float32))\n",
- " \n",
+ "\n",
"\n",
" attn = ops.matmul(query, key.swapaxes(-2, -1) / scaling_factor)\n",
"\n",
"\n",
" if attn_mask is not None:\n",
" attn = attn.masked_fill(attn_mask, -1e9)\n",
- " \n",
+ "\n",
" attn = self.softmax(attn)\n",
"\n",
" attn = self.dropout(attn)\n",
@@ -372,24 +256,9 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] CORE(7763,ffff8a17c0b0,python):2024-12-03-14:45:24.134.177 [mindspore/core/utils/ms_context.cc:530] GetJitLevel] Set jit level to O2 for rank table startup method.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(128, 8, 32, 64) (128, 8, 32, 32)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"attention = ScaledDotProductAttention()\n",
"q_s = k_s = v_s = ops.ones((128, 8, 32, 64), mindspore.float32)\n",
@@ -416,7 +285,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -446,25 +315,13 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[[False False True True]\n",
- " [False False True True]\n",
- " [False False True True]\n",
- " [False False True True]]]\n",
- "(1, 4) (1, 4, 4)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"q = k = Tensor([[1, 1, 0, 0]], mstype.float32)\n",
"pad_idx = 0\n",
@@ -553,7 +410,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -604,21 +461,13 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1, 2, 10) (1, 5, 2, 2)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"dmodel, dk, nheads = 10, 2, 5\n",
"q = k = v = ops.ones((1, 2, 10), mstype.float32)\n",
@@ -701,7 +550,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -738,22 +587,13 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[[0. 1. 0. 1. ]\n",
- " [0.84147096 0.54030234 0.00999983 0.99995005]]]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"x = ops.Zeros()((1, 2, 4), mstype.float32)\n",
"pe = PositionalEncoding(4)\n",
@@ -798,7 +638,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -827,21 +667,13 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1, 2, 4)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"x = ops.ones((1, 2, 4), mstype.float32)\n",
"ffn = PoswiseFeedForward(16, 4)\n",
@@ -868,7 +700,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -881,29 +713,20 @@
" super().__init__()\n",
" self.layer_norm = nn.LayerNorm((d_model, ), epsilon=1e-5)\n",
" self.dropout = nn.Dropout(p=dropout_p)\n",
- " \n",
+ "\n",
" def construct(self, x, residual):\n",
" return self.layer_norm(self.dropout(x) + residual)"
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1, 2, 4)\n",
- "-\r"
- ]
- }
- ],
+ "outputs": [],
"source": [
"x = ops.ones((1, 2, 4), mstype.float32)\n",
"residual = ops.ones((1, 2, 4), mstype.float32)\n",
@@ -926,7 +749,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -944,7 +767,7 @@
" self.pos_ffn = PoswiseFeedForward(d_ff, d_model, dropout_p)\n",
" self.add_norm1 = AddNorm(d_model, dropout_p)\n",
" self.add_norm2 = AddNorm(d_model, dropout_p)\n",
- " \n",
+ "\n",
" def construct(self, enc_inputs, enc_self_attn_mask):\n",
" \"\"\"\n",
" enc_inputs: [batch_size, src_len, d_model]\n",
@@ -966,21 +789,13 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1, 2, 8) (1, 4, 2, 2)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"x = ops.ones((1, 2, 8), mstype.float32)\n",
"mask = Tensor([False]).broadcast_to((1, 2, 2))\n",
@@ -1004,7 +819,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1020,7 +835,7 @@
" self.layers = nn.CellList([EncoderLayer(d_model, n_heads, d_ff, dropout_p) for _ in range(n_layers)])\n",
" self.scaling_factor = ops.Sqrt()(Tensor(d_model, mstype.float32))\n",
"\n",
- " \n",
+ "\n",
" def construct(self, enc_inputs, src_pad_idx):\n",
" \"\"\"enc_inputs : [batch_size, src_len]\n",
" \"\"\"\n",
@@ -1098,7 +913,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -1108,7 +923,7 @@
"source": [
"def get_attn_subsequent_mask(seq_q, seq_k):\n",
" \"\"\"生成时间掩码,使decoder在第t时刻只能看到序列的前t-1个元素\n",
- " \n",
+ "\n",
" Args:\n",
" seq_q (Tensor): query序列,shape = [batch size, len_q]\n",
" seq_k (Tensor): key序列,shape = [batch size, len_k]\n",
@@ -1123,24 +938,13 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[[0. 1. 1. 1.]\n",
- " [0. 0. 1. 1.]\n",
- " [0. 0. 0. 1.]\n",
- " [0. 0. 0. 0.]]]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"q = k = ops.ones((1, 4), mstype.float32)\n",
"mask = get_attn_subsequent_mask(q, k)\n",
@@ -1162,7 +966,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1182,7 +986,7 @@
" self.add_norm1 = AddNorm(d_model, dropout_p)\n",
" self.add_norm2 = AddNorm(d_model, dropout_p)\n",
" self.add_norm3 = AddNorm(d_model, dropout_p)\n",
- " \n",
+ "\n",
" def construct(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):\n",
" \"\"\"\n",
" dec_inputs: [batch_size, trg_len, d_model]\n",
@@ -1196,7 +1000,7 @@
"\n",
" dec_outputs = self.add_norm1(dec_outputs, residual)\n",
" residual = dec_outputs\n",
- " \n",
+ "\n",
" dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)\n",
"\n",
" dec_outputs = self.add_norm2(dec_outputs, residual)\n",
@@ -1211,21 +1015,13 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1, 2, 4) (1, 1, 2, 2) (1, 1, 2, 2)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"x = y = ops.ones((1, 2, 4), mstype.float32)\n",
"mask1 = mask2 = Tensor([False]).broadcast_to((1, 2, 2))\n",
@@ -1251,7 +1047,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1266,8 +1062,8 @@
" self.pos_emb = PositionalEncoding(d_model, dropout_p)\n",
" self.layers = nn.CellList([DecoderLayer(d_model, n_heads, d_ff) for _ in range(n_layers)])\n",
" self.projection = nn.Dense(d_model, trg_vocab_size)\n",
- " self.scaling_factor = ops.Sqrt()(Tensor(d_model, mstype.float32)) \n",
- " \n",
+ " self.scaling_factor = ops.Sqrt()(Tensor(d_model, mstype.float32))\n",
+ "\n",
" def construct(self, dec_inputs, enc_inputs, enc_outputs, src_pad_idx, trg_pad_idx):\n",
" \"\"\"\n",
" dec_inputs: [batch_size, trg_len]\n",
@@ -1308,7 +1104,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1321,7 +1117,7 @@
" super().__init__()\n",
" self.encoder = encoder\n",
" self.decoder = decoder\n",
- " \n",
+ "\n",
" def construct(self, enc_inputs, dec_inputs, src_pad_idx, trg_pad_idx):\n",
" \"\"\"\n",
" enc_inputs: [batch_size, src_len]\n",
@@ -1333,8 +1129,7 @@
"\n",
" dec_logits = dec_outputs.view((-1, dec_outputs.shape[-1]))\n",
"\n",
- " return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns\n",
- " "
+ " return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns\n"
]
},
{
@@ -1395,37 +1190,13 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading data from https://modelscope.cn/api/v1/datasets/SelinaRR/Multi30K/repo?Revision=master&FilePath=Multi30K.zip (1 byte)\n",
- "\n",
- "file_sizes: 1.37MB [00:00, 5.29MB/s] \n",
- "Extracting zip file...\n",
- "Successfully downloaded / unzipped to ./\n",
- "========================================datasets in ./datasets/train/train.de========================================\n",
- "0 Zwei junge weiße Männer sind im Freien in der Nähe vieler Büsche.\n",
- "1 Mehrere Männer mit Schutzhelmen bedienen ein Antriebsradsystem.\n",
- "2 Ein kleines Mädchen klettert in ein Spielhaus aus Holz.\n",
- "3 Ein Mann in einem blauen Hemd steht auf einer Leiter und putzt ein Fenster.\n",
- "4 Zwei Männer stehen am Herd und bereiten Essen zu.\n",
- "========================================datasets in ./datasets/train/train.en========================================\n",
- "0 Two young, White males are outside near many bushes.\n",
- "1 Several men in hard hats are operating a giant pulley system.\n",
- "2 A little girl climbing into a wooden playhouse.\n",
- "3 A man in a blue shirt is standing on a ladder cleaning a window.\n",
- "4 Two men are at the stove preparing food.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from download import download\n",
"import re\n",
@@ -1489,7 +1260,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -1501,18 +1272,18 @@
"\n",
"class Multi30K():\n",
" \"\"\"Multi30K数据集加载器\n",
- " \n",
+ "\n",
" 加载Multi30K数据集并处理为一个Python迭代对象。\n",
- " \n",
+ "\n",
" \"\"\"\n",
" def __init__(self, path):\n",
" self.data = self._load(path)\n",
- " \n",
+ "\n",
" def _load(self, path):\n",
" def tokenize(text):\n",
" text = text.rstrip()\n",
" return [tok.lower() for tok in re.findall(r'\\w+|[^\\w\\s]', text)]\n",
- " \n",
+ "\n",
" members = {i.split('.')[-1]: i for i in os.listdir(path)}\n",
" de_path = os.path.join(path, members['de'])\n",
" en_path = os.path.join(path, members['en'])\n",
@@ -1524,17 +1295,17 @@
" en = [tokenize(i) for i in en]\n",
"\n",
" return list(zip(de, en))\n",
- " \n",
+ "\n",
" def __getitem__(self, idx):\n",
" return self.data[idx]\n",
- " \n",
+ "\n",
" def __len__(self):\n",
" return len(self.data)"
]
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1558,22 +1329,13 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "de = ['ein', 'mann', 'mit', 'einem', 'orangefarbenen', 'hut', ',', 'der', 'etwas', 'anstarrt', '.']\n",
- "en = ['a', 'man', 'in', 'an', 'orange', 'hat', 'starring', 'at', 'something', '.']\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"for de, en in test_dataset:\n",
" print(f'de = {de}')\n",
@@ -1611,7 +1373,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -1684,24 +1446,13 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "7"
- ]
- },
- "execution_count": 29,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"word_count = {'a':20, 'b':10, 'c':1, 'd':2}\n",
"\n",
@@ -1724,7 +1475,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1748,21 +1499,13 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Unique tokens in de vocabulary: 7882\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"de_vocab, en_vocab = build_vocab(train_dataset)\n",
"print('Unique tokens in de vocabulary:', len(de_vocab))"
@@ -1802,7 +1545,7 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -1878,43 +1621,13 @@
},
{
"cell_type": "code",
- "execution_count": 33,
- "metadata": {
- "slideshow": {
- "slide_type": "slide"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "src_idx.shape:(128, 32)\n",
- "[[ 2 5 13 ... 1 1 1]\n",
- " [ 2 5 13 ... 1 1 1]\n",
- " [ 2 5 13 ... 1 1 1]\n",
- " ...\n",
- " [ 2 5 52 ... 1 1 1]\n",
- " [ 2 8 37 ... 1 1 1]\n",
- " [ 2 5 33 ... 1 1 1]]\n",
- "src_len.shape:(128,)\n",
- "[27 25 24 24 23 23 23 23 22 22 22 21 21 21 21 21 20 20 20 20 20 19 19 19\n",
- " 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16\n",
- " 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 14\n",
- " 14 14 14 14 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12\n",
- " 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 10 10 10 10 10 10\n",
- " 10 9 9 9 9 9 9 8]\n",
- "trg_idx.shape:(128, 32)\n",
- "[[ 2 4 2243 ... 1 1 1]\n",
- " [ 2 4 9 ... 1 1 1]\n",
- " [ 2 4 9 ... 1 1 1]\n",
- " ...\n",
- " [ 2 4 55 ... 1 1 1]\n",
- " [ 2 4 38 ... 1 1 1]\n",
- " [ 2 4 35 ... 1 1 1]]\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "outputs": [],
"source": [
"train_iterator = Iterator(train_dataset, de_vocab, en_vocab, batch_size=128, max_len=32, drop_reminder=True)\n",
"valid_iterator = Iterator(valid_dataset, de_vocab, en_vocab, batch_size=128, max_len=32, drop_reminder=False)\n",
@@ -1941,7 +1654,7 @@
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -1991,7 +1704,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -2055,7 +1768,7 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -2110,7 +1823,7 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -2134,7 +1847,7 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -2163,7 +1876,7 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -2207,7 +1920,7 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
@@ -2248,54 +1961,13 @@
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Epoch: 0: 0%| | 0/226 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Epoch: 0: 100%|██████████| 226/226 [01:58<00:00, 1.91it/s, loss=4.45]\n",
- "100%|██████████| 8/8 [00:00<00:00, 13.00it/s, loss=3.33]\n",
- "Epoch: 1: 100%|██████████| 226/226 [00:44<00:00, 5.12it/s, loss=2.91]\n",
- "100%|██████████| 8/8 [00:00<00:00, 13.26it/s, loss=2.40]\n",
- "Epoch: 2: 100%|██████████| 226/226 [00:50<00:00, 4.50it/s, loss=2.29]\n",
- "100%|██████████| 8/8 [00:00<00:00, 13.41it/s, loss=2.06]\n",
- "Epoch: 3: 100%|██████████| 226/226 [00:46<00:00, 4.83it/s, loss=1.91]\n",
- "100%|██████████| 8/8 [00:00<00:00, 15.42it/s, loss=1.88]\n",
- "Epoch: 4: 100%|██████████| 226/226 [00:46<00:00, 4.83it/s, loss=1.65]\n",
- "100%|██████████| 8/8 [00:00<00:00, 13.23it/s, loss=1.75]\n",
- "Epoch: 5: 100%|██████████| 226/226 [00:50<00:00, 4.44it/s, loss=1.49]\n",
- "100%|██████████| 8/8 [00:00<00:00, 13.82it/s, loss=1.69]\n",
- "Epoch: 6: 100%|██████████| 226/226 [00:47<00:00, 4.73it/s, loss=nan] \n",
- "100%|██████████| 8/8 [00:00<00:00, 14.22it/s, loss=nan]\n",
- "Epoch: 7: 100%|██████████| 226/226 [00:48<00:00, 4.65it/s, loss=nan]\n",
- "100%|██████████| 8/8 [00:00<00:00, 13.12it/s, loss=nan]\n",
- "Epoch: 8: 100%|██████████| 226/226 [00:48<00:00, 4.67it/s, loss=nan]\n",
- "100%|██████████| 8/8 [00:00<00:00, 14.47it/s, loss=nan]\n",
- "Epoch: 9: 100%|██████████| 226/226 [00:48<00:00, 4.64it/s, loss=nan]\n",
- "100%|██████████| 8/8 [00:00<00:00, 14.23it/s, loss=nan]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindspore import save_checkpoint\n",
"\n",
@@ -2328,24 +2000,13 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "([], [])"
- ]
- },
- "execution_count": 42,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from mindspore import load_checkpoint, load_param_into_net\n",
"\n",
@@ -2378,7 +2039,7 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -2391,13 +2052,13 @@
" enc_inputs: [batch_size(1), src_len]\n",
" \"\"\"\n",
" new_model.set_train(False)\n",
- " \n",
+ "\n",
" # 对输入句子进行分词\n",
" if isinstance(sentence, str):\n",
" tokens = [tok.lower() for tok in re.findall(r'\\w+|[^\\w\\s]', sentence.rstrip())]\n",
" else:\n",
" tokens = [token.lower() for token in sentence]\n",
- " \n",
+ "\n",
" # 补充起始、终止占位符,统一序列长度\n",
" if len(tokens) > max_len - 2:\n",
" src_len = max_len\n",
@@ -2405,24 +2066,24 @@
" else:\n",
" src_len = len(tokens) + 2\n",
" tokens = [''] + tokens + [''] + [''] * (max_len - src_len)\n",
- " \n",
+ "\n",
" # 将德语单词转换为数字索引,并进一步转换为tensor\n",
" # enc_inputs: [1, src_len]\n",
" indexes = de_vocab.encode(tokens)\n",
" enc_inputs = Tensor(indexes, mstype.float32).expand_dims(0)\n",
- " \n",
+ "\n",
" # 将输入送入encoder,获取信息\n",
" enc_outputs, _ = new_model.encoder(enc_inputs, src_pad_idx)\n",
"\n",
" dec_inputs = Tensor([[en_vocab.bos_idx]], mstype.float32)\n",
- " \n",
+ "\n",
" # 初始化decoder输入,此时仅有句首占位符\n",
" # dec_inputs: [1, 1]\n",
" max_len = enc_inputs.shape[1]\n",
" for _ in range(max_len):\n",
" dec_outputs, _, _ = new_model.decoder(dec_inputs, enc_inputs, enc_outputs, src_pad_idx, trg_pad_idx)\n",
" dec_logits = dec_outputs.view((-1, dec_outputs.shape[-1]))\n",
- " \n",
+ "\n",
" # 找到下一个词的概率分布,并输出预测\n",
" dec_logits = dec_logits[-1, :]\n",
" pred = dec_logits.argmax(axis=0).expand_dims(0).expand_dims(0)\n",
@@ -2453,23 +2114,13 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "src = ['ein', 'mann', 'mit', 'einem', 'orangefarbenen', 'hut', ',', 'der', 'etwas', 'anstarrt', '.']\n",
- "trg = ['a', 'man', 'in', 'an', 'orange', 'hat', 'starring', 'at', 'something', '.']\n",
- "predicted trg = ['a', 'man', 'in', 'an', 'orange', 'hat', 'is', '', 'something', '.']\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"example_idx = 0\n",
"\n",
@@ -2511,37 +2162,29 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": null,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BLEU score = 44.92\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from nltk.translate.bleu_score import corpus_bleu\n",
"\n",
"def calculate_bleu(dataset, max_len=50):\n",
" trgs = []\n",
" pred_trgs = []\n",
- " \n",
+ "\n",
" for data in dataset[:10]:\n",
- " \n",
+ "\n",
" src = data[0]\n",
" trg = data[1]\n",
"\n",
" pred_trg = inference(src, max_len)\n",
" pred_trgs.append(pred_trg)\n",
" trgs.append([trg])\n",
- " \n",
+ "\n",
" return corpus_bleu(trgs, pred_trgs)\n",
"\n",
"bleu_score = calculate_bleu(test_dataset)\n",
diff --git a/Season1.step_into_chatgpt/2.BERT/bert_emotect_finetune.ipynb b/Season1.step_into_chatgpt/2.BERT/bert_emotect_finetune.ipynb
index 6ceed46..74760b1 100644
--- a/Season1.step_into_chatgpt/2.BERT/bert_emotect_finetune.ipynb
+++ b/Season1.step_into_chatgpt/2.BERT/bert_emotect_finetune.ipynb
@@ -16,109 +16,22 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.5.0\n",
- " Using cached https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp39-cp39-linux_aarch64.whl (345.0 MB)\n",
- "Requirement already satisfied: pip in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (25.1)\n",
- "\u001b[31mERROR: Could not find a version that satisfies the requirement install (from versions: none)\u001b[0m\u001b[31m\n",
- "\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
- "\u001b[31mERROR: No matching distribution found for install\u001b[0m\u001b[31m\n",
- "\u001b[0m"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://repo.huaweicloud.com/repository/pypi/simple/\n",
- "Requirement already satisfied: mindnlp==0.4.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (0.4.0)\n",
- "Requirement already satisfied: mindspore>=2.2.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: tqdm in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (4.67.1)\n",
- "Requirement already satisfied: requests in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.32.3)\n",
- "Requirement already satisfied: datasets in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (3.6.0)\n",
- "Requirement already satisfied: evaluate in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.4.3)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.19.1)\n",
- "Requirement already satisfied: safetensors in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.3)\n",
- "Requirement already satisfied: sentencepiece in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.2.0)\n",
- "Requirement already satisfied: regex in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2024.11.6)\n",
- "Requirement already satisfied: addict in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.1)\n",
- "Requirement already satisfied: pyctcdecode in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.0)\n",
- "Requirement already satisfied: jieba in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.42.1)\n",
- "Requirement already satisfied: pytest==7.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (7.2.0)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (11.2.1)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (25.3.0)\n",
- "Requirement already satisfied: iniconfig in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.1.0)\n",
- "Requirement already satisfied: packaging in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.2)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.2.0)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.2.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.0) (0.32.3)\n",
- "Requirement already satisfied: filelock in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (3.18.0)\n",
- "Requirement already satisfied: fsspec>=2023.5.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (2025.3.0)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (6.0.2)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (4.12.2)\n",
- "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (1.1.2)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.26.4)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (6.30.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (3.0.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.13.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (5.9.0)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.6.3)\n",
- "Requirement already satisfied: dill>=0.3.7 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (0.3.8)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (0.45.1)\n",
- "Requirement already satisfied: six<2.0,>=1.6.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (1.17.0)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (20.0.0)\n",
- "Requirement already satisfied: pandas in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (2.2.3)\n",
- "Requirement already satisfied: xxhash in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.70.16)\n",
- "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (3.12.7)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.5.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (2.6.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.3.2)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (5.0.1)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.6.0)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (6.4.4)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (0.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.20.0)\n",
- "Requirement already satisfied: idna>=2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from yarl<2.0,>=1.17.0->aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (3.10)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.4.1)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2025.4.26)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2020.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (6.133.2)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.0) (2.4.0)\n",
- "\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install mindnlp==0.4.0"
]
@@ -156,30 +69,11 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 0.908 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import os\n",
"\n",
@@ -192,7 +86,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -244,35 +138,11 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "--2025-06-03 16:26:40-- https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz\n",
- "正在解析主机 baidu-nlp.bj.bcebos.com (baidu-nlp.bj.bcebos.com)... 36.110.192.178, 2409:8c04:1001:1203:0:ff:b0bb:4f27\n",
- "正在连接 baidu-nlp.bj.bcebos.com (baidu-nlp.bj.bcebos.com)|36.110.192.178|:443... 已连接。\n",
- "已发出 HTTP 请求,正在等待回应... 200 OK\n",
- "长度:1710581 (1.6M) [application/x-gzip]\n",
- "正在保存至: “emotion_detection.tar.gz”\n",
- "\n",
- "emotion_detection.t 100%[===================>] 1.63M 7.02MB/s 用时 0.2s \n",
- "\n",
- "2025-06-03 16:26:41 (7.02 MB/s) - 已保存 “emotion_detection.tar.gz” [1710581/1710581])\n",
- "\n",
- "data/\n",
- "data/test.tsv\n",
- "data/infer.tsv\n",
- "data/dev.tsv\n",
- "data/train.tsv\n",
- "data/vocab.txt\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# download dataset\n",
"!wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz\n",
@@ -290,7 +160,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -302,7 +172,7 @@
" is_ascend = mindspore.get_context('device_target') == 'Ascend'\n",
"\n",
" column_names = [\"label\", \"text_a\"]\n",
- " \n",
+ "\n",
" dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)\n",
" # transforms\n",
" type_cast_op = transforms.TypeCast(mindspore.int32)\n",
@@ -334,76 +204,11 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "70d7820ca2334d3ba52d2b57e7a23918",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/49.0 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5d0038ad08204ceabeed2317ad9c5bd3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0.00B [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0952751c1ec14f538b7ea1c9ff9fe37b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0.00B [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d02cf9b1f4904dfd9c5c223f0d797cb4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/324 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import BertTokenizer\n",
"tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')"
@@ -411,29 +216,18 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "0"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"tokenizer.pad_token_id"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -446,75 +240,33 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['input_ids', 'attention_mask', 'labels']"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"dataset_train.get_col_names()"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[Tensor(shape=[32, 64], dtype=Int64, value=\n",
- "[[ 101, 1968, 1968 ... 0, 0, 0],\n",
- " [ 101, 679, 4761 ... 0, 0, 0],\n",
- " [ 101, 679, 3236 ... 0, 0, 0],\n",
- " ...\n",
- " [ 101, 7583, 7583 ... 0, 0, 0],\n",
- " [ 101, 872, 679 ... 0, 0, 0],\n",
- " [ 101, 2876, 2805 ... 0, 0, 0]]), Tensor(shape=[32, 64], dtype=Int64, value=\n",
- "[[1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " ...\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0]]), Tensor(shape=[32], dtype=Int32, value= [1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, \n",
- " 1, 1, 1, 1, 2, 1, 0, 0])]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"print(next(dataset_train.create_tuple_iterator()))"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "env: HF_ENDPOINT=https://hf-mirror.com\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%env HF_ENDPOINT=https://hf-mirror.com"
]
@@ -530,36 +282,11 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "15fc8f5f71ab4c5ea26e9e6b9e5f0743",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/392M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] DEVICE(3513,ffffa2651020,python):2025-06-03-16:41:44.906.806 [mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_vmm_adapter.h:147] CheckVmmDriverVersion] Open file /etc/ascend_install.info failed.\n",
- "[WARNING] DEVICE(3513,ffffa2651020,python):2025-06-03-16:41:44.906.895 [mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_vmm_adapter.h:186] CheckVmmDriverVersion] Driver version is less than 24.0.0, vmm is disabled by default, drvier_version: 23.0.6\n",
- "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-chinese and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
- "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import BertForSequenceClassification, BertModel\n",
"\n",
@@ -569,7 +296,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -580,18 +307,18 @@
"def compute_metrics(eval_pred):\n",
" predictions = eval_pred.predictions\n",
" labels = eval_pred.label_ids\n",
- " \n",
+ "\n",
" if len(predictions.shape) > 1:\n",
" predictions = np.argmax(predictions, axis=-1)\n",
"\n",
" accuracy = (predictions == labels).mean()\n",
- " \n",
+ "\n",
" return {\"accuracy\": float(accuracy)}"
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -624,156 +351,11 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a557eb2f81dd4b7893e2173ae25c116b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1510 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- ".{'loss': 0.3728, 'learning_rate': 1.7350993377483446e-05, 'epoch': 0.66}\n",
- "."
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/34 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.17702096700668335, 'eval_accuracy': 0.9351851851851852, 'eval_runtime': 1.5801, 'eval_samples_per_second': 21.518, 'eval_steps_per_second': 21.518, 'epoch': 1.0}\n",
- "{'loss': 0.2414, 'learning_rate': 1.4701986754966889e-05, 'epoch': 1.32}\n",
- "{'loss': 0.18, 'learning_rate': 1.2052980132450332e-05, 'epoch': 1.99}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/34 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.11940661072731018, 'eval_accuracy': 0.9629629629629629, 'eval_runtime': 1.8033, 'eval_samples_per_second': 18.854, 'eval_steps_per_second': 18.854, 'epoch': 2.0}\n",
- "{'loss': 0.126, 'learning_rate': 9.403973509933776e-06, 'epoch': 2.65}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/34 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.09447185695171356, 'eval_accuracy': 0.9694444444444444, 'eval_runtime': 1.8203, 'eval_samples_per_second': 18.678, 'eval_steps_per_second': 18.678, 'epoch': 3.0}\n",
- "{'loss': 0.1036, 'learning_rate': 6.754966887417219e-06, 'epoch': 3.31}\n",
- "{'loss': 0.0753, 'learning_rate': 4.105960264900663e-06, 'epoch': 3.97}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/34 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.056950367987155914, 'eval_accuracy': 0.9861111111111112, 'eval_runtime': 1.5702, 'eval_samples_per_second': 21.653, 'eval_steps_per_second': 21.653, 'epoch': 4.0}\n",
- "{'loss': 0.0568, 'learning_rate': 1.456953642384106e-06, 'epoch': 4.64}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/34 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.03606536239385605, 'eval_accuracy': 0.9916666666666667, 'eval_runtime': 1.8247, 'eval_samples_per_second': 18.633, 'eval_steps_per_second': 18.633, 'epoch': 5.0}\n",
- "{'train_runtime': 666.5481, 'train_samples_per_second': 72.493, 'train_steps_per_second': 2.265, 'train_loss': 0.1572099215147511, 'epoch': 5.0}\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "TrainOutput(global_step=1510, training_loss=0.1572099215147511, metrics={'train_runtime': 666.5481, 'train_samples_per_second': 72.493, 'train_steps_per_second': 2.265, 'train_loss': 0.1572099215147511, 'epoch': 5.0})"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# start training\n",
"trainer.train()"
@@ -790,26 +372,11 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 34/34 [00:01<00:00, 18.97it/s, acc=0.992]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Accuracy: 0.9917\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from tqdm import tqdm\n",
"import numpy as np\n",
@@ -844,33 +411,11 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 34/34 [00:01<00:00, 19.84it/s, acc=0.992]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Accuracy: 0.9917279411764706\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"acc = evaluate_fn(model, dataset_val)\n",
"print(f\"Accuracy: {acc}\")"
@@ -887,7 +432,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -898,7 +443,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -918,31 +463,11 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "inputs: '我 要 客观', predict: '中性' , label: '中性'\n",
- "inputs: '靠 你 真是 说 废话 吗', predict: '消极' , label: '消极'\n",
- "inputs: '口嗅 会', predict: '中性' , label: '中性'\n",
- "inputs: '每次 是 表妹 带 窝 飞 因为 窝路痴', predict: '中性' , label: '中性'\n",
- "inputs: '别说 废话 我 问 你 个 问题', predict: '消极' , label: '消极'\n",
- "inputs: '4967 是 新加坡 那 家 银行', predict: '中性' , label: '中性'\n",
- "inputs: '是 我 喜欢 兔子', predict: '积极' , label: '积极'\n",
- "inputs: '你 写 过 黄山 奇石 吗', predict: '中性' , label: '中性'\n",
- "inputs: '一个一个 慢慢来', predict: '中性' , label: '中性'\n",
- "inputs: '我 玩 过 这个 一点 都 不 好玩', predict: '消极' , label: '消极'\n",
- "inputs: '网上 开发 女孩 的 QQ', predict: '中性' , label: '中性'\n",
- "inputs: '背 你 猜 对 了', predict: '中性' , label: '中性'\n",
- "inputs: '我 讨厌 你 , 哼哼 哼 。 。', predict: '消极' , label: '消极'\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindspore import Tensor\n",
"\n",
@@ -961,19 +486,11 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "inputs: '家人们咱就是说一整个无语住了 绝绝子叠buff', predict: '中性'\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"predict(\"家人们咱就是说一整个无语住了 绝绝子叠buff\")"
]
diff --git a/Season1.step_into_chatgpt/2.BERT/bert_introduction.ipynb b/Season1.step_into_chatgpt/2.BERT/bert_introduction.ipynb
index 99ba599..b59b374 100644
--- a/Season1.step_into_chatgpt/2.BERT/bert_introduction.ipynb
+++ b/Season1.step_into_chatgpt/2.BERT/bert_introduction.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "35bd8ac0",
+ "id": "0",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -15,7 +15,7 @@
},
{
"cell_type": "markdown",
- "id": "576ed71b",
+ "id": "1",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -28,7 +28,7 @@
},
{
"cell_type": "markdown",
- "id": "67f34239",
+ "id": "2",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -44,7 +44,7 @@
},
{
"cell_type": "markdown",
- "id": "63fabf36",
+ "id": "3",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -72,7 +72,7 @@
},
{
"cell_type": "markdown",
- "id": "553a7118",
+ "id": "4",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -89,7 +89,7 @@
},
{
"cell_type": "markdown",
- "id": "9558644f",
+ "id": "5",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -107,7 +107,7 @@
},
{
"cell_type": "markdown",
- "id": "f242c5a3",
+ "id": "6",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -131,7 +131,7 @@
},
{
"cell_type": "markdown",
- "id": "e25a5669",
+ "id": "7",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -157,7 +157,7 @@
},
{
"cell_type": "markdown",
- "id": "3b7e625e",
+ "id": "8",
"metadata": {},
"source": [
" "
@@ -165,7 +165,7 @@
},
{
"cell_type": "markdown",
- "id": "e42d1ce8",
+ "id": "9",
"metadata": {},
"source": [
"接受输入序列后,BERT会输出每个位置对应的向量(长度等于hidden size),在后续下游任务中,我们会选取与任务相关的位置的向量,输入到最终输出层中得到结果。\n",
@@ -177,7 +177,7 @@
},
{
"cell_type": "markdown",
- "id": "a27de31d",
+ "id": "10",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -198,87 +198,10 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "d6c39086",
+ "execution_count": null,
+ "id": "11",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://repo.huaweicloud.com/repository/pypi/simple/\n",
- "Requirement already satisfied: mindnlp==0.4.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (0.4.0)\n",
- "Requirement already satisfied: mindspore>=2.2.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.1)\n",
- "Requirement already satisfied: tqdm in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (4.67.1)\n",
- "Requirement already satisfied: requests in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.32.3)\n",
- "Requirement already satisfied: datasets in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (3.6.0)\n",
- "Requirement already satisfied: evaluate in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.4.3)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.19.1)\n",
- "Requirement already satisfied: safetensors in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.3)\n",
- "Requirement already satisfied: sentencepiece in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.2.0)\n",
- "Requirement already satisfied: regex in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2024.11.6)\n",
- "Requirement already satisfied: addict in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.1)\n",
- "Requirement already satisfied: pyctcdecode in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.0)\n",
- "Requirement already satisfied: jieba in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.42.1)\n",
- "Requirement already satisfied: pytest==7.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (7.2.0)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (11.2.1)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (25.3.0)\n",
- "Requirement already satisfied: iniconfig in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.1.0)\n",
- "Requirement already satisfied: packaging in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.2)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.2.0)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.2.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.0) (0.31.1)\n",
- "Requirement already satisfied: filelock in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (3.18.0)\n",
- "Requirement already satisfied: fsspec>=2023.5.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (2025.3.0)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (6.0.2)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (4.12.2)\n",
- "Requirement already satisfied: hf-xet<2.0.0,>=1.1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (1.1.0)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.26.4)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (6.30.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (3.0.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.13.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (5.9.0)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.6.3)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (0.45.1)\n",
- "Requirement already satisfied: six<2.0,>=1.6.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (1.17.0)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (20.0.0)\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.3.8)\n",
- "Requirement already satisfied: pandas in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (2.2.3)\n",
- "Requirement already satisfied: xxhash in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.70.16)\n",
- "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (3.11.18)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (2.6.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.3.2)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (5.0.1)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.6.0)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (6.4.3)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (0.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.20.0)\n",
- "Requirement already satisfied: idna>=2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from yarl<2.0,>=1.17.0->aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (3.10)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.4.1)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2025.4.26)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2020.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (6.131.15)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.0) (2.4.0)\n",
- "\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
- "Looking in indexes: https://repo.huaweicloud.com/repository/pypi/simple/\n",
- "Requirement already satisfied: pytesseract in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (0.3.13)\n",
- "Requirement already satisfied: packaging>=21.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytesseract) (24.2)\n",
- "Requirement already satisfied: Pillow>=8.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytesseract) (11.2.1)\n",
- "\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# install mindnlp\n",
"!pip install mindnlp==0.4.0\n",
@@ -287,94 +210,10 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "0ad0c6f0",
+ "execution_count": null,
+ "id": "12",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.673.160 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.673.218 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.673.244 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.673.383 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtGetMemUceInfo failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtGetMemUceInfo\n",
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.673.408 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtDeviceTaskAbort failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtDeviceTaskAbort\n",
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.673.431 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtMemUceRepair failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtMemUceRepair\n",
- "[WARNING] GE_ADPT(6108,ffffab724020,python):2025-05-13-12:28:08.674.937 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol acltdtCleanChannel failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libacl_tdt_channel.so: undefined symbol: acltdtCleanChannel\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 1.042 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6421e22f124345fe924aa445c22403a2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0.00B [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "30735811eedd4f2ea525d38c702c177f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0.00B [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2e931b32674045c599aeb89a2088f180",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/334 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'input_ids': [101, 2393, 3159, 2089, 6968, 2080, 4651, 4121, 12839, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n",
- "['[CLS]', 'help', 'prince', 'may', '##uk', '##o', 'transfer', 'huge', 'inheritance', '[SEP]']\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import BertTokenizer\n",
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
@@ -389,7 +228,7 @@
},
{
"cell_type": "markdown",
- "id": "baf4efc6",
+ "id": "13",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -410,7 +249,7 @@
},
{
"cell_type": "markdown",
- "id": "fb1d92c5",
+ "id": "14",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -422,8 +261,8 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "d04340e2",
+ "execution_count": null,
+ "id": "15",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -456,7 +295,7 @@
" position_ids = position_ids.expand_dims(0).expand_as(input_ids)\n",
" if token_type_ids is None:\n",
" token_type_ids = ops.zeros_like(input_ids)\n",
- " \n",
+ "\n",
" words_embeddings = self.word_embeddings(input_ids)\n",
" position_embeddings = self.position_embeddings(position_ids)\n",
" token_type_embeddings = self.token_type_embeddings(token_type_ids)\n",
@@ -468,7 +307,7 @@
},
{
"cell_type": "markdown",
- "id": "24afcb4a",
+ "id": "16",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -487,7 +326,7 @@
},
{
"cell_type": "markdown",
- "id": "931ad4de",
+ "id": "17",
"metadata": {},
"source": [
"### BERT self-attention 层\n",
@@ -497,8 +336,8 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "b5068b5c",
+ "execution_count": null,
+ "id": "18",
"metadata": {},
"outputs": [],
"source": [
@@ -570,7 +409,7 @@
},
{
"cell_type": "markdown",
- "id": "9983cb64",
+ "id": "19",
"metadata": {},
"source": [
"### BERT self-attention 输出层 \n",
@@ -583,8 +422,8 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "d7ec92f7",
+ "execution_count": null,
+ "id": "20",
"metadata": {},
"outputs": [],
"source": [
@@ -609,7 +448,7 @@
},
{
"cell_type": "markdown",
- "id": "b3ef35f5",
+ "id": "21",
"metadata": {},
"source": [
"### BERT feed-forward 层"
@@ -617,8 +456,8 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "073f2754",
+ "execution_count": null,
+ "id": "22",
"metadata": {},
"outputs": [],
"source": [
@@ -640,7 +479,7 @@
},
{
"cell_type": "markdown",
- "id": "bd863caa",
+ "id": "23",
"metadata": {},
"source": [
"### BERT 最后的Add&Norm"
@@ -648,8 +487,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "0732f767",
+ "execution_count": null,
+ "id": "24",
"metadata": {},
"outputs": [],
"source": [
@@ -673,7 +512,7 @@
},
{
"cell_type": "markdown",
- "id": "66995cbe",
+ "id": "25",
"metadata": {},
"source": [
"### BERT Encoder\n",
@@ -686,8 +525,8 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "7752a2ff",
+ "execution_count": null,
+ "id": "26",
"metadata": {},
"outputs": [],
"source": [
@@ -746,7 +585,7 @@
},
{
"cell_type": "markdown",
- "id": "546a1b39",
+ "id": "27",
"metadata": {},
"source": [
"## BERT 输出\n",
@@ -760,7 +599,7 @@
},
{
"cell_type": "markdown",
- "id": "3466d706",
+ "id": "28",
"metadata": {},
"source": [
"### BERT Pooler"
@@ -768,8 +607,8 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "50b79508",
+ "execution_count": null,
+ "id": "29",
"metadata": {},
"outputs": [],
"source": [
@@ -791,7 +630,7 @@
},
{
"cell_type": "markdown",
- "id": "9e0df426",
+ "id": "30",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -810,7 +649,7 @@
},
{
"cell_type": "markdown",
- "id": "ef77d903",
+ "id": "31",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -831,7 +670,7 @@
},
{
"cell_type": "markdown",
- "id": "0fa96afc",
+ "id": "32",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -848,7 +687,7 @@
},
{
"cell_type": "markdown",
- "id": "3f4469a1",
+ "id": "33",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -860,29 +699,14 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "id": "53d4e932",
+ "execution_count": null,
+ "id": "34",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] DEVICE(6108,ffffab724020,python):2025-05-13-12:28:58.320.316 [mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_memory_adapter.cc:116] Initialize] Free memory size is less than half of total memory size.Device 0 Device HBM total size:34359738368 Device HBM free size:66969600 may be other processes occupying this card, check as: ps -ef|grep python\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"activation_map = {\n",
" 'relu': nn.ReLU(),\n",
@@ -897,7 +721,7 @@
" self.dense = nn.Dense(config.hidden_size, config.hidden_size, weight_init=TruncatedNormal(config.initializer_range))\n",
" self.transform_act_fn = activation_map.get(config.hidden_act, nn.GELU(False))\n",
" self.layer_norm = nn.LayerNorm((config.hidden_size,), epsilon=config.layer_norm_eps)\n",
- " \n",
+ "\n",
" def construct(self, hidden_states):\n",
" hidden_states = self.dense(hidden_states)\n",
" hidden_states = self.transform_act_fn(hidden_states)\n",
@@ -907,7 +731,7 @@
},
{
"cell_type": "markdown",
- "id": "c825d61f",
+ "id": "35",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -919,8 +743,8 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "id": "de0cc3f8",
+ "execution_count": null,
+ "id": "36",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -956,7 +780,7 @@
},
{
"cell_type": "markdown",
- "id": "f64c0e09",
+ "id": "37",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -979,7 +803,7 @@
},
{
"cell_type": "markdown",
- "id": "a209b829",
+ "id": "38",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -991,8 +815,8 @@
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "e1784651",
+ "execution_count": null,
+ "id": "39",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -1004,7 +828,7 @@
" def __init__(self, config):\n",
" super(BertPooler, self).__init__()\n",
" self.dense = nn.Dense(config.hidden_size, config.hidden_size, activation='tanh', weight_init=TruncatedNormal(config.initializer_range))\n",
- " \n",
+ "\n",
" def construct(self, hidden_states):\n",
" first_token_tensor = hidden_states[:, 0]\n",
" pooled_output = self.dense(first_token_tensor)\n",
@@ -1013,7 +837,7 @@
},
{
"cell_type": "markdown",
- "id": "1b75af11",
+ "id": "40",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -1027,8 +851,8 @@
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "edc1f2a8",
+ "execution_count": null,
+ "id": "41",
"metadata": {
"slideshow": {
"slide_type": "subslide"
@@ -1041,7 +865,7 @@
" super(BertPreTrainingHeads, self).__init__()\n",
" self.predictions = BertLMPredictionHead(config)\n",
" self.seq_relationship = nn.Dense(config.hidden_size, 2, weight_init=TruncatedNormal(config.initializer_range))\n",
- " \n",
+ "\n",
" def construct(self, sequence_output, pooled_output, masked_lm_positions):\n",
" prediction_scores = self.predictions(sequence_output, masked_lm_positions)\n",
" seq_relationship_score = self.seq_relationship(pooled_output)\n",
@@ -1050,7 +874,7 @@
},
{
"cell_type": "markdown",
- "id": "e5bd5d8b",
+ "id": "42",
"metadata": {
"slideshow": {
"slide_type": "slide"
@@ -1070,8 +894,8 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "0dc5a310",
+ "execution_count": null,
+ "id": "43",
"metadata": {
"slideshow": {
"slide_type": "subslide"
diff --git a/Season1.step_into_chatgpt/2.BERT/bert_pretrain.ipynb b/Season1.step_into_chatgpt/2.BERT/bert_pretrain.ipynb
index 860c363..3641c25 100644
--- a/Season1.step_into_chatgpt/2.BERT/bert_pretrain.ipynb
+++ b/Season1.step_into_chatgpt/2.BERT/bert_pretrain.ipynb
@@ -7,7 +7,7 @@
}
},
"cell_type": "markdown",
- "id": "da7c69f9",
+ "id": "0",
"metadata": {},
"source": [
"### DataParallel\n",
@@ -18,7 +18,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "48000382",
+ "id": "1",
"metadata": {},
"outputs": [],
"source": [
diff --git a/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune.ipynb b/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune.ipynb
index 66ecb2d..7990ff3 100644
--- a/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune.ipynb
+++ b/Season1.step_into_chatgpt/3.GPT/gpt_imdb_finetune.ipynb
@@ -9,200 +9,55 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.5.0\n",
- " Downloading https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp39-cp39-linux_aarch64.whl (345.0 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m345.0/345.0 MB\u001b[0m \u001b[31m112.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: pip in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (25.0.1)\n",
- "\u001b[31mERROR: Could not find a version that satisfies the requirement install (from versions: none)\u001b[0m\u001b[31m\n",
- "\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n",
- "\u001b[31mERROR: No matching distribution found for install\u001b[0m\u001b[31m\n",
- "\u001b[0m"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/aarch64/mindspore-2.5.0-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://repo.huaweicloud.com/repository/pypi/simple/\n",
- "Requirement already satisfied: mindnlp==0.4.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (0.4.0)\n",
- "Requirement already satisfied: mindspore>=2.2.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.1)\n",
- "Requirement already satisfied: tqdm in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (4.67.1)\n",
- "Requirement already satisfied: requests in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.32.3)\n",
- "Requirement already satisfied: datasets in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (3.6.0)\n",
- "Requirement already satisfied: evaluate in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.4.3)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.19.1)\n",
- "Requirement already satisfied: safetensors in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.3)\n",
- "Requirement already satisfied: sentencepiece in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.2.0)\n",
- "Requirement already satisfied: regex in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2024.11.6)\n",
- "Requirement already satisfied: addict in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.1)\n",
- "Requirement already satisfied: pyctcdecode in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.0)\n",
- "Requirement already satisfied: jieba in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.42.1)\n",
- "Requirement already satisfied: pytest==7.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (7.2.0)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.4.0) (11.1.0)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (25.3.0)\n",
- "Requirement already satisfied: iniconfig in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.1.0)\n",
- "Requirement already satisfied: packaging in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.2)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.2.0)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.2.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.0) (0.32.3)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.26.4)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (6.30.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (2.0.5)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.13.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (5.9.0)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.6.3)\n",
- "Requirement already satisfied: filelock in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.18.0)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (20.0.0)\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.3.8)\n",
- "Requirement already satisfied: pandas in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (2.2.3)\n",
- "Requirement already satisfied: xxhash in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.70.16)\n",
- "Requirement already satisfied: fsspec<=2025.3.0,>=2023.1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (2025.3.0)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (6.0.2)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.4.1)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.10)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2.3.0)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2025.1.31)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (6.133.2)\n",
- "Requirement already satisfied: six in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore>=2.2.14->mindnlp==0.4.0) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (0.45.1)\n",
- "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (3.12.7)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (4.12.2)\n",
- "Requirement already satisfied: hf-xet<2.0.0,>=1.1.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (1.1.2)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2020.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.5.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (2.6.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.3.2)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (5.0.1)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.6.0)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (6.4.4)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (0.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets->mindnlp==0.4.0) (1.20.0)\n",
- "\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install mindnlp==0.4.0"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://repo.huaweicloud.com/repository/pypi/simple/\n",
- "Requirement already satisfied: jieba in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (0.42.1)\n",
- "\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m25.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m25.1.1\u001b[0m\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install jieba"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "env: HF_ENDPOINT=https://hf-mirror.com\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%env HF_ENDPOINT=https://hf-mirror.com"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:02.546.745 [mindspore/run_check/_check_version.py:329] MindSpore version 2.4.1 and Ascend AI software package (Ascend Data Center Solution)version 7.6 does not match, the version of software package expect one of ['7.3', '7.5']. Please refer to the match info on: https://www.mindspore.cn/install\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:04.810.368 [mindspore/run_check/_check_version.py:347] MindSpore version 2.4.1 and \"te\" wheel package version 7.6 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:04.812.087 [mindspore/run_check/_check_version.py:354] MindSpore version 2.4.1 and \"hccl\" wheel package version 7.6 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:04.812.731 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 3\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:05.814.363 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 2\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:06.816.061 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 1\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:09.473.235 [mindspore/run_check/_check_version.py:329] MindSpore version 2.4.1 and Ascend AI software package (Ascend Data Center Solution)version 7.6 does not match, the version of software package expect one of ['7.3', '7.5']. Please refer to the match info on: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:09.474.964 [mindspore/run_check/_check_version.py:347] MindSpore version 2.4.1 and \"te\" wheel package version 7.6 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:09.475.567 [mindspore/run_check/_check_version.py:354] MindSpore version 2.4.1 and \"hccl\" wheel package version 7.6 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:09.476.234 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 3\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:10.477.850 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 2\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:11.478.869 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 1\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:12.480.761 [mindspore/run_check/_check_version.py:329] MindSpore version 2.4.1 and Ascend AI software package (Ascend Data Center Solution)version 7.6 does not match, the version of software package expect one of ['7.3', '7.5']. Please refer to the match info on: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:12.482.175 [mindspore/run_check/_check_version.py:347] MindSpore version 2.4.1 and \"te\" wheel package version 7.6 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:12.482.802 [mindspore/run_check/_check_version.py:354] MindSpore version 2.4.1 and \"hccl\" wheel package version 7.6 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:12.483.400 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 3\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:13.485.045 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 2\n",
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:14.486.640 [mindspore/run_check/_check_version.py:368] Please pay attention to the above warning, countdown: 1\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 1.075 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import os\n",
"\n",
@@ -218,7 +73,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -234,29 +89,18 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "2500"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"imdb_train.get_dataset_size()"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -291,21 +135,11 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import OpenAIGPTTokenizer\n",
"# tokenizer\n",
@@ -322,19 +156,11 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(250:281472944873504,MainProcess):2025-06-03-14:44:51.758.363 [mindspore/dataset/engine/datasets.py:2534] Dataset is shuffled before split.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# split train dataset into train and valid datasets\n",
"imdb_train, imdb_val = imdb_train.split([0.7, 0.3])"
@@ -342,7 +168,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -355,39 +181,18 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Tensor(shape=[4, 512], dtype=Int64, value=\n",
- " [[ 500, 246, 1322 ... 40480, 40480, 40480],\n",
- " [ 1473, 980, 246 ... 40480, 40480, 40480],\n",
- " [39516, 498, 481 ... 40480, 40480, 40480],\n",
- " [ 616, 544, 808 ... 40480, 40480, 40480]]),\n",
- " Tensor(shape=[4, 512], dtype=Int64, value=\n",
- " [[1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0]]),\n",
- " Tensor(shape=[4], dtype=Int32, value= [1, 1, 0, 0])]"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"next(dataset_train.create_tuple_iterator())"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -407,41 +212,11 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "94d1b9d8276a4040a27030d34c8d44e2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/457M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Some weights of OpenAIGPTForSequenceClassification were not initialized from the model checkpoint at openai-gpt and are newly initialized: ['score.weight']\n",
- "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import OpenAIGPTForSequenceClassification\n",
"from mindnlp.engine import TrainingArguments\n",
@@ -475,113 +250,11 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a14e623641474a878a018804439a22f6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/1314 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "......{'loss': 0.5623, 'learning_rate': 1.69558599695586e-05, 'epoch': 0.46}\n",
- ".{'loss': 0.5065, 'learning_rate': 1.39117199391172e-05, 'epoch': 0.91}\n",
- "."
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/188 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.38103795051574707, 'eval_accuracy': 0.8893333333333333, 'eval_runtime': 12.8526, 'eval_samples_per_second': 14.627, 'eval_steps_per_second': 14.627, 'epoch': 1.0}\n",
- "{'loss': 0.3234, 'learning_rate': 1.08675799086758e-05, 'epoch': 1.37}\n",
- "{'loss': 0.1771, 'learning_rate': 7.823439878234399e-06, 'epoch': 1.83}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/188 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.5746207237243652, 'eval_accuracy': 0.892, 'eval_runtime': 12.5869, 'eval_samples_per_second': 14.936, 'eval_steps_per_second': 14.936, 'epoch': 2.0}\n",
- "{'loss': 0.1717, 'learning_rate': 4.779299847792998e-06, 'epoch': 2.28}\n",
- "{'loss': 0.0905, 'learning_rate': 1.7351598173515982e-06, 'epoch': 2.74}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/188 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.5379959344863892, 'eval_accuracy': 0.9013333333333333, 'eval_runtime': 12.6645, 'eval_samples_per_second': 14.845, 'eval_steps_per_second': 14.845, 'epoch': 3.0}\n",
- "{'train_runtime': 544.4598, 'train_samples_per_second': 9.654, 'train_steps_per_second': 2.413, 'train_loss': 0.28584540307612544, 'epoch': 3.0}\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "TrainOutput(global_step=1314, training_loss=0.28584540307612544, metrics={'train_runtime': 544.4598, 'train_samples_per_second': 9.654, 'train_steps_per_second': 2.413, 'train_loss': 0.28584540307612544, 'epoch': 3.0})"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# trainer.run(tgt_columns=\"labels\")\n",
"trainer.train()"
@@ -589,7 +262,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -616,7 +289,7 @@
"\n",
" acc = compute_accuracy(logits, label)['accuracy']\n",
" epoch_acc += acc\n",
- " \n",
+ "\n",
" step_total += 1\n",
" acc=epoch_acc/step_total\n",
"\n",
@@ -625,33 +298,11 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 0%| | 0/188 [00:14, ?it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Accuracy: 0.901595744680851\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"acc = evaluate_fn(model, dataset_val)\n",
"print(f\"Accuracy: {acc}\")"
diff --git a/Season1.step_into_chatgpt/4.GPT2/gpt2_modules.ipynb b/Season1.step_into_chatgpt/4.GPT2/gpt2_modules.ipynb
index 9aa4b00..a210396 100644
--- a/Season1.step_into_chatgpt/4.GPT2/gpt2_modules.ipynb
+++ b/Season1.step_into_chatgpt/4.GPT2/gpt2_modules.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "b6ff08fc-4052-4e22-8aab-b3579544778f",
+ "id": "0",
"metadata": {},
"source": [
"# GPT2 Masked Multi-head Self-attention详解"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "6e69894f-46ce-4c18-85d0-8e5418ac70b2",
+ "id": "1",
"metadata": {},
"source": [
"该实验可进行在线体验,在线体验链接(https://pangu.huaweicloud.com/gallery/asset-detail.html?id=6253fbfb-afe6-4727-bca5-5fc726541ab2\n",
@@ -19,7 +19,7 @@
},
{
"cell_type": "markdown",
- "id": "67cdf1aa-38a0-4c00-af6e-b76b89ad35a3",
+ "id": "2",
"metadata": {},
"source": [
"## 环境配置\n",
@@ -32,8 +32,8 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "e60ce5a7-b42a-4669-affa-99fb526e3c35",
+ "execution_count": null,
+ "id": "3",
"metadata": {},
"outputs": [],
"source": [
@@ -44,8 +44,8 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "6e6f72a8-30cd-44ec-a884-4be46b6059bd",
+ "execution_count": null,
+ "id": "4",
"metadata": {},
"outputs": [],
"source": [
@@ -76,7 +76,7 @@
},
{
"cell_type": "markdown",
- "id": "5ab4c099-ead0-4fa9-8d1e-2eac85a43d9d",
+ "id": "5",
"metadata": {},
"source": [
"***注:以上代码执行完成后,需点击左上角或右上角将kernel更换为python-3.9.0***"
@@ -84,7 +84,7 @@
},
{
"cell_type": "markdown",
- "id": "c53f126c-a60f-4e08-8216-02dc63aa9a9b",
+ "id": "6",
"metadata": {},
"source": [
" "
@@ -92,7 +92,7 @@
},
{
"cell_type": "markdown",
- "id": "d2fe8b0f-8ab4-4658-b64f-5eefb64a25ec",
+ "id": "7",
"metadata": {},
"source": [
"2. 安装mindspore2.2.12、indNLP及相关依赖,MindNLP官方仓详见:MindNLP"
@@ -100,8 +100,8 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "52f84d8f-746d-4a87-af68-2dadf693f002",
+ "execution_count": null,
+ "id": "8",
"metadata": {},
"outputs": [],
"source": [
@@ -114,7 +114,7 @@
},
{
"cell_type": "markdown",
- "id": "d965c42b-d37a-42e4-aac9-4d25a4fb33be",
+ "id": "9",
"metadata": {},
"source": [
"***注:执行如上命令完成安装后,请点击上方的restart kernel图标重启kernel,再进行实验***"
@@ -122,8 +122,8 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "074df3ae-4bfc-4655-be9f-8041fc211f96",
+ "execution_count": null,
+ "id": "10",
"metadata": {
"tags": []
},
@@ -134,8 +134,8 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "9a161bfb-a15e-4a07-9bb0-688b76f87de3",
+ "execution_count": null,
+ "id": "11",
"metadata": {
"tags": []
},
@@ -148,7 +148,7 @@
},
{
"cell_type": "markdown",
- "id": "37ab3a91-292b-420d-9b61-c85280dd8dee",
+ "id": "12",
"metadata": {},
"source": [
"## GPT-2 Self-attention: 1- Creating queries, keys, and values"
@@ -156,7 +156,7 @@
},
{
"cell_type": "markdown",
- "id": "22664691-6db2-4d62-a76a-a4a8a6050199",
+ "id": "13",
"metadata": {},
"source": [
""
@@ -164,8 +164,8 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "76d2591f-26c2-4961-bca3-be30c4352aef",
+ "execution_count": null,
+ "id": "14",
"metadata": {
"tags": []
},
@@ -181,38 +181,18 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "2d315a4e-5663-404e-b93d-efb1cf354414",
+ "execution_count": null,
+ "id": "15",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- "\n",
- " from .autonotebook import tqdm as notebook_tqdm\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "((1, 10, 768), (1, 10, 768), (1, 10, 768))"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp._legacy.functional import split\n",
"from mindnlp.transformers.ms_utils import Conv1D\n",
"\n",
"# query = Wq * X, key = Wk * X, value = Wv * X\n",
- "# c_attn: (1, 10, 768*3) --> query, key, value: (1, 10, 768), (1, 10, 768), (1, 10, 768) \n",
+ "# c_attn: (1, 10, 768*3) --> query, key, value: (1, 10, 768), (1, 10, 768), (1, 10, 768)\n",
"c_attn = Conv1D(3 * embed_dim, embed_dim)\n",
"query, key, value = split(c_attn(x), embed_dim, axis=2)\n",
"query.shape, key.shape, value.shape"
@@ -220,7 +200,7 @@
},
{
"cell_type": "markdown",
- "id": "d2c7757e-16e4-4ff9-8a63-3e19767588db",
+ "id": "16",
"metadata": {},
"source": [
"\n",
@@ -230,8 +210,8 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "abb7ccac-7cfe-401a-ab32-763de70b4669",
+ "execution_count": null,
+ "id": "17",
"metadata": {
"tags": []
},
@@ -245,28 +225,17 @@
" new_shape = tensor.shape[:-1] + (num_heads, attn_head_size)\n",
" tensor = tensor.view(new_shape)\n",
" # (batch_size, seq_len, num_heads, attn_head_size) --> (batch_size, num_heads, seq_len, attn_head_size)\n",
- " return ops.transpose(tensor, (0, 2, 1, 3)) "
+ " return ops.transpose(tensor, (0, 2, 1, 3))"
]
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "72abe0fe-5225-425b-9bda-0723f3fb27cf",
+ "execution_count": null,
+ "id": "18",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "((1, 12, 10, 64), (1, 12, 10, 64), (1, 12, 10, 64))"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"num_heads = 12\n",
"head_dim = embed_dim // num_heads\n",
@@ -281,7 +250,7 @@
},
{
"cell_type": "markdown",
- "id": "fa0f65b2-b291-4ad1-b3ea-8e77e6a254d3",
+ "id": "19",
"metadata": {},
"source": [
"## GPT-2 Self-attention: 2- Scoring\n",
@@ -293,23 +262,12 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "9f952236-de74-4419-9469-7e78d3b7c3e4",
+ "execution_count": null,
+ "id": "20",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(1, 12, 10, 10)"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# qk点积\n",
"# q: (1, 12, 10, 64), k^T: (1, 12, 64, 10)\n",
@@ -321,7 +279,7 @@
},
{
"cell_type": "markdown",
- "id": "501d6de9-cdb7-40cd-aed1-e4fe059054b5",
+ "id": "21",
"metadata": {
"tags": []
},
@@ -331,30 +289,12 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "0ff22248-deff-4962-afae-55772f63f142",
+ "execution_count": null,
+ "id": "22",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Tensor(shape=[1, 1, 10, 10], dtype=Bool, value=\n",
- "[[[[ True, False, False ... False, False, False],\n",
- " [ True, True, False ... False, False, False],\n",
- " [ True, True, True ... False, False, False],\n",
- " ...\n",
- " [ True, True, True ... True, False, False],\n",
- " [ True, True, True ... True, True, False],\n",
- " [ True, True, True ... True, True, True]]]])"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# diagonal matrix to implement masked multi-head attention\n",
"# To ensure not to attend to future information\n",
@@ -367,7 +307,7 @@
},
{
"cell_type": "markdown",
- "id": "a783a2bc-01dd-4496-a018-ac01e643cd89",
+ "id": "23",
"metadata": {},
"source": [
"\n",
@@ -377,8 +317,8 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "id": "d957ce17-6df6-4f5e-a262-24ff3a8ce0d1",
+ "execution_count": null,
+ "id": "24",
"metadata": {
"tags": []
},
@@ -395,58 +335,29 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "id": "dee63bfd-f394-4558-9e9f-e102a2fd283c",
+ "execution_count": null,
+ "id": "25",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "-3.4028235e+38"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"np.finfo(np.float32).min"
]
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "d2faad14-9a3d-4495-8bcc-d7ac2695e83d",
+ "execution_count": null,
+ "id": "26",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Tensor(shape=[10, 10], dtype=Float32, value=\n",
- "[[-3.72267663e-01, -3.40282347e+38, -3.40282347e+38 ... -3.40282347e+38, -3.40282347e+38, -3.40282347e+38],\n",
- " [ 4.12474960e-01, -6.20999515e-01, -3.40282347e+38 ... -3.40282347e+38, -3.40282347e+38, -3.40282347e+38],\n",
- " [ 1.29110947e-01, 2.28423685e-01, -1.90024704e-01 ... -3.40282347e+38, -3.40282347e+38, -3.40282347e+38],\n",
- " ...\n",
- " [ 2.14589074e-01, 1.79385528e-01, 2.11229175e-01 ... -8.21841732e-02, -3.40282347e+38, -3.40282347e+38],\n",
- " [-3.86964470e-01, 1.50564313e-03, -7.81135634e-02 ... -8.60612690e-02, -3.31553906e-01, -3.40282347e+38],\n",
- " [ 1.89703301e-01, -7.32186437e-02, -2.44263425e-01 ... 4.69686151e-01, -6.34481907e-01, 6.83065802e-02]])"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"attn_weights[0, 0]"
]
},
{
"cell_type": "markdown",
- "id": "54f61883-a535-4135-851c-c41e9c227e18",
+ "id": "27",
"metadata": {},
"source": [
""
@@ -454,23 +365,12 @@
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "df9cdaae-ac5a-4bc0-9e59-403d176c0d3b",
+ "execution_count": null,
+ "id": "28",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(1, 12, 10, 10)"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"attn_weights = softmax(attn_weights, axis=-1)\n",
"attn_weights.shape"
@@ -478,37 +378,19 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "5771f68c-8b35-4b1a-83d1-287b2ce7a47e",
+ "execution_count": null,
+ "id": "29",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Tensor(shape=[10, 10], dtype=Float32, value=\n",
- "[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00 ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n",
- " [ 7.37588942e-01, 2.62411058e-01, 0.00000000e+00 ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n",
- " [ 3.53208542e-01, 3.90087605e-01, 2.56703824e-01 ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n",
- " ...\n",
- " [ 1.25348046e-01, 1.21012121e-01, 1.24927595e-01 ... 9.31602344e-02, 0.00000000e+00, 0.00000000e+00],\n",
- " [ 8.72338116e-02, 1.28645703e-01, 1.18800178e-01 ... 1.17859736e-01, 9.22039151e-02, 0.00000000e+00],\n",
- " [ 1.08949542e-01, 8.37606117e-02, 7.05920979e-02 ... 1.44151926e-01, 4.77844179e-02, 9.64947045e-02]])"
- ]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"attn_weights[0, 0]"
]
},
{
"cell_type": "markdown",
- "id": "4a376e6b-0cd8-434a-aa5b-c647251200fa",
+ "id": "30",
"metadata": {},
"source": [
""
@@ -516,23 +398,12 @@
},
{
"cell_type": "code",
- "execution_count": 15,
- "id": "0ba1e0ff-5627-4b70-8911-4ffa7383e29d",
+ "execution_count": null,
+ "id": "31",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(1, 12, 10, 64)"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"attn_output = ops.matmul(attn_weights, value)\n",
"\n",
@@ -541,7 +412,7 @@
},
{
"cell_type": "markdown",
- "id": "5952ef91-b1e1-4d5b-9b42-a29f56f8f430",
+ "id": "32",
"metadata": {},
"source": [
"## GPT-2 Self-attention: 3.5- Merge attention heads\n",
@@ -551,8 +422,8 @@
},
{
"cell_type": "code",
- "execution_count": 16,
- "id": "80e44dd1-4013-4d01-b267-92463b296e5b",
+ "execution_count": null,
+ "id": "33",
"metadata": {
"tags": []
},
@@ -570,23 +441,12 @@
},
{
"cell_type": "code",
- "execution_count": 17,
- "id": "5b35f8ee-70b4-4cb4-ad9b-d0b685482b59",
+ "execution_count": null,
+ "id": "34",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(1, 10, 768)"
- ]
- },
- "execution_count": 17,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# (1, 12, 10, 64) --> (1, 10, 12, 64) --> (1, 10, 768)\n",
"attn_output = merge_heads(attn_output, num_heads, head_dim)\n",
@@ -596,7 +456,7 @@
},
{
"cell_type": "markdown",
- "id": "de14b271-4432-44a0-b1f9-d2632ed2cd5b",
+ "id": "35",
"metadata": {},
"source": [
"## GPT-2 Self-attention: 4- Projecting\n",
@@ -606,8 +466,8 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "id": "ff788df6-a6a7-4b43-9a76-95eaef4918c7",
+ "execution_count": null,
+ "id": "36",
"metadata": {
"tags": []
},
@@ -618,23 +478,12 @@
},
{
"cell_type": "code",
- "execution_count": 19,
- "id": "0c7d4c1f-4ddc-4605-acba-f6e17cbfe2d5",
+ "execution_count": null,
+ "id": "37",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(1, 10, 768)"
- ]
- },
- "execution_count": 19,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"attn_output = c_proj(attn_output)\n",
"attn_output.shape"
@@ -643,7 +492,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9300497c-e27a-4fad-b02e-fe2b6a38aec2",
+ "id": "38",
"metadata": {},
"outputs": [],
"source": []
diff --git a/Season1.step_into_chatgpt/4.GPT2/gpt2_summarization.ipynb b/Season1.step_into_chatgpt/4.GPT2/gpt2_summarization.ipynb
index 7daef40..c56a189 100644
--- a/Season1.step_into_chatgpt/4.GPT2/gpt2_summarization.ipynb
+++ b/Season1.step_into_chatgpt/4.GPT2/gpt2_summarization.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "cb430c0e-fd70-46e2-91e2-b14cf782bd06",
+ "id": "0",
"metadata": {},
"source": [
"# 基于MindSpore的GPT2文本摘要\n",
@@ -14,8 +14,8 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "f9f085c7-b2b3-4b18-95f9-13b298b10d58",
+ "execution_count": null,
+ "id": "1",
"metadata": {},
"outputs": [],
"source": [
@@ -27,7 +27,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "d9436813-c813-425e-b1ed-af0534ef862c",
+ "id": "2",
"metadata": {},
"outputs": [],
"source": [
@@ -58,7 +58,7 @@
},
{
"cell_type": "markdown",
- "id": "0bdfae31-df62-4746-bd3e-1c556413ffd2",
+ "id": "3",
"metadata": {},
"source": [
"***注:以上代码执行完成后,需点击左上角或右上角将kernel更换为python-3.9.0***"
@@ -66,7 +66,7 @@
},
{
"cell_type": "markdown",
- "id": "757cb29c-48f4-4b6b-9b71-6c008e629eb8",
+ "id": "4",
"metadata": {},
"source": [
"2. 安装mindspore2.2.12,安装指南详见:[MindSpore安装](https://www.mindspore.cn/install)\n",
@@ -75,112 +75,10 @@
},
{
"cell_type": "code",
- "execution_count": 21,
- "id": "6491560b-1ec6-4ca1-88cc-c7f9c1297725",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: http://pip.modelarts.private.com:8888/repository/pypi/simple\n",
- "Processing ./mindnlp-0.4.1-py3-none-any.whl\n",
- "Requirement already satisfied: addict in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2.4.0)\n",
- "Requirement already satisfied: pytest==7.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (7.2.0)\n",
- "Requirement already satisfied: tqdm in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (4.66.4)\n",
- "Requirement already satisfied: regex in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2024.7.24)\n",
- "Requirement already satisfied: evaluate in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.4.3)\n",
- "Requirement already satisfied: pyctcdecode in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.5.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.4.0)\n",
- "Requirement already satisfied: sentencepiece in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.2.0)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.19.1)\n",
- "Requirement already satisfied: datasets in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (3.1.0)\n",
- "Requirement already satisfied: safetensors in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.4.5)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (10.0.1)\n",
- "Requirement already satisfied: mindspore>=2.2.14 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2.4.0)\n",
- "Requirement already satisfied: requests in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2.32.3)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (1.2.2)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (1.5.0)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (23.2.0)\n",
- "Requirement already satisfied: packaging in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (24.1)\n",
- "Requirement already satisfied: iniconfig in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (2.0.0)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (2.0.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.1) (0.24.2)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (4.12.2)\n",
- "Requirement already satisfied: fsspec>=2023.5.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (2024.6.1)\n",
- "Requirement already satisfied: filelock in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (3.15.4)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (6.0.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (5.9.5)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (1.22.0)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (1.6.3)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (2.4.1)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (1.10.1)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (3.20.2)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore>=2.2.14->mindnlp==0.4.1) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.1) (0.38.4)\n",
- "Requirement already satisfied: pandas in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (1.3.5)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (0.70.16)\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (0.3.8)\n",
- "Requirement already satisfied: aiohttp in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (3.11.9)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (18.1.0)\n",
- "Requirement already satisfied: xxhash in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (3.5.0)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (5.0.1)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (2.4.4)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (6.1.0)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (1.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (1.18.3)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (0.2.1)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (1.5.0)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (2.0.12)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (2024.7.4)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (1.26.7)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (2.10)\n",
- "Requirement already satisfied: pytz>=2017.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.1) (2024.1)\n",
- "Requirement already satisfied: python-dateutil>=2.7.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.1) (2.9.0.post0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.1) (6.122.1)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.1) (2.5.0)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.1) (2.4.0)\n",
- "mindnlp is already installed with the same version as the provided wheel. Use --force-reinstall to force an installation of the wheel.\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python3.9 -m pip install --upgrade pip' command.\u001b[0m\n",
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (0.19.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from tokenizers==0.19.1) (0.24.2)\n",
- "Requirement already satisfied: packaging>=20.9 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (24.1)\n",
- "Requirement already satisfied: fsspec>=2023.5.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (2024.6.1)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (6.0.1)\n",
- "Requirement already satisfied: tqdm>=4.42.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (4.66.4)\n",
- "Requirement already satisfied: requests in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (2.32.3)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (4.12.2)\n",
- "Requirement already satisfied: filelock in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (3.15.4)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (2.0.12)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (2.10)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (2024.7.4)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1) (1.26.7)\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python3.9 -m pip install --upgrade pip' command.\u001b[0m\n",
- "env: no_proxy='a.test.com,127.0.0.1,2.2.2.2'\n",
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.4.0\n",
- " Using cached https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp39-cp39-linux_aarch64.whl (333.7 MB)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (3.20.2)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (5.9.5)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (2.4.1)\n",
- "Requirement already satisfied: packaging>=20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (24.1)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.22.0)\n",
- "Requirement already satisfied: safetensors>=0.4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (0.4.5)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.10.1)\n",
- "Requirement already satisfied: pillow>=6.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (10.0.1)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.6.3)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore==2.4.0) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.4.0) (0.38.4)\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python -m pip install --upgrade pip' command.\u001b[0m\n",
- "Note: you may need to restart the kernel to use updated packages.\n",
- "\u001b[33mWARNING: Skipping mindformers as it is not installed.\u001b[0m\n"
- ]
- }
- ],
+ "execution_count": null,
+ "id": "5",
+ "metadata": {},
+ "outputs": [],
"source": [
"!pip install mindnlp-0.4.1-py3-none-any.whl # 将安装mindnlp版本更换为mindnlp-0.4.0-py3-none-any.whl(daily版本)\n",
"!pip install tokenizers==0.19.1 -i https://pypi.tuna.tsinghua.edu.cn/simple # 修改tokenizers版本为0.19.1\n",
@@ -191,7 +89,7 @@
},
{
"cell_type": "markdown",
- "id": "0faae5c6-8397-4574-9e9c-f86230bb071a",
+ "id": "6",
"metadata": {},
"source": [
"***注:执行如上命令完成安装后,请点击上方的restart kernel图标重启kernel,再进行实验***"
@@ -199,7 +97,7 @@
},
{
"cell_type": "markdown",
- "id": "bb699e4a-a2dc-44f2-b3cb-6b86fa9b24f6",
+ "id": "7",
"metadata": {},
"source": [
"### 数据集加载与处理\n",
@@ -211,39 +109,10 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "27bf5931-7b09-4984-841c-fbea311d3955",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.821.904 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.821.956 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.821.975 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.822.162 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtGetMemUceInfo failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtGetMemUceInfo\n",
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.822.179 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtDeviceTaskAbort failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtDeviceTaskAbort\n",
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.822.193 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtMemUceRepair failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtMemUceRepair\n",
- "[WARNING] GE_ADPT(12319,ffffaba360b0,python):2024-12-03-21:03:05.823.653 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol acltdtCleanChannel failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libacl_tdt_channel.so: undefined symbol: acltdtCleanChannel\n",
- "[WARNING] ME(12319:281473561354416,MainProcess):2024-12-03-21:03:05.955.541 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from .autonotebook import tqdm as notebook_tqdm\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 1.298 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- }
- ],
+ "execution_count": null,
+ "id": "8",
+ "metadata": {},
+ "outputs": [],
"source": [
"from mindnlp.utils import http_get\n",
"\n",
@@ -254,21 +123,10 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "9b5868b6-7a52-4f97-b934-4d3632a978a2",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "50000"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "id": "9",
+ "metadata": {},
+ "outputs": [],
"source": [
"from mindspore.dataset import TextFileDataset\n",
"\n",
@@ -279,7 +137,7 @@
},
{
"cell_type": "markdown",
- "id": "f2697c68-be45-44c1-bc26-7c04424ebf0c",
+ "id": "10",
"metadata": {},
"source": [
"**本案例默认在GPU P100上运行,因中文文本,tokenizer使用的是bert tokenizer而非gpt tokenizer等原因,全量数据训练1个epoch的时间约为80分钟。**\n",
@@ -289,8 +147,8 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "9bf79231-864c-4e11-9409-995c95cdb30f",
+ "execution_count": null,
+ "id": "11",
"metadata": {},
"outputs": [],
"source": [
@@ -301,7 +159,7 @@
},
{
"cell_type": "markdown",
- "id": "a1f0d574-53a0-4bac-9303-6eb769418c04",
+ "id": "12",
"metadata": {},
"source": [
"2. 数据预处理\n",
@@ -320,8 +178,8 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "f1ee1961-0658-4e70-95c2-81fefd83a40b",
+ "execution_count": null,
+ "id": "13",
"metadata": {},
"outputs": [],
"source": [
@@ -340,7 +198,7 @@
" tokenized = tokenizer(text=article, text_pair=summary,\n",
" padding='max_length', truncation='only_first', max_length=max_seq_len)\n",
" return tokenized['input_ids'], tokenized['input_ids']\n",
- " \n",
+ "\n",
" dataset = dataset.map(read_map, 'text', ['article', 'summary'])\n",
" # change column names to input_ids and labels for the following training\n",
" dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])\n",
@@ -354,7 +212,7 @@
},
{
"cell_type": "markdown",
- "id": "e0ce3dab-9486-4365-be7c-34bd5a761080",
+ "id": "14",
"metadata": {},
"source": [
"因GPT2无中文的tokenizer,我们使用BertTokenizer替代。"
@@ -362,29 +220,10 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "e3cd8e57-72bc-4d2e-b38d-38b24efadd49",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "21128"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "id": "15",
+ "metadata": {},
+ "outputs": [],
"source": [
"from mindnlp.transformers import BertTokenizer\n",
"\n",
@@ -395,8 +234,8 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "0e89c26b-4970-449a-a0c4-b6c61845e336",
+ "execution_count": null,
+ "id": "16",
"metadata": {},
"outputs": [],
"source": [
@@ -405,31 +244,17 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "1b65cc13-0a52-4bae-ab5f-ebb813a4d3ab",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Tensor(shape=[1, 1024], dtype=Int64, value=\n",
- " [[ 101, 1724, 3862 ... 0, 0, 0]]),\n",
- " Tensor(shape=[1, 1024], dtype=Int64, value=\n",
- " [[ 101, 1724, 3862 ... 0, 0, 0]])]"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "id": "17",
+ "metadata": {},
+ "outputs": [],
"source": [
"next(train_dataset.create_tuple_iterator())"
]
},
{
"cell_type": "markdown",
- "id": "7e1497ee-2ad1-4da8-b659-9c7f2d45fccc",
+ "id": "18",
"metadata": {},
"source": [
"### 模型构建\n",
@@ -439,8 +264,8 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "2f295944-ea2e-41e1-8301-472e09223792",
+ "execution_count": null,
+ "id": "19",
"metadata": {},
"outputs": [],
"source": [
@@ -481,7 +306,7 @@
},
{
"cell_type": "markdown",
- "id": "0f6af843-64d7-49a3-875f-605d6b2e74b2",
+ "id": "20",
"metadata": {},
"source": [
"2. 动态学习率"
@@ -489,8 +314,8 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "73c7be3d-44dc-49d4-abd8-c41f316a28d9",
+ "execution_count": null,
+ "id": "21",
"metadata": {},
"outputs": [],
"source": [
@@ -519,7 +344,7 @@
},
{
"cell_type": "markdown",
- "id": "c45e9db2-11df-4cc4-8bef-87d473d99e5a",
+ "id": "22",
"metadata": {},
"source": [
"### 模型训练"
@@ -527,8 +352,8 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "id": "1a655320-2d05-4c93-bc8b-f1b4f45f809f",
+ "execution_count": null,
+ "id": "23",
"metadata": {},
"outputs": [],
"source": [
@@ -541,21 +366,10 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "id": "81ac9003-2dcf-42f8-b42d-3a788f172d98",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "GPT2LMHeadModel has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`.`PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
- " - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
- " - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
- "[WARNING] DEVICE(12319,ffffaba360b0,python):2024-12-03-21:03:34.197.849 [mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_vmm_adapter.h:188] CheckVmmDriverVersion] Driver version is less than 24.0.0, vmm is disabled by default, drvier_version: 23.0.6\n"
- ]
- }
- ],
+ "execution_count": null,
+ "id": "24",
+ "metadata": {},
+ "outputs": [],
"source": [
"from mindspore import nn\n",
"from mindnlp.transformers import GPT2Config, GPT2LMHeadModel\n",
@@ -570,18 +384,10 @@
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "2803c71c-3591-48cf-a6a9-6b840af749bf",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of model parameters: 102068736\n"
- ]
- }
- ],
+ "execution_count": null,
+ "id": "25",
+ "metadata": {},
+ "outputs": [],
"source": [
"# 记录模型参数数量\n",
"print('number of model parameters: {}'.format(model.num_parameters()))"
@@ -589,8 +395,8 @@
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "1492649c-dfdb-4cfd-85bb-aef478aff5d2",
+ "execution_count": null,
+ "id": "26",
"metadata": {},
"outputs": [],
"source": [
@@ -608,8 +414,8 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "88259c93-5366-4406-a417-396808ec767c",
+ "execution_count": null,
+ "id": "27",
"metadata": {},
"outputs": [],
"source": [
@@ -624,7 +430,7 @@
" learning_rate=learning_rate,\n",
" max_grad_norm=max_grad_norm,\n",
" warmup_steps=warmup_steps\n",
- " \n",
+ "\n",
")\n",
"\n",
"from mindnlp.engine import Trainer\n",
@@ -638,56 +444,10 @@
},
{
"cell_type": "code",
- "execution_count": 15,
- "id": "ebf47838-460a-49e4-8850-f10fe7b5ff2b",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 0%| | 0/45 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 45/45 [00:32<00:00, 1.38it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'train_runtime': 32.5297, 'train_samples_per_second': 11.067, 'train_steps_per_second': 1.383, 'train_loss': 9.11246066623264, 'epoch': 1.0}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "TrainOutput(global_step=45, training_loss=9.11246066623264, metrics={'train_runtime': 32.5297, 'train_samples_per_second': 11.067, 'train_steps_per_second': 1.383, 'train_loss': 9.11246066623264, 'epoch': 1.0})"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "id": "28",
+ "metadata": {},
+ "outputs": [],
"source": [
"# 修改部分代码\n",
"# trainer.run(tgt_columns=\"labels\")\n",
@@ -696,8 +456,8 @@
},
{
"cell_type": "code",
- "execution_count": 16,
- "id": "787795ec-0c07-4be6-97b7-4defbe899117",
+ "execution_count": null,
+ "id": "29",
"metadata": {},
"outputs": [],
"source": [
@@ -712,7 +472,7 @@
"\n",
" dataset = dataset.map(read_map, 'text', ['article', 'summary'])\n",
" dataset = dataset.map(pad, 'article', ['input_ids'])\n",
- " \n",
+ "\n",
" dataset = dataset.batch(batch_size)\n",
"\n",
" return dataset"
@@ -720,8 +480,8 @@
},
{
"cell_type": "code",
- "execution_count": 17,
- "id": "996842c4-f793-4393-ae64-2d4b065bc9f2",
+ "execution_count": null,
+ "id": "30",
"metadata": {},
"outputs": [],
"source": [
@@ -730,75 +490,18 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "id": "10421e6d-ec81-435d-9944-f1e35cd3eae9",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[array([[ 101, 4373, 3360, 3173, 7319, 5381, 118, 4373, 3360, 3241, 2845,\n",
- " 6380, 8020, 6858, 6380, 1447, 133, 100, 135, 7942, 837, 2412,\n",
- " 8021, 5298, 6756, 7313, 7395, 8024, 1355, 4385, 6378, 5298, 1767,\n",
- " 7353, 6818, 671, 3418, 4510, 5296, 3327, 677, 3300, 671, 702,\n",
- " 7881, 4973, 8024, 8128, 2259, 4638, 1144, 3378, 4989, 1315, 4260,\n",
- " 677, 1343, 2929, 7881, 8024, 679, 2682, 2218, 3634, 1462, 700,\n",
- " 7942, 3787, 511, 3189, 1184, 1355, 4495, 1762, 1300, 4635, 1344,\n",
- " 3152, 1765, 7252, 671, 7730, 3413, 6378, 5298, 1767, 4638, 2692,\n",
- " 1912, 752, 3125, 8024, 808, 782, 1537, 1656, 511, 791, 2399,\n",
- " 8128, 2259, 4638, 1144, 3378, 3221, 1300, 4635, 1344, 2123, 4059,\n",
- " 7252, 3173, 5783, 3333, 782, 8024, 679, 719, 1184, 1168, 1071,\n",
- " 1828, 1356, 1144, 3378, 3378, 818, 3136, 5298, 4638, 2123, 4059,\n",
- " 7252, 3378, 7730, 3413, 1346, 1217, 3749, 6756, 7730, 7724, 1447,\n",
- " 1824, 6378, 511, 8132, 3189, 704, 1286, 8024, 1144, 3378, 7390,\n",
- " 1828, 1356, 1144, 3378, 3378, 1350, 1369, 1912, 1126, 1399, 2110,\n",
- " 1447, 2458, 6756, 1168, 3152, 1765, 7252, 8024, 955, 4500, 3152,\n",
- " 1765, 7252, 7160, 4635, 5106, 1322, 7353, 6818, 4638, 6378, 5298,\n",
- " 1767, 5298, 6756, 511, 8122, 3198, 6387, 8024, 6378, 5298, 7313,\n",
- " 7395, 8024, 1144, 3378, 1355, 4385, 6378, 5298, 1767, 7353, 6818,\n",
- " 671, 3418, 4510, 5296, 3327, 677, 3300, 671, 702, 7881, 4973,\n",
- " 8024, 671, 1372, 100, 1061, 1520, 100, 3633, 1388, 4708, 6001,\n",
- " 2094, 7607, 1726, 7881, 4973, 511, 2398, 3198, 1144, 3378, 981,\n",
- " 2209, 833, 2936, 7881, 1139, 1297, 8024, 4761, 6887, 6821, 4905,\n",
- " 7881, 817, 966, 8135, 1914, 1039, 511, 800, 6656, 6716, 6804,\n",
- " 2110, 1447, 2802, 749, 702, 2875, 1461, 8024, 912, 7607, 1944,\n",
- " 6814, 1343, 8024, 3617, 4260, 677, 4510, 5296, 3327, 2929, 7881,\n",
- " 511, 1144, 3378, 3378, 1355, 4385, 1400, 6841, 6814, 1343, 3617,\n",
- " 7349, 3632, 8024, 852, 711, 3198, 2347, 3241, 8024, 5023, 1144,\n",
- " 3378, 3378, 6628, 1168, 3198, 8024, 1144, 3378, 2347, 4260, 1168,\n",
- " 4510, 5296, 3327, 7553, 8024, 847, 2797, 2929, 7881, 3198, 679,\n",
- " 2708, 6239, 4821, 1168, 1928, 7553, 4638, 7770, 1327, 4510, 5296,\n",
- " 8024, 2496, 1315, 6716, 767, 511, 1071, 2797, 2958, 6158, 1912,\n",
- " 7463, 4638, 7167, 3363, 1173, 4959, 8024, 2221, 860, 2647, 2899,\n",
- " 1762, 4510, 5296, 3327, 677, 511, 8153, 3189, 678, 1286, 8024,\n",
- " 1762, 3152, 1765, 510, 2123, 4059, 7252, 3124, 2424, 1350, 4685,\n",
- " 1068, 6956, 7305, 1291, 6444, 678, 8024, 4685, 1068, 6569, 818,\n",
- " 3175, 680, 3647, 5442, 2157, 2247, 6809, 2768, 6608, 985, 1291,\n",
- " 6379, 8024, 3647, 5442, 2157, 2247, 1398, 2692, 2199, 3647, 5442,\n",
- " 2221, 860, 1357, 678, 3021, 6624, 8024, 4685, 1068, 6569, 818,\n",
- " 3175, 1066, 6608, 985, 3647, 5442, 2157, 2247, 8115, 119, 129,\n",
- " 674, 1039, 8024, 1071, 704, 2123, 4059, 7252, 3378, 7730, 3413,\n",
- " 6608, 802, 128, 119, 124, 674, 1039, 8024, 3647, 5442, 1828,\n",
- " 1356, 1144, 3378, 3378, 8020, 7730, 3413, 3136, 5298, 8021, 6608,\n",
- " 802, 126, 119, 124, 674, 1039, 8024, 3152, 1765, 897, 4510,\n",
- " 2792, 3315, 3341, 3766, 3300, 4684, 2970, 6569, 818, 8024, 852,\n",
- " 1139, 754, 782, 6887, 712, 721, 6608, 802, 124, 119, 123,\n",
- " 674, 1039, 511, 8020, 1333, 3403, 7579, 8038, 711, 2929, 671,\n",
- " 1372, 7881, 133, 100, 135, 6608, 677, 671, 3340, 1462, 1300,\n",
- " 4635, 671, 4511, 2094, 4260, 4510, 5296, 3327, 2929, 7881, 8024,\n",
- " 679, 2708, 6239, 4510, 6716, 767, 8021, 102]], dtype=int64), array(['玉林21岁小伙驾校培训期间爬上电线杆抓鸟,触到高压电线触电身亡;相关责任方赔偿家属15.8万元(图)'], dtype=' 黄 传 庆 ) 练 车 间 隙 , 发 现 训 练 场 附 近 一 根 电 线 杆 上 有 一 个 鸟 窝 , 21 岁 的 刁 某 立 即 爬 上 去 捉 鸟 , 不 想 就 此 命 丧 黄 泉 。 日 前 发 生 在 博 白 县 文 地 镇 一 驾 校 训 练 场 的 意 外 事 故 , 令 人 唏 嘘 。 今 年 21 岁 的 刁 某 是 博 白 县 宁 潭 镇 新 荣 村 人 , 不 久 前 到 其 堂 叔 刁 某 某 任 教 练 的 宁 潭 镇 某 驾 校 参 加 汽 车 驾 驶 员 培 训 。 25 日 中 午 , 刁 某 随 堂 叔 刁 某 某 及 另 外 几 名 学 员 开 车 到 文 地 镇 , 借 用 文 地 镇 钛 白 粉 厂 附 近 的 训 练 场 练 车 。 14 时 许 , 训 练 间 隙 , 刁 某 发 现 训 练 场 附 近 一 根 电 线 杆 上 有 一 个 鸟 窝 , 一 只 [UNK] 八 哥 [UNK] 正 叼 着 虫 子 飞 回 鸟 窝 。 平 时 刁 某 偶 尔 会 捕 鸟 出 卖 , 知 道 这 种 鸟 价 值 100 多 元 。 他 跟 身 边 学 员 打 了 个 招 呼 , 便 飞 奔 过 去 , 欲 爬 上 电 线 杆 捉 鸟 。 刁 某 某 发 现 后 追 过 去 欲 阻 止 , 但 为 时 已 晚 , 等 刁 某 某 赶 到 时 , 刁 某 已 爬 到 电 线 杆 顶 , 伸 手 捉 鸟 时 不 慎 触 碰 到 头 顶 的 高 压 电 线 , 当 即 身 亡 。 其 手 掌 被 外 露 的 钢 枝 刺 穿 , 尸 体 悬 挂 在 电 线 杆 上 。 26 日 下 午 , 在 文 地 、 宁 潭 镇 政 府 及 相 关 部 门 协 调 下 , 相 关 责 任 方 与 死 者 家 属 达 成 赔 偿 协 议 , 死 者 家 属 同 意 将 死 者 尸 体 取 下 搬 走 , 相 关 责 任 方 共 赔 偿 死 者 家 属 15. 8 万 元 , 其 中 宁 潭 镇 某 驾 校 赔 付 7. 3 万 元 , 死 者 堂 叔 刁 某 某 ( 驾 校 教 练 ) 赔 付 5. 3 万 元 , 文 地 供 电 所 本 来 没 有 直 接 责 任 , 但 出 于 人 道 主 义 赔 付 3. 2 万 元 。 ( 原 标 题 : 为 捉 一 只 鸟 < [UNK] > 赔 上 一 条 命 博 白 一 男 子 爬 电 线 杆 捉 鸟 , 不 慎 触 电 身 亡 ) [SEP] , 。 , , 的 , [UNK] 的 的 。 。 [UNK] , 了 , 大 的 了 。 的 [UNK] 。 一 的 一 , 出 , 上 , 人 的 大 , 和 , 子 , 到 , 市 , 有 , 行 , 也 , < ,\n"
- ]
- }
- ],
+ "execution_count": null,
+ "id": "34",
+ "metadata": {},
+ "outputs": [],
"source": [
"model.set_train(False)\n",
"model.config.eos_token_id = model.config.sep_token_id\n",
@@ -854,7 +540,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "8654a5d5-d94b-4906-92bf-52d2d85685a7",
+ "id": "35",
"metadata": {},
"outputs": [],
"source": []
@@ -862,7 +548,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "9613743c-3655-45e2-a720-c311a5854c94",
+ "id": "36",
"metadata": {},
"outputs": [],
"source": []
diff --git a/Season1.step_into_chatgpt/7.Prompt/roberta_sequence_classification.ipynb b/Season1.step_into_chatgpt/7.Prompt/roberta_sequence_classification.ipynb
index 75c4c9e..25e1ce7 100644
--- a/Season1.step_into_chatgpt/7.Prompt/roberta_sequence_classification.ipynb
+++ b/Season1.step_into_chatgpt/7.Prompt/roberta_sequence_classification.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "7a2ac91c",
+ "id": "0",
"metadata": {},
"source": [
"# 基于MindNLP的Roberta模型Prompt Tuning"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "324424c6",
+ "id": "1",
"metadata": {},
"source": [
"安装mindspore, mindnlp及其他依赖"
@@ -18,66 +18,27 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "cd3f2df1-da30-4009-8b33-80df52be80c7",
+ "execution_count": null,
+ "id": "2",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.4.1\n",
- " Downloading https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp39-cp39-linux_aarch64.whl (335.5 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m335.5/335.5 MB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (1.26.1)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (3.20.3)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (2.4.1)\n",
- "Requirement already satisfied: pillow>=6.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (9.0.1)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (1.11.3)\n",
- "Requirement already satisfied: packaging>=20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (23.2)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (5.9.5)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.1) (1.6.3)\n",
- "Collecting safetensors>=0.4.0 (from mindspore==2.4.1)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/08/94/7760694760f1e5001bd62c93155b8b7ccb652d1f4d0161d1e72b5bf9581a/safetensors-0.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (442 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m442.4/442.4 kB\u001b[0m \u001b[31m39.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore==2.4.1) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.4.1) (0.41.2)\n",
- "\u001b[33mDEPRECATION: moxing-framework 2.1.16.2ae09d45 has a non-standard version number. pip 24.0 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of moxing-framework or contact the author to suggest that they release a version with a conforming version number. Discussion can be found at https://github.com/pypa/pip/issues/12063\u001b[0m\u001b[33m\n",
- "\u001b[0mInstalling collected packages: safetensors, mindspore\n",
- " Attempting uninstall: mindspore\n",
- " Found existing installation: mindspore 2.3.0\n",
- " Uninstalling mindspore-2.3.0:\n",
- " Successfully uninstalled mindspore-2.3.0\n",
- "Successfully installed mindspore-2.4.1 safetensors-0.4.5\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.1/MindSpore/unified/aarch64/mindspore-2.4.1-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple"
]
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "d8b0ba09",
+ "execution_count": null,
+ "id": "3",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "env: HF_ENDPOINT=https://hf-mirror.com\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%env HF_ENDPOINT=https://hf-mirror.com"
]
},
{
"cell_type": "markdown",
- "id": "5b0e977f",
+ "id": "4",
"metadata": {},
"source": [
"## 模型与数据集加载\n",
@@ -87,8 +48,8 @@
},
{
"cell_type": "code",
- "execution_count": 15,
- "id": "ef577ba3",
+ "execution_count": null,
+ "id": "5",
"metadata": {},
"outputs": [],
"source": [
@@ -115,8 +76,8 @@
},
{
"cell_type": "code",
- "execution_count": 16,
- "id": "af061f0b",
+ "execution_count": null,
+ "id": "6",
"metadata": {},
"outputs": [],
"source": [
@@ -130,7 +91,7 @@
},
{
"cell_type": "markdown",
- "id": "f949e9cb",
+ "id": "7",
"metadata": {},
"source": [
"prompt tuning配置,任务类型选为\"SEQ_CLS\", 即序列分类。"
@@ -138,8 +99,8 @@
},
{
"cell_type": "code",
- "execution_count": 17,
- "id": "4e9663be",
+ "execution_count": null,
+ "id": "8",
"metadata": {},
"outputs": [],
"source": [
@@ -151,7 +112,7 @@
},
{
"cell_type": "markdown",
- "id": "3dc55fc7",
+ "id": "9",
"metadata": {},
"source": [
"加载tokenizer。如模型为GPT、OPT或BLOOM类模型,从序列左侧添加padding,其他情况下从序列右侧添加padding。"
@@ -159,19 +120,10 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "id": "871ebbae",
+ "execution_count": null,
+ "id": "10",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# load tokenizer\n",
"if any(k in model_name_or_path for k in (\"gpt\", \"opt\", \"bloom\")):\n",
@@ -186,18 +138,10 @@
},
{
"cell_type": "code",
- "execution_count": 19,
- "id": "79ef5257",
+ "execution_count": null,
+ "id": "11",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'sentence1': Tensor(shape=[], dtype=String, value= 'Amrozi accused his brother , whom he called \" the witness \" , of deliberately distorting his evidence .'), 'sentence2': Tensor(shape=[], dtype=String, value= 'Referring to him as only \" the witness \" , Amrozi accused his brother of deliberately distorting his evidence .'), 'label': Tensor(shape=[], dtype=Int64, value= 1), 'idx': Tensor(shape=[], dtype=Int64, value= 0)}\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"datasets = load_dataset(\"glue\", task)\n",
"print(next(datasets['train'].create_dict_iterator()))"
@@ -205,8 +149,8 @@
},
{
"cell_type": "code",
- "execution_count": 20,
- "id": "151943cb",
+ "execution_count": null,
+ "id": "12",
"metadata": {},
"outputs": [],
"source": [
@@ -233,57 +177,19 @@
},
{
"cell_type": "code",
- "execution_count": 21,
- "id": "a99c4ab6",
+ "execution_count": null,
+ "id": "13",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n",
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n",
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n",
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n",
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n",
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n",
- "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'input_ids': Tensor(shape=[32, 70], dtype=Int64, value=\n",
- "[[ 0, 10127, 1001 ... 1, 1, 1],\n",
- " [ 0, 975, 26802 ... 1, 1, 1],\n",
- " [ 0, 1213, 56 ... 1, 1, 1],\n",
- " ...\n",
- " [ 0, 133, 1154 ... 1, 1, 1],\n",
- " [ 0, 12667, 8423 ... 1, 1, 1],\n",
- " [ 0, 32478, 1033 ... 1, 1, 1]]), 'attention_mask': Tensor(shape=[32, 70], dtype=Int64, value=\n",
- "[[1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " ...\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0],\n",
- " [1, 1, 1 ... 0, 0, 0]]), 'labels': Tensor(shape=[32], dtype=Int64, value= [1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, \n",
- " 1, 1, 0, 0, 1, 1, 1, 0])}\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"print(next(train_dataset.create_dict_iterator()))"
]
},
{
"cell_type": "code",
- "execution_count": 22,
- "id": "9dc17398",
- "metadata": {
- "scrolled": true
- },
+ "execution_count": null,
+ "id": "14",
+ "metadata": {},
"outputs": [],
"source": [
"metric = evaluate.load(\"glue\", task)"
@@ -291,7 +197,7 @@
},
{
"cell_type": "markdown",
- "id": "9034b5b2",
+ "id": "15",
"metadata": {},
"source": [
"加载模型并打印微调参数量,可以看到仅有不到0.6%的参数参与了微调。\n",
@@ -308,26 +214,10 @@
},
{
"cell_type": "code",
- "execution_count": 23,
- "id": "f929a616",
+ "execution_count": null,
+ "id": "16",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at AI-ModelScope/roberta-large and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
- "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "trainable params: 1,061,890 || all params: 356,423,684 || trainable%: 0.2979291353713745\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# load model\n",
"model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True, mirror=\"modelscope\")\n",
@@ -338,7 +228,7 @@
},
{
"cell_type": "markdown",
- "id": "6fe629f6",
+ "id": "17",
"metadata": {},
"source": [
"## 模型微调(prompt tuning)"
@@ -346,7 +236,7 @@
},
{
"cell_type": "markdown",
- "id": "855ae5a5",
+ "id": "18",
"metadata": {},
"source": [
"指定优化器和学习率调整策略"
@@ -354,8 +244,8 @@
},
{
"cell_type": "code",
- "execution_count": 24,
- "id": "3c7ee704",
+ "execution_count": null,
+ "id": "19",
"metadata": {},
"outputs": [],
"source": [
@@ -371,7 +261,7 @@
},
{
"cell_type": "markdown",
- "id": "c4f5b68a",
+ "id": "20",
"metadata": {},
"source": [
"打印参与微调的模型参数"
@@ -379,41 +269,10 @@
},
{
"cell_type": "code",
- "execution_count": 25,
- "id": "a0d2bff6",
+ "execution_count": null,
+ "id": "21",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(Tensor(shape=[1024, 1024], dtype=Float32, value=\n",
- " [[-1.36615150e-02, 4.08777148e-02, 2.55590724e-03 ... 3.47721018e-02, 9.83245391e-03, 3.02866008e-02],\n",
- " [-1.82124749e-02, -1.49800153e-02, -7.02886097e-03 ... 2.07055025e-02, 3.45048914e-03, -3.01328991e-02],\n",
- " [-6.06489694e-03, 6.34483900e-03, 1.55880465e-03 ... 3.41698825e-02, -7.40761030e-03, 3.69770750e-02],\n",
- " ...\n",
- " [-4.91964221e-02, 1.94903351e-02, 2.51724524e-03 ... 3.08064763e-02, -7.55657675e-04, -8.02899338e-03],\n",
- " [-2.02472787e-03, -2.46642623e-02, -7.02362158e-04 ... 2.86021479e-03, 8.27849377e-03, 9.28967725e-03],\n",
- " [-2.06481982e-02, 2.20393538e-02, 3.17191752e-03 ... -2.68367468e-03, -4.67487238e-02, 9.09192720e-04]]),\n",
- " Tensor(shape=[1024], dtype=Float32, value= [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00 ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]),\n",
- " Tensor(shape=[2, 1024], dtype=Float32, value=\n",
- " [[ 8.87530856e-03, 2.81313114e-04, 3.74777764e-02 ... -2.02168617e-02, 4.23110556e-03, -3.84111144e-02],\n",
- " [ 3.84113006e-03, -1.38288038e-02, 1.98907983e-02 ... -3.23316827e-02, -3.48059200e-02, 7.11114611e-04]]),\n",
- " Tensor(shape=[2], dtype=Float32, value= [ 0.00000000e+00, 0.00000000e+00]),\n",
- " Tensor(shape=[10, 1024], dtype=Float32, value=\n",
- " [[-1.75136819e-01, 6.45715892e-02, 1.14947283e+00 ... 8.42640877e-01, 6.34459913e-01, 9.26455021e-01],\n",
- " [ 7.65107423e-02, 5.32130003e-01, -2.12189722e+00 ... 1.34316778e+00, 4.83163930e-02, -2.11086214e-01],\n",
- " [-7.30758488e-01, -8.77783835e-01, -5.94429135e-01 ... -2.58468151e-01, -2.85294857e-02, -2.18536639e+00],\n",
- " ...\n",
- " [ 4.13678169e-01, -1.15315497e+00, 8.49422574e-01 ... 2.54201055e-01, -1.30300558e+00, 2.13208008e+00],\n",
- " [ 5.60092032e-01, -8.55898261e-01, -7.30682373e-01 ... -1.04416716e+00, -1.10600793e+00, 4.29843873e-01],\n",
- " [-1.94377673e+00, 4.45314497e-02, -4.56895113e-01 ... 1.88079858e+00, -6.05825901e-01, -3.19380850e-01]]))"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# print name of trainable parameters\n",
"model.trainable_params()"
@@ -421,7 +280,7 @@
},
{
"cell_type": "markdown",
- "id": "b61576ae",
+ "id": "22",
"metadata": {},
"source": [
"按照如下步骤定义训练逻辑:\n",
@@ -434,93 +293,10 @@
},
{
"cell_type": "code",
- "execution_count": 26,
- "id": "0667ebea",
+ "execution_count": null,
+ "id": "23",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 115/115 [00:26<00:00, 4.38it/s]\n",
- "100%|██████████| 13/13 [00:01<00:00, 7.83it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch 0: {'accuracy': 0.6985294117647058, 'f1': 0.8183161004431314}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 115/115 [00:26<00:00, 4.42it/s]\n",
- "100%|██████████| 13/13 [00:01<00:00, 7.78it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch 1: {'accuracy': 0.7009803921568627, 'f1': 0.8195266272189349}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 115/115 [00:26<00:00, 4.38it/s]\n",
- "100%|██████████| 13/13 [00:01<00:00, 7.76it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch 2: {'accuracy': 0.7083333333333334, 'f1': 0.8231797919762258}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 115/115 [00:26<00:00, 4.39it/s]\n",
- "100%|██████████| 13/13 [00:01<00:00, 8.15it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch 3: {'accuracy': 0.7009803921568627, 'f1': 0.8195266272189349}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 115/115 [00:27<00:00, 4.21it/s]\n",
- "100%|██████████| 13/13 [00:01<00:00, 8.02it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch 4: {'accuracy': 0.7009803921568627, 'f1': 0.8195266272189349}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.core import value_and_grad\n",
"def forward_fn(**batch):\n",
@@ -557,7 +333,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "4de28f75",
+ "id": "24",
"metadata": {},
"outputs": [],
"source": []
@@ -565,7 +341,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "7cb41077-b027-4c0f-87ed-380cd816d2f4",
+ "id": "25",
"metadata": {},
"outputs": [],
"source": []
diff --git a/Season2.step_into_llm/01.ChatGLM/chatglm4_simple_inference.ipynb b/Season2.step_into_llm/01.ChatGLM/chatglm4_simple_inference.ipynb
index 5483ffc..569a14f 100644
--- a/Season2.step_into_llm/01.ChatGLM/chatglm4_simple_inference.ipynb
+++ b/Season2.step_into_llm/01.ChatGLM/chatglm4_simple_inference.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "d73b7cdc",
+ "id": "0",
"metadata": {},
"source": [
"# ChatGLM4聊天机器人"
@@ -10,7 +10,7 @@
},
{
"cell_type": "markdown",
- "id": "80128802-8a28-45e1-a728-4e673abfdb3e",
+ "id": "1",
"metadata": {},
"source": [
"## 环境配置\n",
@@ -28,7 +28,7 @@
},
{
"cell_type": "markdown",
- "id": "265300fd-3bf5-4df6-9248-1b27cd4f570f",
+ "id": "2",
"metadata": {},
"source": [
"## 代码开发"
@@ -36,294 +36,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "897d4ee9-b2b2-4de5-9f4f-7be4bc49b67a",
+ "execution_count": null,
+ "id": "3",
"metadata": {
"tags": []
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "Building prefix dict from the default dictionary ...\n",
- "Dumping model to file cache /tmp/jieba.cache\n",
- "Loading model cost 1.022 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ef6c147f60104856b73d7926b515b038",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/6.01k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "346d01049dbb4c14835b6ed02dbaf843",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/2.50M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'input_ids': Tensor(shape=[1, 6], dtype=Int64, value=\n",
- "[[151331, 151333, 151336, 198, 109377, 151337]]), 'attention_mask': Tensor(shape=[1, 6], dtype=Int64, value=\n",
- "[[1, 1, 1, 1, 1, 1]]), 'position_ids': Tensor(shape=[1, 6], dtype=Int64, value=\n",
- "[[0, 1, 2, 3, 4, 5]])}\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "625d52cf4fdb4d1eb9ce8b55ca1b7157",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.40k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c8e4ecd958c44d8eb633ca77d00ecdbb",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/28.4k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "94faf6367faf4f1d856616f8c6b1ec0d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading shards: 0%| | 0/10 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "023b7f7f2d064c4ca471aff202580ffe",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.81G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "987ff62ab8de43b89b544bb6d44c5873",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.69G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b2a3dc795b11468cb624f33d40ee11ac",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.83G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d16711ed1b05470faa57b58d35249136",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.80G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "596f9f1e630147df9d6938c5ec612719",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.69G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "96fe58080b954d41acba37d4a6a9a972",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.83G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4610201d7e744e8ea2405cfd746b0214",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.80G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "cbefd4e08be24c179f094c1865f65e82",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.69G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e719b99fd9f744d58ed1497fa24e9785",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.83G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0a4d87257fdf47efaf539558c62ede0d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.54G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b623e677c03847629806f35e0400c15d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Loading checkpoint shards: 0%| | 0/10 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d51a83a543764c15a6b3899dc2c36fab",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/207 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\n",
- "你好👋!很高兴见到你,有什么可以帮助你的吗?\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindnlp.core import no_grad\n",
@@ -360,7 +78,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5b066153-0ae4-4161-aaec-e35f885d107a",
+ "id": "4",
"metadata": {},
"outputs": [],
"source": []
diff --git a/Season2.step_into_llm/01.ChatGLM/mindnlp_chatglm-6b.ipynb b/Season2.step_into_llm/01.ChatGLM/mindnlp_chatglm-6b.ipynb
index 266418a..bf55a15 100644
--- a/Season2.step_into_llm/01.ChatGLM/mindnlp_chatglm-6b.ipynb
+++ b/Season2.step_into_llm/01.ChatGLM/mindnlp_chatglm-6b.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "c014a89a-05f5-446a-bc53-dd048c6c4997",
+ "id": "0",
"metadata": {},
"source": [
"## MindNLP ChatGLM-6B StreamChat\n",
@@ -12,7 +12,7 @@
},
{
"cell_type": "markdown",
- "id": "dda25ed9-8a0f-4606-a07a-f6c0ba5ee499",
+ "id": "1",
"metadata": {},
"source": [
"该实验可进行在线体验,在线体验链接(https://pangu.huaweicloud.com/gallery/asset-detail.html?id=cdc88c83-1ac2-4862-b822-3ab200b01736\n",
@@ -21,7 +21,7 @@
},
{
"cell_type": "markdown",
- "id": "34d5391a-8921-4185-9397-d081064cc131",
+ "id": "2",
"metadata": {},
"source": [
"## 1. 效果展示\n",
@@ -32,7 +32,7 @@
},
{
"cell_type": "markdown",
- "id": "eb420814-0aaf-4244-9c4b-70e087c509d7",
+ "id": "3",
"metadata": {},
"source": [
"## 2. 案例体验\n",
@@ -47,7 +47,7 @@
},
{
"cell_type": "markdown",
- "id": "9a579a34-88f2-4fe3-94f1-88a6597a4a13",
+ "id": "4",
"metadata": {},
"source": [
"### 2.1 环境安装\n",
@@ -66,8 +66,8 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "fefd157a-27bd-41e8-8618-7c8290b237c7",
+ "execution_count": null,
+ "id": "5",
"metadata": {},
"outputs": [],
"source": [
@@ -78,8 +78,8 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "7d943c07-1a1f-42f9-a9e7-605329b8677f",
+ "execution_count": null,
+ "id": "6",
"metadata": {},
"outputs": [],
"source": [
@@ -110,7 +110,7 @@
},
{
"cell_type": "markdown",
- "id": "8d02075d-62bf-4466-a5b2-039317d1a233",
+ "id": "7",
"metadata": {},
"source": [
"创建完成后,稍等片刻,或刷新页面,点击右上角(或左上角)kernel选择python-3.9.0\n",
@@ -120,8 +120,8 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "9123d70f",
+ "execution_count": null,
+ "id": "8",
"metadata": {},
"outputs": [],
"source": [
@@ -132,175 +132,10 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "d500c4c8-9d3c-47f9-8d56-f3cf80e6b788",
+ "execution_count": null,
+ "id": "9",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting gradio\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/3f/6e/c0726e138f64cd98379a7bf95f4f3b15dd5a9f004b172540cee5653ec820/gradio-4.44.1-py3-none-any.whl (18.1 MB)\n",
- "\u001b[K |████████████████████████████████| 18.1 MB 4.2 MB/s eta 0:00:01 |█████████████████████████████ | 16.4 MB 4.2 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: mdtex2html in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (1.3.0)\n",
- "Collecting importlib-resources<7.0,>=1.3\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl (37 kB)\n",
- "Collecting ffmpy\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/53/5d/65f40bd333463b3230b3a72d93873caaf49b0cbb5228598fafb75fcc5357/ffmpy-0.5.0-py3-none-any.whl (6.0 kB)\n",
- "Requirement already satisfied: pyyaml<7.0,>=5.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (6.0.1)\n",
- "Collecting uvicorn>=0.14.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/61/14/33a3a1352cfa71812a3a21e8c9bfb83f60b0011f5e36f2b1399d51928209/uvicorn-0.34.0-py3-none-any.whl (62 kB)\n",
- "\u001b[K |████████████████████████████████| 62 kB 2.9 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting python-multipart>=0.0.9\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/45/58/38b5afbc1a800eeea951b9285d3912613f2603bdf897a4ab0f4bd7f405fc/python_multipart-0.0.20-py3-none-any.whl (24 kB)\n",
- "Collecting anyio<5.0,>=3.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a0/7a/4daaf3b6c08ad7ceffea4634ec206faeff697526421c20f07628c7372156/anyio-4.7.0-py3-none-any.whl (93 kB)\n",
- "\u001b[K |████████████████████████████████| 93 kB 4.6 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: typing-extensions~=4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (4.12.2)\n",
- "Collecting orjson~=3.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/54/a1/4e43d4db67cc2d62ae4d775d466f56b1a4cb5a914a541970f0956a381fe8/orjson-3.10.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (136 kB)\n",
- "\u001b[K |████████████████████████████████| 136 kB 37.7 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: pandas<3.0,>=1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (1.3.5)\n",
- "Collecting pydantic>=2.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f3/26/3e1bbe954fde7ee22a6e7d31582c642aad9e84ffe4b5fb61e63b87cd326f/pydantic-2.10.4-py3-none-any.whl (431 kB)\n",
- "\u001b[K |████████████████████████████████| 431 kB 51.2 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting fastapi<1.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/52/b3/7e4df40e585df024fac2f80d1a2d579c854ac37109675db2b0cc22c0bb9e/fastapi-0.115.6-py3-none-any.whl (94 kB)\n",
- "\u001b[K |████████████████████████████████| 94 kB 11.3 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: markupsafe~=2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (2.1.5)\n",
- "Requirement already satisfied: jinja2<4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (3.1.4)\n",
- "Collecting gradio-client==1.3.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/de/fe/7e9cb4d0e6aa74268fa31089189e4855882a0f2a36c45d359336946d4ae1/gradio_client-1.3.0-py3-none-any.whl (318 kB)\n",
- "\u001b[K |████████████████████████████████| 318 kB 52.6 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting tomlkit==0.12.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/68/4f/12207897848a653d03ebbf6775a29d949408ded5f99b2d87198bc5c93508/tomlkit-0.12.0-py3-none-any.whl (37 kB)\n",
- "Collecting httpx>=0.24.1\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl (73 kB)\n",
- "\u001b[K |████████████████████████████████| 73 kB 7.9 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting aiofiles<24.0,>=22.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c5/19/5af6804c4cc0fed83f47bff6e413a98a36618e7d40185cd36e69737f3b0e/aiofiles-23.2.1-py3-none-any.whl (15 kB)\n",
- "Collecting ruff>=0.2.2\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/94/e9/e0ed4af1794335fb280c4fac180f2bf40f6a3b859cae93a5a3ada27325ae/ruff-0.8.6-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.9 MB)\n",
- "\u001b[K |████████████████████████████████| 10.9 MB 45.2 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting typer<1.0,>=0.12\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d0/cc/0a838ba5ca64dc832aa43f727bd586309846b0ffb2ce52422543e6075e8a/typer-0.15.1-py3-none-any.whl (44 kB)\n",
- "\u001b[K |████████████████████████████████| 44 kB 11.0 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: numpy<3.0,>=1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (1.22.0)\n",
- "Requirement already satisfied: semantic-version~=2.0 in /home/ma-user/modelarts-dev/modelarts-sdk (from gradio) (2.10.0)\n",
- "Collecting pydub\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a6/53/d78dc063216e62fc55f6b2eebb447f6a4b0a59f55c8406376f76bf959b08/pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
- "Requirement already satisfied: packaging in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (24.1)\n",
- "Collecting urllib3~=2.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl (128 kB)\n",
- "\u001b[K |████████████████████████████████| 128 kB 54.3 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: huggingface-hub>=0.19.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (0.24.2)\n",
- "Requirement already satisfied: pillow<11.0,>=8.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (10.0.1)\n",
- "Requirement already satisfied: matplotlib~=3.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio) (3.5.1)\n",
- "Collecting websockets<13.0,>=10.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/25/a9/a3e03f9f3c4425a914e5875dd09f2c2559d61b44edd52cf1e6b73f938898/websockets-12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (130 kB)\n",
- "\u001b[K |████████████████████████████████| 130 kB 51.0 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: fsspec in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from gradio-client==1.3.0->gradio) (2024.6.1)\n",
- "Requirement already satisfied: idna>=2.8 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from anyio<5.0,>=3.0->gradio) (2.10)\n",
- "Collecting sniffio>=1.1\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl (10 kB)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from anyio<5.0,>=3.0->gradio) (1.2.2)\n",
- "Collecting starlette<0.42.0,>=0.40.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/96/00/2b325970b3060c7cecebab6d295afe763365822b1306a12eeab198f74323/starlette-0.41.3-py3-none-any.whl (73 kB)\n",
- "\u001b[K |████████████████████████████████| 73 kB 7.2 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting httpcore==1.*\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/87/f5/72347bc88306acb359581ac4d52f23c0ef445b57157adedb9aee0cd689d2/httpcore-1.0.7-py3-none-any.whl (78 kB)\n",
- "\u001b[K |████████████████████████████████| 78 kB 20.3 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: certifi in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from httpx>=0.24.1->gradio) (2024.7.4)\n",
- "Collecting h11<0.15,>=0.13\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl (58 kB)\n",
- "\u001b[K |████████████████████████████████| 58 kB 19.4 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: filelock in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub>=0.19.3->gradio) (3.15.4)\n",
- "Requirement already satisfied: requests in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub>=0.19.3->gradio) (2.32.3)\n",
- "Requirement already satisfied: tqdm>=4.42.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub>=0.19.3->gradio) (4.66.4)\n",
- "Requirement already satisfied: zipp>=3.1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from importlib-resources<7.0,>=1.3->gradio) (3.19.2)\n",
- "Requirement already satisfied: python-dateutil>=2.7 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from matplotlib~=3.0->gradio) (2.9.0.post0)\n",
- "Requirement already satisfied: fonttools>=4.22.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from matplotlib~=3.0->gradio) (4.53.1)\n",
- "Requirement already satisfied: pyparsing>=2.2.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from matplotlib~=3.0->gradio) (3.1.2)\n",
- "Requirement already satisfied: kiwisolver>=1.0.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
- "Requirement already satisfied: cycler>=0.10 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from matplotlib~=3.0->gradio) (0.12.1)\n",
- "Requirement already satisfied: pytz>=2017.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
- "Collecting pydantic-core==2.27.2\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/8a/9e/e44b8cb0edf04a2f0a1f6425a65ee089c1d6f9c4c2dcab0209127b6fdfc2/pydantic_core-2.27.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB)\n",
- "\u001b[K |████████████████████████████████| 1.8 MB 44.3 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting annotated-types>=0.6.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl (13 kB)\n",
- "Requirement already satisfied: six>=1.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n",
- "Requirement already satisfied: rich>=10.11.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from typer<1.0,>=0.12->gradio) (13.7.1)\n",
- "Requirement already satisfied: click>=8.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from typer<1.0,>=0.12->gradio) (8.1.7)\n",
- "Collecting shellingham>=1.3.0\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e0/f9/0595336914c5619e5f28a1fb793285925a8cd4b432c9da0a987836c7f822/shellingham-1.5.4-py2.py3-none-any.whl (9.8 kB)\n",
- "Requirement already satisfied: markdown-it-py>=2.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (3.0.0)\n",
- "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.18.0)\n",
- "Requirement already satisfied: mdurl~=0.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio) (0.1.2)\n",
- "Requirement already satisfied: latex2mathml in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mdtex2html) (3.77.0)\n",
- "Requirement already satisfied: markdown in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mdtex2html) (3.6)\n",
- "Requirement already satisfied: importlib-metadata>=4.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from markdown->mdtex2html) (8.2.0)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->huggingface-hub>=0.19.3->gradio) (2.0.12)\n",
- "Installing collected packages: urllib3, sniffio, h11, pydantic-core, httpcore, anyio, annotated-types, websockets, starlette, shellingham, pydantic, httpx, uvicorn, typer, tomlkit, ruff, python-multipart, pydub, orjson, importlib-resources, gradio-client, ffmpy, fastapi, aiofiles, gradio\n",
- " Attempting uninstall: urllib3\n",
- " Found existing installation: urllib3 1.26.7\n",
- " Uninstalling urllib3-1.26.7:\n",
- " Successfully uninstalled urllib3-1.26.7\n",
- " Attempting uninstall: tomlkit\n",
- " Found existing installation: tomlkit 0.13.0\n",
- " Uninstalling tomlkit-0.13.0:\n",
- " Successfully uninstalled tomlkit-0.13.0\n",
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
- "botocore 1.15.49 requires urllib3<1.26,>=1.20; python_version != \"3.4\", but you have urllib3 2.3.0 which is incompatible.\n",
- "modelarts 1.4.28 requires lxml==5.1.0, but you have lxml 4.9.3 which is incompatible.\n",
- "modelarts 1.4.28 requires matplotlib==3.5.2, but you have matplotlib 3.5.1 which is incompatible.\n",
- "modelarts 1.4.28 requires prettytable<=3.7.0, but you have prettytable 3.10.2 which is incompatible.\n",
- "modelarts 1.4.28 requires requests==2.31.0, but you have requests 2.32.3 which is incompatible.\n",
- "modelarts 1.4.28 requires tqdm<=4.66.1, but you have tqdm 4.66.4 which is incompatible.\n",
- "modelarts 1.4.28 requires typing-extensions==4.7.1, but you have typing-extensions 4.12.2 which is incompatible.\n",
- "modelarts 1.4.28 requires urllib3==1.26.18, but you have urllib3 2.3.0 which is incompatible.\u001b[0m\n",
- "Successfully installed aiofiles-23.2.1 annotated-types-0.7.0 anyio-4.7.0 fastapi-0.115.6 ffmpy-0.5.0 gradio-4.44.1 gradio-client-1.3.0 h11-0.14.0 httpcore-1.0.7 httpx-0.28.1 importlib-resources-6.5.2 orjson-3.10.13 pydantic-2.10.4 pydantic-core-2.27.2 pydub-0.25.1 python-multipart-0.0.20 ruff-0.8.6 shellingham-1.5.4 sniffio-1.3.1 starlette-0.41.3 tomlkit-0.12.0 typer-0.15.1 urllib3-2.3.0 uvicorn-0.34.0 websockets-12.0\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python3.9 -m pip install --upgrade pip' command.\u001b[0m\n",
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting ipywidgets\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/22/2d/9c0b76f2f9cc0ebede1b9371b6f317243028ed60b90705863d493bae622e/ipywidgets-8.1.5-py3-none-any.whl (139 kB)\n",
- "\u001b[K |████████████████████████████████| 139 kB 1.6 MB/s eta 0:00:01\n",
- "\u001b[?25hCollecting jupyterlab-widgets~=3.0.12\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a9/93/858e87edc634d628e5d752ba944c2833133a28fa87bb093e6832ced36a3e/jupyterlab_widgets-3.0.13-py3-none-any.whl (214 kB)\n",
- "\u001b[K |████████████████████████████████| 214 kB 6.4 MB/s eta 0:00:01 |██████████████████████████████▋ | 204 kB 6.4 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: traitlets>=4.3.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipywidgets) (5.14.3)\n",
- "Collecting comm>=0.1.3\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e6/75/49e5bfe642f71f272236b5b2d2691cf915a7283cc0ceda56357b61daa538/comm-0.2.2-py3-none-any.whl (7.2 kB)\n",
- "Requirement already satisfied: ipython>=6.1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipywidgets) (8.18.1)\n",
- "Collecting widgetsnbextension~=4.0.12\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/21/02/88b65cc394961a60c43c70517066b6b679738caf78506a5da7b88ffcb643/widgetsnbextension-4.0.13-py3-none-any.whl (2.3 MB)\n",
- "\u001b[K |████████████████████████████████| 2.3 MB 17.9 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: decorator in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (4.4.1)\n",
- "Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (3.0.47)\n",
- "Requirement already satisfied: typing-extensions in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (4.12.2)\n",
- "Requirement already satisfied: pygments>=2.4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (2.18.0)\n",
- "Requirement already satisfied: exceptiongroup in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (1.2.2)\n",
- "Requirement already satisfied: jedi>=0.16 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (0.19.1)\n",
- "Requirement already satisfied: matplotlib-inline in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (0.1.7)\n",
- "Requirement already satisfied: stack-data in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n",
- "Requirement already satisfied: pexpect>4.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from ipython>=6.1.0->ipywidgets) (4.9.0)\n",
- "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.4)\n",
- "Requirement already satisfied: ptyprocess>=0.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets) (0.7.0)\n",
- "Requirement already satisfied: wcwidth in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.13)\n",
- "Requirement already satisfied: executing>=1.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.0.1)\n",
- "Requirement already satisfied: asttokens>=2.1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.4.1)\n",
- "Requirement already satisfied: pure-eval in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (0.2.3)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets) (1.16.0)\n",
- "Installing collected packages: widgetsnbextension, jupyterlab-widgets, comm, ipywidgets\n",
- "Successfully installed comm-0.2.2 ipywidgets-8.1.5 jupyterlab-widgets-3.0.13 widgetsnbextension-4.0.13\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python3.9 -m pip install --upgrade pip' command.\u001b[0m\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install gradio mdtex2html -i https://pypi.tuna.tsinghua.edu.cn/simple\n",
"!pip install ipywidgets -i https://pypi.tuna.tsinghua.edu.cn/simple"
@@ -308,30 +143,10 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "6d43d04e",
+ "execution_count": null,
+ "id": "10",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "--2025-01-05 02:06:29-- https://openi.pcl.ac.cn/lvyufeng/frpc-gradio/raw/branch/master/frpc_linux_amd64\n",
- "Resolving proxy-notebook.modelarts.com (proxy-notebook.modelarts.com)... 192.168.0.33\n",
- "Connecting to proxy-notebook.modelarts.com (proxy-notebook.modelarts.com)|192.168.0.33|:8083... connected.\n",
- "Proxy request sent, awaiting response... 200 OK\n",
- "Length: unspecified [application/octet-stream]\n",
- "Saving to: ‘/home/ma-user/work/frpc_linux_amd64’\n",
- "\n",
- "frpc_linux_amd64 [ <=> ] 10.85M 23.3MB/s in 0.5s \n",
- "\n",
- "2025-01-05 02:06:30 (23.3 MB/s) - ‘/home/ma-user/work/frpc_linux_amd64’ saved [11374592]\n",
- "\n",
- "cp: cannot create regular file '/home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2': No such file or directory\n",
- "chmod: cannot access '/home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages/gradio/frpc_linux_amd64_v0.2': No such file or directory\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# %%capture captured_output\n",
"!wget -P /home/ma-user/work https://openi.pcl.ac.cn/lvyufeng/frpc-gradio/raw/branch/master/frpc_linux_amd64\n",
@@ -341,7 +156,7 @@
},
{
"cell_type": "markdown",
- "id": "f6703d3e-8451-47e7-bac8-401cdb039be7",
+ "id": "11",
"metadata": {},
"source": [
"## 3. 代码开发"
@@ -349,259 +164,10 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "9b8ee640",
+ "execution_count": null,
+ "id": "12",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.331.962 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.332.029 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.332.048 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.332.232 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtGetMemUceInfo failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtGetMemUceInfo\n",
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.332.249 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtDeviceTaskAbort failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtDeviceTaskAbort\n",
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.332.265 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtMemUceRepair failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtMemUceRepair\n",
- "[WARNING] GE_ADPT(6632,ffff8654b0b0,python):2025-01-05-02:06:54.334.715 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol acltdtCleanChannel failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libacl_tdt_channel.so: undefined symbol: acltdtCleanChannel\n",
- "[WARNING] ME(6632:281472935440560,MainProcess):2025-01-05-02:06:54.576.575 [mindspore/run_check/_check_version.py:398] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "cannot found `mindformers.experimental`, please install dev version by\n",
- "`pip install git+https://gitee.com/mindspore/mindformers` \n",
- "or remove mindformers by \n",
- "`pip uninstall mindformers`\n",
- "Building prefix dict from the default dictionary ...\n",
- "Dumping model to file cache /tmp/jieba.cache\n",
- "Loading model cost 1.327 seconds.\n",
- "Prefix dict has been built successfully.\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/Cython/Compiler/Main.py:384: FutureWarning: Cython directive 'language_level' not set, using '3str' for now (Py3). This has changed from earlier releases! File: /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/models/graphormer/algos_graphormer.pyx\n",
- " tree = Parsing.p_module(s, pxd, full_module_name)\n",
- "[WARNING] ME(6632:281472935440560,MainProcess):2025-01-05-02:07:20.833.731 [mindspore/run_check/_check_version.py:398] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(6632:281472935440560,MainProcess):2025-01-05-02:07:20.836.993 [mindspore/run_check/_check_version.py:398] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f26abf33eb1c47ed8105f3a2788d3e5c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/773 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c0bc7233656d48d49d0463bcbfa4d61a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/32.6k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b3b6bcc1ba5a4ada8a37036c243a0848",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading shards: 0%| | 0/8 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d3cd35a3aa1c4461833babb2ab544ffa",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.62G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "55ef960f962a4316b034f4280c8c1278",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.75G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fb7fdeef2cb74e68b69360346ca8f34f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.84G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "63125eb808ba4a93ad46b96ab60b32a8",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.78G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b01596fb47d645939d60abbe5e59473a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.75G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a2a76099d50043458228229b95b641a6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.75G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1f7591bb8a0841c9b307c039ebbe1933",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.00G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "57308b38db504429bc9ec811fb14dbb7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.00G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "ChatGLMForConditionalGeneration has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`.`PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
- " - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
- " - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
- "[WARNING] DEVICE(6632,ffff8654b0b0,python):2025-01-05-02:15:16.413.632 [mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_vmm_adapter.h:188] CheckVmmDriverVersion] Driver version is less than 24.0.0, vmm is disabled by default, drvier_version: 23.0.6\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "959eb249061a41e9bf1130fff4c0cf04",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Loading checkpoint shards: 0%| | 0/8 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fca533432cce49b5b3942ee7bbee58ad",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/441 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c6de97477ea84214987e43f9ce3b1392",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/2.58M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
"import gradio as gr\n",
@@ -618,35 +184,10 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "95fc7ad5-b210-4318-8897-af50b8e6ebd4",
+ "execution_count": null,
+ "id": "13",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The dtype of attention mask (Int64) is not bool\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'你好👋!我是人工智能助手 ChatGLM-6B'"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"prompt = '你好'\n",
"history = []\n",
@@ -656,8 +197,8 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "7e589553-2617-4a2c-a330-d4d6029d21da",
+ "execution_count": null,
+ "id": "14",
"metadata": {},
"outputs": [],
"source": [
@@ -704,7 +245,7 @@
},
{
"cell_type": "markdown",
- "id": "92ff6df8-6534-4b8b-983c-8478b38a0fbf",
+ "id": "15",
"metadata": {},
"source": [
"## 3.2 基于 Gradio 创建聊天应用"
@@ -712,8 +253,8 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "09e943b3-16de-49b4-85f2-1e86001ce7b5",
+ "execution_count": null,
+ "id": "16",
"metadata": {},
"outputs": [],
"source": [
@@ -739,46 +280,10 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "0b6fff57-d324-4d54-b529-bc2c293689bb",
+ "execution_count": null,
+ "id": "17",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "Could not create share link. Missing file: /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/gradio/frpc_linux_aarch64_v0.2. \n",
- "\n",
- "Please check your internet connection. This can happen if your antivirus software blocks the download of this file. You can install manually by following these steps: \n",
- "\n",
- "1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.2/frpc_linux_aarch64\n",
- "2. Rename the downloaded file to: frpc_linux_aarch64_v0.2\n",
- "3. Move the file to this location: /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/gradio\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "
"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": []
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"#运行Gradio界面,运行成功后点击“Running on public URL”后的网页链接即可体验\n",
"import gradio as gr\n",
@@ -814,7 +319,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "356a6c98-d42a-4470-a1e9-40714a17642e",
+ "id": "18",
"metadata": {},
"outputs": [],
"source": []
diff --git "a/Season2.step_into_llm/03.Decoding/\346\226\207\346\234\254\350\247\243\347\240\201.ipynb" "b/Season2.step_into_llm/03.Decoding/\346\226\207\346\234\254\350\247\243\347\240\201.ipynb"
index 22921f5..bcf33e0 100644
--- "a/Season2.step_into_llm/03.Decoding/\346\226\207\346\234\254\350\247\243\347\240\201.ipynb"
+++ "b/Season2.step_into_llm/03.Decoding/\346\226\207\346\234\254\350\247\243\347\240\201.ipynb"
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "70943fc4",
+ "id": "0",
"metadata": {},
"source": [
"## __文本解码原理\\-\\-以MindNLP为例__\n",
@@ -26,7 +26,7 @@
},
{
"cell_type": "markdown",
- "id": "39212dbd",
+ "id": "1",
"metadata": {},
"source": [
"__Greedy search__\n",
@@ -43,7 +43,7 @@
},
{
"cell_type": "markdown",
- "id": "f1b3ea92",
+ "id": "2",
"metadata": {},
"source": [
"__环境准备__"
@@ -52,7 +52,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "5c56827b",
+ "id": "3",
"metadata": {},
"outputs": [],
"source": [
@@ -64,8 +64,8 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "c40cdb84",
+ "execution_count": null,
+ "id": "4",
"metadata": {},
"outputs": [],
"source": [
@@ -96,118 +96,10 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "5593606f",
+ "execution_count": null,
+ "id": "5",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[33mWARNING: Skipping mindspore-gpu as it is not installed.\u001b[0m\n",
- "\u001b[33mWARNING: Skipping mindvision as it is not installed.\u001b[0m\n",
- "\u001b[33mWARNING: Skipping mindinsight as it is not installed.\u001b[0m\n",
- "Looking in indexes: http://pip.modelarts.private.com:8888/repository/pypi/simple\n",
- "Processing ./mindnlp-0.4.1-py3-none-any.whl\n",
- "Requirement already satisfied: pytest==7.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (7.2.0)\n",
- "Requirement already satisfied: evaluate in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.4.3)\n",
- "Requirement already satisfied: regex in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2024.7.24)\n",
- "Requirement already satisfied: safetensors in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.4.5)\n",
- "Requirement already satisfied: pyctcdecode in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.5.0)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.19.1)\n",
- "Requirement already satisfied: datasets in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (3.1.0)\n",
- "Requirement already satisfied: sentencepiece in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.2.0)\n",
- "Requirement already satisfied: mindspore>=2.2.14 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2.4.0)\n",
- "Requirement already satisfied: requests in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2.32.3)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (10.0.1)\n",
- "Requirement already satisfied: tqdm in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (4.65.0)\n",
- "Requirement already satisfied: addict in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (2.4.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindnlp==0.4.1) (0.4.0)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (2.0.1)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (1.2.2)\n",
- "Requirement already satisfied: iniconfig in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (2.0.0)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (1.5.0)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (23.2.0)\n",
- "Requirement already satisfied: packaging in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.1) (24.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.1) (0.24.2)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (6.0.1)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (4.12.2)\n",
- "Requirement already satisfied: filelock in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (3.15.4)\n",
- "Requirement already satisfied: fsspec>=2023.5.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.1) (2024.6.1)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (2.4.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (5.9.5)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (1.22.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (1.10.1)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (3.20.2)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.1) (1.6.3)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore>=2.2.14->mindnlp==0.4.1) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.1) (0.38.4)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (0.70.16)\n",
- "Collecting tqdm\n",
- " Downloading http://pip.modelarts.private.com:8888/repository/pypi/packages/tqdm/4.67.1/tqdm-4.67.1-py3-none-any.whl (78 kB)\n",
- "\u001b[K |████████████████████████████████| 78 kB 39.9 MB/s eta 0:00:01\n",
- "\u001b[?25hRequirement already satisfied: pandas in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (1.3.5)\n",
- "Requirement already satisfied: xxhash in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (3.5.0)\n",
- "Requirement already satisfied: aiohttp in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (3.11.9)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (18.1.0)\n",
- "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from datasets->mindnlp==0.4.1) (0.3.8)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (5.0.1)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (0.2.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (1.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (1.18.3)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (6.1.0)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (2.4.4)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.1) (1.5.0)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (2.10)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (2.0.12)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (1.26.7)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from requests->mindnlp==0.4.1) (2024.7.4)\n",
- "Requirement already satisfied: python-dateutil>=2.7.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.1) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2017.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.1) (2024.1)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.1) (2.5.0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.1) (6.122.1)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.1) (2.4.0)\n",
- "Installing collected packages: tqdm, mindnlp\n",
- " Attempting uninstall: tqdm\n",
- " Found existing installation: tqdm 4.65.0\n",
- " Uninstalling tqdm-4.65.0:\n",
- " Successfully uninstalled tqdm-4.65.0\n",
- " Attempting uninstall: mindnlp\n",
- " Found existing installation: mindnlp 0.3.0\n",
- " Uninstalling mindnlp-0.3.0:\n",
- " Successfully uninstalled mindnlp-0.3.0\n",
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
- "modelarts 1.4.28 requires lxml==5.1.0, but you have lxml 4.9.3 which is incompatible.\n",
- "modelarts 1.4.28 requires matplotlib==3.5.2, but you have matplotlib 3.5.1 which is incompatible.\n",
- "modelarts 1.4.28 requires prettytable<=3.7.0, but you have prettytable 3.10.2 which is incompatible.\n",
- "modelarts 1.4.28 requires requests==2.31.0, but you have requests 2.32.3 which is incompatible.\n",
- "modelarts 1.4.28 requires tqdm<=4.66.1, but you have tqdm 4.67.1 which is incompatible.\n",
- "modelarts 1.4.28 requires typing-extensions==4.7.1, but you have typing-extensions 4.12.2 which is incompatible.\n",
- "modelarts 1.4.28 requires urllib3==1.26.18, but you have urllib3 1.26.7 which is incompatible.\u001b[0m\n",
- "Successfully installed mindnlp-0.4.1 tqdm-4.67.1\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python3.9 -m pip install --upgrade pip' command.\u001b[0m\n",
- "env: no_proxy='a.test.com,127.0.0.1,2.2.2.2'\n",
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.4.0\n",
- " Using cached https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.4.0/MindSpore/unified/aarch64/mindspore-2.4.0-cp39-cp39-linux_aarch64.whl (333.7 MB)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (3.20.2)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (5.9.5)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.6.3)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.22.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (1.10.1)\n",
- "Requirement already satisfied: pillow>=6.2.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (10.0.1)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (2.4.1)\n",
- "Requirement already satisfied: safetensors>=0.4.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (0.4.5)\n",
- "Requirement already satisfied: packaging>=20.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from mindspore==2.4.0) (24.1)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore==2.4.0) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.4.0) (0.38.4)\n",
- "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.3.1 is available.\n",
- "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python -m pip install --upgrade pip' command.\u001b[0m\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"#安装mindspore2.4\n",
"!pip uninstall mindspore-gpu -y\n",
@@ -220,95 +112,10 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "54e990b4",
+ "execution_count": null,
+ "id": "6",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.447.323 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.447.394 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.447.413 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.447.594 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtGetMemUceInfo failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtGetMemUceInfo\n",
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.447.611 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtDeviceTaskAbort failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtDeviceTaskAbort\n",
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.447.627 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclrtMemUceRepair failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclrtMemUceRepair\n",
- "[WARNING] GE_ADPT(36162,ffff9d7f40b0,python):2024-12-03-21:20:47.449.575 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol acltdtCleanChannel failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libacl_tdt_channel.so: undefined symbol: acltdtCleanChannel\n",
- "[WARNING] ME(36162:281473324105904,MainProcess):2024-12-03-21:20:47.589.499 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 1.288 seconds.\n",
- "Prefix dict has been built successfully.\n",
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6716298ddb8449b38bfaef38c9ca1860",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 1%|1 | 7.61M/523M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "GPT2LMHeadModel has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`.`PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
- " - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
- " - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
- "[WARNING] DEVICE(36162,ffff9d7f40b0,python):2024-12-03-21:21:50.648.645 [mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_vmm_adapter.h:188] CheckVmmDriverVersion] Driver version is less than 24.0.0, vmm is disabled by default, drvier_version: 23.0.6\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "038d1d532c934bef8fa64208bdfadece",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/124 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with my dog. I'm not sure if I'll ever be able to walk with my dog.\n",
- "\n",
- "I'm not sure if I'll\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"#greedy_search\n",
"\n",
@@ -336,7 +143,7 @@
}
},
"cell_type": "markdown",
- "id": "a563872b",
+ "id": "7",
"metadata": {},
"source": [
"__Beam search__\n",
@@ -356,55 +163,10 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "4ab48008",
+ "execution_count": null,
+ "id": "8",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n",
- " warnings.warn(\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again.\n",
- "\n",
- "I'm not sure if I'll ever be able to walk with him again. I'm not sure if I'll\n",
- "----------------------------------------------------------------------------------------------------\n",
- "Beam search with ngram, Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again.\n",
- "\n",
- "I've been thinking about this for a while now, and I think it's time for me to take a break\n",
- "----------------------------------------------------------------------------------------------------\n",
- "return_num_sequences, Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "0: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again.\n",
- "\n",
- "I've been thinking about this for a while now, and I think it's time for me to take a break\n",
- "1: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again.\n",
- "\n",
- "I've been thinking about this for a while now, and I think it's time for me to get back to\n",
- "2: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with her again.\n",
- "\n",
- "I've been thinking about this for a while now, and I think it's time for me to take a break\n",
- "3: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with her again.\n",
- "\n",
- "I've been thinking about this for a while now, and I think it's time for me to get back to\n",
- "4: I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with him again.\n",
- "\n",
- "I've been thinking about this for a while now, and I think it's time for me to take a step\n",
- "----------------------------------------------------------------------------------------------------\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
"\n",
@@ -468,7 +230,7 @@
}
},
"cell_type": "markdown",
- "id": "6857fcab",
+ "id": "9",
"metadata": {},
"source": [
"__Beam search issues__\n",
@@ -488,7 +250,7 @@
}
},
"cell_type": "markdown",
- "id": "4b6a08b3",
+ "id": "10",
"metadata": {},
"source": [
"__Repeat problem__\n",
@@ -514,7 +276,7 @@
}
},
"cell_type": "markdown",
- "id": "d55b732d",
+ "id": "11",
"metadata": {},
"source": [
"__Sample__\n",
@@ -534,27 +296,10 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "264f00ef",
+ "execution_count": null,
+ "id": "12",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog. That also makes me happy.\"\n",
- "\n",
- "\n",
- "►Jan 29, 2017: Most kids comment on 'not caring or liking animals'\n",
- "\n",
- "Copyright by WTEN - All rights reserved\n",
- "\n",
- "Copyright by WTEN -\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
@@ -587,7 +332,7 @@
}
},
"cell_type": "markdown",
- "id": "520fa971",
+ "id": "13",
"metadata": {},
"source": [
"__Temperature__\n",
@@ -600,20 +345,10 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "5597695d",
+ "execution_count": null,
+ "id": "14",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog who is very energetic and very friendly. I have a buddy who is a little shy and I'm very lonely. He is always near looking at me and laughing at me and asking me to help him out. I\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
@@ -647,7 +382,7 @@
}
},
"cell_type": "markdown",
- "id": "69b90982",
+ "id": "15",
"metadata": {},
"source": [
"__TopK sample__\n",
@@ -663,7 +398,7 @@
}
},
"cell_type": "markdown",
- "id": "e0e5e60a",
+ "id": "16",
"metadata": {},
"source": [
"__TopK sample problems__\n",
@@ -677,22 +412,10 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "f29f4a83",
+ "execution_count": null,
+ "id": "17",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog. I really enjoy running, but I tend to have to go through school on time. The fact that they make me walk on time is such a cool thing.\n",
- "\n",
- "I've had a lot of problems that\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
@@ -725,7 +448,7 @@
}
},
"cell_type": "markdown",
- "id": "8f977914",
+ "id": "18",
"metadata": {},
"source": [
"__Top-P sample__\n",
@@ -739,20 +462,10 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "a1ba9a9b",
+ "execution_count": null,
+ "id": "19",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "I enjoy walking with my cute dog as much as we do swim. There's also the experience of being in an area of my gym and getting lost and keeping track of how much I missed that thing. We also spend time sorting through some high quality\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
@@ -782,7 +495,7 @@
},
{
"cell_type": "markdown",
- "id": "e839736f-bd1e-4d1c-9b37-a949a50ed6fc",
+ "id": "20",
"metadata": {},
"source": [
"__top_k_top_p__"
@@ -790,30 +503,10 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "de88d6bd-a9c6-4e29-8e8d-c367947226f9",
+ "execution_count": null,
+ "id": "21",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Output:\n",
- "----------------------------------------------------------------------------------------------------\n",
- "0: I enjoy walking with my cute dog,\" says Kelli. \"I love having my dogs with me.\"\n",
- "\n",
- "The two have two dogs, a Labrador retriever, and an American shepherd.\n",
- "\n",
- "The dogs are both adopted by the Humane Society\n",
- "1: I enjoy walking with my cute dog. I like being alone. I enjoy being alone in a room full of people.\"\n",
- "2: I enjoy walking with my cute dog and playing with my dog,\" said her mother.\n",
- "\n",
- "\"I'm a very loving person and I'm very thankful for all of you who have been so supportive of our little girl,\" she added.\n",
- "\n",
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
@@ -845,7 +538,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "1e4e5d5f-490a-4c51-b82c-fba14dea2178",
+ "id": "22",
"metadata": {},
"outputs": [],
"source": []
@@ -853,7 +546,7 @@
{
"cell_type": "code",
"execution_count": null,
- "id": "cbac22cc-c527-4f96-b708-27bf3e30444c",
+ "id": "23",
"metadata": {},
"outputs": [],
"source": []
diff --git a/Season2.step_into_llm/05.LLaMA2/llama_finetune_inference.ipynb b/Season2.step_into_llm/05.LLaMA2/llama_finetune_inference.ipynb
index 0bcc02a..0bb28f7 100644
--- a/Season2.step_into_llm/05.LLaMA2/llama_finetune_inference.ipynb
+++ b/Season2.step_into_llm/05.LLaMA2/llama_finetune_inference.ipynb
@@ -100,46 +100,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://mirrors.aliyun.com/pypi/simple/\n",
- "Collecting mindspore==2.5.0\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/23/22/dff0f1bef6c0846a97271ae5d39ca187914f39562f9e3f6787041dea1a97/mindspore-2.5.0-cp39-cp39-manylinux1_x86_64.whl (958.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m958.4/958.4 MB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n",
- "\u001b[?25hCollecting numpy<2.0.0,>=1.20.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/54/30/c2a907b9443cf42b90c17ad10c1e8fa801975f01cb9764f3f8eb8aea638b/numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hCollecting protobuf>=3.13.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/28/50/1925de813499546bc8ab3ae857e3ec84efe7d2f19b34529d0c7c3d02d11d/protobuf-6.30.2-cp39-abi3-manylinux2014_x86_64.whl (316 kB)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore==2.5.0) (3.0.0)\n",
- "Collecting pillow>=6.2.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/f6/46/0bd0ca03d9d1164a7fa33d285ef6d1c438e963d0c8770e4c5b3737ef5abe/pillow-11.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.4/4.4 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hCollecting scipy>=1.5.4 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/35/f5/d0ad1a96f80962ba65e2ce1de6a1e59edecd1f0a7b55990ed208848012e0/scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.6/38.6 MB\u001b[0m \u001b[31m16.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore==2.5.0) (24.2)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore==2.5.0) (5.9.1)\n",
- "Collecting astunparse>=1.6.3 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n",
- "Collecting safetensors>=0.4.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/a6/f8/dae3421624fcc87a89d42e1898a798bc7ff72c61f38973a65d60df8f124c/safetensors-0.5.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (471 kB)\n",
- "Collecting dill>=0.3.7 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/46/d1/e73b6ad76f0b1fb7f23c35c6d95dbc506a9c8804f43dda8cb5b0fa6331fd/dill-0.3.9-py3-none-any.whl (119 kB)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.5.0) (0.45.1)\n",
- "Requirement already satisfied: six<2.0,>=1.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.5.0) (1.17.0)\n",
- "Installing collected packages: safetensors, protobuf, pillow, numpy, dill, astunparse, scipy, mindspore\n",
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
- "auto-tune 0.1.0 requires te, which is not installed.\n",
- "schedule-search 0.0.1 requires absl-py, which is not installed.\u001b[0m\u001b[31m\n",
- "\u001b[0mSuccessfully installed astunparse-1.6.3 dill-0.3.9 mindspore-2.5.0 numpy-1.26.4 pillow-11.1.0 protobuf-6.30.2 safetensors-0.5.3 scipy-1.13.1\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp39-cp39-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple"
]
@@ -154,88 +115,9 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://mirrors.aliyun.com/pypi/simple\n",
- "Collecting mindnlp==0.4.0\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/0f/a8/5a072852d28a51417b5e330b32e6ae5f26b491ef01a15ba968e77f785e69/mindnlp-0.4.0-py3-none-any.whl (8.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.4/8.4 MB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m0m\n",
- "\u001b[?25hRequirement already satisfied: mindspore>=2.2.14 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: tqdm in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (4.67.1)\n",
- "Requirement already satisfied: requests in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.32.3)\n",
- "Requirement already satisfied: datasets in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: evaluate in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.4.3)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.19.1)\n",
- "Requirement already satisfied: safetensors in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.3)\n",
- "Requirement already satisfied: sentencepiece in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.2.0)\n",
- "Requirement already satisfied: regex in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2024.11.6)\n",
- "Requirement already satisfied: addict in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.1)\n",
- "Requirement already satisfied: pyctcdecode in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.0)\n",
- "Collecting jieba (from mindnlp==0.4.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/c6/cb/18eeb235f833b726522d7ebed54f2278ce28ba9438e3135ab0278d9792a2/jieba-0.42.1.tar.gz (19.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.2/19.2 MB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n",
- "\u001b[?25hRequirement already satisfied: pytest==7.2.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (7.2.0)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (11.1.0)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.3.0)\n",
- "Requirement already satisfied: iniconfig in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.1.0)\n",
- "Requirement already satisfied: packaging in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.2)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.2.2)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.0.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.0) (0.30.2)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.26.4)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (6.30.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (3.0.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.13.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (5.9.1)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.6.3)\n",
- "Requirement already satisfied: dill>=0.3.7 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (0.3.8)\n",
- "Requirement already satisfied: filelock in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.18.0)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (19.0.1)\n",
- "Requirement already satisfied: pandas in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (2.2.3)\n",
- "Requirement already satisfied: xxhash in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.70.16)\n",
- "Requirement already satisfied: fsspec<=2024.12.0,>=2023.1.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from fsspec[http]<=2024.12.0,>=2023.1.0->datasets->mindnlp==0.4.0) (2024.12.0)\n",
- "Requirement already satisfied: aiohttp in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.11.16)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (6.0.2)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.3.2)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.7)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2.3.0)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2025.1.31)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (6.130.13)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (0.45.1)\n",
- "Requirement already satisfied: six<2.0,>=1.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (1.17.0)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (2.6.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (1.3.2)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (5.0.1)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (6.4.2)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (0.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (1.19.0)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (4.13.1)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2020.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Building wheels for collected packages: jieba\n",
- " Building wheel for jieba (setup.py) ... \u001b[?25ldone\n",
- "\u001b[?25h Created wheel for jieba: filename=jieba-0.42.1-py3-none-any.whl size=19314508 sha256=30064bba508d12a9c2c545bdec7e271f61d5a83e9fdd53298a82e74659e1fd26\n",
- " Stored in directory: /home/jiangna1/.cache/pip/wheels/95/ef/7c/d8b3108835edfa15487417c5bddff166482b195d8090117ac5\n",
- "Successfully built jieba\n",
- "Installing collected packages: jieba, mindnlp\n",
- "Successfully installed jieba-0.42.1 mindnlp-0.4.0\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%pip install mindnlp==0.4.0 -i https://mirrors.aliyun.com/pypi/simple\n"
]
@@ -272,7 +154,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -284,17 +166,9 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(52617:140460371482432,MainProcess):2025-04-11-09:21:14.572.566 [mindspore/context.py:1335] For 'context.set_context', the parameter 'device_target' will be deprecated and removed in a future version. Please use the api mindspore.set_device() instead.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"#将模式设置为动态图模式(PYNATIVE_MODE),并指定设备目标为Ascend芯片\n",
"ms.set_context(mode=ms.PYNATIVE_MODE, device_target=\"Ascend\")\n"
@@ -302,7 +176,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -366,7 +240,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -404,7 +278,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -423,17 +297,9 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[{'instruction': '只剩一个心脏了还能活吗?', 'output': '能,人本来就只有一个心脏。'}, {'instruction': '爸爸再婚,我是不是就有了个新娘?', 'output': '不是的,你有了一个继母。\"新娘\"是指新婚的女方,而你爸爸再婚,他的新婚妻子对你来说是继母。'}, {'instruction': '樟脑丸是我吃过最难吃的硬糖有奇怪的味道怎么还有人买', 'output': '樟脑丸并不是硬糖,而是一种常见的驱虫药,不能食用。虽然它的味道可能不太好,但是由于其有效的驱虫效果,所以仍然有很多人会购买。'}]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"with open(data_path, 'r', encoding='utf-8') as f:\n",
" data = json.load(f)\n",
@@ -449,20 +315,9 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[1, 29871, 2056]"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import AutoTokenizer\n",
"\n",
@@ -482,7 +337,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -515,32 +370,9 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n",
- "Sample 0: Input IDs: [ 1 4911 29901 29871 47133 32002 37755 30743 33302 31704]\n",
- "Sample 0: Labels: [ 1 4911 29901 29871 47133 32002 37755 30743 33302 31704]\n",
- "\n",
- "Sample 1: Input IDs: [ 1 4911 29901 29871 33594 31733 33364 30214 30672 32308]\n",
- "Sample 1: Labels: [ 1 4911 29901 29871 33594 31733 33364 30214 30672 32308]\n",
- "\n",
- "Sample 2: Input IDs: [ 1 4911 29901 29871 47019 33027 31818 34030 39950 44345]\n",
- "Sample 2: Labels: [ 1 4911 29901 29871 47019 33027 31818 34030 39950 44345]\n",
- "\n",
- "Sample 3: Input IDs: [ 1 4911 29901 29871 34214 30698 30429 36310 32658 30743]\n",
- "Sample 3: Labels: [ 1 4911 29901 29871 34214 30698 30429 36310 32658 30743]\n",
- "\n",
- "Sample 4: Input IDs: [ 1 4911 29901 32581 34822 31639 2882 6530 30883 30210]\n",
- "Sample 4: Labels: [ 1 4911 29901 32581 34822 31639 2882 6530 30883 30210]\n",
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"for i, sample in enumerate(train_dataset.create_dict_iterator()):\n",
" if i >= 5:\n",
@@ -565,7 +397,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -584,33 +416,9 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "LlamaForCausalLM has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`.`PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
- " - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
- " - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/jiangna1/miniconda3/envs/ms39/lib/python3.9/site-packages/mindnlp/transformers/generation/configuration_utils.py:557: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.2` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.\n",
- " warnings.warn(\n",
- "/home/jiangna1/miniconda3/envs/ms39/lib/python3.9/site-packages/mindnlp/transformers/generation/configuration_utils.py:562: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.\n",
- " warnings.warn(\n",
- "/home/jiangna1/miniconda3/envs/ms39/lib/python3.9/site-packages/mindnlp/transformers/generation/configuration_utils.py:557: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.2` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
- " warnings.warn(\n",
- "/home/jiangna1/miniconda3/envs/ms39/lib/python3.9/site-packages/mindnlp/transformers/generation/configuration_utils.py:562: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import AutoModelForCausalLM, GenerationConfig\n",
"\n",
@@ -621,7 +429,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -639,7 +447,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -668,7 +476,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -684,7 +492,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -748,7 +556,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -771,603 +579,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 0%| | 1/350 [00:19<1:51:45, 19.21s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "."
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 3%|▎ | 10/350 [02:02<1:04:58, 11.47s/it]We detected that you are passing `past_key_values` as a tuple and this is deprecated. Please use an appropriate `Cache` class\n",
- " \n",
- " 3%|▎ | 10/350 [02:05<1:04:58, 11.47s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.853940486907959, 'eval_runtime': 2.8532, 'eval_samples_per_second': 1.752, 'eval_steps_per_second': 0.35, 'epoch': 1.88}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 6%|▌ | 20/350 [04:00<1:02:29, 11.36s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.840895891189575, 'eval_runtime': 2.3863, 'eval_samples_per_second': 2.095, 'eval_steps_per_second': 0.419, 'epoch': 3.76}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 9%|▊ | 30/350 [05:54<1:00:27, 11.33s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.8152430057525635, 'eval_runtime': 2.3786, 'eval_samples_per_second': 2.102, 'eval_steps_per_second': 0.42, 'epoch': 5.65}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 11%|█▏ | 40/350 [07:49<58:26, 11.31s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.772057294845581, 'eval_runtime': 2.3891, 'eval_samples_per_second': 2.093, 'eval_steps_per_second': 0.419, 'epoch': 7.53}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 14%|█▍ | 50/350 [09:44<56:29, 11.30s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.7203030586242676, 'eval_runtime': 2.3927, 'eval_samples_per_second': 2.09, 'eval_steps_per_second': 0.418, 'epoch': 9.41}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 17%|█▋ | 60/350 [11:48<54:53, 11.36s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.6663565635681152, 'eval_runtime': 2.3972, 'eval_samples_per_second': 2.086, 'eval_steps_per_second': 0.417, 'epoch': 11.29}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 20%|██ | 70/350 [13:43<52:18, 11.21s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.6159634590148926, 'eval_runtime': 2.3981, 'eval_samples_per_second': 2.085, 'eval_steps_per_second': 0.417, 'epoch': 13.18}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 23%|██▎ | 80/350 [15:38<50:19, 11.18s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.565094470977783, 'eval_runtime': 2.3789, 'eval_samples_per_second': 2.102, 'eval_steps_per_second': 0.42, 'epoch': 15.06}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 26%|██▌ | 90/350 [17:33<49:11, 11.35s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.5170516967773438, 'eval_runtime': 2.3956, 'eval_samples_per_second': 2.087, 'eval_steps_per_second': 0.417, 'epoch': 16.94}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 29%|██▊ | 100/350 [19:28<47:17, 11.35s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.4649040699005127, 'eval_runtime': 2.3707, 'eval_samples_per_second': 2.109, 'eval_steps_per_second': 0.422, 'epoch': 18.82}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 31%|███▏ | 110/350 [21:30<45:42, 11.43s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.407757520675659, 'eval_runtime': 2.3942, 'eval_samples_per_second': 2.088, 'eval_steps_per_second': 0.418, 'epoch': 20.71}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 34%|███▍ | 120/350 [23:25<43:28, 11.34s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.343446969985962, 'eval_runtime': 2.3932, 'eval_samples_per_second': 2.089, 'eval_steps_per_second': 0.418, 'epoch': 22.59}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 37%|███▋ | 130/350 [25:20<41:29, 11.31s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.267294406890869, 'eval_runtime': 2.3965, 'eval_samples_per_second': 2.086, 'eval_steps_per_second': 0.417, 'epoch': 24.47}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 40%|████ | 140/350 [27:15<39:26, 11.27s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.219864845275879, 'eval_runtime': 2.3872, 'eval_samples_per_second': 2.094, 'eval_steps_per_second': 0.419, 'epoch': 26.35}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 43%|████▎ | 150/350 [29:08<37:32, 11.26s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'loss': 3.5504, 'learning_rate': 7.056435515653059e-06, 'epoch': 28.24}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": []
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "."
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 43%|████▎ | 150/350 [29:10<37:32, 11.26s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.1902430057525635, 'eval_runtime': 2.5486, 'eval_samples_per_second': 1.962, 'eval_steps_per_second': 0.392, 'epoch': 28.24}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 46%|████▌ | 160/350 [31:12<35:42, 11.28s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.161935329437256, 'eval_runtime': 2.391, 'eval_samples_per_second': 2.091, 'eval_steps_per_second': 0.418, 'epoch': 30.12}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 49%|████▊ | 170/350 [33:07<33:32, 11.18s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.138967752456665, 'eval_runtime': 2.3927, 'eval_samples_per_second': 2.09, 'eval_steps_per_second': 0.418, 'epoch': 32.0}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 51%|█████▏ | 180/350 [35:03<32:11, 11.36s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.122406482696533, 'eval_runtime': 2.3994, 'eval_samples_per_second': 2.084, 'eval_steps_per_second': 0.417, 'epoch': 33.88}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 54%|█████▍ | 190/350 [36:58<30:17, 11.36s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.106480836868286, 'eval_runtime': 2.3919, 'eval_samples_per_second': 2.09, 'eval_steps_per_second': 0.418, 'epoch': 35.76}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 57%|█████▋ | 200/350 [38:53<28:21, 11.35s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0940558910369873, 'eval_runtime': 2.397, 'eval_samples_per_second': 2.086, 'eval_steps_per_second': 0.417, 'epoch': 37.65}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 60%|██████ | 210/350 [40:56<26:40, 11.43s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.082423686981201, 'eval_runtime': 2.3797, 'eval_samples_per_second': 2.101, 'eval_steps_per_second': 0.42, 'epoch': 39.53}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 63%|██████▎ | 220/350 [42:51<24:30, 11.31s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0746374130249023, 'eval_runtime': 2.405, 'eval_samples_per_second': 2.079, 'eval_steps_per_second': 0.416, 'epoch': 41.41}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 66%|██████▌ | 230/350 [44:46<22:31, 11.26s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0679070949554443, 'eval_runtime': 2.3952, 'eval_samples_per_second': 2.088, 'eval_steps_per_second': 0.418, 'epoch': 43.29}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 69%|██████▊ | 240/350 [46:41<20:33, 11.21s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.060976266860962, 'eval_runtime': 2.3947, 'eval_samples_per_second': 2.088, 'eval_steps_per_second': 0.418, 'epoch': 45.18}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 71%|███████▏ | 250/350 [48:36<18:39, 11.19s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0542078018188477, 'eval_runtime': 2.3973, 'eval_samples_per_second': 2.086, 'eval_steps_per_second': 0.417, 'epoch': 47.06}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 74%|███████▍ | 260/350 [50:39<17:09, 11.44s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.049464702606201, 'eval_runtime': 2.3926, 'eval_samples_per_second': 2.09, 'eval_steps_per_second': 0.418, 'epoch': 48.94}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 77%|███████▋ | 270/350 [52:34<15:09, 11.37s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.047043561935425, 'eval_runtime': 2.3877, 'eval_samples_per_second': 2.094, 'eval_steps_per_second': 0.419, 'epoch': 50.82}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 80%|████████ | 280/350 [54:29<13:14, 11.34s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0444722175598145, 'eval_runtime': 2.3917, 'eval_samples_per_second': 2.091, 'eval_steps_per_second': 0.418, 'epoch': 52.71}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 83%|████████▎ | 290/350 [56:24<11:20, 11.34s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0422093868255615, 'eval_runtime': 2.3938, 'eval_samples_per_second': 2.089, 'eval_steps_per_second': 0.418, 'epoch': 54.59}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 86%|████████▌ | 300/350 [58:17<09:25, 11.31s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'loss': 3.0383, 'learning_rate': 6.088921331488568e-07, 'epoch': 56.47}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 86%|████████▌ | 300/350 [58:19<09:25, 11.31s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0407938957214355, 'eval_runtime': 2.3837, 'eval_samples_per_second': 2.098, 'eval_steps_per_second': 0.42, 'epoch': 56.47}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 89%|████████▊ | 310/350 [1:00:22<07:34, 11.37s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0404062271118164, 'eval_runtime': 2.3948, 'eval_samples_per_second': 2.088, 'eval_steps_per_second': 0.418, 'epoch': 58.35}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 91%|█████████▏| 320/350 [1:02:17<05:38, 11.27s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0399832725524902, 'eval_runtime': 2.3929, 'eval_samples_per_second': 2.089, 'eval_steps_per_second': 0.418, 'epoch': 60.24}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 94%|█████████▍| 330/350 [1:04:12<03:43, 11.20s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.039731740951538, 'eval_runtime': 2.3855, 'eval_samples_per_second': 2.096, 'eval_steps_per_second': 0.419, 'epoch': 62.12}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 97%|█████████▋| 340/350 [1:06:07<01:51, 11.19s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.0396060943603516, 'eval_runtime': 2.3904, 'eval_samples_per_second': 2.092, 'eval_steps_per_second': 0.418, 'epoch': 64.0}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- "100%|██████████| 350/350 [1:08:03<00:00, 11.35s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 3.039623260498047, 'eval_runtime': 2.3877, 'eval_samples_per_second': 2.094, 'eval_steps_per_second': 0.419, 'epoch': 65.88}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "The intermediate checkpoints of PEFT may not be saved correctly, consider using a custom callback to save adapter_model.bin in corresponding saving folders. Check some examples here: https://github.com/huggingface/peft/issues/96\n",
- "100%|██████████| 350/350 [1:08:12<00:00, 11.69s/it]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'train_runtime': 4092.112, 'train_samples_per_second': 23.264, 'train_steps_per_second': 0.086, 'train_loss': 3.2515819876534597, 'epoch': 65.88}\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"trainer.train()\n",
"\n",
@@ -1415,109 +627,9 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model merge succeeded\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "LlamaForCausalLM(\n",
- " (model): LlamaModel(\n",
- " (embed_tokens): Embedding(55296, 4096, padding_idx=0)\n",
- " (layers): ModuleList(\n",
- " (0-3): 4 x LlamaDecoderLayer(\n",
- " (self_attn): LlamaAttention(\n",
- " (q_proj): lora.Linear(\n",
- " (base_layer): Linear (4096 -> 4096)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (4096 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 4096)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (k_proj): lora.Linear(\n",
- " (base_layer): Linear (4096 -> 4096)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (4096 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 4096)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (v_proj): lora.Linear(\n",
- " (base_layer): Linear (4096 -> 4096)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (4096 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 4096)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (o_proj): lora.Linear(\n",
- " (base_layer): Linear (4096 -> 4096)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (4096 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 4096)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (rotary_emb): LlamaRotaryEmbedding()\n",
- " )\n",
- " (mlp): LlamaMLP(\n",
- " (gate_proj): Linear (4096 -> 11008)\n",
- " (up_proj): Linear (4096 -> 11008)\n",
- " (down_proj): Linear (11008 -> 4096)\n",
- " (act_fn): SiLU()\n",
- " )\n",
- " (input_layernorm): LlamaRMSNorm((4096,), eps=1e-05)\n",
- " (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-05)\n",
- " )\n",
- " )\n",
- " (norm): LlamaRMSNorm((4096,), eps=1e-05)\n",
- " (rotary_emb): LlamaRotaryEmbedding()\n",
- " )\n",
- " (lm_head): Linear (4096 -> 55296)\n",
- ")"
- ]
- },
- "execution_count": 18,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"#将 LoRA微调后的参数加载到预训练模型中\n",
"from mindnlp.peft import PeftModel\n",
@@ -1536,7 +648,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -1570,30 +682,9 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/jiangna1/miniconda3/envs/ms39/lib/python3.9/site-packages/mindnlp/transformers/generation/configuration_utils.py:557: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.2` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.\n",
- " warnings.warn(\n",
- "/home/jiangna1/miniconda3/envs/ms39/lib/python3.9/site-packages/mindnlp/transformers/generation/configuration_utils.py:562: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "User: 如何保持清醒?\n",
- "LLAMA: 以下是用户和助手之间的问答。\n",
- "问:如何保持清醒?\n",
- "答:在你睡觉的时候,你的大脑会一直处于兴奋状态中;当你醒来时,它就会继续工作了。所以如果你的睡眠时间很短的话,你就不会感到太疲劳或昏沉。你可以通过使用一些药物来帮助恢复精力、提高警觉度以及降低血压等方法使自己进入深度睡眠的状态。此外,你还可以通过服用维生素B6片剂或者吃富含蛋白质的食物等方式让自己重新振作起来。\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"question = \"如何保持清醒?\"\n",
"response = generate_response(question, model, tokenizer)\n",
diff --git a/Season2.step_into_llm/09.PEFT/PEFT_exampleWith_mrpcDataset.ipynb b/Season2.step_into_llm/09.PEFT/PEFT_exampleWith_mrpcDataset.ipynb
index 7bf5450..9f70250 100644
--- a/Season2.step_into_llm/09.PEFT/PEFT_exampleWith_mrpcDataset.ipynb
+++ b/Season2.step_into_llm/09.PEFT/PEFT_exampleWith_mrpcDataset.ipynb
@@ -10,7 +10,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -21,7 +21,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -80,178 +80,20 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Collecting mindspore==2.3.1\n",
- " Downloading https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp39-cp39-linux_x86_64.whl (946.9 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m946.9/946.9 MB\u001b[0m \u001b[31m61.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hCollecting numpy<2.0.0,>=1.20.0 (from mindspore==2.3.1)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/54/30/c2a907b9443cf42b90c17ad10c1e8fa801975f01cb9764f3f8eb8aea638b/numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hCollecting protobuf>=3.13.0 (from mindspore==2.3.1)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/23/08/a1ce0415a115c2b703bfa798f06f0e43ca91dbe29d6180bf86a9287b15e2/protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl (316 kB)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore==2.3.1) (2.4.1)\n",
- "Collecting pillow>=6.2.0 (from mindspore==2.3.1)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/32/3f/c02268d0c6fb6b3958bdda673c17b315c821d97df29ae6969f20fb49388a/pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.4/4.4 MB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hCollecting scipy>=1.5.4 (from mindspore==2.3.1)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/35/f5/d0ad1a96f80962ba65e2ce1de6a1e59edecd1f0a7b55990ed208848012e0/scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.6/38.6 MB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore==2.3.1) (24.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore==2.3.1) (6.0.0)\n",
- "Collecting astunparse>=1.6.3 (from mindspore==2.3.1)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore==2.3.1) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.3.1) (0.44.0)\n",
- "Installing collected packages: protobuf, pillow, numpy, astunparse, scipy, mindspore\n",
- "Successfully installed astunparse-1.6.3 mindspore-2.3.1 numpy-1.26.4 pillow-10.4.0 protobuf-5.28.2 scipy-1.13.1\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/x86_64/mindspore-2.3.1-cp39-cp39-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {
- "scrolled": true,
"tags": []
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple\n",
- "Collecting mindnlp==0.4.0\n",
- " Downloading https://repo.mindspore.cn/mindspore-lab/mindnlp/newest/any/mindnlp-0.4.0-py3-none-any.whl (8.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.2/8.2 MB\u001b[0m \u001b[31m30.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: mindspore>=2.2.14 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.3.1)\n",
- "Collecting tqdm (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/48/5d/acf5905c36149bbaec41ccf7f2b68814647347b72075ac0b1fe3022fdc73/tqdm-4.66.5-py3-none-any.whl (78 kB)\n",
- "Collecting requests (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl (64 kB)\n",
- "Collecting datasets (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a5/52/45dab187f03d48c765b94db0464f5c10431756e47ae4cc6a8029a7d57a36/datasets-3.0.0-py3-none-any.whl (474 kB)\n",
- "Collecting evaluate (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a2/e7/cbca9e2d2590eb9b5aa8f7ebabe1beb1498f9462d2ecede5c9fd9735faaf/evaluate-0.4.3-py3-none-any.whl (84 kB)\n",
- "Collecting tokenizers==0.19.1 (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/0f/cb/8fc733c8f251bac1e5c4ae52458c353b3faa98f41d734c226cad3783da03/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m34.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting safetensors (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5d/80/81ba44fc82afbf5ca553913ac49460e325dc5cf00c317b34c14d43ebd76b/safetensors-0.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (436 kB)\n",
- "Collecting sentencepiece (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5f/01/c95e42eb86282b2c79305d3e0b0ca5a743f85a61262bb7130999c70b9374/sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m52.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting regex (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/01/e6/a7256c99c312b68f01cfd4f8eae6e770906fffb3832ecb66f35ca5b86b96/regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (781 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m782.0/782.0 kB\u001b[0m \u001b[31m37.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting addict (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/6a/00/b08f23b7d7e1e14ce01419a467b583edbb93c6cdb8654e54a9cc579cd61f/addict-2.4.0-py3-none-any.whl (3.8 kB)\n",
- "Collecting ml-dtypes (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a8/6f/49effaafbc24c7665bcea42cacb22e7198bbab5b473d908c5900c6bb6a59/ml_dtypes-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m44.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting pyctcdecode (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a5/8a/93e2118411ae5e861d4f4ce65578c62e85d0f1d9cb389bd63bd57130604e/pyctcdecode-0.5.0-py2.py3-none-any.whl (39 kB)\n",
- "Collecting jieba (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/c6/cb/18eeb235f833b726522d7ebed54f2278ce28ba9438e3135ab0278d9792a2/jieba-0.42.1.tar.gz (19.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.2/19.2 MB\u001b[0m \u001b[31m87.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n",
- "\u001b[?25hCollecting pytest==7.2.0 (from mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/67/68/a5eb36c3a8540594b6035e6cdae40c1ef1b6a2bfacbecc3d1a544583c078/pytest-7.2.0-py3-none-any.whl (316 kB)\n",
- "Collecting attrs>=19.2.0 (from pytest==7.2.0->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl (63 kB)\n",
- "Collecting iniconfig (from pytest==7.2.0->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl (5.9 kB)\n",
- "Requirement already satisfied: packaging in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.1)\n",
- "Collecting pluggy<2.0,>=0.12 (from pytest==7.2.0->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl (20 kB)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.2.2)\n",
- "Collecting tomli>=1.0.0 (from pytest==7.2.0->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/97/75/10a9ebee3fd790d20926a90a2547f0bf78f371b2f13aa822c759680ca7b9/tomli-2.0.1-py3-none-any.whl (12 kB)\n",
- "Collecting huggingface-hub<1.0,>=0.16.4 (from tokenizers==0.19.1->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/d5/ce/1f8e61cd63175cc2e79233b954b1c4e85363c788fb3a1fa23c87a25c9b81/huggingface_hub-0.25.0-py3-none-any.whl (436 kB)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.26.4)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (5.28.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (2.4.1)\n",
- "Requirement already satisfied: pillow>=6.2.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (10.4.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.13.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (6.0.0)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.6.3)\n",
- "Collecting filelock (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/b9/f8/feced7779d755758a52d1f6635d990b8d98dc0a29fa568bbe0625f18fdf3/filelock-3.16.1-py3-none-any.whl (16 kB)\n",
- "Collecting pyarrow>=15.0.0 (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/af/61/bcd9b58e38ead6ad42b9ed00da33a3f862bc1d445e3d3164799c25550ac2/pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.9 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.9/39.9 MB\u001b[0m \u001b[31m101.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hCollecting dill<0.3.9,>=0.3.0 (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/c9/7a/cef76fd8438a42f96db64ddaa85280485a9c395e7df3db8158cfec1eee34/dill-0.3.8-py3-none-any.whl (116 kB)\n",
- "Collecting pandas (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/bb/30/f6f1f1ac36250f50c421b1b6af08c35e5a8b5a84385ef928625336b93e6f/pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.1/13.1 MB\u001b[0m \u001b[31m58.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hCollecting xxhash (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/b4/b4/332647451ed7d2c021294b7c1e9c144dbb5586b1fb214ad4f5a404642835/xxhash-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193 kB)\n",
- "Collecting multiprocess (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/da/d9/f7f9379981e39b8c2511c9e0326d212accacb82f12fbfdc1aa2ce2a7b2b6/multiprocess-0.70.16-py39-none-any.whl (133 kB)\n",
- "Collecting fsspec<=2024.6.1,>=2023.1.0 (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5e/44/73bea497ac69bafde2ee4269292fa3b41f1198f4bb7bbaaabde30ad29d4a/fsspec-2024.6.1-py3-none-any.whl (177 kB)\n",
- "Collecting aiohttp (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/23/69/200bf165b56c17854d54975f894de10dababc4d0226c07600c9abc679e7e/aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m51.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting pyyaml>=5.1 (from datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/3d/32/e7bd8535d22ea2874cef6a81021ba019474ace0d13a4819c2a4bce79bd6a/PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (737 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m737.4/737.4 kB\u001b[0m \u001b[31m33.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting charset-normalizer<4,>=2 (from requests->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/98/69/5d8751b4b670d623aa7a47bef061d69c279e9f922f6705147983aa76c3ce/charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (142 kB)\n",
- "Collecting idna<4,>=2.5 (from requests->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl (70 kB)\n",
- "Collecting urllib3<3,>=1.21.1 (from requests->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl (126 kB)\n",
- "Collecting certifi>=2017.4.17 (from requests->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl (167 kB)\n",
- "Collecting pygtrie<3.0,>=2.1 (from pyctcdecode->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ec/cd/bd196b2cf014afb1009de8b0f05ecd54011d881944e62763f3c1b1e8ef37/pygtrie-2.5.0-py3-none-any.whl (25 kB)\n",
- "Collecting hypothesis<7,>=6.14 (from pyctcdecode->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5f/25/f1fb5b3ec58ed3c6014385672d4298e2f0c7291bfcd9ffd06627a641470d/hypothesis-6.112.1-py3-none-any.whl (467 kB)\n",
- "Requirement already satisfied: six>=1.12.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore>=2.2.14->mindnlp==0.4.0) (1.16.0)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (0.44.0)\n",
- "Collecting aiohappyeyeballs>=2.3.0 (from aiohttp->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/18/b6/58ea188899950d759a837f9a58b2aee1d1a380ea4d6211ce9b1823748851/aiohappyeyeballs-2.4.0-py3-none-any.whl (12 kB)\n",
- "Collecting aiosignal>=1.1.2 (from aiohttp->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/76/ac/a7305707cb852b7e16ff80eaf5692309bde30e2b1100a1fcacdc8f731d97/aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
- "Collecting frozenlist>=1.1.1 (from aiohttp->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/70/b0/6f1ebdabfb604e39a0f84428986b89ab55f246b64cddaa495f2c953e1f6b/frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (240 kB)\n",
- "Collecting multidict<7.0,>=4.5 (from aiohttp->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/5e/41/0d0fb18c1ad574f807196f5f3d99164edf9de3e169a58c6dc2d6ed5742b9/multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (124 kB)\n",
- "Collecting yarl<2.0,>=1.0 (from aiohttp->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/ff/be/78953a3d5154b974af49ce367f1a8d4751ababdf26a66ae607b4ae625d99/yarl-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (453 kB)\n",
- "Collecting async-timeout<5.0,>=4.0 (from aiohttp->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (4.12.2)\n",
- "Collecting sortedcontainers<3.0.0,>=2.1.0 (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2.9.0.post0)\n",
- "Collecting pytz>=2020.1 (from pandas->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl (508 kB)\n",
- "Collecting tzdata>=2022.7 (from pandas->datasets->mindnlp==0.4.0)\n",
- " Downloading http://repo.myhuaweicloud.com/repository/pypi/packages/65/58/f9c9e6be752e9fcb8b6a0ee9fb87e6e7a1f6bcab2cdc73f02bb7ba91ada0/tzdata-2024.1-py2.py3-none-any.whl (345 kB)\n",
- "Building wheels for collected packages: jieba\n",
- " Building wheel for jieba (setup.py) ... \u001b[?25ldone\n",
- "\u001b[?25h Created wheel for jieba: filename=jieba-0.42.1-py3-none-any.whl size=19314458 sha256=de190811901ea689a37a0ecc8e410ef914b6b76740894df9b47c2bdbfd51decc\n",
- " Stored in directory: /home/ma-user/.cache/pip/wheels/2d/22/9e/9af7e8c2773513ac75905acfb75073922bcc1aa176f730a0c9\n",
- "Successfully built jieba\n",
- "Installing collected packages: sortedcontainers, sentencepiece, pytz, pygtrie, jieba, addict, xxhash, urllib3, tzdata, tqdm, tomli, safetensors, regex, pyyaml, pyarrow, pluggy, multidict, ml-dtypes, iniconfig, idna, fsspec, frozenlist, filelock, dill, charset-normalizer, certifi, attrs, async-timeout, aiohappyeyeballs, yarl, requests, pytest, pandas, multiprocess, hypothesis, aiosignal, pyctcdecode, huggingface-hub, aiohttp, tokenizers, datasets, evaluate, mindnlp\n",
- "Successfully installed addict-2.4.0 aiohappyeyeballs-2.4.0 aiohttp-3.10.5 aiosignal-1.3.1 async-timeout-4.0.3 attrs-24.2.0 certifi-2024.8.30 charset-normalizer-3.3.2 datasets-3.0.0 dill-0.3.8 evaluate-0.4.3 filelock-3.16.1 frozenlist-1.4.1 fsspec-2024.6.1 huggingface-hub-0.25.0 hypothesis-6.112.1 idna-3.10 iniconfig-2.0.0 jieba-0.42.1 mindnlp-0.4.0 ml-dtypes-0.5.0 multidict-6.1.0 multiprocess-0.70.16 pandas-2.2.2 pluggy-1.5.0 pyarrow-17.0.0 pyctcdecode-0.5.0 pygtrie-2.5.0 pytest-7.2.0 pytz-2024.2 pyyaml-6.0.2 regex-2024.9.11 requests-2.32.3 safetensors-0.4.5 sentencepiece-0.2.0 sortedcontainers-2.4.0 tokenizers-0.19.1 tomli-2.0.1 tqdm-4.66.5 tzdata-2024.1 urllib3-2.2.3 xxhash-3.5.0 yarl-1.11.1\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"#安装mindnlp的daily包,待正式发布后可改为直接安装mindnlp包\n",
"!pip install https://repo.mindspore.cn/mindspore-lab/mindnlp/newest/any/mindnlp-0.4.0-py3-none-any.whl\n",
@@ -260,52 +102,18 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Name: mindspore\n",
- "Version: 2.3.1\n",
- "Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.\n",
- "Home-page: https://www.mindspore.cn\n",
- "Author: The MindSpore Authors\n",
- "Author-email: contact@mindspore.cn\n",
- "License: Apache 2.0\n",
- "Location: /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages\n",
- "Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy\n",
- "Required-by: mindnlp\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip show mindspore"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Name: mindnlp\n",
- "Version: 0.4.0\n",
- "Summary: An open source natural language processing research tool box. Git version: [sha1]:2fb76bf, [branch]: (HEAD, origin/master, origin/HEAD, master)\n",
- "Home-page: https://github.com/mindlab-ai/mindnlp/tree/master/\n",
- "Author: MindSpore Team\n",
- "Author-email: \n",
- "License: Apache 2.0\n",
- "Location: /home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages\n",
- "Requires: addict, datasets, evaluate, jieba, mindspore, ml-dtypes, pyctcdecode, pytest, regex, requests, safetensors, sentencepiece, tokenizers, tqdm\n",
- "Required-by: \n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"!pip show mindnlp"
]
@@ -330,45 +138,18 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/python-3.9.0/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from .autonotebook import tqdm as notebook_tqdm\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 0.753 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.dataset import load_dataset"
]
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Repo card metadata block was not found. Setting CardData to empty.\n",
- "Downloading data: 100%|██████████| 1.14M/1.14M [00:00<00:00, 1.45MB/s]\n",
- "Downloading data: 100%|██████████| 127k/127k [00:00<00:00, 131kB/s] \n",
- "Downloading data: 100%|██████████| 533k/533k [00:00<00:00, 666kB/s] \n",
- "Generating train split: 3668 examples [00:00, 176571.87 examples/s]\n",
- "Generating validation split: 408 examples [00:00, 48980.37 examples/s]\n",
- "Generating test split: 1725 examples [00:00, 153982.47 examples/s]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"mrpc_dict = load_dataset(\"SetFit/mrpc\") # 如果本地未下载会先下载,若已下载则会直接加载\n",
"mrpc_train = mrpc_dict['train']\n",
@@ -378,19 +159,9 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "train: 3668 samples\n",
- "validation: 408 samples\n",
- "test: 1725 samples\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# 打印每个数据集的样本数量\n",
"for k,v in mrpc_dict.items():\n",
@@ -399,21 +170,9 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "text1: Amrozi accused his brother , whom he called \" the witness \" , of deliberately distorting his evidence .\n",
- "text2: Referring to him as only \" the witness \" , Amrozi accused his brother of deliberately distorting his evidence .\n",
- "label: 1\n",
- "idx: 0\n",
- "label_text: equivalent\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# 打印原数据集的样本格式及其内容\n",
"for dataDict in mrpc_train.create_dict_iterator():\n",
@@ -424,7 +183,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -483,7 +242,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -522,7 +281,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -606,7 +365,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -649,27 +408,9 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 26.0/26.0 [00:00<00:00, 134kB/s]\n",
- "0.99MB [00:00, 3.22MB/s]\n",
- "446kB [00:00, 1.77MB/s]\n",
- "1.29MB [00:00, 4.27MB/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "3\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import GPT2Tokenizer\n",
"\n",
@@ -686,7 +427,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -706,7 +447,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -718,7 +459,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -730,20 +471,9 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['input_ids', 'attention_mask', 'token_type_ids', 'lens', 'labels']"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"train_dataloader.get_col_names() # 数据集样本的列名"
]
@@ -764,7 +494,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -787,40 +517,18 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 523M/523M [00:32<00:00, 16.7MB/s] \n",
- "100%|██████████| 124/124 [00:00<00:00, 365kB/s]\n",
- "The following parameters in models are missing parameter:\n",
- "['score.weight']\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"model = GPT2ForSequenceClassification.from_pretrained(\"gpt2\", num_labels = 2)"
]
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Embedding"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"model.config.pad_token_id = tokenizer.pad_token_id\n",
"model.resize_token_embeddings(model.config.vocab_size + num_added_toks)"
@@ -835,7 +543,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -845,17 +553,9 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "trainable params: 296,448 || all params: 124,737,792 || trainable%: 0.23765692437461133\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"if args.is_lora:\n",
" # build peft model\n",
@@ -867,7 +567,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -878,7 +578,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -901,107 +601,18 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The train will start from the checkpoint saved in '.mindnlp/peft_model/mrpc_IA3'.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Epoch 0: 100%|██████████| 459/459 [03:05<00:00, 2.47it/s, loss=0.6872016] \n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Checkpoint: 'gpt2_mrpc_finetune_epoch_0.ckpt' has been saved in epoch: 0.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Evaluate: 100%|██████████| 51/51 [00:07<00:00, 7.18it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate Score: {'Accuracy': 0.6838235294117647}\n",
- "---------------Best Model: 'gpt2_mrpc_finetune_best.ckpt' has been saved in epoch: 0.---------------\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Epoch 1: 100%|██████████| 459/459 [03:04<00:00, 2.49it/s, loss=0.6677042] \n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Checkpoint: 'gpt2_mrpc_finetune_epoch_1.ckpt' has been saved in epoch: 1.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Evaluate: 100%|██████████| 51/51 [00:07<00:00, 7.21it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate Score: {'Accuracy': 0.6838235294117647}\n",
- "Loading best model from '.mindnlp/peft_model/mrpc_IA3' with '['Accuracy']': [0.6838235294117647]...\n",
- "---------------The model is already load the best model from 'gpt2_mrpc_finetune_best.ckpt'.---------------\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"trainer.run(tgt_columns=\"labels\")"
]
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Evaluate: 100%|██████████| 216/216 [00:30<00:00, 7.13it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluate Score: {'Accuracy': 0.664927536231884}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"evaluator = Evaluator(network=model, eval_dataset=test_dataloader, metrics=metric)\n",
"evaluator.run(tgt_columns=\"labels\")"
diff --git a/Season2.step_into_llm/13.musicgen/run_musicgen.ipynb b/Season2.step_into_llm/13.musicgen/run_musicgen.ipynb
index e04f60f..5b49f96 100644
--- a/Season2.step_into_llm/13.musicgen/run_musicgen.ipynb
+++ b/Season2.step_into_llm/13.musicgen/run_musicgen.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "70300319-d206-43ce-b3bf-3da6b079f20f",
+ "id": "0",
"metadata": {
"id": "70300319-d206-43ce-b3bf-3da6b079f20f"
},
@@ -31,7 +31,7 @@
},
{
"cell_type": "markdown",
- "id": "640da8c2",
+ "id": "1",
"metadata": {},
"source": [
"## Environment Setup\n",
@@ -50,7 +50,7 @@
},
{
"cell_type": "markdown",
- "id": "77ee39cc-654b-4f0e-b601-013e484c16f0",
+ "id": "2",
"metadata": {
"id": "77ee39cc-654b-4f0e-b601-013e484c16f0"
},
@@ -62,89 +62,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "b0d87424-9f38-4658-ba47-2a465d52ad77",
+ "execution_count": null,
+ "id": "3",
"metadata": {
"id": "b0d87424-9f38-4658-ba47-2a465d52ad77"
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "Building prefix dict from the default dictionary ...\n",
- "Dumping model to file cache /tmp/jieba.cache\n",
- "Loading model cost 1.012 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "75a95ec53fc947d5988d6827e7d5053c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/1.55k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a07762aabdce4601b4bc4764f19d9171",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/2.20G [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n",
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Some weights of MusicgenForConditionalGeneration were not initialized from the model checkpoint at facebook/musicgen-small and are newly initialized: ['audio_encoder.decoder.layers.0.conv.weight', 'audio_encoder.decoder.layers.10.block.1.conv.weight', 'audio_encoder.decoder.layers.10.block.3.conv.weight', 'audio_encoder.decoder.layers.12.conv.weight', 'audio_encoder.decoder.layers.13.block.1.conv.weight', 'audio_encoder.decoder.layers.13.block.3.conv.weight', 'audio_encoder.decoder.layers.15.conv.weight', 'audio_encoder.decoder.layers.3.conv.weight', 'audio_encoder.decoder.layers.4.block.1.conv.weight', 'audio_encoder.decoder.layers.4.block.3.conv.weight', 'audio_encoder.decoder.layers.6.conv.weight', 'audio_encoder.decoder.layers.7.block.1.conv.weight', 'audio_encoder.decoder.layers.7.block.3.conv.weight', 'audio_encoder.decoder.layers.9.conv.weight', 'audio_encoder.encoder.layers.0.conv.weight', 'audio_encoder.encoder.layers.1.block.1.conv.weight', 'audio_encoder.encoder.layers.1.block.3.conv.weight', 'audio_encoder.encoder.layers.10.block.1.conv.weight', 'audio_encoder.encoder.layers.10.block.3.conv.weight', 'audio_encoder.encoder.layers.12.conv.weight', 'audio_encoder.encoder.layers.15.conv.weight', 'audio_encoder.encoder.layers.3.conv.weight', 'audio_encoder.encoder.layers.4.block.1.conv.weight', 'audio_encoder.encoder.layers.4.block.3.conv.weight', 'audio_encoder.encoder.layers.6.conv.weight', 'audio_encoder.encoder.layers.7.block.1.conv.weight', 'audio_encoder.encoder.layers.7.block.3.conv.weight', 'audio_encoder.encoder.layers.9.conv.weight']\n",
- "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "bd3aaa0d5b0f4ee5a175ea90e936af5a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/224 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import MusicgenForConditionalGeneration\n",
"\n",
@@ -153,7 +76,7 @@
},
{
"cell_type": "markdown",
- "id": "f6e1166e-1335-4555-9ec4-223d1fbcb547",
+ "id": "4",
"metadata": {
"id": "f6e1166e-1335-4555-9ec4-223d1fbcb547"
},
@@ -171,20 +94,12 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "fb7708e8-e4f1-4ab8-b04a-19395d78dea2",
+ "execution_count": null,
+ "id": "5",
"metadata": {
"id": "fb7708e8-e4f1-4ab8-b04a-19395d78dea2"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- }
- ],
+ "outputs": [],
"source": [
"unconditional_inputs = model.get_unconditional_inputs(num_samples=1)\n",
"\n",
@@ -193,7 +108,7 @@
},
{
"cell_type": "markdown",
- "id": "94cb74df-c194-4d2e-930a-12473b08a919",
+ "id": "6",
"metadata": {
"id": "94cb74df-c194-4d2e-930a-12473b08a919"
},
@@ -204,31 +119,12 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "15f0bc7c-b899-4e7a-943e-594e73f080ea",
+ "execution_count": null,
+ "id": "7",
"metadata": {
"id": "15f0bc7c-b899-4e7a-943e-594e73f080ea"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- " Your browser does not support the audio element.\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from IPython.display import Audio\n",
"\n",
@@ -238,7 +134,7 @@
},
{
"cell_type": "markdown",
- "id": "6de58334-40f7-4924-addb-2d6ff34c0590",
+ "id": "8",
"metadata": {
"id": "6de58334-40f7-4924-addb-2d6ff34c0590"
},
@@ -248,8 +144,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "04291f52-0a75-4ddb-9eff-e853d0f17288",
+ "execution_count": null,
+ "id": "9",
"metadata": {
"id": "04291f52-0a75-4ddb-9eff-e853d0f17288"
},
@@ -262,7 +158,7 @@
},
{
"cell_type": "markdown",
- "id": "e52ff5b2-c170-4079-93a4-a02acbdaeb39",
+ "id": "10",
"metadata": {
"id": "e52ff5b2-c170-4079-93a4-a02acbdaeb39"
},
@@ -272,23 +168,12 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "d75ad107-e19b-47f3-9cf1-5102ab4ae74a",
+ "execution_count": null,
+ "id": "11",
"metadata": {
"id": "d75ad107-e19b-47f3-9cf1-5102ab4ae74a"
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "5.12"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"audio_length_in_s = 256 / model.config.audio_encoder.frame_rate\n",
"\n",
@@ -297,7 +182,7 @@
},
{
"cell_type": "markdown",
- "id": "9a0e999b-2595-4090-8e1a-acfaa42d2581",
+ "id": "12",
"metadata": {
"id": "9a0e999b-2595-4090-8e1a-acfaa42d2581"
},
@@ -311,108 +196,12 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "5fba4154-13f6-403a-958b-101d6eacfb6e",
+ "execution_count": null,
+ "id": "13",
"metadata": {
"id": "5fba4154-13f6-403a-958b-101d6eacfb6e"
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "58ec6de737fd4523ae119fb576f5d490",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/275 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c32582fa6539425685a4a3cedbb42290",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/433 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6b797bd2087048458490cf69c30e5d85",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/773k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ae9b56322df8457e9676dffcd7ceff8b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "0.00B [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2e82f5bb769e4248a4c3004c4dfb2c4b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0.00/335 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- " Your browser does not support the audio element.\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import AutoProcessor\n",
"\n",
@@ -431,7 +220,7 @@
},
{
"cell_type": "markdown",
- "id": "4851a94c-ae02-41c9-b1dd-c1422ba34dc0",
+ "id": "14",
"metadata": {
"id": "4851a94c-ae02-41c9-b1dd-c1422ba34dc0"
},
@@ -445,7 +234,7 @@
},
{
"cell_type": "markdown",
- "id": "d391b2a1-6376-4b69-b562-4388b731cf60",
+ "id": "15",
"metadata": {
"id": "d391b2a1-6376-4b69-b562-4388b731cf60"
},
@@ -459,58 +248,12 @@
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "56a5c28a-f6c1-4ac8-ae08-6776a2b2c5b8",
+ "execution_count": null,
+ "id": "16",
"metadata": {
"id": "56a5c28a-f6c1-4ac8-ae08-6776a2b2c5b8"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
- "Requirement already satisfied: soundfile in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (0.12.1)\n",
- "Collecting librosa\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/8c/8a/2d231b35456506b7c98b3ab9bbf07917b205fed8615d2e59e976ab497fff/librosa-0.10.2.post1-py3-none-any.whl (260 kB)\n",
- "Requirement already satisfied: cffi>=1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from soundfile) (1.17.0)\n",
- "Collecting audioread>=2.1.9 (from librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/57/8d/30aa32745af16af0a9a650115fbe81bde7c610ed5c21b381fca0196f3a7f/audioread-3.0.1-py3-none-any.whl (23 kB)\n",
- "Requirement already satisfied: numpy!=1.22.0,!=1.22.1,!=1.22.2,>=1.20.3 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from librosa) (1.26.4)\n",
- "Requirement already satisfied: scipy>=1.2.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from librosa) (1.13.1)\n",
- "Requirement already satisfied: scikit-learn>=0.20.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from librosa) (1.5.1)\n",
- "Requirement already satisfied: joblib>=0.14 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from librosa) (1.4.2)\n",
- "Requirement already satisfied: decorator>=4.3.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from librosa) (5.1.1)\n",
- "Collecting numba>=0.51.0 (from librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/3b/bd/f1985719ff34e37e07bb18f9d3acd17e5a21da255f550c8eae031e2ddf5f/numba-0.60.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (3.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m37.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting pooch>=1.1 (from librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl (64 kB)\n",
- "Collecting soxr>=0.3.2 (from librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c3/c6/f3d54e8c579aa5f192d62c87cd86b88e0b1d6fcab7b541663a3816f1eb06/soxr-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m57.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: typing-extensions>=4.1.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from librosa) (4.11.0)\n",
- "Collecting lazy-loader>=0.1 (from librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl (12 kB)\n",
- "Collecting msgpack>=1.0 (from librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ad/61/225d64e983e51f960cac41fd1084188764fcc7430e75f609ad9d86e47839/msgpack-1.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (375 kB)\n",
- "Requirement already satisfied: pycparser in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from cffi>=1.0->soundfile) (2.22)\n",
- "Requirement already satisfied: packaging in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from lazy-loader>=0.1->librosa) (24.1)\n",
- "Collecting llvmlite<0.44,>=0.43.0dev0 (from numba>=0.51.0->librosa)\n",
- " Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c8/c6/9324eb5de2ba9d99cbed853d85ba7a318652a48e077797bec27cf40f911d/llvmlite-0.43.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (42.9 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.9/42.9 MB\u001b[0m \u001b[31m95.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: platformdirs>=2.5.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pooch>=1.1->librosa) (4.2.2)\n",
- "Requirement already satisfied: requests>=2.19.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from pooch>=1.1->librosa) (2.32.3)\n",
- "Requirement already satisfied: threadpoolctl>=3.1.0 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from scikit-learn>=0.20.0->librosa) (3.5.0)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests>=2.19.0->pooch>=1.1->librosa) (3.3.2)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests>=2.19.0->pooch>=1.1->librosa) (3.7)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests>=2.19.0->pooch>=1.1->librosa) (2.2.2)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/mindspore/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests>=2.19.0->pooch>=1.1->librosa) (2024.7.4)\n",
- "Installing collected packages: soxr, msgpack, llvmlite, lazy-loader, audioread, pooch, numba, librosa\n",
- "Successfully installed audioread-3.0.1 lazy-loader-0.4 librosa-0.10.2.post1 llvmlite-0.43.0 msgpack-1.0.8 numba-0.60.0 pooch-1.8.2 soxr-0.4.0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.dataset import load_dataset\n",
"\n",
@@ -520,8 +263,8 @@
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "79fd7ab3-4d1f-4838-aff8-13d6fa568b3c",
+ "execution_count": null,
+ "id": "17",
"metadata": {},
"outputs": [],
"source": [
@@ -539,36 +282,10 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "3787d4e6-6d1c-479b-8c92-c8a58d176144",
+ "execution_count": null,
+ "id": "18",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- " Your browser does not support the audio element.\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)\n",
"\n",
@@ -577,7 +294,7 @@
},
{
"cell_type": "markdown",
- "id": "77518aa4-1b9b-4af6-b5ac-8ecdcb79b4cc",
+ "id": "19",
"metadata": {
"id": "77518aa4-1b9b-4af6-b5ac-8ecdcb79b4cc"
},
@@ -590,31 +307,12 @@
},
{
"cell_type": "code",
- "execution_count": 15,
- "id": "5495f568-51ca-439d-b47b-8b52e89b78f1",
+ "execution_count": null,
+ "id": "20",
"metadata": {
"id": "5495f568-51ca-439d-b47b-8b52e89b78f1"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " \n",
- " Your browser does not support the audio element.\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"sample = next(iter(dataset.create_dict_iterator(output_numpy=True)))[\"audio\"]\n",
"\n",
@@ -642,7 +340,7 @@
},
{
"cell_type": "markdown",
- "id": "viwTDmzl8ZDN",
+ "id": "21",
"metadata": {
"id": "viwTDmzl8ZDN"
},
@@ -654,37 +352,19 @@
},
{
"cell_type": "code",
- "execution_count": 16,
- "id": "0zM4notb8Y1g",
+ "execution_count": null,
+ "id": "22",
"metadata": {
"id": "0zM4notb8Y1g"
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "GenerationConfig {\n",
- " \"bos_token_id\": 2048,\n",
- " \"decoder_start_token_id\": 2048,\n",
- " \"do_sample\": true,\n",
- " \"guidance_scale\": 3.0,\n",
- " \"max_length\": 1500,\n",
- " \"pad_token_id\": 2048\n",
- "}"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"model.generation_config"
]
},
{
"cell_type": "markdown",
- "id": "DLSnSwau8jyW",
+ "id": "23",
"metadata": {
"id": "DLSnSwau8jyW"
},
@@ -694,8 +374,8 @@
},
{
"cell_type": "code",
- "execution_count": 17,
- "id": "ensSj1IB81dA",
+ "execution_count": null,
+ "id": "24",
"metadata": {
"id": "ensSj1IB81dA"
},
@@ -713,7 +393,7 @@
},
{
"cell_type": "markdown",
- "id": "UjqGnfc-9ZFJ",
+ "id": "25",
"metadata": {
"id": "UjqGnfc-9ZFJ"
},
@@ -723,8 +403,8 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "id": "KAExrhDl9YvS",
+ "execution_count": null,
+ "id": "26",
"metadata": {
"id": "KAExrhDl9YvS"
},
@@ -735,7 +415,7 @@
},
{
"cell_type": "markdown",
- "id": "HdGdoGAs84hS",
+ "id": "27",
"metadata": {
"id": "HdGdoGAs84hS"
},
diff --git a/Season2.step_into_llm/16.Practical-cases/difussion/mindspore_diffusion.ipynb b/Season2.step_into_llm/16.Practical-cases/difussion/mindspore_diffusion.ipynb
index 5787de7..b8e0074 100644
--- a/Season2.step_into_llm/16.Practical-cases/difussion/mindspore_diffusion.ipynb
+++ b/Season2.step_into_llm/16.Practical-cases/difussion/mindspore_diffusion.ipynb
@@ -51,28 +51,13 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from .autonotebook import tqdm as notebook_tqdm\n",
- "[WARNING] GE_ADPT(2087,ffffa9645010,python):2024-11-22-08:06:47.434.450 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(2087,ffffa9645010,python):2024-11-22-08:06:47.434.505 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(2087,ffffa9645010,python):2024-11-22-08:06:47.434.522 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] ME(2087:281473523666960,MainProcess):2024-11-22-08:06:47.587.306 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(2087:281473523666960,MainProcess):2024-11-22-08:06:52.295.753 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(2087:281473523666960,MainProcess):2024-11-22-08:06:52.299.553 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import math\n",
"from functools import partial\n",
@@ -301,7 +286,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -371,7 +356,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -403,7 +388,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -443,7 +428,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -518,7 +503,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -618,7 +603,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -669,7 +654,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -806,7 +791,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -833,7 +818,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -881,25 +866,13 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip (170 kB)\n",
- "\n",
- "file_sizes: 100%|████████████████████████████| 174k/174k [00:00<00:00, 2.34MB/s]\n",
- "Extracting zip file...\n",
- "Successfully downloaded / unzipped to ./\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# 下载猫猫图像\n",
"url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/image_cat.zip'\n",
@@ -908,24 +881,13 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB4CAIAAAD6wG44AACez0lEQVR4nDT9V7CsW3IeiGXmWuu35av2ru3N8eeec71vh0Y3PEAABDgghwwqSM6IIjWhiXmTFCETcg+KCUVIEcOY0INGQ0Gh4RAkgOEQjkB3A2h7u/vac849/mzvau/yVb9dK1MP+2JH1Mt+KLP+XJlffpn5Jf4/Vr7sia/IIBpNWGKpJdAIijRRgYIEHgOQCCAACAASqVKS0gGK06g1GkJHZECBEyZmKyyiEByBAGpABHAghRNEIKN84QwJNPqAvhLnFCOU7ECjAVCIBMjgQCEIoJMSUYQRAAhBBBEdCDEAiygAQkfiAZaEClAjOECFkhdMRVkUWABoAhEBEHf5M1icEAkjohRsQViARcChoDCBZkAFUqBNbJ4zl2ytWBFxYkt2FpCAHDgCC6CdYCEWUSyDQTGgfUIAyEVYwDFYzh9Jci7lZ/m8SnRTBUTki26QaqnAI1MwlFCGqKroBeQxCoP1EA0pASUCIMIoAOgYrVhBYQEEdMAWrQHlhBgcAAAIA7GwoIigFsESHaMmdACEqEkBCQgKMKFSQEoLEhCrQphIRESIFAIDK4eiSQSNQmRixQa1NaIK55C0CIhYRb6AIPhKxAkIIUFAqJiYlDgWAEVEIiwgBOzIomhQjHBpJZ4TBxqYLYNCEkREFgClABVZJ1pQDPoAisUq8qzN5izOlUgsrIGERZiQBVC+eDl2QASAguAABIiAiRQAKQAGnnM+sUXhCgSwwA7AoXMASPryuEmIxZToLIhCFhFfe6EoQMcCpbAFEABHfCZ24OyRKwFlQemcKBSoKoVAKbCP2DDKic8gFiVHVijEpgQBUEYBiTj+4rGIQh/YMZbIIoyICnwLAOhA8ItHLhaJLAuh1RmjUcxcGkIWEREUFAINxhKgU8hzrTwRTeIhcim5CIIoLUoIneSlOI2qhAKYAKw4UAoI2QkLIjCKWGDWxISACBqIQZCIxSKUgCCOHQvK5QkqcUxAgmKhJFAAFhFBnBNARABBBwCAIIhsbamQgHwrSiQDULNyljsnUhBqZgBkYUBwANoxExp0OSM5EODMsoJLkwNEIhALgGNbjl2Sco7iEJQAlmJZSBBYBAVKKQm0FWtBgBGRFRhNqAAYJUdmcQSaQTLgGdvHbt6X8oKLCioDilkQqRCJlTZoUnEEVCHSoBQJoHIioAQBhMWBQmQBYXGIKIgCGtESgAMEERTrQFjAoRiEUhhEAwAhgiid2MQHTyMgaCQEQOsKxyLaKGASEPRKZiUOpSAyIGDBwd8cORGIkAgzGmDn2AJoyxZRA3MpBQmzmEsPIMCktGMGQsvWAbEtAQlFMZdAyjEoQBFQ6BgNYgHCAoTIDAiCAqVitgIFpBo8DYoFmUg5YbKFy9PSgggTMyjFpQASKARywiAlCrGUBYtCcOAAEMEKIQCj0MhmuS2mrmBwJEJEDrQTAbFO0AJbKRgciHIMjCWKU4gGFYlBVCziEFhczqJAp2JLcXORZ+X8RMoLVyBKncxMXAXFR2UQS8GQtIfsGFMsFXAEhtEiEAGwWACVS6ZYGyJFyAKKxaEwEF2aFxAAghQsjgEyIRAAKYAuzYP0wM7qGMYUFKhAlAbfSg6iuMwQhdCggEYRKsEZEmc5IzIEUIpFwFKYxKGAFSAAB2y5UGiJ0QKikEMNTEZsTpaEtM1RhY4tQslMllADlMKOSy2EoEooAFGEAUqRyzcREafIoLDlhMGzXIIYJmTUhAUDlK5gax1ZInAiAIrAijgEcmIFGcBjEARhKRgYBAmQQBipsEXCdl6mhVhGAhAEYAQrYp21ACCOQayIA0YBRCREJYCoiBgEHKBA6QBKd3mZMIeiEAS251zuuiQBFpEYlQX2BADBAfpIodIOnAUMURQQo0uEYwxFCiDU6CEWnhiHGqUAVATKoXPABAoECcGKvfwpxA5BOwErjgFRHDMAie6ViUNkhRUgB+hheWk+gJdBGoRdIU6D0sqh8wQARRkBhQGgAFgQVwIBFwq0A3RSlk4QSkBtUAkxsSvEWWZiImBkJgICZGDtTCZlCaWwteAMkiUCcVrQSYEEGkMSEmBxpSCwowKtMKNidLqkFCAH8CxbQuNYachKUSJOAYuQkEVBBnScI2gBB6wQyUoOwqmUiXMZM7MAMgOBIABasE7QClspmRGQBUREEEGTFiEGUQiMZAWVSAZFycACCOIEErEluJzdOefPbTZlewl+NOKcXUlUA3IABWAoVqNmwJwBiX1UgpRC6aPGS2gqHoEDYQTlhElERCFeHoFzjI6VkAgwAwkwiGhEJ8wMACgMeuJmVDpPAIFCMYygCRU661JFAboCARRpABQWSzmAUpwWgChEBIyIJMTsQCWcGhRBLegUKkINgARshUvHFq1iUETCqEQAiMBZLAtmxJKFWEqFikQL2ByNAmAGDZYACdEBK0EkQBFF2krpIGVLVqwQa0AnDgEKcISIiACKgEsgESeMKOKwQMDClSW4xKW54wLYitOoGAhdKYhOUIgdk4gFFEFgZA0agBlFEFmEgQmUoDBYJ2AFcmALzAIFcCacuHLI5QHnUwVhJVzyg1oQIcDO2TGXzrGcYg5ACq0GQsIAlSZwgJk4T0CQc0AFJYjySAkAorAwC5SCAgWIcuIQCUhYWEQcgBULAIIELA4YQQABxOqplOBQiSqFSx2GpIwEmhwhinOaEECzlA4UA4IIiXLIlwkLu1KhJiQLhXM2c1KQI3I+GUHK2aE4dJBJjgTAYBGtMEJhWRBRvnBuVhwwWEIQYAIicVa4JFACojAg34EAl5aFSJyAZZexY7GEqNFDcSLkwCokAiodowLrGNCyIIMTAOfAcmGFSy5yLlkQSBgQQSwTAgt8cUmFkUCciKCAaIWXoQcREACBgIQZhEUYwAIUYi3zBIqRc0NXDNlOxCXIOvAXWs2FZuXKQrdZjdLpuBGRQeVIH5310rIcJbMh6hZ5iyoKSXtKKVAoAIiXcYZQFyKIVokmABSlgJmUCCCjgEUARCRgxyKCAAQggsxAKIyABFrPmQUsS1IIl8yiPU+Lx9qQEixFCEQ0aiulRqWFWBgUCqNBQCSWMmcBFIQv0lMneWKZgJ0AIjsGAYeMDMgAII5QOc4BEAAU+ohiJQfRCEqTFSgISIMhBtRGhFM7Z8FSCuvoMtRd5mkaUQAtMFvnUICFSBR6LAIlO3AMxFw6QMvWiWUBBiRAJCLRIiLoFGiLwiAIJCICiCgliyVQQIRy+bUZRMSSqEubEJACOGE3ctm5y89cORRLnhYfF7tLxWQKWR77XqxpsVFvLXb6g+H+/uFKq7a+1D45HdX8duCZYW92MJgeZfnY5jUKGux7qGIyERgAJlSIhRI2QAyXgUZImAWdFIDogAkIgewX1IFRwA6FBZUgIyAgg2BX6Q6pCngV1FUV1JVfU35EnlHGA0OEikiBEUAFchk7CbWQJTAIlgFFEFEUkmObX7IFCCJ0GekdsgVU4FiwhAJFkDQIXHpUg8CCxRd+TzzylDiHoMkQlCweCFuwIBZEAxIBO7BfpCWoBQBBWS4VICIgMIBBQYACCFiIGZ0UguAcMzKCspwxKAcI4hQignLiLFsGBkTLiIotOxAgRAQqQQQERRi0k1KBK0XGUvZdeVgm5+TQ96txtNSqVGuRH1Z39k4ms1klDhQSiFtp1LqrS7XO+kmvP7540Qy0BgUisVGNahR61Z3nJz95+MzasgamolRMJiZVwcCQ0iiE2kNSLEKAwErAgmJxArmIuURJjAKMgu4S4bOQA1AggigCuseuEGhiXiCn4DIuMi4rFITihQhGwIDSAprIgVxmK8gMDISlgANgJT4hCqEDl0spQBoUIOYuQ3AM5ESIsQAnIgAsXDIoENTgCmTHismCkADknBlF4gAcC1hFgCACCKJJgNA5FAHtobIgVkBfMjwIl24VAEWcoBVBFAQpHbMDARYELNk5KCwrACfgNGonYqF0wu6LT3GCGoSA2DISoBVrRRCUlbKA3ApOOR9ycWaLc5e311deWu5uLi93a36jEk5zTJytNppl6ZY6tYtpAs7lo/Hh2ehKJXjn3dd7J+sHLx6LHY3mecHaq7iNlW671RVP752cnZ4PUpfnjjNRKbBHKkRjSBAsgPLAgFh1SR4BCmgHTgGxCIuwlCIGABwwgICQQxEBAkYABBQNqBA1kgGMUS2Q3yLTVlFTexX0DHmC6CMqVIqUQmJwIiQIIIioNTAjM1LqUhFEQELF4JhZoSfoCraFc1oBCuIXMJWA8xJIEBQAIJMQIilEhXRJihKgIgUABA4BGYAARdCBkDhGp1GLAAgBKo2uEAfCpWNGQlaAxSXScOwEmBFIHAOJIAERiiBbIRYLgIKXME2JiBWx4FjACZdgGTBlO5VyzPmE7bkt0PffeuvV9dXFqhe0mvUwMGmejMbT894wTaZh7HXqzUq9Uau1RFTOcni001lcRAoA5Omjp08ffV4PqVOrv//ee4H2z3YezlP55OnuaDyXwqZJYgDraGrKC1AZJI1gwChEB2JA8PLkAQWcMPIXkVEUkhMhREDnWDRokRLh8g+BANtKA4NBEhAN4CH4qGP0Y9IV1JFSPno++oFCny5DphYUAPziA4lKgdzNURyiQlQsyklpxYm4y7ABSCRESAXnIswiAIKoENGggktvCEiIAWkRBERD4kQsi4C9BBPMDIIMlkHx3zAhhJSzzV0p4gwqjwwCayBBcOJIAEBpAL7ESWIZgS+zC2EHiIgkYIFLcSwql9wK5OjmXOTMM7FzcVN2KfP2+urNK1evXl9nl1dCbzzJnr7YG/bPrS195ZVlbjyz3o6cQ7+ir6wvbV1/6XRsdg9Pz86Pbl5ZcaDGo2T3ybPt1e5bb76dZcnu/Y/ai60PP3sWxn46xaf7+1macFFWSPsgFTQxeR6SkBArIgdCSlCAAcAJIJICdMAKycnllWUAQgGDhJdIjAXapLrKCwSrZLQgIV0yW4zkxDKgE2EQQUIghQgoPpkAyaBRKAikUSMJMDsWQmagnKUES8JyaULiABUQeIJAqEQ5sYWUChUCGVLCFpSgEKBSggxiASwIiAPgUqQUEmTLjgFZ0IJTSBpJxNnSgoniRrsS1bPpOJucaQKF7IFCBkAnqFD4MiVFIQfWAapLDIWgAS2AA87Flsy5SCYuR5s4lwCnwiWzE9haW37/ndeurK8KALF68PCzTx89L9JiaanRjoNEnKBZalXaUZjO7DSdLEb2xks3440vnSd5NrP955+QTlsrV6ajWasRXFm9Mx6fDc6PBdWDh3tLbbPUWJym5fFpf39vb6fXT4ssZGDLAaEGjJE81ASiGRHAEXqAl3S6iAgCyuUjFQJEAELQBkmjZIAtMhGqNpqA0AfPkPZQEziF5m/YWhZBh5dhFRxiIY5ZSnAp2JJFCAt2DOzkMqRxARYAHQoAgCAgEIAC1AJIZEAzOAFnUBkE5QwRoqOc84zLQtgCIAgICKIDtmwZpHTsUJMxBiH0wtzZIAyTrHjvm7/+i7/129WVtc7Kks7T//f/9f/03d//3dD4WohQAPgyfXQAClCAS5BL5yWIGhEEGcAhz9ml4nJxqYgDKYSt8CXru7m29qUvv73c7jqxy2u3xqOLSnNxqTseD6eNasCWqtUaE2mtxfMyw+3qQjEb7h71376hry9szabpwmLt/PDh0vINkT0kt3/0uB4HC8vbmSh9NDnrP7+z0bly7XYUHy23Q+/FycSlszQ7PhnsDwdxGIIrtONQec243omrJ/3z0mY+kg+gEI1oBSCCgOSJILLPSiNCgIpBKqQjQJ90DNon8shTgISewtJDg6CFnBZNAEAogiQoxAziREqGAoixcGJzBgHFAhZKBkK4pAycgAOAAtyld7UigMCsGKAELNjlnObOlSBOQIBLYBY0KKVAAa4WtKqVZliJr956Q+yEKTjp7S00G9WFThjFt1/+0ktvv/7iOF1aX19brizG1a13Nn7397IYHAIgyqVpowgAMgIAM4gICH5RBAWAQrgQLuGyuARWBADkb8zgrVduf+MbP5/Oho2Gl7M+7T/vLt+8aqJm1Xv6/EVWFnGgWSDL8bQoeqMkB9TUGqZmMQTFBboJgmq1V2ajM1tmQRwMTg7y0Wm50G4vIKgomZ7tH563KrsLk2I+T0jhSqveLbXpLryoVD64n/lROJvPvUrs19s33n4DnPfxt//DfDIjFGQ2iD6QBghQRagDwADJgdUxUgUIUZoY1BUtqjhEZQA9pR2zIoMQKEQBIAwVOAECBERRqCxbJ6SUsICAsuADOyZy6EphlpCALVgBRSiX0YKBheWSVHPIVhABLJcWnBWwIjmwAAuAuwS7ICVLXOt88+/94/W7V4v5/MYbd4dHT/r90af3w0p7Na7hyuJGrdH64U8/6968o5RrebZ/evy9b397BpxcogwGuSRfLyGlfIFEBYDhMrFFARH44t8CAAKXfNglF/7Gq6/+7d/+TXTF0/sf7DzJmF2rFYRkrlx7I0DorN08PT6fjA539w6dX+kuXVHksmTkAjXtWeknR88/bnRXgtZ2VG2TmMNnP51k+XTG2Wx2djFuHZ8uLKzOk1lu4afPjq9mrJT4qhborGReWWzW4/pWvVaSdzrNd3sn3eVup1bNS7PSXT7TOp1NbZEUyhTAriwRLEJukAyAh3h5a8mBVBTVKeroWIMGcgY0kdIkAEbgkunWIs4CgICIY2AApQgREKlApwwygjgQ7awGRCERKZFYhAQEFaAFBhZxeAnOkAmBFBA5sSxkhRnFCbMAszilHDPFwev/+B9u/+b7tZGrhCuBThrtSChfXmiUsffoxYPdJx9fvf5Wdenl2I2DMhz0Z3/w//uXn337++vKv7ygJCIIBHRZZOTLUiOg/Zu7m4ETAQZwX1iCCKGAKMCZc9VO5+333+z3jj786LPTk9N6AKHxI6X7J8eNxmJn7UouZvVG9dmjB7q5L2jffvfnh+fHDz7/QObD0/N+vRL9+N6TV4tRBxHBY057SbKz3/ONv95dOtjbz92ws7IGyp9mBZDpTTKbFwYToMJTnlN7kdduNoPNjVtaBw/3d3cvznd290rQmbNFkQtAVG+zc64owIGIFRAflQIRIN1AZVApxBh1RenwC6TpIZImuHRhiBqECMkhGSkERFhZaxUyiLGoQIfKDzkIxa/EUQWCQAUR+b7zQjLaak0KAHUJQlwIO2HLhS2T2fz5J/Ozxx55SpQCRhQBLISiuN6+vtLZXE9mafP6W/5//tVHrdnaj8Yv647CUbWiLi4m82xscCrZ/P7OwfrWK203dmfDLEi+++Huv/oX/40pQGmlgRCI0AEqAgBhBBQQAgBUFhgALXDdYclOAATJEREhoyiheZnX1zZ+4Ve+ee/jT7P5+LSfRkahiaJaQ4W1ae7mWdmu1OpxjOxu3Lx+4+bV0ei40wxcau6+9Ore86eVyl41kEniPr53sHCRbl3LhzO2UB2N9rY2alZsEOjzwXRegjb+UqszSWbno3G73R3NEg3+bDBH9v1mkp9cLC0vRPHGtbWFq0vN54e9s1Hf1gJJK3lZWlRWiGWuQGzuQGTJRNe8JgjoFvkKkQQNBrGKKqoqYBE8hJLQIUYAyG7umBA8pQx4C1Cr6dYCtZew06bFpmp1uFGTOPRqkWlEO2cjT+nEYKS1LXM2hspyIrJZr0T1UBzzZa2DweZ58nzn/n/5v5zsPDHKeIgAkFkXLC28+Vu/vv76XVLAYq0tLv7sL/K3FnaXoq2D806otQ7DsH5yMaiFto5Zt+m9ePTR2sry/t7xn33r9053Dg4PjkOtCYQAFLBCuoSUBpQAEsAXGFO4BLRcRMs36xt32Zjp8YuTvU+VlCRq5kpstr70tS89fvrisD9XpVOeWd/aurq9sXH1FeX7cdyQIqnG8Xx0nswulCHgLCaYnu4dPrvvEPNieOP6Vjntp2lxdD7PXL/WPmstXSmYr1zZjENllAbPW928HkeVd9/+xr3PfrS3/2IubnVtwVCldOW9Tz+xBoppsXN4cfXoaL177fQs292/32l3b2+sXVkXizddwWfD2b3HT5/P+kU6v/RKI5u1oqgKgfZQhahyJZqgruOaCRBYoxLxmRAFbAm8/Dbeua02N2Gtq7stV49Tj8hTvWnWqviD6Ux5+vnJYMlh0yoTYRxQHPpGKSUeCxgd5AVXIq3IAQIzlOKUJrRltNqlN9/ee/STqhd7wAhaNZrB7WXv+iq14tBoRVDOxqefHcn/9/ujt69fhNdWqzf9atvr7f3C13/2v/u9P5jOLjSUe7sn06x45Y3Xnj49uv/Z574CAAkEEYUFDCqNQEKAqAFICMARACMWLl985evX3/k5HTUIQeTdh/dvPfjOf4dclvXa3/0n//T+gw+PLuar61exnHY7C93Fxa//6u+U1iGL73n5tDe6OHt6/wchZp6h2XTcXLwySGRw0RuOR+D5vg4xqpEuPM+zaX50sLeyfGVjab0s0fD8xrWXB3M9GZ1d34467euIeml1Mx2PmhW6df1qfzy/2Hu+vNDeP5kdDSezLK2HpphNk0miO3klqnTqG7Mi0360fcN785VXHz3b/+Th5+Pp2BZ2SQxmooW0DxiSDhEDUh4qEgAQFnGX5HbJ+uf/rv9Pf6fnMZR2pVudpPnRyaR/USxFXlAJhlnx19999Hd++fVXt5fnJRtP/WZz98GkceZV0NnUlewomxdTYQ/jZtO7BFmogAWRFWYldDo7nHTQNBcXF7e3woVK4es/++s/WVle3Vjf3lheqzSqt776q9Xnxwd7By+8o3Wzulav5f3nK+2Vf/xP/t7/+v/4X3pSLnYWd3af7x48L3Jpd1qnp+cBO0SlAT0iD1FANJISRBQkJlGIlNhcqs0b7/wK+IFIyUVhWe7cfPnp0x/v7Hz8m7/4W9fu3J2XReGfXFlutButRme1ojmKfAXsknQ8Okvmo4v+ydmgj3nCeRbVK9ksHw0uJuOTeq0ehPUkKXZ6F9e3u4sL28eHZydnx8+f37vz0vsvX9uu1Vobm1eDanXv2X49zBcWlyuNpXI2efbs6Ysn31+q+NlUdRdqt67ffHr4g2bo39lYTZNxNZbXXlpeXlwZ5RL5ueeHrIK4tVppNG+/8u5vsMvyrLRysff0+OmBetrTMeqY1FDAA6p7foR++UWziAZHcvO9xv/0twYffi6vbcexUcCE2Iz8xYWoEfjnWX7wef/v/Na7f/hnP/6l129V2nHDp+8FV6Y5T0ZZNVJCJvSUX/frDHGoheALPgZAMZIxGGvLGUeV6195/7W3XznrDY9Pdxtx99qVdxCzp/svRsPJ8vJKq1W//uqtrXKrnGb9s14xm1Xi9uDwMDHef/HP/mf/9o/+eDo6I9BJmqdZ3l1sng1GSVZWEAlJAQCAB9pHIhQFQECMgiApcLWz1F1ZVuSJ0ixlOZspTbX2ws3KK7/6t39n0B+SkqXFjvKrncV2rV2bn58eP/u0qkmK9Kh3lsxGlr0sZ8dqnGPXRWVWvNjfr3n+YquBQoPzc1/B+WC+vFpZWcqXFjqHp+cfffLjbre90v1GENgajm9stbUrAsVKTzJfby4u94+7/UHPWVms09ZSba3RuPvlG1sbaw8+f9BuLyhVPRvOd076i+vzarQYNSviKLeuVq+BTSjupPOytra6+c57H/3J9zUgGvIdpx7qiPxQ6VBA0BOAUgC+8RVYiUy+Fta9IgWjlE+QevrgIpGq5ErNRjk4ePX6dmshdrFflMVeIlWEu9cblrmwLstdlhTT1NpULSzVWIDQKA0oXBDsPfvJ44++v7K5cTod1KqLW1du/sl/OOt0N9u16oP794d5Pp+VojwBNRn+JI6wHgehyoYDG/rUWb/1o/ufr27U/if/6J/8b/83/6tOaAiNMpyUrlqrzWA6KJwRZxAIyCATggcKBRFBX3LdAp2lzai9ICCZdVkyx1b1wc6zxkLlS+/9zuLKCoJpng98ml5Mxy92ZvWLc5wObKwpjhyULs/D0BcnrYUlMkE470V+BM5trS62orjbWppng4315dW1WjqfEDsVtcqy2NxaLcBQrZVLrfdsN7qyWfFYKaKiiIyxFmo+aO09ePJIWT0czZ/vPDNqcm1rc+eg16iqOzeviL/5kx/fv+gN+uN+vZEtbVK1zm1/c+6HymZS9eKFuhfQfHB69eVr2gPRqBwzERrlecowi1xWgZBgqUVx0Ly9pOa5VaUyJNaWpb22UqtGel3p1s/d/r1/d+8f/Py1fuEGuxcmDt6TdNTP7pXoOZc7jAOflG4048CALfP56KJ3cna6v3P49OHOw3uY8H/y9/9hMj/613/wbz5/8fkddb29sP7s2cdK2a1rd8KLw0ZrKc/S0+FZp9alpORsVjGBodlknqP23n77/TBun/V3WrUIgCfTeRhUwHEcxUmanaZpSqbJsARgyJAGBNAoRAaFSwAE6Xa3n45GWMxbi6vHs+lqt31wvvva3TtXrt2dDScmbi6tXXPzvn1+P0mzs/HIhywKWk/3jv1646jX075ZbjW7jZqKG8GUa5WKLuAoPdeBYc3VVndx/RVBt/v44zwbl0VeqXSDyERR3O0uVGMIsOtHdQ8cZgPNRaAj0aWrxBurNxXKxfw8YHN+kd+++XombntFb3fv1DrLDtUv/MaXvvQzX3n+4vinP/3JZ9//qLEQv4IlpYsq1DU/LIt0PBhWwnD59roO0AuRrFiD4OSy2UgUKYviEQEZYhEL7MABKZLAqErDPx4l3ggmAhtx+Ld+9jr4+uRkvt2pbWw2y7OR+LzZrhgssmSeXhydH+0+eP7k4PGTwUlvenGUzmbTaX8ymbx6963/7H/+z7vLdS/oPHr4yXe/+8FCe+HOjevHh8++852/uHvn1ZW17ueffxpVulduLM+z6YwT7fLtrc3YRlqHFLaN71+/vrHfe1qWZZbDxvLqef8CAIs8t0XxytWtl1+6k+XJ7KgnvTlMZh5pFFbAQICMhrz25vVpHLfrzblvapU6AyxEZm2p3eouudlseatRa8a9k+hm6B8dnuy8+KhTMT7685DnBR8e9trr67Y3rTfUrNdHmfpqI83ZN9hu+Nr4jcX17urmxcHO6vadk+PDi8HjSlTpNq4YValFTZyfda/eiAPfzWcuS6KowqDqIVElvhl2jB/OPv/2q3c3VhbXvPZ6kkrW+yyqB6RNkZZRlNdWO6sbt97/8mvPnpx/5w/+3V/9v/6QYrty5crNN9/QlTCKw8rSreH5UPuoEXUOYCiMKKp4vnOMSBa5JOBh4iuQEspInZ0XygmyDMdFO4yiSHU9avt+GGOW8Jfv+kUyPfn84eDk8Gzv+cGzJwd7z88O9wZnJ7PROPCC11595xtf/cWrN1Y9lxdp+mLvWeB7+08/2NvRN65ceeX6xvd++PFZ76xdx7W1FaGQ0dz//OHtW2+3W2006uxkT6FZrPmfffrTN25cN2GtxLgaxWlZtDrLk3nx5p2rReHIxf3JNEkSRVSL4oWKr6L4InGpo3QyVqA1GY0IIg7FM151adXGUS1ShQXyo3zSW6mp4ekJvppJcnHxPNGN+vpq80zLyvZWIzIVGQv42WxWr7SCwwMwfm1heTLta7DT0Wwn3/ejJlhvO2wY0pEvs+kQbHHjxq3xxaBeWxUduaJY2+oWs35cQeWsy4ZSAoGQDkkFINJAH1umF4Z2Nqx79WarjTGFhnZ2KEnOlYr8MAQrzmWBX6k1GvVO7aU7/9mn3373+7//7/e//eB0vzAL3UExft69Pzk81TEFDEoQia0mZ1CAwAmiiFBpP/y09Q/fKGJlLHS7NetTbPC1a0GZ5slsMtrtfXZ8ePbs2cnui+P9573j3dFFL5mOy6Ig4AB0SGal1r75ta/cfv2V1956q92JDTltPNTmpdfuJIPB3rMfPXj6+L/93ncqflDk8w8/+sn50SIbff3GKy+//s6Tx/cePvpodWV7eWUdsV5mQ6wACT9+8nD7+nv7R/vt2uYs7Y/OjkJjGnHzja++9L0ffPJk78eRZ4osU7ns3T+grDzdfdFA1VJ+iBoJDKADJWKVF0RLC+cFeqFPqXVKValoBpxm6fzZ/QDtixeDuL6wfOVKALS42Aze+dLhx99Li9naS696JjZhLIidxe5k0D/YvdfprA5G5y929zv1cK83Wu9ugYqS2UxMcLG/q4qzlXZYbS81mwsYhq7f8yorkCfKbzGnYqcIHVBIYsQGNstsCeXcaW0rYVhkMD7eDyMw0JpfnJlabCrLpLWKqyoOFIKOoi//zs+uvHz1u3/wpwcfPkw+ebEVLTdO/VkZa1/BCc89IE1U0bHGUOlMhBhIG8o//Un6X62Vv/HGxM56h8eTwax/9Hzvwb3p0eFF7yAZDjhN0FoDHJNa1v4G6ShYiaMgVCok7RoRXll+51d+bf3aFceJJtBRwxU55hNwid+IPE9ttNsPHz3+/sPdas0/PDg4O7sobXF8Pny6+0wrpVEdnhyR51crcbO2tnvwcNY/2erGeTKcJrx7cDg7fbR7dmiLpN6sqzA4mwwR3CxNKc/1LGmaaHJ2vu1FAZMi8FELiBYgkBIgrjS8WpMvBn7kc8azyWAx30vGh61YFaN9bUJORsfjQbXZXLxyezIYtJfai9/85aOHH4YrC0VedpdfSqdZpVJJ62F3sZ2mxbPdXec1l1p1KUvUZIKwsbA46Q1ePH0wOH4WBjTrPVl46+uDvYti+Hxl4y5BHpjAqhSDNjoFosirOEEuC61grdMKADUGSZ4fHzybznuheqlMEjXNwtVOplJrCvCtCSNjPAztlZc3rr7yz88Ozx/+4OO9Dx6efX62ohraJ5XaaUOHhr3I8zSRs0pACAEBPWXLf/NvZn/0h8d2/PzicFLMnEtjxmXtv+n5zehKXNce+hFpjaTRMqhSnOWyVCq4eSP4+uu0WvfiWm1pcXC+8/iTj15590txq15O4Wz/JEl6YbN7dv9Bo9HM+Gh0OvEDPZ+Ot1a7oVZxqM+O+52l5Y3Vtdlssr+7g1DGBp4/eSZlNwg+vhiG02Fwuv/5oyc7WVKMTvceFlM3SeIw8oTM3PlJIW5UKZ2vtFKAgswOSLSJmqZRpbpa2+h2241OI7dFYIcAo6z/KJ0NJ+J5nvManZUazKDuXGECVW8szMYT4+PWrZvKj8uiLF222Gqiw14+0636ih/VO615Utgs0aTKrBfGrZOdneHwRMeRxfanDz71lNy985p2UWXl9TIpMAioyDQhebEQmrAm4GkopITJ+VlZDEWv5GXZOxuPRnZyYD/deZJjiRHeenuhIc0sOS9ybna7xrgwIOV7wNzd7Cxs/vzkl95/9NfPf///8n/XNYpnbljzfF9hLAqcZVDMrgAGVkwFk47y/HXGlxubAqhIfPQ1MhAqREBmLgGoYGApCmdHtiyi6HRRxa83Vrt6Y2u1Xqt6aP3FxR3P/fQHf37n5TdWtq4Abt774M+1quq47aSvlSrKLC8KJ3x0NuoPMtTBe2+8NU5HP/3x94i8xaUNALz35MFqvW5L4NIi6tNpMZnjQrVDFvpHh+lwUAn8rZXl+x/eWyDPL7m085CIBDzUgal2w26k46VaI/KrYP1+p1Uq+Om9p1c3uswG0gtyaS1g67QteToZtprNPEsnh8+G1Ya6ejMMvNn5QRAHDV8ST/scKHGsje9VmFxUq1ZLGwVxmnlRJazGV9Kz03pcsxYnXvb87IeHU7jZjThPASznWTmz0lgmwlLFQGiCGmmfkQSIHbErK1G1LKvpVM4+P+59f88kXDqX2DRT5Qef/wm1Gqt3r6y+dDubTiuLrVat6RF6Hs0LNZlcbF3pNv729p/+/l9qT3sZlxGQp0KtIyXOQyXGOnEiCpFBnCOxzhJ4QMjyN3NiAMDOgRAoC05BWQrlldi/cZ3fuLXejPyKt/PswWcf/fjtd76yeWUNUN9988sf/vUf7jx9GHYWkRQGtVH//K0335tlo+rnT88HE3YOENm5aiucJ6OP7v303r3PHXivvvamBlzf2l5qeX/4h//+137mnUqlpmY2neW/8Cv/wGj5r/5v/zvO+MW47GX29ORs1amG8j2WkLxu2GpGrbZuNsO4oiNPhUioVFw461VrtWp49/b2YCNO1hr+LuwenddrVG86raPSymA4yTmaFgPz/CPHZWt106/VstOnw1GpgqaJAmfqmnzMh5a0Mh0ggLIoJxd+bXPc2z95/KMwqENWTI4PPFWyoB/GwKw1aDGeuhwwM8bziURrgi+aU8VmeYTB/o59eO+T02DXXWQ33VJQ0b42tpRSynnO8/3ZcP/xkz/7cO2tq6/93NfK1RW/VW02GkASRjGZaDQvNl5a1+DsxOVFMbWBIySlBcUXdpqCEpzjQgmxgAa4bJ4hACdEaAEISTO7L4yOywKteuvd9m+8Gy5WAz/UWu68fOujD3/y5NG9wPe7G6vNVmd1+9buvfvD3mmRS3vxyt7+we6Pf1jqSq1ab9SywWgizOPJNC0K73wYhEG10rh+Y7vWCLevbGgDf/qXP1hbXr+6eUdccX3BIfgf/PhHUWPx+upLuzv3f3q07zOsKH/JeEtedSteXgyaa3FHofaMIXQokTLKw4glICxMHE0439nQns1PfvqB3rnXSyYnqfdKEJRBMMsYTQbgTUFRIvVkXvWIc5llRXLy1A9NWQr4cRiH2TR18dJhlvVePFLK9zQfjZ8dPX8qbv7xg4NZlkBur2+srS+93orAC8NQhUrr0K+Ss8iFF1aRERwBsbNpNktOP39+9O2PKqe2AWGsXGCqKkQg0qgMic86NggYr7p8nLUGP5l875Pf50X/K//k1/St1yy4MOTBzslkZN/4+k3th90r5ThnTp3M8iQ2WmDu2KJkgsYCF5wDk7BDNIAWEBGcBUQpWMCC5FBmAmd2Mr1ztfbyoid5aD3RTNrXBFevX4mscmGVNSXzycLy+vGLp/2zfnt5NRnl9UrNCxc2t64utRr/6n/4o2mSOuvYORAI48rN7Y2ci7OzXrXauBj0Hjz47N6DR3dfuun7dnX1yvjkxXITP733+caatZ7/4mSwrSrrQeVmuLDsN67Ey5FRsRd5FGgAIgT0PEJFnoKQBJxGNDhvhPuT/o1H6fwnD+J83l3Z7s+KWenC9lY6nhqPrNfZWurqcBljf5LZiqY0U5rC/Z0XaZKwy51Y7dcn5aei62kyTvNZ7tSjp3uryw1javvn+SjJbq00N67d1KVbXfBCI76nW50tZVNFyOIUM2AogMAk1s4Hs9HDXdMfxxAGRnukNaG+HHhjUUiogMkHdgZVUIWGrczycnA4evQv/mz89bPO22/oCmyuL1UXouIs0DcW33115Wups57WnvGYdTWuMju2VimxRWYBlDFFOmfJrS2dnRMJu9KCiE09ZZy4Cc4frjYmrTJ49EHttNlqtzc2Nle2tqPIS0eT6bQfRiGuNNnlw+MDYyLwA79ZLYrEb3TT0/3RYHD7pVd/I0uDv/ju7tHZvCyT+bzMk+c7u7N5cvXmNaXcX37rz58+eRHGlePexf/5X/w333z37i+8/yV2xcWo96MPfrAC4c9Wt7b9VtPEHVMNjd/QkSEVfDF7zihaRKw451IgRkQpJQqjq239k6Fv6qbi4dTK3VsvLaFf9wrw/c3VO1SpmsaSp1UYxdl87AQss1epeP6S7p2ltphPzkEHTx48LUu7sla3zsyT7OB00pukC4udlbXlq7m/f3y4tbmaluVbb74XCbikHzc7GsBTkaiAy0IcEwgDI4kTGh2e5ad7xrIhDCkMtCZSGjUAAijnSlGigYSAxGcS42Hg5ZUwzrJ88kePioNCrYe1b1J/qB797nd05HcCpKrnBUEQeJq078Wx0qoonYJSgFAZ8sDlzs6nqCErShBApKLICAC0X2rJbvBrr4SzIgNFeWl9Mof7R8OL0ZXbV+oLrcmsfXKwj77XWmz6reUwQy4KmyYgWAn8nhL01MnRfqUeffVL78n3fmAFjnr98+F4IuMorlh2f/2Xf3160ut2V775zfdPeqcPH+78hx8+KBL17ptvb1/b5mF6c6avBq2uX/fB8wC1SMGlBkqK1AorFHFglPG18TE0VPO8aowwqS7Unfyjpda/hfnSra0lb9TduCGoFxdiD82sP1re3GRlsnSuXL9TUeiFLoGw1cREe7Xmaug/K7L2ysYFtE05x3xSb7UqtXKWMwSNlZWthe6S9mtvvvaGnh43FxejMKjFC2nft+PTQolfiz1QYnMpEhGfkclTdp4OHr+wg1mAFGkTKKUFCTWKT1SIJkBD1hNhhVrpQERAjPJqvkIfp1XO558djz9xTz8+c+xHhxe6FoRiS6UkzybIVS8i4VJQTKCRL8c2AMnoABUGRVGEQcTISgcqMahBjFdsKfNe5eXNhufpQlwuYgjOe82d58fzVGqBanaWuURXWksYNVqN2ehw97DSjMlmaT497/X8ylK3sXzyuF+Nq7/x67/5H771J9f0Qi0KSojjRu3k4GDY77c63XfffzvLsuV25+2/e7vISkOeCcJqRsulXjRhgwJPoOaZCoZAAgAEzKgiNJ7WVhU+BYGuBl6sKQiNIsIiDoRVy/NuTnofnh2+8/aXyZio2qxVtMGCsHDznjOhHY59PfHrC1Y0+cqjMHGmuv765PAe6+Bier6+srbYrBy8eNzdvtY/msTx7Bu/+duhZ+bnx69c3Wy0Vs8+P6l3TBRWs3EPceb5WnEJnCupaeWJzaxLSh/cYJoP7ez42CaFVp5CzV9M6jtAZieErIFIoSARKgJA9Bxrn3XVizOvNk77HpYLWstYkdbUuq4D46k4REFnGUCYia0orZBRRb6UeTGZpek0z7O5zRUZ43mh9lQFUdiWMOmkx9fr1ZbnGyEqDIAtcmt1s7MUNrueUp2qObkojp+NMFDsIPRVURbDyXl80SzmR5PRuEinOJ/XlpcWurUPP/nsG1/5tV/+2a/OptMffno/xzAI4p1nD+NazRh91jtdaNQVlf3z3l//4OP9w5Nf+9JXr2SVmq77pVMAPnmxjipeGCrPiThxngoVkkfKYcVBrpE81L4ihcqxM3XvWztFXbtKXOk2OzqIijLHMhGpJcNzOz6Y9ibVlZtxfUESm6RJ3G7OkwyKnD0PK63hnDJQ5bBYWazUFxZNWF+8ensw/MGtO68uL2/aed9EUSWOXTasVmMjqF2KSjkXGl+FAL5BJLbZlLRV1abYfHZ6f95Tw6M9cJnyPERLGCpCBQYJRSqIllE7SYk8Ao1ASGCwdOCJlDUdxdW1fjIt3UVkPKUqWkR7fiCkSaEfgwgQRl41BCUqDDAgKXwvCHCs5seH03TOjqtRnKOOy6JgOOLh/aWB9BeW/a7CdfZKoWA4Ho0G6cb2RrvmK8I0zRl0dWE1GWe9nePCzWr1OgE/f/Txxsbq/tFuLe5omn300x9UaobK8ic//qvb17cajZZ89mmaJCdnF0VZ2GROLTObpScH+xeD0WXP7dbqlq56R2bOKnktWqq4sOJXPK0IEZFCTVZQE4GUAoLiK7zsAwQQjQgOyNTj3gQiPZDjv1bJ6HS/HJ4foU02Nq5U3Wkym2SzRJtQdWKbOZvNJ+O5Vw0NiXM8uEj8latr8UIUGuJMG6/RXQGLWzfvDg8/9FSaDA4r9aofRfnwJGotaL9RFFMRzwpo0KJVVubOzYMg8qMuGa3KuaFGOh5AaQ0YQ75HgUekERnAOVaUCxgCK+ghEAvCZUOS9sU56wiZPS9YrS8O5jiZ9zxfAYVaLCMxKoWkEC+5C4eXA/ieJ55WRgu7qN5soLLiAu15YYSoxrPTT/zdx3kKn5/2zo+G/cny1Y1OJ2Shcb93UWt0Gita2VmSzvtDoySIA4NpcXb60f3da9fuKHf++NlD3/eTZBSohuRDlzW//u57z3YeP3m2+9qdK6ut7llv7/j4hEhFlcDa7MnDR2VZIKn17e3Q82sV/69+8mHp4PXtq5NGrZoFXuJTjiwudzmwT0oxO2At6IByDaHSKKRKcSQBKMkaZnVr+CUzPLt4cqAW095+NW71D/aOn2cRTrSnkiyl3XvtIp2MhpwnaCpe4Mf1hcOdx157ubF8myhUCjyEArLID5nUyuaa7e/MTh8HcTVqrJazsfbDctJL+mezZFqrX2XJ5yW7mlepdTSQihaQfGCn/Irz1k+fPHFJUTU1dTnsC8xsUAGREJIIXbajaNFMFiEk0SCgkIXBqYIF2NWWKiuOvUmyB36u2WVIMdkCSAsaCBBRAFFSh74oDwUYUYIwts7ZLPfCivbVLJ8+jWfm/bu/9vJ1W8x7w74SrXQQVOOuB9msqxRo0vVAi4Nng3u944tqpTbNR3EQvHhx/wc//uTXvvneYr2xM9pPplkyz7fXuqPx8PnuC8e0td6xRd5otbygb8sCEV1p2blLwYxGs91aWExno2c7B0AIZfHpzvPK+417fP6l1Y1XijV1lqoUS1sY0J4OHRQsTAAIVpwnwEozoWMS24kf9qdvDfXz0S/WWy/8unK6AtOw1eoWIxtqTOa51Yt5bvJCDQdnKiorZW3/+FMLoo6ee17Nj5phvW1ng1prddK/QI2mEirPS8YDTTM3u/B9FbWu5fnFaJblOY1H98tsXK+GrfobQVATFFdkigJAn3Oe7k3PnxxIyRiIIaO1h0KKEEEziggjFCSgUIMKCJGECREIgH0iQBFx1vK8BLNa7wLQcLanlfK5ZFCeK3JlDJJDICEEdJLmqH0BIG1UrH2OlFJAmBfFMc/kncXNu9vb11cVpUvzZbFMRBqcRWwvLS3U46oPLMxg26tbh7u7h3svvKg26qetztLJxbN/960f/dz7L7XqejjF0aQ/Tens4mJjZZtzXl1o93pn9VpzNOmXeY4gyhg/quSzmVJmcWnF06EL7cp68PTh5+zcletXh/N8f+/sZDT9y3DnF7dffSXpmKOJyy1zKoSX6hqOGXUhCAAamItK3F4I/1lnEf7ld6e9fbPlXxw8VUrbogzsqFrXYOomLVW1vXjzHXW0lxfpPJkVFR/izVqzMTl5Me8f1VvLUkwCz3hasounutoeHtN8Nj09HYwvDq+uddY2tsDmpto20/5xbwecXWjqbmfVi5tClel4lA93mt1rRHq8cz6498IU1icTkqdQsy1R+Y4vBy34cp5PsRblwJUEiMoTYSwVIotSThCBiR2USJBttNqanAYAHSFwZnNhsgo8EY2IQCSWOSlAg6AmFZgIQKjMigubHK9nnxw/f/vuluOcwNVCrZUS5sLZ0A/ataDqC0s5TsuT8+lsMGl2ljVRsx7Ox2ebKyv1yH+2s/PDT+7fXF8l4R/8+J7Wwc+998q1tfXedJwl08ncWYuaEBBJEQBkyVRAFhaWmYTB1avN+5/8BACvvXRnZWV1NhpUqrWdw6NP+v1U6YPGwleri20LzpEGIGAAuZzXAiaH4KSUhXho9P6T86u/8+XzPw/g2Y9ro7Pm2mKtea3Sqma9p5Nk3Fnd7qxfJ5xEgV3rVM77RW7d+spGxjbzDYLMLx4oxMTZo4cDTseV7kar2kHPby+tWa6f9J7XKieE1d1HT3f2D8piutQIOgu3W80Vz6umqZsNThr1SjKcUF6kz3qTZ89gnkbKFywtO0ClQBgJCRUECjVicCmbRAhfqHJBKAoJRUgDZIihOHLMWeEQ7WpzWYMyijyHKYNFy1IgK0sWKDTCTnIGIUBWGoG1GDeeJAdwfK88bi9vprPz8xOoNeqZm4Hzo6o/myZF7uq1alkLA0MFKOUHF73+4eHhysr6LD3sDycAMOqfXpydDyZp26grm6v1WnxxPprPk8H4PIwWRsPTyTxZWli+vb2aZ+Xh6ZkxXl5kxvPYltPhODD63k8/iCqVX/rlXzWhf3p60uws6Mmo//FJu7NYqzSeFgkt9F8vTHcSs1OGlGJEosIVSIHRacFgN2vbC/79w+mf/OhZcvwisOnaRrdg61Wa1ott0OHZ0LlZoVx5PgzQTdKUMKtUlmt1RecX1nNBWGeo9c/2w0br0e7x1tr68f6L6XSqMY5qHS/KBuNgnBixz9uLi4Xz0uT05RvXu2u3lHWYpeJy368ov225XhxOi9O5SsqATElirSJPtEJNBlFpAsQKIRMqQlSkgBUQASoCQ6BBlSKoKGJRQA6BCpdiZom1NoFGBcr5TjlX5rbQZAIhBQiokecloCIggctR22IqyYfuWffW27W6/+CTHw36t26+enPeP0sLvXFjqxRJsllqC4ZWFAaJtZ5vTKXqmShJZrVKezh+1qjG16+9jOD1ByPUXpYVrTi+stQ8vxhcXFyIKRcb1ZV20Govv/XaW2sb11xpD84uRqPBrHTzJAWki95FnqXvf+3rtUb12c6LvRc7a+ub/bPjazdu3r7zSqdZzbLZ4+lsoOBvN2owKEiMk5IkR1SWJ2kZo5SjsxMu3M3VqlEyHrTX6nmj2dr59K+Wb9Ytq8bG9hxeziZToFqhQscJNa4GlSRqLmaz+fDiWPIDXWnUl7eUMRQ0b725yOlgkOqT5/vthlfjIkReXQyX11/KT+5Henxts6PNlaXuMiFNTh+Jm0O4RNQsMrGH/eLRmTs+99lY41vnjADhpabQpbidrzBXqAWtAt+CKG1JYhBBcKIY2EN0CjwEA1ggE2kpuUztRCP65BORCLgyTcuiVNpDKCQjDBXoywLipUAJpUW27yerb759/dXXai3TvbJV5q4aR7aITl6chqf1rSvdOPRcYRVKWhSe1lymQRhtbt/s9Z5cXMyWV5Y4LxYbtdpL2493zrrddhRGvYt5GIUvXak8fHGQTrDbvLq81mLAVnO11PEbd9/YP3yGIBfJ5Dt//cMkSZUyq+tbw8ns+YsfeZ4RJ0XB77z31Ua92Wi2RtOxH8aASne8B8PkzkRDweQ5zZpQBKAAawjKH93/i/99+PJ/+jNXlurf+/6QFvR0MirEBx3HVT8wGqzSYRhGFaqDK0yGE2/xdv9soOOguXo3HzVMGBMU1fYiA9lJD6rRdvW1J/m0vrhIoKfJKJJQ5meRT9UwopAC4yuFSVZeDPv5dFyJuVrnIm3kh2fl/j7NSl98RkkpD8iQDjQZBZpAFDIAOPQVKEYgUMKCaJ0YRAfioQgisZCIEChSogAQdWFZO5uSxAjkhVUiKnNkZGaGpFDKR09JYUVEHJeFGwv3a+PzIr6KeqHTbHXi6TxlUKVrROFQ2CKozcX2ZDaZZ+KRE1cOeuf906Nmq7O0fuX555+UZeGX5fBi/9nRWZ7QfLL75huv1pr05MXRart+df1mrbI9R386T8rS+SrwlL73+MHF2V7q0I+qtWpllqSbm9sbm9sfffJB7/To7mtf/e2//0/RDyLFo36ftTd3Q4KotrihXPGjk8fVTnvhyNXzsOJVFSARIWLJru3F9juffvvx3ujGMqoH3Njs7T5W7c1wYdlgjq6s+wC1CjtdZANfptHCIlUr4NRkPqlUF2rL68XwVCnl15bm/WOBSciV4/N73bpZrFcm07RGttZsS5E6KycHT+rVRrTuEbTzWTJMs2Zciyut4rRMDh/D4JzmqS8hIitSkfI98ghBWEBZEcNCSikEg0QIWisW9BWARhJQgIqtcxaJrFa+u9TJAVGXGlhlUVChMYhUSIoNICjUl/oPPE2xEog2AAxsLdgLHI5DWl3dsOVs/9TFgSbQypcwMHffuDueTmxhUcigymentmRQflGOlU3yybS12Gg3gs8+f1Ex6unJyWg279Yqq92FZDzwFB4e7yXj6vuvdEEUkRuen/V2j1VkRvl0b3iRzOcOsNZo57ksL610l1dPeqfPPv/c5vlXv/rzr7795ajdSPrD8+OzSsOcf7v32WeftZr1axvLYb3yJEtcBG7MofZIhSIgPBMMAHE5qNDZ6KHr177eHp7tT7Pszt0vKy6qlXA4mIlidCEWA1NOEclFcZGU2td2xI5H1ahWkkTd7Xw6LxMZnp3n+GJyflGpL4/Pj4bD89XVNSpGRsdFXo7HSRT6QCTMw8G4fzquLC1lJWSPBvZ4HFgMlM/ICoxRGHm+CIlDR4hSKtIKAIAICYkMEIrHAgJaEIk0oUVSDrAEKwAaDYo4YEGlDGltVJkVyvMIffYjrXNExQDAzICY5mI8QhCAXpIMuubKG694dT063T94XnrVMK7FcVwNKmGtAeC4d3IyGgzq7Upi+XRvp392sthZWltZccL7j+/1Tk9e29qYJ4P5vOFrciWdnA/2Ds/u3tr+5ltfq9SWlAn7owub2dnjPbwYFFnuB1GDoBxmzbimk3Jlc1P7elQUD+59mKbJV7/xa92lxWQ4S9PSlhmCFKPezfXu7iP8qz//s/xL79zeWjnLT9ZXm16p06JUpCx6yBoJbDlRplXRtWh2cHE0c8VFu9v0Ql3xQYMolvHFhdihJzlSDOWYw5HvVUfJvEzSems1Hx8g6HTUywYjW2Zxdd2NPou8QCMWSdqsN/LpYL29kE9GYOzq+rVWqxqFC4MZPXz2olOrdNdvp8/m6X4/cEgqJDSX4pQkJaqgYOsIEB1AQECAmkDTpQwBEjKIiGjRgARWiSJliLh07JwTZKMNgFboEEGjUmDFFqhiRGLQHgFB4cD3wRUAgq5gQOv4Qo/u28fx6faC160vdor+dJZNjx/uIcry+o3N62tRtTaf7u7cf15rtubJyAT+rCxHO49bje6VzY0sOa+Eyijv6GT6+q03iU+OziaDi9G9x/uBqb5ysxPFrUk6PXryiPfGUYaLOgD081zXkvmqbd7xFk0R/esf/uR5PisQAmN+9ud+qdpa2H3+YmlxKdL0l9/9y+H52dHJo3dee/VXvvb23rPHP/jeD7r1X2g0a31XLq8Zb9day6itJsWSK6DC9hmreT6cDtKVl15ee+mNPBMbEmRpYROHwdHuREs/MpHWyjeP1ZWvXBw8VrVoMk9Hhy+8wKvM+hqFyKu3q7m61lqSwclhUozqcYXTwuiZ34kgbaiwEsY+i1fks3qQbF+/Y/yKRfHFGGJPoRJQoAgBIQSwQJSzda4UVarLSqcYEYugSRMgICti0AoBEVEZDUoFwH5uMSkmrkh98sFoZtE6MFRa5kJKjwDkkuXQ5gtB5QJFAYrbH55+YJ+bK6316+ut1U6rWdm6ofJs/PDTz45OLzzjA3mNShRuXW8srQ9Ph3lykZ6Pl9pLXM6n4/PdJ+NkMp1lw8fPXvT6w4XGMpcpFOmbL925vX2HrQ3j5UH/zJaMvSw4zRajOCg9o4KsmNd5seqH18M2SPBNO+jM923kLdx5aaRkwpglU1L+ZDTr98++8xf/LkmmoUDnvVd/+Rtv/T9/9/e//8FPX7l1u35teY9nNzu18sJq1CBCRJcqNSBpJ4wrt64t3X4tbLTzIrOCioyOOrN+L1jc4nJpPr+IyFr2i1EfAz+HajIaHSc0OzlbbmXNVrVqnBc1dRi7MmMplIF8nsWeQ0JPk2mEQf166eZ+rRlO9e2X3oyj7vDZfvqor0kZNCQekCFRDKJJXco+kaicBSE1FILyQHwAjwBRCEkxKo0lkhbmS9Fcx6CVCQPy/cXpbD4uRyFqX0canKDyFIOUpRiFqACFPAQLjAq1BcGkKPeDYvHW9eU3uvN0fnFy6qmuDowtytbKWmv9KrqCGXw/sEIVQl4g36Pdh58f7z5sxNiqtImCIp+c9AeaTLNecQK3tq/0B+fJbB7H3ajSyvN0/+BZE8NO7sdhM0CvaiKDyhrth7rutapeDbj8cufmjeripCjO7w0uwMrqIlyP7GBcX+r0z3ujwbmU5fc/+MlnDz5/aXv1ynr3+f7JD6ez8/OtN66v+M3wWt8FEiARiyjWonxBKqczYjk/2nnyR/+f17/yzVbjTUPg+/7i6nI275OrTC8IXJkkJj05t7r+0Qffj+LW8dnBxcXJcadx6/pNT7Dbmkzn06oXe/Hy0/s/bDWatchT5/311ZWg0g7C0FCgg1rQosbK+sXOyfz5VPoTn0ShAWAiJAVKIzog8IhAQapBiRgQg+gRsUJQBIJAeClkp4UFQSFfKtPmTIhW/MD3Gk2cqsn8nA3pPElNUCECVPoLWQoHqJxjQG1AE7KdTPOel9bX1pXW5/05BMHBj364sLjeWW4j+YPz053HD6uN7b2FRqUSl3mulZv395e6q6GX2/G5y3Pf4+W6X7++qlX90cHhp48fOpcs15bjqmbhPCkcumw0HZ0NNtNabEyIfkDGKB15FaOqoac9UKhxUXuNIC5KKbh0rFxa8As1OvjpqBM0Cy6zDBHn02mapD7SK9fXXxz0JpPRR5992q3EEnPDxm0KSCEwgSJE8h2Ik4O9XT5JDh4/DOLq8rVXEmWANLhxIwBnalmeQVD1LsL+rD9Myu7mqwzZdqX65NEzA3ZHBaXIs8cW3NSvVLaXl1JXe3Q4CAkuYiHGjSvNsMa12qITt7S4PJk7mXruYK5TNCZCKBUpQmDRqswdEEmktOhSo/QtZ9Yaq0QRC+VEESIig+Dl9BwpJewQkFEUMCOyLQvP+J120/e8/qinbZYLgwlCcoUoH8UhKSeA8EW1EUq+gNGn7uHaGbxx4527bzbB4CcfHHz0wV+urG/GtdbaxtatVxoWeHA24LQAtqPB4b2Pv7vSXX3pxg2/3gl9RZydHx53ml3Pq9l8ms1Hpwdec5sWWq+i9kfnp0b5W/FSNjkKmaqe54HWWvkQeMr4iMgEKMCgKVBKe4BAztq8YMwTRyyNafqujX6fiJmV0kqpIPQXG+1uHB8Nh6T144NDMnVfX1dIGrWQIfKdg5Lzrc7V3Wz3o08+u9I1vfP+cJ7G1RCsrccVz2v0LgZIxg/DUXpeidurt7ZtiePRyDPkEE+efXb/3sOl1dbImXQ6tmVvMJteXdua7HFzuVKrtRJxTkIUNF7oA82dTE7Toz//EMdzrUBYSAUohCgAuWAA4FAVSjRiRqSRWdAhs5BG8AEVACjFqLQThSzAl1JngugYCBwTJlbY6LjVagR+pGfziSrDKoIiUUIQawFEIlEWyzK1ckqze2tJK2gcHD9f3FnOimFUaa6uXT88ePb7/+Z3W4vbv/Arv768toI2mw13Huzs37j1sh95i+3u2cnu9fUbi93lIptM5xeTWWaMmya7i53q+Dy2pdV+xIq5KJDT2cFpuTtqOi9WOoDIkGeAiBSAupRFgUtFN7HWFgTAVhMZEQa0kSZFwW1udP2qW1i5/urP/vjP/9vd/T1PqTfXryzmhxmUyxN6q9LqhJGmQKEh9FgUAIfV9ebS9u89/8A5W1LQqLU73cWyyDyXeZoFNaJp1IN5ltTbS9Hidl4kiF4UVdrNuNtuNqrvmbh53jsK6wEhTsfn9x8ee361sb50PjjqdrrV7tWSOuN5FjcteKG1FmIvaFXLkyOAgMg6B0orBq3Qs4DERqEl8jQbhUqElAAiGEWkCdABGwdKOdIKULFzCi5VBoEInEOwTIAWihy0HzcrujfreaYmzjUEGNA3EQYCRJzBNMue5r1vBZ8+mh4ZMdu37h4ePev3B76Gi+GJ8vyf/5XfmkznDz//+Lt/9cfTabK00Hr45PNv/eVfvfP2uz//lff3nqmnTz4+Pqmub3bLDOJGHZDrjQUoi+qtSnNhtV7tDAbD0cmg6Qfz54P4Iq97tYiCUIWI7OkQxSIQIGnRSMAWHOdOGMEQAqHvK0TQhIjKbJj1d6pbzzc3EJ02/sLm9Ud7TxdvRr++fbsyVotBfSmq14O6Rz6CgMyNq6BfXbt1ZzLqHx2f1zb93qjUK4ROXGlFCTrGclYJqcitUShxZXaxV5Rl7gxMz3tHkg5Oulu3iOcG1c7e40D70xyduAdPdqvVQaNWORhn1bbvN3zPj7JyFnm+Ig+CefW1jcnhIU1KREWKNGlSgGIAGVQJZJQUl6peCMyIQD6jUSWg0aAIWAGwWMPoCVqtNDvngBgACIDRgQWbUzZXKtTM46SYMs+slA1oE2pNGjSUIn3IP2kevZieLSysjcf9waD32utvv/Xe+9PJ4Cc/+WGzWms2Fu+8uv7w0Y/+xz/87/uj7D/5p//FP//Pf/v0bH+5tXxlvb7QrI4GRyene2cX497pRTPkTsM1PG8wHjdrK53OpiszxdLf25mdl42RaqkwwthTARGhQRJWIoikkJAYUDkpgYTEKAyIrEKl0NMAQJ4o1UDzjfYrf/zjfw2ovSCo1JdAnv7wyeN3rnxts9Jt+5W6Fxs0mhwwoIgyZunmXe14/+jpaDzo9Vzoew1250fPY5qn6XzkCi+KszThcjKe88NnT/b2j5YWN/rnF1AmXq1Wq9Xvf+fz1dVlTvpvvHQrK900S7WvsxJ3D89Xlvj4/KdJ6crg/fk4hdnF2oYuTXs6Gn1y8uDa1Y5+mkCeXjZWiXgITOKIkIAAS0ABJo3gK8+g1iBKGyKDpBBZAV76NiLNCi+l1BUIIjkFTghYyjLH1NcsYF0yt7lgXjjbKSFCAF9loC5M4ro1TkT7tW/8wpd753uPnjwUgVF6kc3HF/NpmSZK6+2Vm7/9H/3Wk+dnb77x5s2rK1e6C7evLl0ML6aDE9Lh7Rtv9S/2FJeL9UXgMbisUasHvk5G83Tan/bH/lCCM1v3Kj4GGoGoAGRlNYoIGU1Ka4NgBZhIk5AyHqAoMkjATpEOQAgRHNHPLL3+93X/dx/+2Xw0f37v+4qUNh6I8oh8IgJfgSXngRSa6q3rr/naP91/+sHpTy6yJB27Rk1+8sEH/d0Xb95cyJN5oxaUInlSDrNklJWjVJWlbN1Z3mh3E/QbjUbS6wUO0lx76fDBx3ubm5tbq6uD0enWlWu7h2PtW8emPxj/4IMfNUP/V7/8tSb4WTI/OjnqDR/eefvrcXxl/sE9kFwQBEoCC1hxwMgWKWBnAZPYrxisgCgASwQaBYUvRw4QCRBQ2DIRatTgLChBEAESIhKCMp9qZnEsJWcuu5SDdzFnUb0x9f17dP74/OD2S1/p9fbOz0dvvv1e//xg5+lutdP88MMfDcbFO2++259NY1Ot1xZWFt1LN9brYXZ6dHTRc1mSR3G70VjO8/mqLpa6G+l0ns+KPLNkKpN0Oj/dr6jOYGfHnM+7QaNCQaw8TUqxp5XS6COBQkPkUDxARSCAgKgUaVSCROKAEFAhKRBUZHmB439W+xl3N/zr8QMnmCaTQOmQBNiRAg+tD54ST9BbuPVWEFf7ey8+OPzgg+HDvp2FGAN5b75yl2c9INNYWokj/XznZDjOdaWx+crt6yYEZa7euHv//kfXbt7itFSkNm9cP3/2cRDFfHBa8SY3brx9ftwZ9A836sqE9dbS+qPPHz65/5nz/Ns37mjjh7FfcFkJTVTNlv7W1jCMxn/5Q3ROKQOoAEExIqGgRRJPK00BCFlMlTSYldClnBvipdiXAidK8aVCnwDA5fNHZkZApZ2grgXNQXYG4Cb5KJMyABsmrBRMK2H8+krrqM+F+8o3fnE6Oz98cdjoVLorC0cHhz/7y7/x53/yPx6dnrDB//CjP3NWNtbX/+T3f+/NN1+nLOU8b7UX64iHR8dg6eAsSUdHnpbZPGNxLjtp+dWF5nIxmat+1oJqVYW+8gzpgDxFxpCnkBCNIqtQkwCQAlGkWACFgNCg8OWSAiWKDCLoEiBAvqIW/1P/fWXdZ7ODkUtvep0rsrgYNJq6E3mhFmQw9as3w2ptfrT78OSnH1w8Os5ndR2kuSwsNt945ebJ83R1scHkTfOMFUbN2svvfH1h6/bp/mFroZUUgNnsfP+5sErno/k5ZWkRV4PNtYpHiqezZpguXF+bHPaGszHNq4163Zbp1rUrT0/PDo4O39pe9+NmgsF573hza9D95e304JCf7Yk4Rg9BhJWgQWYUq1EbFVihS41cNBbFI00AxEhKMzAiITosCIkUI8OlWjdc6s4yiNKtSpvJDee9lItJ2p/bWUTOGA1RvbbYvh6mH338ycLZ+t23bz7+5MP7n+wFEdbDRkXyl2/efXaw88f/wx+Mx9POwtJ77/+8tUcvHj56/ytfandXcpRnDz8fnZ1xkj9+9MF0NLq2vtpqrlbqzcjz69UOOXX22WfTMVYprujA074hzyfSCEo5EEK6lLG3X6gKKi2oCDQSiRIApRyLAJBCQhDQCoUManu7bP0fVn7j3E3neVFXpkYmQPQQUZhQ+Ve2/VolPb54fvz04/7OfnYRKLUM1WPJGlo9/+iDW69erdY7RTI47o/vvv5+sHS10V5ypNavXtdGz/YPp+m4ubRWaazi2UEQegvBjaS339m+m0/mDx9/cnu1sbG08GyarDBfubq9mscnB7vtOD49PVhf3rzIMk8nk0kuqgRNKibvS9emh6eYZ4Y8QCKNiBlIqMky+ASkUJUIogBEoSIRRYYJnHBEwIqYtVIMKA4cilhUSkiVrjQggqRbq5umXycTZcMHecFZUSbj08DBfOanJ/jSa3duvPZyEHiVij5u+v/9v/q3T5+cfOUrP3Pt6vVrt9/84Yc/Nb7/j//B33v5ztXCpq+/+RuNUBG50eDCr9Yyq7LpYHCx325U243uysbWzes34ygiJ9k8Pd85yM6moYS+MqQCoyONCsUgAl7uTWR7KYdMSABAQiIOyaAgMuDl+ggRIIWkEYFLAC0KFJEKwLTEg4oRZGCL5NAKs++vL6oozM/6hwdP71/cP0jO6ira8JszV2TlZDyZV0Pf5qUtJyIwnRZPHnx6xa9V6nUviGoLzckk63SXX3n3F2r19sX5UJlQHE8n4/rSaq272Xt+YPb3ynR2drJzbfu6ddr4fuSFmoLJ4GJxbU1rbzCzPibEo2pjY1aUp/tP/vTT7y4mvbdo3TlrEPlyKoUzwuByHZ9AiQAEpBCEFCCCqEvmi0GDMCnQmlzJl2q6zDmEMSSXebFov93WYSWYVRDt4eDFRTGdudE5RbQQBqY82N0v8rTRWVy7uhhXOteu3pxOmYyngmoUwJuvvHx0dPzGy9c1cTsK5ifP1m7fzQoL7GyRH+88DGfn7VocVpZE1PLa1aASaXaFzUUKhaYcZ9qh9jQRaRCFpFEUkVw2kQDhJWPDSikkRCajAIQY0YAD0ApRAwkgCGpQVoCUMqAJBYVRpEQkEAHygUr/6roiU5yfHx09udf/aH/eA5CtuFPVvgVWSXDqhd27r+70Lg56A4UUt5tc5A9//Ocf//BbflRtdtarzfbVW6+2G20wutWqeQqS6YCyfHgxGowyBWp7dfl8/x54uitcbbRmoLLZsNpqH+y/aHaqNmg92T/+8js/l+Z83h9Yffpn3/7pH3//+/HU1lrmVtRVCCJWcSgkgkKogJ0wshiWwkKslEaGyw2QiILAIA5ACYtWihkcamRLScGX63U0ahVo8FQ1VJvqZVQBT/fTdAALaze/9HJrDS/OzvafDy56/SQt1692fuabv/Llr/zqyXlvOB4U53Blde309OAvv/+tqs6+8d6vbN1dJpspTceD/tPvfkcmvdryYmNxpdVeAR2J0mlhc8eqhNlFevGoN94fNihUxEQgpFBQlHYsWhkEA8KgCEUREqAGEKU1ikKtLvEjAggwkQ8IKE7YKaVIaRBgKFBpKB2QZkWKtN5YQqPL8/7Zye6T84f7s14OshZ0YhOGxhTOrXtFHGzUl16bebvf++s/TSan7773xsba9UZXe2HVau/gxeHeix/e/+S74FSzvfL6+28RmzCM04ujagyl0sXg3Greuv1OXKvMhdzsIqhfGyTn9Ug9zfMHj569+363N5i+2Hkc1hZ+8OlxECXf+uFPnu/tF9b++erSy1det7tDTxO7HEkLWeSAwYoogowhBhQsnTJGAAkBUWtwzgGDQ3HaGNSoxSSZY2GtvdKBkVwjeuQzAFda7VXL4kG/N0+rAXrkeV7om5W1zcXNLguUNq3VWn5YXVhf/v1/+7t/+u//WJgnk+lyu/mbX//q4mJQpFNE48Xx+dHh8c79V27cWVi8XmtX/cA0KnUdhtbBfDYr5uPZYPLwu9+Lp74fROAQlcbLvbFSEgYgpSAKkAICUgBaEQApBCVKaaVBCWolOSq4XEJBIhZRX2p7c1mKs6gRkNFZ7UWq20YAdzE4P9zdHz06mh0L41LYjoxBFAVkEGqm5oLKwtLCowd/1ahX1lbvEPknvb3xcNrpbnXXNm9e2wi/9OXBxeDHP/zOw88/ffbgk83NxeXVlbB5tb2yXpblkJ2ydNY7WGtVq9XFdN5TostirLlMZumcRQk3Q+9P/+JPNjZWNIU/+tb3e6OLNMsDg1/6lTc2v/7N3f/6p9nOrqdZRDErBEYAwUxYnDgBvlyjQooQNSA5FobSOQRCjWQCTwqrNJZOyBaEyrHSbC2iFuOjcpWFhTaXnrLxG1cGk/Onf33eqjW3r7bnkyH61XqzynEQ+TqdFV/7xs9+9OEPL46HN6+s/84vfe3m2tV6q8WoclCeM8ubN3yhbqfRXFx0TEYFDDJN8jQtbZm63JmggaKkLMFnQQ0ASHPBQMAXyUSEMEBgEAYkJBEBRZc9tILiGAwA/c22AoeEQB6IAwQWCwikjAAAaTSxXukAoL3o9w6f7w32XoyPMnD1oBrrqiJLCBpVqYA9vvrz7zx58IMKTe5++asLi+uz0c5573Q6uDjd+/x85xNlFEUt5Vc7TW9r+a3pdFyPTFlYNdo/KadR3Kg3OmG4sn9wOB0nSjIAzIqiP1P3H+3Nk8QLKfaEPI6qwXAy/jt/6+8+2e29ONwLPfPbP3f7l77+rr+InV955fBfnkja14gGAgc+SooYsGSKmR2iRmAkDULG2ZKLFJVSHtpC2DoyZLyYmYtiatkGBgG0BvqbbdJKqdhPvdhd2y5qpr93PMuzja0t0Pjs4/vHvenGlW0S9kMGp63N/qPf/o+Hh099omsbm4tLy6BcWjiCtHDggKLOemu15QEPslIApHRR4JeeJKl1Gcz7STWoI6bIAaEFSEFVQNgxIoKAZhGNlzubBQ0QGUAWrREUKCTSIAwKgTQwiQJwhJfLY2wJmkCQQFSlge06SOl6/dHp0fFg72hykIs0gkaModFGkw9KHLN2iJ1qbbl2+sOPS+ZhsJsPDhWhT3T91lvnZ88Uq8EsFxUcH+xbx3FwZItiGJm1pSUJ5uNZLw4aSyvXddC58+p7H/34Oy/cfrdTubZdU+SfT9IXh+f/4Nfeur7R/fGDk+lksr22sL5Y+4d/9z+m7OjXvnLtN3/9VyuV5SQvotsqevul8be+7fuWBACnCsU5C8Sl2MK60iNSGkEACmEnCBoFwFdYFEVJqjQhKeUrnbDNAQ0SaGQRYAQAwSIre+G837SSJ81G9aWN255nZ/Oys7bm9OEHP/ijvYO9eWqrcX2l26xF3vD8KCDz0sZNUCgQsxR5Whqrer1RvdkKvTDyJKgFpYMkGU2TvCxoNs1VgdOjk2Q4a1D4xdCNRGAjANAkSjGKIkIBz4HWir7Yq0AGgJDUpd4ziAayIADqi7QfFAALeAQORVB3WtRuQJKV/cHo9HR/sHM4O05EmkE9VqGnUJGQ8gVyRu2A1PrKjFmhevPrP6vATC/2z3u7TNQxXmiqCUulYuJatNpttWu1IGyOxxeT1B28eKZsVmk1DRfTwcV0fNyqLaxs3fzpB98fjXqNuOkHsXjUaEXvvn4tjNpJkha22FhpzN10fWn5f/GP/t6tKy3jN2alnfWOI69o/tx2On89v7/rkpEmn9AAOJCsZDImYzbiFCMiM7AgiSggdgQkiM5ZVRgNSEJOtLWkkDVfFqkIbVr0OXnSSNOAisloMlEs+fPnT65de/3dL7/06ut3rt249u1v/fnnn3384PN7h7vhtWsbEbq/+MEPthZXbt25Ncuy6cWkurgAWjHb8cU0X656fpWQ8jTTYnJnp2VZlm50ePHs/gNOEi+ISIlWBtEK56I1gyEJkUgEgTShUkQgwKBIvkDWgoJf7JBQiARC7BCgBOsASBktANRsU6sCLrfjwfDk8Hh4cDA5S9k1gzjyAgW+p5SvHAMwVhEoE4kqzQRomIor8vW7L89arcH4vNlZ6m5c3w7jaXoxP78wYlvVupLcb3jN5vJ0Nl9a/vL58e7+051h77S0w267wZm/FNe7nVbvdK9w5ayEVrPbOzskUx9OgV1y5dp2phq9YTKdHzz//MFi9w3lhxeT4vzFo41rN07PBuErRWf7nfEPnhfDCypQspKACxybwuTooRgATZebk8QgalCKbVI6q40nIIiIgFZKAwAq1G6aKgoAsbByGnFWR8IsiHzf1MK48v7XvtruNC3YZCrtxeWv/eyvdBc3VjYejUand67fXgz55WsrS+16xqUfoh94uSviOKzV6xokzVNS4GlTjePD/njQT1GCbFaePXg+OOitUOBrz9eeUUaTT0qBAItjdAAekUJxeJkDoVFAii4vsObLxXokIiTA4ADVF4tSSClRhjpNDA1medm7GJy8OBkd7k8PLUrLj0MvMKiVRo8IUCnUBNqBocDXC7VGbBBdvLiKOgirndbSaqXZjvzY81Sj4KW1hUYUJKPh2dnZ2aDnnOts3vVRN6uv17xoeLY/6k9SYL8om81O0ycbG88I55LMRmluZznGpSwtLfTPh0dHB7deuvNi98m3P/g8Nurv/fYvDXvnJ/3TaoDldN7evGauVpfe+cUHP35aHF3MPvr8O4+/+yzrvb/00qu1azdwo821yARskZBJAuUh6CDJJi4dNXQDKALUpc19HWrl6+mwH5u6aN9pdB7FjWpcrZ6dnTlwnaWuH8LJ2dmTv3iapHm9VUGwDx8+OO3tI6j+cLZaW3n3zU0il4zm1XZcX4z6g5KKcnt9mdkqKTyxjs1Jb3h0PC7yJB0lJ7s75x99VmeKdegpIlQlOwQmcHi5KA98EUXqcgAHmLRGAUIHSKU4ZdExoIgoVIqdQ9JQijCS0lSJ6f9f1Hs925Zd530jzbnCDiefm/v27ds5o0GCyFEACFGBLFsSpaLJslV6sGRXuazyo6sc/gHbL35wlWVbsixLlETSlEiRNAASDAgNoNE53b5988nn7LjCnGMMP+xr+33Xrr3WXmvMEb7x+zbXgBmWTXd0cHx/f3965/7yABBGsao4BI5CHDFEKdyZKDgTmjgwDtZzRb5Muc/kNN7eeP6z3zq+d6eZLk4OFmvF8sLFbehmi8Wka3GM5dzr7QtPLSf7J3ff31xfX5zurY8GwxjXBgNC2B1W81MZBxnv7Jw99+w77384b2ebhV5/9PEbb//epXPr4DRbNkdn8xt3zzrbGK35yy++yNptbBcxBg4pDBt4bPx/vfPDrRfWFmuPfevlv3rjw6P/9b2f/Nrl8SM3ztaXpWA1LOrsUDGyVIGLlPu2X8YiMgsCRiGhIAenh2P1amvUVYUVwIGLMp6/dCkrnB3tvf7ma2czu3xubTq9+dY7952lX5799Mevtovle29euPf887/6za8+cnVLvd27e1ZtbROymQk5hQjKhjZNeHB8ND8+TK3OTj/ee+fD+Z3D86OtECtGRsjqUVWd44HMG4d18gRdCYMaqAQfqGQUgEyZlIlTViBCBlXklS2OAGSKJa+NcWMNUspnJ/3pyeTg5r3p8VGasBSlDErmAmJkYi4YCiEEj8SViKBxdp5NjEe79cb66d2PrzzypCZl4uF4Z4ZH6PNmOj2S7sKFq8NhsS3jnfXLR0soRxs3X/sz7Cbj0Yb2Jz/40fsX16pvfuOvQMaaOTIMxSzGAIMLm/UjWxf6Zf/ma2/tH+0//9yFSMXbb719cWftL33jC1LtHt4/Xt9cqwaBfEES592Utd8q6Su/8MLpYvrKMxc3t3c38M07b+ejc3j90qPv/6s/HhfhKj1WI+cO2JHQW9WmVc2LKBVjUcQooZLJ/EZrs3G83A8355Fny6UVUq8VzXxxdjy7cvmZLz9/7fy59cX0+KMPPvrJT14riuLFFz7xs5/8cDE7+b0/+LfPXNl59NpXMWzOjz48/fhOGdbHw2LZLyCnZtlsXrx2cnTcTc6G46LTSZsk3ztZwyKiBCeC4BSyKzD+lO/dTc24GjZ+osw8XW5odbEcDGzjXKi3OEYuGRidANRIEdhTQ1CiJhoPZGvHmX22TCdHy7PD08nx4eJworPAMTIWWBRMgQshYQkRawJiEcIiSOEkBnJy5wwW61/52lf/6Hf+6fHx6Uu/8JXzVy+W41LKDWxnR/PFmvSja2PVZshy98OfjR//xHoxEh/sn93omoPRoPzki09cuniO2YKUUo42x2MKAx4MuWsev3iRsr71wTvf/u53r13f/epXf/ntjw4EF9/6a19/+dNfJw3l+u6dW++euzAquKhK6LWPG+tQ4rNPXfzwfZD24+5osjh572uffnxY9rJmiS1SVFRHz6CQWzB1sF6zQVsUcVCtMUcUlrabNKinbVmMN/I6bow3Y+0nRwcff/SRydYnPvPcaK34/p+/+tqPf7K5deGVn//y9rmtQdBf+tY39m689i//xT9rl03b+GJ22vUN9jLaKly7NOkztCcndtgcT84OPnzrbSrG60XZHc/y8WK7WneWQjhzPuS8zMs3C71BbRzE+fK465q0XNiiEzPS7nFa/+bWi0V9cWAsno2YV17fmMgJR7VsreFw5G2rZ0fN8WR5eni8vHeUlgm0LGJEjhwF60C54IqoDEIMXIQCuUAuUQgx9l2en0znN+6dv/rsF3/p137w57/3e7/3m5/94jcfffIxJtxc25hyOD05Or77Xl2dP713942334H7zVd3HnvmhZ87+KM3u9Q7xK2dWFRrAlFSruM45I356dbx0XTv7lHFWzfeO/13f/aDo+nsK+efDlDcff8nX/7qJ776rV9plp12k90Luz/9kx/cevPt6888XY5gbbOCIrV9PWkXoxiR19bPPz6Z0XqpJ6fzj994NwBtjM6PivOMhQEmTcmMEMF7omjoo+GQXMxdFpbMNJQoGxFHcThIXV6sbe18YneL4qjXxR/9uzd/+P1v33j3dQ7y458++/Wv/ZVXXr6+s72VTi/8R3/nNyaHB0nTyf59dmTqAhl4NgxnU1003fzkrfv37/zk9R8cz/sKy42D+SPOztQhzEjPKt/P03crXY4GhOXe9OzkaH+xmHaLiQOkfjmG8OhgiLmftlMTiIqRQJDQQjkYxwvnwnDkbnZ61p0ctadH0/n0LJ/OVImKIWMRBDwXtB4ZYxgGigRlIQFZuBTCEkUcXVOe943n04/eOquPb5XrG9/8lb/309d+9C/+93/0+c997hc+9xmUQspikcp7H3+4PlYSUtSf/PkfXX3syme+8PXpMy/94Md/UEUWXN+/t3/SvrO1/sjJffjhn/346S/Gs2xN3z+4f3f/xr3p4f5aHT///NP96dELzz99/vqzi4PJ/OjGtRd+LqM8//zL//q/e/XWj2+tndsabL3x/Oe+wDI6vH9vbVTuXL68PJrtbu+mWfPRt//0yh5/6txLO4MrCJVaa9bn7OYGAIyhlEqo5lCau3uS1ru4trHx/CO2WYRaeC06hels1ji3zfyDm6eTZb509bEiwjtvvfrWT79Dlhy+tVaZnZ3sjKUshxxLNTw9vX9xZ71fnLZwfu/guOu6cR3WRmVxYX3jy1/5zh9/7/UfvLNNuzJeP/bmxPR4bf3j5uReUKnGpPl4f69ZnuSUmmbS9A2aFgbnQtnp7KenHzw9uHCh3hr0RSU8HJ7fuHKt3Fg3V22X6eSsOd1bLqfT5WLu8wQWRCJJCBxJhEcF1YEKFhIMHMpQFsCBgoCDmqWumy2Xy7TU6bQ4W6tfuvzGd38nl4MnX/75z3/5F3/w3d9tl4c//5lfLNauAdrd07P37706OZ5htwzc33n9Tz/z0kuzebr9YLE+4PVBKstB7303X775Z+9AtxxdeGR+64Ox4XzRH5+dbSDWcVS04dErV7bk6UU7K+Bo7dqTRvVs3v345juPPXY5v/ugOT6aAPzFz34rlNXJ5LCFXkM47ebDanTJNj5VXf/stVfqolbllJu27/p2EWIEIAGu6mFR1CEUGTG7oqmAW7s8Ovnwo/7WneLJC7bNDaeTxcnBssc42Lp4/blXNtfWv7CcnfzoT7/9T/63f/TGa38yObt3+cLFl598bE2qqqgWiyzlxry/tViCc+4We5Tng1h8ePODvYPZhfOXtocDOlq+Qucu1BsH2J1AE3Z2oeo+nJ4Vg/NliPfv3My5zQ5t36eUyYFJmOVmOttrpzCEy7FetLy2cX3n4vXx1iUqSKfz3My7s5P27GzeLSfaLFNPrEJcCkWJAWMIMdKwEAYkkTIUgesh8qoTALldtMu2aefTftH2LTOO7kxsohuXn/zhT77z3ofvffKzX37ls5+/8fZPdPmvH3v2k8tZ6mjtLPTvHj64f//+Rj14qbAbN986Orsz2ji/t3/z2rWnNur1Ozl95ktfOrthR5yJZehFtYhJ66L0mbZN6t/84QcvPP+lat3i2iDDMLeTsL51eDz5t9/5gy88fuXLn/rUyZs3s6ZFSl07L3N11NlZf4a526jLbzzy0suXPxGktJRVl8u2XbSnAJ3AduCyCqNBqCAUOSNFdffctzIsqtPZ4a039tset4+f3Pnii+OrQxrA5N7JrcMzxQdB07C6vLm59clPfa5vO3AbDkaDSO10huVaDsXByf6bb/w4MA3L8RLa8YZMmsXOWlXI8sdv/eD0z+Hp8UZ5b/HYYOdAmrfaM9ze3tnenM6OqFpfW9863L+VcjebnqRlQ2gxFjlEVFx2k7adDmVYGdRh95nHPnPx8mNUFnky6yez5uQsL6fNcrbQfmGtYQoBAxcV11HKUmKgACKBK2ZkYYqllDWwOIN2mud9u1h22vSpY5C1+lzMy3JrOHv00f3mkEPFlP/N7/zLZ59/bvfKYwe331t0y/PnLkXxi9ub8vyT43Gxsb5z/XNfvXs6Off4i73c43ZfLJvFN96+9elXTl/5ypdu951NurV+dH/+YEeGQ+SFVS2l4w/3/+3//M//+n/y66Phxqyfj7evtbn8/W9/99JO/Pmvffpc+1j30b52y8jSZYrcFcyRfBvsCxc/9/T2MzFwTtanvs867866PK/jKHI9LschFhAK8+DYgqPmTnUpV9af0+mN49ntaXc6+WAx3aYNvN5WtLW+uXvl+nA0rNeGFGgxb0Zrm3/tb/x7XdOd7J2+9fqPvv3Hf3jt0qUnHrl2b//+5HB/Yyjt5lBEp/dPj48nuHNhWI0/9exzv/3b3z28PXt5eMHXy3fm+x93023eCovTejjuYXZycH8+OVhOZ0yBakTHnJrcLXPfLtv5GOjLmy//2jN/9ZOPvixVqd2snx53R2fdctE3i86aJbStGWMOTJGqgoZVJeKBMEghxAVHkVAgR4wRIkF275puNl/MmzbnWGBgqWNNsYgdjn7uifUnt27fLp97/uXXX/3j0ah847Wfra2vPf3YxeO9/UEody9sE1S9B6jXpZbsQLuXmhab+f65c1s5Je3nBaYP3/r+s6/85SvTC/u335nevFd2bVUMGg1JUxJvXY8+vPvDf/oHX//Pfl22NnukG29+WMfJr/y9v3t+97ofLtefvX720w8EcgJHSGBQc/HK7rMvbT87LiWnpu1o1k2Wy0WfTphkENfXBiPi0hwEzEzNurbV3HUptbK7cY2lDDx4b/LePWi0PQtExXgNBwMVmjXd3QeHZri5PT5/Ye34470f/sX33nj9p7c/ev9w//Dg3t1uOVPPMZbb53a2xjwuNODg8YtXLIxu7x1dv/LIL3/pC3BrErF6K03ePLvHZT2dnG1deHS+mHXLs36pVb2xWLRdO4WMAG5u83apzezF0fV/+Ozf+uWnvjheW+v6rj85bs9OczNt5/Pe28ZcuXekkjBgUUhRhlJCLVIwEAoyM8ZKygKlAFAwtJTTsuuX07aZgcOojhIrMJNQImGUUXOU0knzxKMXJ/tvX716JdzdG5Tx9Gzyxrt3nrm+e7z3oO31/IWNeXO2sTYusP/4w/dCfa5rm9xNN+t17RYXLp/7yhe+euejD64296pm5O8f43I2jKWjF1BiAHNb5GXF9PGrb/7on/zWF//TX9tfTq9eqZ5+8TdGo83jgzMf4dpffb6dnZ68/m4Cb7VFtE9tP/XC5kt1GKScZ106mp5MmrvoWnO9OX5kWKwBR2BGsmyW+kWf25zalFsgktH59VhyCBXHInQfLc4W85NuY7eYLBans37v6N6PXv3ewd7R1WvPVJUsph9/+P57njL03Te/8Knrjz1y5+jIkl7cXd9dX9du/uD4YHt7q9HpaDx46rlPhuH4U98cMOLJ8dnFD9/p/nDjvQ/ezVnb2SlAGI136gvrb/70uyeH+6PRFsUwXx63y+nz1cW/99zf/VtPfX17c6fPy8XpcT89ayeL3M2zNr15D6iESEVBIVCIGGIsJKBIpMAca6ICA2EQCtE0uaFqp9n6dp66Hl1GdYRYSSgBMlANllFzuHm2+N79Y37v0YvXDo72di/u3vz4tnb9Wdd8/42zn3vqGjfzt985K4UUl489e322XGK3nw1S26yNNhfTxc2b9zbqzZOTyc9+/OOrlGE2HYbaAdgxM4AnQiopDHKcYProO6/uXLny8q9+ZeqlSpktjTfK6UHTD5cX//Zn7zw4OLr18fogPrH22LXx0xJklhbTbnnv6PayP6zKers4vzW4UpdbXBBJgZCyYWqXfVp0ObubgxCg8GhQopyv6rKOxXJrb3jWU27npxYHu5cvrV3cooAfv/vG2+/+6PToVKhzR3D92md+/ltf/gJXw/TGW0dH985Oj8aBvD87Ojzan+VLVx7hSobmYbi2ublWV8W1R6++8skXvvXNX/zd3/qtf/R//POP33/94iNPrW2u3Xz/B/PJ5JGrT09mx2cnDx4L2//xi//B33nu65uDoXpuFpP+7KQ/PevaZdZlb5BAQQgQCohRuOBKhISFAhNGDoHLgoqaYgHowOxZPWlu+77rLLeGFsuANAxVRSzAAlmzGgBlBda+uNnMws8mxdpLzz/9w+//qK7DcH24f2tvWG299s6ti5e2X37uSbbEaX7/3uHWpWtIKP1kOBpIDEVZd91i4+ITp7O0pVBQbDsIMZALoLmTuYBnCRSIIuvSqhu/9RdPvvLi+gvn9k6Py82NajiChM1Mi836+t/8Avzj/umwvTu8lLLtt6d3Z/f3Z/cZ7Fy9e35wcb2+OKzXQ1GIQFLXrH3T9TpPpgbAHkSAwQWFqY6h4HU69/hwU7p7t05bvBgHo9HJfLF3dBxk/OLPf+0zX/66WMu4OHqwtzlau3J5l1o9nk1PZ0dGMJ03t+7f7rtZTkbd6dHCLlzBfnBuZ9TxWL2HyXzifQ+An/70p7Gf/7f//f9499Z788kxAF68dPXg+EHR4X/+6C//gxf++sWd8+ptOz3pZ9NuumiXC81tbykjGjlQSZxLCgUOYgBmZg4chJnNhEKkUEAocFAAI6rnru2XS+tbBJQiIkqoSkAmInA0M8WVrEANEgBPfB7rwdHHNzCEF5+60vz0g40L1aWddTfaP57sHR69e3twdffC8y9+ZVCv/+a//GdJF7/4xS8n7Zt+kWcnVy9dXM7mUFbrW+fppEJ39iAkjsgIYIV6FwAj59p4DJS0//Cffu/T/82vbq1t758uFwMo6qA2OjuZbb3yiNz+bPXqSdM2x8uTG7O7Z8uTcSx2qnOX1h/d3bxUh4rjIGXPfdvlvmu7PiVHiEGQgEDI2VeqLGtaV4rj4SB1gbbizjKzHRztv/7ejZu335tNjxHp81/4y1/98s/XZetPPF2Uxb0Pb+7dvXvv8MFi1m4Maq+51yVXrJ6WZmenpw3gxoXH1/OF44PprOgMdXF22h5MRuPB09eu/6VPfeI3f/87fbso4rBNy0+Pn/uvPv0ffubak87edPP+8LQ/O23bJnez7GhomYiJVsNuZiklErJISRFZSiSynEAEJGJgN0MRR9BlA+poKFEglIjEEpCDu5opZABQz+poiLEUbwoNT87OxUfvnJzdfO+tMN6uKqnLogr1aFh/PNobHhV//r1X966eS5DHo93nX36iWSxmuWe15dnx009e392+8tOfvP7UU1eaxfHkxvscjIXBXAgJmAMSFMnRtDI2Agn1Wn+z2/uD9y/+8stNnYtxsTYc34LqxhvvvfDidfjG8w/u/fD+j3+61z9o+uXFcuOx0SOP7zy7MbpARW3ZUtv0fTZIqVeDzBEIy8BB2B3Ze6VggsKA0M9aqUoRroq6on6vWRydLUI9fO4Tnx9V+d7tj9YG5f7evZT04sWtV//sT/7gd3532bXnz105tz120j7j5tbFjeHaZDnH+Wk+Wyzm/YM7HxMWt+7fHq9ffP6ZR+u6au309utvXNzd/doXv/z9n70+bcEg/dpj3/gvX/r186Nxyn06mS1OjtJsmvIipU4JPUQACcBRkCUQEBNGYQ4RBJkKKgeek4EjOEcGdxKyrG4Z3FAC16VnBgmMggyA7l12cyAEIBKC1CORx3L61McpzAdVfOLyhb37e+++9t5Z70nkc595/u5Hd5DDs1ev5NTvDAo9OjycndRr40vnrrPjJ1765P0PR7dvf3jwoKuL8NT1a5PbZ7OT44AFugqJoAhHJkHn4AABTBVgEKINi/rBb7+99sLlR3/hymyp90/bO/fndyaLl2Lp4eTqb7x0SpPTb994YnTumfXrO/WlothocsbUg/bZMpKrI5KWLBxqBjI0QkIH5awOgjEgYTOb9NPFcH00lnpN8KDbKyNf3jp/8ZFH5mf3b3148423fvrbv/3G2nh9enpwdnxYRV92nYFs7uyc272A8bCotoeXnnrtO/9cFcajDadwe//sp+/+/t27Hzet/tyLn/jSl78+rnzv+NZk2T13ce3LP/eJ3/q/f/Q3t3/hv372b2+NBk2/7I9P29PjbjZLuVFkl+AkzILgkVFYisjgURhRKo6MBIBMVYDeMYPnBIiQs2OGbGgEHAEzWXAk0+xkKMFyzn1PgsgRgb3vQIJl3B/vvXHy43TYQcwHx6eF23p06Jc9Dw/2T0Kk81uDnPpf+tKX7ty6e//ocLPeOj6ZfjB9c21Y17nbv3PA/ez+4f5Gw+MPEx7E2FIUKThGDqUMYCV4dkQSBCFxQCmE3Utcdm/9T9/59NP/vpRxHH1tTK989ucfHOkAFMfFl/7B1y4/sg3fvc/AizxpJinGeiAjcCISBGIE4ShcEqMDgwG5A2akwj0LEJEwIByd3Z/qzm48NwijnXNaCPTVzng97t9Zhmh7925NT2/f+ehN7Zuvf/bzTz/76J//7K07dw+dyq2dq63Z0elx9+B0feeJfn6ohlU1ODq8M5uesOByMfvo3j383h88//gTz7/0ys9++Hq4MLh2+fJfX1/+F0/+jc160JycNGfTbnqWuyZpm5idXIiYWAIJUoDIMYggiqBE4gCxIHMkQQxObj7X1FMaaM7kHZclMmAsTIncc7/MbUeSAwm4kggJI2bT5JmM3XL33f0f7oW9ccyzxUy9Ob9Rv/D49WEcVcPNruKm78zjrO9u3Lg1WZxtbow2ysH1a09JEYOm2++83U7P3v3Z7UcWg8v1ueX9xbiGcVUVYVRLGWUQSBDAncEzUiAIZkpCngMIVbXfeP21d/7ND174G59vza9fGqltvfPWh1CPDJuE3ct/57O3mw8f/Mn3c6CCOnAsoGQOwhmBiERYCAwwuCuRqQkYAiEmEESnug5D6Q8nR7P5YrdsZSyhIKnWtkZd211+7MknnnsK8uTO+2+cnexvyODqxYv3Do8Gw9trg8W4qqmoLl557nTx2p07N5566gXql7EowPtnnnpp2S7u791+5703miUnoI/uH61vXZicHpwtLuY7y7//xK+c3zq3ODluzk66xaTPKYNlVOMYEZExSogSWWKITBQhCKEDRzKmWCKLWwZECMh94QhmalkRAJJCUbo7MRgSmmEGTY0QU10gORJ5Js+9oUHbdZzfPbp1jAeP75Rbm+tPXf+5x899cjDbvPeTo9TT+i/sdAM9PTucdamO90MApuQAhE6pXR9tZqxffePWS/3WtbXzW4P1EW9WEmOIpYwLDMxOyIBC4ODmyOyoHgCIgiRLkDWavP2//N71zz6zqOPxg7PNjdETT1zQdgl90eZu6o28sDn5o8UWDlDIaJm0ZAKwCkAQTRWR0ZXdGSCBZQcGUiEQYMIoZT2oq+Htw4+O72WqLp1N41HR7/3stbaLj1za2T63Trl54qlPYjfT01MzmHSL4+OTC+fOb+9u3L//4JFHn0eKH771pxtrlx975EIVpM9dO58SVrvrV/BJPjyeuWyo8Xf/5NVNHB784MEv5U+9cOHa4viwmy66ftJb13iBYoRScihiKCQKEocgRSApgAOSEOtD0FNgAAUkclIll5ICYmBSdSS3jClDYFNHQicDSIQOiJYc0IHINQG4a59zC9n/5uAzusnnnjy/Xu/waWzv2WxvHqeiB3b/wV3fLU+Ojg7u31DK1W49WN8uN6vdp6/0CU9/dtffgC+GZ7bG42GoCxkWVBZMkUsWYhYAQwdDEQBkdHMCYVBVZKTcoWo7jnKu26XfPArfuGJ9gtEZ8fZwbei5mu/vx8BXP3fp7d+9mj66A7EmQ80AopoNsEcIGVRNmDswdk/AUc2JxBkEFDxQGI9G1VaUjx5MPq5OhzAsD0/uPphP6vLc9//s1dPp8XOPP/fR+hhdB368f3dPykFa5jaGjc1rae/jxdnRYnYynx3/8R/+U//arz722GNVGORuFo8PBov2Uj/eKZ8spCB1rq5covG5HAeFzU/3l5O2sVljABRC8ILLksogdSxFBFkiBcYYCQtEREQPgTggORCDk6XkroiMokSVmdFogGqA6GboAcnBEzJLXYOjIaIrSeHmZtld3TMisPPTmy9giPZ21qQJp6AeCYtBPVQdTr076wZ5fdee7nKbbubsquv95L3jcne4+a48Ur9QrgfCEMFX6rEoQBxRA7E5ATqs9L8GCA4ETE6Qwa0XwAKKc4NLVy5fDnfD5H/4Wfy19fWnrt68d0JCV87vFBJCXcx1Ta5c6vb2Isc67kYsUBhdASWrArkD9C2QZDMiTMii2RCSWKdYIYVic7y1drx1Ny2WQ995fPfT9aUJx65N6k+98ep3Do9vnO61O+sbJ4tpmk8O7p8UfVo0e6pxc7jRL2dDDOOqTpPF6c++35421648cc53d4uLg0UzDFy7UBc4BCDv27abHR3MFpPutFVDgaLAkkZVkIKLUAQhRhGpKiJwEkQAJBQCQRIBQFdzdTAnBKCVh1DtfbtS0gECEq5W08wN1NzFMQM6EWMM7mCa3QGBUACxIPVMfQgCXaYABAGhI47InHMfJAINc99rjsnQSQkCDhETiQ5xexS044AAvMJLui85FERiToKiao49mgATatKUV8pt4KU4menaYFDW5+vNHSAeNPav/vHvfOPyrwcBrPjo4HhrVFM5/OhHd17/0Z8+2ugnrn5yGHb7lNT7h3phZXAFJOVsXrBoNmBQ96xKAgaQCdDjuD63duH26dlkena0v72smYbja49fqSq/cm6jCFZhWuztf/jGa/1k+9IBD6w0te07TTWsp/fP1ua7T1z4bMOzR8PVy4tz5+6X25trzADktoQ+99422a1pTxd90+XcYw/mZVnWXJYxVEUsypoQHElCJCmdyVc08BVGxhDNXB1A0RDckdiRkZAyuhhgAGAwRSIgXoF5rOs8W06tt0uKBUYGNzd17RwBCEUGOXdICC4IBQYi7QCQMRgDAboIgSJRqCrHCFmBGYBoWBqYmPtIVs6wiOhImg0ciYQICNiRJTioqPlKGsgRkUiTMUVXj3VRlnUYDKCo82IZoP/gT94KV3/zN/7h3785k9s333jks9fu3tQP/vX39O6tjZ1rG1sXQzmmo8miy2YeWKBgdAIKbKurVzJzQPLgmATa3owwuQQ5v3X+/PTB/OZ+F9bb6/VgNJhP23o4vHD1ylqhdz68vZh0j199ur19nAq6XG+OQx33ufCKnFw2w/hR2eCyWEMBnc/7W8egmlKnfdP3bWeWLCEZIhQlb8cdACkCM7MIsxQUhIIjRZS4sgtCBgBHYjd1QTAGJugUCBAIwBEZAz2kRFEGBA8lqAEzuGlufblMfbbcAhgwkZBrxuyYCJmAlKhgR0QDFgJwyKu1LpNAgK5GhCDBDTiIO0AQAnRAqgrLCdpMK24CkSOAKWF2IxIBZyADzW4R0RASgJnCau+ThN0il8bDdQklCLp77vq2656rtz/6P//s9/DR609+8eAvPvjea3eP/uJ29/5bL25ef3T9RYLAgyL6ej7y+WxiqQmDsXDBjA5iSYnZPAMSaNCEkpct9oJMQFyN157cfqLfp9zIGXASmhwftIvTPs0x68V1GUDeHuwso/XlGTVRqAgH8wLWhCIoiyZf9u3piWrXdfM+9ymrMxIRMrDEigqhogjCxDEIRgZHjohGq8hJkQijIwIrICOgm5sZIoKaI2MyQLCsFAXAHBwMUQidHAmTuWdkBM/WZ+tSbpfaN8zBPYKTm6KDAiAhREYS14f78igFIK7uvoMRB8uKkEEzIjkaiEJyNEEijADgmAxYUDMJOaCaI5gDorgDUAB3IUUMbinBSr8vorknZqHgVaBSQl0BoCFpk1LbNu18oyiesHX5nT9//PmLk7uLd/7w9y/UW2vD3Uo2xnFMxJ5A6roa5tz1k6btmvmorIlqZMASCBxsQJCBHEkEzC0bmRsBlkVdD69vXl8u+/I4Hj8el6nP/WRQ8iOPX6wgtYsZdHrn7Q/mH90+V5xrZTwsF2F+VlYDaDMYaA8OhqCAGISLclAwiSARF6Emy1gEIkFyCaUTMjkgghMQgQOggikyAzI4OgASekZ3REbPhmhuq/84URBEAibAhxgtNCdm77P12XKGnLRPgILMQMxC4GKgCAZMSIzCbhkxghAXEdRc2ZTBsnsGc0/qaI6GUIAqObsQREF2SBkAAQgkAKw8M9QdgY0oYE6IBOLO4AqOwbRFFEeQIgAyYuAicCwAyR0g5dQscztvuq5APF9vPH/hE2FQb1TjC+Pd7XJYho3cZ8NGywqXS6kGYTSsU9OnxbxfzCCPnLmsnJwVEBKgACIhCjAgqRtgclcPIW4OBiMfbRRrH2zK0ex0Y/Pycnq6f2u/zF05adrZ/HB/3/qmlzaLJGfqvG2VYsBkRQhAVnApwEFirIVRgEUKZESHgREzZwREKl0AUUENOHhWFFmZSAI6KiKDMyMAuYOZZwBDYwckNyUGMPKCERwMgAncwNEata53UAB2BCQCUBAiB0BAB8eVK24ijOj2sDoFNHdXJ47OaeVX5ICA7m4kgqaIvCopgWjlAmqgDurAAADQuSECIbKjQYiACMkAHQwBjYSBGHIPWBARFxEpuBOou2lue11Ocz9rdMGO28X69tYlB2QjxoIljMu1VpvJyf6ovDfa2bHU47CM4/GgozTbny+mrkdj2wyxdhbCDOaOBogCwp7NsnHBrh4Cu0Yix1Y3BhtHk8N7t27u377Rzg6HOVzfXG/3Zkc3P368PB8oE2TUBCAiSdxYOKCGEIULCcRShaKggBSJHB0YEZhYJAIgIPmKnytsfQfgCG4EwIEMgMDdEBwcgYJDNkvgK+euDCTIiIRICMwIYNm8771LfZMJMlcRWRycQqm5ATeQAYIBKREBMHryvsUYHNkQUB2dkBzckbKTeJcdMiAgIiQCQgcgJnBiEGewrBAYlcEUDM0M3IEZMSApImvOCOAO7j0YEqEjcShIGCSiRGRyc1fQPud+rv2i6c20EabN0cWiXk89RKSKomUMXHsRz+b7pyd79Wid6wBd5ipW6wP1Uc5t087MuDaoiiqjMCkiAKCgg/WOCJ4cCSlEyY6IrLYGsra7canYvLhTvPb9b4cmh7A7mTdrsrYWBwOpS6mIhKADBYIASELCFESwiIIlMAAFJmZzRiE0d4BVUAUidEVAJABaeRM4mK9s44EBMoKjZkURV3c3CgJgZohkDvwQl+zuCt52eT7XtlfPVNcYI4XgBJQBgNEDy8qHhlECgLkzuAMSaiIiNwUzBwLPQOwpAwGYgQi4u6ZV2e0IhGrEQI7CoGYOvjI8UERc8bcBLbgbEbs7qgITqoMbk7EUGNkhYpCHlKu+zX2XmlYzNLnN1g2o3hzuUqy8XQTAgtjACLEq6sVSJ/P765OtcfmodwZCPCrLdnOQsJ22bXecPatvFiG6EGskNiFhw84JtM8kjMBSVd7nnmGhWlX1ld3yns6uXnxcFqmoxyEerHM1jtVAtoaRyUSQEJiIWIg5PDT+RCITZ7a8As+juzvh6jUBRSJSUzSniBgCEII7Z1zRnsjB2V0N0T136AKKQAiuiAEsAROYAZJl8KbL80W/bNQ0REQiogjChE59CYrIRDG6OgV56DvEEVEByYABAAU8tw5oZqCKQmbmKSAkJMDVrxdFKkAICUEBViHcUs4ZHcASMiGWoAymToYYAbN5RjKgQIGZEIXRAzBCzrBydOv71J1p16Su7/ISSTcH24ONTQOwnBFNeKQwNadCQpT1eX98eLxfjdZjvekLgyqEtXLYx9RvThcnTTNVs2G5XnlN0qccBQJTVUBKqetz5+YaSiZELKkDrwIvmoW5ReF5msaurquBhqKS8SCWAVmCIIErl6GIDFSUghBCBCrchBkAwJOBOpUCjmDuSCSimt2dmcHBSRAUkbwksB4dVR0RIKsLQAbgTAzggMiGiTAgACB4ztanNFu2i1N2pCJQrAgRA0IMkJGKAEkhCHJ0bSG7R0Ra/QxxMLPk5izs2ZzMDXD16DhR4ZjFDNxb5JIwgDs6gyMAOmRIZqDgPejq1CbImQWdFA2BHNwJA6hSEdARYgQgZwJ3d7KUNS3VkrUKObfWZegr2NysLoXB2AyyZnSMjEtl0D6U63U1btvD2fLe7HRnsxwDCKbEhYTBsNacctLO225hGXOZqrIS7AWcqAhmzkXOjTXTSe7rUEagIUSZNS2TlEVhnKazk3PDCw1xYA5csHAwZmQHKoJEESlCKCKiSFECEgVxNRICQwOyPiOKgwJI7ltGdiEzRFVkc2RgRHB0BnZC9NQDEKgjuD3sTq0afgHUIQE4uOW8mPaTpWqWuoqDgasbEAgDo2dEDlA4AVlOgKteMLiZmboDmGvOCK5Krr0rUyQ01T4RB2DGSNglgMKQEVyCwGrhzdQcAc16ByUDBFNmck9m5OpIiADghGgkTDGCIa5gFA6e3E0tdald5r4z67Jbb4quw2pzvLEOEjGZ5oSUhEu0zoiYnahgHuQ8mcwORxu7YTC2XolQBnXZq3YpecLO+jQ3aDNujDgIGEDB6FHAczfnEJbdEru2f3w4aRcYVcGZ69Ha+X68cORW+04BsBCMxOwOgYVCLRJZCmZxZiwKZnEDDIgIACzolggJ1IzdMZtFwZwfplpE0CUXXpGMQZMTAomjuwIAkaoxga14YI4VW6OgXW67djrNCriaLHIEAIqr2gsR0VCQkxuurJGpAmTxnN0cPHuftGmpiuTg6kjKXjobBzLrEUskQnZbRX0kBAEm6LKRo9mKv+1A7h6KwpFwZVvr6ACgGZmAhInNCHnVOXPLDuiacm66lHpIjefcuylokGp9vBkHGyis2czALSNJYAxCzDHGjFQIwbw9Pjve3ylqZLE+U4ixLEwH2Wxm1NskWZeaE4gjWdUnyIELKwa1mbYznXfdrOimy7xV1+MBzyfT6dnJiq7QzFOfXdWyQclqWBBhIRCKgooCUVZZFRJDQOSHsQqQUQATCBVI6AyIhgpYshm4qRMRrsZpBgBo6IJoiugZjIAIxdndHbI7OgLkvtd2CaZEKFXBQWjFrpQCXUEJNIMpZDDLSIxMgGjJ1CynjNprVoOFd4qFAAtxgIDohEVERc+grrziwyMaiAMhYoaMGdzVszoQoq1AT8iOmgEJiJGcmAEJGR0JyMAZCE3RUzLtLeWcG03qGdWo1wRm42JzOFjHsnIj7bOjGzKRrZgyjoQiIdSaQtfPJov99W4nDNYhI6BTESQN6kot9wB5mVKXu4nNxbu0OtyAmMZFxdjrpM/NvDtLzYhp4C5Na207ZbAYyKxpctN7h1YnEbYEWgEHR0RgFEQhAyQmAnARRlg1zhzDKh90QrDVfJodHBghdSsrN3d1N0J2dWQ0QCSErMgRmSApIDiCJfO+T02buyUwF4NKipqLQpOSCBWCCG5unXvbW1ZEBM0UC3DXptG+09STkyUFEFRHAqKA7KAAgYHZWwDOmI1Cqd47B2JBzd47ojuapgwO4AYgJOCujOz0//GcM5hRWNGAkBzdwUHB3LxPXe+5Ve0sK1hSN/McYzEcroVyjARuCqnH3LqjeRZGJHEAAhaJgIV5t2hOpqdnG0XtRKv8katAfRmLgSL1MMuuOSexLuu8wRAoEA8LlDAaD/qcsrZdS47rTd+b5ipUHtSdisFgCt4rZM+SiZEMNXUeKYAbohAAijgjMkJKzhHQNGUnQBAEdwNDQGdgQAdLBhQB1G1V+6KRo4CrIRgSIwgGNDVngOxImBdtWi77vkUpBusDNKQygiMBIZOvPMNydkvuDoDATDGQsDZdbmaWMzk5qHsiBhBCXOFdVhcVSAhELAGyOBF7BQzg7o6m2VVNES27RMiKBEgByVwVREARCYgjsgD8//Aud3Qj12RZNfWmnVsmzsm8M2fmOlR1PcZSXEnNVTEZOKghggUCcnc0RKocAzq1/fx08mAwGoXB2ME8KVJgkRAqN1BQdGp8IRDJOrNl5+4w7YphjRKqenBweK87vwFwadm0qc9GFYWWmaKHwNynNpUFOz2UieSUugXGAQLSavIDpMkxo6NB37sjETopupj1iIzk1hgJITiggSIG8p7cCdHRfXW2AQEwWUYwdXdPydRy1+W+FQnleMixfMh6QAKOiAS9WcoOK64ugBtyhChukPtO+wSAGIywBAMKBkAYxPoOA1IdsCdQAwASATMAAyJkNjPQDJpUe1BwIPIVsj2sUidkfgifIEZCdPcgQAoO6OTqmDq1lFOvubNs4FndkioxRirruuZQIgsI+EItdeBqAJ6dGB0wGytmJlOJlkrP80lzvDadbw1qhwiOgEoEIbK7lFwzuRMKjwsnT6dpuTzr+hwXy2o0LqvqvZ+93Q6uPPHcs9s79cmS42A0HK7FBrvlIpsKac6ojjEoJIKoBqrJKahlx9CZMjm5w6oSweBgDORmagZEeUUyc1c3d2cExGTojMHcBdzBFZEQAwk+/FTuc59S0wtTqKpiPCIRClE1oxMKuYPlbEh5NgPiUK1mAogACKhNq22nahILFCYsAMFShyuhFpD3CZ0hwkOQj5uhs6BlIHN0zpbMHFfXlcGZsZBVaxwYHQMCrOxxfIXxQjLD1WFuCqlTy9p3CUw1mxv0KTtAZK7rKlZjLgWcXJMbZHQ3MANzEBB0hNyCq5MGiUaQGbs8P5sfrbW7VCFARpRVQURaBSJzHHovxDGuCeIiYzE77I5PHvDZ6fnd7flscu8uEXMpUtVhwDmqAGrCpIbqYD5316S1k6a8DFJg6qknYOGAqGZuxOy2Cp3B2dAd0IiRhE0NCTyBIyMqAho8pE+iGRJAYE9m2Tybq1vKqelBgYVjHakuiAMSOhhydFAU9C5bn3olTUsw5sgPcyAmSFnbRrsOgVkix4jo2AskRQ6QUdnQAjis8jhERCcC9wQk4DkDsTuAZTMCUA+AhKs+MwAjCAAgr0BujowI5Nqjibtbds29pdZy69blnNzNKLMQOxchchhiCCiFpd4RVM1SMkjgOQAzluBirtlALSCgk4BGzdNps991V+uB5ISsDgTIRAKWQwiOKOKdYRQZD+pAm8rNwfz+2a0Hi7tjjGdSSsTZomESQuibtqRa6qrTBiwh1A4FuppFBXA38gxmHszdERxB3B3Z8SGyPrr1bg6BLWUkB2QgIwTLyIVbn5wKyOpESLQC9UOf3Q3ZvfdYleAmRYBAWARIBsbEoGBMtKKda5utXZj2LMFzB1wgMxJpr+YJEEWIoiAjQnBIQAkZMSAmAAfNyiW4oyVFQBdAXzGa0NqMZgAMK9cHJIJiFRscwRgJiZjcYWX2uhplAmTXbGraJ82dap9XJbgDQORIATnGmqVAZM+GjqnLOXWuqp4d0DmgFIYMEIEyCRqJIzmBGy3a0+l8Uo7G5o7OiAKQgTwQJwVhknQyDaMaSgnD4fhSdMrL1Hx8fKPO6YWr17vlctosfXmyPJv6vFmvwRlbaxaa18EdMGuKQZkq8OwWwHtQAjQsAkAHRkBoyABuqIjimFdWA26rZhS7K4tb50ZMlr3PEFiTIwJycDAScVApSirIUyZhR4KMAACwupcEhmaqXZe6uWMPBm6ekwVyrsWSQuo8KwBSOSAuwbODEaMhIQUUIVfNhmAr8DIAKDqqAYq7mmY3cO1NgYTV9aGZFQAAIRgqYAAHAjeIZNlJCAE1qznkvs+pT6kBB1AFNGIQjECRY+BYkgR3A8s5g+WkXXY3IzHMBBgQ2NSoNTVCIKoMY4YGgbt+cbY82O4v+yCAKhIjAjqTZwDM7jJ5sF9OB8VwyOPI9WDt0vnHKLbaH89955HH9/aO+unJRu1d38yPP06LdqrTWFPKTdIcfC7CCL1bACvdCfLDGa/l7EpYBMoGplSwN9lIGB2yuSo+JPEJYNIZYMlkbl0GVJ/3GKNbCyRI7ITgtkIuEYH7KuECIIKAboDC3jRuObWLrL1nV4eC0XrHikHFcmu9goJE4cDIAMZmsCKqScGIMYESZlVwzSgRyNDY0SEnB3fNau7gxBmAhd3BwTrEAtCAgrsxCKA9VOqCuqKZWzZL2TQb9LYyS3QAZODIzIQemDlEAFp1wj2DJnXokrdmbsgxAGB0gj6pQwY3IRcJKbkZZMez+XHbLgsZmAOIIgWkzkwRlNxkmXKezpfLJpwU9Uaqdte2L209hy+kk/GkoMPDj6d7B6Mnngr1uDE/e/DRwdFyKAQ5u5qBphRKFqIyxJIZHMi0o14zMDoERncEBOsSGiB7NiV0UHQ3F6SclR29914AwDWBI2QDyADgpMSuWSUEXyGlDYEMiVydyS0DCXnbgeU8X6ZOwcEdhFZw0uSu1ifNZjm5UCgKRAZwzcZBXA0UgBkIKJP2Bu5uuhqKIKibqzqgWq+ICZ3Q2VeceXLAsBpJuRtxdHBwRCYgBxcH9Ww5ZW37nLPl1sEtKxMSERByEERCikjBHFzNNAO4QZMtmTsgRgmITEJGQbV3VXd0N/REElAZNM2Wh2ezw904NMwEokSKYu6mlrPJYGvDu7Zpln3fNPP5aN4NLo43d7eeXIs/9NT3aTk7O5nsUZYwHL/74Z2S1gRVgNx6YinCsCw2Kykp1CxOIa4eWAQFjNpmIARUN+dQQMrI5oqewdkwq/bgCMDoOSNm6xEDOIP2SsQkauAIBNpRERAIANzJ3ZHcgQiy92qKqe1yl8gzkmRaEjNxRPA877hGSAnJSRgkgJO2CcFhtZwUEUmQ2R0c3VLilfbPEAE1deYMWR0BbDXFKsESCSLK6gvAkJhWZGM3JFBzRlNQz71q1mydpuxMnpfMER3ApQgBqAR0FAEhyjmbGljqNatpMjcnAKQICEFKUELkHoyILGkCdCyIOzBZ6PR0frK1ec0NsVOM5GRIKxXiUoKUWAqGaF3Tt4u9ozv1dLS+tUuXQttOykKGw9G8a5p5W6Tm/slpXsw/X2yOYBgkCq8PqrUyFkVRsCBAQAhUMLNAyijRc+8ohIykqj0JgwE6ISYHRw4q+SFnElZGfA+DmLMZABGAFcBuGFAZeQU7NDCEwGBuqq6Y20abpWNvJALEGHwluGTMi0anWQaCyCIRDMyz5p5X+orVQDqyJwcF7bO5SQYPAASaAUmga8DMnYjFAJASUHKP2YhXmZagGaKvXCXAQSGjuZKZ5uxp6a6e+5yNqSQkFGQIQAW4CQVk8pzBwLIbZM85ZesgA4IEUstMBbgjqkOH4OCkaAaG0DgNkOeW8lFzcKVbENeSENBBxcCUSBFFNXOQclhbXcKsbOxk1p3lg/Z4tJGK8uRgOiir8eYu5YM12djdWPvjH//kl85/YTzaXq+2t4bbZT0Q5FhF4ODmaA5R0BGL2pNBLGjVaQ4FZAUmN0F2sBI0eREYfLXmZwCg2c2ZUFO/agCaIzIROaIDmBoQCiIDGZibKRjkvkl9h+CAJMYohDiggMQAJm6575eONVHgAJgzAHjupVq33nNPyOwKAGKeUpuIFRjcEAjdkjs4IjB5RiBjCW49Q6XuqNkBnYScwDMArIo7cHTtESS1q56XWbYMRkQEmTgAEUsEZgJHwv83G1CgpF3uTc0TmSrYyg6NkW3V9gFBlGzZXRE4O6Q8BeZkdrJ40OR2JMFNHlojPyzjXbKB970HllBW6wzCi+mk6zswGY+37rx69pe/8EkrZHLc5IWf27jy1fHsqcG1tXLr3Nal4foWB/acwYkqBsAVUBSIkcFzdjMMSEoAhixmRgjuAGyqRIosAm6aMkoAZoIlKAILIzg5I7EI5B5EHrYt1ZwNAF0d1Po2w8oDKgTyAIQIjGxgZAZAyjG2y7N+jtWo9NwDBNdMHKEI3ixdO4qFG4L3llabDxGcQDMooqHmZMDkjuymwOzMgULhnQKm7EoZPAEHcjdCAlA3dHO3Hrx1Q0cz85W6yKyIwgY1irMbcHQA184N3XKfUpczgjJR7wSeDU2iEJCt+qRgAJnJSSJrnzJnW/bgJNTkxbKbjuuhu5lmRGI0QjQsRcFSnwon8BirEEoYS5jPzmzvrPk3e4Sx2Lrw4ODgT19767HR2tV05RcunXtk7drmeHO4sS51RBLwpE1GIjUTIVcAIk8KJFwxaHJSMAcCdHRa3T4lIUsdSTR1R0ZLxAJSKCXy6JrRnUQMFCjISjimTkimRm7mqG1DYA4WiuCmCILWmyoFNs1uZp0ik4TQd23JPVilOQNkHAYwBcfUtlRVq2cdvOPVoQAARgZmOeVkEh00rjTtmpXKApi4ZG0V1F0zOikhE4FmI6KVRCT3DmTWaHZiIw/JTITNhGVlJKKAaAarcYLl1GuPpoqQVRkzEAuSOxg5GJgaACJBzs7ugYueB8TzdnnYeWpNl32rq9ZfAy6QHdU8uQoDdsbQZVR2tiAEsUTagEXz6K1F9ZXPTfryeH85ffPm5d3Pv0yPXtsdjdaGg80hFkTMgGiJqCJ09JwsGyKBZ1dDZs8ZVF3BCR7O78jdAUycVo9EMmJyIQqaew5RVi96DLDqGDpCZNNEwm7uaLiqkcA5rFTNadVCAgRSAXQHQVLLDo6uILHomnnf9DwMpp05lFB6Au2TmaG5O4BnM8uU2RkdHNW0y30mMvCIoohkKTOs/FARhSgGblpTyJ6JAyo5CAGog0NvltzNSVc8XEdzc2Q0RqZVqohgKysrs9z6SvrtppkcnDEAC7mZOVpOxIpuauoAAIqAADEI2Pp0MZ+ns0b7WZppVmGwaK7s7mqeYCkSmHNGsN46bWNgKisvygAOT4QL5/cG+3/S1O+lp9b+yrm0OSoGEgZFWTIzUABBdANEEgJHDoU1GTA7kylRNgdF5NUoicjcnNDMAQXQFAITuiugu6pyGaB3KISRVxUKkaE5IJm7GwCiWwJ/KFfDyJ7dbSWfM0RUFyT1PrmrZTPtirpirGPTeN9aX+bOmM0VzPvUtA/jnqkmM1dLrgVmzUSkKTOag4M7UQDLJAExeF4px5CkxJKUEqS5a3JHBFdCyNnMbVVLgRiag0I2JnZTQQE30wzoYI5qml0JTLNjNnQmIyfH7IBGpWYF1JyVmZ3RclYiVVI0JFAp68FGnU8P+6OzvJ/lRfQcPDoh5KQOpiwGzoTauxTuqVPFhCgRhYUI14/beKvfybs4dEKtippALLk2KiGCoxsS4mpJh5gwgmXEnMF0JQd3N08dIJiIKz7MklEcUVzNkICRVtNwQkmryYAHpOzIQbMxwmopwYgY2DRjiMxkrohIxKoJ4WEgU80OnWVLfSoCIkVkCNXIuk5z76CACKZglFNyU02K4NAlTwaOlsHVARCyOhmAIGTE6MyeFdHAIfdJisCrMVNkwNqygmpWY3fL6OiekRySoVpmUgBm64mDZQMEpp6I1VDNzBIo55xXCi4AAzS3oFmBHRyMMqC7q+oqhwH2rJbNiSmVMe4MN8/y5HhxMm1PJrlp+24chrN2dm9+67g5+H8AXINXCQwiIicAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"from PIL import Image\n",
"\n",
@@ -952,28 +914,13 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1, 3, 128, 128)\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] MD(2087,fffb11ffb0e0,python):2024-11-22-08:07:31.342.048 [mindspore/ccsrc/minddata/dataset/engine/datasetops/source/image_folder_op.cc:192] PrescanWorkerEntry] ImageFolder operator unsupported file found: ./image_cat/jpg/.ipynb_checkpoints, extension: .ipynb_checkpoints.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindspore.dataset import ImageFolderDataset\n",
"\n",
@@ -1011,7 +958,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1048,31 +995,13 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] CORE(2087,ffffa9645010,python):2024-11-22-08:07:34.817.459 [mindspore/core/utils/ms_context.cc:530] GetJitLevel] Set jit level to O2 for rank table startup method.\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAACacklEQVR4nDT694Ok6UFYjT7xzZWruqs65+7JOc/mvNJqV1msQBIIGeELBvMZ21zfaww2xoAxYDJYgACBEqtV2KBNs7szu5PzdE/n3F3VlcOb3yd8P3z3nj/hnF8P/Pv+ZyhSTIyZoAK6lMYiUFZgCkTQFhwJHxKJI4shpmAksCNCLqRACBOYJlgE3FFohLmhqPGAuwJDKj0naCW0uJBJKCkmnmNLhUBKaBBEQHUppy6L0lqPGzUklAA6INIEEkISFUGAfe5amLoEYUBh5ApAoII4knpHMC48ibjgGECu4JjrOggiTIEAvgSqkI6ITKR5EccgQl7k61pk+0DDKkCMg0ABlg+9kEuX+Q7zMSaRZBridc8jWGVSIqxKEEAZIGjxKGpjZiIUMIExQ4yaFCOEOAOeDCIgGIsAEP8S1GpSSIBSEPQCYkGCsZZFKIk1DStuyDzkGNJKURLHqs8hRIxzJqk0AZTYRABijpBDAKeRQvoQ9EmUAIJ6gJmqz5UgHu8VCoDE8xlBFKlmnKgZX2pccakKKUxRQj1VcyImkcQMI2lg0h34cYpCYrTaHUG0tqoAxj2I2zLsjhAixLTpfCgjhAlClCieRJRAgtWAYRjRECoYkAzACKiKYSgO4WUuQp9zGQKhIcVH0PJ4m1haCAM3chl0Q84jLKXmhdwSsuWwAKsEIkAUA6tQNyzNUgIQ1qW/7W1FhAPCBREOqHaEAQkEGEqIMOJYAIi0ADMXBDFkuDzECMZAwsASANAKvJb0OSIWQkjwu9w9jpIAAAHEhGowohBTzSLoyNCGTECZ0I0CTmoo35ZOEyGhRiHhCKtxqHOoSs6IAnWPewaJfCVOvarrRQGAJhAKVgGCMcVoBw0ObSlNw2ScxSXaVkiWqhyFMccNMJQsMiALjKzrdwgQxOEBRT7QSBiZXARAapBYLdYhpEdGLaBtKiDtsjLraKl0wnWazA8JtiiCQI2iyBKiDLEJAQnBDhAxzvRyZHusZSihBzEQEYSIsFjg20TDrl8mNKmCeiSBgCrzbAERZK7QDIXGIa1BKFHk6CjTDsUOcxkQzPMoMRiXEaMht6lMYSVCXNoAU8w5kB3gYIBZRAiVAvIUSUgiYWBHVIm4h6iCIArDoMIkUfSq51zkdQ6ABcB25MeBKgLuKzgLYoJDDwsgeYyQOGpjVECUeq5AlCMcOoKpIE4phn838DHTMDhnKiJRpGPchAwyLDAgoQgB1CiOvCjEkUAq5RxqlEQ+wBRC4TKmURUhTAMuNUoDZlOGCGk5ACHhA9kNga0qxAt1VRM4UJEmw6AtAFKoDkKDoxYEgQAGwy0piCKFFFmCGhSpCMdc7nHmMiYxVT1uc+aZihEBoHAgkRWxKkJaGLkEYz9SMGIAi0AwDbCIQA1YXEAF02pY4kzZkR3EPREJhahcMIgsBH0uZRBKRj0ACAJ6yGyOgIQQigBKXcWAR5JSCoCgCLgQQh4iqUYggkA0I98R4s2wEQDOJKAA7KeJDeakiZIVUCOaiWiKmgqGrhfGiIIBt3AqAg6AWIWGDxoUokgqAQkJl6HHJEQUREKSJoCaJ6osYDrNQuJBiJiAXBiSRFAopsIc5qmKxpmLoapYhIcMyQjjgAGFMMCoYjNAYRpSCcIOkwqQBGOihKiNbY2bIRcaVmFAXNGCoIaiNFfrzCGqSjCICdniACpIC0XD9X0hIkgRha4AnOJEGDaQ0ByMdNRmXAXEphRFAknaCTwAkaJRi4cRJTQSfsDsDccPIokVR0TQUBSfME9wFQJHuJBFDggooFwSxEOGIhURJgCSzNBTfuBjJgHATbdh6kYz4CEQOtJ86TqCKxJ4QLwdtApUnYtcAIAO8BLvpCWNJCM0GVOoAlUWcQixrutEhr6EHLQo0HUMgOAKVlno6yRAXCMQQsExd6IIAKAwFUUJLVenZYeFwIljbAsc00iFA10CxLnOhKPokQRKyLkIypLrIuKmnrPbFU3pBqLlhSqmEQmlgDkRVZi0AfIcYVKaY1GDSxEKTKAdkB0sCgg7PGQYZhynHJoBRhHz4y1QUyHEklCNBqHoSJOANosiqeimpvh22AkZUUzJzI4EiDu6YYbIBVxw2PYpbkelwIccCsYgJgHnVEW87UVAoT6RoRMKghiUKlQCIBBjAiCVowgBFcoQKF7EpRQeAhGQKrbaXEjOJAI15lMiQwgkYEuh64Boi3EIoAQyCWFbigYO+4Daga7iKZgwCFQiaBRKiIFBhBsCRfeZ1KAMsORUU/yAqtRBCCIgqBWzBGeK1D3utP2yDiRAHlcdJZZUqCOEqhsURszFIQfIt1Hdq4c44mHSBx2JULsdSkhaYqbj+VHYdkTgYe5E6x7wnSjlSFKFzA/CMIoMnTDQdoFq4l7EJZY6hwoDvmqpjKF2hCIj4CCKUBhKvRPYdhRh4UTCFlIiT/W8CKOAMZ9HjKEAgiCSzHMFw1EH2ktObTuoRhwF0GAIQRg5EcAk3omCNggj3xORExoyhDKuxxlzLEkhkoIDjmAABBYUKUgTEAhJJBYKtAGXIPIJcQG0QbDJWStk74nmHRhwiG0JAJAIgAaEHJEA0LaECjMjhBAxFEWNmE8VFgHoMGlgLWLC4zCIJGey0QGURJFvwb8aeIygSHIVIghC4iHGAKaYEWEQrCQTuFyzCRIIyhD4OCIcBB5SLem5kqpIKIoRBAxRyXgQRUij2AcBAZGQXEM5CL1IcFNPs8hjEhnSkBSFQR2ImKrWhFQgIwhAB3k8UqT0oVA5bYBQUxRKsC2iBEEmpjRiPgQhkNCOWhBLiBUkOGMAIuyGrgtYEECkMMEAULnkahC5GkKQghAh4MGIupzrkvuEKAhhP7A1xeRRyCgQEqsImACVRZCRWkv6lIeM6oHgXLAQiYhxX/IaDzuCbwCvzaWiKQfGR1nU7M+Mpy2yUW9eundXZ7DDOYHSEqhb0TJQSRGDhjCuE8qxhNAHLGkaYcelGkCRKhEzMGZch3+Wf0wATyFWADCCEYDShTXgJKiCFUB1jbZcx9CoG4RIAQIGkCtQRAxQBH2MYjCykWJx6UVchcANBQKcQQENJcERC5kLBKAExZAlqK/ARMAciqAbMCoiHykRlFJAlTIJIBIQI0Rl5AsF4oAzhAUhkArMGGBCOFwqQnIhKJJuxJEHEEQs5D6CMmQ+gpqHgE4w4L5ESSZ9wH3CiQ8hRRGXMoREwSCMgMTA4KIDKBGOSlWfR4pAPgVUABtALHkr9BACvkAbYbuCZZX7vpQYUy6YpilxLWOm8ekDRwm2o7rfbJYxJgdGR67Obzr1nUS258r1OwaCCUh6qGYCDSNAEI1jAweR0AjiQtNUKQgRgYgogUTTqBYwgSTgEUbEBZHFAFMAa0vhe0xC1GEtP8QqpiG3ITAgSzhkNRkNOrTjhD6FXBEAgpap5ALeoQRJrnqoLXikoQRjHoDtiKQJYI4vfOZFOEJQMJQ0sYMQtAOfexrUqeeDZMyvtqFmVIVvQBoGjGm6SRliOApDBRCTsx2EqFBU7HaEkEjTSIAhAqaWYcx3RQhCi6pK4EUSAENVOjQUvoC4i8tmx7V1jFVd4xHzEQbMFRjYQgAEAHAgUxxJPenVmL0R+quAhRBoqpmKKYOx7K6Rkdm55aWtraxlCODv7SlIib1IXS5vbpfaX3rqSK3WbDbC/oK6trX18NhwG4Co4ay264K5XUhXpN0idoZgGmkUauV2PaYCxFUFh/B/5h8ByEcyjSGGgmFqIuntRCVLlZJpEiHOAYZJJh038jWkS+bYhGHhQKJCISyc8WRbcAXDHYEKTLocB64rDGgQSBDhUGCOXYh7UFSUIMHRehxmndAC0FeUiEfI5a5FdSkkRIZOkBC+F0YUKxK5GkwySAiKGGzwEGFsBp6NVM2XHelTrHuCGSGLIAb1wMuRGECRYMyBgQEzEoad0FNUrdOpxWI650jDFHHZwVhGDKuqG4QABVyqSLgRwZ3I246CiuTr3IMqmUjl02kDe51kf27P/of+9m//j2nFgEILiVRHNPJ6YXF+Zmpvz9HHfsqubpbL606lnB+wVu/XMknNt73TR49uLqy9eu6WDQJVAA2QNFJVSGK6xjhLBshKJqIoMLAkgQKZtLUAQqVXiBYT1UAgKYkTCoIAANIRTRWIQACB6q5QmGqCCARYVUPgStwJShAaMQLaMi6jjkSBCCiETArgqx0VaAAhBwiNlSDFvutaam8jkBoJGMZ+5EMtkxRqwAKGLU1GduBrislQQLAvMOkEHiEdL0wLqWsIBGHHkZHu6YLgCAoUGpG0BVBABGI0xgWKEGAYhEKIsIG1BIQw5IGqZ9yIYxS1JUQYdoIOggrwg5A5IYGK4EUZtEK/TUmROREiTz58JB7Pj/f0tZztsZFj73/4pqryif17RNB59vFn37px4ZFdx91SPYLttugJm0s9PQcqRTvfG7+/ep37rT7zhBqr6imzMNb3uAJ2as7FOwtN33F5lMS047gW0RFVbKfBAVeFhP+l+yBERAIAeFLBDkNR5LuORBDpisCAAsYCgS0NyICLALSwVCXyfIY0HEFhSey6fgdCiyuGYB4CGCNXxQhJgwU+VE0FQB8FCpIUGpIrWDQxUVkYSip0aDQ5hMhVQuGTQMOWZAoCAmALAd9nLsJI+DzAVEURYNgHgEIJgYywiHhAINYQchjWoQow4rKFOABYhkINhA8kYxARCBSsuYxxCQRgkRBSykAGEONW5LQFsoEfSViSAYdkfGzoC595Yb2+k2DS1BO1Tnu7Mmca6tJKye0EA0NaSu9VDc2IZ/r6cgl97+2VD0xLm755/8S+s6Eqz733Zml5O2uhpGGceuAsoNBeW8WEvHFlGoTACX2n3QKhUDmwqB6TioahCiH8lcwRQnVAIh4CwCKCEVZQuyMIYj5tAUEJVCRTGGQRt13PpVRXVVOwQKoQR1QAwIAXIQ4DoQM1wKGJDC4kxlQSgSXypadHOYRDSQQAXJXUFkEUeRBDFVKOhR9wrBDIfUA0IaHrhSoVAiABgSf+n8ZtEyhcehRBk+guYyELFY4VRacSBAhGQUAVM4pCTn3KkYdEJCXACDMUQ3pLtCEmYSh86FOkdoBn89ALghaCEQLtKIoQRMT63CNnuEo4bp954MjKylpzHb126RVTSx0YGzA5WCxuU5zIZX2v0/RYfGgodeJwdr0+/MHlOYCxCpyzp6aMXH7m1tyda/cOHx09dugjxZ0PV66vnTp7+Bsvv9Y/khI1rdaA06VZ4nW8KFJ0nBcKFggep3GFKEmpUQQVHOkyryu+F3IpIywVSaNI8ADgUAZY6EHUMqjBEeccRwQbwodEIRIjJjrcBUjTkRJJRyWa57cBQhoihGgC+ZzhUEAbiAQQLhAaQs2AqYrqSyYBlFAIQHweKBARSSARGFAJhI+53fEpEGlDhZIHHJgIa1IlCIUw4FwCKRDGGGPBmCTS84EQgEJJMMUIAgzckCKFdYKOAMgDrB1FDPIAAEFwMwoEQFwCneLjx6eSicKu/tToocnV68WXX397u1PSsTy4e7K4XDTTcSOZEjzcU8hrirg8uxLnwemTY+nRM3fXSp/47Iv//I1/SIRhqXxPMfdAdTOjD5x56InFuUt21Y9b/XdWZuxO+bkzD9y8eG387Nm/+cP/le0evjk/hyCHkSCTao4x4VGIOfO51hRlKZRO0Iww5Jy7HCqR4EQCASPUhJDwwJcQQRjFAqIiLHmAuUxi3REhBywpVUJAyJjUTUWgauSysBkyGUAOqKJLWfFDSqiAIqLIZW0FoFDqGDOTKgSbLdaOGV1trxYg+PU37xm5unRIMhtzmvgLRwpmSJoKQNwBWAohACRAcsFDICUSgmMIAQaEcw4BDygkwJcSAh7Juoh8KCLOfQgiKZgULGQAIYyIFNHkgeHhwd0xE40fGuu0od6DDxwZta/aBJChvqTXCft6B3ZYpwsaPoqvV0sPnd3PK535pc7Hz2ZAss8pB1/64q/euPZarlOIfGNheWf/2IOvvP/DiUS6r//RUuPO4YPHvvndP3Obw0fPjjTd6qnTZwb6MlURaEmv7ilkEMeAxm0WqVANpAzVGAYdn+T8KCCK4cpIECYABEBiiAEiXAYikhyGECCEQYC4gLDJfZ2oMoxaiHksaEAGQulBASXEEknAAg4FdwmmHRDqABgyTUJ25sQnYt1dO9sr3YNTly6e33dgzOjONBvlXN/p554/vL68YFkDk+lsVwpUnfVl5mOMEgHCCHMgAZAEcMQ55IATGADGIJCRxAJyyTGiPPShBG0QCQCkRAGURMJQCvD/BwGgU/n5L381n+w6uK//7vTm0nbzyP6pOze8/Nipnx3Tljbhldm5qcJkG9utnc5yvbVnd7TVqWdXE6G0r61u7p25PHb4k+Xqwszy1Z6eo9KbLwztjaBYXL8bFYtt7DLyUk/2odnFyxs7nUtztxUtGwmgMm5zM2Z4ewt72s0qUQlzoiAmiaCaiVUuuRspJgkCGBe4afmJgPoahxzakaQUiYBZWAMYUgmwlIKHDtRAxAIJdaQwN/QjhvoJpQg3QwciBLGQgESCM4k6oNOn9A8P9b/4y/9OMfxkdpDFQPXeQtldaXRymdFsob+3VbH2P3T6lVcXPv6vnrm7WDszhmkUcgAjRDqMNQGTHAAOIIACBBgCAKFgEkAAQgAAkBwAAKAICQAcAAEABpADASQIgfz/qUdECA4leezhw3tH+q59cO6D85udNjfjWA9tjvWhodH5a4u7ju6t7wjX3Sm2bWoaJx56VFH8id69G27LbzJNa9RbnerCjfiksRPAcrE4e2/ONFYbLUWDqc36ZstmKgVnTizemrlt6Hxmyd1VWKyy1MDwGCGJXb3dbqf8wCPPEh4RS1VUHg+JzQMfUyVlAuAbNnAJj8Gk4XhSx8CDaRh5BlQ0qmBCMeAU8Q4PucAyggpCCFGKtLjBQmYx7kdSWlqSYwYkAoBELGJIJATZve/M/s88lehJ+QinCtBuhLE00hMTI/3zXYO7bi7fHbT03/r1L/3kV3/7G//4LWok+anMnfmNf/2FB7oZkSIMAKIQSwAYkBqhQgiCsB8FWCIMZAgRQFADuMV9BgEAQADAEIASQgkkBAghQ6IOkB6Cf/Knv1HeWnrrpbdu15ZMLxRIOTjQU16YNwq92+0PJh54YrB/T27k+NzMdLpWvHL+/QMHPja//vZKKewbiH3rwuVOWM/OmJ2d4m50dKpwOsC8vDq0Xp2v7Whq0kmkRu7cu9afnKyIzsTg4dVyowFlAEd8Xrt74/q1AOZHSX3D7t18lQCKCFRt6EMOGApgqIQMAow1mA1Q23CFFIkAIExVTXiKghBOO0RGoQykY0LBVMf1ABSuhgOb+6o0Ve6rBLsiQBy2OY9pMR97o6NjIWaI64987Q+uDKyVbefgFYgNK8kr2Ohbv7cay2Wq5QV7e/2fbt37+Z/5fDJsDyXASDI2c+9Gc37aWWY6RoDo8QhGCCIQQkEUDnyINIBMamDAsMRcSkYw4FKhBhGcS+BDACEWIKQQhRBIIRAADcFf+Ojj3/7H1+OaP7+5TZBKYQeqfetNoPCwN4X3792VHRitFLePHj+4eP3aiYMHerpS3f2KH/TlsxrtVE1NT5OeWqk+C+PBh7d7B1e1/qc2trYgGVhYv7hbz+eHuyU7ODu31GwMrXQqBolLGF68cytuJQpjEyuL0+Ox8enKnYW5kCRkn2fGU71ToDCmTew3R5KsT4eqRKpEKoocR9WxG4ZuqOhRvaXEzYCbKSXwCYBcAoQgEowz12+88nrjb35P4A6gGol8gLHLOVDw5JljAw8foVrCSHZo1Lf85j8bD1nVwV3L4Xyvz5wOS5vJC+X5W9evHz0+MZr1YsePXj5399TDHvKVSrA+s+n+w3//kzhHEUVIAoyhCiGBRgS4hDINEUAAC4iBwjASQmJJOAVSBB7QY7FCJCOvXfQBwAgbEkIMioB/7iee39han1kvdyvGRqMzNZLPxQbUOIkbhaljJ3cqG8IsjHXnp7cbFz84/9CDU81GZAAc5xGpLkOjK8BAY142bfgO6DTZhYWN4yBR0O/khrun763mUqZmZkIXG0l3z6GH6rXqcGEvDpT69vqOhbXhbE/cnFdEaaPtojbTekjfK//UAS4JAYPs5lbd9Ff3xg/rmvPf/uHdn3/6zPUlEe+LcjS25drH+gdvlDaOD+Yll0kTeRKELMQCEAVQAMMHH77/d7+eDQCC3NSoCGyBE9lDE+YDe/JHD4AQAywBB4PhYuObr3pnlotdPbVmMR8fsQMaVIKJg4N/8823nzp5xK/NbTbcH7+79q9+9tf+y2/9fzSqVoMwgFQXUpeUYwkZQFBiCCmHHgG6AFICRiQSQCKJOBPS2/Op/5BR0yCFSE1vUPcH3/ptxetgQtaZ8+wXv9R2GssbjZjRZaa1ibQetpxP/uyvhZCXnOaRM/uWbuYHR3suXTq/MHdzuF9fuWqWW+/1FB65eu0tYSt3b10MJTx8/LRX85VJtnxjYWwoXSqVUdYfSh//yGO7VlZLzdbF0aGHFzc0Vek6e/awgvOpKD6r8pnLrRzke/bu2XWwb+bGjcZOxkylyDKNYg5+9Vbr4xMJlZi79g+8t771WFfu3Fd2vxrgpwbyUDCo4DEea0f1qf6sEkaqFceSxQHhgng+QwK3HDcAvhwZXJ69kxSkxnXTymSO9d9vNBvXPgSqp/LeviEJ9S51+CBslNzv3esc2W6kDhd27Y4puF25+vlf+O8TY2d++3d/t0/VND2FPePXf+1XYnl1+s4yNFTfZ4qQAmPKAZdSQVSyAEKShUrIIoKRLoknmIkUBwX5M4/GUzmsJpVkmouiGdWf/pnf+Oaf/r8Q5y5GJ48++u7b32+5/IVPnw2bRa6mJ9MFmhFWfPhAngYeGD3UVy3udOxOvbbmbtckkJ122JbVJEreWH6vL59jQusd7X9r5Xuj8YmR0R6LdjFRdusNc9IuFaPHn3ziw3Pp7MhALHvqww8/zFjJeGIo9+Lw1Ozugd0btLyVic9ZsQMbtGtgWBybfIwMShXmfcUC6j4tc9VJGfihoSE1E81vcZqmy7VmebNYrvs9A4OGCItuKzc+AkkkpASACcGBZEwFSVPFjiHiepkF2vjoI4+c2HEdyPnTpx+d3Sjfmm/7jc0D+tHBTCeRST/66E8/8khzbXarGETxze1sr/6xZ85MX/728LHjJ448dO78uZ945Oy7lz5M5GOLyxuHdudnlhuu34xDJDhAGCuQAcwVCSnGEIAEJZHkAPAYUdoiDIXcffanTRiEWMEs8KlRa+ZTWelymEiRP/n9v7S9YHjXACcxzMipAye7xg7PXn9D2K7T+bBo9wdBVN4ue0Gj0aq22qBSZ/H8YO9IjCva3OwtaoFmdRN3j2+V1zVuKiB0NCNSPO6Ymq7dvTb3yKMf2Vq5/fAju8cn94GotXf3R0cKmchvVjqsZ2Jvr+JfAMXWMho4013oHSjEJaGIxLvg779x69ODe994b3vj1Q8mfuszt+9sPHy4583swFCL7kqbk30WE4RCTBBnTAjOIw4RIYxziIimA8lFoGvAYgv3pvcc3LvnwIGJ3Y/tVsN//PZfBwg9cOCjnc5M3Uq+f+mVA4PH8rlaTMslC2pm3Ot1rbW5ZRztknCseyz2F//jD7/81V85efbkr//Wf53oijWdyLKy62U3AqGHsS2EhgWUkEjEOUqpmgg5pgByqUhCIAhZaFDUAChGIIwNZmEkkKqITjJnwmYrmU48/5EHjFS2kEVr87eQ6jJgziytcMNqNb1ldimj+Tmh1vyGbM/0JA5tb68jH598+KmLd+945Uq8g5tI2dszlckRzMit2fWTj5x+6+U3Hn/+CURC12tTH0yvOt955V/i8R6q9hFwsb9vNEk6rRqwBKfNhprQabanUG9vOvXNtdm1pcVdQ1pGbRLHpR+dGH9zq/XpvUll/7MmlY5qrW81J/sTRhaUQLMHpWste2un4bRsF+fjrcaBB7uAwABBKEEIhSVQ1a997Xe+8omnn1tev3l3enZi6FAsZ490D/QP7Q8Vtxlxu+Hu2f2AjMJIoyHQ1ldu6ysGEo3BgaGdlemaJ4YTG//Xb/7+0s3pg4cnC11Ww3EiAQhKjvQX6pGcuXO1THTCIAiFkDyJkeu6hko1pgSIqFhIhExE2zKkzM/1WZu1tWzP1A9mZw+F/nR6ZP7+d5574YX+fG/CUjmzcgPjhw7sPX/jsg3l5soNwrCl9Hs7i8uVu35Skf5+L98+u294rX9fd19/dnk28tWjh3YtLX04c3vh5MOPx5J63365J/Fx9onk9tYd7IGBXfv9aO6ZkwfNnn22v8mMbBhs+UHQ39MPHMlaja64ZStAVtZiWeX6D1aSerMVtpfXGh/MLhOoyPHhnu/MTzulxNvNdqu5NtY/OjagJF/98IPC/lvt4iP78EqV7x3tUkgXjAJOenzBeGl5/dbKO29+d+76ObvhNOzWy98679Pyc+7jv/eXv7VYm+kjPUN79v/TP/7tyO7dTz31mSC2ttG8kk4lX3v5+vEHT+koClN4iPbUaiLXm2osvB/1Hwk71cOnHqqW7j104tjrb7xRboCJSa3BBIyEwKZw2ptCljC1BJtEMk10IGEAIxVTyKCGiCsk4lJR4xsNuFqngwPq4b6J/V14c87Jeamf+6V/e+5Hrwe1qGsiYS2q2zVcSOa8INqs22RnI55QVzfqQ93d11crOavFZsHe7r2sWaplZehWB/bu1/3GVH+fpthr21chOvjRB7/s1ba82yuTY3tW7rw/Mkht6yMbqz9yVuv5vsLpA54V368HQW3bU2WZAKFIIxvVo9GU7KS//PlfXNy5tu+A0Dz7yZFJcn2nsXm78RvPTIXIH151Yj0TakpChTQ/fmKMoX3KwBYD/bI09+6VmctvzV27WNpc4VwXwE6m+hOW4XuyKzP89b/4jXZzOp6L0VT+0NTe11+/+tyzD+weG3zw1PE7t27+3m/+2k/+zCdrRZ3zwlOfPFFaXjOsrtaOe37z0sPPPBFsb49PPml7AY/j/nzS5/kLN6+X62hqbGjm3v3e7q4QcIpgTzL1qWceLWSzDadZWymt3ipSp2pCkzPfosRDkcIxQqSTzcy17ERM08zk/Zn1qWS/5dXMVMNpbx188ITSbmrIm9qzL9Uz9sFb74z29377B1/ryadMAvUk44kkXy3NyZqlqixo5bI9q+dXdu/dt7VRdw0uW24mHT84Omn1Ddecle7C+AMHH/cLhYXlO53FrbtLl0+fekhPWe6yx0FQSBKoayJy3W2eTKtQy1Bf5NWYZsQjxtOd/qj82tSePYk0JY8OpTuFhIAyBOTARM73WKfSunN5ef36B/N3Ls4u3W52mn4gJeZRKOKa+bGPvPjgyYdHd3XTWLBxuxhLpK5dObdVWrtw6dt7J0aH84MHRgf+8buvh8GpSm29MNoTUO/x/NGmtxpyML536uIb508dGb+/cLtvqK93ePLS+StPn3pyp70VS+3vS6dWtjbMZHxpeu1zLzzbbDXOTD7159/+EYNIoTiAYqfchCLaXK3Bus2dMpKSSUelOpHYEpgT3GF4z6EHT546xLjjcZeDFgjSVWc6m+++df7S5MljldU7jVIXN3GhL4uQmx3pfuETX7Kn3++dPFR1OM0Wuqd4+daF7Wbw3NGzwisldXjnzkoun2h0Os1m8diZJ+1yi4pK0FTeuPqX+6ZOpqSzd9exzOSuo9llSNWR4an3bv7DBM44fhm0GdbylNRh1I1oh0HKiGUpIJ1I3qkWd1qdh1MFK9ZN6sXt0p2V4s1379+5dvP+pWqtLSQSOCCRyZATQ9hE2hCI6ap+9Jmnxo7v6x/cQ7PM9otJlJg4M66GWnLo+cr1rRPj/bVm8/dfeqc/kctmYj964/tdeqZr0BjOj08d6ZH+1O/85m8BwvpTmYh2qVpG9USHF4nHz334T7nCie+8/de/+os/zdttd6Uczw+cf//yH//x773/4c3dU1O1Wq1qt5AXgbp7+dqCQVy1xbqwZhBMQoYkIIBLRImQDRCefeFnd2zDbTvHd+dOTR0od9wj+bhaLzfrPtmc1nnrztLKYHKk2jPbrWS47yeMGMvvml+8wxOFsT0Tjzz53B/9Qeu/f/UXtrcWm42MqUV+pF7+4Hyj5UwOTKxMb+W7D6g63F5fnxh+zGXE235H9ZlSqipaKjtgukVl3/HHyvcrqQOxbFe2EymUMUyZwAmKOxgZrkOYX5NCzYW9RDYQHCW/eHKSCEUX3NTMEYSPWL0aU3zpJUxNRDRtxBQaC5JhKxWbOnJ8ZKRHidkqiyl9+73KZsikF25ELT+9N7m5E8TMNOT+9dX7mChNx1fyxuwHW9fT699950J3LH3gyP6FxbXxJw9V2wtnHzh+Z3r55uXv9CeP9nWLQjccTg1fvDrNNu/X/e2BdCtp7vrw+uvlFtp2tx3HDVwvA1UtCvf1ZP2NKlJDGkECQ0NNB9LRSJwHfqhgCHH35OR7i9fe+sY/Dfy/f/XDm0uH+sJOaZ45cw+MZTvNUIt6LNBY21lLLg4de+Spq3fP5Ub6npg6+8FLne4xTbrliHR97vM/hYSbSRtxOYJSYbko8r2HZHz1wJmHgRN5NYo0d3BPX5pY5dXWW1fueuFyTZnZYeyhhx/54EdfP3ZqfPTpzwpvnWrpJC8Hag7APIlCYnRHEgtR4ULryhLmC1MCFarkP6ROmCqJQJAFaUVDmEONKh0RMeD7PgtiCu3fqzx1qnd3tuVgo0cllFz6wXcOHDwdHzIyar640ahVSyk6kswOFxc2tKTVrIVO1e3qTiwurE6O9yRpYteZ/ZWyc/X2jWee/OTC4uVEcvwPXv+T3oFULDn2yruvfeG5B1cWp3eakq+012anr8wuwo42sN/3W+Hm7LoptGMn9l95/1JOQNWT7laJEpBAeqSEQOghcCACnaBtEXN/5mzCsHGv9rx68PP/a/+lpdWnj/Y5y193mwF38drStp5d4fHu4XRQ8gdrbGGrMjQy3O+2vBv1+ZFnj7p1T9cA8mSiG3UXejY2jWJ7LYy83u7+sb2D9arTKG8VhvLvLZ472P/81u35b7zzxtGTg089+VN/9fXf3KmsZnqcVPZTyYlEbPfo0s163yixq2UFAS1uSK9KcuMS6VYgnYD6wfb6yjzjjf1qv++0yKneMcp1N3IMGkVIC0NXIQAGYTnAKtGKw6DrbD496tKkMtyXTOHAc+HY0QN3Pnx3l3dM9gbZgcHmTrFdubVVb9R8nkzEvOYKprRSaTAu1jYba7y55Qdf+MQvPPzAifcuXaoUS4Ve8fBjn774wUvLq2tPnT50a6n4bJclQl6XCAgUtryxfrNaayfmF2bvL5w5cvq18x/GeZQk8Xp5W0MCI0VKqSAYcjwYG01AcyTdZ0Mvlxjb8Ro6hX/1xq1DcRfHeo2BTPU84tFayoI0YTDu1raXBge7LVyqbFfqVmHy5Im+XHL2zgysp3p1T9VygS6aLRKFYaYrDqIunDIMnCmVtgOnky3kEunE537q80GtkUsZz33qGSbQBx+8ZTO4UF3/6EhvZHeGxvfKymx1vbVraCqZiDXdkKIYiekQK5KgMORAAs9XVEAKenezDRKaikxXJ6FvACY5DLxaEIblDmhCoR+a6vybLw8+/SVrfP8Pvv/e29/4x/LsUtn1hW9nevv7xg7dm/lnO0KOV4/lcz/+8YXuTO+Ln/lFEfBMNh1FkZQSYQQhOnJ471hv193ZH/7ln/zjD77zTqUKktbAe++89fBjDx87OPDS+5efPn60w2hfV2+jUX/s6S9887sXbVfRZPXO/MqhI8f+8dU3orCTIxmT0JSgVOpIwQPZiSnj5AuTT+7PDR4aOKiosax5UOOhxKFA4KsfP0KGphKP7bmJoUm3Z2ZrWjzaqN5PqfkwiNcqIPS4V2GbN99dubMwt7ztCgHFztrt95fmrlU3Lw0o1Gs1nK1iUOkUix2iBo7nD48POrUtu+E0nOK1c68E4c7G6nm7OkOildKGn0z25rondxamw83V2OCDhfw00gWXUFFNQBHSpEQCAEAVwUKuSjwxsGvmknf/m+eu/M23CdGZBFwnpuNzkyDGGolCTjz2KfPR1JSVV4nW1sI9e3/lxofXbt18fVdwenRkwkCo/+DwhXP2rnLbixANUd/oxMvvXNy7sF53w0I3YTJdqVQBAJ1O5/rtO17EU/Fsw648cPhxElfMtHjy8UeEt3rutWuje6fm1jdM1Rue0pZuh+c+fCeRjsNOSdUHp3dWLm2cN6naDYDFPBUZB/L7FKpmtZgmaEgFRnUoB5kSWDDGQcv2VSw0GUasoPV05f/Xu1cP3Lu8dHObp3turzRzes2JVNsynPY2EoNKJtto8vrc1X0jj3YpMRKVAntbhJtIiV1Zu96dOx5wVt/c3EHEBUebd25eecfJpeIJC1fvr5XWru9UZtfXVxQ/1mxt/fK//pkfvXJhz8Sx4eHRxk7RlKSCUlgCGfq6mcTIEFxijEDocg87ncb6B3ebt24UOq2eqA/AiHAWhBHhJAQQtsJikyKxq4eOoARKISoD3o5JwgTYf2zvKjBkLLWD/DinXMhDp05Oz507dub5Wr09PLwnpeMwNv6rp06/9eM3S9UPIEWASSml6wWmlRga7n1o5OSNa9NT2dGdjYAXpr/97W9XHefJ/sLugwNj/YemP7h++sDgW2/fcavgN//H1z79lZ9gUdRPzC5Axo3uo4kRC2lxqltWUgGBAk1OBGeGGSM8CKSCkEiaMbyzXd4p+VqvsfPP7+0uR6Vb04fGs9uRVt2pjw30c3Ii7JTSMa8d4cCTycJRmNW27zsTp3q9UqXVApaGFstN0zLuL72KEXJD0fQY8nzW3g4by2Zu37f+8htRqPYPZe7c2bq/uKij5Ml9yfp2+cCuWD4Dqut3ka7Xa3cH+07RUFAL8ggAhQrBoKRcCI931m4s2jM3jKav43goNSIxCWQDUR0GQVFBRaqt7c5oSRHfmq77QUzn+ZGevNknIV6bvuf5nW5k9Vl5n4WdjZohRczo9jUqLUWBOSrh9swH3V0PPfDwg5vl1sqKtdWq1atVIbjvO77Dv/fdl5PpPqxqAG5//7s3Kxt1ieA3v/uj0vqujz7hF0bGtyrtO3Pz77z3RRFEQ6p5Jrkvq5mIdfLxwW6SNqnAuKBKXxAuQglUFsMWkfEIAypZ1VvEapgm8SClvep39u+ZoO1tyitFrpspvWvo5OTIcHPb2TV1JJF/KIr3Xb30zvhDj8iwLjqO3QSDg8fp6fTm7Vc6rbVqYwZzvFYJpXR85szcWQAUuX7i3fPfdexo157Bahs+9NhTN2/eHx1Xzj7/lWpx+ukzv9xavCFEfXDPR2TxvuLZLb1Lcx0tleJcAI5A4AqIbTsS7UYiggFgBk2rSKeKQuL5j0m7pvc+iNmN9j7XSqc4W6yxruLM9MjoSPP6NTYRZQvJkcndM/4H6/ObvmTZRJyxSgsXVDNpYZcmAxZlWsVbWjbOJGKd7See2nvpSmS/Xx/ft//KzL0oihaXpqWQI1MFO9h65UfXJY8wxl/6yhfv3bn13of37q+sv/jcx8d6rD0jYyvNaCqeSAl13EyiUBrmWAKYQEYBB5ZScnlI3V5O15Ff2LQ3TKuhuipN7B3t667U214MdCn4d5T07+a0A5PJqxdITyE7tffgOx9e9PfEYcrotJbGXvjq1vTqvj1nvOLsidNH2s1SaW0B80wjrDed5u6De+5+WELprqke43tvTMeF+ezj6fUGk46msOwtvgmJnulWerPJX/sv/9PfuhfWth987CcN5MS7hlqpgWCtqeQtEaCMkYXQB6ELBY3CCGV0FLHWpuMsLnu2Y5E4JRBxj3JM0lZmowP6jzhuctfuR5PHpBVpx1gkQmRx6a7P3rs7O7dbOUDpfHdXoSTbrMXaaqT17+5PtTZurqwtuoUBLO36zNKyh3Sg38jHcncu3Ts2+nSC9N5Zvvjwrt0fri/4bQaw3rT5zQ+uQo4gwb/4b77yV3/ytTNPP/Cff+MX7tyYzmZ3q4ley9y0+gyrgvo13QRMknjkMj0Z1Fgbe05MH2w4KG25cZltuG4ulsI8o8S1yHGitozH09CWArC7Hfv/Skeff/sbT0ydyBwdCKr0gQc/Nz7W367srNxYpNubXUml4TLXF+21DY8bzMxoMNPTFVdHP83NEukdKbVmU+xY/1jPRG/37Mq9/r1ZBRama6X/9MU/qNWLNGC+xydGc6WS05UjYWkhTI42N7ez/XHk7/gVPZWzIrdBDYtFTOE2A5iHgdJq8A2PN6nCQlPPilBluKiAXoSonuszV7i3Nq4YDKdjYRdQczHFhKygweGJ3fuPHjVT8eGhMStr+bzT9j0trQsv0FlI4Oz1Ky97xa3N5feOHXpg5s77Y/n9XXrvA4ePB0r50SefUmSuf6jw2LG9D5w587lPPR9Vq5io3cP9x46faTajocnux/ed4K5tB+v/+6/+5/LyufiGd7iaSnPL4IrH2WRX/0RXdwIlx5O9WbVHBUpBTdCAQQVl00SnSVNV4qbS1Q00TYkx1QnCGDW6eXqmkzjZfbTnyFErOU6yev9g3uZOtkB6J4eCVilsLXWlUAyUGWHZVHRy34BQKk5T1FEIccxpNypb3HO3Du174MgDZ22gdI/8RODmBzM5xQr6+4c8d3GoQPp7ve6sxjpFxYjRyoZpmJYGta7eFLV8t6FDiSARXjOQGBqSl+/b1c3a3K1mYxnCGPdcQmzEuyLcRCFkm9Dd3hdXKScKdCPmkKjqOR23UXJAwtR7C13dybSOoGJqSDDNFBu3Z7MpQ5poxyl2d49Y6dHimnPlw7cztH/+3jt6Mqck+v/8a19TdfORM12Hju6rVAGIvPmlzbWt9TBixZXNezdvL63PJ/Xk37/8rb//9juvvX5/q9H+3qvvDewblSoTKPRRGKPJrXKFhz7RFRORuJEmIJPWrYSJNKBqNBXABQmZCFwZcQiyGDgonnt329v3p/eylC3dfz3XZS7euFe6M+u3GtXyijs/xyu1tZkfakBUfQ8mjery0nbb/+Dy/aiTxlpDy5GO41Q6cHj8hKF2EVQzzMTExNOmiY1E7PiR05lDhzVRGts90Z3KF5dCKz6UiI03Ns9HFBeGu+1iyBo7ZlpHWjrAuteqShhQixFJ/GrHc9ud+j3u+wFvAwVAqcZ1qUALnnvod2YP1pZR1VTi40MnB3b32p3KQO++u/fvddxobGpoMJ3kOAiF2CzuYKh1WqECJAdr719aOL5r9+byvdLmxsCxwZ17O7lMLK2P/8k//fYjZ57QgPXq5bd/+rnP9A8Uvv6Dv1pZinY6na3NIucskc309Q/P3rvKIwAAJgrpHxrcNTgIRf2Vd69PKpl/e+yZXE2oyERYmELjgmfj8UjyIMroAkSopGtxLlQQKlgNKNRNPQ6YZSaUm7q55+8e49DOT//v3/xBqp+mO12itXK1Waue3jWuBiaincZOmB0mPYcOXXt3tn8gKaK0OdTbnaHb829Aa3RjoeOT+ER2d2VnMzMgh/rI6lw6ewCVl73pV//iqY998tz5H/f27pvYfXB77qZlCR7AUELOqTo8hlyi+MsUIMF34lEhXshhsw8RjUubVZzGRvvcX/xx2IT9NG2qWY10VKR6doxcsK+E/mk9Js3CaLW+5t+jY0e7sIIzectd73hSRQbBkAadDvdCx90GboolyPZ0a28uee71t1/8/NMrSXb/YqXByj7Avn7nix95Flm4kNt/aL915U47kYhllaEtVPKippmIB2Hgup3pm9cQ+n/WKbn3yEHWDm/cu1cqVh5+9JFEyvj99y/8xEeOTc55PVHGC9uKSlquoxAFwRWGoQ57HL/u+cTSYhTVEOrzXGBZ3LE94/TEk5du/EJ69Mv04b3HzLWr39oz9LHAtGZvvVRuGqB+lcSsVhs5y0BY9ThBs7evSOClZ3qLPYcqW0utcG3qzL7J5AOXtt4/NHGQiVqpEfqpZqWl6xqPdT0wv1ad2v94oMK5hbW0yiKlq7F2a6s40zd8cPnc7dHeVHmzOjAyYOX2qkoo9AwEHSgEwmkG6fb1abfqJ2WOmHE/sC1q8BAZ1CPDP/dTu3ZNcCWsNJqU88hHJshBXXRZsU7cV4VtqAWLspRKSrXl+3fvJo2ByurMUPbAemfx/NV3r9279rnPPt3fXwAbNiZezJqCcKtS25xfbu2Ut3/6M7/aqG/HuxLB6nqlWIQAQgjNWDyCXAgGANi964BpxLcay34k+oZ63n/3PMbwE889ftv2F3KbD2Vz3eVcOkJhwxfS13GcMacZNGOqghRsUiPwIMKqQjtRYBGK0o/1/HV/7GCSbPxpsI52sukE2d6+s74cM1h3XwLH++yOXwE+NC2d9PoW9tbe7t19cm565TCvbDvVfPeUrJr3im/mjEI7DGIIY4VUblx1CDn71JO9w33rm69vrBfjMtvT1+0avXxrzvXC3NADldKmhp1rV9dOHphMZEehUDwnlHLLiPUCgJnXdkuV+tqMYfZRwQUP4npSAJ0rDkaEENTgmpFLhZqRpUSVQijUlZHBCO0bGRlIKRYJgyiotDxVz6dzw9WtlZg+FnJRvFb+xAtP3Z65d/69mY88ONB2SoCnLHZ5J0SciVMHj9+6cZ7oG+nu6ggfBR/cAEAAiITgTuBQlUKG9ZhuZXKNSqfd8Camxq9cuAApjaUyc8W2EwaqK155/+8eOr37U8NHRhSLV4HHOxhKRReB8ChR6u26mRAAeQCmEPG5GqRGYyqBN+41V0otLw4NK3vj5r8UjH2MW6a3DrSwp+8xQT7YaNeO5nvUHAztQzPX7sY04GZHM4FDuiYWps8dPPs4Bw5mdSs74DXmpFcZ3XVk/ead4nIRkdjlD+YO77G6R9R4x1hzk1aMXr/8vcjTqblzaO9hTc36gGkQNTpVpdImgwkEYWulvHNjTXUgZlLKkqLs4cxVkEqICFiE4ukpDEu+h3SNEOQByCMPMgIsMzGQsSjBLS9stsNi1Q2atZAHqtGTzTMe3H7gYx9T1fx4d653RH9/vpTvGt7cLP34w43WTjiVpAUlk86Nzl9f+6dvf9i22zEtBgGWQmi6KYIgCjyikZCJG9c+xJr46S9/5cqFCxAppx959OQDj/nNHRXARtRptxozixt/dv39N717Po37uO36CYkiU4uFYdyKqxTEwlBDOIdxkbtMjYV//2ZnbChBnzvVciterS4cU+8h2uBk967jTuBeXHgTGbHnn/+FgC1v33qvp2Ds3tunkP6ujHZqao+OFnKJ8dbMZWfzamn+6p1r37nx/e/hKLY0c77eCDLZFMwZZ5552sPW/N13Wu6dxvSlDy9eyu15emA8MZbPd3UdwXEDiqQTRq1KSU8OdWpBa2s53HZRbaNaKqYoAlwLeT3kYcDaQRBAqaKtzYXGFq97bc/lWzutdkTtMNrcrm2Xy8VO2GhFEcBCU9SYtb245ZWxqecB7Vnb1Dv1RTVa3toon3vrfH1m3bYrjx3b+8TDYzulHU9Tlip3B7oHc4U9AKAu0rV/tP/gxCTG2PdChAjGlGAlYcTHJnYx1/v93/5vgNAvfulL+XTq9o33ktl+221sLy0hSFRL6xkcv0351V33XQcJzQ48bAeCKDaQ1GFVSFuM3NKisY0qBS3y0ZPon2eq8aSuhjUey5zaNZJLwXj3rmKNRV73wdHjpiprrNZuB1pW25nf4GWupVCneE0tDMqFpUhfiLqUrbW2ak5GZO97N2ZGzhzgrOpuXXv/R9+J8/RGpVhst1Zq8bbXGj86cebUqbBZsaVz/KFf0LP9GuqO7BJmK/FYRlJNianNNRJWfXvDJzxAIogEJYhqmm5YiqXlAdRIZePm3MLNk08+7WtOcWMj2Qu6ehJR4CKBdnbWU4P9tseavqcrSM3EFc7sYCOrDGdz6qVbN04fPDvmSQYFFMpGs8EEN3D3p544fXn63t5dxma1NV7omezeayQThYHCAQief+b09EZ14f6sUCzbkba9hShduDsNJP/sT36h7TUanYaiqJ2Gv7W+bcWtEw+ezRrMZSifT72xUE2N9w1t+JhSzAIB9YAvm3pBMhgFqME2oLpjJkG/rSd1BEww1d334OMnZ9/9++Lc8rFPfmTx2gfde/eAgcOx2Zz0Yka2Z6vUGHnysRtv/tPUnqfnbn7bk5cqdvPw1JQ68smu3lLp/qWB0Sf/4x++8s4Pf13PPr48ff7wRx4ulhb7471Crxw58fzO3RnhO4YWjObGeyaOmUrB6dzrLM5Ghmp0pSHv54Fbn5W4UnPnyjE1hrIFzw1TqqkRS7LQ9SFBFQLj8Pzlxdrm/UJXP9D40tK83TEHx3t7c1az05YwyiZTnCGIkILdmeUtt2S3mwvtzk5cy0qwE9ixoaTSCrwm9yTjMTM1s7y2v78ntGvNamejzianTiXSSUxItdX68dW3n3v4ST1mri7fS3cPLm/tvPLDHxtJZXO9nM2lW20bMtgzOLgyf1dPdk/19hZ6ukZ3713ZvpfQJu32YnXHjnWLx5eS6ZKvU1OjCAsEgNCwDiggpMuDYKmQPvjfPpkuRDfm0cpLf3H84aML7/0gP5F36cG+4XyzsmGNDzqlTYS6LcWoNjb1VstLqi5J16/cLLHN/WOHl5ZePXTqc821VWug0Kz51aUFaUYyGHCDalcime5LvvH9V3vicPfBvaB+NUkHkW4qcUsVgVD2dKq3t2/Na4lULjsKSEPBh4OlkjO9pDSFhg0/dMvuOoQkTpKKZcSFGUSMEIYGhsjYeBZmPIC1tJklCKU0Q9WMkT6rKxEr2R1NARw4M9vb964v6Zl4z+SJre2trp6+hfuzcaA03I3vvvp+rdicn6nGqdbfq9d3moqmj+3a9bHHnu/uymqa2mkyEIaTvbsgtO5P31pe3mi2sOv56VTCEfjoiadPnDxACC7XN5fX5z/yEy+efPr5Zz7+WaNbJ8m+Jlent2+FIjs4PtZtZb6+ccFNMh/7qhqTmCCEGccK7rZdRxeoe2Hnw8/9zj//++uvfO13d5orrXYz9Juhsbdn31hHCgfInMsL/X2W4etxv7+XINW3MmkIw2e++jNPvfAzJDbY1fVo6a2rh888jVP9GrMnjnTFRMpvXlLlSspSmV2bGugmQIeiFraG2v56ae1Df6eIYcKkgWXuBVnkOhLhKKqGcKXlLt2mTRjHDhIcQUKwnkAFQFkUuJC2AlGWKEsaO4GGCjmlITToOl0HxtRGvT5kpFWQ9KJaF1Xd7RokepyH/Tjo1CpDI72PPvPo3M33S21Jt9fXqvOJVBO5fiGDio2acOyX35rbOxZ/7OQDgZS+jOzGzuX3Lw3sG0KYf/N7XzfiCRqp//LStyf3jCBsnNgzafDYvcXVjeVFSvAzj/zciROTI1MnFEoX/mo1nVAP7zvw9T/+QzpptZvNRnMND6Sa3fqlC/PPpg2deALghEZDfi+hZ1ohTZmJOMDn3nsp/1h+ZOCJ4pUPNKsnO3pUNuvZDDWpvuXVzEB3amWhEW43tES3CI1sLnXh3Ctdmb56eXliandjfKiChLdU3Ypi2qW3oQS83kQ5bjvV2bnzR3bvmeusQv+BpCKqjchttAYGfRTvcD++uVO0637OMqLGqD9XapYvwXI5llFcphAAdI4pwzTWhjzlOE0/FmlKEqEWWV1cxSmMJUtZ3fFkPLTL9o59x51LdqUtVS2t3CtteIFrx1I4mU4yNLQ6U1mYvZJJjJ/Zb21WSjElwX2JDBr5TdbJdPfHvvzxp3StwABtRm0Y+tt3F5Iur727HMB2fxw2arYX2SbyyqtrJ448VW8sNfUOQQoCrDC8Z3hyMKYPbG+XVAMfPH46YWjzV994/hMf/+uv/UNctZ594WnWWf+wtvXI8IjfNqAnLYPbgSEkgIaFZEVDwolyE2puxedBbaVaazz8sY8AXutOcenDrdntNmv3jQ+bvKMacelCF7garpk+2a5stLGaTDGAJdtmZh+AMKDlVsMnOqlAhQ+lT/f0pKsb6fsz84emjpPI33TnYjElETskadrUB7Y3zKvXXz8+MZmMjbZvz7mrNnFcjXRZ0AxQwENGLZBSzEiEyBCS41aoWYhJliAbC/dbTphIZnSjtuvIPiRwOhvfWlteXyzGM2onjDLDuZl3PuiFSj5+Op+1V9Z3Cl1j4327QKjPLpQ/88yjy6s7N+YWp28smPnqA86uiVGaSfbWW/bCxXcp85ViMBrLQVSrNTKqzFaaG7bT2pvpr1Dt7Qs/ZEQuLG3U26VjD5waHjvt+TulbePY8b0vvfQdKPn03UuFIWVUy+0dHLw9s/DNb/3Nv/viz8xVp9cGHHFpvcdIsNDApEHVWMRczgLbtX03rEPHq9TnW97ByVEA4g3fyVBYqTdxzsyrY1de+WZSbxtqvisxHERrytCu7XR2e+NeEoXhznZ79ZY0uucuXOofOUaSo4vXZoOmHBrfF/qtc2+eM5OERqpBXaB0DWYKJDZEgB3XE81iR0BVNZpKXzwGeqIuEN0rKoRQTQuiGoVdACqIRdDO6oYThr5uQiw1JFREG+j0M0/sO7C35Vc2lrZZox5hM5OjZj6fHixsr1eqy/c2lub3Tn00aU7M3r80v3itUZzxWPiNl//sT//lh92ZrtIGWHfqo7nYz33ho8fGd1vZjInGS5U7XuDzRh3M1PoZitU8rS1HlSixsdXtKC/kdj0YG3zE7+pZavetRY/2HvnCxz5vGqZF9XuXL+W6zE6p5Ef4u9/6+vLCXGdLKWjpr3z+RS+sdhr8nas3M4NjKJbr7CuFOIzCDhMe8GA8Tn0AGKdcLvWmQpnSjp99bu8Ln7EO7FUECZGSiKdTZu/dC1fG9j+24vSQ/GSdmOXy9Cprly7d042zEYvpPadKAt3dnAZB/sr514ycHDt4NGn0EDTYKBd9Yg+me/IZywvKVqYdoRDpUIv3BgbIDk4sr187NDg2oPTXVi/x7VWdcj2mY8nslkWhq8UjVaHxbBFDmwASdSAIfcerCtGGH147zzzacBjWbCveM5TLmFRst2yElWrNlq3F7SXeLN7z4HZvT5IHWqVSWynes90k2eEV0vnik8/psFJyq0mlO1Di3XK0DtZrOxtIRN7tprHpJZGi6znIccTLIDDiZjytJwyoAQnnneZ8Yx5qwZrApWjrwGe/cvHO7U994WcxUjYbN/7ij/9w8e5NGuvuzcIj+w7GVfhP/3LOSOoGMX7yi891hcJcCEe3DQtnDSOMQluNUi25DlBfBMRMdnXfz3y0uCEcpzP17GkjbGCodCCvVzpOOUwUUtd+/MePP/7F7fJyuwG6UsZa47ojepHvvXLlplvZ+ckXX7Ck4RMZdeYGYoVG2yByPaCCtFg2l1dx1YixOBzRMkORpAR1ersPXXj3jb4jp/gmXnjrVWUhIL5tkZTnNONJDQmmkDSEdQYEijK2zyPsBcAmQkMEoMhVgpBBD/KOf+eD8/NrlZWaW2ujUqWUjJs1u9HwNmY2P8iaBzslnDRGRnoOxqz+vT09h586s11tOsHWjp1IRXtbZU+6oh6WdCV+5cJ8uOHFa1iLDB30ERdoknaRnnwsllNJApsEAUM1RxTlse7RE4mpj5nDP5X+6L437/98YoK/N+3du3v5/SvL03cRBFGnvLlR/cEb726vlQMYuG5YC+zf/b2/vDG3/L3NOxt24INiFDpSKh6xkdwNYHetE3UiuW2vX7rzjelbX1PcmmUksa4ubZa7u5N9wyAeQw89/tNRDMWzh2M5uuh7N+81YUSvXLs2Mhhv7mx+cPWd+6XG/NJcf/7od17+kZrTSSz+ystXb67fO3/1wrtXr0FOhe5D2k7Fk6m+yZXS7OmnP2aEkrWbaLMtO3WF6gI1EIHSy0BYQMATPEH9Xog1RTEIICjShPQMbsHvvnQOoSDbX7j1zjmgZre2N8xYfzYdeW2pJIMbH7z50ce/MDhM1+5v2l4lhbprlWWqVgf7T9/evHr90owZN3d19+GYNZgZ9/wwsFvc0NzZ1a3Li4esCYPbIrBilqTAUAHhITEMaKopyo2QteOprOOUOGNYiXmiKpxkqFUjrPgMrw6JF//hN6SUAAAIUdzKjBWyyGdXt5YgBwDBJ44cvXF//ne6zo7Hcwa1OLOIBqIIAlEJgXZ9r32nuhoXlVqLfezz/3r8yClfYZTRna25oa48T6q3z1/tO3CgubZdLy3I1K6jZ0+V11Zvz8+pHfYPL/35yck99zdu6aSLu9FAV1RsqsOjMenTanU1k85GdbsnqR+b6Bk8+FQ2O4QSFnE8QLvqO82tN3c23vhOT4LAMMlEmyBKEIrRbggDzkjoWkoMSNz2o0q7JbEWx8oWun7hzW/9/TfW7m2MHHlg7/Hew8cmMpYsJK2xCa2+vXDn5sI/fOP3rr570+xKxfRCqsuqNe8rarxSX1LajMj4xvL9Tp0P8nHTQCTZRRCLhQFf6owoXRqKVILjCkYcGDKmKnpKFyZMQgGh9KAimduOfEXRUpoSRL40dZ9IjdgJ4ISFZUdKiQkBAEEEO3Y9X+g9enY/lRJgaRrk/nLjydhIkkJCNVWBJiAaMTWYwzBTbMcL9fz8/MZWBXfH9Q5QYUKTgldrO3tGhlCmt7HtDU/t0bu08vaHhcGT47t2vfWj120BhvqzmULeygxduXqLRV2T+6YcDm9ttZvt8spKuyufG548YWZypx59duzInt4jP4GZppqW8AnDagu3ilfKG+9/R1FZpe5JacdozIA6CnSHVaAuAQ21eITDgIqkFKaeiEsPKChDFhfeX6qHq8XVjR3W26MoEJ6/9BdBoE4Nn9x39PTPfta4vXHVjKmwQnPp1MrmXdt1fZQPa0UUNyfHaTq+RzFTQb4qIsOrhYgl5999p5snstQkPiXCwJTEaF/EmzBUJdJtARKMRUBIVw0IUzQWBFu1co9ihfXQVlBejy1oPL/Tgo/HCivpwUOf/Fdvf+s/N0qbb128mM4kPje4N6wHAIFCmJjSE2krj4WJWY9Uiq3GloKG04nxA8cm/vdb39kzNLC5vZQcH08lFc/181bCcN12e4cmYDZD0tmYFLkFo78w2ju/cKffKEDuxJCxBmrdafjTv/BXP3jlLy6+ey1BIZR6OpG+eP8Oj6KBfYMrc7MmSe3ddZoWso2121bYillZhIyIAb4vmZrZBZbncUpFAvpCGsQCuEzhYKehChEqtJZIxDwnwtJoudsIxoSnked/6t81G42VxduC3P7TP/oRwulHPvv49Zd/NH/fr1Xrn3zhI03aWFxaeHvrjU9+8oFSrXTk7Mny2lJP717b30BKZnjf7kxvIgjR/M3rwBMj8cFMM5dQDZUzDdFcPAdRIKWgiAoRKVq3Ah0FWJGwudYiBnM9gMFoIuFI0KuhwBOKJh4KUCVnyF+c+MSLs98o3XiVhWhw6iQLm6WV1eD0yEEBe0iuN9VnsIBAw1S10K9YlpMN+4mhDBzdXy8WB7v8b9ydHh1WfvjO5dHDn+224hvlpd60qUaUE6/SEp3SnN7L48n+hfu39cD307mFD/7l0OShzYs//uTphy6c+/azj39ydvp34rE46Nir9eLoQGZ6baPKosGe3ptrS1XbkRIku0ZqlXUIkE4yISMaqiun+pvbiwozQuYaFGoGh04K0QZFMQhCacREyCnxAx6hUEdGBIlGKhsryXT/i1/4pV/99z9Z22mM7x168MijX/3Sl6+99eEzzz5TLq4eHnhI9LUPOPGLHxYrbh20ZSzG295KYyUyNBGzsEK76q3rVgxv3V9b2tnIcgOCBpJDusltp2nEuwlqSk8R0LM7vqnhiAghFBHmImWTEgtJIgShQAAtKfwigIFKYyKs9usDFIgL774EgAxDV1OIhOFLFz54ePwzOlBJAHXNwlKHwhXQFWEaSNR74njTra3MzM6153c6/vFU3/Vtmciql89/LxdLbS3ZEDdJrLvTtr3OWiEM7195++0P33/02FNzC38+MJ5/6eW5I4fOXLjxQRdG9179c5PynlzyyMFDb126HDGZzpnFYlsGTO0xvDXfT79yaOdszQp1NcA9D7V26qXt4jsf/vgzx55yLi8pKgUchVyVuIpEXCAPhaHwQkxzWEQIu4JXTJQzoUZCz2lUKrcuvPKTP/WvDfX/nDj5sw+d2O9VvZOnn+s2QDLf9dbS6149kc2eePaB+lp9m/hx1VAblZWxPlOSvZFXtrda1eK9mL/bKOFurkOEDVlAJIpQEDPiwq8KnoKKgsMEJ76qaUxEBClS36YihWDEiBfXdD9ogNAytHzgQFVtIjJIif3bvS/86sbLrt9mnYanKkKI3sRQGHQMQ0WwCUlOlRwigNR21EbDZz5JGdLK5brRubO83Qn43IotCPzt//z7BOEHd2UrTScdizHaCEJ9aWd9z5H5jRXI0MDxz/5M79KRSo31HCR1W7/3/t//2z/4P3e//d1Dlv/mvZunAdw3OXL5/AdPPn54eY1IVikMD3zw1nQki2Lq3Wf6n1/eiYbi1AV8ZX6xN6epD+g02L3x7r3+rGzW3HgmgWAZer1Sz7Ewgpy2QNWug55Cd+BwjWbIhcu3Cv2TGuns3X0wYSaAv5kzlbnF+0J6Ja1vfbHUO3DaGk4JNbSXV4cKPa7NQctxeEFGQ225tFXbSqN6AvQsXLraLdSYoShQVWWgmUwJ+jisG9qgZGWK0iBWJrwgmKqohIU+VqFkHkCKoTJfUgSSUGVSilQXcoMU0QV3+EE0+ffH/+u3Undv3bjTlF5lY6a3L49dAAkgOIEDndIkF00FDfU/+hSXsL1t3924/8bmO4t+NQQ+0UFUdD7x+U9UtlZ7xvu6XNH0tqo7o0rMOZ15ZnBqeNcguj67XVwpdo/t2dqaHT+2+3DKD8on7XWbdrmlptKPcxTu7D/+xP7BY8sbF/rIhpoZSSSd/Xt61hul7790Lgrjj47szfbPN9tlTBUlUlStGv/YQ2bW2Hj1vViMwXAPIx2MMWYOiGo+KWhUUQqR7aKE0eP6CG2WNzWd3V64+h//078/d2lhZWn22rszTcb9tqcEYf/gyNjIZNVusAaptLM3bl5tVzZXKotlUVkJLtTrm0NaVyI5GLRrXYB2q5YqiYZUXYFW1EM1rKAkCgEGvQhSjDQEHUTsKFIIDSPmCSQIJWGQjxENYp0ogCCTAxK6vqkbhpEt9OYeA/FDa0274RbMZCo18tH4wAAqdNFEDk0lYjEIPV1Ld+9/Jgq5t729VHzvauX2vF22NCOL1NVi45f+1We9qJowudLyrVjcdgBWncWV5e798WzPLpTK7t8zXrSjC6+9njDt1//ur99/7W3Jsm+ef9nX07k4OHY6JtuYb9j3b399ZNQ8PHXUb6+GZXVoKCVa0VC+t6d7cIPCS5dfUuq6mRtu+JWNpVmsLxWe3asPDwOocLAjeIHTwA9CKIcIakjfcmxoEJ1LN6Tz5NSpwz/8/nebjXbDqT//wMcPPfDAd7/9Vw888fyhk5OFQt4O7AvnblTq6wmQvXzrZdfeprv3k0Ar5BPxmJGNDRqqH3a0tXNv9LIuleGEkgGA64pJpELQtqr1Bh4nNIRCQcyQIAilxHBDYF1ho0B0sGIyaNsOUJRIRJRzoHArnqRchnocIQ/QmPaicfpTmU+GshL1qSmqdEizS4tFLoRExpQ02TUOCOSVsF4p36su37fXA8RNrgwoKR/jroRz8drSs88+H4T1lILWNePwAx8d9e18oTcx1BfpGuuWpNl8+5XbP/XZ54f3H7Fbdj1sPvviF2W7sY7hxNihJXr53Ic/PrJnfE/36N+/8cODR/fnR3oQmFRCNLe58cF7Vx98/PDcEuo/W6nbje2SMJUM1lIRcZLPHq3+RT1m2DoEHheKliWi4wcGgSxmMNseSVhVHY2Rcq1qWtq+walHnn527trre/buP3rkWLfCdireNl+O5/prOKmzpdnt88PD4wYbgfno6NTHNS1EIIkj3Ny52yqux1kGiICQmKBYIzECXc67OPcIVCPGALYpjwdRzFAtgiyMVT+oadj3I4wkUzBSknERCA4DJjhWBFKhX4E+sKEGcUhxoOSTPpSJThtbioq5NGISpFS3GNG9w4JiErjVYv3q+vnVsCw43k1TwsAV1roRwivvXT94+OROY2vAiNXXKuUVew7e2f3sQ1YuE4VuV3ca48TgILx28HvZ4YEdb2Vq4MiVtxde+/F3R8xUYXK31jvRj5LzMxvt8vLGZv7MJ55sL92XqN9h5WJYXJ4ujx0cGUxP3NhuX19b96rBQL/Q+qyO12xWo3fvX8vFVya98ZB4Koaa6to+RjCj0rIbpCiJMLC42CDJVMGN5j/yia8kY9UDX/7XN773l4cfO5LpeXiLbHZ8RfPai5de3zPoT/YPMEE21xaOHPlUzNQxIcxrA+KrlKsIsUbImAP1AkZtipsYjEO5RQ2NRbVs2gh8C+IIYMiB1DUJANFJCoJAl3oEFGa3JJNIkZDHjYQInDYFMWxGUsfEjmmKibv6wiYjsJXr7494Pc5VDiJRZunjR0TN5V6juNq4s3Nrtbm+IesJLTlgDvrMK4hcR9bKAdmQsHLtasnSgDGcnMRMBm996y85CxmQe068mEkljKR68uAzlHbHLL9WLB579PNOZa0pWzsb9ub8tU278XM/+cW33/6zle03Hur9txtdMK4X2muNodTwldiGpgkKw3KllKLJ3tzY7atv+q1KJdz98qvf/+DWzaDc+LW43pvKEiUP2kGAKxQ6vogDrR4PJaYDKEDwd//LHxWb04yRZCKsLDR/8Vd/GjjtdHaqw6IGc9c/vOW2FjJ9Wc3KZFP9No8iSAyQUWgnDjI8aNslf+6d8/JWJwYUSwcJ3K0QoYMsJAFgHiaUu0BTKKLUD20qNaoiomDOoKJbUEJJOOJMoarEMOIwElHMigsRRUGDkjiTBlaUsN3QLCIBdapbLEqaJsXCh5MjkIHIcYqL25v1hdnG7eWoESc0oaUUrFApal6thmHixU9GtBSLF175l7/p74oXenK9mUJgsuJ6LZbKRjJx8eIrpw4fYdTZu+fJ/OSeRn3DWadVf7u9dWtiZOheY+f0wGPl9TcxGtDU7eUd52jPgOztXbx8ucJTVy686QO47/BIqRlZEXrwwY/N3ng1HletbOw73zt3d3mDMzakGX+476txT0ApkJIiIEDAEICbGNejOgUKPHl0//JmtVNr9nRp/+FnP3fokYdJYCYyiQbE7730D5uV9UdPnLX0QteAIUEyHkslrDhQkO0FnfIaavG3/+pb4baXbcbjCkipKU1NYe6aOI4o0nTOAhRIrEpBVQQ5gChNUIQAhYQBACXSFU0wgRXFaNWCWMwjMAYti9ltzluEG5ER56JBfUVIgYgQLtNT3TzswKlBaYe81WiXKsu12U2ntNWuQ4XqwFeVDIw8I6V3WtGqdN0Hxx/5zKd+8zd+Po1ogOynH3qy2to0aV/vwK7Rkyf9tao+2X3xzVfraxvX7rwPQuf0gae0eNg/dRjF+lC4k+zqbS40uD9TbrUVZIwOjW0tXp8486y9uhzpte99597t2YXdhwcff+QnXvne15oOfPKh/e988E6nod5bveX5QhHk+FT+W3/2zY3/eR/X71NRwLiGJOA4R5SW5KbPGUznemMmevapp/YNZnZNHu/tUncUlqZ9UMA1e7k9fWOscDjem5Es5MjMqGpkqPV6h0LMpAdaYun75+7+6OJwfLQnLrgfT2o8F+9y6lC1FMEaUMq4ZUR+GtNQVfRIcAIRwZTLiIg8MRzGDEE6XErhalYCBgGlMhCUSBFg3Yr8NokQNWJR6CmGwRmDjob3GCJUiOc3iltrO6WF6sVi0Nb0DPEVpLk6ysVxy5WazTt+In72b/+vv/yD/5rv1ggpCG0yY9wMQnbxxpWx/r7tZTuu+f0j+5M9JzuYl5bvT44deem7/zLSpQ4esARP9WRPgWBn8tSZ2Zu333j5W2cfS6e7nu5H1r3KIvfg3PKd6btvzs4Evb36vr79W344u7F+8sS4pYz8n3/8cyAjGUVEB+f/5vf6Rs6E5Wzpt/6aC2YQLEROIUxGHBAuZRL98i9/oS+7+/Bg70T3lKLUS/W6EiIU1jwRGiRhpAbjk5Zu5ue2SpEEDsQyIjGjK0Ka60i7HqlmnkAIpQxcwzCJArKhaAGlIwEDPK5pXRFLR74AEodAKAIgAyEgJTR9tA0BELiBVE1KyakrFYE0FyOoZzMcMBAAXU/q+R5EOaQKEIAhRY6mAYqzplNZXV0qzmw3bpfsQIXdMS4thWRpKqUTqqQVJlSR1C196dJsvVguztVisb5CNC1Yq9ro7O8dtIu+wqQI4cLi0r98/8/vnvvOzI3vvPzN/96fKO8+qZaXVJWU15a++877P5y7dttltRe/8tWl5frsu29duP+NbK8ZNaIkSc3OeG4QHd0zefjJnKvY2ZwBfPuTn3v+k0/9G8Dp8bHCd//3zxQGBxCWyV7P/MRPtyV05U7ES35EAqALmXSjFrn29sWPfny3buSgLlTcHRncbsmIUiarHhNY6TdEPwD1iYmpbKanXN6mGEMRhk6AwximdnVpJZPo1gQEAjG/jg0G2RDVypIJQJAMETEiYEGgCAwoSmpuxVMtHWKuUIUjnUoVSsCFrlqQhwQIA8Ydp1pRFEuEvFWrGW5Dpd1UFwgSdWQggAFb2QxKzZ3aVqVV33a9mIVU4CbMHsgdCOKKInc6bUvX4zEQPv7srVsXx3q7M0OHZGNmvrjuk3BgZDhhDFu63XCD+fmFwZGhyFxOZDKFnkc03HflyrvBu8V2fc1pDVp92cE+HRKkwa5OdWN48Mkbd86VLixaWtYWqIPDStgZzWsfeeisn+yNZBEGdjpjRev3P/vM4amBE8f3HB4Z3gMVq8PY+vLs+OldpdeUkPURySBuIUk5bhNpEBKnf/JHr3/kodKXPvcZxYg7nTaXYRR5KrIqlaphxQQOVSuX8UVxayNlEq9ddXHcd12/FaDN0ur8dBfLBdCLqxRBLfBVqc8bYgwhnxAbSLPdqup6FvEEgBGJIjMe932AFY6RBWkoucEhd4KWiXTdpIFsM1+FHEoKqQ6ctgh0M+zsaPE+mTRIaKNKuV0sViv1Tbu4Ya+b6pBJXZXgpK4DrgEQi8LGUKpLRqQVhv17u2bLAMenkvl8d2GXNrvUqt7zK02ZJrre1Zu3ciO7FQjjJTLWZ2JjIKGbE4e7EyA/N3f5zR+/OhTGXL2ezNyrN5cGkt3J1IG+7sFWuxSUy/mJh6Zf+/bhwwf29GKqm1fvLc/fvnH6ofGBsT07UVyG3tjoQ+munOu0QqK3N7eSsXBdxHK/+Gh0LWq88UbEHQBSRHTDwEEnD45P7RvbWNsOIVBI5DQ3eAdpsURTg0x3AfSitl0tlT0mMpls2xMBVxtNJ8QB9ML1pXnbtkUAOXRhmFMx102GheYJh3Hd97oAEHoshwn2QhsQRWKNcY4wIAhLAhQtybiNoKfqSSwgpBa2CUqqyEBBrcR9lu7OGVDQkQGSS1MhUa1pr2227cpae7UWVbNWKhOHaTOjSMvvCCgMhdqqllFpjcYUBJDVRxSj5/bceUtXEvmebK5ne3k9P3Jo4ODD6fHdXQNdarCaVKoP7D3RIwt+/V5t5769ubiwdl/pzrz41Z8PeKdd36htLeZNCwRhnsIER6lsnMRDV6j5/MTcYml5esbh6ZK32ZM39/buffP9izwu3ru48Kff/P5G5TYw6c5O5fVz71WqrUuvfvDS9/+rtk/t/3cvZk49FR/QXGrX6AqisdyLz+791GceY8INhZUdSKpxxRYoQaN0MpXrBo7uZSxTahGWJPS9ta2G13TtLdypLC9cmU7ShBkH3UZaj0tNGY2EBsCgDI0IQKL4nnB9N1QI1qgmmB9xBBHXqYyEL1gggAASEO6rBgTSdps7QFVFzQu5j7EFqBoqgAwPqt05WHeA41XmV3aq1dVyucPLcUWzINUgQK6pUy2mM03hIhJhW9bbfUoHZWIJBaUImB0cHFLNbHFlNdbXd/DRx7HJ8E7VMiPWWhwbHh8d7DFQs0xuSTc5d38nNfjI4QcfszqBCDt7hnsffeSFOCX1ja244e94H5pxlxSbke1YQU9p4yqBbH6nSRP08NSeBx987NVv/SDG/JXlnWSuuloJ/vb7t0InF4sCRduJnGjXcPWjT74QqHUxpolPjv5zplP8yMRf1FZRsx3lMrtGhs8owHLbDcCMhE7d4qxFtInCYEYvWMCM/Ii3/IWNren7xVBFK8u3t7dnL79+lYSZJMoaghNicl73ZIlFMQZ3QMKHoB6Fig0Mqsl2GIUSNANb8hACGQABRRYI5rUrCCksslDgcMXUNEyoj4RnSYskLUUqxtiUBBLYIvJqjcWFeqO8ULzdlg1LS1i6YRopTdGw0YopGCGsooQBs91d6Twx1IRhmPHumBw59NDNy7cwwb35QYh4z75DnPWFCE/fvNYodyyKRNMvF5fcVqJA+bHBfdIWOouUVMGyUSbXdf3a1Ss37w10jahkWFX25lM5NaabRiyf8Q4N5sZ7R/v6BmqeH8r4dqlE4l4EVL2TefmVd2y7KT2qxgbrKP/o2U/HC3lO0gqONCUikWtq9Wc+/fEFsbP7k8+hb33z+zfvLYpwSTP8qne9vFVvcjtpDQVMKMIHiuQiohR4JBGyOlI71dmKXdz0GouLC/d5Z56gQFHjXkgpykRciVhD4vg63bpNituKs6EEy4A3QNTgHCu4ZftQmDyUQViTDte4BiSPuHDaHIgQgcj3BBSSYY5iSZDPCdcWzY63ea+ytlNq3p9vbQFDSyomkCG0hcqIBZW0QXW1J65mCfZ1La5SZBo5g+skyq5OF2O9BS+qNGdnW82gXiyJtjI80R9L9A/2HKzvVFaWpqmJ8nufyDiZg4f3ZDODB0ayUWgGWzMha5pEJrBd3mz86Ec/dJEntxZrtemGw9N6Aqso3/dkaef+px49Rv3t6vrM66++0eZ075HhoXFWruwc2jX42U9/rCNCr8GqAUcGSmZ2RzrqUL9RKW6sVYG77GyHZ47vR1vF9X95/S2KKA/zCt3d7jR3FjrC7nS8etVj7XZrabniqtmlpTmn4mZj/dku0Ds2vnx5eYwlkBYzJGUQcIRwWsDQ5qr1f/zl15fnNnL4n6Ob78OZHzauvu2sXYpuXWyub4nKjr/uizrzcUiDIADcsVno6hZRkQ8iSAGQVgwM9KopTUrO1tZ2Fm+3N7er7UqVAUMVOooZBs7pVsbqU0wDyRgL45YRYJZN6H0aRCrXUlkkZczS0Pb5WiyGPvXM01//3t9dff99jGMh63i+NPPYa9rF1qbfQqqS0pzt0SF1c3plbf7ldEaplwmg1oXZtzdrS0Yi/x///ZOf/dLjWNpmn9nf89SRyREDm5qezQ6Pjo8MZ2JjG/fvT19ddmznwcdO7tv/6I3VjSOHD519Ym9h9wnpsb79I2v3S3Nzy9vNsF5rcAfbvGb0ZCJV//kvfyRs1Miv/dJT//Ste1LkKnZVIY12ayuTS9OMrfiGorhlbwV46dv3ljq+eu3Km9zD3ZlsUsDifHtcQaqEHQTzVPNizelFEfbbP0RlS3KeHZwvNYGKW5tLCbX7Rul2m7u7MD+qTJ1M92ZJP4Q2CBSkBgQHJLLCsI2w6UiU2D0gHIHrzYgDv7rt2Z3Ar234W4qqY65wRLqMOItCRTUgCyycRDrSkGHXRbab+b5nKH2uEllWmvudilt2a2a0IHr2P/7loSPnzr/2w7df/+q/+vlUP4hLfXAo7rVPF9urTn3LiPfWa9sLq9e26vrEip/L+Ag8mJ2/L2lI0fDMvZZK2qO9x2DljozXkJtt1Ltr98Pf/b3fGh/vuvjmJWP86GuXXuYAxB0bemzmg9cePDvy2INfRiSo3VvIjY9Brfu9l//p059+YKO43jMVKHrk2NzeRsuVYrDegC997W9VUaOxTMdz/brjUtxvwWSmj+OmaQ1vFcsSKIsLl3wZvfXWxZnlzaN7TshKPV8MkshwU2gPGDaySMnrVzvyttdIxHt9WbRtXi6tBFHQqG7qWsxzGhYDAzT3y2MD3XQwSScoh5rl4kCHMq5iYRpxPNRDFQ1EzKlW/UYLy3K7Bn3YLAcNRHQssW6IqJUjRlvHcaK0FZiTnCuUxvQY4xAZOpJMarpCFRaJVsur8Y07sr5zQOjZZFd2hKvalRuvv//WO5954WN7Dh5LF3JL538YajLZqJqWns6PtUvbr7/z483N4M/+5p/L1Z2Vmcv3FtbbjVbPYHp7q43CtaHR8XBDf+/CHRk1ydDE+9feycXyYyPD1VJlobEqVPGXv/6ftmxuw+rY1NNCBjPvf+PMT/wb7AFpt/7iV34bMxzgoKe/L79LP3TkE82WJ2VZJ3GCVLNcE1NdyBWgXF3OdedEB7XVDCD59bLt+n5SjRUGxmRj++c+/eLrF869e+HqbjcNNCPqie3UlvREonfywMXp6enAGR0eLNUW2tV2o7meiKfsZhki5HYqRJI0jO9RzLmq0zKKParerSl6kOawxSTo3X82xEIYNCw3UbXJ3YbdKIUcNCJXEheDJAKOZkQUE2i4MT0OuVBAAeIIyqSqABIzdBKPGEPQh1zjwKMEukGLAJpxQDh+wlTBd/7wfz38U08/99wXY/HuV7733UhUxqaejvXvdUqz8x3aHbG377yWphBKkUkgWVmOKemlnfDOwkx/PjY7e+PM8U9vLe+AZnjv5jps1B/8j79U2qkM7dsjmrUPf/AawIricQmgU18eGX4Od5shbFJ7++mf+iXJksVWcXtuc//xsfCi63YcOV9em2HLL/0RUUA7qrY7EQJtN/L5VstiPAaz2tzcSt3nbR4Ud1ZRdJuwlUvXvrF4f2a9nhI0Z7h00kseTBxteJELmg4p+Lv6Xr7+aiWRTcXipWqzvTOvpnLpQvdOuRaEPGbEIISYkprivdRauFi3bRdKYkssd5zGwNTjQyeedi0aNlpajTdWluvlxUbVq9rhtr+GMBAMmVBRKdSw1GV3XO1ThaZjjBVu0nQ8R+O5QakT7kZ6PhGhKMQMAmV+aT0Q8y4wCSGNS7f4+tLxjz759ls//M//7ucHRibPfOzpS+/eu/La360uNet2sz/Rteh2Ly35X3/r9odLzqYj17Y/XN5Y7Bni7QBFsH78zBNWQt69s3b4sY9ne/LpZMKKcLpXGeNi+517vUq3CcRAMt4Htda2n6SKqG1GVSKtI6WVuYqzYyXCV9965eWZpX1nD/YW0LiZHYv1DEGY89N5mU8TSoApVBrTqHjz/BuIxPM5Sni8Wlqf2H169vq3BofP2uzDb3z7jb6+wX35ru2rixNklMuNdi7a8L2hfSdmGrW2yFXmzx84eGph9R5NT1SWrzmO7/suoSjCQE8OM7fccaoEo4IS91FQq/pPPP0spAkufNFyFdJxGo1aa4U7whGNJivpSSW0DUTcOM7oGqa0z8QqpixCUoVx3wGGbhCjSZVhQLEaS6KUyct2VKOBshN4AaAOYQeRaFBkJu76/NG9l//uT1rSyA/F/ttv/KevfPGzh596Yuat91DmUm93erW+lUbWE8+c7Z0zcqq+1gTpPY8svncxPnrkgUNhuXK/UVvp1p8MVQ3T4Mnnf7rWwxrfWX3+yWf/7m/+R5eaCKkXF7oQgUPEy1+/vHGb/+T//A9b7RWKbZEazvUn33i55CL/2TO7ep4/Qn9TbJOZgsN8Yxgr6nLTsxJ59OqF841S5Y3zb6rArC5dCFxyZW0Jq/LNH33t6vV6rdbZN3j0ubOPz91YufvmUi40M7pRMsCtUmU78K/ee1PVRP/u4d37TlRK637Tby3OeMJXTL2rb1BVTR602q1t12mFIctTDQPvy4e+/Lknf57Ek1GwLb1OVFlpzK572zvtVrHu1zrIBtD2fGbq0kJ6OpZDwNZ5AhM1DAmFIHKFldYIJUjt40niQCfsuKy1s7A+E+F64LkQSOB2Ud1J9GQm04UXXvnFdGi/8OLPJYwoG+syTe3v//Ifb527ld3VV17YLK6UhAIyXUILxLn35j0zaanNO1WZ33c20T3k+Ztd+SHJDK60Wl5zZfrdpncj3cDZR7I3X/+eYXuDihIXIAP0jIgVFGMoVdhZvLv95oXh7JAqjEJKK805b57780dPHnz4Y8/D0MwdLyRdXcVJgmXolw0E1NCAA2PDx0b29g7p99dW+qzsrvGuXZNHhDfXaWm93T1CVe/PLzU9dvvtS3iZ5U1K+rrOVYsz23NHTz1Y7oTjo3vqO6WZhbd2j5z0Qz/wzHJ9mrU5IQhquNFoAt+OgL+H9H3nmT8Y7sogXRUBBmG9vFDszqrlzWIn8LBGfGb5aImIUAoc17JEDXSUpiSLqQQQcxDASOMgMLtTqpqOhIeYEko/rDlSuLV20VL1gJJUrEuGwg4glA0aM0OSKvzWg5te+c7Vyzfv39xcvW+33Xh/12uvfXBwbPfAcIp0dvon9kFadVzn2nJ07EBXl0cnHnzi+uUbSSPp1OeSoB2BaNfUIb9Teevc9RP7Ro5+9Od2/vbqjfP3wkYLqVAgAhmKCEPcr/ptDyFFZV/6//6KfmR0o4Qb7K4P8fEDR+ub9UrbVgSv/dGbnY21MAhs3gmjlM924LOf+qjKmaamEn599MDRrE4Wluf3ZfqhVouwnh0aC4JJmlrloj+paEtLmz+68r0b5+dLjZXJg6eyXaMb/3dB8B20/ZoXBv26vlf/1fu+n/r2855etrLLLrC0EBYIJbIGMSo4RI1jZjKOmRCjo8k4cY3+4YDOwEw0jBmxEEpUhAwunQ1l2YVt7J49Z08/b3vep9ztV65+ff18Hnzp2Sc+QECAvPv7v/UzOJA5hZu3707be0Ca7e4eyfE3P/Yz33D3aWNUAY+STS9vc1kjbpKf4uyvgADyzCWdRdNYikaxU1TrVtYImQSqjlaYAjQyeV33KiUUptvff7cyOsZw/nijVVm0LREVUIHTRpycTnsPKmQHr23c8N1z/UL3zldf+eLVF9Y79ue/96cnN44/98Ybvek+9tEXN+/sblw/feb9d3/7//vKD3zfc0N4XPCpFvro3nxwdfktT97Yn+/vvPSBZl784Vd+YRemf+3bfvL8lz5z9s6Z9t4iEmgDf127k8zkRK5CimvHknQ//tM/efDsdcfyY0cuLs+lajWf2A46KJ/9B7/+8PzlhTxI9NGRvAZ/+zu//9s//L405b2B+XJH8nz7Bv/y7ouPp6y6w4D17dv+2p3ve/59z1575sYP/vXv/m//6//u//zVX/qHf+fv3n/nq2+//tnpikXXPvGh23/0e/9sOD9/4UMfamsyPbo/2fHq/NWv/tCvPP7hX/7Ye57SK72druY33p3+/GvZvb3fvh7LeDXYQYHK0nvZmfXx0UoZVouurqKWhjCtm7p+8hqWBFUny0ocLTBDDsUNa8XYNGXrw2pRCa4HN4AQIXt67druKgghyt65MF0vlJarP/2N/5XUB4zegv345Ieeu392mbaRRvP2y9u7t28e32y//tU/PdTba8tZ+pOvfekrib+x3g7HKu3peObTP/0nn2TN669/5Y3bjCv25tnjN+p8pVeqFtWyZw3eAWENTyvSHbCT4xpbCP/yH/50C1XDxZHJLz3z1PWDxY2T0+amkifVh/7B9zteMZc/cvOF9x7fAnp0wxIzm3Xbrd699+oX77/xW3/4mXfPNg/s8Orr9x6uL65ma6eLmGLdLoa5KFjdPjj4zu/+np/95N+7ePfNcf/WxfbN/+d/+sUS1x/81r+yefR1iCLC/Mvf+I83P/E7T9wx+smjMNnptUd0OxVirsL5Lo6DJ/PcRHFKgItKL5ddLW9UOmjayJpTw6WsOEdmVjghW63UwSlbGS5ZtL4E69ePQ0brrwRkrqlq6/7oRgIgYhm3Q0pXMU+EtRxnaxS3psH8xc//H+99qn7m+Mhdnb3vPU/furN44ZlTWedf/M3f/vrl2eLomY985/d+/Xz5xHM3wVTPPvsBpccPf/gTL9+Dm4fmP/wb/8j6Z/Pq7pfe8TfvfnsXF0x0cRMrA8VOiyov9LEyCBXj1W4lT27qZ/p0+IWf+5QEZbdzdPvlqg60DZv1uMdyLH74H/0H73vyqSZfA9LDvbPX3np4f6GWFWsSN9MWVvI9mPTDh9svv/7gjz/3mVfO00hpYNXjcf31h/dfeee1z/zJ56JekFz/J3/zJ5J1L3/+05D90fLF+y9/4evv3vvrp9/67r/+83/5xffolcELP7/8Ju52+/U708XD7eWrhSSfXRH1jNkACEZlwQoLz6ogEXrBFGeZCsWI7MGTVHHZr1BSJ2h8vEtu8Nsx5TxNoT++xmSn2iNtGsKi5BXQIoxpThYluiLZWHqFu3n5Gu0PcF/+6FOf72/kG+1NMW9+5Lu+8YVnVlKRF186+fxn33zrbPOrv/HHH/mGj6/HdhPf/Omf/vlbL338y+dfvtPO8/rNqv3iUT9w+pih/NQ/+71ILYBQWlEAKTkib4jWpVli2+D1la51IAdMDH9yjztyfXVjvCJ/9uqrFR3N8QulHIRhLE8s7cn1hzN7cHlGf/Lv/2fbS9jHd4zCRZQbba/x5sG797OhQ/ar9s6HPvxtN2/czD42/Z3+CPf2sT1bw7oSosn2lR//Bz9pB9ssl9N6f/v41i9980/dag+XCwieTvsHeUvK1f09pTpcjqQSmoxTqXXRLeX5dvYXVDEJC8ZM3YipXGh24tyopaFCIaexZmQ/NPqAHrTFBxI8gA/7fSExkSOuk8GWLur9/qrmgFvI4LyjplGRegjeebP/yMOL6mEw9k8/94XX3nrj3FcHhyerI7x5+P5X7r0iWogD/uqnP5fD7t/60R+83Myvf+3BJ/+Lv/VHnzt7/7Ory3sP/O6rT3/Dxxteff63f/2Z53/ki/f+hfyyPL3HTpZHdj9QTWjWAJzTpJTJLgRkwuSSNWW5hIZo8R2/8ONeoSB5k1vE+g9+96svPvWahpe2dv+nf+/XHzz8I/rt3/bXXnzv3ZWZr/bT4OaXnvvIbv/WfpeZEm+/9ki2+enrz8uue+ftS2La7/nYd/QLntG+8fmv1BT6W6dn9z77n3/yn65Wz2X39qd/+H+7pZokXcv51VvbzeO3jHDzZDi1gY0gVlwBI1bCCpEzpgvZ1VqEjIr1iVrBa9YbFqgPk2SsqI53BkYfjKJagZb+4qI9OnWXl3RyySV9oIDzBIQUuHzjreOTm0UiejaPD7Q6LLJ2h/G11ZeCyFQ+/ou/OPv9z/5GJEf3r8I+pW/73ucp1m8+fOPp7vm//LEXP/3prx1c2739+OLFZ775tS/cu/3R29fuPv2Rl154/Pp6ePW3H1tRpvvf/A3fl8rjBz/zqlYHtdCp1IxMkDKwNhfT1bvoblO5A7ik/gmshxAF4fzoRz98+995IXnzB1985ehm/b/8k1/+9/7GD7ircihoZcLn/vkX6Ld/+3deu/nEiy99gJS4vbx3fOe7brz4xP/wX/5Hy+WpNqvFjRO3P3/5q18Nfrr34OK5F176xPf86JPPnG4e3v/jr/z+D3zoEzC/87f/m//quL/xz5/7ux98/oM2Td4XOF8P40M3xQS0cCXAxwyggCQp6cwFq6uqYKUUI547kpkUdVsI1NRUKQZTcLJb2fdUahZI4hWlkQGPIdGVzJdDdkXVNF3O6voyUbY7e9xJjkwCAoSQciCqB5c+dfpr9szxI7/LV28/2F8NOyRhs5ldEZfKvP/Z524cmH3cf+ADH3381YuNsse63UT3a//yd//qJ751s1t3m/ozX3/1fbeOHnztnZOr1Wll7jbXGlORkCu+FK0nnhq1Cl5IwUtmwAIDCNlzaBUAxnoE+vr08g/8X39LVjxTOmP15Xce3T7p7v3ZH9an1WLsdI18jBfO3161DTcmZPrKK3844cnR9VvPvnjr6sr3phsuXzk+Oj7fPBRgm+rWH/zJpzbbxfd+/Ce2F28P+7eeu3EqcvnZJ77/qevX3H5MfhNmm8Y5J5bFFeHXJUvIbAt1KbzqGcSTUgIwwZit+6ec3yxMPwQreJNTIIVyB5HtOMlxO4HE4GJ9Q8dcYKnELFMIQgnBYLx4UFVVnhJTqZY80UqCJVIOIS0PT8f11RvjxZfP3pi3+N4T887Dy8UK9KL64e/4obRumr7Nxry7Xl9tRnm8euON187Hq+J256+RD73w0Z/+5E+9ce/RR5+G3/nNX3jv4vr5F+/fnhYvnjwhUSgwujBjhFaNppK2HUVoZRKkTiRGVwshDEapuR1YtWLUi3pdfuXf/8f/5s/9/UGIeXz0LU8fffnlK1gcM5BwQIJd81vHdw+FZjVZLW+fr9XbD35nLNc/+MHvknV9euKzJ9dWf9WRcdqWrz37mdf+7OG3ft+3vXn+uc9+5Wuvv/bn9fMfvpj1J9/7Y9/8/Cc0k+sH79D02K6xCD4HIioTEyrFY6GUdkCyIivWFe+pMgteGcxZNlWcCvAYtWFSI5TMZh5MnBLvdcpUGxmnLeFdmTLhjCWagfjNhWI8JAcelezs1bS8tko0+suInLir15MNlq7/4p35+eNnz95+9/Cw+3f/2o/xy7vlMr75x2+mO6vygrhz/e71oytx3bTkWr5Nintld2vueYtv/cFtXrcxwVv9/s1XPnj0dIVkIfVSnTLMlMhFj7I0qjZxE71oKuXTJKtWelAshjknrbSg1FlO89AbcfHmQ9yVVKGl5uVXXn/ixuHgTo3h/vLMVXfoJ37o+28/de2wP0r8o9Wh/79/5efv3Z/+4//0p/zl2bKFi8t7u0fr07u34ma9ni7WwVztzpdZvProjVuH5fmbd7/p68vvqJ7hUm7Oz+NsC0Xnzx3cVBI88UupsbRKWSEYIV53K076TD0zmua1FAdTmJv2wDFSEZ4pYIoMkfBmd+9lohZcxXSxVYdHoq5ZVxMjx4udinS4eqQSDsP58vSZIikmz6gat5dKMI8lFSPSJpFQLbS48YJ6/2r75/fy1iG/ig9b58OGrO9t7j/5Dd/02Vd+3a+3F5vJLOTzH/mWd1/bLF8K7/nB73Kj/OrP/qJy/QkXSxJGCgdqJcsB4Zuad4FgJRqicppTdpHxpRSZsEvMXLB6nkXigQPPkztP98I8iRbfc+svDX/zA/YZyBdfVMs7dpR37pLdZfza1+7Tb3rfX/rox/+NJ46r1998fXXr9m996pfP7j9cLJ772F/5scN26pvDqzdfWzlrN5s65hv02dXiOASu6cXT1VNdcSzg7tE95cNm2owkF9LYdLbQtyjZdnzBFFfqoOBQVYsciziqOTEkgsetMoSIBfpCgiNSFc25z4VmVvjg9royZA7q5nG4f4EEVd8FqfzlVdXWJfowz946GQGWOqXU6NYSzyOjBPNkc9lPE5NGI231Qoart4AeDc47F7qjhK5imjk3Xlyc86oNiQ/uMonLPAhh9HT7Gj87e+oDT22/Zpt8lQkx1QGfApWYSu6kZ+agzJVQMRTs2oUb5wJTRBS1ZCVgbNzMIGfrt6UoO29mPj1z40CtnrJY/7+Xv/t9/+MPlUy/9PrFSy/crsBcnr3Fw3w1Pd4cfeOH1pfnuHnj+PTF+w/Okj3fv/I7ff38U08cvZdf67LSZehBni65j4wKTnA1PJ7G6YrHdcj8sXNDeKC7k6oUo29Aiov6tqo5RUoo9gcnmVASrJQKx5gqYHIpFPhNZI0mRlOgycfEkRSeKt6ba3G+YhriO5fQy4AsK8JKqA4rF71IJGfNJIqW0sSZURkBB5GVKy4PV7vqupF5ap69S149vyhekVZJctj3w/qs1UeeTrn43hg4vkN8KHRckANommiAxSpcoZCLg2nZcmA1l8wUkkBJF6iGx7o+zFHqQx0s1FQOdmMaTeIhOhu3AjmNecLSgJlrVhUkxqyO6YHsr0ndJTu3O3z8YCRU3L5z8vb98aVrcOPomH883qjOF7eRTZamqX5K3H7pZB23V+/Z3XySdE+f9XLRm6UZ5pc1EfPjiLxhyXm/TeHR5bZxYhtjTHM8XDyZHR4sj5gYJD8GwFyK0FqZNiKSxEgUwdqiV3QOdtqJa3eKvEzjVohaakWsI9HTSlFXfJdJrElmBTeMZFNkuLDqSNN6xd66HynmKdQyDT43TZP9WAQjNMY80bqqdetnx/nx9O4jKlkremIeFKZKvOr7pYtUwoHLgcJUCcxQaHVLDkPfn6bEttP+QPLpxl32aMuboslBFlgLOsxZKKxaUeiS0YFRXXeLnMYWujCpmDnrAriZQtb89OpsEmzJpXVxaqpnUA/CLFwmZXgYB/w7P/Jv/9xv/lrX9pLz4f6XDl58iX724/990LdvftOz+7c+W59eD3+xaU4at/GHJ9dGP9jHrlaapIThsPi3U7icUg6RDsmuDNu70LXtQqwyOiO1oEwokYFwdsorl0tSysxRaONoZshoFFraOWAqKWjTFS4QM4uOJyhth7QQzcg4RxsV5zGXBEizwDSY5jjmKYfZ76xqevTniUbBl0AkQ58yD2FEbTjmUkS7KOFC2bxWqpIn7fatK92alLexKNl3ZZtkpZOdsqe8SX7neVPVfUuQ2vGSIKma42G45LLOfgDKkJXsuDSA44h1HcbctG2Msx3C6mjpJss57tf79niBbh5SZDkJogjPUC8MMygldPX+wVnakk/f/60/Pvvs4rmnPvEv/ufdl15e/6t/9ZEf/EH6hY//TKfp3ByeXjNxFjrzvJ0IKXbE5DmHC4xiM0wOgqm4DyNXTNPW2tA3hwomznpgPmbR9XXghUwEmey6mtU5e2bjrPqexFx8gpzlURu2VtBUIqNdCjNnuSBxRdaS0CIQjSal0BlFpfLofAjVqo42ZkE4FrffussrwXRMTvCmPTn03maKNFE6bdjprZKGYik4CmzD1BLahV9vmY4kClfmEKSqsZI6TW67H40w3GDMOO/i4rTGnLiu9yLxcyI1LSGoBkiSkfpiE5Calq1aHM1uUmYZt5d8IfNUwrjmjDIhRNMNVw8LOaxbkSmUOaqDjhLgy9rtbdq44fzqD9/6Dcucjfk7b71w8/r7f/5z/7uokF9dbAZS334inr8Zwk5VvIhUdrNl1Dmkk7XLDkjHV9h2XZrDgsI1HsNqmYCaxHl3tCARUOyl7DkpBaxqFjT6pCkrXBMjXPbZE5ZFW40P1vq0JUVlh8JHRhGZdZEhFiSUe0JE4pnkA5PmiEDoSoV31rQywEVyk5QhFUlaycOO83qa9qRwXTW5DLQ/TPOWd5XK2csC7a0yz+gmbnoSLnNMFeMKkBXmdxkLmE76kQiQmqb6QM8M+U4SVdSQkBdHjGI0ZMIDUhAkx8h2IBsyDd5GRneZ0nDJibSiOiR560caSWLiRBoFmSAN8nBJacaY7YWjkXjnkNO+rkWkJ8Ye9O/NtK3x6KgAX3t30k0XW1EKEqztxqouMqKYUkvlD/QipUorbEWxkXa1oTyJ0qa2ArfpmwaJjobXRboS44iy66DARJmYBGaHMY0i1qoKU5lLrFZNdgk4ozFD3dIU45owUQQBJgWRJPkUhVSEpWwp4WC9TUFMBRoNZqTjCa/OaB5A9dZC1zVxytYPtWqcvdLdAlOV2Jrpdj7f133jY+ZpRt4QSG6/rYxIQuJuTQVnhBs5lbQigk3T3MpDuBHREsU1JzjnzCXkrJLZp8lXbe/9zEQY13FxWCOhBVVKa45dokGzNtRjibbtloQEwjqWafIxZ8IyKTSFuC324XY0vDJ4dX5j8aLploFqBVpVAXQJyEt2jpSZuKuulTW0hksJvIJV3RjT5KZuoV4keiuClpWWB5L4meWDnDuSeAkZa2Ccy4W2OZ+HGaUqJNOupquqMR2NUfJcHS65MdkTv9+7mNPOMqBEcVEteM5pZ0kSAEwV3EwTEZyozIqoDhcpOtCEqeMi9kJQ66tCA6+BxVCcZcl6b5ky45DLdIlkQaeZ8WTnDVcMfSkSCvdOxZBnJpUTMDs7jRhnyeS+JC9kJzoxbwAzpUSMaLOdMwIDhDxydpQQBG+xyPrEEFpb5wlBw48xaQlsCqIkWQgUwTOrIy8oDVctqVlih1Bs3s+p4Nbew4FWSh4f3KDS1dJfr64VB5ybkLxM4rwmhxyUVm7YxLppaqVCDv1qkbgiwGimh7co8CUhNCEFQUo764UhhFfEbC+vGilYo/KD7bLpaIlIAzqOqXgMBEAuqpIiZuSKYeJ1tn4uhigORZIwlNgeHcYcGAhSV9W75+mkTmeXueg0nVc3TzPjggshdMCgWITQgzZEo9ANlpidoWxicUzEyGy9L4iCaUYJBKoajiHytjmZ5/W0fmRAJqM4RuhdmJdmQTBg2gfFE9faWdF1XWQk01JCHKeTgxVaZ1HJHGlF2mFeCyYZAU/OGTcpOi1r0CLNIJYmjrPhzFpE4vk+l3i/8EIZpwlp4IXZA3q3re9Q2l4+XJ8s2ivHoDenFdQGIdsROdluaVWtBDGUMaN59jRml3YhuCS4A9kSbriAijCCdd5SjNwX0i1a2hiGuW5qtTApZ2CCABWJKggMSLZ+vP+YCZJLYVyPu8wPOoJI9SobXgWKw1gUp5q5/Q4rGe49sPuQvBNdK3it6h5rHioRUgDTF2ZicRlaIQ01vTQCYkUFAapynrhUwFAAkhhjsLvNphCK475mrQFJaSVVBtnnWFPmQiCzd1CJlFlKlmPIfg4kFBpctEavUwpUVEC0oBDsBFoD1TkHrntRAaUNAKOJ6EWPlxmczFlySTmSxGSWyQ0Xxe62DqgZK66vLQ5Fj5QlrQNDShBBE2NMLOqGJKeFLBd110AvlQRwjGGkjgMIY2qDw04W70VCdOh6MDWNJIUpa5r2F55CLqoTLQt0MIsuEyi0BCOprrlpsZB+tUjzDB7cuBVtI3LY74eShzxj6A00FVifhrnsYt4MJYVCvbU75jETW2yAKRmpWNsVt1ctbRfH1Lk0ekZLon7aXnBZyV6xxUmMMWPx6CE52dGu72kivF+ipBl8DPvAZPFbmoAACqLrRk/zEKLDKP20DQPTUCCNtaiRVuNuPY42zIkiiqbtmo7qHBLFPc4XKWfMjABUORFSkSIw2RTGhJSl3Txu184+ypHO4Sw6rFs8un03YcWQB7dnzCEqUIC9vCl56Vfbqn0gMI3jZX/Ud/USpCgR2xWrBUHDGgVqR6b9mFyurCCzSy4oEvPaLlcNHWmaHlGtyFhjSAIYV0jsUCIpmIh3aMx2oJk5Ux+IOGduKkEIsAwlTW5OgQGnIbnhKtld9lm35vCpF2GhIWq24GF5hLWpRFudnFAuY8KL/RqUst5zIUyjsGARGB5cQM61abjDWAIrGpFl73G2UshMFdctpMCNcsUK1TACbj1Ti83BEZVS8gry2gVamPZpXXHDiaoNpyBBNcHFaUqQCWcY0MoDU68qkrinkpA5IgLn0EigKe4eiOrSDUTjTYcB09D0YqlfyLRVUFlnMZtUJKgFJwXDxLVuMjEd0WiqamW8tUxwpQ9UjfNACREqc9pWE51ZAtUv/OUOThcqT3mORUF4/LAST6IM2V5Afxp9ygmZL6ZpY/ZkP1AGOE29YRTp7LagVSkIRDEl+MM97VtmE1Popsdx8FkTBoqbbn/2dZErdbtQBLK/cMCwOEZFtoUbf7Q8RoYGVNjPDkFSktb7CEIr8IP1pWjFchymIcmKbs7ut6FhopGa26HN1JvFYRon1mm9XObsyt5HYrOmw6NyIEu0LhYV05mobqS4EYy5neN6KdiEYCRnupcRgIAWKgIHqlumZNqM1hNBplSc32Ot8zzTQJlSK8p5pSQKVmShO7YbH2tFJRUAVVsk5miB8DlrIRUVRFWLjByZ1s2KFKY7QYwmkVCHSdKwG+CQi/M1cXPgha9q0awmucWARNbp4RWQREukSxkwkJCoMSHTknDe7mPOQimgokFC5l0ZQumMlCKk2U6z3w0FZUZGCSMlHCyfrirCFMeMJYGoNKcScxFCUxsHRxgnCBwZEayIAuiKsG68PAdDBDcCo+n7pj5FKher6ynEnGjmBMRM+zoFJ1lF0VKjaKTIKKdeEHV8Y+XtEJMSANBfC+hB1rEEykCyFBzPheQScymUimDnLIDklAmmvfcOStiOGz5tdaHoxy2RY8bBl34Jq251IBiAMBnIYlETSikKoGWnAZbLAlF3jQw5EyB2SJQxZrjdBuhIESXxEuyluLGSEpGXZIGuFuKgMzWb7m/4UmtdClPoczAiFiAF4+VgH3pri4+FA3c0a92Gyyk4BE4deHl6PbvCjYr7fZnFdD7xhikOqm21bJjWgztn3QlKRmOQJfLLvahVKjLQGIEItFhyGVOaQtnzcb/NMXhwBCs/BobDlOWw24e8Z6h4z8nhEwz57io3/SHDZJhJnGbsQ3FyuQrzhFmS4HbTgKYRzAIQkanQDHIxSteqz4JQVQgEwohuGkpRVEwxGagKAxbrKJkZqyLGiFAyLbKz9iA6cSJL3QkqNa/NdLEGSjdWhVjT8hhcxKjdtMm0LUgwoSExZu65anktda3M1FAQnFK+vM42+1K1cqGE5qUkqGvroDQqz5IeH2MtM/WC81IXAEZYZSoQVGgleadkpWcb1fVeSlZ8pJcyFV8YYETifXQjq3ZhRqdsJVhpAgm84jJURKDIsRRBnFfubAdhwO02O89LwcLt7hxsoLUAsgyzTY5QsYFMM+k1h+WJGXaWCMTAizsvBSuIIUU/n4FRquaMRZ54tKOQmKEwahaaaeZyqphg+2kNBXzOgfEhBvQkp6SN0OYgZ9BaESdBZSGKZDFistsQ9nbYTdkWUmYp0TTvmrqNoPTiaSk6F0bGrd1eHelAhJNyyRkTZQAAQwuJQS9qoLo01SK5mAZWupaTXEZHJRMp0FazbnIPFUkBekPWE8coaC8whHeHvMu60fRAgSt5vhB1NXJSVyaBBUuR6+qwlDGwI01jVehUdkRIEjf79W7HWENytzzq3fqx55JFTG5fHS79PCVKaC4ssZj3TLHsGV9WZLJiacKESK04aNJ+DCQxQZGNaZyr42MXIzKeHmxktaCCxgCVPHV5NnUHPLH2rsWiEy1FExbjcIalD8mjIskDK0krIpgQZoWxVKLBiLJpkBZFZUqEgS2QcyTEGOeIMDL5lIMXzZ5RtSSbktuU4jSVRISh++XJMaEzctB5GdhVSJP3gNklRiFSnxlFkWYfMDgbJ5IFZkoVQqWFdWGMrAih23m/ww3Sd6VSTB91tQQuBEALZvZt2YeJdQWlG3YcJZOmyqzqGgFhF6MpXObJh1Kg1myXGUmcST8NbvCp+BRspdXhQYupmCduN0qDlrKrKNd11bFAKaNZMVX1OZGCLhEhb19DUjJanqrp8TTlh1UvaFG01IfX7iKHRisefHX9tCWueA6EIwt1uyAIJXIXpqquU0mM78HuS1ih2jHAQjwUrJoDoCIm2J2VVCC4ALIQggWwhMyAF0YZp4zxHAo4n9YXSGMq2W77q4ud4JkwDIEAI61s+0WveFuAUi0QxzSg5o6zuSQByUOyjZAJUk2yRZI5oQVqQpt4hWQsJfkqE+9dutriPs4m5AgpUns1pMHFyVEVuDwUMVedILT4UrdPIJ99cISWbUZPRR2mqWCURspjU2Y5piYODyLS5FJOjnB+cvO0u1kHqtTRomRCoVJtS7Swbpz3fp5t3Ezz+QVN2904ICU8zSWG/Sa73R4hSM0PTl5IzsiuBpaGOTCA7Eeiqs07m0QElpg5EkGi3ezszpGpWAjOR6rW5zYxWYSXdMW9EkQXEvZhmGIk1vKTKIAzDtETLCCyEjXNEBIuEbWbPWMkRFVIeXxv9gMHKoy8ttvGeTuViLroSjd1fU1UisQmjZ4gIWZOKEpWBXn2ETI+3u8mV15PQfvkfMLip8t771ANhKzBl6wIFYFwEE+eptHnJmlDtCrThKzq7Tan9RqwUqoGZpRE8sYcPE0sUdlSxwkTVatJoH67z+9iKWNdj+O2Gh6/bparmJIsrSMpEdCdjjlToshCIA2MCpwnN8dtyNN+sOc4paJk7cvItLGXW6MzpTlm8Inu11tZZS6pEj1xMVpCq4rxTJLzFLjSYTvmweW2ayXwLOVS5O0sS6oXtXfDeniYgiPtfru7YvQaeKikIU2lZ1VAFSKk4QjFxjX6mmbB8xxsogjzlmAeOM3XThsmss1fKfgYdEcNJlC0AkLV1bAnSiLYlEPwEVMd0kz5muYhliVHdmC0n+3NpYhcWQqVyNiv2oguOBGjJTEJJaBj1Lu2X6KgcdphglokzE5cr8qU0Y8lRkpVmpJYAh1nLlTxKXjV1rS4RCTRSQIbna/Wdp9FNP2Bvzw/PD6ligq6gsICWqFM0QJ9KYmDooz0kEYeHE9O3moQHZdRiOOipSB0fHDGeMq2mMOjIDKisjPRYKQgBQiPkFghrUzzgF1RSlDKpU2prvLsyBR129rJCiwE2eroBoaCuKzrAHxvmmXKgXDMRomCirKcc2IOaEV1LASKt4o1kVJRBlLi47NJiznQPcWls3Rv/cGhUgT6ekE5besFEMIh4cQSwRLG7CDRA9XssufAmdkPXtB91jxNkMNmnHOKVnIAJ0E0CimE7fjOu/N+BlooyaDaTAmtRC5YpkwZy6IhpoppIjLDEEStSKLOhmbBhhwYCkgqJzvOFalmRWDZrOp20d29k5D6UHjmIToSOEMUzuNUmJRoXSxWuqGJpADkYdzvdgwqYhLZbCRgVbeU0vb6MTDoOCjFhCa7+d157YQ2DkLGBJa0XRMuSfA5Zb/zO7+dCmEgxbyZGLJAxugoB8QsSyla1ZTKcTemMAKJjOpAZhdzoaAbk3NhoFkGEjHBUChNnoy7CSlPwfIYCrKqnW7cPAXSNKvl4DzlGlj0rlCqiSDeTS4kykOCISJDsQbnNqKJtShpCChKcLyqF6yAm8ARV1WdajkVx8AXteDWbYbLh25LlTF2A4Ibv/c4u7C7H7djxSIpvHDl5pngtPAYoqovCkmXYbNnykieDBomyOQtDamEIBUqAgqI6JdSlNnTxBU74v5yPV89ctNlpMPlMPqQUHOdl6CXBdtSwbzZABkZvVVGTdBZi+fnG1pbs+gPXmyi9JABQPBexXkqGRlnBIiinTSaTJMQHCuSfMhjMsuCM4l+ltT66DkApYmBJISUecMSqypOEqGZN8s++X3OCAjFaigD0BFk1nRTZEOYMg0rSQuslPIp+uXRrTQQOxYOjESwU4ACKUfGSnY6kUlTAzHHtE6Dn1W9ZVhXRnGcCsVFp6XUyZ2VifEKdF0SUW5kGoCJnb26gBLitJYl5JyE6qRZOE9M4alMrHC7Gyfh0/bMC1ccw3GXJ69Xct6OkHQjVCxASHFTiorSuitbX/RCd6bkgI92lBCki4SZFM15qhqVZ8fzmeoqCIUmurv3yMaA5JwdiZlQH/cHq2OGBFKIUYqi1KKapw1Y59dONUW2SiJSiCRlQJUDAecIi8hbEjkVN5mceW10S7gQFYcIiFlk4jmrKWGqUQBAKLEOi7eBYp6vwsC8T0LymCFtr3IyDFUkx66sc1RGdNFHs+plZbJH64Y8CBv3vLhdokU/0HpZWMMN3bl8nWdNsu6bBdTZzoAarR/K7D1Sxmbp6iREq+UwXIa+llEwk70bJVE5+8kWFcbaMDqpiW/8Pnenom4PgWbiiq8DTkIdrOY07i9DY2TxXnY1+rX3RlYSsGy++Ja6UalAwzBLBiFiSMHt9wyKTbhcVSwXNMTNh3m/5YS5YPrrNzNYgirtZo3AyGEoEwRUepFIBtDOp7o5Ia6wFStcADOII1OM+BAV5Dh7a2veUJgvN7TXb5tmMQ77StTsMKYrqUFSoMUHtsJxHzmj2ScjlalN2hdKxv1IACZEnAdLfTLLxk05wrjsaKI9lyUHodo6BF/2tJRR1jDsz4XUJZGWFaTHvLQDmcGX+fjI9F1PCYuIyatCAUu7PpfZUBdQtG1iKIDsxnvdQVfKkCH64CAy6nkMYASx55txM5LkCEDkNKXoRu+jdcKWMUVCNmf3YU6LEMg0UA3jOIVMJIOSCgmieU8npMrRAqGUQCGJJc5bV/Nbglg7zL5UIHrTUnc1uXnA/UWJiVAt24pyCbGUPLACIE3Ms+wOKfcqJze7MdyTopSYyjBmBilnn5EzQkMiWQVaIyGSYYbDEJORN0EIt/GZ2BJIsFGb3u8migQIYsIcE84+hCizJyxkdCU7n4H2iqJQOjHS+0LQ8zITynhKrkQESkDTOAulGzvE6HzipeKnj+epZS0cNx/b7QhEODk5Nj2TFCM0SsfjU+jlsqkMFm43l3aYGC68Q044sql4RdtV4ROlAThdXX9WVpqvpJDs6KBKhCAgVzxME5dd12XRNEJyBM9oTYdJV1V2BwSobnqxEhBWQabMWOawu7wq0yaQC7eFSc7LxWnVLl3aO+c9KgwTDufs+IC3bde34IswbJwscYQzIShLlgsZKOFFZ5an3TkJU+JcyESr0y7bSCBm63PJIQapEmVte3Rg2n10MblxmhmZcbAkq6wqwBDCGJllhJK4cdG7ODtZ8GJkWjMglpUsDRZyMsStp33V8hJYYVbw2tQih1zzUiDlWSDZ5yQKuZwQDTPn1i6U9Jj5Ya8Xy+Wq4rkzEBF61SXrE4fCJ8r5sdSZp1s3mAxxLwUvCFpUYBY0xjHnzrstIytmBrcVKTjOdlE+oRtztX3EWVOZ5X67nybkPK4tSh7aXgWv87ARAARrO484B6MkLwiZT9v7xvRMZOJn0fHCYG8zCtJ1q0Qjc2o/v0tkeziOdhx5qUGatHlcy6JuHkxXgVEqec4jJ1BKMIVNXc8SYdwxJwre27RHB2GY9uPeVLmuOxcuOBxQsMQ1pmMlxJoRl+lSSMyOUE6FRCoBEkaQbSlJzNazkjWbgy/WZq6MDB75upJL4JKQRAxXhRMF0RFW1MbvJaOTn1ldVxIm3ycfBkNm+06/en/OG6iuHy2uHco7p8Qh6CqmrJarxbWlaCuseZhGK1B2SmLddCCM4kxlz8vc8b5NKslKa0P3m1kvCmPG55rmeXdxyWs+j9ZFojS4/RZot1w0MDOKTNdGgVSmSTFxDiTifhxZ0nY/CaIpJGcnwvqMLDnaHaLiJs97VvoQ3xJaltlOu43sDmdnoyeUy1hktkWpEOctMofckwR5DkrWqVCeC1RRUl9Vlb0Y3HogSEU6qg4MDW2chzJw0CSzipTOxonxNs6heO4tTmMWShbJCRSOgoFsu8BFQGGAmKZVHIu6diqyBN3mrFHpGikwVihLeZ9LZMicdUTXMrmLYVtY6gwzcVpUT1p/obgC1tWk1QgUK0YFq6VxdixZFyVqofrDQ9U1itSEM+AUciIgiGfrXbFn6xqkrmo/p5JESSokhqQmFIGK2ixUL3RTg9KmPWAchIb2bsWaGjDnzYwFwWQaZ0W4SGz78FyKfSCkUBWzAsi1Ro7MbwkIVlgi06R6TVXDZAnBBzcBbWgJOaD5UC84TR4Y8W4AyllGigSH7f2GVRFo8oykFiOb5xwIND1FHuJcQHPeqCTcTJJkNJk94ZCxINJkk0+5Xcg4bOfNRBILhIq8Y2zhyaYkl6NlQhcw0/matJUoyGAggZOWohJhGkKuC9gg1oVGmGzGi0rrZC0hzJa0WLpGa0cSMBBaKcZye3JCGU2cpsnNm33xwc7bMM255JwtQT9vqYsUMpre921wlwu3X2eUMTl9Xbkw8xqMauYk5LImQEsQGXZVw5uTCigKckKSzvExYaZ6/obfrZnWMSQvInJaHTQojtTCeDdKnQlg5oTHkTS0BKREl7q4dcWTVop5K9CWadw4t3MOp7+wmVfIvUsbrYHMjEvq4wWlHCojCiMYkc0hDiUOjZFuCNNcuHTEayiCkEZyE0KpKgUFhntvaa0SOMWReDTisNUipmSM3HuSKUoNFDjlDc050tlItlz1RcxSVYKR6GOwjmND/ZwcSksTo1m5vSMggmQVF0IIubuoCGESAoAQhNPsuPdzxshrLuoDBmK+3Buz9Kx2Z5tovZDK+0eO+UjSPCGllLTOkcbbC1B+uiiMeSwY1LbmoaratKXVga77QztHP2UKLJPLZGmOdU5T3Pj+5kkZrTA1iYbaSCWN2bLMVNtJdSCanuDCMzpczErNRtfF7nnn20MCqquUz/nMiCpNghbPFUM7pslR1AE5iQFCpoyXDOP+TDSQibX74EOsm0QxV0D6SoQYTFeIquatZcVXypBcU7k4uX1n9E7QkuOUYZ/seeKG0TxtqZ13dr+LlpGyK57bvNfod1O4vHiFpQWDUmhmVAkhg7/EbJGnOYDKCQshhVObKeEuboYpMk4frYeMBiijyTqUVKqWOFYycCiURWFExsC2oe3rbCnuyKJdNj7j1W5e24KpMzMEw7gqqLgOfiaSovGUVa3fRXaQAX1OSR+shOSy63eDY6vKUK2EKiHMMZUo5r1jVdFdZYcChTBK035iUo/jlUfHG6Oa1s9st14XhAoOtxsqlKB1l2NG2PCqgBhZUTmH7FiKguSY20xzlk7FNNe6L+iLVaaq52FEWdtAIqWElWkeUvYsR1XRaYjebkmhyMg0z8oAlZrVPJwPNOli5zwXoR5fv35DEGK0zlGw5rxmh26CziQtb6TsrYuMAA2UIk+Y5zBP5zEGzEGnEI1uHWMMyDSSg9WRNqRvaMyX/z+8sJfXTa/cmgAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"reverse_image = compose(reverse_transform, x_start[0])\n",
"reverse_image.show()"
@@ -1091,7 +1020,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1119,7 +1048,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1139,31 +1068,13 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAIAAABMXPacAAC77klEQVR4nATBBUAUhgIA0Ovu45Ljjo6ju7sEA7FbZ8xa6ebS5d+mc63TWbM7QVG6u7sOOOC6g+v+7wH/FgS9c4Tc4ZOI6p/9e2r6/cgwM9Qmb0vXZrcBUDj2AMi2Zcd0106G6X3G3A0787nLdA5oJRoKB8MkG5YX2g6Swj+Jhm0HUeZsw8wGBd9E4qpAtQmgfUnq2/hjJc/6YWGSJQceGq952zWFnl7xOwjzu53YT3A4owxRy9g5JPpTt9cPr5txWw0++s1A5bxEpDYWuT7ckNa4rDYOL9CowDFLiCjWHdjWD577MtH3xLzUPckosxI8VIvpY8jwM75vDQCyTetv9TVRdB1vcOyweckizAzSbcTiQzXw33W6HFDKrM9ooh7zEE3bWS+5+rXaJouOnBdXAB2fyb1qTKCtekSdQUPD+kPobfhxEzIGNAECa0MooFGohGbxb8A4DsmzR9PejsBmlpoLd/sGWFRVgtjlVX2gNnHpFdbitBxK92oJqtus2dIdtgNDmt5MNy7Q9z+tfTfPL7TRURWzkR+MSA9d2GWZ7Ln4vvTQj7RLm+bW2pm0JicMeAQbFo3LVK2Zre8RX+z9gBr8EDpcdKtAhqWNU5xAGD9EMgHGxIInAji5huePux3792U+uT7g8C8JDAQWaXqmmWRa1WQrVZsOT07WxmNa9WfZt8MBZYKSZt92SGFg7qC1ayALAazLDzJ34ImI2QRi4DWMcU0r2ZDJgJC6XbL3D4let3kkYF+BtGkMsiVXPxabBhiHiQGdSKTc0T2TBdq/kEhRB99KAbpaRrezqXJ+/xSMKTyu89kbI44S5qesNCwyOMsacTih3LdmoC4WFJgLWJKOmBfYaCiBAe1D9BTzfHSxWSuzNXocHT4xCrQbCcHpePmCa3GFZNNY9+Hau4nWYLSDCSl4q2lNFmv4mD1yjyhMGo7zqgaso/P/DQzjTCmCDIOAorVLzzqNxKjoxU61CzufY+kSmHQRYWLTCqTmPt5/U/Jqt7eUNmU0hwqyTauq6F6yoC+L+rcDx0cpStjvOyArc8D3k5AMN0WH1C0OYIJB7zlKLLGQ0nrQWjzmvvmlTS66VjIFI0zbYFGS4diJIEEjAi7FwtO6dWmTnM/T8cuPNXGnsraDq4QAdIs8dNY469ldbD9VhCriVEa3PAiPCQnMDlgrScXGjuzRXR4n8VkZBE+KALtgB46mscg08dz2DMLzMMpN47zHKuPzRHk8WXNPCXTEsS4UEhTToBGGKC7Zwqf1HVO4Frk1PwWY8bJ0+GYOtkcGzCliYfj00djV6T5psF+15oKVQMxwt4i8nfNI58B7QfsNjaVdkf6jnnEYx8H+eC0AAgIbxAcfrOmLmFeM9PiESsEoI9u+B072jq+waJQCXp4IHJsuW+phOUNZkIVEkAK4pqbklQbn8cjgGlRsnGxItVpeQ5/oBvyxlfhm3sOu+KEHmeiSQlvV6xS8EF+CT2F/CZzHE8Q6F3zzM4M4cvwFj2xSTGs0eGNqFn8VUv+N7zZGrFuA/5yNLPP8j+0pRdNdTB8gmSS0dKt9Ja3ApzlRfkvvCc2t1EBHjCZB16tqXNdaycQc/S1gKZA3ER6d6OjURXvN1OtTdJ4wUsIMVaQRn8qWVU7ZmwYPl2btW2D9TzXYCpIyyNsIIrFeOQyiguKi08b7NT2Rui0YP2L/8kt/dciCuj7WXtgMk3NEkvRYUo06GMfQikfpWbuaVE2r2oC0D3KGX3nhV+aoH0hEt1ePej8L7ca6S4DxspSA8U8u8XaWF4Rd9+lN7me5MvttbUARODsN1rXkdTiLZL5hbmO7+5aYpdABHQvThLQUx/tLpX1uQ6igVvJeSNev9lJdpgnYq0fPuFlrYqcAIi6U3NWmOszh1ftGYudHES+zpWwvU9S8wAQIiFu2tZmzwe7OFlZCHOchUB7D5y2mWgMhkS6dQJ78QW7+g4Y7I/GLrEtKTp2BFwLnMfYb/eqsams6BClXDj+hRH4JLwAEzwYEvCMAPZUTYPhrLyM2bhkKhMwKwWe9Sb3m2ZmZpmDOMXIlcB5k1SGXpfo2DKrTqPqEc/piaL+9qd9nCqYpp9uL0YlDupkwuFS3P06BWvCImqFDDis3B7NaRTE+CMZgp1BPSlO7xOC5bGxBsC08mKyThgDomg0zWq0LMp8lJTbJiE1o0xowWuaTvq0yDyuG+c2tV48skwOjGSgLW7pr2WvKIs0ec4c0VYH1/lWBdkDvvqAo8P/2d8KDvbhQM+rRWFtP3G/M7ahqRm3onDxS7JzslpHJue7g2YlImG32/POXletxUgTQBnw9TEbArPJwNLX5ee/4hH5CgbX6cZqDdqnxMpYRkegxwOc1gn+X6Rb+7CyEY8NqKBhhO9Hsb2MWB1t0WjHV4hUkCquwRsFRiFa3vEy+EOdely06RzVCbV7CNsOb0WJF3dHJbwcUBGI1aAzgN03eitJuCHk5ltxL2JacOBKQQTImn14f2zoI52mEYMQl3iKL9UqhDvGtNUIAAuumnrYKeEvomef7EFE35hp7SHVFoLGVMljiBKbBN46Y6mP6CpJBMx2NCCIFoehGc3MGKz1S0Bzk7d6emj/PomP9cBmR5nonZ88y8e3JiMjMtvq4qFe1+DBjDrtLg6iQwq0h7ckvF/hu4xyQEaHSj34KqVO6fAbGcFNjwkpEy1vvqObsuf2U4jxhs8glq2SSfVoFn2Wp9m00wJYwm/tI+FIQNlpgmDG3xm9RpnT5N9h2RQnCjFdp+hXTtJMgKZP5eY3RsnWMSUKwClTdEIFK0wAPOSfmfSx5M4GeNYUP1dFg/qAYgoynrVlCyvCYrpBZS0kndO4/26AOGXqOodwoYliyfTDG3PXdj+pCbJLHgjG6YG2vN5HI8YxAa+d7mUEGvGYpl+0VlFHTWdvEQx1NTFSpjJ6U4TDuP4jI7UTEIjSMMg3dOuvgZFYuF7tmfxPE+jwfvvsQDxEGr9+CNcyxw8wwS7FKHJRsupezHjUVHBlU26uyrLwNUT5WDlsuML+3lmyLmaemLg+AcEt/g5xdwLVPnUt3lbyeQ09Hjf0aVVcravgtlfH7PbF4nxwQgn739tvY2dhCNWL2JXD3NFY7UxM8MdZCwIY58fodkSmcH0d8OC8Wk8/KJze7c8HXSYNpdPkM1sjkj1vXJMumKgc2ZrkSEOQMQiiCO7nQWSGMDM6Bp5cl3q5RoBWvxdWwEddq6nwC7lXTPyrCXI3DYA55SJz265qnTKJcv2SwzEIEA0SdA82A9sxnPFIOz6YXdPnDMR++SRooT7vc6dwwPuF/OL2x7m9ffVuLlbRrSdn85lkWel7Xqhiu628GIBGRHT5Q49UZhPmlm+W+JQc09870sVEBhFJfHYLdNquT2y9G8Pfp41WcCbueHTAPBi+5L7CjsxCrZlYEkzlYiF5IB1gps8DpvzSxP2ylQFKs6vkBQTSo0kO5VmxSANfHrkocn7yhHBGpHc4kfoCpyiEbC8zMPPsSdkrYM3kI4UiX+diFe/i7KxbNHyxaBQ+j1CspDpCdW0Sr9cpAQsGcvM1k1EDKUXLi8pEtmCGUn4sZeo1b0+ZvXNYv7IgN9OK/P2tNSzDcHalonStggNeEttK/irEoxlo60hPEIvD2fb//vMQdnKTnl/4vT3lDMlsNZfdEKIM7w9GnaW2ShdIRszv/kvWVnwm6RYpF3aPoUCPj/GjYpGm1WU2LbDt8yTStVHFxalK0F4f5GvYka6rnw4F+WoR/Ix2xdQgZnWmlWppv1bvzfLTwmjuk1wJO3zvXbSj9HA3Eq/GrhrZSCOGhYGD/ZF/LeqQ30zUvd43uJPcih4GRuGh0cDMs7P3lWXQysmUd1X9lnXk5aBE4z17OsFf3sjo4ZzghNvJziSkMWARP0PdVgWjeswg27THtTKh/ZnMdA94RQXtG8Zlorp49avjzmB90MupyRsCWRPxdG77YeiME+dsID3vLHlSvcbV6omQOcyAnKNbabnIl0IC1eZ54sRo4yGfZP0xW+ma9XC2Pv0HY3YCzwK4Dj65e6/tmJRGH4yOg1mhtsW15DzN4B6gf18OtxQm/FBMFxhWW365eS6cGCALviUgvfjD6PhqgiBK9Y8z4FaVbMQ4HlOcIBr4j0487EW/iv4FiQcWi6Opx7oYo3V9zllMhQYsPlPNpqNj4OSgWHfx4GlS+sXt+MBHYoVdsI4EWDKPeS9s5CcNT0xTvUbMxXEcAmVplYDhtjS/qrZWScHBl+Uo/GYzF1mrnw0SJrPxnK/1BN9UrmZnQo3ezn6x6AKnNcsXJrWQTuZciGEClloq6VxI3BP85K0snRGoEPTIs8oia2T0s9doY7Wofk66WBVxdNVzSuQz8lCN6mYOb6tMzKNRaEGktv3fEP3Hd5EglEJlrNPf4zjfPMhg4+COGT3y3gZym80ypSUREqDd/CsVmZOREj40MI7ipelEl0XQwIrjZbKCYhKDRfXdRR9LbN63GG2+pTIc92cOoEXDCCsqRIpB5OQPH03rBLrp11NuPxDYi3qaAvvPhEX6HWldw3Vwts2lRuhyAPTsZMWZwrG5jL+lmXT43US1/isdqAyVUxzT02ZXBuDDnn2pRYKPgnBOAACt86fPaDgIS8ZVujlHWmKtdv+PfiB6NJjDE+WKKEBHH5Kv7LOFgs00BUfiDIrsbIldf/HemrIdYqzvQYFp1LRfcvl6nax38z+p4W0ey6rwguN6VY7kjUcrpWmcNG8ibe8pmJMaNapqxkfpcR9CrMJSNuTIc5ecFZVa9Cp3m6sKTvM12zlR2A2maMoW5Oe2Omos2L3S35M0QTaKFbwDJiHn671rDmy2We5BJT81m/fW4mHDtO26KA1ExHAxqm2sdZHG0Wp/rg8jQ1TaSTVGQumpl/mDQusaBcIDN4AiPOqan/ZwXvm7C5dy94fZaqa7BkGYL/1To7UpgcB2M5mjgOxv8HBEO4xJx9yigm/nXR6E7DqcK/vOTGbYZTwd041Jjp6YB8LdeGSEjeQtReuAA2sM2yG4FT/M5gjOgNkFc+0XzAFvMNCcLFuiNRjItL/bFMgf5ZXngAkCgJTkoHxKCRbnCWFZ8AjIwvSTMF/tbMXICOu1ZugjA1AZC8cZXl/fxu2XD8wv/IST2W6X8RbBlXYAeDGpIMQXbg+U385ZEU9CxRUXTtwl2alcCHDAbCBwRLK/e/g/rFgs6Khv0WBOxw3S/CtFK438Ole+LKabUaSfP4WHw9gXfm0mCih0ju/8Lyq1NRhtnr3qNcQlBprkCZRF0AwQpi2RENk10R7xaRQqRBgcOOlV4qpTnCs+F+WbA4gI3MReXLPo8j93rpuRraVbtje/n3hO24EijMcGInCff9mOs2VeK8PPLpOR96rPaB24B/u543d5sRliybn3YqiguPCYXlJCIvQ4aU1KIiImuQSbn9odn5jaxjhF0+lFB9p58NoHmCE9Q39L94fPg6arsz2OC/W9iJz/4/tMkIOcJCG4b+Lv7gdgeNx7WWdc+44uRDr0bJZxRePVGGuizhJX3gfeTV/FNduOL4c0fEjsmvCjznulTyfK3KykTw9jgcDmaj+jLtJYsOQLFhMlnkwRfdxPEGhis0QVqsE/DUsJj75SMhjQxXs8q0KvaDwywugQJcjow2dQBjKTLKdFot2zG6ob7YbdK2l8aEuhshguv1ZwzMHMDpAAcC/WGSokDVfovhrxRTBx1fg5y/z6UusYohRvVy9RcBrTLclKKfS99peOB99YcyWRQi+Gmk5vwCc8lhbgeOjjjppvncJmvhInhOQt92I59/LzxrhYTd61+wU1jO2TTT/ozuCkUahRFY5AaFTN2TXxLbM2+MeIixxMpMUOo48vVYYwErwlVi59mOQ7jUXsN1OqpZbQEFGszLMIe7YJ6kF3Qu+UrGdXShRUlYV8QYKBL4Z0Tu56IP3OreRGj/u04ozIrHfUvFz38ujJxFqgjx17V5JQjxIllPbBrCDBqZshY3+afqX41oA5grhuIbrQHuA8pA0CeBX4h7jXfnQTqWpmbsg75+wd9WhNoBwHVmSauop7WOzlMhy3M26ADEVVZt+uI2qG9KzWhm1G6aOykJ0XvS1c0hvtF936N6oi8Sxe3K2NM9l1axhwjFRbZCfGzORUEqTotrvG+1unC1k8w1bzHZqpGno1dRlEqGgnhwUar2o7TkSirZhucV4oevHToaRCDqvYWywdQd3HM/hdL4ubVKN9g5QXYaoENCNukdMmqSXXY7gC3SzguCX1C0WxVOYpT9/SSD0SkDvXHGFGq2B4xpi1ynWnQS1/QzAuxBgUU7RLlkqzxPrU+zDa7jcOm/7SFSvQNW054u1TMurzyOATptpkAf0lXLMEl6x8ySuBuxUcfPQ1EhdugxrUjOFsAb5KWARYNPtf1zrNikKMtCmRsKMD6evg+1Tu5Mvvd08cWrKGS/M7M/NbAnK0cMSLwD+PLDO/7NjObPwoTFHHHskOFCfsmqxjaDXGBTtjbEzbI4e59LyrGJvwo9jlPLt8nCsQUhxSJgnkUR/J+61uADipetbJAWZUCxPo/1aXMTe6d9ixTJU4D6LKad3vWKY9o3hl7d4sQR89G9TSsP4wa4iEXxFEjqHdgo0OwyWetLLg1TfkqD02cAo8/33405dH4zrRio9N3g05lSJfOP53lUwMFky97A4ezxsUrk3/HoDA4gyuwjuXyfilZXO5B/4fJebPIGAyoVhClWN8JgCWaiZHvkA5f9gVowhUn/fzfjN4zvsH0zD6JHtvLYzCAtStqDeRHBP0RMDSy7NAKb6F0MfoKTHllsNsuUza3xEtJVwGe2xSnlk9Yboi4NvDonqrPC3K05ftY/Bvw1WeGalEUaryfr/w4QLbh+C+GMfd6MihRmTgffu/Jv7arJ5En3Y3lzM0tT+EvvSl242+w+cEwAqH6N3VT/Tc9/Fvd94MPMs69cD7CfZAI+xh4jECWGtZiQ5i+JyDHJoXa6lMHyXDm/qhiMit+v1eoGICoEmq9HckkHRPyCPkZfnoI9FPr4BupNny+HfUTSx4kWjA1ShW1F34DChTvCjo0hCxw6Ggt+X015HLtFgvVpjomaG5CXYS0zgvOVTjqjYqCdyen08SNOTMW1WSXd6Q7ac5qewgd2CElr9xO/OXPW0juCbgFNFZ9Sea1uc1oJ/FbyQvGIsQnT97weQvPZjC/JV0NmJ137OhArLzMg4tjIYvubi/n5hnsX8w5bZfa3Inrrn9inGnMgcjna5wlz5HAtUVU6HtUWxK6l3S3a/A33j0egTQb/xpPQXQM/HdXAgH8ypYVbYwIxtCz4n7dChNWvtIPYOIdcYv3KZ2Bel/UYdf9Ii3vQMH9IaYt7fXWQpILItpgwscPuDeKms+vi9Y1x4/1D92+/SEaBQs5GXJzCyV9ekr2RWBUlgsrMH5rRhTJ/lfFgmVMU/L1jLWYkJPnyuL9p99Tv/+26jlWvP/3A+OzcriKMhX4wN+H8oN0mMFYY5ISZi/uwa+mU3b8/Hr/vLg2r2kWkRoDuHa01RdYFnYUdkuCKwUsTLvyIjL5tma+T12gmbkc2Uu9yjCmqIYQXzNnnGbEPTs2IcOv8sVUJBnrooDlvhpFCz8qxpOtT35p4rHFIDAe3J+yvGrnmrpyQBiZjdgtVmIex/2XgeUgRcLFQeqwQb8+zmBO94L9a8QkhcLBS+cmZR+vhC0hR9oRBbFp69d0/PEdPvUv3URbGGDW5yPF6yyRGugLE1h6EOpVXxyjTrasoDOTqB4TT/LWT0+y1JdTQvjGPKBlrkYGytf7i5Ia0rv0HsqN17DerGD+sGya7BcJFuOmndBU6SLTH1chvPOCHe8PMt4c2HVt4ekyNTYVG4OM1mVjvS14D7lYShr/wpE4AKiAVw1cQvRqbe+F+Aw6/4qPLBJPeaeDtw1GjqPl8iOUuKGV5TFS2/fU0y9J/BxPGjM3abD/37lFDCsW+nf3md+jxh6NZiWlFuOm0hWwScIE49V4Fzl8dhtxLZA6x2/RohOol+/WTYUCuJ5O4OvXEdfuRxo6iS6yItH0Am/E8toIbeTeGK84JjPdPW55wqo6kri9qfUODF6YzXaMip1ul7+v16BzUa2y5uUnjtRQda0Kd8wCAqkKe/gO7Mxyd8uklIvIeBkGZNoXoXV8lS0j1ElpdFRjQ93rRdTmSLxA4QoIVh9B55FOrv3wRvPn8ZyHL65vKd/t6YtW23V9hYB9sTkFNKlWuE0c2/cZNHRWfW+d72e9q5Ub7CSjGKNYEfXT2emK2GX4ixhen83kFhj2ARJtMN2QxH80oDer0R/HpZN1A2L4UejMPX4sKaZXpgLjQYzVL7uepGxfAQ0bwhUYYTKC9M+FPSoFg5Wg7hnfpBJ9cnwXq/JyzMrtrvByQl3kQ21tVEiMy3+Mc3cMikTPmtcOTS+vO2NNGA3UX7p955u/cgO8dvqip9rHiOmrYI8WHYR8DPi+dfXgxHt98g0pIFaSQQE40Tw+8pB0/nikIlVYssSH+kfw3y7I2gBZF5SB9+M6gF8OBURvSXa2tRj8sVKSbUAS7vAyeoZtZG+7NKc26Pwe1m9uzW1Zw2fEqC/VA7TxVVM613GSs2bKbfk6PFkw21tvCDqGcywJh3H0LZbZ6yvRW1yBEPEfXdQ08lAoadt8Xy9/ysItRfbxmOqUDu1SzI4UWkhoIiMxPsVthietMtaIeqIarl/q35YWMoJOPNSGCj4bs/fZrc5DJb8D59Y70KId0V6tqfg8fgQFia9XKnSDtwGrN5rseqCBYx2dg0CBrMKItTwhP8v6VveSAT4TOYAnJj1zYTwr8M3NiK6YC+60bGRlKqxTpIyIXWN7vyYGCcMzeONRDcUBiNL880u9imksuOkZq3Bz0fbc6d+WWd+QJ7+/n56a3iJ9SgSTWm0lYKghwqjyTcHC4cCu+tBk6YvrAE9hJkMOQ/+b739HjUJPZ0pXuoSe88iwXPxLrsNy35TJ6O22PC/2//kNseLlVSBe6eufhQpWfpQc28deY+Vfo9+cRF34F5iXeHCtFS71GJF6IdfDaDfJJT7YTZNKmZsHAgVognrtyT4sIFQ4ScWsgNZNYDtIVsISwrBxoRW4HNbGdIXC495GVx7nZU8DZU46VgvjiyK60+5ujQ2T/WkcBDbb4D4fhlY8a92uwB10b/ovWPR+8N7SYe3wF5vXSYeXkYErYLeBol7UXhhvLMqFzH+iyAgf+0US8+Kp9sZIaA7xi0BqO5aWUaQlLW5iUqoFyCQXFgKacTFRbtKMxwV036FnY/wuxDYEganS5TZc8Q5ry2wON+YNk4DShyBqPXjvqs5eCypNsjSzFRLw+lgeDSJX/eXYh/m3oEbQaPts+idQaBgdjey/+2rv+p8zQSPnAV6H/LQo5Hu+BH0VSAf35VtceWe//fPju59W/FKPKodT7ge/RF9O5kHXEy3zCPzG7XmQyX5o+obzP9eivC4Yhn9KyR0RWgXq2xOq1P0JpdF+tWHnnaeTewT6ss0RvIoXwtJ4V6t1qz8W6WbmwoB/43zSSay2BXAj07tgYKTPR7MpOV2JJFjnmkmO8Jc2fYI+wJwRvqFxanX08j4ljwg8qVUZmjKt0dhlduVkSE9Ae8zKHENjt7XFlnGqh1Db69jIyG4ogUxCHPidLYtpH8WQG43In8shJ/sla/w7K98GTWzFsXyn1TNeipTZuFH/EcSiumWiNtwVfr4l3v3gOOB0xlfIs/WpN0N7t3sfEJb3iUj//Ix8sRRBZE+Yp6GKvFjyG48LYehIUgV26rIsFDMZVCktyMySeYTalbb7lC82xNk8w21v6d5O7WAQHu0FSoBHcHg9s36NLePsrUQ/OZsSbwHP2f08umoAI0yIUFuth7ZgXbNcXTLBH84RI4p2RLYI4xPzrX//9AIXkUxo5kFybDWu5J3+i8rGqZWJmT+kBp9oS6iav3UCPxjlDwzLACy3icaDnviMJR3UFnd4LXYHOHUDJVnk6eaVATHI67BIeYsOtclSNh75TtW935dY9XFX1toJ4MjM8ZE8nGev2zH5ztJiHGv720TGjbmY7yxsH7KBCKaLRgUCyLALtXElcZzUP2+aCqG/MxszV1IlURD8V7y5lv6HfpHGrnD60AnBxXt94Z69wpwGoiSxuVYSHjAFVWbmfQVeY0tFLSyDWM6lbCFYHI+lyooauS+CZH45awj8TrNn/EvlHa+KMrzGwWYtmPnLjbYPdh7vSHvLgXysHKt4/uNVULyI0b6eoa5vlbXR1vwBb5MMh1gSe9XK4GW6JQlp1AE8iiRdsLmgoWJkWrj50u7bzStWRECISesgdbIGwI3bpDk3wFL2NsBKP55Geeds1MqDC2MdyrffBkTcjmATcIMiI/zDaEYfIPgjWWRLkIvz2Y+5JwZHT/JkCwPNS7CNlAZR14kdMTOfP+tjo9Yt3fvqQg7OH7NsliVkozxmKsHkj8cxTYznBOkW49wS44dMz/AfyF8L8Ydgzfxrq3btqqu7q3liEqHXAiJX9nbC7oDjtaHfAeVsbjrw9QUI4iMZwd0umI4etJnAx/U59da56vSnA6e4zH2Ot1ugp++HVqbIox6txnEUvgqxLDMgeUoFWZl78LUTeV0BxXvwtGITgF9d2Tzmmpp4sHZ2aChZ5WtYE8Y29TCBgQdO5aPG/CX+1uOepQ6Rd+f4/WlC2R5XCyT4CMTtQGSF5qHflO9/HumYaZgqdFdfL7pBOjnP+kCSmPn4zeB63q3sSfbcqpgRyc/BHqSO7CAOJz+Mw0VFvk505GiF7lth1g/+nXlRyvD4Q0JqGUwNlp3Z9jRy16NQ0KgVsUHjrJIySbd+6QmIu+pCrTePA/e8kySOMt6ptQfwnsth7HAkTBaOfbGyc+wjrvSqYCNoHW+pr+IwKUQw+sio+AuuNZN9mmvHtiVtvWP7DdwV06HSKhbH9tLfP595NUSYpKNeSQPFgraZF4f8yle8/FzkuS7kDP13xIFPaBVAb0mg4/Mu4WgpavjB3+5R9PcR8wkDP6auKw4fvz4N+Oev8d/jTgCv+XgpPm1unZwqT0OoktZASgP6K75KIB277tV9fQoKticxplc6dgwKPSevLN359bW3uRQz5x6yLgauYmYQvd4apCvioVHfO8Dv3ttFer2dUfNS3tfx4B3AB8bjXST5MgFdwDVmrd2A6w/lMBluliHYXVBz/M+eNfIl48JJ8q7PSPHugKETt9u8f13fMrB85udnH+f3iXRr5XLXtD+ssNWs5T/r0izV7M269INnMTvGf7xBq2gyRbNXF/Ne/fFZOnO0K0ZFgvuaA6JQJXdDDsS1uaLonycJ+o5fNn/2y4ni1EGOMeyUUbhF/sdvqhUUkvTS+nRsnQb+V+5NzGdRevpMuC5QgWLkFohIfEhawS/9s+1hIx5MwuKczfOg+maUdPM08olY4PHNZpd5b33cfzzRjeqSfb7qlnZ5zcXajZuDpk2esYg4ZgVcO6YMOA3OFh6GkV4OUHy/GR18vJ/fc+Oj6k2qe+DNFPhf37UssREIhKJ496i4iyns9/piqeb74y7gv/a7ZGTA7AWyT2Leefq1P3xTbWfGceu4E2p8u7Kd7Ag0d3dERm4E0+wzgTLqNZ0zd9UUdW5tsNg6RAlJjZXNA+y8V54FoDSWez7656AN/xnBjl8mvXYmxq3VrEC/iRm9ey+lOLH2te+BUAjfExWdyIoJReLmLbf6ZNzilg/ffnT5pIrW2rMwPlbo/+6tKxNXpx96Nma8Iz0Bm3/njLgxdy256WFchksNCBxwKa02IwOnhKJISviEpT4kOE6iAxaDZzwmdgWeuRG2YNG7u4WJ379JyUVSwdeF3ptxj7ImRF/huCXXD12WZty8u/06sghT/QWMdKiqdjAwPDda547zeXxx63upVRUWTWZToilTZ4n0uGCjxrtTPTGikQfZZclZSET1iD4jtX+8ixxIyXvDuqG1ByoqLbui5XwllauepCWs6ex+S9xD+Cqp7GGlbf86Gzn++xs2d9igLwL+SEKnRqNnaPW3XVzWWcLqVffvIYVFM+MrM9/qlt5qQDnh/r+9P3oQAW988jH4p2IKNec/ZNh8YoAku28bi7zPsCXoLJoVbwsEwoIRa2xf0qNcxkSaziENOGyIGsMJnFOjAVvI8ndXSYLR4q1/SlMAYex14jf7/orcADcAEt7qthO/zxVSk2z8iRFk8gK+r1aneq8aaaDScQ4uZP8d1E6Kr122QLYxsg9f/HvxhPe+7/KiHn37dtDvUrCJ6iusO9O+xCZdFdzgEwrnyF08gzfc1ZepEiktqXSb2Z2osuPNRVSk83M8tYNWOoboyqHOrgzKXxdfGz2Cuh43q3uaewxA0nvIzKX06HW6Y3qa18rL4Mln340GwFvL/+0Jgr1dCmK5X9x1ILV7lrYZu8JYDV9YNTMJAzxCX/2HxduNauW3bTFJuazasU2kpHkHtvvzwHV4kU9GNsWqhaZnloqLj08ZY4/FnXf17T/a390mcFwVpU2rq/e7FzLy7hninIkdAkMHYhhfe0mzdvAV9l4QujHfeTNnjDEauD3zS1B1d+Y6NuCcj/yj91NXb5b0//MwI/+54QdXsCIcuzb27SejxzRiOQd9NUX+puEcT1KvHH6aZwPtXBm5+qkqjxuga4EKH7g8xIcVJ8LWF65GdnvzzPPDj/GVnlFOjJKS+/5bt+g5ws8rOjkYx4Imu3xYs0MbaMOtdTaLfaRxpKjo2OJJmXtcjxNPV9xaR7W+RUMPn7p+wjc8ijl/j4kuD/7g6iFzh18heYUi5+v99WTnn1RIO5GqSRKHpvJt6EBmM8Yhj4gb5PX0xosZaE+r6kpQaG9Xx/rUwo8SAKDFlL2abY+mOox5x4jUfDZ0zYwbX7wu+tei9ykBfpcowOo6u9Ww2OnzSUEq4ddhWUJejbvsDi8Yx97EzX7Pp/3rzdlKWknuHW4iegvhDWoomVFIYRc5EnNmf0Rt9mw4ARl56I9FeWS5C9Erm7HqhJVTuRxr4tKc1eDWXtAM+McVN/tmkiF+/ixGum67K/hUmmmobtzCvMfxGWpukY48/Ri0vUlJORj3am5I/qS4uz9wWc0EizYNRyqTTi0tf+s7fnBu2H+1VtRxwR2WH/TOIeNG+Lfs25TEUYv67vXKz1d99qey5MFe34PoT75NrfgOuetd33uv5Y1GIb/cN5AcnPTfX5lE7GzwJEwlLRjPax7QiDWiV7gGDD//7gymj1TorB+xDvhpY+SNyzG+tx8lH1i3gRXFva8xd4sE3XqOaCEizHPCLwCT6DBqp+9Rpias92cYKqo9yOWKCdI8DIah5Ev7PQDlgN1kiyp52uJHjgxAV2ex0g7VxQhGDqSZlO98vEY7S7TAXlUQAstoICyb1JdSZOy7Gs6b+dsvJpKzVyvC2n1gvRXdN/71k8tvDPi9wHdmTUk1k7gQa+a+Pww6oisORnDfE1DgR60yKvG2tSWd99mmB+POyJQzd9y7z4gffbo36X4nEiTAX7DLxkOSeaQ1mQCZdZ68HVMja6f5vNZApHWo0MEOvBnpcQQ/iH/IHTwWpj6XRTSHFqYCf742PrZSeioxCBcw8qald8odsTp3wTQjz4kI4rXDo9H4PwP5IoFkq6Ht7iVZnapT3voqNzDEkI3SD/nboqhYj0rZzf77n/wECUdwqnXhj6N1Q3u7Gm0JmcbITw5O9rX1bDKtpVzN+fWn6tdEaAmWQiDqgY4wNTwqE8v/c0/k1/9KhQO5TkBPROiqmKDpbry/i7TzWGSTNCgCa6jHTK1/9Wjy5JfT16D2jMWfP9nD0FMsP6n9jN9cIQREPiRb1+UM6xFRg1MJ+2baR/RzE2QMMppW9U0cBRFpAg9wfIkq0uzypbmapaBztjLaEfRIo2OaCQNnAjYRO787az2TX5Hx4N0T+LFXZlLgAA7+6eLZdlyZpE4eFB82YYl/L8j0eIpmm56DHVoa+sM7eh/UQg8OiEnPaRojFAR5q+Z+m0Zxl8+ocHsaFkzSNPhatzdUVy1I99+Yvs9UCc7diBp6VAFbe8xMmfE2cG0T/3GwSpHaywIafPPWoLAVAzbYHcAjKsdHNuBZG43qnF4b4FQbpcY3VtvjxeGAh3OiPsl40Ojy24B2SnKef/XgoBrJ2rXvnYy9Rwqk4/rCrpaHuQdLhYdbGn3f+gxG3QxayVibulW2sv/Xlnx63iGCvLYsNWloaMzx2zrEz3+ihJlmWSgUXpkc9smFpTuJ9n1zydfWWaE7srdeuwv+3wddz2/TYzPQTWZy2aaUk2u+MAseAlGKW/Jla+/WCMk4dJcxLjirZW9o+VfSRvykdwtHguwyaIEZOQMC+ybsyCDVouxxrcl+f3N02TFyqy0n/E08QHUOHNejr+yEaALEi1mvLoKPnQ2B+i/6k1JiQgcERrs2ljEm79b8QyWXWmeu41Tf3/erCWhUdhZ1fB6dfFmIVnWayE5MLIu16Oly62c37lltaQoMptEKQ3wumR5zCreZLtbb6VtBXDX/wnRsQWta4P9Oo3bskWZrBKzkHWgp+oBkTIx9+0d6mXVEkOOnoQVy1vwpUQJffznq8+RX7896y8HAF3yS7eejjQlRgD8vzsRZA2/8PRri3aemOx2xfeq5Kg78SkBosF0Rh15gL32sK6dnxx+WBdxEdtqwidgAKZqhD3Cyh2bFiKbFGjRaPtP5ZFZ+vHulL30RX+UBR3+P+KA3U3KyCIci1P98InoiB3g2iMVhk+/f4MZkXbc+8UeJycJsU/4mz+Hf/G9eSsLN8PfFFnqv39nv3Hnz+Tiivfqz+SHvb9x30Apb3jdUL3Hx5c5LNFBBFpp3HqhIKQ5UtRKotDGY2hsZ6jUnjfddf+z3UVjqdB3ly7VWdxsEtenOXJWstcURnRX6BQLxX5pN2HyXxPUju2IhcyBS6S4RdCh2WNv176I6vgO04wTTzfnz43e/OH3CBpONwz2It3FRwRPv/HiVhEHFMI0biIGdeYnfWEc+WjEclyeoN2CUP7J78pQgYkl5dHU1ZO8myHVUBXoaTVyfKxJ10OCUlEDj08F5cwqlQEpG34gN+YvEbui4Wd86O123sOFfypoWAGRNeEzK3vPgD1f6Aj7fpZzl+h/SslRluPnYIAhBsumR1HY4xxgfmHF/8dT+Qwoj4h0vnRRNpiNyVkfRh9wO0+3T3K1/Wq0cY+JzI/PUluqq073ggSMw0Fv94Jpg7vTsUtDmKujWci8IM/7Y9iHmpbyHm7sDHWsTEt6oNSt7dOCv12oSJ5OHFYsRqN7KqQph227Sr7HLeCoT2v7RngHHQaHlW8vDKOkYfkeKQpMC7FrMLvRZgynsEF6NjM0mwn0CVgfWaiNqoJh7e7vt7xFWJfdseOV7qrefsrgxY7ZK1UG0v9ss8gyDEFD9rcg8ZNXKf9aZnVXpkNjtWftwpqaucIq8OZsVZQJMOBBrJI/mQ3aFn7j6gNQXFOgsr/S5QuqJ78kppNuGD42eCinqXnZDmtUtuVvXhPYCx1MxfM9k20ezYEC6Z7q/t/+7E7d+CXwIvcf8ALxlQhSX4hMe5XMQ9ipRGhFoMQExaSUXpo1PXE3IZWAy3eSDnsUpkn/WBwOfYvIdGza5f701B7cdCSDXuRNh0a/7aIkBg3oaCG2IccygOgtIrUvsAS9igjqiPsOQ9PHYo8+FXxFW85ArcUz0xTcteJ+d1oWKuYElN7qKf1smnfdviBsrM3nqRkJcSdhDacHkNhHWx/gSFrlO73DHB+raFmpXJ25RPp301b4welK2HOP+0ZaZdeTj1/XoifaFPejseZOAk0Zt4zMVS/TynIXuG6+9BXncFMtVb1OZkSpwyyBywDaI7kYaa/usQDrGmvLQE2K6QkY2cRh/vbwp4GI/eOu6xu1zD0DO5C0N23jhYi6eam6R0dKKZ/gyNNucv6EAnmhfHH3DIWXlh8KAoAlx585u80ysDxIknAAVGk2qSMnFOWmBD7Ebmxs0ZiypqfmEe/Tdoda/PyKvQfdSoC9vV5Tgs8CHNs+wOU/K6F9Ofpj+3eIjUGQ4pAdOgudpDlZ7d+TTNtl4fMSa9Hewn0RUvl/OftWU0Rpe+/zNy3zMchC24GjSCkjsx2280xJ1GJRZAJ8PBzIZynz+yUjRBHpitQLOlaR4U/HfidCNvmlUfeboalnkAzjiND3/im6zGDvtyro/St/vjORbXkhA+qplhr41RdP+rDdPRRdwwSqUCu9UTAwIKpeexUfq835ahxH7jUEekdpBW1Z9JeH/+ulou8Hvr/lk/+FEL4C2ZuTUE6plM8RJdCXG1UmCe0XiebF+j2Sm59sX83dlEzCzRqbKPaNdHq/Cz6SEzMXf9Tn2gzIMofSQd3/3vimWnXHQvCOCN43k9Y5qXvwLWFjKiI50GuNEZi8acQTi9oxyoakrZvauIKgPd+XepWrZs/uB4py8M36TrbYXedGEXos3BtRB6/Cjhb1thUeL/AlVHEJBFsnLcBvTPzlelh0J4zN+LP5Nu+T9RJPNu1RQKn/3/tijjc/zeMnd9qsEZIuBFhReNy21G0e4tXB5EcpfFnUZEjCrnh38di7vrC8PkrzA4h8R6/LCNAUzIC+GuiMFB3xWftK/1S3H+qBR00C4lBiy5dzgf1leCfRoonfuznqIfKNj9Luvm02F3IKgLxhHl/ZN1g94YaW30D29Fan7LpBzJyathBu//1ng4XKDqE1/fvU/T5D58TQ6R5OVqp6YO7FCffEJcKGNnax9qgSQ+4n+R9cE+APZeuCsqxEXMPziu3efX2A/ErV1RsIjpvwSfHNOZjXQ7s0im6g4iT0F1irtm3i1UOo4uBLt4So9A3THpfyYigWQE+W83L1KH3NbgIjtAMDTCQnxLTNtbH9VdbaDHkV8cFGyZ7+5Ree+evy/a9aiyzOAUSCzcFcYuto2EggISMLXjQ7l4HA8OT79C0HfAjwJTgENeJbWGECdH6UkVndKjCiyAuGxtRiib7DU5xegkQzzywl8PjwCTb0G7dhlAD8ZI1rMSk2Y7NaJmjiVbV2+P86O8c9z0+PflT67HrIjJiq/qF1iNuDxeEAohI6c7qmLW+TyKAnu/pvE+SXz1ZHJAv6snxnYdyyd/RRF5BK+BdWWwAqCZllVmWEAhk9WmVq7ujziBvS2Wbit3CGqxD0f/Sk08MDa/eFb+lRvCei1wTv3Pvp6gd4aPl3Ya+mTVr8yjjGELlH20WeVf5N5MHgOX6biLi07chZVqrkQuK/bwzUVwbmA7yyl+BgnDMY/0Dm6HbYSRfceKmdEz2vf0EzW/yyEJ78ro3b45UXhxy5dwk4vXfs37U4n5Vc810dHN61btwMkediYBi40M3t7jBmlVIyC7JKb0uctUy4vWwRGQf9qvYoTMNET0ktqUJxqk+T/cFq//dup5RgyYVVI4hjzyoTBUq6MdufaqG6rMQR2cKySHzj79XjPGlN9ekjmM7uTM6Plk0uwy8ppTSN4C1pPjgy6fH8aGIDwDnQpD8bHPcDMXNZHJIwMN8/ewSUQ2du2bjj8/PGOPyJcfUVBmllFMPrLlW/O4P630Q43hUFM3pujG2ZUG1izbNnmQchQ72TZxNujbTPzWoJ40Zm+ygdCaTFxPTufkT5NfrKTtHrsDVkwPB3JyJuApsUbf+4dSwAGWrYYepf9bV47sqqk5pnu+5KPP9+h/LGnmI+zzzZzIBtjoVN7Z5D7M5OiQoJ8i0jLE2dwnmgZSJyTFRKhnlel7bZZ3vuFw3KEEcgvclGmusHQtl+T7Mn547YHU/aid+XJh1gwKNFvDAyZZAWkbBQP0i/u3fLp3xwRbs6+I4ItjEflxn8fkITU+Pj6eouwzhVQQ24WUK+jeXtrnUuLN33e/e7hMwcFLPbCqz2dTasK1qFnx65J9d+B6albaIXVPXObwynpNGnfiMxlDaPgrMtSVlw10IgNbsaQr8KfdLHir+ODd1C1xIvvIjVlcuUubMJ1oHvRzuREDqGoQorlDzwofxEWM/Zq+Tn1TFU/ftSDkU3/ZvHOQU7EhXQ+V5bD5/ObpP/52IM0E8GC/IW5z5cSvNxrdsUDJ+aq2p/6SrXCxK7as6PXSnoCeUcvYpT+QSRHlQH4qXOhG0hM33W3DwcLQE23T8uodkDuHVvuYiRyeXHW+cs637/BKSGCgdBQxcgQX4ljadmADYpPr4k7OLiqES/TqflenfplF7qSELBoJfQ3VYoOvMvWqVCVnzy9i+asYbtOzXhndDRCYXPo7anGSlHYdyCyZi1fH+5FuDFyx1kCu/cMwtkcvKagLNNfXgztF77HuzA0u+A8nPBeswKL96ZPWaPC/WedaiJa5q/9bBkt3msZevQu26fXbPKjACepaBmaEzAutnoPw+FJNj2IZ5ec/0aySliNjAy63GudDRnCnolRmr12AEIqwG2bpuCSeyeVc8o4/c/fikJ3W0sEeaIi3198u+rY0OvN/cV68/wPYyu42Rq6/0Y4wWB51EQNZ/GRr6Edad8dJ+X/VUdmZnMAQGpkEn3VuX9ORiUkeA59v7fl0hb/PZWmCau17nD4Zy9ymKkv6p/6+Kd2WlUXS7Fz4nhPhxl5rCW03fDuIhH6Atot++XH3iOR+5oKlFGZRcC6Lz4JVcTMT4A04HrePLRmW+B+5pwaldFlrfkmPl7Yk8wP6Qp1cDXQj+Sk07BuGBkX2R0F/dxYe8FdkiNsNW73YTzEylcBF/4a8NW7UrHLnYBwvO7Fmyz7/d9+JMALbWq2HQN2Dk0pVaTAz7LGFqAJvPeVjdHqz+mb/fMNQ0291slSdWHazkPkxLHfLlFHnr1enQdIdEvijYVLUpKrbHaqc80JuFwQjpM2mEx+Lg4zHCpYzMdVt9CjFCpqwEAGfLUGxiM0hz9wPznLBkSVDnP+UN/MCIv48eHBVKMrISP77cV7hX8lBk7kSdrmuMlfvk58annBXHISb+5YP6itl8nGNCQCkEQD3fykR5nHaDG6TuiBev9nFWty/N7PxZMq6XB2W4QBev5N56A3+sgn+ctd2eUECARRAR+ZVu3oTBsEmCxVwjNo1tUJ87oQ1T4r9UgBLabKbkA4ZQwQF5O17K8O6bU9Q+PBjzbOKE1Y8YZoTI+5399aFgbatVzMF0pLStK9C37ybyj9mf7+xjXHN+8p/+/wezpcvMr8aGa8JAvtPc89GbAlePIQBkR4lWX3hmFXbyVumSV6BN+FF/vS/e+bFBhVf/JgYzQm1kda77HtYJywZ3xnAJVvpvjbl2cmABGcdJPW5vAZX2yJ3cJbS/035ZOGsw+YMNrh0l/CCtnLdi1MmxUXpDNsNTM0Sw0Q/bS8O4jSyu8u4MSRFFTxlGIhS99nj27FWkY0sYznVUVek1KwSJZ6sAU8+uhVC3oLOIZz5p/wMVjz6u70jXmXD72zG+qfGry13sGj5H1kh5ae13o9jax943xU8hjoD3KmhGqHHh+bcTh5YyMfGdwlAeYM+uHgVH/5O1Mu9atlmCQ5+sQkkVlPrlNHnH16ZrkVH/rpxweC/n5fF00PXHZ4kz9I2P8F8isIpG4Fbgmmh/CeVMlTFMGP/CeKuwdin+vqmEuZ76WU+CQ611VP8OzwncpV5+7Z56LG7FEugVLP9l2Om6UF14Mkc2nhoATJ/Dg5qum4UmQ8VKXuYpYSg/ThiIhIdCjn1Aef617vtq5dDCBOxJVY5T62DZrQPg241Zl1iXz1rb2r+g/R8OJYx05CTNXT2eplxnN/p968Rnf9FSvk0zXls55AwPuHuDElAfmJvrRXN+R4WR6NGM74YHZKHHpwjS8luceDmJgeqD316LyEKPIQioR7UZyUDRMHF7y9IO5V64lzCdIBf2+ICyPg2VSRU7G6sRhdEzYvg2BCR9ojU5rm/UgfxW/apl7ElMDbsnGikM+fQOX16Gzub8Qj7/SlJiVEF8BVHvLppSI/zH6H23ezQMzhgpJNhPqxCqcmzOHOX+VdgQDX1lWMosxZPAdOZbh0A5gje+lM3L6Oc+LBWKAT293YQiCo3ERMzD5FRb/aRQmle4CVYO0hH9z9KTA5oEr0BlFCXZ02/eF4kCw5YDO2NcIKmQWbHp1/MDHQVRe8bpGHtFVdwZWLAepDemNruYQ9Q0kGU5y/xICchaNeAsPQVya+KXMUnD8xgiRwfrv+9DPRU+Xiz9n49MmeARj7JRhj0iBFi6xBcijrNmbBErkhWNM+MpUQZP3btDe3vjUmceHlN5sbEjrG6lKtcYlx3teRws8VhmCV37oDfpeUCbE4/fgwewkK8p2cH2pYSJz62KiVCmY7Tjmc1wb+uHcj8D5I/urKbtyoL5460vNyDjNn1aq2GNOH8r1cbtBWeRcMhIuEZJfzh6j8/f1rD2It4YsunMpluecEzc/9O0sztXgmXTAVvgHyQ8UrYU/wqy7PTE61LXywZqllJLt8zLzXEa7rldCSq2uHxk0tcIVmZr1kHQBi0NG0tZ1K/iI3v1TJ8erIMKcx8MVxG0WW2ML+Rz8E84ph+/OWmn43zR/4EANNCveMgbdkxLrSNJGKDXMaEbH/H5WhMpk5ug7tOyV/JlryCtF5eZDukHkzw22USopLYIhcPVIuqmz9MNKIOx6MoniBho5dF8oUneDKpKeJZODovoyKfdjezdCPtmWNp2Ox5CKn3wXvlJ+WP+OnAqdi4sGIxECu2vEHusbemxHqcSvHbCh7vh54fsXuzy0CPDaKTGcarJB4QE6VR5NQ7ig+sPz7dnwUyh3QjHxwmPAD2Hfp7t2zWphTC/fD9FXVRW4zWmd3JgDu9MVjB85KXTRCCMGQmHTGK2GFb/hhHPGJX/8awzwxxOn/y4XpJF5QT5vz5GZgD0cLmXEAem0pAZBJSES4sVsXtTZpxvDXiCYkPCLR769630RMsjntp4QzIVBmPuJZ49EOVI7SMoICcVbYiOAJFgsD5hsEZrsORirO09Is2F/60OvBBqn3tjnfkXeC9o3rX8IgPeRlyCIeqrxvoWzKS7GILTDfAc0d2pZTqEeBI38HIN79ZtbmlQ3u1OWDgi0ky++ioS32xMUsL5MYuT2wvllVEGnCaK8NCinFTu97gVkR7/gmzuD0V9psYd3zyOPuYz+12oa2Hy1XnXE6IBMpQe6/Z7NAfzZFQutJZM7ml3HcKda4pXmBCQCZf6iP3oYix2yaY5q18rF/vELHfBI5k/xp2+Mu1oo6tPbVOKi3AHSh9tVO8KGknf5O1DPBpMhp9WlcOVqSS4WTHJbtBjRtXfPdKwriBNZdKuayJeaeDo6TixQ654mtc/PKicYoZ2qKU7tvt79vn+1qT9PVrl9idzdbI9i3lK4Gv21Da14u55LHdmtgILjH+6H3Fo6VIw8bcGTu9h/kEb0n7199GjkSQS7fs3/WgH8PzOwIHohwnUhrj7oC2KAeIR447D26vc918Fgee2mIelk61NPOv2zg4hbwdOHNJ1UzhIiAjhbQHZj1q1Vt1T/cfvrkzKVLHZ7+BcdqbIJmkw9koeSJmzixeiI7PXO++60V8z037ICfNywkZESLGBa2uXXTXn6r3x2/MLUU92+7izI13i1Zfi7+rOnOsK8pJJzAjvkJSwi9HbI0p9WzwzsMl5wXp98Ev0gD/DrxExBpVtcZewM90eUwMijs2x0/+3x1ZZ81wUv05e1w7AETgf8JO1qm68RNvXlsNES8FXzOrOv59uJp+cdWIWIbmN9XpXuLicKGWx/28w4Vf5Q+8wS9JaicAi4NNLdvxG1eUsYbRheEpTOUt23Zz2/VKSKCirNNMSPaOaLx1dxwb29SjOjvTv8TrmVDN9iddtJ8DpeLD9KIqIGr0mv/nQI8roUmQ/gu+Adxc3Cm07/oSGnzjHOMZGi8x/40wGqf73j1PcBL5eVPTFcuds6tfvqy2gMKXoRMcpr44lfMs0nbPwUOCfCYvnagVJyV8F+7UhaPXCDACtcLyIVakQEBlVhSA0LWhBHGYPP6JZ0tux2/ZROkdwNVuofOT+WE/QWaYo0znH7fA4B3UMukwfsWzYCXF+OWNiOr9qFiZUDk4DODJBUGbmerfP26UD+kZz9o7lWb7uouj571/ttUr4NkJLF7ff5fenTzQpMQRl2ycCNNf4gM3VH9W6BhPXhQrSUiPK78XLFSNIFUgMjO2bi9OGd5nrWjyH2sLAE87OVHaytbw1o/7XMkGM/Q5kU+zCTmP5b8pv1QRRltcPvotWRbMaZX2Fm6w/9LthfAjTe+LNhEn7P85JtUATElCqY91h2bv6VdyFjBae78RL0hpEoVD9OVqlo6pHxhpG/s57iLWM+wNak9urc0WWjcGaS0iNIKhriPIMww0GKwqHJp8+LbH+lPbv1xeXNOw+//S/dY8d4efCD4u3AdCk3bnW4ZTDHIU1mB8JSS2nAwklj7AJYUfTwcE7aEXx18r6eK6nN+ZTSlP0+7UsZZDWP35YM3UHz+yYESYsuK18mkIH59rsin2/voPOy93hmNRn7rrCdjavsxojln/Nm1jNHVqOKeYDktXvd7UhNXKB5do4dMzf4mRd46FqRvkCgN0bOgpNPQ3gAIa22zmCb89benfa1mldVCzwetlMDRIs9jTtffL3WCPhXHkt5i1hO05H9LiQrdYj7y2nKHEpTsbF7EyFD3MtXGFCjw0VtzXEzNmD4imOX0uhuLDPnbis8XekltdpjOikkjo3wEcS/zL6Xdd3RyQjt5S6uDcTZrx5g4FWK9v9xDpsprdGFlqkYd/XzE/KmupZvdxJzSvFU+WTtwXf+zLsOgenoj0hqgws1fO/+KBLFrMha9cTANLubjZ5Gf50/aid7nMW1kzuODFy4rXLLPs9MF0RPEm45h/8xQfdPD+n464PuvPjhNtnzFsUe5HHS/2b+UEbDsIWawzvZr5Ba88zVZWO4iS2EazPE8x+3RM3e/Q3weB7rZO9Rc+eWR8fj6Dc/3iY8ock2kIJB0YRE+WyOlf7An2eZReJpmO+EYxCzzj8WBmOPlD6ekixj73YpZarnOa2ARGJjv+Wsk5z1sm2oW2J7dgfc3HbYcr/QQUsa6vxBR43z3n1XsvKZiQz3D8l1ZzOrGnAmuciOY5PNOH5A/1QXcRuvEhJFJS0EuyAofwvWtulvZ9yaBzq0OYpQLnP1LHeGe/OlwjrV1GTQ9/QH0edhqIII+A3l15+LCUuEk4T/kFJ6NbBWLTaeXluEMXBjl/ROcPx03AAl884tXzOUIOvD5bCKSzXB5TVVBbv3QYJFWFl2uJvqkFZwNZGTeZZuJiucu6jZRUBrO7iSuhCRCaHZUGKBtWOAcj7I+jwhqR/3gv3jYg9kK0d4yl1z46hKuXfHD++utVLT9USqVNd3Jn6yFTJh8nIHbWYvSG/2RHgSlXSx7sexLFb7+simMpaQkL9ors++nOfP6UyQirjfz2kOOR1RT5v3fGJa/Me1WsMfP52PrrfSAyzvtd5GSjoEmB2wsmpvMGTQ2roqeoo1PUSke/xV4y/sHaYU3l39ie/nPNxFd68kceNf+4UG53v94sfSWbJ6Sh9f3+B6dzjl7ZTj+hb5KIUmlta2E+pzFFUDWc5F/5lH4oHQ4lX4m0J27HY+QrdG6CoqW7RQiERM4zvL0TFMB0vrFEE8YI6Ezfjb7zi2OzIFffdKfgUZDQYQIHQhwHnW55qsRnvm5MDrtBx9s0YtixFP3Gt1/00aWpe+cHNSxcubZiZu/u3/K3gnAC6Dw1U/oEhQS4BL/eye1IyD5u9gD2YlIF752YAworvAyrARw88ZUDYho97QUWeJ6gixLOWCZo9lzM7IgVU8/3VYcmYEqlgQE+mEa6pYUsx4j9kGDknb7THYyzsnyFtrVC22VoMSsAGkwaOvxLTs+1DxmIZ2pzsZdeDstIgYFcab7qyhO7gp4BdLkNXSMldaJku32Xwi7oNwzSBAUchIiYpvQlunjqYnZUZyCuzVDKIHgkeMAPTrFVxV2K+QAdVti2A3QG4hfhdXATdq6ktMNzDoL1jAE42OAZenRKo+yYNtz6QsNywRGoE++t32c9zYgce2PbcqYw8Yxei0VkC+ZKdyJ+icW95TxHwF+TUui8VY2nWisZS1WWv4E/jlQ+Ya1opzGFrUsbmL0FPXoUTO3mPOvMiJChSnPHU6vT85jabIRXgfFEDMRIF6YBwIqJfOj0w9C/d2kRwvABZ+qX7TJmjCufgtySP2I03mGc7xe4JmOtvrS6tBPjdNI43D/3DYn8q5RvGYxp45J9wqFe+ZfKYA1xc6H9bAHM0Xkso+jcTGUr4OXI4ZUkTlWmxPgtd7qufWq4u66Yx8XMmU138+tiiDWrPa+9rcQ52sGdCJpIsuMtT0A0GOPOTIiFfplI0ySfRlTF3K2/V0pXwLGVFqNfvMzhExEfYqMuwLsscGLoxz6JkDW50FPnJbii/cufvVnxpCpCFUzPzxZtL76QMtCS7/xhb8G/BrSUfiZxvfmaX2E0GUCH8qOf3m/gRRYpmapKb9dmEkLTn5K1yR6pkDLjwne74dhvYcaScii8da7gk2/Rhvr+7UtMdMjIshPamo3Ww1nlYaf/L2Zm6HfXpg8rhVYW4w0Y0FRlrVuSCMK9GJRtOhKFVWrtTNT4xFCt9+Wt8tfzFbgWNSCo6m1qgGlGJk91FsXj83ulwqYcZERs1dNAQWgqnKAdddSKF8RJ1j7P913+cx/YAZnpq9ZLM/fyQxf/8i7l7x9oqyxNsIwMj6Dkc5zYtdTvv8ym5VEGpnSS4N13o2/Px50KEQ+tzV9VDkpr884W+p2Yj7YClMnwk04dGRuhkv2qo0XH1f4ccS412N9n87GuZdeJH4tXG8VRfXWrLV/iCoaF2wObvHD9us7AiIcUVrmh+9EuTb6zQSTndi68GFGIKoV/wEgyJzVvlKB0Cds7nab1VG5wCbQrERUmbDj6L8rv/nQjNhFFPN5eErVswPO3lP4ZnBIhiv5jTu8bh8zVR85DhfKBSvXKWvet7sBgyE6QfiXG/aQwOpdEMRn4tM79/5MK/W2kcUtRyb4k37/VGNJyree7m1E9BN4Nhb6uRB1ZzEQutBR95E2Ia/mXv8wFBHkUrqfWhDfNEHvxVEIm+fUkQPxDtUVgydWS5oRGJr1kvrlOVCOv19+7e3r8xIg0dDWsUAOomt06sUiJFdkqIcGXB80gmANS5zWQ1uqXQGJcbNDIYi1X+WUU1yJ6QmMOgeXpgnrDDBv0ggC4p5PuR10SGK6Hfs2f9Wpm7m9LSzvJfDka6IpcRcMRbbCAbLbFpwOeH2ss7+5ufvHUUJn0LfgaCqvcuhyvS5Ue1l/o/nAnxX6j639wLv3/jfLp8kUEwvsskOiI6c6HCRDgyxYvfIMn3X6s3tlt/+SbdxNVCdRZM8KVvvUzizzhbvx7+inOBO8VXRjZPj95EUwBopSlfzWwwoBTLYNTEwDlAN/Vqom5//DtrTP3MQmQAsLOT2/1ZA+TA5kyLtkEUHbRld5mcdTlwdfsiTY8ZoJs/0n91x4aGgBu23+w8oH1YIZy4C4l4KVHTiQbkZeZFYonWRcy9AyPNI9C13r1UJjzwv/kzXaYxYkvsfXzfcm/sAXSYJm2dP+mJVodZ0Jjx4NfogpBtFcAywp+htPTnNre8SdwQTz65Ygb8JLr0dNNlA0G8WRLMcNp/1vLjwO+K6aXJiHBHa8HHUFY2SBrlUGTo+Diar522ALs4c7vILC6RLeU97nipks6lJq4beQsX9/S4veLwb2XpwTrEn7IJFx/v3L/QLDpi9py33EuIOiUdEGk4sohKnSQbOG4DeW16AyCagGgzCgBQv4nt3UA2cfo9JsyKCW8drg6JeA199nYShNbmmCj3JYrG+cheb7LkW8c3kH0kPLLXkNUiY9xj84OET/7HaUgXxSdpmiSFq3fRcEPv2Kp9/aDsBjZwCk9MACJ88cAXzQQy4JsL6eXoRnpCDeeLAINQr1MAUfo9enxGWqg4M/WBHVYlYIbQJXIEK1DRkwIB/BBqV49eJEeyC5wyRBgog/+iQ2EndjyZtpF/A0R0vyD6rqiHeETTPhh8PP9QbuLUcq/NE7loUXTVdhtD9BKslU5e09yasWgoAgxlomJsbueLb6i6aXFL1k84GQHzqqD/ZH+jggGvebzlFTNi7S6UMcmEcctgdCmN0NxM7JwDzLXf2aLK+/7HDQmFXff4qn7lI+b/8RJftfPNhbhbC0jjRNv1nfd2EGB3+SEsEzBg6/eHYNScqzGsamlpjlCJQWLlok5Xgrtj0uTREQyDibtejfmbLL7csmwts5RunUkYF/wxuQlzVhs6y7A0q3wXSsRjiXkKsSIb6YKwQGVrZ/EpeGk03rm/XtJy+JO2uEzDD/TekXQmNmxgQsiUvSU3Xu3Epv5eXbRC+x7ENr4pS3wjRVc3c3P44YNmfNWVUSPInjMKj6X/Rlz6pzCtK95BNfBi0XLjeJPREyLMVJSHG+BNvYXskuvS+sV2RadiAgpA/I0hKD/UTfDyp/r65T43bc+LlHXzQRb/s4f73JA3d9l+RTOyy8OC8xn5q6egWbHPnR7rUH+nu8wo8MVg9y7byh7zpcszPbqZabQr1y16orD96LJYx4a3Av2owDHuFtaRp8PCsGX3Vn4xNY9hugtOHlqM7Hf2FTIQKo8BmNLaV13EkfHHqFPgEGpbg9hc49JkdisT4AWF03OCYbnlRECCyunKNPM9uyaanC0d4gr25fBgJbk9LtEUyFJoTVT3gIFXIPF0UNagpUQNpeDSXY6C/hHx1hvxUzwM4NYwD+6k4ZYFYy/0tK8XXxa4w8z3+xA7NsnaPB9ZNpOYZJBaED5ENdWeyYs65KdwTF7LT+XSF7TV0qVCZDvYitq7pxHp3P0nsV/wxorUHHf/fuantTIWN4h9+6ULif2or/fulr6BOE/WvmyfJk2xVoFMqQ/1r1wsEiH+AV3l89+CEstnXgNUASiErHc97c8IYGbP6YKhiI2hFmGCJjkmk00axuJkv4m7jhpzTyi9NheIzDYdYmhof2e1+dN3wYy3oz3J/6o433rmjuIC8/OHJFC2AsJiu1dU7FEGP+g4pTvMSH3dE+6ZoZ6RhnxX9DbvqN+h4APakrc3z1lHds0vB3fYRkTdqWtfefimDNgqXRkXPoxovwou0R4GlXuSfPNvmw1W8zLKzz7R30AV+HSWhWF6hQQgwHJACyjlg2ZMQvvzfTj0V9W4wvp06t2UazEIJAaTdYAZJXBdgtNyq672Fe5+6oD8EuytskFZbRkfWW+migwHHS6CpU+ah9jGhrD8Kfin7K+ImHng6nA/0aRghzeJd/Y1lV6lEjhL0FZV9MwqJWA4AFNfhjp7M8jZ8m7BEM/CMpAkd2pz3+gvFYH+RzbLix9vIF7nUU5cj6ZtrjFl/xLe9n8De9t3nup+/TUwlF0WU1np/qZk3lEAry1nc/WtJPkOJVuY15M4g7Co2a2RnsT+vxWprYCqlzr/qtd1FrefVnBA3NaW/sGK4LwNH6XxJ7QoTjAWGrXj59RmUa3ec6nWDshzuqBsW3DHRKZ1X/E33z5bd2+dN8s15xm9boupEs/sj9cGDx8L+zMG9vTWivkARKsQqnv/m3jpqbToe4YmZkdITfCjZpjTE8b8vUzLx1WZPuNBipKdejU/Z1uVa8aP7Wy+qnH2UPOf0r20SU4+Fiu8+wdWQR7/MsW93XD7w+MjLE3luMvSpykPVvH6ZLo2KKBoYYQU8ns9cuOJBe1Z1wWOjXw6B3y0ZfLeFz4unu2ZYnS6hfulY/2/b7xMefvPewtb2WgsugTtYcCQ/Uc1bgAODJ6Z6gGVyvwifNDfTDWIZGeSRIHgGRmhDwmWi5MAyyCnmwe+l1UoP2/IdR8ZVLo0JidpaLI+9rpcrYU++GDy/y7yF6iCcvd8epxNzMDeVE/fnWZMdOA6f2Idt37eUKRArWuLmQ9jhwK4VlWZmPQBlGFgqJ71eD+0rcEHwDeMRE8SrKcT1p0XB8aw/n3+f5cL2ZqnHHVd/Yc6v+efS3+1BS6ArAdo1k6Zwc3QS3m69p9UXQoHuKtE3FZz/+TBmJa4z7O5hNhNPqsG+U95NTJuH2T+c7TCaJJtYs8I/dQPeGhZDmWveUkJyrCpEU649a/jE+a2CoTa0cG3LR7xCzA1Vjt1TLm127zMy7tKCYZiMjgt/pSxf4OD68R4eUK/nVztoER7J1K/Dcizd7UVGdCIRn/iQE/qnr8d2zS4jTXxdD0JPzVeZ+/tza/Z8QwofUT9tHqNjdA/hpH5Nasbw+y7/zsys30/N9nB5jvHEz2m7QlfYI5OFMKFSgVTWZFoDm3anUWd7USYjHKp6v9v8lmtheJV0CRsbSOjiuENcGLUtGRzyf0iVnP8weip/oEiVnYepnlJCNnqEbMdLTmNu1ubXBBxaetJZLZ2Lx2e7EJd6YfW5lHYV6CZtH2rdw+Kb6lzvGk93m0qSCuxEmwnhj0GDQcp6BAS8CDgC1K3PEuezRuZfin79JMuO20aRUsw4DKARQxZAlA/yp+zo3q4hfy1KNbqdwz28p33Nn8hhg2Itj2frwVhWo4HOibwykl2RiHstBRA+NJkuKoQRCKr2yF8zIaujVrQE2Ze4rB6Jzf/+ceAE4HnItd8kx4u1vPj+rRd+4XpodPQUhJdYTJwcn971nenjDG4nCWjwrpORas/ahRPqDDg/j6YDZqaHGzk7Q5Mver+q+AQ79yNC9C18TrryevHmdTq32iC5F14d38569fHtiS2z9jM+BLA65HBycXAduy3X0XSUh5g6+w6HNeVzzXzbyptBpQUknuUVDYbJxezKYESPdBwxQIOZROZwP5IHSCPu0yehJINPDI9l1NnGE2E+BFUcZ0NCpVPRiuNBLitHNpbpbgx1UczrxGx9LymzGhMTUbSI9qSjRFy2Cs/vct1GcDV9d3w9CybQkptpe1tYuOyLcHLcdv24PMDwqWgwx27IL2YPlOWVoZJ/CCyd8s9jTrrX7G4e9nhOZ+NivvxAt7pEFabUsNdSaUL/5dGD2AEfK2390zTfZpcyGa1fzAXZLjJ5MfGom1TTYMU5FEpkuixkrHxhQzkMnN95Ozp7on47yDsxa+u1/sYwzHIrzvYxs13Ne8Lqpjbrl3vptc90rgUXv9q8epz9tnCZdZctMKYSB2IrLkbknogExSCdUaQS9nJD0L4QQUvqyilLT5bCpkaxiEJc+Mxn75g235IY8rOX8m7orIVLJy0uVj3tNledw7/3wxTZqEvwbKH9xdpn5DGmjv8laTHj5VY6keoxsBGcuJvuw2O1CT5R7qd/6cd5UbFXsEdjdCS18fFm7beKeZueEYMayVGf5KXbe8HNbWCIShfKLXA9SJPsXI2QaHVOiDraNABqmbZuDEpzckXsz34LGD4pwhuzq3i6LX5l0d+a6U9/lry4Xsj489+Pk7r0tW7nhfvWh5UP8remYLO/F2WfoV7NNuvN+Y5m+0BBh4pqhV3IM4Hg5jRcX/QfT+aQvNucQ9Gs2XCa60xC7oQ7dmug7UOSvMGiNXdnJsH6obzRmnDE1KhbOMk3TvqGoGM+QKlorGyj6IjHu3tjk7ENOqc6rmFgUcQTxWnhvpiB69sSryu47QzGmg9iPpujdwkvPJjtEtokwepnPRaLV276HoTDGpoWglaEjcOY5zdlLMGLIxSsdSDQugwgw9FfFEmFfI8iCRA3jGztrghLVRwf2Vg111Cz4KdqvxqTwPr9iSO/ZnXqqZuJqLYn6VeGRbOL2BdFfyqb+kBk08sDedunznVbHGAnj9yBk6L+xdT8uStg+KwE7fPWzi1AewGSDhwRqR+bo1fwoZSIydZHXEUZit0auhovOEZO+LrKOzd+NBHghYKo7zPRomIogg02E+BNFFYaEfQGDk1dGNdvjbSomyDblww4kwy5vaJkFrd9w5NLt7DIrypAtUQ7ehpTLDeJTCBPfP3IaqCapS/R8MbvESn6jXgjFsiIUu0D/m15UNA83PnTuhgUf0NVWJV39p+Sr/OTuue5JbTg8UeXPA5sgTVrCsGSEo9GHIBjQGBuhjtJJbCkg/vBUs0PBilX3knbug//29R3dfFrQVrcE8GPAXduCX95QQOC7WF3RnK8qSw/iZ+euzSLa5+w+3nKcWz62DVdwoe5dY568YioTrRAEhOIt1r7iMN/nriEr0MeWqQN+kM4o9VnAns/Q45alKjqQ+4hoLwOeu31oXcwROgSX9/gA6g8bP9v26NcXyD7JjA1eTtlHQ986DLF/CTAMvvydZ3SP2gpCciDkjjHAEYr22wJLxt8lC5lRfrC/aF1uQ1juiLB/EQNI9s41VfUvHIHJZUdphm+97McvOUWp0egxN+njYKXj0jSw+LM+73fnG94N1cBK06cqRcRewlwBlTVfJy7gursRUasCJJJZqJnsK3oEtP8N6crTeGxZALrAtfAMV/IIAdznh5qUwPWrIrbEvdI8zzZDH2HAp2nUv0mw6/wTCtt3ffdFlytJ0TsyZxdf6GMr/3GOTrARVB/wlLQTzs1FvGyEwY/To03Lp399nrK07iXL/g12qduKC/ae1PmuWu6BH3N3nBzGiSWy09kiHT3hqpQnYZvWXO/6EQUJy9qQUUW2eM3J3sed537jbG7FfZYZjXC38+lLM8CRV6X7Q/8FjT9KNGb0zi2IEPHflC78Zj0TW/VpUNj88FKpmxhP9L6lqFXz4rvtshBugBH4Zdn3jDLrijoiP2Dg18tjnEzuyYNhxAV6rcASDzVJJVhMFL9pDrQ22UxfRtwnBkxN1ODn/JOy5rzDooFz8f0j/Ukg7HjzXWXoiYiel/MZNOiiae1dPSHD9DNy4mxqzquuNeujhzunWDPmSkAM+XOn95uQEEuVIL/IFdA7ed/HO1xKuExSiEpKdwv0Bq9laCNmnLdMhfsrA+Qzf4h+pE4QuwJCo1qaVxCJ6YFGz8p+L2OiIE6L5IW+Rwn4X3FLrjI5qa7mRXqSd24ocC1UBRK334uN/yZgtgdk3coo1smMbk2IIkmUCxfBLbl2F02ElYTO9x+lvXOgf4LtV0n74vxXdeNnE6zpPVGII9Cln072RP51CPXVv869DvkGaUvCGt8fOa/+7K6K7jvtPuKObSevaERLijCElUQPitn0rYP9zx/8368oeq93PmTIC7KjqVNj3jG9T8M3JxVNYv6Uvl2x5dlwH+bjs4FyGzbZh//Wr11wEfPZSfUbJXkiCzQUJSJdZkWZCE8DcsylaD9VKqjQT7ZoSHIcsJm4bFdEhCAhJzl2TL9qqokcREQWlWQHw0L7lmVx9alT7ZrQP293KuHW4GMNX7noosAwkwnwcFYfGvY42rg9Y80gfNzEoE3oaBLT4qJ3XNYV5L9CauBcNDFc1FsXdSUpfomR5FhRXZBu/PYKLrN7MP41dC8oNJ8Q+A3EHT3Dz47yfrrmFu5XESSJlbEDFWVpJ2NtTlhClU28ytePczrML2nUBfbDiINKjbHQgBGs8mLf9Kmv6b9sdUEvh+5cxV1ZvIsqK/QKjt8eggUEfolEBYxGVYQWj1SukdcfRtL/Nn4N8dGgqU/yP/r4cjOhHGuFclNp2esS1dEXPlFO39U6S7pSKf0hhumTyWG1+et3uU9uCBrCadfPCTZIsLCRpl7Y2Qeufp9fUpv8ayCsTeF+yz9k5dzf/8FCyLHshpuSusnJBHtKlvFZIiTc+IZApiCfTawIyoVR7J+2VDxJ7iLaw6wg7CsI9AvHH85rP64/3PfCSzvTef6sXzeK2wn+0B1otXhDBk5GYmYkuTVgaIDq6u3RqpfaDvLI+snQC5S/9PJ/PMf2p4v8sPDR/WVX4sNvjc7yo7J+XS4EZkED+DifFgEhq23Ey+qVRJTmhJjERXlbRTOWmirU6zTbjpHC4bboNxYkOoY3366fwejwgXSI/z9eAm9//yv0dWxjMX8bqUBj2ar20nrpVQOHXhDYu6M4cTbO5vF4s6nZuB3cP5ASBWbZyJ9jPrCysJfr8Kp/LOODyKqxcSxuxrJNYSz+nS0UEXKnBgMByb63RDODviA2/fMYF/WjQF3S2beI6pScNRfruN/+dNP8LQ3+sPGjBp4LJPzuwvfZTzk56zgbNz58urkbrMTTh25jg1pQmVlqsZuDCvn502Hcc1QvLfTlriCvaT/Nz9cM8EcxapQbZvkRgGfELI2i6dGlcquilqCtGiaopp1g4oametDasNQxbKTiddD5Pm+IKnjRFnsdFOFvvnviFuEtb4MO/a5N4PdV9OIn55m3VtJwJf7r7ZKtTsvvHarBnydC25p07e6GlXSAJEX014slSIYmwnJ2swYBU6zTgPQz0YX0vxzhm/RJk531C1ZnJyhwZcjvHXNWyxr5xKshAzStsA/KQjyApu/Rxb62wVb2T5bzGs7PoyBae+hybN7EZ1ZGC3AExuQMIsOtCxDHbDKp+rAUmISUZoZbu+T//HEKHpCVSTSWtANduA9gS3G1Ni8UQ0OPdZrXSSLFHfqOiVuy2/fImX6Zi8UMqNWKcufKOhL8VHaMOzA1aM0Wge+7gfmZAM7W4B1hJdhVpBQ8QBmTsXpjdsIJp0fSnRmwUM2FWz0Dsy5Kwcl94bnEQYxz3A/9p/TiCPS57mDIYTL753o7IuGTJMYkXrgTtdprZzgSJtZUjLMc83GyY0Trg+nf4elpb31ML9hJR0ciTxUD94b8OWfvyfASuXN7ZEVz42LSRDz+akQuNXRYH16Ag5hwq0A9KYTnC47+UtK2StwC3RtEDll1/UDoP+YalvPBW7BcDAKaESvBX77Sw3A4xud7dECmIyv/dcmZDDAzMGb5i83A7d73B16bNrY+VOifJVn4mBIuN3NCjNQOrNPftwz1cx55h+8YF4Idkp4MOLJo9qlburQ2d7WBj636JmOY40MHRMHcIfig+eXpQhzMM2DsdzYvrJGbJh8HZGdj8gc3sNInizJTIUe08m6vI7vvmrZI/UKVHt1aMRsKmSwDKEycCnMFZco1cfH0cmYsoK7fkZ3u1GpOELMgMgb21QuKN7yls7S5hev+bVb4DICQ/8lineAb7SrrzOoIbty6ycCufSFGfDouzADKCbetvs+4/opRMzuJ3ksLHU93zdz18YyHCl68UvxH/CEW8a64dgrPJBgalb7j7dddOhC4PNHwTM9/w2vtz1r+mNAdFTHzcPNgQEvap68q7lcOxEXTyMLwHN/6UrMpgtvcZuf6c8ogApDfYuxzJTxb2AySo16vrK1/kbHNuXKksDx1cLAlqE8R7MvGoWnxb4iI2cXnYe361nurZKlxxMA+mT0Fm6+BTjsDAm/BmEbI0WeU5/O7NRznrBOfDdqzNB2O60Dz1MmRo6P4y54damhZ5olXSxNrEbgwBnQIaUeobPNuE+2xIuJFe/ldPYkhBd+1P/N2aIQ9XILFhQQNEpFg1E4RSEJ3mKmbeGZT7VKTOum8RyPVhlcKbbBgdlDkTstqN+oxi2o7EJe3ZnJGQJyIGJsbHTAS/qkbsmBiwF5Ybu5OrNdre0poqzEzy923MPTZcPHUD0G+vqzVzbL0sZ+29h55crL8keq5qm83wL//w8Pv+KO1qFE2MVlhqIp+d0dV6rb3yv5L3jP03/CzK+1x34foDpcOeRmYlnsL5JjiAl6P9wKj6Rdq4hLhzl0aGZiG8LPVxJSbVrVJ+ULbYe9vLaeeXv+f9vrR1Fo8qsXeDhJ5XekHrHtHsZ5rrtBOnZF7g5KU/C8zOj3MQuCb/x19SJlqk6ftEPEaefA/HnDC2vM7QhHTM/rPzPB0n+H4NsauACSWgF5B/AKrW8PattU81aRXRWV4oepXdzu6YQ8vXIMAF7mvY/IivRbAoVQ2cEEBSoUQJIhsNfMNor6z5OPdxubGGd9I3fAyhUADKJyhYUAt0zx4zou+xmX38o5TYRHRHS2a9MTF+bfbwCyIr/1cdxQGesSEuLL1r2DnuQ4nlcpP8n1b4YhyaihYm1LsF5HCV8uqY/0YF2aGjC7o9GdL363YhXEBI+gO1saj1uMtTH81JVCsLC88Mt1hOu6whYnb1+ZmAPIG+fdJGbC3NWWB7qOBFxTzj37Sud4EGH9aBw2KYU5P4itEwRSAHFVVi/fyfZOj2s+8BG/96KU+IpQhaLJqfNNQ2B6iwz0cL/rysPyUBayODqOhzOrQl3Gpv4ff/rb9qB/rgj9R2t0I5znbMPe2+EbcRB9DTfm0ZEshBi8Eb2UGqHAnxLDUmpipiQpgCTDuWMbklf+YsK2YWb8d9ck3PJlnuAyyanRNTPC2q6/eUS7xwaHN64l3ovIW6pT+UdJ2JukIRtBUj+ld6nXERUovjBs6WmLJsTAPXwbdiIIpNvkY5xZ8Y6B9WiYfzqL0vc2Qsz129+IRP9ykjsZauWcSb6WqN5rWXx58HZb9ZcF11xL1r1GVD2CTd7MetScCBznABhe+gDMCR0dbRz4pn/9avz5Sv+xVGyn8UI9p9ucc4YdioQ2d+wLjpRP3nmqQ/Bmj3jDRPu+KW+dbT8zfphiHddnR1KVxpUY8n7z3p08veJ2Ff9uvVC+nQi8TxyyEI5pgbclKNqm4TWpLJ4Lqn3RJEKBZXfcc4PQq3Z8AJztyK61V/PVWr+poqb1B3wOg8iVDdm6h1FtYuuKt79Sl0lL7/A2NTz5zv/ViF/uUbolw/Va5ltpWW/j5w12Vvlvdz+ogLvjVnqTkKHHxzuYbqzuPjYfPGOF+Sv8IOEmQvSB+RW2wIXb8XOtpAy1NdQXsYQXdzT7+WbwuyfKsuCXN9S0sK+Cpp8/rCkuYQ0tdnbmbDxueNKyAKx3EoBA+6vMVggLhjYmLNkBGlNk0HoZwIS1pYQkat3TbyFnQUlLhpF59uFnhie+dstNVUg/cyR3OmqSj5sEQAuk7V6R5UvM+7+7uqbJGwNuHhwZlVo4z2AWXAjImUUJxvzS3+5VvHG/eWZoUumlU8WWBJLQJjlOsJkViOMGqMtn9LHlHUfCnUmr1lW5XLlDwGDw2FLYlMZ+IpplTcfWRM61ljKk5SmMKYVvus1tHv7pb+DAvsfXwU8r+TZud3umxK1cHfjGMSx6e+lNTV6D84wItqRQC4IeEpPD3V+nmkIxQZoTbHGvaxl1+rhPiYgp2eaE+qRk0T9T2vsAyMcX55dQWIQe1cCt7YaFqQtZA+P2Hy89vgXgxY+7jbVLNZTRJbluSo9AAv4KzfpLKrUH05YjQjI/v20Eh7Ln6TsZcDxjURhbmMm9Lv4141Q38bG/9wL1bpPOoM7Gb+BaHLij4qwlnJaVlwpS4IlZ7r/T4JZF9K+NIM1rLOeZD7L85DT+xN9+prSrhecF6ALw/XkvefX1vM+B+HOwQZOwDMNgupf5HSi0jguULfCYC4tXrQO+CqWbZc0BXYgrq7dKkl4XIBNnFzAioj96rl8bErPzlCtrlWQLZ5klWhytpNWQY5G7wmEs7DHQcBO2guVQrLQ69L8xi9E4grziMOZb4Xlot2IEcfirsQDXm/JSo30myYjrj1Ex5cA6DucisoV1lmUIb/k09dC7Edna8RkrOO7p5rfahUV3cuvBiAvgaLjlQpcSHxbTQ5fCl+rmRQq/VjMAJmUk4YIzf+1Po8tdk/3Ql2EZr1HcXLq8aWofc5+QO/HBFsxmqmwBRjm/I5/dMt1huvOhqZ9m/X/fuoGW+vkrzZV4vQu6bvuu3Q/WTGYq/3E71ro8jCD7l02BwHihN/3RxpGJMmXHTv3GDK8Y/b4ynKWIHKeGgVs6J3YWhQb2rR91x3Kn2wh7p97O1ACHVr9FIFI9XSsJREavIW8XzR3FLk74c3XvpsQTqvW0IuGnbUO+3z5PbRld2c/3ByI3YlZSBmNsJ3KYtoH1gnvPVaP3KtKhwXFsAn+OTpYgXcJMTMDccoxGRAwAMLSzGt5YJGd2gJED8DDtNI0ud2CHvqwu6cR/IoBPys4DdwbYYDaQmExNGaMGDiulYXbrOjq99ursUIm2qsQ9Ht8witTFWhk1KPdKRYJhdq9pyUZ5j16vuLowbqZh46sz4v7t64ceupgZJoOVm6szgw9+N7a5f5D7R2KTT/TBhyHdzsV3rfQLyItZs41LX5qZYIo7RttLRrDcVGNgSb3B0RtE/z+GbjaXr3cxcJP1/IcCP1EhDQ1WLbuIHj43Ut+y/IIot3m13oWZYH+WWc6QPFXDITnMzdG5t8kR4GVa4scTHQJpmOrZ7mWpn6jOBuHy3qvRumL+HDH7U3+vD11TD6kfHgAeLc28+HYk6nFDnFym10hZibEolghFhpdITwH1k2iYlShBC0ZIrDM3hk8aw4nzLbBMVWHQe72dVnwm1e3dv+NB7VwhlLlCVgJJfgeRj3V5vaM8/wbFgmECygSR1z/jwVod4yQbjboXe32b+uFGtzPWWIhYCJLixHHUi0DxenRHho5egnpl9uDzITgx9ATbmS1b/6oZut4pne3wTb3Itj+eehwDTbk36lu/iAe7Dp2dlfELTmLNQAulYvxLQHKrSWT2/tLPFIc1a7MEFahrk7U8QGrU+saxrnP6dRglLjPbhQ/xE2GH81bzXCz9nZX7rwk2YowXYUbwnGAeZM1gmeCG525ODZXc92mJxn5DIbruoquUm57Q/i+DgJIELYdhoJz53mKx89lb4fgwEWLuuDVG6NB21O5VKzPx8fuCXK01/sEPjT6T9kEoluCeUddG7CmMvN0y7SKyo5EmtL1Q84LOxv58fNmMdtIxjpl+idbEE75Q0iA0UxMCf/sWPGzB5npzjm7MHAE7Ix3yUFpE4rDE+A2vGp93WeXPd9MDevTHQrzMavHzEFNsjkQCcNbnHxdXMzTTnWkD8U//JptUdduVG0WKxf+D31KIBXqIfbQVtKiYAuZoSgWAOEY79fG6fCC06KAE75DwbbNzXyhjdfUcAs6vaFvGcoflApdwvzij46HL8msnz2KYwi715Dz6JAIN+MBoKpnhbjBGrNg6l3XP8rkhA9qvhQXlzb+Bhum0eTPJ6+Da4PbGrvL8jfw24eXS0ogd2bCUnKOnH5fInnG6EvvuJhonCkGpJSq7HcTzq45g126XyIL1SR3XEz2aMDeuMMZjisihabUXnGdtf8Lej1CUgPesaJFQ3jonXmQRWpggtBiwBY0Skp9L8uX4oXKk8sMiyfaOYIYua5g0Gp4BI9oEzcyMP3h5rcCzO/lpn/bQ2FfikLxNiTB6Zf9HzfAgqvvfqLPja3ZTdoI3evySwZKQMPwZLNofCgMIDrAnx6z8iXNoxah+I70vCgBbkC93uiNPRug8E8MeseUSGMm47CMh7S/w9TDaNu9qoGMIYHS9/v0Wd67v8LKP5YLa86wTRB5OD/B8vsFCCuDVpR2RYxMMCCABwi6qr27hkiflfS9VYAbpiP0A94jNdi9slc5Gdbn7ywGkytnBbSLphyceWRc8VR/jKajK/hmmOzqDCYV5hVfH2fYujJNccezaEq4Rya1jzFFO09WFHtHG0i7HXxwhfNTFjade/5Fu9pxNVqx32AX5yMHmTwTT3Tpd1Fh1m+F+TGZOKp0zNrMX2EGNH/a1bj41pnPMaSwAmmz4XHOD0lm21bdgukzNvjTfbx/qOQBLEq+I/UT9XEDvdEf7mopk1yDx3N3UR4IWX/RfkVvcz15kYOFeExHvO/RC0WvG47z9jvGuXaynf99uKH+6lDmgeg04nZ/UHvGg7OKDQcsIM+HqRr0e3gsgI5ynPcZdr6Y6va2j5P3fxVR1rgbvBX4NqUeulXkXGCMgwAOHdygbwBOnb/3X+MbpQF5KwzueEqLixUWIoNCp4TO27dxEvzh4Kiyp93jDDzzMVvJiPZZtzzG+8+n38C4Oe+lhBikbrVJBgEhC0PRpTY2WW+o3gKb2f9Q8vSTyAH0EBg7mjcG/zCdUbb+9sGSKpjtE5of+b/3SM+EjC6Rk8E40dKqE0HW7OWdLjQbrlaNJSNo1GiachlwOws5bBW1Jwcyehh+acCbI6CThTsLf+4WqorYf/IZ6Nf/886Z5Sw2B/KDxR0KCkDuAXp4MiVg+Aoopv6T05UQYs8a/F9UKyjR6s/sp7ssV55ph/RDVb56v+L+e6Zz77SYIY5kBGqhDRnBDkdOI7aQoC5z1p1d3w/1pn5gL9TiAUPslArm/alprXScuTvbqO+U1kUrDOvq48uchxrxNFUnMGJlEJfaXcZu2d3/5q6bVCse1WlXDnK/uvET985Q3xDeR8mCsMdOd0YIb7/A5Dtt3YL2Aa0ou/B5lOvV2Z673w5jXqXdkTuBwSab/K8Hk/3KszyiBigN4qIbkBLMeZ3r85frcrgaMHOPVj1me0BjOP54gEZLwCHIL1MhbR7fNd/aFyMUDrO0lUFUS8xvbd5iU91Xz2j9vCCr2PhT/AG1YkYKhDv2YPSvdQTQ7sGjK2PMU8SDlO3YwKKh9kZlm9F4N0zxde+WGM+s6mfRlwqg1MlF6yYZHQliHnDL9qWGzmNr7OeEpP64uyYUGDDy1AqTbgBsIvGrGo/NLdt9P5z2fK+JjKdZAlzvuV6RHUfdVNjT1b1gtnxuBtje5R533MtNK7l7hn7ygf4u/7XSJZ6p7wflC2bqYMGWQ3vfKNX4c2bUMHprxFrreKr5qemf8s3Ue3klS31erzxwOjGK+2fPNcf29LVlBcQWHRaXQIAjY3pqPEn5oZYqzwgv+qQkejZuJRlMgi7JjDZ3Pi9nd+vsAw9YfWz3qav5FQ5+XB7YjDnjs8rYoRegfsVTk/iXyKw4GcwLRCoG0xpvXR/mVT2uSiBugExKAVsACCTBHdVyhf88o9//JRyJUP/7n22X5Q6U3WKhj/GItwwv7L59JmfdwWbP+lnIAUndVv5qA7y8aztpct3fe309sW0MfDUVUuNsKB8hiwuKTl6ZeLlkPvgrWenQTPFwLMqRzjc6IycCym3gkrBqlpwAINRhM0xoca+vsO+HtrErRwCBEMdAf91vZvNKTFkHgS3iAcCOgmupUonzSxTBtzmcTfFbPeNNIIiFmXdF1q/jTARnhGn7BWS9OCM1URKiekzcA76POZ+cmrIx1zCemJkVEExthuEpYnKbCEPwK3jLf/TgKs337QiH8eKU28CH+RVG1u+eHALaENPX719WLOzb75WEytMXz9Lhz5CaU3BPPDuK43ZEEJkwL4Fthtf2hbxc/vn/nyxPUbsyBx41yLnP1lSjzmoA3QVdWzkPvBCtEU55N9OLtf811Ll7eVun63BGYRI4WA2vQ8hjEkBWlgU3yv/HMcxNqS393f3tVvnx2/lFUrGWO9niQDly2jMPvfua5pGef+tgiY58jM+uAPZ2rmkVXnULBV5p7/DWhazVEry2pA5PoOvxxeRBzk+EDk1S0TNzArNo3KHuwclpOBMOBxOu5f43LNm+fn1T7jYWdsGg/wQ6VjcxbgPgQWXVOEYdcc7FMmcgZ6pRf1gIc1JW7oPz4U+HgQpDtSVKFUIb2GoJuWNIiy8QvPJ9S4UL+QUFhJck9LLIoDuQBabfSoNia4Il8veUIFoOo/8P/EtmckhUE2sibRLqvzZhgsoOIFQCDY823whizUHU1n1Zcl/5DsKzoY7idRANYzV+SlnfAdRDqp4x7IFQTiIdLK6CaDFr+XknL/6KnYlIjK9M4tRw/OajsNwlnmA1GZe8bo6IzeoI5hN1I//bUmkSs+8+I6OSz3oa69Bq4k4oqzPfNzFZ8nfWp9b+OnOFmU+BZkllGAyI15NN8pHNxX6Ri5CPZPGMNYzA09lVMj5wch2XuBlys2yCHIMk8qTxCtEU6EYMFOQxIm6U/K8u9W7253+gq0vuu3lxqEw2vKa5T7xavB0wcD/gOo89RhqLQW9alS/3N0wwtqoVMjDn0DPNYpnR8UWjdRb6idDKVdFqpD10KgaSNzBIKWMso9t+sdr3nkLINJLXhhfECPCwYXexHOqkI1q/QJC0jSjNHsF/dcM/ntoKqF69ssf8LlOSNhtmVH9k1262b/yDaLmTQn4WbsEI91nsSYvu0J8vlotgSYP2AWO0an1rJzejmNOeTjc8/nHnvA3MhnQRzw3UKR99sfSZF60oT2F82T+XNPHOd+ScwQftqQOYN76IhMBYSK/fqkcmKqUT72bLRXd555XvzD2FQdBWwevG+H0l3tWGjuvKw9rM7/VUpYQiLvej9UadMX5DQ83KmODQLkvkdz3JI1j0vjCvmf5fb9zcTtiDAi4Ww74wpuNis0SXe3iRAlvvP2mWcxxL6iYWCxaQFk2r6PFjld4LFAXNNd4E/f/rPz48TeEYFYgwU/lCOSzTo/aSIhTNpgHyYqg564mJtCo/QdGkM20aA6u1jZBRuDqg9tET+/ac/JyngY3XdcGoCw6Vu6PUSfIy5lGhtDsQAi5keM85Ga5ddYqWabw/mslE5t+OLtBsza9o2wg/xcXyZOETcyWS/ZFJOzAJRnNB9wll7GM3bk1Y83Mx/zxKxJx4zbu4hmUPO4/0tZOaCRjCN7TGa/IgGzA1AQV2aOHR+Yx78uw+x8l7p8ciFqdi2V/KwVHJtTqX75+2iKyOl46md0+Y2mi+6Hc9ncxp7nA9lbaLvzcra/PyEV3bga9E1/LC53jUa1o7ebKSoUMxtAzfxvYNG/eYZjhz4N1GKSRQNNS49vfejjD4bD3f6cVUjx7Djo9OiLy5DEJui6X1ZNTvYg94S2fHdHUw2n0YlWe1s89L/I7Qpugb+RSV80eXMrI1XldzhOEYLL6LnRJm/AfsFaZg2DQO9BtWaDe+ohfuoPoWBiIw30l2Hp23orZkaYLa3Bc0M7ADPOxYDF/h4uVpkQyZCX8675/3GpzlVTOiTwYbOto+jB+CzKaKekdZOffK5rVU1oU3fMQxjRiVg7M3ITgvno0rnrFtMOP0oxqYJI8Hz5TqwyOAKri5xc1Z5YP+ib3AyfU5NnvR0Ady/e8EOkozeA4c1fd5/gp4W0xD8Qdz0D+a4yLTnFVjGvBUDi54+UuV/HGMRbH8R+jTT6rgHFICcYMepkJz7Rm7Hcn35aToVRzRO9cjrDe2kGSMIFTic2v8l64Pt6BsBjwaoLBn8N70QcD4oxTMyd2vNFWyInP3FvCyUZr+ifX8RSsymhW0ImI+NqPNo7v7QdVNg4f3LI7W3j7WM4UitrfrUZGJJTdggDcfuNS3b51xBOUPbdiN3sBqsAwnLRayBldOPyexRQkNLCWjummXqt9JEq8bPWaG1vx8q/97wrkrH1TAS/5acp4TXT0kl/pMF4qHAyt6gm6zDiO6WXjYtOmSWAonmZ66cnHdD4H/6VLure7nIsJMnZAypSl82mxP69V/8RCaC53rKr//L1WwNfEmd5dKgS7nI7iAfvmQdLcklsZGmdyvdPmQclccUuiAGj6OOgSfMHN9ocE7F0z3arUdARKAGNrujZvsEJwBdkQOjWt68fcTpLkm/tOqqdCUvObMCGwZeHHpTIPXmDCUz2OPQraVhnnnx1V6LOhLxtXDUX6vJkD23yhptxjqkQ8h4HuQp8KRKnBe/kpFfPLOFjkpPi/VDM5pXI2AHXPZlkilXG4zbG04wRS7dXE6ZTbAnum3+0XPtbZp3wjZo5W2JfHmL+1MAnzv1xlz/ROnOzR5OPLsrd8V5Q1rflmxdgQV6lOqDQ3bdImj8FCEXjVGcrwlatJ9alJv6SdswSzGr6GvoEWpD5jeJPkX1JBIl8GaoIeme8N3k5i9lVAxwThXoxHKtdpQHnV4fsWkr40jCqXDlKScg7va5se9G+uME6x37CIuvBVHZApqdtkwnKAX52fA/OFbRCES3XWsSyPsy2rzLbZkCrHBoYsEU68lmh2toZ8dcsvLq26cQmWEhNnG9Gm5G381JbjaMMRuBrjBHBJo0CHuEGSMoybHdtGjR2MOSvWWdIOgKEqNdJpCvYdDxTR4bXssdKgXTVlfLtksAi0ryWM7+liVW/HiSZnDay/A/Z2H/gjO6JNwKAa/WAsVkWNHqDjXXqImuUixriCVrREma8EsgSOqoK0tCnXjuXYg64xJ1ykk+MZ7jOOCzsOEVmKcyJPOFdH3jgqz3BoaPe3KJ+dH/IR+zJSS0Yizl3dHt5cfC7p/nc93TI+fWkZEVExWj76vgkMg1fZ2D74JLe8C/+xQc/Gcjd/NKTOA4f9p2WuTh82bMR2Yd+vt9V/cBq3vpea0oDjA7RB43/cCNn3X98h7fhKtGAnuWGEpQrOLADCE0ISYzbvjkU8jOVlxVG/70OMnO94UMWUlm2AZ0jYfSqDL8v+mGI9wSdqSjQPUwNGVMEjAkmA3yyN3LH55xr5SnSQ5PJr3Izo0Snwm1rFpguowyjf6pkO5/ywHzFYHAyATyOCrRAtXUzEmgoCDC7PvM6BPNP/x+9sE3xUUOhM+IGUqT52uuSsLKrjBeBzmScc6P16mZ61Fe/eR5WPegwjZ1lJfOBSXmt3efYorQsy9ynMHG5CNChdW8szJTPv+nWTCxPfQUB9JQGRzTQLFkJZB+A6IkBlzW78NRcuBbfnu7BAgiCKWq0QpJiC/gztDUYQJXbRLDlgKCQaRdvq4G15FuPm8L1t2UkbAmQK0/vIJsWeA8fzXmWrggUiNd8RkDg+LAhQRoyv42hfP0ms+T7SfSrANk4UA+IWc92yiPvpsE3Pb5WkhI7rCoBdzdJzdXQDJYVnrG8PJrpcnDSP+G8lPcsmRqmUJmqv5fXbIqRPhiCRaTpyBaovTIYLpMs/PLTiR1g4nVwsFT0xpS3R4Nmccem8GDMtLV+4W5L+m8y4gFt9SDcoKS5oWZgbk5SCDKSrllwMoQDfluTiCvFuvk2XD5sMgmXzC+LFjbObM3XPDBE/L8guABswkAUABp3T+PatKmm7i60SEtx98GEMb35/uRuNx+33YSNmzKGDZdCS5W6u6dJ42nc3f97uTxpaVfpZ10fkT41XKQS6bSi4UTDv+/ldpyxopSP0LzD9JLPx39wJ3YbBxvKA+o/gmu7BU/1A/s1f3T8/m2y7itQBoC1EpyM6jKw4gf3fXXljw2SrX78pDHEMbubpL4XTEc/YSD+gs0mkm9kQjebjmkl4ycXKaEd0bsrcxkF5UnY9l9gmYWFzF1t4/IopFVNKKbLJid2rZgnE+HgZ9dXLh0BCUCrYsOhAvWiOI8PW/EYgQ/XlIrX8eWOTAV/SNndL6e8Ebh1xs0qeQDp3ipO35kz8oXnQJG8HHt8xT0kp5dtdkEf7AIzOfTcX2xT/Ael0aJ3E7A51ITDRbCcgV9elPDmmTXnND+hNg3+OJnLNq1yovCVzbSU/uwU3WNNVtZO/cVnovuL+02ON7/bnVCcbl0nUrhPpq7Gc0pty7G7JWsHFnaSHpdeWk/uOBHUSb9mET1s4O+Hn2oFVzBtf19hC7a2db9Tv+vTuMltafGWVSXYzhG89xLmCQxTLtmwunV46yWkfLPXZhtqXs9Ckw+cPmxALTsOb+Q6IA30zf9sO7dJPp9UsgsmbYXX8Xua5QqBTkKIaNaukwqsbrCoDtu8OLcjWBOCffsEuwVS0kNQqI9Mh69M/DeLMhYpx1hj3DzlWleo+RiVIPXEtwOLN8zBiTunepRRGFVUSA26QgzUsAZgi6r+rwTdvEp2LQXiImatEot9RQZRMgKmeC0MonR1bdDvdmFHExbyYpmoJcV50HZqS9Fo9VvFFxpdWvcn0CnugEqIqrhH1q3gZg9lEGhF1cbrACLEOPjKqX++dk1TnKutMec2+5YyuhyCb+137ySbrgfeflw/vu/exJujR2yVU2vmTQOx7mJDXVfVGlmgFekIk70UbHIoX5jw2/Q4a2QsHWBQZwaPfnc+MXoNCbq8unahDr2GnUwNiKpVzLN9jtjNd51PF2GGCKeWEkEZBD68ugsFA3/M9ssaAB+OtMz8K+RunglqkX+zQuiWNnKJ18e+/9ilxP6av9zrN9QwSZ/E9GHnq1cqQzAbFoxlzydOXj7aKJtHNn0y/9Xqw0CJQi25uK+9rHCYIfxZuA/HxOCCk9ylKCZ9A0KmMHpK3XI5+vsC5A/sJcWrvaLYud3dhvHft6n7JaBHIVTZA2x+9JzLAERQnucrdbOclDSGImLuJllRTIuXPQIa9Y502sVdVFJs4l6uascziuGfMvggwarHnuWVHyRqRkfb/OTH8xvXFrGr6iyh3zMAkk0/4VxkZERPWONWgQRY5pjuB0jZ3AlQtfCHvM6b2c4mCq3i2INmxfmzezPHXMXEj/I4FFzpK1U//YuTy1rD/XjI6Z8gc3o3P3iu+tka/F1sAjuqosZcYaqJbcdNmIXXEdqHVjSq92YRTuQ/uqeXXz638W3z7UJ0JLsmc7YM+DrsMBm9GyQ3fsMiZr0O4X73W307r0Cib05bB63oMGhoEL1G/roXuTvE8m/LKvgK1EJdHiDn5Zx3z607/q8LMbD0frqfMgnTw/lyy81h4vc8Ls3HzVTlbD4muvzXn5ZpErEC+9QzqOYr6JdXqsKFQwc67LrZiyTiGvgpNBidpq8MnnjT/Bdn5fL1p1tNqEkREI+BG4Gl/ic5ip1Q3Q4qz+wpeshz39hSQqligTBJw7/vPse+mRr7PSY/7aOfUMMMFLohP3gnakInVPPAPZlaKPoyWVPHWcydsaI2lF6ZFYVFaM0i5rDD+O7mYk4lfu8bK1DJ0oDRCSPC/UlOHDQQcS1Nm1IyfjtG3mP1vfrRHn9yg9VIPXEzzjZmmnuIX7R9U0X4aHI1Uev6/oWacxyayDAUerM8bFmvewbahrK+Mid+fgyy3NUkRGent28EH/ikGMtY38rrxVvzyp8phmeUy8WqPRC9jl1D2YOJFsIDzDEZACvCDQ6YKWfkbdRmdV5K2hE9BjT3MNe6RM1Sgk0WvHMYRILo1D35Mx9vTDT5ndhQVIjcPQfiC3jxN6TTryZEbMKK9Vao6Y8PbJ+16SqhKiSZqZZa7ikyurb+eKHsQI4tTp6N6bmcSBm//8LAFsBB8JV/bnza/zg3l7wNYBBu9FutsW873IOE1bSEaDYmXnBtC9pNt2MayLVriQ6wC9eOJVFAl7bU4el5Y3vhMC/ZAwFTYWXisp9Dr//bEVG8OD6rfoFnZ84ecsoecZgHIRtJ2T7QbKyAv08SG4tD79RbGwKuKsv1iagTEpjfonOKA4VGoxk7UCA/T6NWlIv7YPuKKhpUgjLXB39dbNWe7ugzYfOYToc+TvFLSa/x+b1QheCE5FviY98bf77/8NPGb5Le/y1QIgnV1+1cEUvr92dZgtZSZbA0a1PJayfpsqJ3tXcV5FeP6wpZ4SD6MbZ2NWngG2fo6RRVvBmJ47yLnFWHbja8alryQRC/Xe+Hn22tDmP31zGh+FduwDPPquCFMbinLI743E45eRd0Mgn0652/LFR2k1aXjZa0LWsOVUXqjT7V/P42OSCn12jXzAzaPc7PASMhsTd8uAfDd2uP4tCHb3zH2JdyBz28e+PxR0n9dixwBeA4eEt7JwcN5+tpnFNh47xCPNS8RByCzuTLU32IFdXP6mkMImRbiWJAPUILTAKH4Jrq7MVYdsd01SAavZuNf7ShJzFsR+GXkfLFy2bg/NZDe6i3m1KnCayYU3DLt76vyrl4TK1MSKdGq0pTNKFkpo8xVry2ZzM2D3wjKYQv4RLKcvm93AfojNBFSTvyh9Qkiy1SL8oCTElT1lhm+rM1CvfEwpEezfRPsZnsFezxR/djS/GVSbsf/98WiRmBRGeSjm652WE8W96dRZJ6oaWNsciA3Q4z9oefLtq8dcIKcTXdJWO/BLRVmGgxb3hhP+obTEMzBleFaWMx43eeA815p5J+bn0qNlpfu/TvNCFw3nJ7IzDfDdDFbtO+nrHIl0If6ra8aZpaHxCb0y9kj+S4gFXkogQwvejnF1ZnppDA2Vi2PU/W8J+4Pt+L5nhyEqIMjDH3eChFS4MrSMSsNJJ27MURocQY3PLAcv+qPvJsbsbQidbrSCP8V2j9V/zXV7aan3SnbOzWBaeHW07FDqxS5jCeaOLMwHp56ers40bCzjvJ05R5nCAeNQV5RaD2BREtgs204rcJ80K8avtoWbb59rUkANZZ5NmSpnmgTMkCUaRLgCnITRy6gqPSgXjMfkGNkDTDpYdXHkvqtZyHxA3G+gd8m31rB3ntKJ12JdXId0PFsiRY9U/2rWhhPPJgN7Ev69sWjPSpebTULHHamHeF/NScnKgxILI78AzOIvPK6Q37p5aC6zNPPJmqoV93bv4sQFhcBsnhHTpKNH9W6LeIH/9qIODSt9k7bj7+i/LyGVF7OkJLup1a9XLZ+bUWF477ttcxIG9CpF65afgsr2E8ZcU86mwlnPh2oOsH+fY4iCddYpceb1LcGKPluwztQ/6c4kqD6gnACopHwUlZXuJsd9omDs+1vbQndtaYL7wUkv++dxmJom9LWCJ3y9wP8Cn8VReIBz9+dwmI4X9o1lYt3hcc98+Cjbm1dzSf9h9/p/HkiAG7eIW+d3C9t+rG6Il1bCtEI4NkIIC+9aLXcvDIJvoRpdr4zgynUpFDHgYyff1c97uHEuCp/9PLKi9fFNw2q6KZVtZBCdNj8FUG79/lFfHyl+ao7jxuIWWvHJIF3pp1rNbepO2FIZWCp2STgYNPcqUJdT/v/SuT4pNBslYjQMy0SBdb83B86n9FujuNsPaBuLsrgTsjwZKDi4grjLMFbz5bev3YN6ef/1YouPqqgr+hhEopi/bVxs73IHxz3Cj4JPk1/dOWhFTecV3upCkoSAhRlhsH1l710nvT/js27UYJz2f94XmUly2gx5psm0MXse5M3S52ksOC2RRo/JsdBvtfVyUEfbQtgu3bqoCau8XEv//zYglDKyH700cu7dwHtK2qAkepTmtSNMlxMJYPsUcaC/lKm+240LnyODj2Z/+8N3vBCwKevAQV/Z8QN44ZdUy/jzv9na8UyeManI9O2nOnF/3CjGlYo3mJkRTZOvss58/yt376PsY3E16ju9W9SQ1EZ9zcIDx+2/zAn0DRPh4+ZpzoMHuTuZfiMOc7KsWAYcYidUCU3A1JTr+gBxOOqbxQ5purwcwwomfORRaARUWFy32PTyKmR90rIGVgDf4pgqAjIKdZkq/JAVRpNU36pIe7kDQ1NHjo5AcXl3hsfbZms52rJ/2pDBxEsi7YZbvNtvWVSfCNXc9/clMt5ObE79pezI87aRj+vMYJ5NAjsnhKWjsfv9c379XJEoUI7dZqdDe2NzPivOK5EJdYr83oxf0MzC42/60O1TG1cgBvpQnbE8lNGd3eHGco5DIQ0LEFhqIsGvTUEFKXppDb/GqVXDfO/QJ79A1V0THb+KJKObLPA/yAZKqz4z8EHSniPpYuc/FLLSPK7SJtMJr02yig6S84FARd/agfnWKMy36rH+mBf2E+o1XO3dj1zx2URjGLmv8kq4tJ1F+gFZ5NGNm9tt8pqm5+dYJrpx5/8vJga/VqooeZb6wU7Rdf+Tm6cFIg4sZxdqWCos7fkEZrhBbMC/2w6TOY19MMxkirNqLin9+xpUcVTRYyrY2YLYSuyg1XNaS4LelqIFOWxg5j/2T7JmOYB9oW1uDUVGZKi9XunCtyPjhoMfwMTrJnpC93NnL6y91upVaFX88LRXZp6arBO0yuelo+soxBNpvCWil8gjVdGcKv+OrmyS+X/tumeO5/tQsZyK2Rqw2Z9x2okix1XJzu29Twc6P2sCu0TQ+rOov57hzyy+eoM9YBqEsbR6GXvLS3BCh+XrUbwNqPSjmcbVKV+VyIpwlhLxKzUBRdZHiPJ/08Uegs0YVL4alBFZAEe0rYAqR56grKqm5l20jSBR/Ok5qTymiOz4WxkMjt8aAX78RmKnXGrl9GQFHRGlg7kW3OLk9yk9T3gTWHj+fiUypgpAtysgC3bNT/+U0olp7ur/NughWUbks55Vj71zIKjnmohIrT40qi29Gn32qdfjve6KzfnLg4UupF3ppfg86NW59yKTtP0jw3sGEAIw3CWQT3leA5+qvjpRubfiNHdlaPM9WlYsaT3JwquqZV0lVl2ER26Zg6rqFE5j1qsQ1sEykRnFRzb8A43jySYF9Ma8wrzwz0j3BSE4A9IYSVDkZ8q6vIf/qS+3YayGpeEbAzRpKdFSboAtEB6ksEOIGFlIX1lEzD6MRoCNHLQ7zxKBGUI9VFnHgexSAOsFjX8cB9GjIZ2YphZmllXWuxpvDuJ6nLRwMfzN85gVr6Z3/Tu2HoSnwI72OcYluuAxq5s2udGZ2lRh6SqpAjKWI2lU9M3mPVUwGgXpg8CjvkXXXy1EP2cu47LPijj/7+60jJG0HaiG8buP/d39KyXiMqvRmV4hWD3bOnvOkhKW+06z9Kr6QzxeonZ0YpYAE1NiMGlUpH1llx8peTMdGO2jw/KKvSI0kSTLMBPAGPSKZ+fyvjUfF/+qEHCcc3IdPrhNi7vpVzqbOYRUxF32g2aUL9U0tKvHc8q0ndFtyUNp6FK4i8TPGhS1bzMtMLUnY7CncPRChPY0UDCMAA2dPEi/TodVbFd4xt2dR7u2PGlV0wRWw99Bm3+J4PNCXu6HjNH1jflnoqNcU7OsFeu5RkW1Ub/50ndIFYD3vRxey1wKOtgBaGeGajfcJRpcFvZg+hZ/4+ko2d0mGftFor5ud+ux6FAQdBTwO3F6XdmRdqhczonDYgw+CnSOcfm1RYHxW5o3QgTpF8Yv/62NLUAdKElcpinx7LOXdWGb9WGknOJPG3+l90QQ77ESQK7ClGXlVqYdj1LGIyiWvEN10MtcfQ025kGJ6U0LM4UbACKU0O3rYMzvqvNXVt1q1c8BNXwd/NbSjlpEizO0PScZnRh6TTHgD+w+4tKwBD/3NAgQnyUqJuHnmMMVZwQArcnrgjR5de/vHxB/S9+NX67d0Jv9tWAR7/y7uSe4MFx9h5bbMDhTpsGnJunrNJvzRCyWexbgV9IAgXNrAr3fESHNgNNiRMc2ZNxJM5CxEBPzzjCAZBrIxGhd1UbnLodnBMyg/QpfvWgYZnLz89lSqc/aik5vyvaqFcdVNtz/Xv9Lw8mO6LXMv2c/+Ox40tKBY3Mg6JdeRQadt+yfFHgGkkMN0J9uIQIWoX5Q7aK9r75/L9rNI4trNjvidrQyLgEYuwsPzTqXefbTP1wsDFKY+4wfBwFevZ33kP8PDSrY6RJx1J0FqAdhKanz09JccJrL105fuKd44WbHn2QkOc2bxSU5oGuzSA/HHT8IDz0JS1G4NMXiegtnoCZnSnl1RV9gVxJpm3HTP+MC2wblbWT2EhJ6TrrsKoHb5qhOx1ML34nptUz6lVtBRE7FEXFgAemEUbAymX1Hc+DfF7G4rJHq4GBVRc/Sb3DOntocvfByZYYbKL40AYEojAUcbX69nQTQWFK73MSpTRxexwbqyiXUJqoSVR4jAdqdFFQRH3JMjycQR3qhkGjfv2K5fvH/xi9Sf12yr65Q21uUTtHGAub5/B7ha53oVuLsNaXdww+4mDQqfa9k/QtGUK79K9AvwG5tqLrXub+8IvFp795N4zSoiF+LQ+bhzeH286ostZJCKVG8CJo74C1vTw3V0UwHDFhqXvJ/hKvuP3Sf7XLxLzZdJc2YxHWt6WoGLzQsB5ECrnUMKVm8Zy2y2w6I1JeWejybPAA8gTuuq1Z7pog75V5JkcCMhmmfTVNmdcOPTnw2bB1/llTuwV8WAt+qjJp6/xSu7TzEzH3qH3TZxpsR5QIdA8SGYXKG/B8iruf20+LkqPRgs6NixK+tB1BStgHZbqHFUnJhaCAk/WoC6dBZxYiBmPJgvly+2FfDrEwVHlYMArcb/3dhWCi7jwUG9ZpT+ysIEMm7gDI+LRcWt/v+L5u5F+FWrKmn55eaNhjb25DpKXvgJFRRdmuXW5CzELwImKGb4Y1ol2xy781p05OJGM8vWloyqqmDr5nyvmEOrIwSPj0IGEnkTxc+MxrURnhYXRqZwaD0z3aq7QNJ4yYKmSorx0l5DikvEgfRA9FI7CzykOhio7NOTbTf2qgOVeVeMnfnhu+Efbe68gtjo3MqPrWwJuEzb9aqwE94Ru3iWoS4xh3yKvbdyE6pLNvVDi/DEXkw3u5QKWKZ/i5mFqO2Wzp92+ZrAhkrYIG5jA8u/vu9lp85o3c3d6TVO3a+YLnPBrImz8Ew90txHXvx3Z778Wb8CLUARbd0vFudP3ku+ltNI8kFaYXEw7UTv5EfJS/D31ztMZvVozTjaDleLW5c490WAnQL6BgLBYlrkcyNpj8PYw9Ncjm7BqTKijBZGXZaUXsiLxF3S/l8IPe8svFSVQrsPwagvgFk24r3I87E3NjW+Vc0devzP9aQFAoI+YB34OAL6xwaZz3guQy19pfk2N/3AU+RSwpWKHAUDZtHu/RA6Az3P3Mt/7bfgoQnPPlIu2J1F8XUffB/zwDYJybAC6vjszA5zzADRGrvbCYMDyW4aeM/TG6UivLCMHLydyM27IwiXhbwv5BWFNirwo8rcW/XRuV9zxatnnU53DsFpipi6lSzHxisp1dlOXEPFs3CBFeUa13iVLS2oAq2ZKTVrlbB2CqSZkJeMesK++15Y3RtEZ07nOTiwXrlQGgGraRL3chwnl0AV9w+A0cD+YeMRuVBRr3QwHAbFFc+PxeNqGw/0kQIb091nZyZScZt+TCiq8bGrD97t7ExFH7cpzga54BWfrlqMjni67CkRjjKkLMc6I4BnlaHOAkPmQfAkDrGLJ0Ni9MTwkL9i2aohSYxsG4J4gjZ4AhHVxRyEt1NJS1XwM72xOTs7/PgEk1AQFEoYf9Gj16mtZR6F5hElNmejO+K39tmjEA5cdZE48RvHgMRjpweKsxeTwTCNERfiT1IzJmiXZx7FlDkhRUsxZIujvjRNGIb5H536Dcm3U6YzMNFIgJfHe3gjNa4yvAlMSxU2mmN3fsvFSJc29oXOibyV1peLAaY9eqstkhHfKqN53MP/eKVf5NufM+7fcBQMCNspO1pzf/Oq1n7RGLEdYXobTLOen5tszLp/aWoD4YYI10oyaIlwnZelfWfvjSUHUqihoCJMUnceBHhtS8gJUh0mCyDzL+CFFPLZZr84NLYIbIak6BSo5jHxHk9MlGycl0JgXSo6YnsBcF3jm71S0vUVPo3hxTJKMCKI06h+kx0INBsKl6K0dd4tHqmA+V87S05TtQyWQHzs8TpJBKoNvsxZiFUVZ5xYVtKodQvQkrGRnIQZFODQPmnGj239kbJH4OL962+M8cQWO4iWcjCQhVXH0cUuOt4DIkgPjXumOedhJSm0OYKo35cDWKjMDrp+h0LIC0Bp8JqUsVZ99nLQM3MuO9AjP5Ru3xAtE5FE8Cm0NFUUBK/7CWO9JaRYdJPxhmo+NxolpkL8Gm07nHZZQaK9Z/oNI8Fr8kD0TCQ4TCHD74xMy3/bDTnSeeZ5HU4pw/8gDP8T5teqOXmyv/SXx3g8geE+dkfY5I7u4ucHKbDepCJc7//pmfRPap8xwwUXi0DpwVgsEd1xF1eDijP/q6u4vuInAQgU+v5LsH6yuIS1Mn7x2VxvJkPMGs2ScNnPL58J9HB7PIXe0Q0zuow+LrgsLH5sVK0fw9tEZHBU9/QPz9Dzt0eRRy2uIyIJnJ461lpwOLHoSfstuVsAm2ZxbadyFoRT/wZ5SYZI3C1tgD7Qq/Hmdjwls52lE1nMb3d4YMXwPMrbpFgyaRyQFSqQPM+kc7GUEEoyaeScAQZECNIXPi8M0Rc39YHX72nPC9ZENe0vCHvRVpry3Mwfk8zI2OGddT6J9KwlvPZc31/5hhIjhrK4Dv1xxkVZDCFtFMV665Cw13ZFVu56eA4/6hZitjRh8PqMkv3fbMf4iOR+IB41B5KhN0/yefD2C+XNT9/Rn8dCXbiR17tAtbCiBeyZxmGioJeuZUSr6rwemLqm1h8hWHBqff/qN4+9/RAK8VNI7vXG7rbzmyPC44s+1uE/D/xmNZoU9pSdwreLgJ5Tafy5+jtJkjZQjvLjy4y6VL55K8Y3KVrHgQ93Tw+S8ALGYwJ83TC+E4iPZsdPB8KJ3h/Z5tXDEFswhVi6JbzdE8yW1N0yFmXOqyeptL0qmp+xqkIA3qPewJ1mPjkJAX35urajlQ1P7H0QhMzMjsv25nPVGaO895yk6Sb4QCLh0iOJZlbcETQlF2SuQ4ayXUQD9ceBM/UAKBj9qlPAOBpv6O5ExkePcZ8z39bjpjQA4jmJ3ItMgxOwobG0VvTbwgPssQ3z1TALGnxTtN7jxYwchT8lZIZk3xSMw5TKAqAEm0hzAdzH+ZI/Cg+lQFRAZxiZIzABjVlTpXq79Vx2GhxTuHFJ//lSLOEDnEyM5GkSlsv1bhC2lQlQIHHj99dhYFJmXCLDGRZaZXk0LplqAyxDhZogTR0gvf96jqPMOydSZ3pf6N6rSzl/LaaLJh8v7Gr2VKmMihdWaiEP2wQmYdaMnmV+GPn/7i4vGdwIvDc1MwhV+pGVi4rimMnJY3Temm0t0V3ubVm3UOFj/chq8/EmAXh19grHWS4UjBVUZS6/GimpUCj52BKzLa6saB84l8aXNtj0RXu+Bf1CD99J4LX0EBPG7VQd4I9XDAsDcaKxHV5fgQy6UWkqXkV2BD1sIn+4v+ovWsg0LMJ1jh/Dhsl1yzxjKV58f6PiaSeaPm9gEAGqJX+0L91RP3ZOgOXp6YTGlZFYTM5cSa5oN0cUb/yxO/KHSo1mmgiCP/d5Cc1x2gXWmbbwpa/9D768L5Ma8UTgXAwDiyljsXmmIQ+aurxBGMHdKUBCgL4Pcmzhc0Ps81dEuoVtpk9DzlfvTPC+l9YCG1QU8zvSGSWrb28Ys9Z45VlyG9sdptaAExwaOp783FMU+Ncu8meQWuQHjG0jb5g2AhDwE/SZAg7MFcjI2GFdXctZorTilnWzay7OOIHbs7zMxSdj1zLhb0Se8bstQRUXdXDg/hTGVdCdj6nkpcwX1CJ7Birgp63JWKC/GM+DFZqX87xVWU3aCcwZNrIgzTU8IE8oc2iEKE1YGlaKl+6+hPyQyebjh/J6ivjtPACm7MZiZIhYucS04AMlPzlwNcrla+rVpQ2GeTlMin19NbZV0tNp/cYt0UvnJgCrBVfhyA2ipPU/C1u5VXrlfkq89V8KqdMKiMVD4msWzK7qAMRW4aKbBGg1ksMxpRDJecoZ/zi8u1X6yxj45rNfVhVichdnroWr4JlfpZAReEOluBiUDIn3pnoQQmj5agr4wbdiJKclSf+1WH9u717MwMuTvqVrfyQwjkp7Cz3WlrrMuVDAylBCZZtrucKe6aYvQRYxjp8HxFUhfCCw1TtEPVKfrInB6seIG7JZPMQC6dxiEpj7zFSduvWC6JDmJ9p5xh7rMKi+Qe+P3wN4EHS1iLOTGq7RAl7lkurAMkwmhFLkRBfYR5+mBtYNxj6IruOFNKZXFz1tgB+IzUTqZZyafkutJXkSJtk6MY6HzNLhbBQ8XxRXdBPcqnt+Ra1qCijvxTvwVoJ8OWErpV5aldjl9Q6uVX4iwy64DLdKXl68LiIyaplxkRFzAxOG42EgcYDxvNcqXLcnewU0kJTTLIz9CZOq8VOefT6vmPxk5N6H02Os8haqYV6urjkQ+zQOoHxJYyC59+rvDeMuj2FpCJ8obgC2x0fhEOQlXBFk5lRfy1lh8yecS3sTc7TXKnyUgnNmIg+V0Aq4qc2sBIDksjQFS72vohdtHx5TXt4KmTxIt5hpHwr+N9gr0Whnq34lJayvzmlzvS/DTESgMUMi5vbTyLXjUynr3r3kC7BYNazWvohYAnQI2LkKXkgn4SONfvlvIImvAoXWzrjSvI5E3alDzEfsJBnA57wUYPUUWV2vv6I3bWJBrDdWGI5cEyq3jlQ9xWZnZbVgz+m+7vjor6vRgFdqFgK2xIt/yaCGaTgMj5FjcpBGzZ3UaK9E4c7ArEBucn5s1A/MWOwXOQz3MSzhrOCF/d8f31kK0s1cMPNiQZlJ0xQr45tHxgeex2ZcRhNgtnJTzWxkr3dsIVzyK4pG8VEzhMqHTaotkOT0KwR6SGz2NXT7YDRYWsIeo87BlvyfffOvvCHN7ckkw1zhm2xjofpsvyK0FZH63eFUk3M2i+Nyzi7H1kHetODsloMxnMoOP3AIigTl6bXBP6QRAywnwKUseShAUrpB7DePwxK1qY2o+uOyThcuJ5bO+XypzE/3SGtih6Tav6mDPnpl4C+lhvu7gj1V38/35K+J4qAGdl/4/JwBhMzQkw5QwjgjW3rz5vS1ffLnMBUvGpBvxhFnMfqDcbsCNHL+11vViwlAvkcbYFy+8HfEcYrB/R6oQME8qSffDaApI1bBHNA+oHf3tuVPBHZ5ppSrwyAksWK6aEfUle9es5mAvRBmOxhAbCwwRcb3JKXI0Q3Vk8/y95M5baGhz+oHVmcimcvP2f0D5lWoyN3W6oC+OuhwNA5FfFq5mhhZKki+1lh/6HSZBlYMgVhvDG6yZUFvH00kN95Z9fpy0ON4O+yiRsbME8BXXkpTmBQw41TYdRMcHr8QsuXmf3S8a0BQvD1LTOJoUMN/uK8rwtDuFTyXlUIFoXuodJG5sxpD7Em/22PV5TGVSzS7rtKx3JpEJdezU4zd7xotBeFjqOgBqusGTzm7fHRUb/WYiFZHvxatRtPz5h4Na/omYD08akaBCLXkcSmMQuPmreW0KlMOXfZ742nlmyNhFQUxQkpDRkU35ArB8PqZRVKL9KyxCKcFDTGy1ynOHDeuLqeUvS0neNExfPg3kGS7fAUX1MMlgCyZxKZ3R8np6VrR+n6VfkpDLj8a2IkkbPChQ+Z+wysaoEXjtyMOM2+1JhJrH/AiVOxv1Y3ZKNc2Efc+B169Wxav/nCr7EbCtLPTP4zVYHzSlIDHhvASQKTOdKbN92Bw5FocP2KhGidhUrgsjvRn2xNhJU0jCIg9KP/YiXwqLBgGWEyEILDL9ty++hs1EwOcfYYOniPDFEcKKGe/GRUwE3RvkzB8V84TyPY7WcRkUT51VVhW3LzL35kL9ic2HHxa/sS9pzzT38SQwBTeRXmZYxVkW773+YpH4hYHRtNpiwSMFKuyOhaULlpwk+Gp/1ulG/SKMO780qb5XL9zj9Ryz2FoNjZByhVdHrSucv/DT6jYaRQzyTbK+La5/blLJ4Jm3MJZ84KqZTR73N95lxdjuEzzjbDPMvHOSKIPYKuPW+Z7N982LIYiHKy+1ZbQkxLHn4CUCyCTCh4z5ybj0oHRYQM+4ag7V4THyv+YwZJYXjYfHT69cpbkK4xBOQw7fLCWXbXVCtCcI2gkpv9P2F05xxkfpZVwCnQkvGnKRs+CVTUA/ElqO/wMrP1TlLZaZ0wLpTFTJO85D/zu97TkmZTWWfay7cEm2cmO5D0mUDYK5r+L3t788bUQvZV7NSvRam9Zw/dZ0w6elMi3PtCY6KObjc5byixNuYYT+8WLGa6uEae35QilXd/y8epc/PuhJS2ROYONpPlKGX0osjtf8iov2/5xl4FVhTZnH9inJcmlC/7O/sYFnxq5pPcomok4PU3B+TE65zjtOUN9dvPWpLGWDBhqkgocZEXR6dtJ74y48m4yelXFWJ9W6fRTsuyrLG28kXHfh23er1yK5i5BH3W2IvcmZo7xNI4T6ptLfnoQ4xxDscPwUgDgQJ85otiv4XbVlgpQ+j8uyUVxBwaN49CU7gG9Li4p2kNkVJsxzLlC8aK1QUj40lc2AwCTL0V0CcJ+aFZashNVEnHIKY44k9rA0bDSYXnWKz0NuCa5T6XZ6FLtLv9ZfK0b+Ii1c7vchcjKrAdLdajd0C7AjY+EwUd6V04+OgOHd8SI6bIxsiAtkP4j2ntl0xvQ7yPq6GiGmz+aAMh4urlOiJ/C+z0aAu2rw8Q9wfx+GJVyeitKM20mV/YHYDRytCLVM4iD91WvedgTEB7CHKkHmID1IeabB+NopBIG3Ci9D6DcAamaSATZ5GObQmDhoyOXgSEgnaGIzWn3LzOr19da4PbC9H0Btp1FecTkg+xtffAZ8FoBx7Lwt+GO7PkSORqMhoHwylf3CrMWJlknZazF1ZDL0dHpmwLt4XVSGdXLjE9phzCLRj1xX9YJ9RtaaMQJc3rmTif7Fyi6itxvsFXEZQ3kYnXGJLVKaxzZhKfcj60nooIgBlowb5TT6Bo/yxoG8hq+Ww3HBIWDNjpq/u3G7iyEX/nj42g7UOkIGBiRHZwOc4ugqLqVLPH84GdfXtpiGJnLd8yuhXC9hMmqoZoNUquAGEYJyB/oVgF++KyuvF/TnGHjj1vmI7dBI2qvkNTzd2At8/NE/scP1NXrTL7YfSikHUU1hlCYboMSP1+pPZbROwI8rJl2FRmOTI+4bpbVKibHuwFJjRWrKZZ+9YHDYyE9vhHJVdskiX06KHZM4oGD0SK185F7KrmzJiBvIq/zQ/8MwWeC0Jre6FC8WwGQLSJIV6EwlWDRLE3YqjkIDIsAbzi+v1vmiARQ4AIMeIdeu6FrVzl0quiXTO8OlaZZVrhSe3oOnA9xptyVmE4K4rRfcVCshRCKvqEp4pnY3laqZFx8jVQyPzkXO0emtpF9R0s/jzyzfHwIkGByOED8xBSGtABXID5kev+8V4zdW1NyRzJRGRdD/drv+uS51QDkEQjCKk4FEAeGYWZudPcfbWa540BXEnMLy7V/+t2Djjvv1PTpZFUs+HRosrGNgxl/pgjrIjQ9z/i5w++wBgsAKC+QEppoHxckN2W/c6ToorOfgZdJZQqpFD9iXdkSMvbk9nyDXUrsdroLFyAp4TfMoxDvQCtKcl0VxD6Zj6btSc+Oo6NhKGYiBzG5wJsyluJb+KPiblL3miSB5XY8pzy9OiJNdqpVHsqz7490uWI5y/zaaKKDgrGdsfDs/tNeYfgmPeryJRkIUC7wrXU5bPBfY2XUrcezxNC9oMKL9SR32kPPupB2o6Z9zWqKiOGX/sOVqCnYE9PJtrwm6kRmTHIPinX4xxOoXpt3NwT1P7zB1OpZA0dqQlxC+lKhlYzHGzhq7j5y73p628QJ5c3LZp0upMp6duevUZrsI7N9tJlxB++byH+Be/URrXD6kU+EIaWDPVawODfohUjl+BwDIhB/ltYv0doJwrJgEfYj1QfkIcS3W21cyo9KuPjB52Zg1cDf8t3u4hbV94eWeRV/K6/UzYcNmbAiPVEUZxRmvz86+EVPNZmguNnz3SrGCYMOGTPIn99E/nyP5NxRVRadN1fuxZPmUJmU6PRfLLYnEErxno9zC4J92K17c6JkIlzHK9LEZjzmafR7UVJzliCMsqy+lO2l2iqxobNVtcL51ds3jXeIFtsn2dRJCwDb+kp2j7z69Z1KHhQ9ATO38nD4m+uNg57JygPC8dPzD2//rU/+g6cehXUn3Jx9OowpJ2A2LRVs+qD4WkyQ89+62VduWFlGGY6NXA6rRQLAoXJ3ftPB78abncvV+w+OX2+yZ7L2KX0GmQ7fUXP7/JOm2TUsez7q5PkRC7DfOVRg773y7F/+Si2dP/g+FG8A6EuiFgV8GIim35z/MKDHXL4KWJrug7rHAiw4+tUFfMNKrLXpwkjGxdQxHA67MPPNeHAGgr5690NuDbQxLAZ2QjKmY/RgKEwlCNMlxtNUc+sQY/YXHB/cLaMG8zXOUUxQ+oaEMnppaiguiGVT+YtBB33FpLRk4TxwKeW79vp+rcbNi5fpsLXVBzJlzYIwQIjdFnvT1qON/Bhw8rjxOxw3GCIH3T9BG13SaTUuLjKKq3sJ5nk/eHuOPZgbHbkXc0p2VBt+jL0HS7wjmB/gsP/kTWMdteObkM/L8DjC95GhcqkV8tc7wBaI31fcSxE2GwNV0QH4VFva8x0odwZ2hFp2oBTi43Nj378TX1yFCMTAKqhE3xQWBNhiKLtUQ0/Z8lRwjxfT3EjrxOMz8zuMe3S0FShU9pvZzwH9MY+Ni4+Euxw5eZd2UNiAg2fxtKPW3z4bX5P9eUyX3Elx2S8S9XAdVnEqagOfDUu/TzkK9C788nErchfUNSZzuAkqgLym9xOwKB0ACakW533EU3/JafTj0DrTJJ/6ZJRRayOy0l5x075Wx4wsA69W928fKHs9jw4VAdW9iQlW/NOANczU4hT5bR9jQYEI5x67AsJWF3Rmpbw0/H7u+MAFrue1LwFdoxuxIp/A+L2QmZFALbIkV2/yD/EBWPKie07c8PASaDPRJcHiAVc5pRq/Xl9uCMxcLVU3wnJcy6oYSG5XLFQvV2J1mC8vFjCsIkDINe3W8BOYDsrsExWCV7AM5ysllSVbL/kW+7afGFTNhMsLZMpVHsazrEM8wXg3NJ3kXFxxipD5+fs/9J/FKMgFVC5Zn+0vz7hH+i45Y4rVjW9b0Xpd1Q/Zm0RvQmUcHXJsdrsUsvm7X72lseQBRINFmX7vsAPg/GIK6rhko5odkS58eWpiR+lyuJF2g8N92q0u3c9eaD7yuC7J/FfJcLdnYld05vhTeGDNeTBw+m4FXOzYV530q6HFkpWTt9943HEORH+xhYiH6oPlmuejNSENIRPRr4v/+GPluuONiV2uFfWGDGvFXLlJ18z2P5AWAwZJL5Z1RiQO70KSQiJeQtrezzySzp3rk0OVQotM2GA980vYxBYtpTLY+WcJiG0vaeTDrfjpoOgVW+KG7k+WzddcAnC/Ptq0m7Jm3M6W8WbNm5A+9segTQD8ajoIfldpWzuR4uI5gKFU9+MIpVGlffN0Xi6nW6ZnNe8cEuqs3jHe4F6Oj8x7md0vDG3wr+tgq7w9gZefwEyD0+Z9vW/zkOC+sD8cULvFnN4ntPALrsa7pkDLhtR09V0ygCb/ZnK4+1Lp5MHV80bUDW7gA+I2acFghX8dihmChHC6U+41yWRirKBYmP5J2JCs6E19NVmvjJiIPX2E99aBrOfctxfkbpFcTE54MuA8A4MPWNB8okVTxZ85N3sCHosRZfQ+Nimu9tl4KrVDBiqjFDpf+BkWS1qPAwPj/wYAadbGc3GJgi1WRuxytdNMt8VGfD0RdX5KQ6GJW3iHMwwuL+XsCV246eMEaQEZk1x8L8/8M6GLJNh8u9xH0ugCwFz6nt9p5ZVuezMYbePpaulkpsxhXSTvM/sGn7XYpc//D4XYne0ui585eGkMKj5mCmai+vn6muVC4PwO5sCtJ/2SgvjUqgQfKfOEJO4JYz+vpX/WkZ2yXWcdNFt/h7KyFPzQ31YSqV9btmpRkMUFiuoHMfqlStuyvGx3XcPCWeCTNZTfCs+Jv/hhXUN0Xt6iCROvhAuC38O84JIwNbaypvwcYK0JTMN5ygmgJu8rVIMdfDRDNSWhMm5GVz5s3SE3sWlCOdHJVZjHlOwGriQw3F9zgzZ7L/AlaXeBtSzBhWCn0v3EWy3nmxtrHBiToE8xibfmxJY88WbNoSC2BGsHM+2nBDx9s/CLFvqKA7Uhdx1hxZltoi97xET1LqB/Kq4Nu6EfezNjW2iIRlt4IStIBCTNlD59XvrMdp95sbG/cVyO+EYqPc40vOkRxfcGFjQCRuTT+1NDMb2vx9Zz0AEP784ifgri0P906ev4A9BQMa5eZvakeq4JWxYi1G9eywJBI3iZ/SwBB0uCeSxF/EUUvkIhbwsO4/0Mlv71z7efOENMtUaawXpPY9NX+KWtJEhYgXV4XIiF0P9GKwKCHb+EK0aMWHAyGFCTGXZaKsnlzjjXjXlTPz4DELX4MxmWZoWDXaSFXAJm8UiSnjp4GoHtR+Ua93bk2qOMXv+m4JlGluDcTHtKC2SB+ypDthZkCL3vJ9PHbyILIVB7d9OL0iY9Q+tIh9wiU2Gy99dlpxGOA02qKSYcC2V2dkCk2M0tVpE3YtGLAT17K/7JR7TWfMz4h3N7G/1L2yKidKT7Wt4reijtHr1hhsZ99SLtEb5rGlb2BhHerKxG3Up8VjuOpABJiSs6G59yCLSQt/ox37SmfxSSz5XdV1yqjDntnFmg4nu2IMempypQvCvsftZ5dcjwVcBvCeSnQxDGYay4PQ10vjVDDm3Rln7VLeykCPnxp6VWU3VGWQSxjEaDgf9E2MWySSRbOSSYW1yJTyEtilCirDIeshC64mHzHVAQYvTyQHLqz7f3+UXBnTRavWEL6/GxZnh+RULQL1+1FFjNgIokwFamR4ekIP4Q8RnYObZ3kWks6AqHHDD2HNzYbniGUfJI34XLxuX/bSvi0pFFy6eWcgnWuxDmfk8mHQUoQuJhhLI9flBJdUKmJRwg48sZf4ZtctdDZ7M1H9UI5qEWUwVrlB7NBei2qwVZNIjHdiz2mx7+U+ilnfCHkILQAjr6GRdrYBpijJtM45HyakWDPN8lQlqku20FsSZb27WfWgFZWajKePPyPeMuwMkaCLNgGKe+Y/hfej0y2/YRDpDku+JYpSFymv7jLm2LaPbjkNmnyxpjsAPjBXh7qXGUsHFkaz+GPOpFpxWbkruIMOzOLPnRtUx9hQT6VHOkPPo+hkzVR3Cvhfz5SYluK2leTFXHLOFYOK9KZO1gau1cbCgbksopDt3tm8ygllPEEAbEzS4lAz/maNQeHO+8NM1ah6fCKVLXCPdRBgfbfhli3n8CCB/PlrBnldHqgBTV0LwsFufr6kUBKiCoQaxZ386pX1mdW93j+GJrX7FJvqub2x+Ay2neWxToKQ157FicwQCrGdQm57VIXG50OAVAsSMVEn3jJXhKaSBGhShVz7zm3RKPT2cQNiB8WXdMj+/Kht+aw/NDFk5maZY6w5N59GFKdApTWnS9J8d1TLqZRNwV0WHgGRj2SKEjxjPK1dRFbPH11tCPmBmYE/4Ip35hLNWUbXZ7cEjpr0FiMq37Xc7NqPjiGqaAV0HTI2XBofa8i41ZyM1b1hB35OQJMDYJ/2Shk95rJ86tCCOheXTJK6PXfwYA3MEXNKCicCc6YHUij7TWrxyQLXY7G9xI1TIT9/kXFTXHs2CH0bxJmXQjQVjn6786o3hQEpeTYuahMpP22QRLgoDkbysG3gFKvtGyd01H0sHS6YVOe0A7UtnTX19JvgHYS/pwlB8yBqZvE5z/2i6/27c9P7qO+tfbyDnYFxg5LT6oh7QPPfEc2sodz87M1DkhQ2UaeQQNgsYREhs67Q0NokfyAKX9qIyR7zBZ4wvXLv/3y3Yd7dZ2Dk+uZDZbFWdzeQaXhtNDQZvQRn3WX/b7+O4VZHhS0EhKJjvsQaW2q8CJLs89MAVqkjwCereQDs6ufElUHXeQYHJRsA066guxQKlsFkstWe8beraIUCWX1MfC2lIiQyGgBDV5rlMKX+0qHKNyDrsohBDv/Bx6kqmyTWpgQD7z0ECWBRb4D28oXIcO/8OOLg0ywjksfyPQIHRWr7Oi194VfZRD+N8L4sXkn9/JUl9PmsmvHmf6kb+MePkqNkP3Wu+0ywffeuW7HnQbGrYc+jyD2c10iYlb+38QziuzVUm7DhxC4FfTWNCRxH/mgF98tyNpVm2NPF2fdZX+ElyTBSjMvNM2ejSBEzuKoQpVxO3HsMLBs7Zar59cci293/ww+Ufy29y2vpsLT21QRt7vda46DnhfJOFPPst4n2Tl4+jPiO0OtNevXiNSqrRvm/zW122RL1vVGRGnJIa9ugUNMbG+IirD/x9yFm6g8tR7v3gewZD9XcPE+UTHuYAly3EWVKJ+O5nHZBJqC4m/CH0RWaKLsK3FCmDuHBI5nY3fQBsz8pEs6NsboSqVWCpeUoUde4aZYdLU6zxZg9LXb5jri75Xf6UwBqi93SH7mbQAw/hQ8KdGRaMnZGN66HpsdBi8Yb7mBtU9ONOe2lcmYY9yZQpXAhsc6Oau7njwlp7e5azyoqSUa8dgPiZepU5lpaV69yX2yZ0xv89/ZsD+1IPVh2z3M8aeBa4+hbfgce75bYBgMSrdv1ZJUtlnrc1i7Sqll8HG/u+MwgYG6shNmjway5EmT2L7JAtGn8WQOcMK+VlOSxaKPLN5xujI2a0NDsdu7wSW/lCBF6Dj0dDWVPsMxRh5UdW++yh2pNdEVZBKz/mvz99WaYxZCsAAb0aQtDTS7D/to86UR7grS9qzLcV/pyscjbzMC7zU0/roM3Yk3XxxUE9rY9F8oYw9+ehOfdF31mhB0TZJUkCC6HhrPoGqdWgg6J6KBj3MvVq8IaHpycx2Y2AuGodZQhYloFWhh2VzwdiDQjcBeV8y9bGIhKuLCwTACAbDmh7EXKR5bn82G3/EuaOqd4tmSB8CN8ei5iE8ssP29kHM11AHC/GF9uWjd/hniayIR8oxzZsuT8XEZtF+dulwHkgYK4C+4yIdSCTW8V5H1TPLohNfjcbg701rncGfNF80OYIAAXSJPJG0Ds/AhOEu8uTelaprfNIOwWv67JACxs19rk0M9ic/ozNtWxoKLRzJnJ5SklQfV60YPvbQ9JWc9l7x1BI1OpPvO4jE+UC/f7K9R7zcwSHmpaRW2A8mloeWv3JcYlVgG9k/HiTxAX+p4JrxIlyihrhNhf2uC2vsYLwlV0f6utkoCE+d23HiylI3flXZGuX33sg61OIzWv0s0ZCS7ZsFu4jZsSZuxCSBIXCg1FqiJ7We7B+ao13qVJ/TW+oLCmOpmYkikXH8utG9+LVpP4i8jYkzdf3cuYEaCCXYIBdWyVZO0LVVtm6OmJmiIkQ69O8mi6Ghf7U97nRQYhfEFIHU9CT/8OdpK4qfSCTHuI9RdxnzBwFyiypoveuhsfcJdwSJPRq/fC16i5pLgFUfWHaG8MHD1fyvbNQDbcvgmqrG+IWpRXzRPArJcofsMvydYkNfTmf11g3o1S8u9frAX+jBLm+O1mXNTLt2w7DDzrBnuPEWqOuADYnRzC84hEXUDXcASJ8ecXxIhGBsHjbHYZQR044pvAq5UpZXl0HVrmmC/RyNIP5yz8GhRBwTwU/M1YAvOEUgIjk84CzfnLrQYPTBpuLjqmeud6o30hdXVEGlrgpaq3zM9r3I3tLmzswmdxj5BYIsxwaZ9dJa29zxdCU2NyKZTsobl7xdS8wO0QyHWSlK/S2FfSL9XJ90LHowungYvL9gMx8Vp3an1NNctOxGVS2n8QTZQ3sBw3ATc4QixZpk2fyzjhy2TH0+d1JLn3A4hy+M1lftnoxNoiTsucgyfO+0ZT18NPybp4uE72/XGtEYLw9onHE3tfiUP36GohnHVoVGq3f6AU1syKTmQJ7rGuS8Zq8hgQyhL4yvx6YwobH0FIDV6OVAXVY8d27wmuAcF5TugsnCCZtt8EmIBMPn7HjUBB4ffyhPGgyPbQJzJXblXXxi1Y79MGMuYN4QZ6O1ToaqPegHbZjBLrpFdvvDDpLEWnoO+5Kp7RpwFTFmlgnzIsWQW2DrOE4BFDBa0oAR2ownhRxtn2+zl08X+Ye9BQBrVglOupBc/TYYCZpd5D6uCC9wB2itaM7UUjaY8qBcGzojXxHup98fuRYeeS1pYxrI/8N12xK/q0+J9/zZMQZDCm9EbKJh7FPSNxjoKjC18hog62+5wfeVwA90Z+BMxwLwCDczmMJTHh9QZ/y2F4TuFpTj7q+OFCRre/Kgqdyo+eAJ4wb41uH459Xtv/onkBznVBr17U2l54B9al1VGySGkr3qx8E0IptNf8iyTIVxhssNxMiPqFL4grwIJ6fqX3Si0DGmnarupvtCNHyqVJVo3iV8ywdhD5+fQIRjZXcOtQZ/tuZXl7Bb236Eq/s2lBUxPIKerYceUHJNhgPvSLmhirxSB1lg2HbhvCNOQws0mTFX9B/hUUbqZPTpOLD7Sj1wrshMOvdLolNLpqjVzNOo1/+J5MrlnED5FmpLEG8YpFVu0HZb5WA80NtRPSBBfmFq4GYcwXo7U6x95LrJbz6l5C0KDac1k4p384LRkhLAoBjxRlolKZHYGyyrQ+acWisLrof/p68wp8mv8BOSH38/kpvtT8miKNYQjksIFi76U6OFCGCipXhDNjMMruKJ8Fzg15tuezyw2W84RWqgjDFBhHsPxmFVJBMIQmvyJ4sRDeI/h2CKr9m3IANUPpDUkOs5mzS+SyL7/gchjSI0nQTQ1yzltNOStqSZ3LyRlPe4Y2LrkY5xB+NbhrmVaUWoE7ZxSJjg7Cu5/32YYkf2q3hHa3YLO9Man2/v8l4R+M9I1lDwbND3dKASrxA+IUKi27Ca4qA0y9mFbp6BYPPNrMjACy/HdE3ZU4ibq7ufbdOLnMtiqI9qWVx63wjMpO6OJwPh/ENdn1/8fxA9Zc+io7l4AAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# 设置 time step\n",
"t = Tensor([40])\n",
@@ -1185,7 +1096,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1221,31 +1132,13 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAThUAAA+hCAYAAABaOrb1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAE4VElEQVR4nOzdedyvY733/893uOZhrWUeMw8ZssxUWFGGUBIyphJKQohUQtqmMpSInWwpUciQWeYQkSFDRJnJzJqv8ffH7+f3uP+5H7t27eu977vn82/L67yu6zsc53kex3E2xsfHxwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH8JzfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcZrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOI00wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDEaaYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAidNMHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOnmT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmTjN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATJz23/IfjY2N1QsvvFADAwPVaDT+u48JAAAAAAAAAAAAAAAAAACAf7Lx8fGaPn16LbLIItVsNv+uf2vNOQAAAAAAAAAAAAAAAAAAwP/ZrDkHAAAAAAAAAAAAAAAAAAD412XNOQAAAAAAAAAAAAAAAAAAwL8ua84BAAAAAAAAAAAAAAAAAAD+df2ta87bf8v/7IUXXqjFF1/8n3ZwAAAAAAAAAAAAAAAAAAAAZDz77LO12GKL/V3/xppzAAAAAAAAAAAAAAAAAACA/ztYcw4AAAAAAAAAAAAAAAAAAPCvy5pzAAAAAAAAAAAAAAAAAACAf13WnAMAAAAAAAAAAAAAAAAAAPzr+s/WnLf/lv/JwMBAVVWdsui06mn+Tf/kn6rZmPjmOwZanbH28Hgz1h5pzIm1q6p6WgOx9pzx12Lt7ubkWLsxOhJrvz06Hmu3G8OxdqNGY+3WSF+sPdQei7Wrqjobuc/WsdaMWHt8Tu71NtbOvccb441Yu3N8/li71c59ts0dnRVrd7ZyP3dVVat6cu2O/lh7ZDQ3bhxut2Lt7mbutT599tux9mBPb6xdo/Pk2mO5c9JGx9xYu6pqzozc2K0z+B5vtXJjxtGh4Lita3as3TGSu/4yKzh+mdz3920U+c80e+j1WLuqqoLXvcYbM2PtxlDutT7Wyp2bVfDcrKOZe601Kvc9PjKUG7d1todi7aqq4KWfGm/n4sOzc9d3x9sdsXZXI/dzNxu56wAzx3Pj9LGR3JhxrJm99jM6ljtHqfHca70reN1p9qzcWL3ZCJ6T5oaMNTSWG780Kvd90hjPvdaqquaO5MZuze7c9d3R4dzfvIZz5yhzg9fUu3ty3yezZ+eueXW0u2LtZnA+QlXVcHC83Fm5z7ZZY8F7V8FrIHOGc99nM4NjiHbwnHRkNPce72oGr/VV1Zuzc++zdqs71h6q4HWI4M+dvM5ZzeA5ymhuft3YaG7sNKNyn209rdx9+aqqoZHc773Rkbve1xjJ/d4HW7mxUyM5JyB4Tjq7gmPlsdzrfKSy965Gx3Jjtyvn5tZFvD7+Vqxdb02OpadMyf29FxrPjRl7Kzhfu5W7Zzc5OEe+qmpyM3f9paOROx+fO5wbt81q5taD9I/l7tkNduT+3pOC5wlzKjdmbAbXm1VVDY0Fr2135L5T+nPpGqvMvYy546P13Tf+9P+vH/97vPNv7rj0wervm/i1wHec+p4Jb77j5cU/G2u3Djk/1n573U/E2lVVH373n2Pt81e+Itb+yDXbxdpr9lwTa9+8SO6+19xWbn7/6HDu/GbqjZ+MtZdc7q5Yu6rq9TVz1zCOu3WdWHuJL/4h1h75wUux9nvmeTjWvvuh98Xar++aG+NvNTk3F3PKqbnP1aqquVtsEmsv84fcve3zl7891l5mpdyY8ckj/hRrnzzz07H2WdMeiLVnTc69zn9zUe7a8Hz7XxhrV1Ut/dLVsfafZ+d+77N7vhlrv++F3H3WuxbcM9Z+/3IPxdrPXbVBrD3l/cE9TI65NNauqlp21yVi7Uefy91zm9S1daz9+BLXxdrLNTaMtQ+a+ctYe4Xpy8Xan37fbbH2y9cuEmtXVW0x/YVY+7XNcosEd/v33PzbXd77YKzd9eZJsXbvfU/E2j0H5P7eXbffEWsPvpUbP1RV3bvFI7H2sjcuHmvPXii3Tm/8N7nrnBuuuG6s/aPFz4i1l/vLkrH2ggttG2u/9tRPY+2qqtEHc/t5DH85d3/6PbcsHGufs1huPsQKHYfG2vvPzc0JuKk1GGu/+dnPxdp7b5m7h1JV9bO7c/Mxlz4qlq4LHguuA15l9Vh7nvkOjrWXPnuBWPus3tz3ydQ154u1X3o+uCdWVTXf9VysvdjKL8bat92Vm/fTP7xMrL3MAhfH2ve++fVY+9NL5q5r93501Vj7R+fk1tBs+trOsXZVVftHufUkv9zplVh7931vjLXn+/5NsfY2i58da2+76Aqx9p6vPR5r//Tmc2Lt4ZGVY+2qqsWWzI1Zf/eza2Ptny6cu+60yicejbUb/bfE2tcMfSrW3muR3Pzd9Y7PzWlc9CO5a15VVa3HcvtK3LrwFrF210K5e3aDyz8Ta7/rZ1Nj7W3Xzq27unvJFWPtBR7LzRV//eXssz4fWOrJWHvyhbnPtjuCe8fssMeWke7skaE64LZz/6E151ed/sHq65n4+xHfnXf3CW++Y+4NufHHqle8HGvv+vHcXKmqqvuuyV2X3vLW3Nql3750b6w9pyt3ffa3B+8Taz+1ztqxdmvbU2Lty66fFGtXVe1waO7e+vUf+nGsvfk3To611309t5/GEx/Mrb2uyq0t2HGh3N/70jNy+5h9uv+EWLuq6scf3jTWnnHuj2Ltj3/vzlh76IXcfa+XN8pdN/rdK/PH2rO7psTam76d28u9qmqXPS6LtY+7JXetcKurc/dgjlh10Vj7Fx//aqy958zc9br3TM7d09/7K7n51ud/KjdPq6pq1/uOjbWXG1sp1v7TN3Pvs2dP+lCsfcNbuf1bvrJIbv3QzX95V6z92Q9PjrU/vH1uDkdV1Ur7XR5rb/XkqbH2KftMj7X/OLxXrL3atNxeh9tMWjrWfjC4f+5Z787tp1FVtcNiB8TaP3r1xFj7iHlz+zVff/6OsfbV/bn5DGvtnNuraP4Tcvcr333+xO+F/o5PrL5brF1VdeAuuX1k3/jhRbH29afk9qL/zqK5sfq7Hs2dE3/56dyeFrttunmsfcEluee6VVVdt/SVsfYj383tD/7y9rm9JfZfIzdPbJOtd4i155+W21vz8rtzz+GZul5uL9WN78t9rlZVnT8ld54wfbfcOfHAmrlx464/2TfWXmfz3HrYT739qVh7tzVujbU/c1D2Galb7527V3tgf26u+de/+fNYe/LWudfbE5vnru+evcSCsfarwWv6Z4zm5jw99KP7Y+2qqtue+HWsfc/VG8fav17wy7H2rUflrqtfc2Ru75oNnjs91p6xdG4+5wGL5s7NqqoWvPZLsfZJV10aa794Ru5a4yr988bak3+YW6e35Xm58epNJ+Y2v9v1ptyz2S4f+fdYu6rqzSW/EWuvfVxuzlPvObl5IL/cIjd+aZ31Rqx90wO/j7XHGrk5KIdd8N1Yu6rqV4fl9hr4yCWfibWf/HxuHu1G37xkwpuzZ4zVARu99g+tOT/5irOqp2/inwO00qu5Z2TMvue4WPvWe2+ItS9/JfeZWFX14kBmb4aqqh1/krv39Pphq8TaG26Xez7IlPly68Vaj+Ze6/uteG6svc1vc/fUH532H7F2VdU32rlnhX5s7AOx9u53rB9r3/vD3Fyp8bNze++eMZp7re1/w4dj7X+bmrsu/N5XfxNrV1U99kBuHugFf8w9w3Ch3ty+EtdfvXesfdwqufHqpSPLx9ov75Gbu/LAt3Pt339hWqx9f29uj6Sqqrsue3esvfS77461J728VKx9yzEfjbW/fHtuH5H73/pYrN3+be75HGttkbsefvmXcmvFqqomD+b267l7Tm5twT69uecvH31RI9Y+f88lY+1Zb+eeL9b7qwNi7fUOnyfWfvWJC2Ltqqq1l87tdbhy7tdeXzm0I9buPPojsfbnK/cev/PYz8faMw/NPYvm9Ttzzx7quD43f6Oqaqeu3HXOww76Yax90g3bx9p/PPcXsfb1V+b2S+6afkysPf/OM2PtVcbvibV3/VzuGTxVVQ+tkbsWsM+rq8XaW07N7W/Qei0317vnvtwzcbd/PLf3/4+Xzv3Ol1x4q1j7d+vnvkerqh7/Qm5vqueWy32fzbNA7nkPD9+em+/84LHHx9qf+2PuWZ2fOneNWHvlys27/cHqnbF2VdV9j/4q1j70xINj7Skr5vbH3u6E3N/8367L7fl3YSP37KTVPpnbg+3BNZeLtVvzTI61f3dc7t50VdWZO+We6XLrtNx88bmH/DXW/sq1uftm83z45lh783Vz1/rm3/jmWHuLk9aNtU94JHeftKpq0zVy+9bM+6fc/kwHLJE7TxjZNLceZLupuWvLrV9sEGs/8Wru2vJj38ztnTJ8Rm4uZ1XVAQ/n1tovfXzu+u4eDz8da/c8vHKsfcQzf4m1V/hkbl3n+TflzsU/uH/uHGWhH/0x1q6qOu36s2PtS/e8P9Y+bOPcerf1l8rsMTBn+sw6cqkP/UNrzn827avV2+7+Zx/af2q4++EJb77junnejLV3HTw01m48c0usXVX1p0N2ibUvX/G3sfZ7ds+N+T5/fG6v5XN+NjfWvn/F3HNhV7rzyFh78tTdY+3bn8ntz1hVteVBe8Taa6+Te2blVw7IXTPrPzK3l/pWd5wTa//xa7nX2pxbcvuIvXb+U7H2r47IrX2uqlp7dm4MccfhuTXnC4/n7v+stU/u+WJzH83d71t9w9yzYJabJ/dc2MaCn4y1jz0iN1Ze8pLc89Wrqk5dLzeH5Lxtc3OGDl81txZ29t4/jbX/tPRasfY5W64Za694X+669IkX5fZP+fk8uefJVVWttPXnYu0Tzv16rD3j5pNi7dYnt4u1ez6bG68+tN15sfYFn83tL33PR3PPwz3vp7lnBlRVbTbPYbH2Q69/O9be4u7cHPtpk66KtVdtnxJrn7dG7jkRs47LPX951cWWibUX2S33DOKqqku/1I61lzn2/bH2X448INY+4Le5z5fjzs89G+SV03P7ShxxxLWx9hIjzVh709e/H2tXVS2wcm4+xNrP/jnW/sVt34u1X985t0/SypfcEWv/4IUpsfbUnwzH2h/cIfdc1jV+eFqsXVV1/Py5z5cr/rhsrL3Lhrln+C34w9y4bejruXWZ+/7l8Fj7mm/l9q+96zv/FmuPrJu7xllVdfMG/bH273fMrXf/+aoT/6ypd+z9ZG78suYeufVi2x25aax90C9y1yHWXj63V/MnFs3tN7jzvrn9maqqPjLp+Vj76Q8uEmufvFDuuU2bHpx7psuHbjow1l7ktFtj7W/ulFuXufQBufvTO+75QKxdVVVv5K73HTbt0lh71Stz45ev75D7XP2Pablz0tkn3hVrv3pabsx4zIu5uZw93809q6qqaqtdu2LtL3/1zFh7/0/k5hzdfFTu2SYLnTlvrH385l+JtRfeIzeGGJ0n96ys9z+Zu+ZVVfXjDReOtR9cc9VYe50jcnOepjz2dqQ7OjSj/vCTdf/TNed/02yJRuP/XbjW02xXT3PiH57RauQmdfQGft53DI/nbrSPNEZj7aqqnlbu994cz73euoOvt8Z4boHqyHjuIdzt4F52jcq9x1vB11q7ORZrV1V1NnK/97FW7vNlvJl7sY81c+/x5Gdb53jufdZqxdLVCv7cncHXWlVVq4Kfra3cJufDlRs3Dgdf7Mlx22gz933SFxynV/A9Vo3gOL2VHTs1g2O3zmbuPd4Ofr6MNEdi7bFWrp0cO1Ww3Rf8Dm9GP9OrKnjdayz5uR4cQyTPzSp5btbKvdYalfseHQ6+1rrC52bBSz81Hny9DQev/YxHX2+5n7sZ/D4ZH899voyNBcerwfd3VdVoBS+6BT9au4LjxuTYqdnI/b2DXyfVDl7rawSv/TSC94ersvftmsHrECPB65yN5Bgi+HrrSX6XBn/nHcHXWrORPT9qB/udf9uUtP8W48F2O3gNpILX1EfGc+2O5M89ljs3S19/6QpegGkHx+rJ633Jc5TkHLfkxb5G8Hc+Fvw6GQqeFyY/W6qqKjh2Cg6XqxH8vXc1cj948j0+Gvy5x4Kf6cEfu5rJ77KqGo1+vgTfZ+ODsXYNJu8fxdLVqly8nWwHv8s6Gv+66yI6gu3x4OfqcPDnTv69k2P17uC4bTw4hgifHVUjua40OH7pDv7iY/MR/r+vssZ/4ff+zr/p7xuogb6//8Hp/6iejuBrpSu3EUxrMPdCndvM/dxVVf3t4By1rtzrLbmGZ7CV+7l7g+/xVnDiTnJ+2kCjO9YeDK9rGO7M3V/uDH62dvfkfu8jwXu8fcGNJbqCe+Z0dubOpfu6cn/v/uBc76qqdkdPrD3Yyj0wpLsj93vvDb7eupPXpYPrE/uC+6cEp4hV12Du2nB3x8Sfg/+vetu5z7buVu77bKydO0/oC16z6m7nxqt9ncHvk2budd7bkft8GR0Irpmqqv7guWFPM/dd2tvsjbW728Gfu5H7uZP7K7Rbuc/V3uD1j8S+tf+rgeD9xrkdwbUsg7n1Yt3Ba8tdwe/xnsHce7ynIzdW7g5e6+sNX/vp6kj+7MGT4uB36fhg7rU+0MzdR+kKfq72BL9He1u53/ms4M9dVTU6EFyz1RG8FtDIfY93tnJznruD13eTcwL6gvflh3pyny+Ngez4pa83N4ZIXnpKznjqDn6f9bRzn219A8F9JYIX1ZPnR53Jc4SqajaDv/fgR2tyH5OORm4MkTxHaQfPzXrb/bF2X3fuM70jOG7rCX+2tYPfKcn9NHq7gmOI4P2jRvAzvTN5Xz4476dzMPdaa4wEFwFXVVfwPd7uzf3eB/uD982CC78brdwYoj/4jI1WO/f37upPrk3MrgptBeexdgTv23UEf++dwbUJ3YPBOfrBeSA9ybFT8OeeE97Toit43au7P3huNpC7P90TnNtX9Y+tOe/raVd/78S/Xzr6cueUY125a1bJe40DXdlrN73B61bBU9rqm5k7x2h1Bdf5d/TF2h09uT94eyB4bzt4X72qqjN4jtHsyP3NO4N/856h3Jivq5G8q5/7PulPriXpy32uDgSvE1ZVdQf31BjuDb7egnNIhppzYu0Znbn3WVdHbtw2FlyD3Bcct1VVNXqD60mC+5ENNnOvt87g660RuP7wjq7gs0l6g98njeAeSb3duc/0qqpGcP1Qayz4LL/+3OfLYGdy77vca70Z/LkH28G5DD3B9c+D4fn9wb0WG63g2Kknty9WV/D8qHcgN4YYDM4n6Auem3V2Z++59fXmxssdPbmfvb83N4boDu4P1Q7uK9EVXC/WHZyj1hdcrNYIroWtquruDK4nCT47oBkcNyY/0/u7g2t4OoPrGnpz52Ydndm5Wo3ggzIGGrnx8qzg3litntw8sa7B4Lyj4Bz7dvAcpSt4Tb13MLuPbEfw3nxHcPySPD/qa+f+5oPB75P23OD9hOD5UaMZfMZXVXV05372/uTrrZH7XO/ozH2Pt5JzUPpy5wmzk3s7jOVea83gPPmqqsHgdda+dnLuT/B5WQO5+TeDwWsBzeAz6ZqduXFbd1f2XkZvK/ezt4LnxM3u3Pus3RMcv7Ry8zl7+nO/887gdae+5H5kwWsgVVWdwb1MeoJz5Xs6c+fE7eC9jHY7Nw+kEVyX8V9Zh/vP0t2XvV/ZauXeZ8lnw3V25MZuPcH19v/ImvOevt7q6Z/492n/rOA80OAzr7vbufdmKzh/pKqqGdyHpCs4f6Uz+Fy3nr7gvYD+4POmenLvs2bw5+7qzt1Tb/cHN3aoqv7gszobY7kxfldP8N5P8jk4wfXPA6PBPS26g/uY9eWuXzRmZc+rBoLXhrs7cu/x3uB5VUfw3vJAcK/CnvHgPiI9wblKzeC4LbhP0WBP9tysL3i/b6AruBdZ8D5Eb3CfomZwrvfgUO4zvR28D9BMPmsqeC2+qmoweN+pNzhfqZl8PkjweVPt4J7myWeNtwdyY4iuzuCee8FrL1VVPcE57v3BbffawecntjtzY/XeCr7PgntaDAfnBHYEnwvbOZj9fOnrCu4bHByz9gXPx3v6gteduoJ7SszN/dyd/UOxds9Y8DpAcJxeVdUffI+3gnP7u4N7orc6g/unBL9LB4LX1LuD9wt7guconcFnlFZl1323gvu3tJu579JGcM158l5lR0fwOcSDwf3YK/f37gy+zquq2sHzs97gfj39vbnXWyP4/KKeweA11uBzTbqCe8+1g+t/28E5AY1m9tpPb/K5TX25z7bx5DnKwPRYezC4b29y/7eO4DOve4JrE5rBtWJVVZ3BvcGTz1gfDI5fRoJrgNrBuTet4PNkmu3c2oTB/txrbbgjO37pbCXXwgb3T+nJXdfuCV5b7gxez+8JfrYlx07dwTVfPV3ZucOtVnCOfk/us7UjuP6oezC7j8g/sua8t91dfe2Jv0Y8FFzHklwD3B+cu9II3guoqurtD87jGAzeVw8+V21wIPi52J3bA7YjOMW+uyv4zOvguqmO7vDny2DwGmkr94Lr6Anu8xNcz9E7ENybMnjvaTy5Z17wHkgzuI6lqqojuAa5EVzr3xoP7k3ZzL3Hx4PzKJJzEpPrjxvBZye2B4J7z4af/TwYnN/f0wg+Yz24D1oj+MyCgeA10u5Gck5i8BnnweujA8F9b6uqGsF1ej3BPcVHOoJrKnqD956Cz9jqDD5bvtGf+2wbCD5zqTv8PJb+4J6/PXNzP/tAd+5zvZm83xd85vVgf3C+Ukdyr+bc37vVn72vPhCcF1jB+VIDwec2dgTXqg0kn+kWfMZWO/kcmpHgvppzc+P0qqq+4J7oye+z3u7ce3xW8N54X/CeXUdwj8fk87b7u4J7igaveVVVdTeD1yGSz3cP3kfpDY5ZW8ExRKOV+3v39wavawfHyiPBdZFVVe3g771Zudd6X/D5Xs1Gck+u5D2c4HOne4K/8+C5We9A8D5peM1WR/CaW6sn+F3alxs7NYLrvjuSz00Mrg8YDO6B3wiOnTqD90mrqmpO8J5h8LpTI3jvqju4N3gzuD9UM3hduxGcV9gTXHfdE/weraoaaAafIZQcvwTXg3QH75X2Vu77rBV8NlpyL49G4LnN7+gK/txVVc3guHGw8a/5jLJWZ27/lqr/fM15dgdvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmVDN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATJxm+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJg4zfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcZrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOI00wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDEaaYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAidNMHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOnmT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmTjN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATJxm+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJg4zfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcZrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOI00wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDEaaYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAidNMHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOnmT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmTjN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATJxm+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJg4zfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcZrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOI00wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDEaaYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAidNMHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOnmT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmTjN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATJxm+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJg47fQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+z/famJaqns2vCu4f/6YAJb76ja7PFY+2nP7VlrL3pmUfE2lVV3/7A5rH2yl9+Kdb+4l9eibV3PGOLWHuza5ux9m1zfxJrL3ffF2Ltzbb4QKxdVXVG/wqx9kdWOCvW3m2Tn8XaX91m6Vh7WmOnWPvtw9ux9lqNPWLtzu2XirVrnUm5dlW977G/xtrTTt821u7c//xYe/S6H8baH3upO9aefEbu5+76j6Nj7bvn3BFrV1V99cy+WPvZ+x+NtR9pPRRrH/r18Vh7+zWuibU/duR+sfZnVt4l1v788/PG2ssOrxZrV1Xd2z9/rH3JAjfE2m9t0Yi19/7JbrH2cjOvj7V7+r8aa9dfz4ulF7rsS7H25/f+QaxdVbX87CVi7Z9sOy3WXu+M3LWA4zb5Vay91s33xto3TMtd83py0udj7cW23DHWrqp6apOnY+2v9+XOUTbpzv3ev3XXNrH2QYO58cuCD+fOE547dCjWvn3tN2Lto793RaxdVXXkEq/F2vv2tWLtlb+a+7n/7ay3Yu01b3tPrL34e16Ntef78o9j7Stv2iTWrqo6Y/JArL3cGoOx9umzPhFrL3V2T6y99vdfjrVfPfT+WPsDx+wVa489cXCs/fP1PhNrV1WNTTsw1v7Cmbnryx9f8fJY+yddufuVP/xw7j7K1BtyY8aLn/lurN1ecftYu6rq6dMOi7W3f/zsWPuny+bOSw/e4dRYu/NH/xZr77Nfbr7VqY/nxhDPfWG5WLvz9M/F2lVV3+m8Pdbe8Pbcz35lzYi1t/v+N2Ltg674YKx96fdzn+lbzJkv1j7/e52xdlXVyn++LdbedrvcvMYHLz031l5miftj7VtOyM1dXnWlr8fazz6Xu9628WG5cfoumx0Za1dVHfT8ZrF2z4r7x9rnnXZirL35ZzeKtW+dP3cPZ+GNVo+1T17yklh7p33XirWrqm68YI1Y+9dDufvEa1yfu5/w7r9Mm/DmjNGRqvr1hHcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA//naf89/PNZs1Viz9d91LP9bzWpOePMdM9tjsXa7cu3eWizWrqoaa7wUa7eHe2Ptav9db8l/qhnjQ7F2b8+cWHv20NxYe0rv0rH2mzOmx9qN5uxYu6pqzvBArN3Tk/s+a7b6Yu2xkYkfO7xj+pzc58t4z8xYe7DVE2uPjs4baze7Xo21q6pmVVes3TkyGmtXazyW7hjKfa42Ovtj7Y5Wd6w9e3ZuvNrfORxrN3pmxdpvvZ77Hq2q6uqdEWt3NyfH2kNzc2PW0Wbu9dYYzl0LGGq/GWt3NAdj7VmNP8XaQ6OTYu2qqq6Ojli7M1auGunOnaM0RnLjl6rc91mjK3duNjyeG68Oj+XGTh3duTFjVVVrJPe5Xq23cu3u3HnCpK7ce/z1kdx7fPac3HWA9tzce7yaue+ysUbuGmdVVasj9x5vDU+JtWcP5d5nrcHc+GXu22/G2mNzR2Ltju7cfbO5c3PfJ82ORqxdVdUM3isdDd43q+CcgDljuTkBzd7geHksNyeg1ZH7Hm935u6htBvZ6y8dXbnxy6y3cr/3tyv3ufr2rNdj7d7+3JixPZK7X9ho58ZO04dyf++hWjjWrqpqtIL3UVq5z5fx0dyYtaOZ+7lHctNYq1G5+S8jwd/50FDuPdbXmzsXnzEndw2iqqqrnXuP947lzs2ajdycgGrlzo/eCr7ehgNrMd7RauTuXQ105q6/vD0jN16tqvrDeG4eyJqtybH29bFy1VhwTuMyPblrINPHcj93Z1fuXuW8waUJ08eDc3erqqOZu943b3AeyKSe3HnC4GhuvtNQzRNrz2w8FWtXe6FYurMZvG82HjwZr6qOkdx8iL7g58vQWO73PhZqj/4TXmsDe19cA4E1TGsvvtOEN9/xyE0vxtpn/fr7sfYX/nBhrF1VdfHXPhxr958yOdZe5JOvxdp335T7Hl5xzvax9ip33RZrv/y53HXCnyyVW9cw5fng3Nuq2uC0B2Pto1ZeINa+7KjcfOsd3rw51r579tqx9s5zVom1p1/5bKz96Cobx9o977sz1q6q2nWh3LjxlFdujrUP+mNu1dYDT+fGL3dflft8OWnN3H2IO59cPdZerpG7Vrfex3O/81k9x8TaVVXPzf19rL3Q4COx9pyeZWLteVZYNdYem527Lv3KuYvE2htMzo0h7ponN4/i5RN+FWtXVS3YdUisPfCB62Ltp8beG2u//su3Y+3373FKrH30syvG2vst8nis/b3P5T5fdv3CPbF2VdXZ31sj1j5hnty1nyu6cpMpng6uVXsyuB71A4s+FmufOPyRWPsDG9wca3909DexdlXVw3Mmx9pPTcmdE/9gOLfH5Od/mVuP+tkV7oi1t79sq1h7ztTcudkvlsrNzdto9XfH2lVVsz/zfKw9clfuGutbzSNi7Tduy63LnDx4Y6x91tGbx9rzXp9bz7HcUblZ7gefnJuXV1X1yoO5Ne9dd+auuc37xt6x9pxFD4u1V/jlk7H2C1vk7pvtt9BKsfYe0z4Vaw+e+LVYu6rq4LVza/2vH1s01p7a+XCsvVjw+stvrtss1t76iM/H2n956MhY++mLcp+rK+6yRKx9xp6577KqqimrfyzW/sx7c88Quvqm98TaS98dS9e3986ttZ/nstzcm6f2zd3DefbtJWPthZbJ3Setqrpwx9x8zvUOmhprr3Xb/LH2il95I9Ze4yu7xNpfnPHbWLt1X25d5mNzc3Pkb3ktt+a7qmrfjmVj7QUnLRhrtx/MzSt85ODc2GnkfavF2tddmJv/csWeufWNW9+We50/v8o2sXZV1eCzf4m1z1vnj7H2Ss+sF2s/87WfR7pzZo5V3RRJAwAAAAAAAAAAAAAAAAAA8H+B36xyV3UOTvwevB9dLbdX4TOr7BhrL33irrH2Vit9I9auqnp+KLcHyvqHrxtrb3nIKbH2UR/P7YW67rK5/SG//JMtYu2x720aa39wx9xzzn9xxeGxdlXVAnvk9p3pW2WTWPv1a3PPfFr2jWtj7RvuuDfWXva0M2PtrYa/GmuvuXXu597hwdwe9lVVf9jxyFh738s+HGt/79yzY+2Dd/tirH3JtafH2vM394q1f/qJpWPtqTfuF2vv+Wju2UMPbPyDWLuq6vf3fSHW/vFSy8Xa797s/Fj7tOefirXrkNw+rCv99Sux9nYP5vbWvvg3uedVPvL93Ou8qurNVYLjxqMvibUP3Pjjsfbufbnz8Tu+fE6sffe2rVh7xk5PxdpT7tom1v7Zpbnrq1VVF255S6y97CE3xNrPDOSe0XHwarlnq118+ORY+6EFX4u1t+zcP9Z+Yb/c9+hvrjwg1q6q+sCH1oy199ng/bH2TW+dGGtvckzued8D+54Qa3/yqG1j7ZP+vEas/caM3P3Cu87N/dxVVZ/e+pVY++app8XaS24xFmv/eJHfx9ozunPnhTf/6bFY++XR3P3CHX44Nda+9+SLYu2qqu/tuFasfeWXcs+iufBXv4i1b9jrgFj7lm+fEWsvedj1sfbi+xwZa39xm9x9+YNuyX2PVlVddVTuvt0Tk5+ItfvXWifW/tGRz8faVx+ee07otU/+NNbu+frCsfa0k3Lz2458z/ax9muv/CTWrqra4Fs/jrVf2jV3nrDf5bnnhK61ykGx9g922ynW7rkgd029+aHc6/zq0dw8r6f+mhuvVlV1HbFMrP3IpOmx9tGvbxZrn/ul3PfZ2y+sHGvvt1Nu7dPe6x4Qa5+wb27stMtPsuuu7lks9wzmG888MNZe59u599kL57wZa991b26d3We2y81b3n3qX2Pt7313u1j72D9sHWtXVe3z8Emx9q7LHRFr7/GX3DnKoptl7hfOnDnzH/5/XPfUKtXV6vsnHM3fZ92j3prw5juWfS03x/3SBz8ba2/2dG5uXFXVexf4t1j7il1nxdrfXGi3WPv+uzeKtbf6QO59NnJdbq39JvPmzmfn+9KvY+2+w3eJtauqtls+N8d+6y3Wj7UPXz13v++ke3Prvvc+KzfenHfK8bH2hUcvFmv/cvzcWPvJnZ+Jtauq5rkot27rrh1nx9of/Uxurvnqx+XmQ95xWO6++qsH577HN978o7H2sestEGtv88vcOtyOXbKfbQ8f8kKsfeDmufus605/MdY+eMVbY+13Tc2ty7xt99w80CtvWy3Wvn9Obo77r07YM9auqvrgHrm/+dk/ezPW/sGhU2PtKx7P7X137oq/irW7f71ErL3gx+6OtV9bP3c+vPNZd8XaVVXnLvazWPtjp+XuPS2xe+5e57fmOTjWPv2y3PnRZYt8Pdb+0Sm5eVo7X7tBrN19cnb8cvi9ufmYzaubsfaX1s1dfzlqq6Vi7euPWTHWHrkldy1g34WuirWP/1ZuPer0ydnxy60H5MasP13q07H2at//c6x9fvOwWHu85om1X9zk2Vh78VWmxNpnvpnb67B1eHesXVU199RrYu1X9zkv1v73fXJ/84teyO1NtftBufkIez9xdKx93mdz50ddL3w51r7gl7nr2lVVf3ry5lj7rPn+8Xmw/1VrLfVQrD1w6Qdj7Y2WnxRrd3z7gFi7a3hGrH3uL3Jjp702zM3lfOu+H8baVVVP3H5WrH3RJu1Y+4Y/5u7L375+7pl011yf25/p+Btzn6uL35tbLzZwd24v1ZfPWDLWrqq6YJFFY+2Pvyt3H+XSnT4Ra28wdEysfepL74q15/3RvrH2nnf3xtqLbPNSrP3lm46Ktauqdls/t+7rwCcPjbW3PDM3l3SvV3PzXyZ94OFYe8ercvuBbXdqbm/Lxa+5L9bu/G1uP/SqqlU+kNuH7aTx3D4DZ7yY2xv8lytn1oMMzR6p+/+G/y43YwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAnXTB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATp5k+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJk4zfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEycZvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYOM30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHGa6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDiNNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAxGmmDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgInTTB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATp5k+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJk4zfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEycZvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYOM30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHGa6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDiNNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAxGmmDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgInTTB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATp5k+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJk4zfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEycZvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYOM30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHGa6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDiNNMHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAxGmmDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgInTTB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATp5k+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJk4zfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEycZvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYOO30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/s61z1/rV3+qd8O7vdlp2wpvvOPqknWPtj961Rqz9q29cF2tXVe16y4xY+2NXHxlrX7Xhl2Lt360wHGsff1DufTbpjitj7bM2GIu1N7trVqxdVbXNrkvE2m81V4u13+j7XKy96gW5z9U7n/harH3KLn2x9nUrbh9rr7rXqbH2nreNxtpVVdf+/DOxdse052Ptre7ZN9ZuD/851j757pti7VU+PifWPqvZFWvv0jE11q6qWnGdbWLt7qeXirW3Wjj3Wl/sIw/F2uuveGCsvdn1ufOjjRabEmtf/p2DYu2rBn8ea1dVbbXmurH2wTttHWv/7uzc+VHvdq/F2tffeVKs/cdtD4+1j++cHGt3v/87sXZzw9Ni7aqqfW5vxtrnTdol1j7slPVi7cfmz32X7rHiYrH2ecscE2s/ffrFsfYZ038aa1dV3fONzlh7ld+cHWvvfcm7Y+3lO06Itbt3uyLWvnTnubH25Gt2irV3ffzDsfbwHy6MtauqNntX7vvsg9d8INZ+4OW/xNpHn5Qbs15y1/ti7QXX3CbW3m/WL2LtXz2Yu5dQVfWx7+Q+3455cVqsve9Kr8TaL6zbiLW3fjB3/WXqJw6LtT9wzjax9o73fyvWfnXdx2Ltqqrf7LdmrD1rx4/E2jO2njfW/tid68faO0/KnRPPd/a2sfbrrdx4deGOBWPtqqpjujti7VNfzM0LOOjBrWLtVceOjbXXuWZqrH34a7l741dvtnqsfe7M3LWfH5/6vVi7qurQe+ePtW9c855Ye8qlZ8baj0/JrY144omNYu1PvLB7rL3watNi7ZMP6I61q6pOPujlWPuuddaJtd9/0emx9pEXHxdrX/fIzFh7r8bsWHu9M34Tax902SKx9iGH3BlrV1Vd+OqNsXb/mvfF2tedmnu9LXxjbqz+3qNy8+vax38q1t7rkdx8iAtOyo2dqqqueH6+WLuxYW7M2nrliVh7+zsmfl3p2Mzhqo9OeBYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P0D77/mPO8Z7qnO847/rWP63hsfmTHjzHb2NmbH2UHNSrD029HKsXVX19tBwrD083oi1BxszYu12syfWrvHxWLq/ayDWfmv0jVh7bDz3WmtUX6xdVdXfl/t8mTuce701Gy/F2l3t+WLteSflPl/GR7pj7Vmz5sbazeZIrD0+FPwuq6rmaO733j1vrj1nem7s1G60Yu05wfFqOzhmrK6uWHp4ODeGGK+hWLtZk2PtqqpGM/cef2Pk7Vi72V481x57Ktaujmdi6Z6xeWPt6aOvxNrjMyb+Ots7BicPxtpVVXPm5M6JZ0wfi7U7O/pj7VZu6FTNztx5wvBw7ndeo7lz8UYrd215fCz3966qGq3cte2RsdzvfWRub6z9wtBbsfbckdw9nN7u3PdJ7q5Z1Vgjd37UGs1dX62qGhmbHGvPnTsr1m53N2PtWTNfjLVbXblzlK7R12LtkZHcNfXRdu6a+vDs3HusqmqkmRusN0dyP/tYV+5v3m4F79k1X4+1x5u58UuN5K5rdzfmj7VnDuU+V6uqXhzKjRyHg/NARufkPttancHvs7m59/jQcGesPdyeHmt3BOf2tdqjsXZVVSP4Hp/VyL3emp25e8RD47m/+Yzx3OdqYzw3Vh4bzd3DCZ4e1fho7v09pSt4Pb+qxlu5ayCtObnx8pzO3DyQ0eHkuC13Tb1ZwWvLc3LfZX+dk/u5O4Lj9Kqq14Zy7/G7hnP3cEYq97manA3x4uzcXM7B8dxrfWQ8d/9odjv3XbZAM7suYmwsN16e1c6NG8eCr7fBjtzvfFJw7nDH+KKxdqMzd242ayh3Lt5uZOfejLdy/Zljufd4d+XWo7Q7M2OnsbF/vDs4fE8Njk78Nbsj7smN+n73oXti7YMevz7WvmnqkrF2VdXR9z0eaz90cSxd33/jhlj70x9bJ9Y+457cuOvsPXJjgF93/zrWfmts9Vh77lu57/+qqmsX3DLW3v+y3Py4730qd153weJrxNqP55YP1bu2zM1fmXLbWrH27lc9EGvfOvnJWLuq6ra+3NrIhx79Q6w9Nzh/5Y1X9o61D/58LF2PP3prrP3ypA1i7Zc2yq2F3fBbO8XaK67yzVi7qurmJd4Taw+3cu0/B9faX/PoC7H28oveH2uv9f7cPf0pwTU0r9yROy/s2uz7sXZV1UtXfyjWfnqF3DrgI2fmroHsO/b7WPu8Yw+JtfdZ8JhY+/5Gbq7U80d9K9b+6fFXx9pVVQOPXhVrL/b2VrH2/NflXm/z35Obo3Z+fS3WXuInuWvLR22Q21vho7stG2t/ccF5Yu2qqnmXz92v/M2vJsfaK7RfjbWnXZGby3DDJbnP1XuWXTfW3r3rsVj7zWc2jrXn/v6JWLuq6qr11oy1F1vu3Fj7pfYnY+1jljgu1j6zL3cP54jDcmv0fv/jR2LtX85dPtZuTXoz1q6qum/KjbH2o4suHGtffs+fYu21lvxirP2RgQtj7UN2yF3P/8qfcuOXo64+LNb+0fuy6zLvH8mtt2+fv36s/cCHfhxrr7jas7H2slvNjrV/fsUisfaczWLpete1R8faOwwcFWs/vFhuTmNV1epTg2OnNw6MtVcezM1BOX/qYrF2/+u5z5fNlzot1n7qvdvG2kuO575H1/vDt2PtqqpbD/tSrH3647n70x2r/SXWbs3cKNYeWiQ3j3SldXPt0eVzc8V3ejb3mf7Yc7nXeVXVE53virWXGc+dJ7w+fYVYe639c/fNlvxwbj3I45PeHWsPP5HbJ/qVj+fOxf/669y5WVXVIjvn1hhu8q4vx9r3rpy7P73caitFunOHR6rqzkgbAAAAAAAAAAAAAAAAAACA//N9+7hza7Br4p/19dheub1ffrDXc7H2Vt9fMtZ+qbljrF1V1do59xzib6y/fay9zsnbxdoHXnRtrL3Lt3PPrHzfYifF2jcdldvDfnDD3J55Bz/021i7quqEs9aLtT+45x2x9tfffV6sveEFS8faP1s+9zyYHf76kVh76ia5fesuPP3wWHv1Sbm946qqPj5zaqy985mLx9pzF809l/ars3PP//nh73J7Dm96eW6P6fanc8/E3XTz78XazxwfS9ej21yQi1fVj+fpirUvWujyWHvFafPF2qMfzz3Xbf1jV461V3oy96zxwa7c8yrPf27PWPt9d+WeSVtV9e7T9o21118vdz6+wEN7xdpP9eT2HD7m1J/G2lceOyPW/tBY7rlqi9yTu/5x5L2554xXVe340Y5Y+8SLT4i1n1z4j7H2wlddEWsvd/v8sfZ3fj051p725u2x9is35J7vvtsW02LtqqobH83dRzm6+w+x9j33Hxxrn7hbbg/7d//6klh7qR1yY8bW0d2x9gsH7Bdr77v9+bF2VdW1v8i9xxfedijWvrn9UKx92DVvxdp9p34w1t5gvtzz3c9v5e7Z3fGH3HWn/RfZPNauqtrn35eLtT93X+47Zc2R12LtT4znxhBf+0HuWeP9b+e+x7f67gOx9kt7fy3W/sLbuWs/VVUnT8nN59z87A/F2vc2j4y1f3/nr2PtBTafHGtvfNW9sfYm1+Sejzrv7UfG2p8avyzWPu2MnWLtqqqbfp4bN27xWu5z9chVcvdwDrwxNwflG7OOjLVX/vQ9sfbwa7nru1denJs7vN79B8XaVVWfO/OpWPvu9XLzIV5/5alYe+GTcnP7unsyzyitqtp4tdx1xm8cmHvG+rQDfxlrP/1vh8baVVXbb/7RWPvtbY6MtX9/wlOx9rJnfifWfnub3Hh1x//YP9beaf/ce/yEfb4Ya++1xBaxdlXV/S99Jdbe6PLcfbt11vhYrP36PLtHumNzxv7h/8d9X1yy2j0D/4Sj+fvsd+onJ7z5jvv+OiXWnmeTB2Ptzz7/eqxdVXXVnEdj7S8+8dVYe4135eZDnrTntFi7+cpfY+2eubk1W58/PHff6/QXl4q1X56cm+NeVXXEqa/E2pve849/F/9Xfer2K2Pt3R7IzYE95Kivx9r3zZO7jrDS6Y/E2k/c8GysvcCfcnuYVFUde8vHY+3j1smtvd73vNx36SVP5n7ujX6fm8twwbUXx9qnnLlNrL3FI7+PtRe4K3dv++S1c2saqqqWPvSNWHuB09aOtT/7XG4u6Mhnc3Pz7nn527H2d47PXSOdd/MnY+2Nl8jd2z7t8E1j7aqqj5x/S6w9z1XXxdrzz3k41u74/kisvfGVuWusr56T24Pt8oe2ibV/s33u2vLuoxfG2lVVx+6f+x4/bYfM/Z+qqmPPzp2bndI9Hms/u8ylsfYhD+Q+06c+s3qs/cZOd8faJ7dz87Sqqk4bm/h7pO848ebcfslzH82N1TsW6Yy1H/v6DrH2sx/J7a15Su8RsfYna51Y+4I9fhdrV1W1L14g1l745Nz650s/n7tfufxl7421j+57M9b+xKm5vQ6v+PMTsfaO2+T2l7zy6vfH2lVVZ5+SWw97y09z5+M/2murWHvf216Mtec7Mvd9tsI5k2LtY5b6j1j7V5fmzs3+/OAmsXZV1SGv5vY4OPgzn4q1V/3h3rH2Ezvl1pI03lwy1l5x+dxeHt/8cW6O+w/2/nOsvcfHvhVrr3XOmbF2VdXed3431l544JpY+9o5ub3gv7/hPrH2jF1z6zJ/d/ZnYu1V985d47xy4dxn+pJP5a4DVFXt/cBusfa9rdxY/bh5z4q1p76UWyN4xPty11+6z8pdY72uL/fMhaM+fFesffm6ued7VFWtdtUXYu2L3pubv/vCD3LfKb+cP3fvauHgtcajDnwz1l5gkdzc4XPGc/fsnrsgNwekqmrTP2wTa592R269+0Gb3BlrvzAt84yy4eG5VfWfzwPJ7XoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCEa6YPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAidNMHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOnmT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmTjN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATJxm+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJg4zfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcZrpAwAAAAAAAAAAAID/h737jNarqv9+/dv3LkkIBAgdQsBQJSC999CLdEGkiCBIkSpNpCuggHQQRDCAFFEBKQGRKr0JSOgkhCICUtKz+35ePA9jnDf/cY4Hvb+eM67rdUY+c+99l7XmnGstAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN05YeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDf7abzDqpBQ1ua3l3owV82vfmFk2/+Xay9x6ibYu1hNxwQa1dVvbjrWbH2eS+2xdo3/2GOWHtM1yWx9og9B2LtQ14dG2sv+fFnsfbQp9ePtauqFtsp97Mvf/Czsfb970yItafMu2KsfcUys8XaY/d4L9a+4Ifvx9rfaj021j7m+Nx3eFXV0Lm+GWvffODvY+0rb70m1p7rD2vE2r+bMT7WPnjU8Fj7ppP6Y+0FDlso1q6qemjlnWLt09+fJ9b+56TRsXZPx4hYe9T4a2Pta4cuH2u/sPSGsfYG+8wda0/oGxtrV1Ut9ae/x9r/XP7OWPuKt9eOtfdqTIu1e4fl2pcvOCXWfuK6lWLt0xfti7V/csUvYu2qqiNPfizWvv7abWPtiw94KdY+fMnTY+1pl10caz+97bBY+77HfhNrv7nAC7F2VdWaF/w01p6y+JhY+6qtcmtny959f6zds3Pus+31sxeJtW9fJvdzLz80dy4+ZZXce6yqqnNkbt3u3l0asfZq38291pce/3SsfdjEZ2LtC5cZGWvvMldu3WylRzaPtauq9h85M9Ye8a0dYu1jr+mMtSeuv1esfegir8Ta8+2X+y69Y/jnsfb+W3871v50xB2xdlXV+bc/GGsvtsV9sfZTf8+tH917/72x9p9fOSzWXrRr51j7pAdz7/F3FsvN71ZVXTp861j7uA2/GmuPm3e9WPvRI26JtV+e5+pYe4PvT4+1Z572SKw97+f7xNqD7r8g1q6qeuziK2LtF09aLtb+wdYHxdqdv1491r74rJVj7as7c/vMRt2XO247YNq4WLuq6pvX5NYrz2vLzenf+Lvcz73cg5vF2ltMeDPW7l7lwFj7gl/9LNZ++qVFY+21h+S+R6uqHl740Fj7iIs2ibVXvffDWPus13P75MeNyH2XrvdObp7zrPsujLXfGPg01q6qen3uW2Ptu38xf6zddV1u788PhjV/z1PXzOl1Ud3W9C4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw36/tX/nHsxqzqhq9/6mx/I+GDZm96c0vdPV1xNod1R5rd/YPibWrqoYO+jwX72+JpXsbsXS1V/Pf21/o6uqPtQdacu3WRl+s3TvQGmsPdM+KtauqOoM/e3ewPbh13lh7+qzc52pbe+57vKVvcqzdF/web23Lfa72tOT+3lVVvY1cv2ta7nh5Zl/uc72/O3f80toxNdaeFfw+qZlTYum+gUGxdmvvQKw9eHDutVZVNa0z953S0ZZrt3fPjLX7B80da/d0T4+1p9S0WHtQ+/BYu79/cKw9Y+rkWLsqez7eGDI01u4cCM55tfxLU8H/Vu09ue/Slr7c52p7a+493h6cZxwYGJaLV9XMgdz3eHfX5Fh7oOXTWLuCr/Xeltw6ymczc+fDc3bMFmt3BedfWnpzx6v/ewC5z7eWjtzrraVy5+PBQ8Zq6c3NgUweyB2vtrd0x9otA5Nj7e7W4IutqgZVbv5nYGhurrEj+Frvb819rnYEv08+nfFxrN0XXEN5Y8bbsXajN3d+UlXV15U7Hx80JHie0Jf8XM/93B0tPbF2teZea32duePVnvbce7yrP3v80qjc+nRvT+7csCc451aN3HFboz/3Hq++3Lz2kPbgZ1t37ufub899vnT35faAVFV1DOTe5NM6gvMvfV2xdiM4t9zZn9u/29qSe63PaOTmfmYEf+f3zfgs1q6q6gzuF4+eHQ3k9g4v255bI36/L7f/ZSD4Pd7Wl/t79wfnAaYHjxmrquZuy825Dc4dstb0Gbnv0o7W3DFjdyM3rz20JXe8OtCb22vVm3yP9c8Ra1dVdTUmx9ptwX3yMyv3ud7Z1xnpdv8bjtMvGfF0DW5r/ufjkZ/P1/TmF1oeXj/WfmH23PfgQYtuGWtXVV282D2x9vDesbH2lAmHxNovTZo/1t7jH/fH2n/oyx3zzfv58bH27A9PirVf2jk7d7P1R7k1v5cvyx1z/m2VlWPtrwzJ7eM47omNY+2bd9gu1v7FcnvH2mc9sHCsPWu7zHH2F854aUSsvdzeuXP5Rx4eGWvvtuoLsfZjXZvE2r9tza3/zLFQbj5+mxc/irVn3+fIWPu8v+8ea1dVvbfC12Lthea/M9b+4csLxdqHP7BcrL3M9Mdi7e7Ri8XaZ68xT6w9z+jcPMBHbz4aa1dV7Xjd47H2X7cYFWuv03d4rD35itwa7/GTc3M/f106d71Yx63rxNrTl3k91l7txUVj7aqqZxbfKtb+6KFHYu3XNsjNQzyyb+5v/p1bc2s4H/3x3Fj7zE1zc6zHrfzXWHvSldn7JU+bNzfXOH/PZrH2Vq1/jrWvbPwo1t7lsNyx00ITcvNtd76Ve5/tscH4WPudJXLnhVVVCz26dqzdutCJsfbEfb4baw9ckduLsfniufPx74//eqz9tUVWibVfr9wa7dRZm8faVVUjl3sl1l54/OhYe7u+42LtW2Y/KNY+tjt3b6olX58Qa7/emzte/cPgdWPt76yfm1+tqnpkt9ze3w9vPTTW3nDCBrH2p3/Izfd1rbVMrP3pjpNi7UPnWz7WvnnLA2LtH32cu45l/e3vjrWrqha6/5RYe9yED2Pt1iVzcyDLzMzdg23ldd6NtR+dumqsvfo7v4m1J+2e2xPwyK9ujbWrqlrueSfW7l3ljlh7gUdze9xW+yg3D/Hs/Ln7gW2/1d9j7ZYnc9fozT7mL7H2C22551xUVc332eKx9t5rjI21f7t57hqg0ZvmjiFuuCu3XvjjHX8Vay87IXd+1LlJ7lx87e3+EGtXVd30wUmx9haVWyudd6U3Yu2Xz84cO/VM76+6N5IGAAAAAAAAAAAAAAAAAADg/wfOP/bnNWhY8++JevT9azS9+YWffpy7n9eCM3LP+v7ndlfG2lVVm911fazdd07u/v1/vCp3z5tVR14Qa198/u2x9vwHLxVr/3b3U2PtAw/ZP9aunXLPAa6q+vi5b8XaR405NdYe2HTOWPvs03PPdftx9wKx9tLb/TzWfv/V/lj7G/fknhWx7BmHxdpVVRsedXSsPf6Y3LMbf/ls7jnEo2flnn10+mq5n3ulp78Ta9/xae4e9tduv0isfehLuc+2MW9NirWrqqZcvGmsffZBuWddbTd2w1j7sVc/irXX/VrueQ0dIw6Otf/0s9x3+IvfWTrWfuLNW2LtqqrjTzgm1j5y1Umx9pPn5ObcvvpQW6y93Nx7x9o7fOWPsfYy51wda8/2Xu5ZvEss2hdrV1U9c+FVsfa5E5eItZ/6JPes8cN/tUKsvdYGP461p4zLrSXsOSn3/J/ZB78Xa8//9U9i7aqqxZ78Xqz9wXG5uYDLrl441j6zJzfn9cr5L8baz191dqy9war3xdrzbZZ73vbP97oo1q6q2nHb3POmBs9aMdZ+8Ye55w+tvWruWP2EqafF2nuc/PtYe9yk3GdbT42NtSecmT1+mfvVh2Ptvx6e+9kv/9UcsfZXTpor1l73/bG59sxjY+0TRjwTay8zYYtY+66Dss853/LJ3DHEWmO+EmsfceXNsfa8P34o1h66zy6x9oxNcvtADhmX2zt87/u/i7V3Pe4XsfaEzXLPGa+qWv2Pu8bae44aF2u/d1Vufret95VYe651c/Oc5y9zQay99fW5523PvCv3rMwnd8793FVVXXPmjl8+uPmEWPvnr+WOWccfdWCsvcOIG2Ltx47J/c77N8zNO/3q6sVi7Wv/uXWsXVXVv+g5sfYG41eJtbd8rjfWvvDWtWLt7mFnxNrnb5hbGz9g/MRYe5+Pc9f4HXLEybF2VdU+J+TOS6fONSrW/sXFuXPi524aHulO6+2rqg++1P/xyZSfVmtX8/faDz3nkKY3v3DXAvPF2nMft0esve5en8baVVWbfvupWPvT/Z6PtSdvm1tXv/HnuT1qby+W+0x+u3P1WPvrG+4Xa7+6ak+sffFluWvVqqomvZ67nuTupe6KtZe6K3cuv89GuXscjP/+NrH2hYdNiLUHXZ87fnlj+dwejm3HHhRrV1X9sj23l+Lti3J77E9/eVis/fntuWu2ug/Kvd7euvHpWHvMrbnPtvV2z62xvrlYbp5w6PDcPUyqqoaMy52bHfryA7H28KeuiLWPWPPNXPu93DXIy8zMrel/dlNu/uWQ9XLXZX5n9lmxdlXVhIty6z/f3zW3T+yHI3P35PrlTYNi7aMOzM237fr4pFh7t8t3i7Vv3OBvsfYOO4yJtauqrl9zrlh75pK5tc7tV8ztIXlh3F9j7UOXzV0D/NoTuXupLnNUrv2XnT6MtU9pze1JrKra8orc/aF++5WfxtqPHn9qrN2xQe6+5M/15K4l+fNuuffZE8u+HmsvNSt3r6ARr+Sud6+quvLp3N6ZddpujLVPOuXRWHu5J46MtS/a4aFY+5K6JNY+dfXcWuUPtstdx7LVwbl7PFZVHXHEQrH2aZ/lrqk45zffiLXXviU3x3r/abl7yP7ugdy80x33/CDWvmF8bh3jxm+vFGtXVXWelNt78+d7c3/zQ5fKfb68edXOsfZue+buTTXvTpfG2i/+ZfFY+7p3c8cQzz38tVj7nq0mx9pVVSt92BVrf/eM02Pt24/MHbe9vUVuD23LQO4+rt8Zmbte7PKJub03l22duwZ45JO5+dWqqr8Ny90PbLmrv9z1Q1/GnFusH2vvfdNnsfYFE3PPHvh46Hqx9i575ubU990iN+806Ye5Z2xUVe26Ve7+UMv8Jff5suzvcu/xfb6+Wqw9aMU1Y+17t7s21t7ywPlj7eN33DfWntAWfM5oVW270fux9l8uyO1rPG+zuWLtpzdrjXRnzBqoe/4fLNM2/vNDAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgv0UjPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPO0pQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/HdrPLRNNQa1N7078tJ3m978wgoLHhNrT1zi8Vj72Gl7xNpVVYc/un6svcBKO8fa24xZM9Z+7iefxNonHDAi1l7l2m1j7Z7d3oy1j/jDZ7F2VdVx1+8da5+fe4vXK+9uF2tftf65sfYOZz0da5/x24mx9gXLXh1rz7p97Vh7/JndsXZV1VvD9oy1J7yQ+2zd/KpTY+0P5rog1h66xEex9hsbnhNrHzx4pVj7s3uPirWrqhbcdHqs/cDJK8fao64eEmt3nXZGrL3X6TfH2tv/7K+x9hx3rhFrH71Obi5gmc+vjbWrqp4+55FYu33d1WLtDZ79dax95Wyrxtptq+eOIQ6asyvW3rDlkFj7pY23irVvfPAbsXZV1bbH/jDWfv/DE2LtEUtMirU3mb5RrH34t1pj7af3mBprL3rbi7F2/7LZc5RvHrJkrH3QD16OtV/rGhtrH7XG3bH2NUuMj7V3/82fYu0VJi8ea5/z1gWx9ui/59Yqq6paDj051n59vZ1i7ceu3yHWfvH5y2LtN3beN9be+8FnY+0db8vtAzlo65/G2lVV5x8wK9Ze+re5Y7fug4bF2pN/MynW/vYm18faY2/IzWtPOye3MH/wUSvG2luOvCrWrqp6YePc3PZxd24ea9dyP4ulD+w+O9Z+5sgpsfba854Say808tRYe/DwI2Ptqqo77hodax+98hOx9kNvjIq1FzrimVh74+8dGGv/vK6LtdfY7bux9m0/vyjWXvySdWPtqqp7Nt861l57gwVj7WV/sUusvdrYV2PtH1/ydqy93FEnxtqtq18Qaw9e8qBYu6pq+ztyx41X9ub22A2ZsV+svdUDuTm3G05cOtae78/firU3u+R7sfZ+O84Wa7e+kV3L+NPZuethxp2Xuwbp/D+Ni7UX/fYGsfYWO7XF2gdd906s/eSJuWPlOd48Kdauqvpgt5Gx9jfvy82zrn5abq/Zmn+c1PTm9L4ZlTsbBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6btf1L/7q3r6rR8h8ayv9sZuv0pje/0NbSEWv3dPfF2v2DJsfaVVWNgdli7ZndH8faff25v/mQtnlj7f7GrFi7Wpr/mfaFgVi5qqdmj7UbjZ5Yu6qqv7c91p5jUO5nn9Y7M9buaB0Sa/f15D5fGi2DY+1BQ3Kv856e3Ou8o7Ur1q6q6m3tjrV7gq+3jr7+WLt7UO613tmT+yYfVMNj7ZaO3M/d1p07L+zt/9dOnf+dOltyr/OqqkZLa6zd3pM7H5/ayL3eBlfu2KkneE6a/LkbM3Pv8Rk1LdZuq89i7aqq6s19n/UO+TTWHujKfa53dORe6+0DuXmI3oGpsXZn5eadhgY/V7vrk1i7qmrGrM5Yuz/4XdrSnnu9zdaf+53PauR+5+0dc8Ta3b2TY+3qyx2nz2zkzk+qqoY0psTa/cHzo64hk2Pt9kGDYu3e7uDrrTV3/NIzqxFr9zVy7SHtubXpqqr+ztxrvdGW+3zpHcit4XT1587H35uRW8vo6s69z9o6ZsTaA8Hl6aHhz5eZQ3JrV109vbH24Lbc2tXUyv3OZ/XlXuyzenLnha2V+y4bGMi1qyv3Wquq6gvu/RkcPFRvqVy80Rtcwxmcm8/vCn6+tHTlvk/a/sWt3f9OU2dNjrWHDsnNa1dVfd6Ze5/1tgT3Djdyx6yd/bk9jdMGgvt+gu3knPr93Z/H2gu15eZeqqre6Avuk89NBdSg4B79t1tyr7e5K/d66wquVba3zh1rzz0490JvNLKfL33B45ee4Lrd0KHBOfXKnQ939eZ+5301OdYeFDxeHdSWOzdrCe7Pr6rqaA1eTxucCxjcnvtcbVTmtd5aX/5nnq97oxoS2EsyebN7mt78wvSznom15ztys1j7vb67Yu2qqu71xsfa8762caw9dMXcPELn/W/F2jdOzO1z//WwZWLtS99+NtZe92u5vd4jvrVRrF1VNeuq3O/97X/k5kjfnpDbozb/gevG2te3fTvWnjhigVj7ke6dYu2zdxsWa19//qKxdlXVmK//PdZ+t3PbWHuPyRNj7Q8n7RtrzzvjZ7H2/kO3ibU/Gz4p1j52hTVi7Z1uzZ0XHnZ17j1WVTV5+bli7Qkv5tZ/np3jxVj7gPXXirXf/WvuOtyTXsndP+VXS70eay8+PHf/txPXyx27VFXdcvjXY+29FspdW/D+B3vF2lOD5ygdc+X2JG5/8MhY+/iFc3Net27wfqy90bjc92hV1WyL5M5L55hjdKx94XrjYu2fPbl+rP3ncbnrvrvacmtXC+xyZqy96LXfj7WHHbhOrF1VNUf3nbH2qxuuEmt/Y7MPY+1JrSfE2gPnzxdrzzbrn7H2kN1y69OvDXot1h54efFYu6pqvk1uj7Wf7b4w1l5w/7/F2g/usnCs3X/yN2LtQxb/Sqx92x0XxNrrb5NbP9rrndwxY1XVE68uF2uvG7wP2wnzLBlrL/HQirH2TjvlXusTB+WOGSfP2CjW/ubuuWPGRX6am/+oqtp4Rm7fc8uuuevt51wl99l23uDcfdDWWHH+WHudyz6ItbuC77O1xy4Wa9eg3Bznzafn1oerqka/9Uis3b9g7vhl+Dy5ayqGLnh9rP3UamNi7SVfzz0bbantcufix306OdZe+bPc3G5V1YJXXRNr779r8Nkmi6wca7+5ZO66zDkn5fa//O2ZW2Pt0SfkroP5dGruXPztx7L3S15rz3li7Sc6c8es3U/m7uXRs01ujnXLybnX2ymf7Bhrt3ySWzc746PcfNtTz+8ca1dVzbXwErH2nNs/F2uPfG3VWPvDxX8f6XZPnVZVy0faAAAAAAAAAAAAAAAAAAAA/H/fpsuOqaEtzb9331v3zN305hdu3Pe8WPvyc3ty7ecej7Wrqo5+Nvc3P/jZCbH2Xv2Xxtpbfe2wWPuEd3L3/R38aPB534/n7he46Ku552z1Xn1FrF1Vdffyuc+3ka+sFGsvufjVsfbvZ+TuMb3g4SNi7cYtHbH2n1+4Ldb+zu07xNofPLtSrF1VtfTi3421L11py1j7qtf3jLXffTT3bLVTnzs81p73uyfG2ltM+Fqs/eJ+uXv2ffO13P36Lt18i1i7qurlr/XG2nMct0OsPWjT92Lt0VvljtVHn5R7RsYvns/dA3bZV56OtW/+fe55coftl3s+alXVj+bPPZf2te/fEGtv8qfxsfYtg38caz9/7aRY+zc35J65tNydq8faXb+8Ltb+fO6DYu2qqv2ezT1ze5NH22Ltiys3v7vkOxvG2rMd+0qsPerc52PtxXZ7Kda+8LFFYu0ZVx4Ta1dVjZh+eaw9btrxsfZJu+WeFfH2Zn+PtTtG7BRr37RU7hnIG55zTqy9yT/+HGuffE7us62q6qIZa8fa556WWxs/+45dY+0r382dJ8w8/NlYu22v3BzIVXPlPtuO3/Dbsfa6H+WewVNV1faN02PtR676S6x9destsfYi38k97/vpcblnXQ0skns+6nsX5+a1D3g4t89r91f3j7Wrqjb4Wa4/8c3cMcSIfVaKte9ca41Y+/k3P42171zurFh70MqjYu2vvJE7ZvxgzEqx9nJb5fa3VVVdNvuVsfbfpufWE35y+NhYe4Wjc8/LfPl7uePV2nVmLL30aq/G2us8nZvP3713nVi7qmquizpj7d16cutHp5z0w1h71sTcuvyvX74k1j7zJ7n9Tr9b9eZYe8Ml54q1V35wm1i7qurCHXNzIAu2Dom1V5uQm1NfaeXNY+1fLv2dWPvew++Ktbf4du76wtGTTo612/6wWaxdVbX0jbl59XXW/2OsfdeR34y1v7rbHpHuwKzpVY+u96X+j19e92LN3tr8+elvLZNb99r14v1i7YW3vijW3neFe2PtqqoZ77bH2g8uvEmsPWL0bbH26YOuj7Xv2/z2WPvVkb+OtSf/JvddtOZbd8TaD/fnjjerqj7bYUys/eMRd8bav1km93sftfCTsfZim+XWnmaflruO5et75fbtLP/r3PruMcc9E2tXVb182iex9gtPbRprL7N77hrBdx/IrTfOnruEp8YOzs3PPn73O7H2AQ8sHWtPOCp3Pce3JgyPtauq7n7ltFh74OLctf4L7fHl5k++jJmb59Z4p51/baw9eqH3Y+3z774t1t52s9x1Sxs/mbsHW1XV/UeOi7UXnye3h+T5JY6KtZ/63UaxdvvzuT3PI6fk7t+y75+3jrXveOyCWPvUS7aPtauqPtzoZ7H2+ov/PtYed8pPY+1bjszdp2jRb7wWa5/Ql7umYrH7cn/vD6+ZJ9aeeGxuf31V1bf3zu2JPH/r3D7UDYfl9sf9bdfdYu07H5sYa7eNze0LfGlYbl1+03dya5U/vuLrsXZV1fD3Toq179w6d13DgWvmzguvPH+tWLtr0t2x9pzjH4q1X9z/0Fh77LK5NbtzF10u1q6qWnre3L17n7s/dx+Ty2Z+FGsfN8+fYu3LP8idJ5w85R+x9q3XXBZrz3dp7nr3P3xrq1i7qmr7A3eJtY88KrdGvMtrufm+hUfnPl9euH+jWHv2vRePtc86M/dae3HR3BzEfr/K7T/57K+563eqqhZbInfsdPRXc3u2h6+SuxfZN/fJzQWc3rgn1r7kqNw9Le5ZMDe/e+bMX8Xao1oWirWrqh5/NLf356Gjc9e7L7pBbt/yT7bIzff95PDc2tVj8+fmd29vuzjWXnqnN2Ptd4PzAFVVR007ONY+bK7cJtqH/5Z7VtbbP8w97+G99XPXGK5waG4+/6hzc/tI3xub+z5594+5+baqqt/+/Y1Ye+GLcufjpzy4QKy9ytirIt3u7hlV9X///MPGf34oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8t2ikBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRP27/yj1tbBqq1ZeA/NZb/WW9r85v/R2dXX6zdaImlq3+gJxevqsGNRqw9bPB8sfZn/R/F2tN6ZsXa/dOHxdod7VNj7f7W2WPtjsYnsXZf+5BY+38PIJfu7p8t1u4ZyL3HOwbnvlMGetpj7e7+3li7q/PzWHugkXuPz+jM/c6rqmYfNH+sPXVK7m8+W8e8sfZAf+7n7uzJvdbb23Of6YN6cycpvY25Y+2+zuCxU8v0WLuqqq2lM9ae0Tc01m5vy50X9nV9Gmv39vfH2t2N3NzPQOXeZ10tH8TaAy2LxNpVVdU+M9fuTs73DY+1p8/IfZ/1Dkkeq+e+y/o654i1pw38M9YeEvxMr6pqDAyOtZPTXt3BtYypLbl5zva+KbF2T3dXrN3dkZtnHDJHbv2mc3JgjfL/YmZX7juldUjuO6V6cms40ys3DzHQlztPmH1w7j3eVbnj9EZv7vOltzX3fVJV1dnxL23b+Lea0vdhrN3ZmTtubFRwDqQn99nW6Mi9x/t6O2LtQS25c9Ips7pj7aqq/vbc50tXW+7YrXNGbn26ZVAsHV2f7mjLnYt3J/Yy/h+N3tx7vCW4r7Cqakh/7titK5eujv7c/Et3cC9GT2/ufdY/kGt3teVebMnPtsHtuTXaqT3BjX1V1deX6w/kDtvqk67cHpS2jtxrvTs61Zg7bnu7M/f3nhn8uT+o7Nxya7DfFzxuHNYIznkFX29TWnPnpAsO5OZfprbl5tRbO3Mn48Ma2euuBiq3ntDen3u99XXl5neDlybUbI3c8eqs7uAXypDcunxfX+68sNGXnVuu4DrKbENzn+udnbnPto7WaZHuQMuX/1svPUdXDQ2sCTx4y3ea3vzC5+/eG2vXYuNj6QnzvhlrV1XtvtsBsfYrKx4Ta/d/JbemP6srt19prdYNY+2OpZaLtefcbHKsPWlU7vjjwQl/jbWrqnYak7vPwIMbfRxrr/p57nj3gV/+Odbe4+JzY+3FRuWON497NzdXN33Yy7H2sO1fj7Wrqvo3GBNrr/Dj3Ln8k2+NiLXH7PpErF1n/D2Wvnyj3PFL62LPx9qbPDVPrL3r5rnf+aeDb4+1q6pGjc3t/f1wy9zxyzNvXRdrtwy6IdaeuPR3Y+3jtjw51n43uMd9z7Nza/pL7Dcp1q6qalt+Rqx9xqe5z5d5gvulFv/LrbH2+9vn5lj/8vQ3Yu1Lb9kg1l6+Pde+oeu3sXZV1ac75I7Vb17j1Fh789+NjLXv/vrbsfao23PnhVPuyx23tY35dqx927YnxtofDvtRrF1Vde+Bl8bap991eqz969G5fRwfPbdwrH3esg/F2n9cM7dWucbruTWcp47ObdQ68oe5+2pWVe25zKOx9ogtc/Nevx61T6y92rAlY+0D3p8Qa1/xyoOxduus3HH6Gy+vFmuPWjF3rFxVdfSba8fa5229bKw959vB5z3stUmsfd5C78fa693zdKw982e5+d31L8jNcV66Vu7+klVV8721R6z91q9ze9zGDOT2VHatuGas/dF6uXuwfW+9k2Lt+1a4JNZ+dpPc/O53F8ztCZi+TfDmLVX12v1zxdozl3k11h79zqqx9q2z545XT35gm1j7xEOOj7XfnnpwrL3VlLNi7We/lvtsq6rabbXcNaHPf75ArL3slDlj7c4Fcs+yeXWj3DVAI+dYI9aeeU/ufXbbKuvG2htNzu1prKr651N/i7X37d4s1v7NsMx1mVVVvS9/Fmu3Ts89t2nThfaNtdcak3t+0CmX5c7FV2jknl1UVXXQKrl1u/7rc9cftW2bO0dZc/g5ke6sge666kv+H8fP/mENG9z8a5gueWvvpje/cGjwGV/XDOSOszcaMS7Wrqpa68R3Y+2PXs7t9954m9z38IWb5I53n/9F7vrn9v47Yu2Nzlsh1p7j+dw1NFVVfe/k9u689ckqsfYSe50Ra8/zSu59tvs6ue/Sff60YKy98o+PjrX33yQ3R/mPYybG2lVVO43KXf+85iK5+xUufsIpsfZPf5Bbe3r4laNi7bN6D4y1D53rvFj71LWDD26sqpFDD4q1774pdwzR84PcnPzXzjgz1v74lw/E2juu9fNYe+sFcs+ePnLWY7H27LnL3auqauInF8Taa1y9UKz9yGW5/bf/7D4h1h42dfNY+6ElFo21+xbNPaP08f22iLWP/uNisXZV1YvzvxFrL9WXe9b58EU2irV33iO37nXYh/fH2n88Inet2qCrY+l6a8Frc/GqOu+F3DXIt6+W28/w/NXrxNo7L3ZTrD2+/71Ye/uNHwq2n4u1H51/VKy93jrfi7Wrqt56PXf8tOo/cnMBH457IdaedG1uP+aMg3PHEKM+yM23HbDzUrH21edmrwN+5OorYu3v7xC8b855P421j1o391pffcfceuWVj1wWay+5fe7Y6YHnd4m1F15prVi7qurMtXL3lnjx+Nz+vnn2y+2HWGNU7nN1qY9ye+zv2HjTWPul4L2ij3k8e63/45MujLVv+33unmCLrpt75kPryVfG2nOte3msfdbif4q1xwfX7Lafd0qsPWXHd2Ltqqqxn68Ua38wb27uaeZFO8Tak9fLLZAvPeubsfazg3L7ps+cek+sffEFue+TqqrNbxsea99ySG5/31WP/SDW/uYiW8baD11zSKx98Iq5ffIHr5DbN/1k5e6Ldfr+uXv+VVW9t3PumrfRm+eekfb8+rn7U303eG/Pv768V6z9yu67x9rHjhwdaz95e26es6pq7xkPx9otl+SuOVvirNz5+Nl3NX/trGdGT9XOX+7/eGvTi2tIe/PvI/fKUrl7102Y+EGs/Y2fXRBr93+cew5wVdUzp/wj1l7v/dw152vcnLt26ernvxprf3/H3KbE7XfMnce37Z+7X+Bt/8hdM3XWiZl7r3zh5pPujLXPXDX3e99vvtza8qjvD8Ta526Su2br1H1yzx5adbbcGsh9H+XutTzx7tz9DaqqvnJf7m8+/oPcvQo3btkw1n68NXfMOMcxuXvArrvbLbH25afm5m2u/GFuP+KSX7k41r55n9z8ZFXV44e9FWt/fFTuusxDrs3d03zXabk9Yud+9cVYe8/1c89mXXX+5t9f8QuvbvdQrD36sNwzl6qqPhx7Wqx9/6m5ZzA/ulnu2qUV/5B7NuyaBx4Za1/zo9z9jne+eKtYe4Nzcus+cxyRu29MVdXwWbnng9xx6vWx9uTjcuuc1198Qax9xzy5+7hev3Zu/uWYFXPPL3x1m4di7af+sW2sXVXV3Z67DvfeJ34Ta9+/dO66qTE/za3hPLfDl72b+/97y7+UW6v8y6W5azk22TW393XJ/eeKtauqOq7LXc+x7+q5PaiXtuXm3B47vjfWPvO6E2Pt5W5bOdb+x+Dc/cD+dvwSsfapn+Xu8VhVdcOl+8XaK/c+E2vft8dLsfY+S+f2uD94cO65kUvtnbve/MYtc8eM/4u9+wyyq7rXPPzX6VYWElnkZHIUSCIaDBiRk4k2YKJBBAM2mGhsQFyTo8k52IBMzknkYJINIhssCQQIRFZshVZ3z4cp5tutGZfvnPfequf5TPFbrT69z95rr7321X/bPdY+fencM99VVe8vd0Ks/fVJuT0e+w/LXY+f2fPsWHvm87nnWP4+66xY+xcDcvNO49fNPYt65Wq5vRX6nTs61q6q2m7CS7H21ufdHmuPOia3R/WG++XWWh379i9j7aX3aIm11/vthbH23bs/G2s/9fYKsXZV1Vmv5dZU3rxXbv7lzRG5Odbe2/eNtTfdJLef6Ceb5OZAvhr8q1i75YuZsfawBXN7/1dV7dBjbKz95SI7xdqt228aa/ebEHwOdnzuOZw7784dX2bvn/t9XzZvbr7tmSG/i7Wrqqasl9s7d/Uzc/MQp6yeu2d31kKPZcLT/v170093/Kp6VfPfa9d6aO45uc0veC/W/snE3Nr+6WNz7+msqho55L5Ye/w6uT3zDl0jd99r6mK5+bIFbs3tI7bwU7vF2u+O2CPW3uec3DMVk4+4PNauqrr1r5vE2uuuk1tT0PZq7rzrgkGjYu1LfnpgrD12/Pax9nJL5Z69/vmw3Hn2b4fmnsOtqnpzpw1j7Yk7rB5rX/Fwbg+VX5+Xe2/AxWvk/sa32Gf5WPu8Qbn7y/dvl1sbd1mf3P2+Zx/Mvf+4quqMfXPvlHtm2lKx9qMr/i3WvuaVp2PtDw/5Lta+qzX3LOypc/4aax/YP7c/086v/T7Wrqo6fLnc+v5LBuTuuf3520Gx9kIH594LO/D5p2Ptt9bPrSG5Yp7TYu0P38mtt55yR24eoKpq4wnnxdrzXJp73v2Lq/aLtY9cpyPWfrrv4Fj78+Hvx9pvr5Rrvz5px1j79GPvibWrqk69fL5Y+9m23NzP8dNyz6NesfXhsfb0iQ/H2he+/3qsPfWcF2Pt0zty9836fJF731JV1Vl9u8faI0csGGs/9tuHYu3h594Qaz/4XW7fmp0vyr2f9M93rRFrb7fPcbH2tEn7xNpVVc8NDz4buf+esfaWi+XWHO1xVG4eYsSc3LsmJl+cO76MunrzWPuCc3J75142vRFrV1W9cfvbsfZDq+XeNfWHc3PXZi+vnbufMN/Oufd0vjwld212c/BZ2BNXeSLW/sPaufcmvTIrt6axqmreDXNrtjfpkbseH7t97hpl6565d9JdMVfuXsIze18fa6+8ee75wP7Pj4u1Vzw+t069qmpAW+7dz9sOvCzW/njQa7F2R1tujvXJIxaLtV/4S24N7YWTc89eT7sjd99sk2ty62erqkY9lTtX71q9LdbubMntmbN739y7kz57JbcH28FH5N4zutsRQ2PtoUPvjLW3uvXYWLuqatZzuXddjNs+946PiVvnrokHH5J5b/aM6W1Vt/3f/7vsbCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE3VSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABontb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/3q677Kjq1ejb9O5bN33V9Ob3Or87P9aeb+1JsfZHVy0Va1dVnXTEtbF293f3irUPPOamWHvGgJNi7R8v+4dY+5j7lou1P569Ray95Odrx9pVVaMfzR3Xj3vtB7H28332i7VvXXqRWPvRv10ea/e9eEasvchGS8bawwccG2tPP37DWLuq6pU3v4i1n7/53Vj7lnO2irWPvXuNWPvTE8bF2r88aUSsfdxav4i1bz5l9Vi7quq23X8Ya893W+53vuA8ueuE9Ye8FGuvdNGbsfbmt/441l6zx/hYe/SRF8faS3/++1i7qmrLuS6JtRd/8aJYe8ZznbH2bmPei7VHvjsx1l5pZCxdi09aLNbu+vTgWPvR9/aOtauqTl95g1h7g+tz540/2evxWPv2m/rH2u9vmTu2DVri6Fj70Pnuj7WPPvzmWLuqatc3noq1f9/2cKw96ZXc/O72J/w91h5/+m9i7d8s8HGsvW33e2PteWbk5jnbxuTmvKqqRt7511j7voXfjrX7L5Y7h9j1vWGx9rzvTYi1nzw1dw6xwge5eYjLOqfH2lVVbY2fxNoHrp27j7LDHevG2ndv2hprb3lFj1i754Ybxdq77PFGrP3pU1fG2is/vWWsXVW17oTc5+3EQ3P3MpZdbGysvf4GK8Ta172em1cfcvfUWHvaegfF2s/O93SsXVX10nm7x9of/PnMWHvxy7aPtVe9PZauPQ5cJdZedtBRsfZLJ18Ra498LrcmYMWTp8TaVVUv7LR5rL3DnNxcwEqfvhhrd194wVj769sPibWPreNj7W0vfSHW7jcyd++qqmquDXNzjd2Wej3WvnbR3NrlrdY5K9YeODY3/zJ+xOex9qFv5J4JGX5Cbk3AWmfl1lNWVb0489FYe7ObH4m1L9+nX6w9dr0Bsfbg88+Ota86/6NY+8q1c+tYbzh72Vi7qurcOQvE2lv8uFusvcQOuc96/2ebf008e1ZH05sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/wyt/9J/3dWo6mr5/zSU/1y3zn9tmP+V+vXrHmtP/W5GrN2n0SvWrqqa2dIWa8+ZMynW7tOjEWtPaZ0da1fv9li6Z8+5Y+32jmmxdrc5uWNb3565Y3pVVdvk3Gd9du/mf4f+H53dYulZuUN6TWv/Ltbu07tPrN3oGBBrz2h8E2v37OoXa1dVTZqa+z5rNHJ/4991vhdrd2+bJ9aePSd3rj61MXes3dk9d77aPuuTWLujct/hnbPni7Wrqlpav4i126sj1u43c2asXZX7PpmrX+78ZXpb7rxtRsvcsfZcrYvH2rNmdMbaVVXdG71j7WnBv7PuXbnjS9++ufm+tvbc5629M3f+0j0459U1Pfc9OitW/t8alTu+TJ2T+z7r7Mp91vu25yZ/ZnebGmt3dM4da/eYnvt9z+jKza+29ghONFbVjJm5Y2uPWblz9fbW3PlLt47c9Xh7zYm1Z0zpirW7+ubOX9oqN9/21dTkPEBVt5bccb13I3ffblajR6zdCJ61dmvNtafNyN1L6N93rlh76vQvY+3pXbnvk6qq3jNzn7eO3J94tecuC6vm5M4Z+/edO9Zum567l9C3W99Ye0b33JxXx+zg+pOq6uqe+06ZHTy29umWuzabE/y89ZiT+313dOauj3o0cu05rbnz9Cntub+xRvD+cFXVrOC6xjmduZ99RiM33zcluBajZXbuuPpOY3Ks/XVL7rPW6MqtW56WvTSLHt9aOnLf4982cnNeXcHjS1vwnt20YHuu9v6xdkdLbm65e4/cnFdVVY+W3LF1dvABgX49cz/3rOBxdU577hqlf0tuwq09uF67PXdYrTmd2bmf3l258+Vvg+saB/TNzal3tmW+Uzq7/v1z1X90W6x6d+v5XzCaf82kjcY1vfm9Qa/tFms//Y8rY+1j1los1q6q6rvnGbH2RwMPjLWHrx9L1zMTP4q13959ZKz9wJB1Yu1F7sk9NzX/6/vG2i1nvhNrV1XdcV/umY4DH1oh1n59vadj7f1fGhpr33BM7hnklmcOiLWHPvhorP3Qri/F2o1ee8XaVVUDHxoTa5/6yeqx9qGL3xprf3jHhrH2Y6Nyx/SVx1wda684Jndt9viw3B4DD9y6SKw9bOmtYu2qqrv7vx1rf/TVwFh76el/j7W3GZS72fnItHdj7bbHmz/f9L03V14t1m7dbqlYe9Xgc0tVVSeNyf2dDZ4ndx/k04FrxtobPpab73vwzWVi7Zm7PhVrd+u9bqy98VvLxdrP/fpnsXZV1UpH/DbW/nTrD2PtL77IPSs3uM8fYu2Bo1+ItSe8fFesvcs9W8faNw38Otae8fnlsXZVVb/Jw2PtaRu8Emtv9Gzu3/2zjQ+JtX/6bW7t74Hn7BxrL9Ajt5fH0oP+HGtvcv91sXZV1aRvNo6153rs9Vh72BUTY+2vdrwv1n5qiy1i7S0/XCPW7nX3JrH2y8t8FWsf9+EqsXZV1a575O6jvPVa7np8yoAzY+1XbsutO/752rnrhLfX/XmsvcfTz8fa577zk1h7mdNyf99VVft8Nz3Wvmav3DznhKnzxtqrLp+7j9LrkX/G2kd+ck6sPXy938faJy2QW0950IGbxdo9Xs89q1ZVte2Sj8faJ7Tknql4bMXc/nOdcx8ea1/fek+s/eHbuTnW+zpz+/WM+Sr3zoVhG2avzZ6f67ZYe/1Xl4+1JxyWa8+YnVt702/MUrH2Qkvn5rUn/j13rnzcN8vG2s8tmX0m9JneuXcPPL3wA7H2igucEmuf+/wHsfaWu+XWBKw9JXeufvlzufuk4xfNrSv80U65a7OqqpHd34+1G7Nz6346puQ2U/186n9Euu1TplTNf1WkDQAAAAAAAAAAAAAAAAAAwP98rR9Mq+4tzd/PrM8upza9+b2Fb1si1p6xxOmx9vBF/hRrV1Vt8d7nsfYinbn3+L28Y24fs0UmzYi17+/M7TF978PfxNqffXRKrD1k49yeWq9cMDjWrqo6sP/5sfaRm+feBzPitVz76l9m9tupqvpy+iOxdtunt8TaNSr3nvMNrsrtw7r9jn+JtauqFlh+n1h7/PnvxdqLb3VjrL3P6kfH2gO7T4i1n/h2Vqy95H25PexHvrBqrD3gxNze2qe/lt2r8PS++8XaSw/I7TN9/486Yu1bv1g91r7qrmtj7W//OTbW3uOEJ2PtY4YtGGvvv9ZWsXZV1c/aF4i1h49/OtZesZE7rt901NBY+4VlG7H219NOjLWHjb471v7ikNxe7u+uljt3qqr63dijYu1rlhwTax808Qex9qy7P4m1J5zxw1j7F7/MvZPlyYdz+8if/MQ1sfYrn+beSVtVNe7h62Ptd36f+z47pe+gWPu0t3aPtaecm7sufLIlN797x+D1cu01t421z2v/NNauqnr/+UGx9vb3547rH22fO2ddfOKvYu06+vZY+t5PX421r93t9Vj7y0dz94/+Y85esXZVVe7sperAm3PH9aVuzP3ku9ycfD9q7n28d96/aKy9/5u5eYD1hw2LtdvXPznWrqpa9Nx7Y+3t9l8k1t5xdO5d44+8OSDW3mLQ8Fi78fg9sfYpbxwbax9wwKWx9qO/y52/vNgv9zmvqnq1T+5+5ba/+TbWXmVgbh3Iz/bYN9Yeu3Lufd+PTT4k1m5Z5flYu8+U3Br5517YOdauqtphhdy65SkP/CPW3miR3LMwNx6Vu2929D6/ibUH/OrQWHuVBY+ItZ/+wR9j7St3y12LV1V9/NbAWPuBu56NtXd6YPtYe+zk3LqfOzuPjLV7LnVHrL3rPBfG2uNG7x1rL3fFrbF2VdU7e74Va6+4Su785at9cs8f7f3C3yPd2V2z6t9dOfyTcY/WXNX9v2Q8/4pZC3zV9Ob33um3Qaz9+sF/i7UP3DF7bXXAlNyzBXvfklvfP+Kb3PPPv1zopli76+CRsfawk3LzhKu/knuu4WfvLRRr79iaW4tZVXXspefG2ot0z513dW40Ota+7M4nYu0rnrgo1j54VPPPmb633bVLxtrHX5v7Ljvuk9weJlVVZ6x7Vax97eWTY+3fHr5GrN370e1i7UN/80qs3fPi3Lz06Ltzz03dfU9u7coxT+X+zfe664BYu6rqmmltsfbD3Y+JtQ/f4+xY+8S9fhFrr9uSmxMfPGlirL32Rrm9FRa9NPcdPuSV7DPndyyUW8ex1EWHxdovPftwrL3EmWvF2k/dlFsD+/FVI2Lt7+Z6J9a+Y+tNY+2VcpeFVVU1YcIZsfYGV+e+SzdfcKdY+4WRuf0GfzHvcrH21ZsuE2ufdtBcsfbPN8qdr77z2JexdlVV/47c3nczN8vdV28b/masvdW4abH23Ifl9u695cPccXWDDXM/d+uv9421R328caxdVfXL0+6Ptfe/8ZlY+/MRO8ba8w1+Kda+5Y+5exm9587tr/Dgg7n70/edmdu3Zv3Oj2PtqqrufTeJtT/syO2vMPPMA2Pt19ZZN9Y+9ZHWWPuG2bn70888mNunaPGhv4u1L374R7F2VdXpi6wZa79wwOxYu32XLWPto17LrXPf85LcM1tHbZ17d9JrfeaPtRfqzO0913Fa7pnzPf+U+x6tqnr148z6/qqqGxbIfd7O2T13/2jbXXP7Qx02O3dsO2Pe3P3CncZdFmtv9Y/c84G33ZL7fVdV7bt3V6y95Yq5PZrW+1VuvdWo7rm1fev2yj1/tPPvc89FjP9n7vmjG87Jrdfe8Z6DYu2qqht/kttLpPOR3HfKovP+PNbec7fcsyjLHZO7Ltzhodzam4kv5Z43m/RMbm/LW+bJ7elZVTVli6mx9t4r595dveZBuXdN7Dgi81zn1LY59f+yo0XujTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRdIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDztKYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPz3tsnCV1e/lu5N7x49vFfTm98bfOs/Y+1pS7XE2ptc/WWsXVU15KtFYu2DD54da7+47zex9rkrdIu1F1lok1h7kyNvi7VPm3ZQrP2zP/8p1q6q2m567hhz8VVnxdpnfTkg1v7ryQvE2js9dmas3efq+WLt1aa9FWv3X+eZWHvUhY/F2lVVA/60Uqz9zJqbx9pbvnx2rP27Hbpi7f6rvRhrr7Ds8bH2sBu2iLXH3pn7nFdVzdh/VKzdcdPQWPsPox+PtT++ZUqsfeWFd8Tad5yf+6xvdmt7rP3a+9fG2huekT2+7HDvUrH2HYetF2uP7p47hzj6ktZY+2ejH461h2y8eKx95XO5ucaOCy6KtfdccnysXVU15KQdYu1r1pon1h7x7oaxds+FxsbaW/f5Way9/RuHxNq/WyL3OV91rk1j7aqq955fItZ+cetzYu3+t+fmtn/8q96x9pq7LBVrH9X6eaw9/ptpsfb8342JtQdPzv19V1XNv1DuHOapLwbF2qPaH4q1573/x7H2H+fP3cvoOfPUWHufOz+Mtd/dO3dfvqpq8jqfxtqL7jc91t50m9y6gI0Xmhprr7XWiFj7uSkLx9qH9rw51p7n9u9i7VGHPh9rV1VdcnPuXP2s+3L3USZv3BZrvzD7qVh70UmbxdoPvPhRrP2HpS+OtXuec02sXVV1eutSsfbWKzwYa79xZ+7c7ZKxz8XaZxyZW7u82h25v7OV9t431p64Zu57vHt7bm1fVdU1JwfXTff9W6w9fcgDsfaInZaPtX+71ru59hZXxto7Pnd+rP30zbk1blVVj+54eay95D49Y+1du3LXKNd8cXes/frig2Ptm4fl7hHvfUTu/OXgEcfE2ut/uX+sXVX1wclvx9qPDcjdK91m+dy9jDtf+SrW/sGpV8fa+z+We670m5655xvPOSZ3TVpV1fuw3P2EdXbJHVufWezIWPvFU59uenPqlPa68bxxTe8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//21/iv/8exGe7U0uv5/jeU/1dqY1PTm99pn9Yy1W3t1j7Vnds6OtauqZlauP/tf+7P4L9VzVmes3Wt27rPe2aNXrN2nd+7v7POvGrF295bmH8u/N3ty9vgyq2bE2t0nzYy1OxtzYu1JLbm/s/7VEWtPmpn7rPfolmv3qf6x9sz27PGlW/dvY+32jlm59qy+sXa31tyxrSN3aKs5HRNj7e9mdIu1e7bMH2s3GtNj7Y6aEGtXVfVsmTfW7urKnTtN78r9znt1GxBrT5qdu0Zpb58Wa3eb3R5rt/X8KtbuaOTmAaqqOubk5l9agnM/bY3vYu3J03K/866Otli70cidr87o+CzW7pqTm2/rWT1i7aqq1tYvc/GZc8fSvVr7xNodrbkLpM6OuWPtRmvuHGJWt9x527QZk2LtlpZYuqqqGi2579KOltw5REd77n5Co3LHl+nB64SJnV/E2u1fBf/QWnL/5l2d2QNMo0dunnPK7NzPPqt9UqzdKzfNWV09gtfDvXLrEdpmTIm15/TI/dw9OvvF2lVV7R3Be+PdcudOjc7cH3lbcG559qzcnHq3Ru6adHpgLeP3Oiv3c/fqk7surKrqm/tnr887c8f1lsr9u8+enVsT0NWRO7bNCa4rbJuT+6x1zE6un839gc9pz10bVVW1teT638zJ/c6nd+Xa4+fkzlenBL/LerbmzpWHLLtcrD1n9qRYe4mBP4i1q6rm7ZO7d/bJN7m55RfffivW7tWRm/Nqm5NbtzyxW/C42p5rL1y5+ZfO9tycV1XVgM7ceojuHbnz5Tndg+tYg/euuhq5n/ub4PFl3r65c6e2qVNj7e7JGxlV1TYrd/7S0j33XdrRCM799My0Z3V1Vf2bS/s2G/tUzdVo/v2vO4P3fxbcL7fm+SdP5M4/xrz6WqxdVfVg5/Kx9qJfPxJrf7LiXLH2BzetFWvvse6esfbaa7wZa9878Nex9oJ7bxprb/HBCbF2VdUbk5eOtaeu9n6sPfK1D2LtG+afHGtv/9m4WHvC4j+OtYdvtkKsvekPJsXaQ//6SqxdVfXqfLl/9z2fz82ZLbF5bs5qzJKjYu3Ttl431j7k0tx1/DoH59bOTHr2vFh72aNzP/ejZw6Jtauqlt42d3y5cdHnY+2jPrg11n78vZNi7XHr5a5RxgxZL9Ze9/TcdWG3LXLzo19OWynWrqo64oBlY+0zZz8Ua+9/wdhY+7m5c+cQP7h0q1i7185Xxtqfjtw11h4z6ptYu8fxi8XaVVX/2OnDWHvnFT6Jtd/ddWis/dJHL8Xagwc+FWv/dcTWsfaPXnow1t5y6dzavFt65tZDVlWtcf1NsfZ1P9w71v7RsOtj7Y635ou1Lxh5cqz9kyNujrXfn3Z+rH38CZfG2nd9mDt/qKr6aOCisfZCy+TuT99z3ZKxdt8vcsfVwV25ewlv9sztZzqwkfs7G9X/sVh77o1WjLWrqs5oyz039XB77j7tbb0Hxtrbjf9nrD15/WVi7T/OnZt/uW7+I2PtXa7IrXe6Y48tY+2qqjce2SzWnjBfbr/mfw7N7dW82dexdN3YklvnftiWG8fac+7bINZ+ccobsfbyN+XWTC+2XK5dVXVRj9yxbeW23H3aN7b7bazddvufY+0FZuX2r+351a9i7Xm/zD1Dc/AhufuFay+/W6xdVbXD34+ItT8+KbfuZ8kBufWc3yy4f6y9wjK5E7e7JubWck5ZZu5Ye5PGO7H2Nj1y90mrqoYvuEis/faF28Takw/fK9Y+ftbjsXbXvLlngD54IneNsvdO88Ta7z6cW+f12VULxdpVVR+dmJt/2XNI7md/YFLufHnszj+KdDvac2tYAQAAAAAAAAAAAAAAAAAA+J/v7+euUj379m5698qrTmx683t3Dzs41l5v9+ti7cZR2f0CHzliwVh7+LP3xto3LvSXWPue746PtcftOT7W3vanq8Xarw5vibU3fGhmrH3AO9vG2lVVL356dqx985m548t2C+XeBTzl641i7Qun5faYPv7I3HuPnj1vaqy97Da3xdpbv/pMrF1V9eaiuT2H5x/5aKz923tyn7dzf75drL3wngvE2u90XznWvnjdO2Ltda6YP9YeMSH37qGTnrgg1q6qGrrz5rH26CcfiLWPeqk91m4ckmvf9cKZsfYe2/xHrP3Tcbnvkz6zL4u113nwzli7qurihwfH2m8u+vNY+3cL7hFrd1vtj7H2uMWHxdq/Htgr1v74m9x7/Fb+Jnd9tOe9l8TaVVVrL3hgrL3q+d/G2jsddnusveIvct+lH06dFWsf0Jq7Rhl5W25OfZML14q1x2yTe+90VVXrfLk5kItvXirWHrrfebH2lQ/mzhlv67dxrH3YiJ1j7dtWuDbWfvKM3Ptwbx52a6xdVTV2reavwfjeacs+FGuPPDf3HuKJC+TWI+z+xkWx9vKv94m1T/3Z4bH2vkfk1gRM3HbZWLuq6oY/dI+11/g6d3305eMjY+2xt54fax+zzlmxdrfzc+cQmz6wfay95ug1Y+3RJ+buJVRVfXdC7h7OfaNz7xhbquUfsfZ9m+TOGd9YLXf+8pfNdom1N1sy9y69c1fOrTkac1zunt1F7+fWt1VV3TZ+RqzdcUHu2Hb2uNyahHFr3xhrb3jOSrH2wycuHmtf/bvcHOtas+aOtbc4ckysXVX1hz1y16UzBm0Za+/4du4+7fhF74+1F1so93zAF2vk3gt7wN9y74Xd7KmFY+0hn20Wa1dVXX/ffLH2mpv2i7Xf+q4z1r7u29x6hC/2mhJr/6Lva7F2z2P2jbW/+/bjWPvVZZaMtauq/nzI0bH2Ykc/EWtvOOjtWHvg4NMj3dmzplRdeuW/9f+44Z2Xq+dczT8X+ODr3HnXssflrimHvNw31t50+0di7aqqYSP+GWvvN2u5WPu71uNi7TmH5+7x/uneFWPtc87+Qaz917FXx9qj3sytjRvwau5Ztaqqz16fGGv/6bHrY+15Z0yPtW8475pYe9yqub089vtbbp3WRTsvEmsfO3/uO3z+xS+Ptauqfv9Qbt7q4YtzzwhutveGsXbvFXL3eB96Ibd/y93dF421hy5wRqw95Pbc3i0jljwo1m6ddGqsXVX1+mOvxtpPX31SrH36grnvlJEH7RVr97v1/Vj7/PVz+xQN3Ds3R/mrPqfF2lf+Pndfu6pqyetye6js0veQWPugnd6MtX/6ce7ZyJcfuSrWnrHLoFj7+hfnirU/fCY353X36rk1qFVVz76fe9Z/8tp7xtr7/vjrWPuU4bvF2lf/MXdMH9SRa3eNzD2X2ePkV2LtY57NrV2pqprn5dy6536H3xBr3/9Z7vjy6Cq5PVTO/8vcsfYGl+SuUa5YNncOMX5Mbj/2jY/9Mtauqvr0kdz9hL0m5Pb///Hkp2PtTafnnqM57r3c84kf958ca/d6KbcP2iKjnoq179rkR7F2VdWLI3Pr4+46KHdf/qXzjoi1r9ont9/gmLNbY+0Ff/hCrP3ZCT+MtXc5J7fOa/Q7d8faVVU9t8ntP7fjihvE2sNuzbU7T7kv1v7mlUGx9gZ77BRr39CxRax9/uTcsyQj5t0/1h78w26xdlXVhZsuH2tPOGnrWPvT13PPbJ0x80+x9heHZp7nqKp6Z/qEWHvRk38Zaz8/NLf2Zq2nsudOm47MrYf4j2tye5HNe0/uXuklF64aa2+0R26/5Pvezl2jbDZ/bv/ao+ZfJ9a+7tLs+x56vHxDrP3NTrk1+k8+mtvjYNUfnhJrP7pi7nv8xtG5/Q12eHCrWPujK3LPwVz1bG6Os6pqxytz+7ec9cjQWHv0j3J/Z4sP/U2k2zVtZlU9+X/973JHXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq6RHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8L/buMtqu8t7/9m+vvaMkIRAINJRS3CG4OwWCu7VYcbdCixaKS7GWQnEtlBaHwoHiTnEIgaARKBBICPGt/zcPYzxvzvg/Heec9e15xnW9ZvCZe2XJnPd9z3sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3Tlj4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4N/bx+cuX/1n69v07jMfbdn05vcaE/aKtUcteGas/eQGO8faVVX9N3801v70xQ9j7b4v/ijWvn2P42Ltj158J9beedtdYu3VLxgWa7+88r2xdlXVkt/9Otb+fJUdYu3Tx64fa/9t0h2x9rVnbBxr77fK47H2LhceGGtfMOFXsfZnxzwca1dVHX1H7jdlnznnj7Xn+u32sfZ5h3bH2qddvkGsfeMHp8Tan//mtFh73Y+fjbWrqnZ+JfdvfvLxj8Xacz2/cqx9wA4nxdqL17mx9nsbvRprLzLo6Fi7V1dHrP2Xhw6JtauqFnj5glj70vaRsXbnKrnvtvOv+iLW3uvS/WPtj8/5S6w9/YrZY+05ds59t7W2PRdrV1X96YTcb+mrSz0Sa5864upY+8m9n4q173xopVj70D5fxdovfZibyxhx3hOxdlXVmsvmfsdvPvPIWPsnZ4+Itd9farNY+73Vlo61n3srN757c3fu3OmKq/4Yaw9dKnf+UlU17rzcNfGBo06NtZ89Ylqs/fle68Tan82YK9aeNevQWPvhB8+Ltbfc+OBYu6pq2lfPx9rrn7JqrH3VMe/H2kdtkZufXvum3LnThL+vFmuvcv5Vsfbu7y4Ya/9keG69U1XVfffk/vZzHmjE2tfumxv3uqn38bH227v0i7VveTM3BjJzzT/E2n3+lhvzqqpa/aqXY+3DL8+tgVlp+Zdi7fsevzzWvvaYW2Lt3z67Y6w9bJHc2M9tj+V+T2754uRYu6rq6PHzxdoP7Ngeax9/4UOx9lXn9Ym1j2jJranc7eq3Yu27hswRa8//21mxdlXVAqPWjLUXe+C6WPvob3LjnMscnLtOmOfjuWPtrydtHmvPsdIlsfbEys3hTH9q91i7qurbh8bH2ocst2ms/as99o21t552Rqw9W78bY+3RP54caz/Sk1t7c+al2Xs731+qLdY+8pnm37/8vdvuWjjW/nbH5n+vTunoaXoTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+N/hX3rqffuM7mptdP9PHct/qqsn99D2Ru9esfaMltZYu9rac+2qalQj1m6vz2PtjmlDcu3enbF2747psfZ3U/rF2rO6p8baLb16x9qzOmbF2lVVjbbcd+usvrl/80Z3n1i7d0/wM97I/Xu3dOf+7o7WgbH2tFmTYu1G79x3elVVR1fu/Km9kfuMN9qmxdrfdrfE2t1dHbH2rODfPaD37LH2jJ6ZsXZHZ+7fu7pz18NVVV0d38TaA9pyv2fVZ0auHRwLaO/M/d29+uTGAWZMnxxrt8/Mfad3tTR/jO//raM1OPbUlXvd21py7Z5euevxRmvfWLu70RVr9+0ZEGvP7JUb1+5sDf6OVtWsjtzrXj2537Pu7tz3andH7rqwsyV3rt7SGRz7afmXpvf+W/X05H7L2ttz49pVVa0tU2LtWZ257/WZwfOXlkbuNW8PjvW1tgTHAlpy8xg9Lbnx3RmtuXPGqqr+we/1lpbcuVvffrmxn44Kzld25MY5G8nfk8p9zvr05D5jHcFx7aqqrtbc/FG15X7PZs3KtVtb+8fajZ7c52xG5X7HW9tz54x9guMv6bU3PZ2564RevXPzKNOD60Dae3J/d2dbbnz3u2m539LW1tx6ypnBf+8xs76LtSfmTtuqqurr4FzpzO7cvF1rW+6csbMrN6beb2BurHFwrzli7UkzcmM/qy2zaqzd1iv3d1dVzZqY+z1r68p9t2283BKx9jI//lGs/Y/R/4y1Z36Xaw+cc/5Y+7XXX4u1v+vIXRtVVQ1qz81lzNsn91vaMTN3jdK7NTc/3dqWO2GevSW3DmPWt8G1EP1yY30z2rNzV/365T7jPV3BNbRdude9O3Rd2N3zX++e2tNevQPj00N+NKjpze/NeGK2WPv9yblzvg23/lmsXVW11ftnx9ovLf1trP1B+4Wx9hqjT4u1359jl1h7h6G5c4AP7j8x1p6wV+667rGtF4q1q6rmuvfrWHva0NwY6Sobbh5rP9GV+5yt9vZSsfYnP3ki1l6ib27/lN3GvhFr/+71bWPtqqoF+ufmYMZukxsjPejVH8TaJw6ZJ9a+9faXYu1Dhueuj56YMCzWXuvYbWPtmXcMjbX7fX1crF1V9XzLZbH2jBH7xdoDzj0j1n7oo7Vi7UtnvzjWPnbZV2LtOY7bNNZeYssNYu3n73sk1q6qeu+SO2Lt8+rHsfbZh30Way87b+737LBrcnNPJ56cW3e8X8/ysfbkY3PX4o89+0KsXVW10KzcPOu9q+X2FG35ar5Ye5m6J9ae1pZbp3Xg1QfE2qdu/5dYu/Pu3Gd83wnZe7bumvxsrP2jqw+Ktd//JjeuPejUN2Pt1lXWibUHjVk/1t5kreVi7a3OuzHW3nmPnWPtqqpP338r1h68bW6995Zn/CnW7n/PArH2uI1ze/e2DF8m1v5g2Dux9vC1c2Os612auzexqqr/7AvG2qP6joi1z+r1cqx9wSK535RVvnk81p616dKx9nMfjIy1Z5+2fay96Jj1Yu2qqmGD74+111xoYqx90eenxtpbNh6ItX86/4Ox9qg3ctcoE5e8PtbuPyJ3f2DbfV/E2q8PzX23VFX9/tldY+116opY+4VNcr+lh0zOna8+Pyj3Xu++ZaVYe+NDcuu8ln0n9z4fveTNsXZV1Tq75O6N3OalVWLtXafm7jm/qHL3qs3s/W2svX7HsrH29mv8I9Z+pbFirD2+z16xdlXVeyNzY8uvbZPbf26+FXJrnib9Ife9+nXf4B6PBwX3GPh8m1h7/Oa5Pf+WveLPsXZV1dnvjou11+jcJ9be78sVYu3xn90W6XZ2Z/c3AAAAAAAAAAAAAAAAAAAA4H+3F+9cvVr7NP+ZNKe9M6Hpze8deuppsfab+z0aay91Ue55clVVj3z3Zax95sXHxNpHfdgSaw94a7NY++ntH4q115vnV7H2N8vnnof70LRXY+01r83tW1dVNWO23HPOD9gut5f77R/l9lO/8O23Y+0/PnV3rP3g13+NtWd9njt3mv+t92PtxRbNPeu7qur6L3LPfDp7y7lj7QMmvhFrP33F5rH2FaftGGv3ni+3p/njm+b2bzv+ihNj7c02yu13fMh8t8baVVXXn5U7fxnx6hyx9vDjd4i1fzAmd2124fjc81EvXjy3l/tXL+aegTzHulvF2ot/81GsXVW142q5MZCJWxwaa7/y4e2x9nNP3hBr/+TWzD6sVVWHnJJ79tDIlQ+PtVc5LvcMwUc/OCfWrqp6+IoLYu0/3Z772+eb+FWsvcGF/WPtrQ7M/d3zb/Yfsfb+/a+Jtbe5YPFY+7PDZou1q6r6HLFbLr7GN7H0LV/lxrw++Gx8rL36grnz1SdmLBprb3lebhxg8965sb5Xu3LPyqyqaj/1kFj72ptHx9qHjFot1u7qM3usvdrrB8baH5w4Z6x936h5Y+25Lz871u63//OxdlXVM6Nyc+MfTDsv1r7kstw4xFnr564T9vvJ8Fj7iud/Fmvff11ujdm1YzeJtXc8ZtVYu6rqvDVzY08Lf3tJrL3fWi/H2g9cf3KsPer+3HqEU2fkrkkfeiT3/MLO/daMted6f/lYe9d5fx5rV1Ud9Yfcs+1/cNJGsfaeA3O/KY8et2+s3b3QYbH2bY+0xdqH35o7bxt+Vmesffqzi8XaVVV/2P+gWPuUTYfE2vvMkVv/8vqz38XaY754L9b+aN9dYu3dHr001r5lp8mxdr/+n8baVVX3731DrP3z9XPPf15jk9xnfMfx98ba526dmyud57kvYu2XH89di/9u6NKx9gd75L7bqqqu+XhQrH3zkNwc8Q3X5cZ3z9j7hUh3Ss/M+q+uVP95/wNq4Gx9/1uO518xc+GhTW9+75Zl9oq1nz//jFh70KSxsXZV1cyRx8fa7z6Se91fmCO3XunE26fF2vvvNzXWXuTOR2LtJU7JrV9ZcvMTYu1D+9wRa1dV7TI6N3az51bbxNpzDM2tsf9mzGux9tbb5uZ49999rlj708Fvxtrf/S5zrltVddfq98XaVVWfXbZWrH3J33L3q939wchY+4HVlou1H1v197H2da/n1mLedtRpsfZjI4fF2oues2ysPeSE3PqRqqpllsu97m8PODfWHrz+u7F21y3rxtrz/XCDWPuVybn7vud5PLdW6r65D461194ze8/WTqv9Ida+fvncvXK7db8ea4/daXCsvePoY2Pta/rmxp0u+PSKWLv3EkfF2r/6Jteuqrp1+16x9pqf5Pb8O7VWj7U/OTY3rz777n+Ktb99pV+sfdh+uffaTcHxtokH5PY3qKoa8khuzfWoob+ItY/puSjWvn/YpFj7rp7ceNtbY3J7DEzaNbdnzqixT8TaMw7N3Y9aVXVg/yNi7b88lNtb86teuTVqP+yX+07/5g+5PeC23Tu3n8bRg6bH2rfNeiPWPrknd99SVdVhz+fWxx0/Kffd1rVhbj3EeYd1xdr/GDwz1r7whNw9PG8t8FKs3TUtt7/BzXteG2tXVZ250Emx9gdDcmu93j1u21j7hOMXjrUPuSt3T+gnR1wSa8+5wIWx9oM9B8Tahx28QKz90u9yz+mqqlp4sdx1woELjYu1nxqRe0bZ0svk7o3cvVfuXP2H8+X+7ue23SnWfmiH9WPt17bI7mkxbZvcvQk/3yC3HmKDC1tj7We+y60l/fTjo2Lt44/bMNZ+snfuHuAn38i1R++We+5AVVXfcbl77TbdL3ev3SYtuftRB66Tux6/7cbc2uEVt8qtY31lxdwas3N+m1tjtuaDufnhqqqFH9801v585dzzHq7tyc2jjF89sy/WlJ7vaqE68//63+V2BQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB52tIHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx7m33Z+2q2Qa1N7066fFTTm99bYPlNYu0He/rH2u/95oRYu6rqjiVPj7VnP+K5WHunP20Zaz9/xyOx9qUj/hhrD3vwwli74+S7Y+2Dx9wTa1dVtW1+c6y963ItsfY5W78Saz83fXqsveKtJ8ba203dK9bue/XqsfabF14Ray/10j9i7aqq9wffGmvfOPdpsfa7o66OtXd5bcdYe8Gnl461/75r86+LvjftsU1j7TX+em2sXVX1p8mnxNor7fp6rL1s33Nj7RM7fhdrT9k1934b/ujssXaf4O/JMn/Ona/OeHLxWLuq6oJz14u1v71w81h7VOvhsfZcf899rx6zw2ax9h5b7Rlr7z/iz7H2R+Ny36v3XL1ArF1VNXTsmrH2tdvfEmufscfGsfado8fH2rv9/uVYe49b2mPtvgd8GWtffs/9sXZVVftFY2PtZ597Mda+fePBsfbxW6waaz/27KRYe+Yyy8Ta3cO+irUf2mB0rN1nm7/G2lVVP1n5nli77w9zczgPnLZHrH3SkdvG2geOGBFrH/n8crH2w5cuEms//emZsXZV1bZf59qbzJgn1u5c+5NY+3d/zL3ffjH5tFj7gUG59VZrjz441p6y8aux9hEfrB1rV1V9PltbrH3Uwrn32zPrbRtr//Lyy2PtB7bItbvGHx1rr3PTmFh70y1vjLWrqk4YsXusffMvt4+119hjcqy92bMLx9qLHJMbAznviaNi7UMeyJ2rH3l77jM236q5dSBVVf88c/5Y+71bD4q1/zJm2Vh7wl69Yu3H3nww1r59wGKx9lz7rRZr//G23JxdVdVDW70Wa897WW4c4u6Fcn/3jgvOiLW/GtMRa280Mvd3j138plj79BVz6yE2m7VRrF1VdVXHXbH2O9usFGsvv1fut3SZPXP3Zfz5oCtj7Z0+2znWPn6t3HzlDe9kP+OXXnN9rP3M33Nz81s/OzLWnvecpZre7JjaXfW33ForAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4N9X27/yH/dq61O9Gr3+p47lP9Xar0/Tm9+b0RFLV3V1xdI9s3rH2lVVrb2mxtot7YNj7c6WWbF2v57uWPu7yn3GZ03ribU7Wpr/ffq9rq7JsXb79H/pp+e/Xa9BrbF2e8fMWLuqJVZu6xwQa0/pMy7WHty+QKw9syX3GZ/aMSPW7lW537Kqqt49ud+Unu7cv/nAPkNi7Vmd02Pt3m2535OeruD1Udt3sXZ3V+4z1q91tli7ozN5UVrV0Sf3bz6r11yxdq/u3Os+tb0Ra8/qzJ2vzmrkXvO23KlydbUMjLUHtEyLtasq+sJPT55DTOsXa7cMyJ1DTJ2VO1efY0BuvG3S1Nx3elufb2Ltlml9Y+2qqp5+ud+zrvbcuHbv3v1z7c7ceF9na2es3R78u7uC1yjV/UUs3WjMEWtXVc1oy33OenXmrs16OnPX49U/95vSVrk5nEZL7typV7/ZY+3O7tx3+syu9li7qqqlPTeP0to7915vn5FbD9EVnE4Y0C/33fZt79z1cEtymrRtaCzd3T0l1q6qmjItN3/UNziP0js4BtIzM/cF096TG4fo6Q6er7bl/u6Zwfnhrgqep1dVS6/cb0ojOFc6rTs3FjC9Jzfu9E1wvdNnHblz9U87cmPLHcG5q359c+NOcwzMfb6rqhYYmJufXnyRH8ba770/Ptb+ZHxubd+Qvrk5u6rcd9viP5gz1u5pyf2OTpuVnbv69Ovc5+yz8bnrwn02WyXW/nbi17n2lNw5xALz5u4BGvNZ7n2+7sILxdrftQRP3KqqfWJuzfbYb3NrEnp6cmue5uzKnS/3n5mbR5kcHFueMzfMWL3bc+cQra25uaOqqglTg/cm9M6NsTY6c//mvWPv9f/6673zX6tmC7xl3zxh++ZH/x/Dvvs01t560UNi7Rf3nRRrV1WNO2unWPvjkRvG2iOn5uY6d75geKzd+nLuJOCdbXPXGEMPz80vj+s7Jtbe7ZcTYu2qqosOWyHWXuAng2Ptd3+8Rqy94q6/iLUvqdNj7XVPzI2X9Zl+Sax961XHx9rv75YbJ6yqWvIHw2Ltz5bcLNa+4RffxtrvbfZsrL3Q8Nx8X8v8E2PtBXd+Nda+dWzu3oKVxuXW3u4w7dhYu6rqqRG5uYg3Jj8fa18/Kvd+W/KIBWPtZ7p2iLWHzbwk1p5rQm49wfQ5Poy1H1/jxVi7qmrhWVvE2h+OfDfW7uy7Y6z9Ya/RsfatT+Tmnl66NTcHs+nquWuUfr3PjLUHLf3rWLuqavslfx9r7/LlyrH2uLXeirXbj94g1r5/9bNi7bVHDI61T349Nw4wccy8sfbd2zwYa1dVzdV+e6y9w5G535R/PJybM7zxydVj7dbRuXUUfW5fM9Ye99snY+2L1tgu1h5w8wexdlXVc6vlxtU/67gy1p5w/6Gx9kpffhRrLz7lllj780Vz1+J77rFJrP32NhfH2ldvcECsXVW14SVfxtrX3JO7P3H63h/H2sNH7xFrb/fQZbH2a3/aJ9ZubJPbw6RtzRdi7Sk9S8TaVVVjvhwcay/b57xY+5TRufPGRe/K7Q/15xO2jLUHN3L3sQxeOLeW895Htoq1F1/nx7H22kvvHGtXVf3qxdzY01IPbRNrL7hqbo1bz0afxNqjT8rt5bH5VuvE2p3rXhhrz7fya7H2VkN2j7Wrqu67Kfe9PnL1pWLt3Wfkxn7uWO7OWLv9/Nw16ebz7BVrt6+cmydd9c73Y+1FFs79jlZVLdcndy/MN/PcFWtPXeDgWHuHB3Kv+cyHbou1l988t59G14/Xj7Xv/93isfasxZaLtauqjj46t07+4rVyz/F5+vpYuva66NtId8aU7nplxUgaAAAAAAAAAAAAAAAAAACA/x8Y+s3E6tUrsDfFP3LPTBi+1Pmx9s5L5Z4Le+zPs3stv/7Mz2Ptb4fOFmsfNXiZWPui3rn3+uq/6oy1T/lgpVh74Z2+iLXfOOWmWPu623P7DVdV/erg12Pt677M7R932Lq5Z8ptePFqsfbv//mXWHvdawbH2qPPvjrWvm+7O2LtNcasH2tXVU0cuH+sfXhb7txph/ZTYu0ztz851t7r2O9i7bMv2zvW/uURfWLtT8/O7WF/7+q5523/cIltY+2qquPuyu37O2Stllj7d0Nz+6kvcOzLsfbDy+b2HG7d99ZY+7Adj4q1D3zovlh7k/GrxtpVVYf33TTWvu/d3DNKL34697pvtszPYu1FHzw81v5gxdwzr5ddriPWbl1n2Vh79vsuibWrqk787u+x9qKn5p51NXHCqFh77q77Y+1+l+Suzdb97dax9qCO3L/3L4buFGtP2i73XNiqqnuezD2Due/+uXGnaX/PzSe89bfc+21G5wWx9phTv4215512Tay93J65506fc+cCsXZV1T1v/zHW3nbX3NjPyTvkxvu6Flgs1h65z6ux9pvzvhNr/+np3Lz83j3jYu0TBq8Va1dV3b/6UbH2Un/MXSd8/MBJsfZJc+Se3XjnlvvF2lNueSPW/s3pufPVB/+ySKz9w91za62qqm4el3u22l9uzD1L74oPc/PTyzVeibW/mfKDWPu6/ZaOtZ/fMDf+stCA3N+99TW5eYwLV809M7Kq6sFrT4i1N5ztJ7H2zLMuibX33zz33MhffnhQrD3XGdNi7S13yz1jfez5E2Pt0XOvHmtXVf15jdzrftyrufWcu5+yYaw9dLXjY+1Frt4s1r5+09w16cnd18Xazz+buzfhywV+FGtXVd179LGx9h4X/zjW/qR/btzpvPVGxNpzr5RbazVhidwat2M2zD3XfvkT1461Lzj9q1i7qurlQ3PXhqOufCHWPmjXx2LtR2Zk1qDMmNpddfF/7f+xzis7Vkv/5j+f/pqNcvOcT99yd6z91dW/jrXXG5FbR1FVtfE8uXsj1+zM3Y960pe5ue3X55w/1p56be636Oql22Lth+bLzUM8uN0KsfbFC+auKauqVrp8aqz94Je58ZMxJ+S+189Y+LJY+57f5saGt5/yXKy9ywu5a6sfdOXGhjd8NHfvc1XVYh9dFWvPO9cjsfY7106Otd//ee775aa7cvej9rs4d6488NNrY+0NZts71h6+evCeir8dFWtXVa34TG79yqlv3Rtrv3dA7rd0vTsfj7W/3ubpWPvhT3K/ZTvvvXCsffyxzR9n+945V+bGAaqqRrbPE2tv8s77sfZiI+eOtZdZInfuNPCdNWLtM1/YNtbe9p3c+tc/75W7333gUrl7h6qqPp2Rm/N7e/71Y+3P9sqtJ7h1v/+ItXe95u1Y++rRuf00ZvXJXRe+Nf7yWHvKWrk9Jaqq1tghd0/qoHVPjbUP3iL3m3LCCl2x9hNnPhNrP3/X0Fh7/PQVY+17b8vt63DLHJfG2lVVJ51ydqx99Va5ffCf2uCYWLtrw29j7QdHLh9r/61/bvzl+HPfjbWP/iS4z+Ji2fum7u31bax91ha5eZQjLlk/1j5lue1j7c7K7R1zygm5+763mDf33XbzIoNj7UdPfzHWrqrqWWl0rH32/Lkx/QHb5dZDnN03N7577em5a7PHeuWuzTb7zV9j7bfvvD7WHjF5n1h76EUnxtpVVRM2yr3X//Zl/1j7/KP2jrWP6fdxrH3i5rn9eg59I3c/av0x92y03XfJPVNlyMSHYu2qqunLPBlrj11hy1j7R6uuG2tvd2Pu++XzFS6KtY96LjdP22fF3H3fc330Xqx96Jq5Zx5UVbWOyu3leu0iubGA1f+aeybdDr/LrUfov8uhsfbfl8iNc27649xzjLc+OTd/0/mn3P5MVVVLzb1xrP2Twbl1jf94Kree88E9Mnv+zZjVU/X/YXvsxv/8oQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8O+ikT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACapy19AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC/t/P2GlZtbb2a3h130VVNb37voQ3OirV3fGO/WPvq9y+Ntauq5jv14Vj7gWuujrVHPnVqrL3+xNNi7WNP/2msffTGe8TaY4c8GWtv+OSoWLuq6nfnPRNrD579qVh7nyMezbV7Po+19954tVi77/qPxdqT7vs41t7usvdi7advnC3Wrqqae6ljYu1FD+4ba6/6wNmx9h9+81asvc5sL8ba9x60ZKx9yVO53/HLrh8Ya1dVLbL60bH25lN+E2uf/eYysfYbpzwYa39+286x9p6X/zzWfnmR5WLtA+7tirUP+fKeWLuqqvWPE2LtP9yYO2ddbvPzY+3fzz821u56Zdtcu+/EWHvhNf8Waw+76tZYe/7L54m1q6r+vtt/xNqXfbVBrL3FlL1i7VGNRqw9dsk3Y+27Llg51t5/jpdi7daWrWPtqqp/nDY01r5upwtj7S33y33O9rvtr7H2YYssH2u/uOyAWHu9Ow6NtZ9ZPPde+/bVc2LtqqrfnJWbK73r5j/E2kt/OibWXu/Ki2Pte7f+Zaw94ZIfxtqbLXdArH3UlffF2lVV45+6N9aeNuTXsfZJv54Va5/9k/Gx9tVH5cbcfrbdD2LtGb3eiLUf3WNErH3vuR/G2lVVu47IzZ0d/mHu+uyrFxeMtU8aMW+sfeU2m8baV5x5bKz96U9z85XD//larF1VteLADWPt3jvn1h1tNSS3FqPnwC1i7Z23eiLWPuqTRWPtL27OjYEcNC73GburLfe9WlV17Cm59s8XGR5rd/W+IdYeeN+Vsfa8I3aItX/aqz3WPmGRt2PtKRfl5uWrqj545JpY+6RlL4u1T91zWKw95b3fxtobHzxfrH3J9ZfH2iMWi6Xrpjty87Rbz+iOtauq+h2fG/caseYdsfZOq+faJxy6dqy9591vxNo/2ic3pv7VHVfE2t8OejzWrqq64be7x9pLL5O7n3fepXPjEE///simN7vbZ1bVSU3vAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/+2v6V/3h6z6zq7un6nzqW/1Tn9BlNb36vV9dcsXajtXeu3eiMtauqunvmjrUHtrbH2l+1fBFrz2iNpautJfd+a6/uWLuzpyXWbuvMfca6+06PtauqJk3L/ab0aw2+7h1TYu3vek2KtVtnNmLtb3pNiLXbOpp/vva9AW25c6f2zu9i7aqqGS2591ujZWas/U177v3W3ZJrT6/caz4t+J0+28y+sXZr2790+frfampb7jVvaQRP1KuqqyN3zjqxY1as3dPxVazd0pg91u5u/TzWHlhDYu2pHQNi7erOfb909O6JtauqOqflvl9mdOXGIQb2Cb7uM6bG0o22frF2R0dujLV379xv2YxZuc9Yr0bu2qiqqrszd67et21wrN2RG+asRiM5xjo51m5p7RVrBy+Pqr09F28Jzt9UZceeZnbnfs969c+NqffMyl0Tz+rqiLWrLfc7Pnn6tFh7jl65a7MBlXvNq6q6enLzCRNn5a6P+rfmxgJag9fEE2bkzld79879jk+ZkTtvazT+GWt3Z79eamj/2WLtRvC7dXJHcPwlN3VVPb1z54wzu3KveaNy4y9d3bl/8Jbg/HBV1ayW3PttYnfub/9ne649MfgFM6Yrt9artX/u/GXh2YfF2kPm7h9rt07LXRfOPl9ubV1V1bLD14q1r7nuhlh7wIDcOeMP5/9hrD3vwNzfPbUnN87YPj03Z/f8Ew/H2kstMU+sXVU1Yps9Y+1pE8bG2mO/Gh9rT5+aO39ZYbU5Yu0x78bStejCfWLt9qm568KfrDQ81q6qGvdB7jM+7snceN/M1ty4dmd7cP1uS27ebEBXrj2jMzcvPyh3aVZdHbnPWFXVoPbg2uW+g2PpaW3BNQmNzBjrf8d6owXvfK8G9Gn+nMDQR+5uevN7Z29+Qazd/tmusfZL1+baVVXdU3NzT/u3fRNr/35Q7r7MSXcsGWs/sdPrsfZiI3PfL+v+6NxYe5Uv7ou1H182d21TVXXMV6fG2u9880KsPXa+V2PtVdo2jLW/nPpGrP3xpDlj7RmX5uZ/5pr6baw9Z7/nYu2qqt+umFtjv83Io2LtiZffEGu/OeSSWLura6NYu3tIbox0wH9sEmsv2D93n9y8K4+LtR84Mjf/UlX13sw9Yu1bb3461p6y0mKx9kKN3FqK997J3XO+fb0Ua7f0rBxrf3Vv7trsl4vk1lFUVb0zKndPxb3B9f3LDxkVa/dZK7d+ZcwNE2PtJe7P/d0/npRbv/Lwc7m1cb1OWjjWrqp64Pyfx9qDv5gv1m75RSxdQ277j1j7mxU+ibVva6wWa3+2Um6d+bLfXRRrf9X6j1i7qmqdtXeKtZ+8Mjd/NKErd65+UL/3Yu337sldmz115RWx9nqjtoq13zs5N/4y6Lrcb1lV1WqN3NxZ7xe2iLVXWP2jWPv5zoGx9v2Tc+shv3w0d+/1V78cFGuPnLV7rP3dx7m9W6qqhpyWW+996pTLY+2zt/5VrD1zRO4zfuio3Gs+fN7FY+0lXsvt4zp5sX1i7SHr/T3Wrqp6qpHbp7rPW/fE2iMXy629+Xrl3Gt+zrDcWOOJk3J/9+yN3P1iJ0/LjbGeOnjeWPuY9jNi7aqqnfvfEmt/dHlunLPXBrn7plbdOTdnt0fHErH2OrOvE2t/uOThsfYtV+W+V6cscF6sXVW1zMa3x9rzz5W71/+j11aItTf5zYex9lKjcmutDpycm5ffYI2hsfaaS+XGlpfYLjeHUlW19Ru5tT8XLJdbX1cfnB1L/3Ncbj3CXCu9H2s/N39ufd2cj3wZa//Hq7nxtpPWya0rrKo68qbtY+0hf7g11h747mux9osdmXHO9uqqqtz8EQAAAAAAAAAAAAAAAAAAAP+7PfXWM9XS2vx9A39wbm7vuCeOyu15s9EmuQeTXPjuAbF2VdUO1+eeFfHUCblnpD7eyO1VeOOCq8baS3w2PNa+e8wPYu1v/pHbS+zj9XN7Ld93/mGxdlXVH9/N7eV+7Ym5PbU2Pjb3DKAx538ba8++4Rqx9nWX5Z4F3GfJQ2PtVy8ZHGsv/9SKsXZV1VvrPRBrz399bv/+FW89ONZ+/ouRsfYzFy8ba0/a6O5Y+9MncvvurnDX+bH2vmfm9nIfNi73GauqWueF02LtEw/Jfc7GDcvtk1iTn8y1t2iJpTtPyI2/3PLhLrH2j5+5P9Zuv+rIWLuqqndrbi/5H690Wqy91xfrxdpfjcmdM35zcW7M65Zdc89tPOSM5WPtn45ZNNbuaZkca1dVnTkw97zMlrdy5y/PfT041v7Fz3aItZ9cPvecrZvuzM3h/Oj83HMDhry0UKz9zzUOibWrqk557NlY++vtTo+1d9+nNda+5q3tYu1NFjkp1n64382xdvtzO8bajyz311j7mblWibWrqp6Yvl+sPXS/3Fzpa6tdGGt/fnDumvivmy0Ya0/9dFqs/ZvN74q1b3839xk7brPs+Mt6b+SuUa54PDfm9vovbou1f3HH6Fh7y03ejbUP3fycWHvY3R2x9hULrB5rr33OO7F2VdVqp4+JtZdY69NYu+X6uWLttw7rF2uffmnu/bbQX3rH2q/Om3sW8MyHX4+1Hxq/XKw94dYLYu2qqvfPPzfWHrpYbt3yx9udHGu/+UbuuZELNgbH2sMezj13eo0Lcut+Jrz+Qax93aK58/SqqnXOys0njN5geKz9wzly36sjd90o1m4bv1qs/bst2mLt645cPNZeaa/+sfa9z46ItauqtprcHWt/t8SoWHubVXNr9Ndaofn3VH6v+8TcWohHVv5ZrN26zm9i7bXPz913VUtflmtX1Zlb5F7339/2SKx9zjlvx9pH/DpzztozY2pV/dfWci5y7f3V1qv534+HLZWbA7l54B9i7bEjcuPSN592TKxdVXXpzl/E2ke3fRZrv/bpBrH22wd9FWtfsc98sfZ9Jz0Wa1+27/BYe9QuB8XaD728TqxdVbXdQrl7kBcasFWsPWX28bH24ANz90b2v+LGWHvbGUvH2ktunPuMX926Z6x9+4tzxNpVVVNXye2Zs8cGf4+1zwmOYey2x72x9vltuX1ENt0mt5Zh82m5ea97z82thxz9Qe78oXXu3PxLVdW+D+T2Mel5M3feOOjAsbH2S5/nPmdHHZe7NvtklZmx9t/fza3Tuujha2LtG/bNtauqXvhpbr/DY9aZHms/8KOpsfZ+Z84fa4+9d5FYe+EhuXHGdV/5Y6y9z7O579W/7vlGrF1VdeU5ubV5s+7NrYHdtHaLtde6e0Ks3ff5J2Ptiwfmxl/G9nsh1r7souNi7WUO/1OsXVV18lm5PbKf2/CIWPtXD3bG2guvtGms/cpBs8Xaiw/PjfVdNCS3j8ijt+bmxo//fOdYu6rq6wd+FWvv+kluzVKva3Of8bPPfTHW3mrT4D6Lw7+MtRfcIndP6LLb5da/LHlpbj/0qqrjp+TOWW+74vpY+6j7P421Lx72+1j7wp1ye6iMH/dGrH3cBbm9PJaYN3fOeO0ZuT0GqqpmPJTbk6vnB4Ni7VNHXhJr/+zuD2Pt3Z/IzRce3Z77u8/ZaVKsveTVuXVeBz67ZKx9/fW5Pfeqqv75em4/1d2PyD0z6pOzcvcnzrfVy7H2pa8cGGvvNeyGWHuP5c+Mtb88LDeH8sFNG8baVVVnfpK7H+WY38wZa088PHc9vvdjufUIZz+Y27fmiwM/jbXPOPLKWPvsS3Nrd288LLdPdFXV5ddsH2t//FHuOuGFm3P7oM28ObenxQU/z83Lb7TlpbH21PlPibU7Lr0o1v7rHLnx/Kqqfd/PzduN7Nkr1j7zxF/H2u8dndkPrKNnZlWd8X/97xr/84cCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC/i0b6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/sHffcXqV9Z//P3Nn0huEGjqB0HsNvYcAIkjvKl1A5CtdehNBpEkREAXpRTrSBEITDE06hBZaCKGlJzOTmdk/dtn/9rE/f7r3293H8/k3D15XZu459znXdZ1zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE9regAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAf7YjZn1V/Vp7NL175yIrNr35ne3+a3qsPXaxu2PtFza/Jtauqrp1jUNj7Wc2uT3WPnmtzWLtF3ffO9Z+YKf+sfaY760Va6+wzo2x9oIj5oi1q6o2fvvYWHuNIR/F2qdvdUms/frjP4219/7l0bH2fjuuE2u37b1mrD3qrI1i7V3HDIi1q6r2O+nEWPvTA74Xa2969Iex9h7jR8faRy56f6y9xq9fjLX3e3JCrH36FT+Ptauqhu22Sqy971qHxNr7DDwo1n7ujWti7a3ueT3W3mHI+bH2WbvfHGv/4o7lY+1jD5wj1q6qqpNfjqUvPODkWPvpsSfF2ld9vE2sfcXlb8faS43KnTPWNrlz9TsP3yXWPnt8bo61qurES9pi7ZHP5eYCPvnxDrH2Dsf/Jdb+8MvfxdoX3tQZa49f4bJY+/Hjg8fVqnpqnwdj7WcfHR1rn/3cErH2uUfnzttuu3GhWHuJv/0o1j75tRNi7d4rPxNr3zVs7li7qmqN13Jr1Mefd1Os/ZMrVoq1b2vsGGvvsvltsfbQ+XPXCXd8vH+svdT8m8TaVVV/22lyrL1Qn+bv+fnO6vfl5gK+PXepWPujyTfE2jMnXh1rHzvsolh7tRsmxtoDr1om1q6quu+jpWPtCwasH2vv8elTsfZOT/4x1u75fEusPc9rC8fam111Xaw97qxesXZV1WHr7h5rH7j25bH25EVHxNqH7XZBrH3Tz4fE2h/26htrd28xb6z949u2jbU7Nx0Ta1dV7fTyqFi7bZW5Yu2DR+X237z/oytj7TX/lPs+ue7MI2PtQ1+8J9b+41qnxtpVVS/s9YtY+47NcucQo87P7fXacs/cufrMTXL34VyyV26/1bM35a5Rnjo1t2955BUbx9pVVQuftkWsfcgHuTmQm4beGWtfNWVKrH3g8PVi7d8ttVisfcqtuTXD9o96x9pVVbesOzrWvneHK2Ltz7/4Otb+aofmr511dzWa3gQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+79D6z/zH7a1VjcD702d1zWh+9H/o3/lVrN2rZcFYu61zSqxdVdXaMjHWntoV+JD/D11dPWLtmR1dsXaP1pZYuyX3665pHd/G2r2qM9bu7Mz9vququlpyP/e2ztz32axe/WPtHt2xdLU3esfaPdtz//BpnbmD2zc9ct/hfTt7xdpVVX17/1On1v9WUzsHxNrVMTWW7mrMirW7O3vG2i2N2bF2d/C8ra3X9Fi7d2fu77ulO3vuNKORO2/s2flFrN3SN/c7nzWtLdYe2Jg/1v62PfdZ79Oa+z6Z3Zr7Punoyh1Xq6oaveaJtQd35c4bZ3fkPm/tjTli7d7dM2Pt6e25dp8eA2Pttpbc33hL8LhaVVWN3HfK9Lbcz71Hd27eaVrNGWt3dPeLtftWbu6nK3gtPqMzd43Qty0799MZXFDoDs7pz+rI/Z11NnKf9Y6u3HVh6+zcemH/nsF5xuAa7fTcpVlVVXUHjy/tweN6d9ukWLtXv0Gxdkvl1uXbu3LnL336zh1rT+/Ozam3dLbH2lVV7T2DezFacu1ps6bF2o3KnbO2BK9J2zpyn/X21tyxrVdwDWVCV+7YVlU1ZUbuXH1S79zJ2xezc8eXjh65a5SRG6wWaw+eY75Ye8mhi8Tak2eMj7WHD18r1n7sqQdi7aqqXr1y5y9Lr7RsrN01K3dM32rzrWPtR158KtbecNm1Y+3pE3P7ZztbcvcmTAnuhaiqmvXN+7H20AVXjrW/HJ9buxq6UG6e87Vx/4i1OzsmxdqL9M0d23oP+jLW7jMkOKdeVUOXWijW3qJXbl574je5a7Pn/vFurD2pPXdcHdiVmwMZ9M/d+vpvNXVGbs1uUKNvrF1V1R38G5/R9k2s3R5cw+kzO3NN2tH9r/+b735zbPXp2fy1t3e+P6Lpze8seGtuDmPZUTvH2hNuvDLWrqo6ZfvcGu+It3Lnu2e+mluDOf3r3H0NCz+wWKzd9samsfbrP/oo1v5mq6Vi7fd+OjTWrqpac7kFYu0vFsnNmW3+4rOx9hd7bh9r970pNx8/aoPcff6v7/n9WHuN0dfH2udfu3usXVW13chXYu2PRhwSay86I3e/2LzT1o+1Px2Rm7vpnPp0rF1b7hFLT9z7yVh70nUrxNrjbvphrF1V1bLdhFi7e+qYWHud1/eMtZ+c+y+x9rl7rhJrX/pk7hrl4YnvxNobLZSb8zpvzIuxdlXVqM7cfqmNhub2DL2+3x9i7fk+/kms/XFnbi3g3Um5/dYr7rd4rL3Wb/8Ua/c7f7lYu6rqpV/kfu5bb5I7d7q1fYNYe+/JS8TaY1bJfZ8tsdHysfa2f/kk1r5vy/Nj7T1XzN4U+uWjO8baF3yR2zszdUDu87bahEdi7dEr7hRrL7ncvrF2+99z56tvLXZLrL1E26hYu6rq05WWjLXX2/pXsfb7b+bWaT9bYHCsfdHbuf0I1w7ZJtb+eLHc/RxrLZDbIzb42UmxdlXVFxtvEms/+ciqsfaS530Qa29573Gx9vTv3xFrP3BDbi5g8P65NdpBb5waa9+y5luxdlXV4hNz12dXD/9HrH3piNxc42NP5/ZTPnrc6rH2Fr/L3f+8+yG7xdqfHPFxrD3u+Nw+0tPuvSvWrqra+qXcHpTvHZ2b362huWfB95meux6fMim3Vjl4/9w16T2P5a6P1t7w1Vh7wWWGxNpVVc+3577Hv13noVi7a97cfN9Cl+Sekf3kx7m/sweDj777w2O5Y/odx+TuTbj+mX/E2lVVQ7vniLXHLnFCrP3z286ItRcKfqUcvMeKsfbxb+T+zr55K3f/z0/+K/d8pv7jT4+1q6puWj147nbrebH2MyvfG2vPMzMz7zS7O/dMCQAAAAAAAAAAAAAAAAAAAP7vd89nc1f/lr5N7553Ue6dCQdf+INY+4WzLo+1J9yXe8dXVdWt8x8da7etkXtv5By33B1rj1ts81h76s8WjbW773kw1v7ts2Nj7dl7/lesPXSLR2Ptqqovz889P+6lr3Pvgxkz4+ex9kFb3BBr9zkqd1xd5rzcM+y/mXFJrH309x+Ltc9582exdlXVOdfmnh83eKuPYu29Tngh1r53uYtj7VfnXi/W3uebjlh7zz/k3um21yO7x9pDLh8ea58x7OZYu6rqgWXmjLUveuLtWPv6OXLvZJm1c+59DTuclnv+7AKNr2Ptz8+8INa+fdITsfZFw+6JtauqLvzp72Lt+de/Pdae8uPc+38eHvt4rP3Vprlr0s8f/jLW/vOozWLtAXfk3hswpCX3M6+qGnblXrH2KZfmztVX6fFyrH31tbn3Zd7z4Zuxdse+78XaR32Ze+/RzP1z73taZVjuPZ1VVStckXuG/mIX5D7rM3bKzQWMfurhWPu+fZeNtXc+I3eNsveBS8TaE55/NtZ+cO3cu+Wrqm7dNvfeyEM/yP3bVznksFj7R8NWibVPG3dQrH3hGwvF2l9fkJtTf/nQlWLtV0Znz18evOSQWPvvS/8x1r7msNxc42Nz5NYy2k/PrRf+oOPbWLsW2ziWHjznc7H2qffPG2tXVe273V2x9lKNBWPt987ZIdY+f5dlYu2Hb1w41r5q1atj7RvHLB5rD/9hbv/JF/OuGWuf0TYm1q6qWnhQbu/wsTNzv/ND39gp1j52y9xerzlefy3W3mP/A2LtZdY/ONYevEhur/hrV+f2NFZVdX+eu05YcERubfxXf8utH/1q7dw54/pTc/vkd/tlbm55p3nWjbVvWinXfuyw3J6Aqqr3Vjol1t51s16x9iufXRhr93ohd//RWic/GWuf+rvcGs4l++Xufbru7eVj7beuOTDWrqq66+XcfojD788d27baI3cf8ZjfZvaSzmzr/pf/HzvOeVr16dXybxjNP+eRzv5Nb35ny6/niLWPfzy3N+7WpzaMtauqrntvl1j7qSNfjLWf7j4+1r7qkKdi7cm75vYyfL3/ebH2JnPME2v//md/iLUPnnPvWLuqap0Rv4m197ott+b36SbNf2bMd/bdcpFYe+mTb4q153gutx9yxOO5fYHPj/lVrH34zrk1/aqqR4+fO9Y+5Q/jY+3N7sutg2z/ae6zvmD/bWPtT2+cK9YeMDQ3T3jyVfvF2lf0WyXWXu4f18faVVUfL7BqrP34nrk5q9f22zPW7nPTqFj71n2mxtrDrs7Nif/h3Fmx9jLH/TjWfmHh6bF2VdUxF/0l1h5zde7abPA+I2LttTfJnTOu9GJurvGPey8day+1fe5c+YpPcs8wuX313GetquqLWblnU31+eu64/tZauXv9d787t2doybdzz3jc6ad3xdpdY4fF2gOPzu0zH31cbm9cVdXbR6wca//twZdi7UWPzh1XF5ieey758nvlzhm/XPzcWHuFkXfE2lMm/j3W/tEb34+1q6o6j8t9n632241j7UsG555p0briuFi79y3fi7Vfee/zWHvgtFtj7S3m/Nf3S/3/dcDPBsTaVVV7XXByrH3kr3LPtzz73Hdj7SXnzD3Ddqe7zoy1+w/9Zax98NazY+2bH9oo1v56XO4+uaqq039/Tqz96JSdY+3hu94WazdW2CLWHvrT12PtB0fk3rmw9b5nx9oz5j8y1n5hr4ti7Zvvz32PVlWNeX7XWHv+9XL38EycumWsPffM3LM1J45fLdY+e7d1Yu3t38m9R2fd/Rux9sqb5+Y4q6o+/zr37qR7P9kn1r7o02di7WOXODbWPuaZ3FzAe4vn5l8uaMldm118Qm7u58835p7VXFW1w265ffJD9849+252r9y12TeTcs84uHxw7lr8xRVz90X0eSR3j99iW+aebfnQ3dfG2lVVdz7/fKw95LrTYu3uCbm55V9PvybSndbdWf9f/sJzZ/MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRdIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDztKYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxn+90Zg6p1QPNfjb7vzOOa3vxOY2TfWPuc5+eOtT87emKsXVX17LPvxtojD/801u6/0iKx9uQrDom1n1lt/lj7jCmDYu0Dzz8v1r56w7Ni7aqqA9e5MdY+e/2jYu2jW/8Qa9fBT8bSr709INZ+9YEpsfYX41aItTeauVesvfF8X8XaVVU/OmGTWHvAHV/E2oNnLxBr37jLmbH2C6u9FmtPHJk7Xz37p8vF2g9svmysXVW1e++7Yu0FWhaMtY94d/FYu7Nn7m981eNuibXvH7VhrD1+zJyx9mefdMXaf/nzfLF2VdVRYz6Ltd/uyp2/XHfnI7H2BqfNjLXH7RSc7/visli7/3GXxtpDvsx91pbs/EGsXVW15SdrxdoLXDUh1v7qg7dj7aE/+TbWnv+Ic2Ltc2Y3Yu2Xvzoj1v501dzvu6pq4wPWiLXXvjZ3fXbqiT1i7Td3z61fde+3fqw9z+sXx9rr/uSZWPukVXLz2iefMCzWrqr6cOHcXOPt/bpj7YOn5ebVe7yWO19uezh3XN1i0dzc8viFT4q1W7bPrdNWVU1YdedY+7i7Noi1P18791l/+rjc2tkPZywdaz/z5axY+6jt2mPtvlf0j7VP+WzNWLuq6r3eV8baY48cH2v/4/zcvPrd7+X23yw9+oZY+8grr4u1T+6RO6Zf9Jsfx9pVVd/r8/1Ye+uJv4i171njo1h7j+12jLVfnrBqrL3IyYNj7TEvXh9rty6zWaw9os6Otauq2ve+Nda+/czcHt5Ld3s01l6tx4Gx9uKL5+adRh/wRKz95qn7x9onHvLzWLuqqrHPPLH26Atz6zhXnpjbB3LHGbnzl3We+DrWPuD53N6fNZ8cEmsfuNu+sfa3k3P3AFVVnfF2bo/dbodvE2ufe8/CsfaVLzwca5968/RYe+W+R8Tab523eq49ZdtYu6pqg1657/FJT+T2mi200O2x9uvv7tf05rSO2ZXb3QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8J2v9Z/7jto5JVY0e/4eG8r/W2v1PDfPfakbr7Fh7VuekWLu1MTPWrqqa1dUVa7d3zIi1Z3S3xNrdPfrG2r1ndcba3a25n3nX7OYfT78zNfjv7tvojrWrqto754q1p/aYFGv3apsVa3e05r5TZs3uHWv3C36XdjYGxNo9euTOnSa1fxNrV1VNnTE41u7q3SfWnt3dFmu3dPeMtVsb02PtXj1z5xBtXR2xdueUXHtW39z3SZ/KHVerqtpm567NuhvtsXbP2bnjamuv3OetvXNKrN0zeGyb0ZE7vnT3iqWrX3fus1ZVNXnWt7H2jOC5emN27pq4ozX3M28LXqN0debmlqdX7rja0pK7PpnVmfsOr6qaEZwD6dGaa3fl0tXeIzen3rM793mbVrnv0rZ/bnnv36pHYJ3wO9MawQ96VeVWMqpmt+T+7ckp/X4tubmftuC8U0sj9zfeHfwbn9U9OdZuzG7E2lVV1SO3btezcutmM3sG1486cufqncF12h7Bb7Nejdw858zgd9ns4HdZVVVnR25+t7MzuH4U/C6d2ZlbP6qW3PfZtEbuunBSe3BuuSX3Oc/Nav934zuD+yE6c8fWpZYaHmvvs/O2sfYnk76KtQd05M4hevcNXpvNGhJrPz3m7lh7ziH9Y+2qqr8+9UisPWNy7rO+8OK5vcPvv/dqrL38AnPH2r2C+0CGrbRErL3+iNx32Wvjnou1q6paBuY2Bjz1zH2x9oiVNoi1Z7XmJgNaxn8Sa381NXd8ee3Dt2PtIcG9fV8tmr0vokef3L6Agf1ze7YHDxwYa4/7OvfvbgleJ0wPzvVNmjQp1u5uT94XkVvHqKoa0J27ThjUlWv3Ca7ZdVTmO6Wj+1/vTnpmo+odmJ9ee95Fm978zusf5s6zz95iRKw9fNBCsXZV1bEzl4+1X53wbKz9t4FDY+0VP58z1l537Rdi7QX32zjWnpybLqs/D8u1Nxi2ay5eVRdtm5srPHrd3B7YWy7N3VuwxXO5vQz9Nstd110yasFYe5Xr+sXajy85PtbeYI+FY+2qqvsey13Lj7nuwVj7rPeXjLVn/ja31jnjndVi7XEzVoi1NzvzrVh7xCt/j7Wfn7VPrL3FJq/H2lVVe64wKNZ+ZfXc3PDd03LH9M573om1j5n1cqzdMT23tr3y+Fti7WWfXzPWfrnWibWrqjrXfT/WHv1F7l6WHr1zcz9PTsrtj1tu62Vi7a6uv8baq/xp/1j7owX2iLU/G/qjWLuqasYvc9cJ5x+Yuz7qOu+DWPu6Hrm9M9uvkvs7G3Lr47H2Z8F77ec++vZY+/6nc3OcVVUdgzaOtfdYIbefYfKb42LtB9c8L9beZLFpsfa45daOtV9Y7c1Yu3f7RbH2yGeTT5Wo6vh9bl/gy78+JtaevFvwunRQ7jrhrgN/EGt3v31BrL3hN7nF8fELHB5rT9o6uy/wyYHPx9p9ltgi1v721tz9qMtff2qsfdkKub/x1fcZGWs/s0Dus/bwFh/G2nOseE+sXVX13IylY+1hO+Xm1QcvmdvHeuBNF8bat30yNtYeOTi3bvbOV1/E2q2f565J323LtYduf3ysXVXVp22eWPuHZ+fmGg9ce/FYe4m7c3sC5jhzYqw99a3cd9mvN8zNM364Ye4ZJl19cs8pqqoaOiV379KCo3PPxXppUG4t46VR88faQ1/M7eXsNyZ3H8z17+8Wa7efMCbW7n/wkbF2VdWqXbn9nLc/dUOsvciIv8TajcdycwGbvvZerN1zl9x1wnZbfhprnz9061h7wqzcfU9VVY+8mvu87fftK7F2j46PYu3PN5sv0u3u6K66K5IGAAAAAAAAAAAAAAAAAADg/wE/3vO4avRq/nOWDl049/y2Db/aL9b+YePqWPu5BR6JtauqlntteKx97oo3xdqzb869E3f+vrnngDx8U+7v7K59c+/IWPvZo2Lt8wfn3if37BFrxNpVVeeNzz1PbIG3/ivW7vrxa7H2hNtyzzt+ccDHsfb2a+feu9T71Itj7Q8GnhNrj/gg96zCqqpNp28Uay//dO68ccCSuWehPn1f7px1hw9zz4f85ge/i7V/ss0VsfbT7+a+y7adkHvW8hOduc9aVdXsf1wVa7+wYu7d0z+fJ3dcXePy7WPto1/K/Z31Ozv3Pt7Nl809f/a2aXvF2lcd9P1Yu6pqkctyv/NX93gy1t7329w16c5XzIq1j22/P9a+9o1NYu1bDs1dk45fe+NYe/gv/hhrV1Xtc/lnsXb3O7l3pP71yudi7Z/817qxduuI7WLttlGjY+1lT18+1r5m+Y1j7YO6cp+1qqrbbnk71h5778ux9pglcu+K2PD9c2Ptg1/Ovfu57/vHxtqzfnZbrL3uekNj7YcfaY21q6qeGdc/1l7j8lx7i7Wui7XXfyf3TtxDbu8Va9/86tRY+8JD/hFrr//x32PtC9fdKtauqlr+ybVi7YsfOS3WnnP+3LzT5AsvjbUfXuWEWHuBttw71tfZftVYe91PH4q1d7728Fi7qmrVO3LzXictl3s37L6duXmnvz64bKy9/Ze5tYxrv50ca1999Aqx9kvBvVavHJ/bV/hEr56xdlXVoS/PFWsv98JJsfYOk3J7Gm/43eax9hdf3RNrtx3/Qax95V1fxtpLvZzbA3JSy52xdlXVZk/n3rO+ylwbx9rzvbFirP3bpXJ7SS+7Ibd/d9jPfxlr7zipI9Z+4Pbfx9qHb7JDrF1Vdffbub1edzy6QKx91iv9Yu17Jy0da2817/Gx9tieuXWUR9fYMta+7ZuDYu0Dtzwz1q6qeuPwKbH2ObsuFWvPddgNsfZ7d18T6bZ3zqiqff6l/8frH71cvVoH/nsG9E9Y5aaXmt78zp/Wzs3P7nXy2bH2vJNzc5RVVbe+cHOsvfauf4i1//b5ibH2jI1fiLVPWWbeWPvbi78Xa//oyFz7mssnxtqnnNEWa1dVbbry3bH2Q8Ny97IM7J27R/CnF7wRa3/9y11i7SPWyK0FPPdp7hx/k3G5ubqpa20aa1dV3Tgxt09s6Pq5ezq2fqBPrL10j9zxZY9xO8Xadz4yOtaeMHJCrL3yebm93pcOy10j7P7JtbF2VdVxQ3Ln6p3j7o2119w2d232+daPxdrr/yV37rTGyrn5+E/ny/2Ndy9/aKx97Te5z3lV1filc/t2trz06Vh76qm5/XGH7Tsq1h598YhYe7XpuTWYMa8+EWtPDT7DZIddcvcmVlUNfzs3z3nN/tvE2rcMyN2L27VZbv/Keys8G2vPv+JZsfadu+SeRfbn5wfF2gf+NjcHUVXV7/obY+1VR68fa79x7Tqx9l+2ye2VWuDEz2Pt4OVRnflp7tl3iy86ONY+de8hsXZV1cXj3421t/rT3rH2t0/uG2tfsVjumP76V7l57QNuXynWXvWGa2LtgR/kzl9XhLk1AAE4VElEQVQO+Vluv3VV1bhdTom1T34mN+814NtDYu3fHZg7b3vg69w+kBd+d2Gsfe6KuXOIHd7OvVPl1Tdy7/Cpqtr2rdz3+G1vPxVrv/T6z2Pt1zf/aax9++RpsfbH874Ya/94/Kex9kJ75b7DD/0y976FRbbJ3edfVTX4vtzevv37zIy199m++e+i+85pl+4ca088KHcfyza35t57MN/euXejzXF+7n1VYy/O7cOoqnpgn9x54zM/mC/WPmJc7p7QM3bdM9bedlTuPtxN98/NQ1z+5ZKx9lYr5tblr1s9d99TVdXUHXN7Ktd7Orc2fucVB8ba79ycexbZZ5fl7k1o3eEXsfZ7V64caz921o9i7d90ZZ9psdEPcmtnc4zN3Y+yy/DcZ/2j2Zn9u9OndFQN/t8/F6vRhLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAfopEeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeVrTAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+sw07+bTq1Tqg6d0fHvLLpje/c+cPW2LtjhMHx9ojjz4u1q6qOn7sQ7H25NMfibVHTXs+1t5x0k9i7Rv3my/WPn6112PtD0eeGWs/0ZL7fVdVDR2wVKw9vM+fY+1DPrsu1l5u9gux9p+6T4+175+5Tqy91uVHxdo3L3RirH3L3BNj7aqquR+bFWsPuG1yrH3sh4vE2iPnuz/WnnfWt7H2HntMibU/GLpGrH3KmNwxvarq2KNuibWPPmn1WPvN5VaKted6eNdY+6DHTo61xzR6xdrfLntMrP2985aJtU8dsWOsXVX1i1WnxdofbHBNrH3tnX+Ptft9cmys/dCij8bai35/oVh7nUN2i7UP/M3WsfYtb64fa1dVvf7eyFj7mMsujbVPfPXeWHvi6TfH2nd8NjvWHrX9nbH2Sefnro/2eTT3Oa+q2nOr3DrOCWfm5rYvbusba7+5W+67tNF4M9a+Y67cHMjPZq8Va7967sqxdu+BuTn1qqqzf71irN170x/E2j2eXyLWfmLVP8bafa96ONb+xXlvxdofjN801j5ki9y6fFXVX3otHmv/oGNsrH3eiNwc65Rxq8XaFx23aKz9+3lz10eb75XbD7HthefH2r0Xzv19V1WttWDuXH2rQ+6ItS9ZL7c2//xqU2PtB384b6z99YV3x9oXXZ+ba/zJ1bm1q6qq9+8dGGuffFNuvm+NA0+JtUcMuifWXvH7b8Tat35/n1h75TG5/eKb7JKbC/jlbrk9blVVbZvk9pNuv8xFsfacB34eaz/+9A6x9vo7LhlrL7/EkFh7m3fPjrW/7NU/1q6q2ma5l2PtN+7+W6x99gmrxtonnn9QrD3z/vZYe8vzhsfaF7/6s1h7hV+Pi7V3Wzh3T0ZV1eNDPo61b181d97Y+sAGsfbFL2wTa0+f+zex9mHPvhtrn/rWPLH2S4vuHWtXVXVcmrtHoP9BnbH2xCnLx9ov7/JF05szZk6teiR3jQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD852r9Z/7jae2t1dHo8X9qLP9LPXr0bnrzf+o9O5Zub58Wazdmt8faVVWtjUau3advrN0+tTvWbu1ui7W/bUyNtVtm94y1Wxv/1CH436qrfWasPa2RO65WVXV0TI+126fm2i2N3LGtX7/+sXZ714xYu621+edM3+kZ/B7v6sh9h3c0+sTaVVWzG7lja9fMKbH2oO7c8WVmj9z5cq8e/WLt9uCpeqOlK9bu7pM7d2rpzp2/fN2VO3+oqurXNl+sPbvHrFi7Pfc1XtUjd33Uuzv3D5/c0Rlrt7flPmtdXblzp34tuZ95VdXsltwcyKyZue+zXj1z8xDdHbmfeXdyLqDREUtPnZZr9+s5Kdae3ZI7tlVVdVeuP2t27nfePTt3bdZVX8fafSt3XO3qyl2L9+6VO6b3bwnOAwT/xqqq2jpz/T4dLbF2rz4DYu223Ee9OoPnL1+15ea1+/YKznkFP+ezW3Nzu1VVrcH5vrbKHdvagnONPYL7EVpm59qDW3Jrdl/XpFi7pWevWLtteu5zXlU1I3h869Uj93Of3pnb/zKlcgf1GTOD/+7W3Pd4e2vu72zazNwca0eP3M+8qqp6Do6l99h4nVh7ds/c9/hLb7wQa6+7wWqx9kfvfxhrv/9+bv3ogTF/ibX79x4Sa68ybJFYu6pq8X5zxNrvTv481v7mo9x1Qo+5P4m1P3//21h7VuccsfbXi+faa63yVqzdr3vRWLuq6ulH3461W7py12aPP/FIrL3+OkvF2t8btWms/eYL78ba/3j5tVh76AqLxdrzzb9KrF1VNeHzv8XaX3ya2787YuPcNUrf18fG2gsOz12Ld3+T26P/zaDctfhbE3K/75kzcvsRqqomd+T6E/vm5rXn78ydO/VoyeyT7+z+1xflpwz4pno1mj9fedkXuXO+kcs/E2vPtcHKsfb8i2XXvQZO/DLW7rv1crF2/0Vz30d3bpebu3nrsQ1j7VeGfBNrf6/nvLH2Asfk/t1DF38z1q6qmnv53H6pV7bMrUV8fXbu/qHrhj8faz8yY6dY+4cTz4m1+624Qa79l4mx9l0Dl461q6qWGzIh1t5s+2dj7XvOzd0HvF7/BWPtt9/K7SG5sCu3xntYn9xehuHLbxRr7zwxd3w5q1dufbeqarvho2PtdT/PXScs9/CYWHuZQ3LnLyeu8kSsvdjzubmfVQfvH2uPWT33nMW5P3sl1q6qWro1d+503NHLxtorXLhHrL3G3ufF2t/OeirWnvLGGrH2R0sPjbXHTB4da2+3YG79parqgY7vx9oLvZY7h+ialtsvdeFmuXvVjvj7p7F2x0e5PYl/b8n9na03Z+56+NNtc/fhVlV9mPu41R6tuf2YJ5yfO768+fHLsfYeA3L32v9go5/F2hecn1sj7jf32rH2dd2Lx9pVVePeya2Nt3UMj7X7j7ss1v5opdz1+MQFcntQBr66UK7d67ex9viNc+1PLhoRa1dVTR29cKy91tK5z/qZU3L7Ib4dmntG08OfzR1r91kjd1248A3HxNoPD9wx1h521V2xdlXVpwvn9r/cPkfufvsfXr9JrL3WMqNj7V9tmZvn/MOiX8Ta8775QKx90Qmrx9oPLTQu1n5tt1y7qupvPXaLtT/de65Y+4m/5Z7tsMkD28baS622e6z9yOe56+Fha+bu0Zu+Re7+4wk7LxlrV1W9t9a+sfaQRU+NtT8euGKsffAXe8baD/TPPc90yBG577JL7s1dDx/zwbqxds/Ncu8WqaqafsNfY+1fv7lCrH1i79yzisb/4ulYe/W5cs+0GPv73O/7lyvdEWtPuTm3Nj5xv+zem9Me3CYX77wyll7st7nzl9vnyZxDTJ3eWaveFUkDAAAAAAAAAAAAAAAAAADw/4DjH3y++jYGNr37j/Zrm978zpmr5563c3jHo7H25V8/HGtXVX262r2x9uWjcs/N2+KO3HsLbjlwv1j73a1yz779/Y63xtoHP/qTWHvCQzfH2u3v3hBrV1Wdc8zpsfb35j081u753G9i7aM2+SDWHvlq7uVDUy/IvZv1zglbxNoXDvs41n6+65JYu6rq2fX+FGv3uiz3zqeVHso9I/KDU/aKtc+YI/fs3dVuuyXWPu/Sq2Lts9Z5LtYeO/dhsfYCc+aOLVVVm2ydO66f+M5Hsfb9u24ea3/60rRY+7CeufdzvNdzdKz961tz5xCHv/rLWHvDYy+KtauqOp7LvWd9sW2Hxdpjpl0da7/w1zli7WELzhlr7/NJbh7i6eVvj7UPmHF+rH3ddofG2lVV6z6Re6b5pZ/n5pZHrPt2rP2bs1+PtT/ZZv1Yu/W9NWPtuY/bO9b+5d25a7O+62ePL5efdGOsPeS43FzAJs/l5rX3+SyWro1+9PNY+/Lnnoy1l79s/lh7woa59j6LnhtrV1XttnXuHWObzs6dQzwzZHSsfdtyY2PtW/suE2sPWum8WHvrW7ti7c++yb3bbEiv3JpdVdW2zy0baz898qZY+5yvN4i1tzqgT6w9eWxubnnT1pVi7Zu2HBRrXzr7ulj7+hVyeyGqqrpePjnW3u6mr2LtZaY+E2v/7r7cv/vIvZeLtY/6+6Wx9jmDbou191ovt2d66G8nxdptZywaa1dVnfbmH2PtPdb6daz9h5EzY+3PJ+benbj6nKfF2qftnHsP8cDXH4u1v7zl/lh7+OM7xdpVVYs9ldsvftqky2LtI67OnTu9MeasWPvcvXLvnZ7ro/Vi7Wm3TIi159/zqVj7sfPGx9pVVdNuyO1B+eayeWLtUTseFWvf93Ru3mnKoblj+pcv9Iu1l1v9lFh7iadye2+6zs+tHVVVdWx5dqz90NjcsW3kMlvF2rffnlnD6Zo6u2rVf+3/8cDfN6hGS+PfM6B/wtjePZve/M5BK+0Yay/4dW6974rn94i1q6pOWO/PsfaPB10Ta9/189z68lEv5r6Hf/Zlbh/oggvPEWvP7s7NEz41T+765tmH3o21q6reuP7CWHvpPw6PtYdcvE6svfc9uedp/HiFY2Ltpy+6Mta+YvHc/cdfvTwy1l5st6Vj7aqqXx2auz/xvOVz96R2vZObp+zzVG4v6FFXHxFr/+is1WPtv56UO75sfujdsfaWa+fm6t7ZZvdYu6rqh8fn9mO+/NkRsfa7I3NrvN++sH2svem9J8Ta/fbIPXfvrCvXirXXOD+3xrrDG7nfd1XVm49/GGuP7L9wrL3sIbl11ov/nJuHeOOyg2PtPRfLna/es3Lu3sQ/vHlhrH3+H3eJtauq7vsgt/a04mm5a7MBK+aeyfX2Lbln9645MPczf/OWd2Ltge/m5nenf/F+rH1U+6hYu6rqnKXGxdrvPrZzrD33c0fG2ufe/kmsvcfDs2Pt3cfvGms/3pp7lurDk+eKtQ+64tRYu6rq3L6566PGzbnnBp99aO4+vY1u/X2sff48g2PtS1/J3f+8+baXx9pTTton1j7jytzfWFVVzxG5fYlPjsqdsy79fO4cYqeZuefu3bho7h6ev20xOtaedlhu/uWRp5+OtZcfcUSsXVXVfe2Lsfa2E3PfpfsesH2sfcT4jWPtvlf1irUv6Z87tp246U9j7c9G5K4LH1tucqy9/zwDYu2qqvuXyq2jvN87d974xJG59oi1m/8evO8ssP/0WPvkP0+NtTfombs+Oui83HrhGZ3ZueXPTsg9+67lhHGxdufZufPlc/ZZINb+3m9bYu1B++XuB2kd9KtYe8iZW8baf9r12Fi7qurXl/ePtYcfnXuOyVK5x0PVxgdcE2uf/ud9Y+1H98991k/bInefXc8Vc/dFtI/NHduqqi7bqEesPfOvuXdlHdk791zPrp9l3oc3s21GVf3v7+Nt/h3lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADENNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4L+xd1/RelV1v8f/+9l7pxdaIKElIfRQQkAIhCZNpTdFmqAiggqCSFMQEASkBhBRpApSpCNIR4j0LkgkIYZeAgQC6Tu7nCsuzsU7xnHo+/zed5zP5zoj37nbetaaa665AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgedr+lX/8+GdTqrWl5b9rLP+lXu29m9783OBZ/WLtXq2xdPVq6cjFq6pP99Bcu/fcWHt+dcfatbArlm7pzv2Nd/ean2svXBBrL+iek2s3sseX1s7ccb2jJ/e19wl+ls7t+DjW7u7pFWvP7879vAdUZ6zdqEas3daS+3lXVfV05L72eQtzv2/zWv+lS4r/qD6V+5nP7sh9lvZpb4+15835KNbuac1dIPVt5H7XGq3ZY9vCxpu5du4SpbqCx/RPg9eFi/bkvumze5o/3/S5fm09sfaM2bl2v97Z48v84Dlrd+W+710Lc8eXnp7c172ge3asnfxNb+3JnSu35P7EqjV8bdZo5D5L57XlPkvnzv4k1m7MzX2OL9G/T6xdrbk/tHnB7/mARm5eu09331i7qqq9ctfjn7Xl5n46Fn4Wa9fC3N9Ze6/c53ijPTjP2Bm8b9a+MNaePyd3XK2q6sz9yKs9eH3U3sjdu+ppC54wB9divJX7M6tGn9wv+qx5uXuV1RNc+FNVcztz10czu2bF2lW5a7NZlftMaQmev3zambtOaFmQO74saOT+xvsHzx+qqtb/wnKx9mctufOX0UMHx9qjxq4Ta//z2Q9i7Qfu/Vus/c7M3Nc9oFfu82TVFYfE2q+99lqsXVXVb8DAWHvQkkvF2j1duXOn5YeMjLX7DhsRaz85Jfe7/vHruXU/ny4zKNZefuQSsXZV1drBec6d99gr1r7+6qti7Vmf5OZf/vmPu2Lt3oPXiLXX2TD3/M+QAYvH2sOWzp0/VFXNnR08tq65cqw9vzP3Mx+1ylqx9txZuc/xHbceH2s/9/SzsfZu+x0ca19y9oRYu6pqyaVWjbX/NmVyrP1ucMFVoytz/tL9H1hTOO1v86ttUPPnMrZY7pWmNz/Xd8kfxtrvXvF2rL1wUPDZ56parit3f3nl7e+Jtd985nuxdsvYw2Lt8UseH2u/Oiy3Ru2JF96Itdfa+pJYu+WT3WPtqqp+Fy4Wa/9mjVz7qN7vx9qnTMtd36zyhU1i7d8t2DTW/u4jL8XaW6+au885/73cOoqqqg2eXjTWnrLdrrF2y9GrxdqTntkh1l7wrW/E2hd9+N1Y+92nc8fVQ/4SS9cbOz0ea+9+/OaxdlXVW3Ny8ycTx+XWuX/0/rKx9quTXo61Fxn5XKzdb6kJsfbj1/0p1l6kf2690lUj9om1q6peW+rQWPvbJ/w11v7+Nrn11ns9tVWs/dQfvhxrb/az3Jrni198L9buGPVWrP27Fc+Mtauqhj9wfqx9+bSNY+22zXPPnD/3cG5fiQXrPxxrj9hvRqw97o4PY+2H7s49dz3yk+dj7aqqFad+J9ZeuVdurdbmr/aPtUe9m7uH8/byuXnOvfa/Mtbu6Zs7Z/zyyNzavCcXyz1TUVXV7/GbY+3Nt8h9pvzzr8/E2uMWyx1f3tkhtzZv947cWswLlsrdu1px6dyc+sPb577nVVWrP5qbe7rv63+PtX9w6PRYe/g142LteSsOi7XPfDO3zvzVDXJ73+3a9Wms/cRWuTVmVVVHrj481l7rrNyx7aFNF4m1tz1nl1j7w2tycz9vLp47V97z0Q1i7T3GHRlrX7rjabF21yu3xdpVVWcv+sdY+/2FY2PtMYuuG2ufvkNu7c35C3L3Ek7cJPfznvBYbi3n8G9sF2t3nJB7Zqqqasyw62Ptn/z4slj7WyOPi7V7j87tFfTcI7l5zo3H5jYcvLFl81h7rcUmxtpTHs8+F/Hh+NxajL3n5s6d7p58d6z9jQG5c/UlJubmX8YsktsLfsYKubm+X/8+d4/27udfjbWrquZ+NCXWvnNw7hplk5W/H2u/PyxzXO2e9e+vE/9l/bkGVfOfBT7g9Nxahk2GnxBrH/LYFrH2rHOfiLWrqm4ekds376pjJsTa0x7PrVda64L7Y+1NB+TW3x664+ax9rPP5p6huezi7WPtqqpP5+8Ua584Kvdcwymr5tZq/eX1LWPtA7bNzdetPCV3fJm0aW690qcDJsTavx6Ymxuuqur/0Aux9lFrPhlrPzN3hVh7wjdz8ydXLHlFrD158C9j7XNXzO3fNvf+s2LtqqrNnv1qrL3vWrm9Y147eplYu2uf82Lt722fmysc+4/LY+3vTsvtI7LcoNz8y31LZech2p/8Vax9xrO555+PPHrHXPvsL8XabRNyaxJ3mPaVWPvOZU+Mtb9UuTVqP3zioVi7qmrvnXJ7wD3b83SsffKgK2LtOv2xWHqtrfvF2jcPviXWnv/Yz2PtnY7/c6xdVbXWkEVi7SGPbxhrr7Zm7j5r36VHxNrXzcrtU73dkbk1Q2s+PS3WnlS5d6yfMvfqWLuq6pThufddPfaPPWLt3w/I7TH59q65e/Mn9svtF7T9DuvF2ucNvzXWHjM+996DqqrFv5W7hzTzg9y7tp47Nvc3fsCM3L6i1yzIrc3rNTV3D2fXjX4Xa2//m9y1+Ae9cnvfVVU9eVvuvbjHX5xb6zV9xZ1j7fduzD3z/tqE3PnL6jN/EmsftmNu/7n52xwUa1dVrTnywFj74S1yx9YRu+aeSV37a7nnzvd/YrlYe8xRuWuUflfk1pk99q3cnqLbbJVbj1BV9eLjueeX3n491+7/rady7Ydzx9XnL8ntCbbm33L7/j3/SW7tTZ+R2bnGIz/KrV3e99zcHO95M3J71zzz9k2x9mE75uYhRuz9j1h7+xcfjbXfG3VprH3Z9Nz7NquqBs7+Qax94LHXxdqP7Z2bY50x8YVYu+8av4m1rx46OtYePTH3HM75G+f2yK6q2n5Kbp3brB/njm+rrj0p1r5z+hJNby5s+ffnN7c+6MIa2Kf586STu3J73x5+U24fs+7lfxprb3dYbp15VVX/j1aKtb++74mx9u7n5851/7TnkrH2sMtze7nv1Mitr1/x9rNj7cs/fiTWfvKg7LuuFr/z3Vh7SP/cnloLn8ztc/TSyrl3B0zpdU6sfdCE3HX0paOuirUv2Cv3rquTV8jdU6+qunq73PHt4gW59va9cnuoXPnZj2PtdR5ri7UPGPp2rL3VXrlnSdbetyPWvuaHuXfSHrLeL2LtqqoL9si9o+O8r5wRa6/0Vm5fzusPyO29u9WLuf2tO87O7TH97g25c6drpq8Ya396x86xdlXVoW2bxdqLzWrE2pOunBpr375abm/N+7Y6Jdbe9oncM3ozvrRarP3lH+Z+z5f5au7eblXVD9bL7Znzy2tz72C+YfQDsfbhE3JrUH98SO6ztPOfufVCd6x7aqzdtlvufbhPXpp7N0hV1SETr4i1Jz48INZ+dGhuX89pfZ6Lte+5OXf/qP/Xc+85v2jPh2LtUSNy70QZuUFuP9Gqqv3Pzu1L/vhJuWdonrw6t17ogvsvjrW3PDL3vqklVs/tz7TDSbl5p+1P/iTWXvTUl2PtqqoH18xdn/15dG7fmrmTc2sCjxyf25/pwddz982WXz13b3zqFvfG2k8cPCbW3u7XG8XaVVVP3HNirH3ZjblrlG/PnBlrn/Bhbi/V/X6Wexb2exfsFms/+lxuvm3vSbn53f6jc3s87rzBHbF2VdWUr+T+zta9Lbf/23fWXyPWPqdmxNoTv5i7Jn3nqFi6vjw7Nw/w8sG5PT3PW+LjWLuq6neLHRZrn9zr2lj77xfl1jxt/+vcPotf33fbWPvszXLvpDvtlAmx9rWnPxNrv/CPXWLtqqqffiW3J9fTP8g9m9Bza+55kDv/mNvH46Zdcu/3WLjIt2PtW5fZJ9a++aDbYu19N58Za1dVDbs4946yVf68Saz9/fm5dyftfkxmH9fZC7vri//m//GHKw6t/v2av+66457c2pmh746MtW9vz+2fds9Vua+7qmql3XNzhXuvkNtT/CeP5p45X/4PuXVi91+W2+e5bdfcPdaZc3LPVEw9b89Ye5/xub1Iq6peaeSeEbxlydwatTU2yd3bHtWRu6b86LG1Y+3DNsvt4z7mV7m1Ug8Nzb0b5LTdHoq1q6quODB3fTPth7n9Z29ZZE6svecjN8baV0zKrQvcYNHcPOX3Ls3t5XHLj3LnbW07DYq1b5iY29ehqmqVI46PtR/4Zu668Evzc++FPXTOubH23TMvjLWf+1luT86fnpWbA3lu04Nj7f3vz73bvarqwn/uH2v//ax9Y+17fpw7d1r/wtz++Vf9NvcMzXZb5M5fhm6Re4/eX+7OnTvd8ZfcPq5VVZvunNtb+/g7cvsN/rB37vv+6JO5/XNPa8vt17PvEbn1txd/+Wexdt81vhlrX3h4bv1IVdUl6+Teg3N0R24OZMKjJ8faY2blntPb5tK/xdrn9s7tg7bj8NwzoacOy+0put0po2Ltqqr2P+Xm+zbZ+5JYe7Ujc9dmR2yde6Zi+S1yf+OX/jr37oG1Nn8x1t5luf1j7acOOjTWrqp68YPLY+1H7sidv5w8P7dH9vtb5J693uKl3LtZ+79xWqw96eLcXmRfOje3N9Qamy0aa1dV/eyg38fa63fn1r8M/1pLrP2VjXPny2OOuzPW3uz9n8Ta956Z29vhq+fuH2uvuneuvcVNuXsJVVV/GnRcrH3pvbn3AO/1l7/G2gsfeyjWnrH1mFj7V1ecFGtff8z+sfYtJ+b2cb1gt9w9u6qq5Q9aK9a+YYncOevG38/tW3PRWsvH2pMPWiTWHrNubr3Tt2aPibV3vnTpWPvosTvF2lVVw3rl5l8u7Fgq1h6UO6zWDnvmnvn67Sq5e1cb3JLby+OWRXPPAI+7ITfXt/KBuWf8qqoeHtUTa+/ak9tP47TDu2PtjX+X2Rero/v/7Z1wud3xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoukZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPO0pQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/M/2ze6bqr27tendc3r/vunNzw176gex9vd6Xxlrn3HDnFi7quqlMVvG2qM+/GasPeHYe2LtJ+/5e6w9cO2nYu2hB54Ta69/6Zux9h/XviHWrqo65L4xsfYKXz8t1j5wyG9i7VNvOibW/vsdI2PtWw9aKdYef9p2sfaPft4r1t7/vFNi7aqqf4y5OtZe7My3Y+0Tr9gq1p4+fOlYe/1t94q1X1ymT6w9YqkJsfb+j/4i1q6qGvLherH28/cNjLWnPn1QrP32m0Nj7T79Zsfa5z6ye6w94shXY+1BR1wTa39126Ni7aqqOm6pWPrljc+LtZ9cenKsvdOcY2PtA3ZaEGuvNfoLsfYPHvxhrH3yqT2x9rJP5uZYq6qu/tG2sfYSJ+8day9y2R6xdvfzP421d1/kwFh74Nz3Yu27vpib5/z2Grnftaqqs3Z4ONbeaVpu7umUw3Of47dcPiLWHnrCuFj7oYMXjbWfOyx3n7arY9dY+4ZrRsfaVVXrn/porD1ok1Gx9nlv3B1r7/GdSbH2hG3eibV3v+z6WPulF38Wa//ozHNj7aqqcz/Ltb97606x9jl/PDnWXm2Vr8Xapz+bO67e9mZnrP3g0ivH2v07p8TaOyx/UqxdVTXv1e1j7fNvmBprD+84PNYe+4c9Y+3j9j8y1t7wztdj7eOPyV2TvnTVd2LtqqqRHz0Wa8865iex9qt75a5Lf/3Eg7H21/bInS+PezW39ub2g16LtZcbk5tvu3jz3GdZVdWDw3LrGm8csmGsfcjL42PtK7fsjrVHt9wSa180cmysfcrNa8faa+zzQqxdVXX0kwNi7c1OyK2pHPJ87nmYd1YcEmvfdez0WPufy+aO6WMmHxJrz/3aE7H2V+49Idauqjr0qdw5zAkr5ua2D93/k1h78e2+EWvvvFduPefZ9+TmWO8aOjPWfmR8bs1RVdWry+bml9859OBYe8Tw3HF92tIrNr3Z0tXV9CYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwv0Pbv/KPR/VZsnq1tP53jeW/1NPZ2fTm52a3Nf/r/VxrdcTaczr7xtpVVR/XB7n4vN6x9KwFH8fanW09uXZnS6w9tyuWrj4Lc+3u1twX3tXIHVerqjrr01i70egVa3fOyx1fqnJ/49WS+0Mb2JX7efduy33Puxu5dmtXI9auqhrc2h5rz+3JfY73dM2KtQd0587beuXS1RE8d+oaMCjW7rsw93V/tHBOrL2w5sXaVVUdHbnjy4LuBbF2teeuifsEj+kfzc+dO/VuzX2OT+/Kfc+7e+Wuj97qzn2GV1X17s79zDuqT6zd2pKb7+vfO3cC09rSP9b+tHN2rD2o75BY+9M5M2LtOT3ZuZ+r7v5brN1/ydz8S8/s3Pd98JDcdcLcmf/Sba7/qG+MHRprD+zOzTvNDN43a+meG2tXVbUEp566F+Tulfa05s4heoLzu90LcudtPd25ezit3bnro6723NxPS1vu86SqqrUn97ve2ZM7uPV0545tbd25z7NG8G+8M7gGJfhrXjMX5r7nCxrBBQlV1bEw942fH1hf9rkFwc+zzuD8bndjfqzd0hpcExBch9Henfuer772SrF2VdWIEavH2gP75I4vK623Yqw9a2bu6x44NPc3vtY6o2LtOc/k5iHaWnPXKCsst1is3TkneNJYVUsvs2ys/WHHZ7H24NZ+sfactsGx9uufvB9rb7Lp2rF29/u537XJk3P3p3fbaIlYu6qqZXDu+DL3g9yxdb/9joy1n/vbXbH20E+XirUXzM8d01+dNj3WXmPkprH2nX+9LdauqlplcO7cbcSILWPt9z94MdZeb8x6sfY1N1wUa8+dvVysve7GI2PtT2bPjLXHb7hRrF1VNXy53PnTR8EbCm2Dc/N9n87NzP10dXXVey9N+bf+jyGf7F/tnc1fV9C/z3eb3vzc+3O/EWt/tPa7sfYSozaOtauqrt7rylj766/tGms/9tXfxNrjP7g21r5+Sm6OdPOv5p4femxMbj6+c8XvxdpX9/pzrF1V9dCyueubTZbIPe/+1RHPx9rHXLB+rP3SYkvG2qsu+e+dd/07Hl3uzVh76aHvxdpTO3JzCFVVU3ddLdY+88XcPMKK+38t1j5s8J2x9hlPvBBrv919caz9zbe/HGs/9VpuzdCbcx6JtY/ZZVisXVV16OrjYu21Fx0Ra7e8lbvfN2/tPWLtBzbOfd2Lj8+1R83LnTPOGJd7Fnbujrl15lVVXTMPj7XPWCU3Nzxo3dNj7YeXze2RNHyPgbH2I9/JrRk67tUDY+3rV8vdc5t+5cOxdlXVlattFmufedL4WLt9m9zf+LypH8XaI4/PzS3/6IEDYu13txkdaw/51Tux9hLv7BBrV1W9+oXcs5Hf/zT3d/bJIlvE2qMHnB9r3/FJbh+RxQdMjbWXuf+NWHudbXPnEAvf3CXWrqrqOzf3M+/96NOxduuhh8Xa98x5PNY+ry239vemPXPPya3y7A2x9rt35NZ6r79t9rmG95/JPZ+41w65a7Mxbbnztl0m5f7G57bn1mKuf/ifYu2N3889xzJ51k2x9um35X7Pq6oG/yW3HuLJybnr8dX2OyrWHjQ4uFfQPrnnaDa4/bhY+6pZR8faA1fZLtY+omv3WPvxYbnnWKqqNtrxmVh71jO5c/Ulh70ea0/olVsH8nHtE2vfvHduf+zJr+eeCV2tM7d2+EerZZ/ZarkvN8e63cndsfahu/4j1v7gvtzXfcohO8fav30od3x5dMDKsfZGG+Tmft4edmysXVXVujC3j8lBSx0Sa2++TW5P9G3vzX2eXf2H3HqnL96R23vuiwNzz7rd9cvc8eXdI7eOtauqDvxVbl3jJlNz9yvXXTAp1h49655It6Pzs6paJtIGAAAAAAAAAAAAAAAAAADgf7/2Y2dUezX/XRmzu05sevNz5/Q6JdY+rnL7z27x7b/E2lVVv7/uiFj7tSlnxtr3L9g31t530hdi7as+2CDW/vlKi8fad7yc28v91ou+G2uvNnGnWLuqqvfvcu9nPWjxobH2iuNyf+P7tpwca582MfdukImdd8fa425aEGsv+ew5sfZ914yJtauqenWdHWu/8qdvx9rdkzaJtUffk9sL9ZdXrhVrr7baurH2+nccHGu/1Toi1t7tzpZYe9YB2feE3nDIzbH2qytfEGu/eOaLsfZy1+b2gH15Su7Y9tx+98baB9bVsfaqmwyOtX//i9y7Qaqq7l52z1j755dl9gStqrr8sdx14YzpuevCPYfdGGuP3SX3frGjN829E+W83+aObb/dcJVYu6pqi3G5n/kFR/wh1j7n4dz7Cy/4KPeuq73b9ou1h+92cay9zYBYumYfnJsHuLfj0li7qmrAOu/F2m92nhRrb/hA7txptRtz71++8MEvxtqtjbdi7aHbXB9r77/4zFh7971ejrWrqtbc9xex9pi7B8ba3+r7vVj72zf+Ltb++ajcu2hOGvp6rD33/NVi7cF/Oz3WPqMxOtauqlp8vb/H2iP75t5ZechLH8TaJw3bKtYevVxuvm/Hw3P3Mk6bkntn5eZf6Im1n75/XqxdVXX8S7n5n/l/yb3P7vx3b42119k0tw5k6cVz770e+cA3Y+0/HvPLWPvhbe6Itb9407ux9r43597TWVW1+eQfxtr3rPT7WHuNq1+NtftfkVtft+yPcvNOGy3/bKw9bOphsfa1B3XF2k9s3xFrV1X9/Nrc2ptDtsldJxzwzBqx9t8u+zDWfuu6nWPtcXtPiLUPmJ97H+60c06LtResNyXWrqqafcQjsfYuJ68Ya9/cL3e/8oK7Xoi1L79kbqy9+rTxsfan220Rax+1T+5afK91Po61q6qO23tmrH3qI5vH2mOP2jvWfvw3mfPl1s7uf/v/OPn1B6utT9t/YDT/mt13zK2HHLdN7hz/zT659QRjt3su1q6qOmNy7vzjqSt/FGsv+Pprsfbt45aOtR/6Xm6B3F1/zq3vHx18XmzVKV+Ptbd9PTcfX1W1+89z9/yOnZF7tmDBslfF2r9vmxRr33RUbq5wiT/m5k+u/PGqsfbZC6bF2t/4wy2xdlXV1Be/EmuPXXd6rH3XNjNj7c+GjIq1p3+4Uqy9cJ8fx9rX/CF3jdJ6f25t//Jb5NZb3/nn3JrjqqppY3PzJxuOz10fvXP8T2Pt5z45MtY+Yocxsfbjzy0aa/9y0Vdi7T/NuC7WXmVQbq13VdWWm3wp1l72r7lj27Jr5faYPOKpPrH2T2blPs8uW/PWWPuMZ3JznMdOWS/W/njCE7F2VdXrL/SNtR/ed+VY+8a23O/b8yfn9hT92qe56+H3lh0Waw8cel+sffzxw2Pt7tNy61+rqtZ4Ya9Ye9cf5PZq3vHqnWPtj3JLveu71+WeYzn1htzP+/KBO8baj0/Mza9+vPo6sXZV1ZzrPou1z6ncPtU3XfiTWPv4B3P3pz+6KnfetuYhD8Tah92Tuzfee+wxsfaYpx6Mtauqvjx7TKx9enduL/g524yNtdd9ZWasfdXmufUI56y2Wax90Ym5e3Y/23DzWPv7387uWdx5zl9j7cOe/FOsfe6tub1ETnomt4fKTxc7KNZ+9Te5Y/r7HwyJtRfMeTvW3vT93B5sJ3zl/Fi7quqWUbnr8bfXvyzWvmDuXbH2nj88K9be58+Hxdq7X/1GrL3TIqfG2j9da1ys/c6452Ptqqo5x30/1r5yhdyz/tf0za0d3uqi3J4533k+9wzyP5/NPZ+4/LITY+2Dls5dF05uz637qao6/KjcO1anz/11rH3vrNyx7fSRV8Ta656c+3m/9L3c8+7LbLBDrH3D0Ny+mveu/lSsXVV14s8eirVvGPPVWHvvda6ItRdvXSHSXdDy/7ZXcuO/eRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPwP0kgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPG3pAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/s/V652vV3ujd9O7k1X/d9ObnXpnfEmtvMOyqWPvC616Jtauq1j25O9Z+on4baz+/5fax9sgfDIu1t5p9Uqx97okTY+3r79wu1v5g+Jdj7aqqjWaOirVf3XnZWPvHtx0Ya5909L2x9vxJX4+1f3LbKrH2/Yf8Jta+8MnhsfZZvd6Ktauqnhi4Qaz9wY3/iLWv3+/nsfbWh18baw85Z1Csfdb4F2Ptwy/ZMdZe9oVHY+2qql/v9HGsvdycd2Pt8V/4aqx9wVaHx9pnTTs91n523Y9i7bEXj4m1nz8/dw7xwpVrxtpVVYcMPTvWPrp9Rqy93H79Yu0Lr9o61v7V65Ni7V2+84tY+75rYun65ZuHxtoTN+kba1dVHXvWmbH2wz/fNda+anDu3OnWPYfE2u23nxVrf/+dvWLtAWdPj7U/3DJ3XK2qunj2JrH2Clf9Ndbe8uPVY+1jXto01j52uc5Ye9wluePq62e+EWuvO+iRWPuIL30Wa1dV7dCVu1953yG5z5Sb7hkba+/w3a/E2l+6J3ePeMj1ubmfG17fKtaeuujUWLuq6sJTd4u1953a/DU/n5s4/gex9ktbLBZrX/DOvrH2RXvl1iSssfrlsfaZd3wh1m6891CsXVX1/ut3xtrj7t8p1l59Ym6es/3RP8XaS85ZKtb+7MSDY+2fzs7NQ5yaW+5UVVWzNsvNNb7b/sVYe8pGU2LtX/75ulj7tZ1z965OvXb5WPugwxfG2r1Xz61BmbvU+Fi7qmqxbQbG2gOvzX3fV33rO7H2j/qNiLXbb/sk1r77o7/H2ov0fSfWXnvI7Fi7quruFZ6ItZ9dNbee86AvPhhr779vr1h76B3rxNpP7fSNWPuSZc6ItTfa94VY+9kJueeuqqq+efGpsfb0PW+Kta86MHcPqdft82PtVVe9PdZ+++MtY+09r58ba6/92iWxdlXViVtvHms/fPensfYZB+4da9+81OSmN2fP66w/HtX0LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/QNu/8o+Xax1QvVta/7vG8l9q9OpsevNzc7q6Yu226hVrd7T0xNpVVR3tg2Lttvos1p7Xa2is3bFgfqzd2q9PrD2nJ3d86WlfmGs3/qXD/39WV/b40mgE4629Y+nuWhBr98zP/cwXNHJfd6OCv2yNllh6YeP/02NbVX26cF6s3buRO29c2Jn7LJ3d1hFrz52T+7o/a+SuUaqjO5aeG/y6g6eM1d7d/Gvw/0tP7mfe0Z07h+jonhlrt7e2x9qze3LXhf1acudOvXsWjbXbF+Z+zzdaf8dYu6pq0FJLxdrT3/9nrL3U0qNj7cefmhhrr7P2qFi775JLxNqfffJBrL3osuNj7R13GhtrV1W99ca0WLvfoGVj7dGLLRZrD108Nw8xY27u5/1GT27eqS04/zJwQe68rTV4zlhV1d2Suz7qDk57tfbkzlnbunMX5C2dua+7sy13XJ1Xud/zrkbue97VkZtnrKpqCx7eWrpznykt7cH7ZguC9yuDnydzenJzrAtzv2rVkzus1oKu7PlLr+D87vwK3ssIr3lKCZ62VUvwd32x1tzv2h4HfyfWXnLQMrF2VdW6a+Xmd1+a9G6s/c+3Po611x2zZqz9/PO5tRBDV9ow1j5g5b6x9pS3Yul6atIrsfaqy6waa1dVzWzMibU/+jDXfvXTWbH2GqNzn+PvzPok1h7yeu7+dFfH3Fj76bffibXHvPx4rF1VteI6u8XaH3ycO65PmvZ0rL3MMuvF2p/MmhxrLzV8rVh7YXD+ZeobL8XaXe9Pj7Wrqj5ry52rd7TfHGsvvdTmsfYrU5+Mtd+bkTtnfGLyy7F2W5/FY+2F3bmDW+/g/Zuqqk87B8ba/fvmzlnXXGa1WHvWJzMi3Y7Ozvp3zxi3OOoP1be9+X8vtwy4venNz63UtnysPfbRp2LtlulDYu2qqq/97MpYe8SbD8Ta1w1+L9ZeYqeDY+0ZG74Yaz8z4IlYe6vXjou1H+13dqw95rZxsXZV1X4Td461T518fqy98ez/w95dRt9V3Xvf/mVHiGMhCRLBggRocIIkSIp7UygSCMXdgxV3KcVb3KVQ3N0pFIoEDy6BkJAQ4p7nFc+7e9ynoz37e864r+t1Rz+Tf/Zee6255pord6691ze7xtobTr8w1l7u2R1j7TcGLBxr7zt2Uqx9yjZLx9pVVd9Nz93XX3vm5rH2zHG5a6tb38s9l9npttyzale9ODTWPvig3Hd8/EO5f+9Ppn4Zax+z6p6xdlVV4+Y3Y+2nBuTu+XV6ddVY+zdH/xhrd/8pdx+iy19virW/v+bBWPu2n3Lrlc77cadYu6rqp82vjbVv65577vuZAYfH2iuNuCLW3mDDh2PtmbccGGtPvTOWrtP3zJ1DtLwutydWVdWlQ3N7HBzzwVKx9vRFcuut114q9zDsxR3Gx9oP/Cm3fmXKfbnnGp6bN7evxB8+yJ6/jO7VPtaeEHzovPH5SbF2p8bOsfbYybk9LX6a3TvWPuy3ufUrv17phli784ArY+2qqhum5Na5L7rXlrH2Wa/k5kD+2W+TWPsPj/0p1m48mLtOaPF87n7h6O2/iLX7PJ595nzhnrlneE58N3fu9vYGL8bad6+/bqw9z4e5/QY7Hb5prH3/mbm13m+cvkOsfe5nA2Ptqqp2v8k9uzT2/VNj7buX/CDWvuPDZ2Pt/fvk7h8t2/avsfaqw7aItSfOOTTWPuDKPWLtg/pkn9n6+crc/txz1suth7jroOC89om5NQFTF8vN9Z14xGaxdsvBD8XaB83NXRcesFzwpl1VXTI1t55znw9z+0qs9ecnY+0v3sw9Izh7y+ti7dOWzn3Wzu+Vuyb9/ukxsfZji+bW1lVV7doqtx/YdVvn5n5Ofj43p79g79xar/U2fT7WvnJk11h77iq5c+UfVsrdxxhw7C6xdlXVG+Nz8xB9t+8Ta68za/FYu9NSi0S602f8v7mHKwAAAAAAAAAAAAAAAAAAAP8ZbW89qtq179j07ip3/abpzV9cs1RuX++Nnrs11v76x9y7YKqqXt01976Gc+bN7XfcPbftTG0ze5lYe4et9om1b1v27Vj7lNfWiLXfGbhvrH3XaUfH2lVVm3bOvZvk/A8ei7Xvvf/eWHvyM7n3L+98xhKx9rnz3R1r33Vg7v0cj17SI9a+fv3cO3iqqjaZtnas/eRjs2Ltk+4bGms3BuW+45fNPivWbrPDQrH2uW/kPueDz8m9g2fiY7n9zI9u+UmsXVXVrv99sfZCnXLfsye3mRxr3zBf7n3fS96X++9es9vPsfbZX10aaw87Nbfn76N/GhJrV1U98V7ufTDX3HFkrP3Shk/E2s//mHu3/BaDj421+19zS6y90sa5d11NeuypWPvuF1ePtauqDni6X6y95yuZPYerqo7b771Yu+fBud+U10ZcHmufvtvbsfa2/cfG2mc+uk6s/bsD+8XaVVVr98hdo7zz426x9kLLPBhrDx9/Y6zd5Q+5dyc++s6UWPvl3+TeB3PC47F0rblE7vqkqurmrR6Jta9pmXsH87db597R8dBiuTn1a+74KtY+e1ju/ct7/XRGrN37qtyxbYuO88XaVVWbdmgZa/96WG7d0fg2/WLt7xbPrYcYNz133nbM5rl7xId9f36sPfOD3PvsJh7zh1i7quqc276Itdd465tY+7m2i8baO3e4Jtb+66G5d8O+ef6EWPvMsxeItW8/Pbeu8MbPj4q1Zx72caxdVbX7qbnv+HmH5e4fXbd3br32ymflztXPOat/rP3dprnj6vRuuXesd+q+Uax9w9vHxdpVVT2Wyd0z3H5Q7rxtrWVy60CeXCU32Thx9bNj7UHrdIi1+w1tE2tf0j73EE6XHXLvX66qan1Bbt3RnWvn7qP0WTH3HuIdr+gZa/ddsF+s/Wy33LqfDxvrx9oPL5G7N775qc/E2lVVB72XO75NvyW3nnPv61+LtTudfWCk25gyverhc/+t/48zfrV2dezQ9j80ov+6Uw/PXd8svc6Csfad3fvE2itf2TXWrqqa1fGwWHvmdb1j7Vtaz4m1ex/++1h77PEXxdorbvR6rH3pRXfF2uOefC7W/nb3frF2VdWnj50ca/c4Ibe/Qp8/59Yk/ubl8bH27TcfEWuf8eQdsXb/y1+ItYcM6xZrP903t+63qurzM3rF2g+sPDrWfr8mxdqPnvrPWPvKzXJrf28+7OVY+6r9psfaG0/MfdZWWiP33PeWZ+fOGauq7npo71j77kdHxtpn7plbo7be03+LtVtt/LtY+/wjWsTa0x4aFGsv8mFujnLzR9aMtauqvjx9v1h7n8Pmj7UPX/K8WLv31rnrhE+WPyHW7rX4JbH2Wjvl9r3bY/Hcv/fak96PtauqDnxgYKy98ALzxNqPb/7nWHu3URNj7W6nd4+1X26f+x3vO2/u+Z3dvsvtYXLksL/G2lVVu519UKx920nbxtoP3pubC1jkp9wxfaPGVrH2e9dPjbUPmpI7V761RW7dzuKL5s7bqqou+U3unLX7wrlnBBfb9C+x9nt3PRprL//tuFh7n2Vz61+uvSK3V9B9W+eeLXji2NwzW1VVGy45O9a+6Ifcvas3huaeEfx2u9y9q2V27RtrPzp4+Vj7sPW2jrX/fG2/WPvMJTaMtauqHtmsXay9/3uDY+2Pe8yNtU/4Xe473vKI3P3Kh47OnUMcGdwPrGuL3JrGe+9dNdZ+o+6Ltauqlvws97za3Mm5dw9cv2buv3uFZZ+Mte8+54JYe+SCuXnOt2eNj7XnHJrbN2arK3L73lVV/WVO7rmpi2/PPYP88vxvx9o3dz8l1j7mtmGx9sh3c3vPHXF9br/k/QfkztvaTt401q6q6j788Fj73A9z73ftHnyfzFY39Iu1n71rfKw9dOX7Yu19zg22GyfG2qNWzO1FVlU18C+5d3y80yr3zsu2258ea2+y7XWR7uSpE+vCA//v+1vmdrEGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpGukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap1V6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/cC89V9W5+a9Gf/H+JZre/MVqo9+ItQ976S+x9phTlou1q6qm3XBarD3kpLVj7bOu+0OsPWDMpbH2jUceGGvP/vbIWLvFSRfG2lMv2DDWrqpadlrLWPuUgbnP21a3vxprdznp97H2vDsdHGsPuT33HR/z5NRY+87BX8faw2f/KtauqjrzkW1i7SHvvxBrHzV4Vqzd7filY+3zVspdJ3x4Tu64uugHS8Xa415cMtauqnr8xN1i7fue+UesfWX/D2PtO2t2rL3Hfq/E2h0eacTay920Way9/nWrxtod7nw51q6q6rnbqFj74pG5a8Mlt/0x1r77pZNj7UsfuDrW3mhM7pp02K43xtoPTcj9jh4zsV+sXVW1xku567PfLf9xrH1bv4Gx9okPPxZr775j7r97++9OibV7v5o7pr+yZu4eTlXV5vf8Mdae+XhuDuadl4fE2iNPuzXWHvTWu7H2Movn5gIm/H2/WHvuKzNi7cOXXCfWrqrq/NV3sXbbXb6PtW/45olYe/X1N421Lz421/7txC9i7fNu2zrWbjVp/li7quqS446LtT/q+1Ssfdvvc2tgjh1yQKz90Is7xtp3jMvNsc47LHfv6sCWufUQb3XMXZNWVf3Ya75c/KcjYumhbU+PtUdMzt0rffPr3H27Pd8fG2uvud9tsXb/R3L3p6uqjvjt3Fj76C6Xxdqbtz0k1j7z6eti7RGd/x5rrzIiN+808vZ9Y+1/npZbO3zDFi1i7aqqIZ+2jbWHHjos1t54idyc/h9H7xNrP/TFKbH2Thvlji/tN8rNgVy5XK9Yu6pq+aOuiLXbtloz1n51mdyap90HrBtrL7V5bp3ZI4e0jrXXX/2EWPu5H06Mtdsf2ibWrqpasXfnWLvHAyfF2mcemFvHOvbzAbH2edOfibWfXzN3rj5gldz9hNf75uaWq6oeOGROrL3KO7m1IMdfOz7Wntb/6aY3Z86cUFXdmt4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/udr9a/8j9u0nFnztJjz3zWW/6Nps6c3vfmLdtU61m60bBNrd2yTa1dVzQx8zn4xddb8sXaHlrnP+vS2C8Xas1v+FGt3nJ77957eckqs3W52LF2zWk7Oxatq2qx2sXabVrNi7VkzO8baLdrmjumNRu473qJdy1h7zoyZsfbsuVNj7RatW8TaVVULt/6XTq3/o2bPbRtrt+oQS9fkqdNi7RnB87bZjdzxpW3wGuWnGZNi7WoErwtbB0/cqmru3Fx7ZrA9o2XuN2XSrJ9j7dbzLBFr9+q1SKy966FHxdptOuaujzovmPv3rqqaNW/uOmHcO5/G2qMmfxZrj5vSNdbuukRu3qlLz4Vj7Qmj5421+w1cK9Z++NHc57yqavC+m8Ta73wyLtZed1C3WLtV8Nps1tzctfiMRq49flZu7mdsI/cbPndu9vqo5ezcdcKc4PXRnLm573irFsG/eeXmXyr4UZ8TjLeclvv3nlvBL1lVzckdWqtRwb/7rBmxdpvggXX23EasPSv4WW/ZyH3WZgd/w6MH9aqaXsEDTPDQOjf4PWsZvI/SonLXCa2C6+sGbLBSrN138V6x9uuvPB1rV1W9+sJ3sfbPP+eObR0WyM0FtJuZW4tRbXKLAnr3WjzW/vTN3DznsqssH2v//EPuR3zSlNGxdlXV6HETY+3W8+W+Z2v1WyXWbt06N++09GJ9Y+1vJkyItaf9lLsWb9+6U6w9bnxuvXZV1ZhP3oq15102d3z5YUbuvO2HH76PtT/84PNYu1OHb2LtH8fnrgs7tMitFf9m3LexdlXVz5Ny60DmCa7Z7rTGiFj77Q/fjrXbBZ/JePfT3DXpcosE11rN7Bxr91xyqVi7qqpVq9y5W99Fusfa034aFWuvPXCrSHfqtGl163P/+Lf+Px56Y75q3Wj+vPwSEw5revMXqzx1Rqz94jbrxtqzpu4Va1dVdep2Taz9dKdfx9o7f9cj1m6x7sBYe8Bluc/6hMWGxNrfnJKbG97+0X6x9oxjc89FVlUt9tLrsfaYicFnr3/Mre9fYIVnY+09pvWJtYevvmKsvf2jK8faV22W29fh8Hdy936qqu79JHcfZKV52sfaPTvk9tP4eK3cdd17t+e+Z1vs+0WsfeCSW8baM1u/EGu/+tF9sfaItZ6Jtauq2i+UW1PwxbTccfVXKywaa5//5X2xdq9lcut2Vul4aqy925BjY+2Ptl4n1u75j49j7aqqb+bNzYGcvejpsXanb3LHl3c2eDPWHjnj7li799gjYu1rf3VarL3adhvG2ncul1vjXlW12W9z+7c8v/L9sfYCx+XWcew4pl+svVDns2Ptj47O7TGwcc/cPf2ze70ca4/+NrgXWVUt0z13vjy1z2Ox9uUPLxtrL7N+7rM+/I3c79no7rnv2ReNnrH2I/vn1gy93fGVWLuqaoP1Hoy1u76fW7M0Y6XcdemVT+XWHe+0WG6d1rvfPR5r911ns1j7iwUGxdoTDsudP1RVjeyUmwvY4JgFYu0PVn8j1p57d+75oQ3+llt781G/3LnTFusNi7W/b31MrL3Cd+vF2lVVP96fuz89t8WXsfYXk9eMtZ/qkdtP46EXc+udpgzMrd+98qKPYu1z18q9W+QPdx4aay987fGxdlXV51/9JdZe68XesfZ8X+T2qX5vyvBY+3etcnMgLw3OPaN3w6jcnsV33pCb69toqzti7aqqB7vk7mXM6ZBbU/lEr9zz7k8PfD7W/ur822PtSUOWjrWnvJbbj71XY5dYe95rH4q1q6q65pbJ18yRueeP+rx3Sax93Mzcey563PtIrP36+rnjy8AJuedgtv97br7tptu+jLWrqn6zR27t8KBtcvdKH//gtVh7tzYHRLqTW0+vy+uiSBsAAAAAAAAAAAAAAAAAAID//TY8Ye1q2Wj+3lqDH8rt/fLHD46MtbfcIrffzl7bfR1rV1U9/tcdY+2XXn4v1n5+TG6PyBuHnBRrr/Lb3PsyT3o51970+Stj7ccXy33O+196SKxdVbX1vrn3NWx5de5dwHvv+WisvUaXg2LtT6/J/c3vfzz3XpKx4zN7HFVVDXjh5li72x17xdpVVRecc2+svdXXB8baq36S2z9unfG59z8PePXCWPvK20fE2iu1XjLWbvdNbo/pf67w+1j78x+GxNpVVa+Oyp273bnKtbF2/entWPqKURvF2qd2yp2/XL77rrH2rYcdHGsfctf1sfb1e4ffg/Nj7h3Mb2zyu1j7mw5/jrVHHpc7rm5xUu59DV9/lvuszftS7n12447P7SO/2ZELxtpVVXs8dVSs3e2CU2Ltxz4O7uW+zlWx9i3dT4+1rz2qVaw9fqfcudOHq+fu39Sk7PXRI59tF2ufv3PuvQXHXrZKrL3TXX+KtT+bm7uPsuULm8ba77y8Taw9re/lsfbKXVaKtauq7ntzVKx9TNufYu3t77sl1t7449z58pVbtou179gr9w7BoYPOjbUXuTp33jb1kFNi7aqqfUd8FWuP+TT3Pbvl9tx529CpT8baOz2WezfrUb1z7x6aMWnFWHvUsFtj7aEtpsTaVVWDjxwda+85f+7d0wPv7xZrLzY3d3/6k/G595xft2xuru/Y136Itec9PLfe6c+73hlr3/xJdt3yrzdYP9buMfbXsXbXi3Lr5OdenFvrdf2pueNqh11y89rj7top1v6i2zex9p1L5n7Dq6pOeuLoWPuo+XLrCtda5Lexdpt7ct+zpybm1oGMmT441v7s/Lax9phDR8bazw3Kvde+qurVWeNi7SPeuSHW7jtp21h7mTuei7WnPJn7PXlkfO4+yo8H546r1Sl3X77XrOy98Qkv5fpjW7WJtff7fM1Y+55jW0a6M6dP/rf/P749/6Bq36rzf2A0/5qFVtuj6c1fvL78u7H2NSfn1pl/uFzuWZKqqsunHhdrdz/sglj7nz/m1mr1eDf3W3jhVa/H2jed0y/WXuiChWPt9XouEmsvt+07sXZV1WmbrBxrX9Qxd1z/1c+rx9odvukba59x5kWx9vVP5OalJ5+aO39pnDQw1p45PHdPv6rq66tzv6XjzsvdV2/fKXd/eZ1bc7+lO785KNYec3Nurfewrrk5hPP/kFvz3O283DXp0JM/ibWrqgasklvHMXba47F2m7a54+qFi+b2lRhwdm7Pv/HL5ualv7xpfKzdr+PDsfZ7K38ba1dVDTsht9fiBxfnjq3vHrJJrL3fc0fE2mNe2DfW3rLPsbH2geO2irW//mm/WPuBBb+Ltauqtl3281h7SI/NYu1j/57bX+GPdx8Wa/+1132x9ouH5H5PxrTJzUFsssmHsXaXt3LPZFZVXTMit6fGJs/tH2vvMXiNWPuC2bnflOOPyu2z+M9zc/u4Pj7/Y7F2/ytz9zEeODe77vime9rH2r8/ZLVYe9cLcnPLD3yTu4+y0d6555+7TM3tWXziprl9JTbYb7FY+9EX7oi1q6p6Trwi1r7xxNyzS5fven6sPfna3NzPO0N6x9r7jT4n1v75svNi7bfvye1Z/O46uX01q6q+PXWBWPv6L2+MtdsPyT3L8usvc3vg/23IqbH2onNze+ZMa4yJtc8aOTvW3rp17hng0c/mvt9VVSvsnbsm7nho61j7ul659RBPrHtZrP32zWvH2utenbsmva9dbt3PjRO/j7Vn9Xst1q6qev7s3Pzu1wcuHWvPOTo35/b0hNzv2W6L5tYO//Ps3LnTC7vm5gEOvzR37+qSSbnn/Kuqdpw3tzf4aoftEGtf3Tm3h8pZHXP7JO252lqx9moL5d5t0nux5j/H+oudt839zR+cmtu7papqgydy+7f0XCX3HR88J7d+d81h90e6E+ZM+y/97xr/zeMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/kEZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmVHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwP1vbH1tUm+ktmt7d/uapTW/+4tbrRsbaj07eJNZu8+CUWLuqaqVG/1h744kDY+2JJ7eLtYc+3CHW7nDecbH20S+MirXbvXtVrL3ywO1j7aqqLXqsFWtv9tVfYu33H9wm1p65R+74culbz8Ta9+W+4jX+d5Nj7W1G3x5rD+tzaKxdVXXnZ7fE2sPffSrWXq7/SbH2XntsFWufec25sfZrq54da48b+dtYu8uSn8TaVVXz3HRZrD3m8uVj7V8/+GasfeuR68ba+7c6KNbus+DVsXbHp36KtW9foVOsfcjErWPtqqpnVs99z7bqul+sfevST8bak3ovFGuv/tzdsfYuL78Ya297ws6x9viP94i1j3vu41i7qmr0mN6x9soPHx5rT5qRm3v64fOxsXbL82+ItVe+f41Y+7R1n4u1Xxv0aaxdVTVu8Kqx9runto+1e0zKHV+eX69brN33wkVi7cPfz33W9+6du4fzyNdjYu2v/3ZirF1VNfqKeWPt7Q99J9Y+8Oi3Yu3Pevw+1r6ne+58+ehBubnGbkMvibX3uWCnWLuqarNTX4u1N3rpwlj7kq+WiLXXPfrrWPvO7wfE2rMuzd0s/e0Xm8Xa/7jt4lj78isOiLWrqka1z33WdzpgUqy9zyq5efUhX+eOq9uduX+s/eacH3PtT3eMtfsNfinWrqra7q3c/YSBC/851r7n3BNi7f02XS/WnvNp7jph3rG5dQF7nN021t5xlw9j7UMnPR5rV1Wdt+B1sfahW+fWiz8wu3WsfV/fzrH2DW/8MdY+5rTVYu0J+2wYa7+1/pBYu6pqp92PibWXOTX3m/LIuc1/7ukXwye9HmsffllujduWm/891l43d2lWJ122aKx98hsTY+2qqvarTYi1txyUu4+y8J6539IT1t091l7i6dyc221jj8y1218Ua096PHddWFX1zTa5v/s9w3PPIN2/WO45oJ0/2bLpzamzZzW9CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzv0Opf+l/PalnVouV/01D+zzq07dT05i/azOoca89sPTHWnj19ZqxdVdWybetYu0u72bH23OkdYu1Jc6fE2i3m5r5njc7tYu1p03KftXat58baUyr3/a6qmtsid3zrMLdtrD1rntzfvVWj+ecO/3+7Re6z3rKR+6xNDLbnTGuTa8+aE2tXVbVqkfuOt2nk/u6tWjRi7Y6dcp/1mTPmj7VnzZ4aa8+cmzuutm+XO2ec28gdX1pU7ne0qmpOI/cdnzkt9x2f1WgRa09p/a9N1fwn9V2pf6y90m8GxdqdFp031p7WyP2ezN99VqxdVTVlQu7YOn3+3He813zLxtpL9RgRa3ftlfvvfuvz92Ptnp3nibXPOHnPWHvI/mfF2lVVN9/y11i7dZvgdcKaP8fawz/5PNY+YLeBsXbX2blz9RazZsTaU4Pzba1b5M6Vq6rmtMidQ8wK/t3bNnL3rubODs5rt8p93qbNzF0Pt2iRm2ds0yJ3jTBjbu77XVU1Jzj90zb4bz5h9vRYe3YjeP9oTm6+LXcGUTU9+Fs2T/DeeGNm9vjSolXwANMi9zu+SOvc9Xjb4P2EKZU7vlx26Umx9g/f565Jn7rn6Vh7+NjPYu2qqk5TpsXaM1rn1nr167VArD36s9z8bofui8Ta3/30U6y9zDobx9o9ei4Xa3ddcq1Ye8T7ufn8qqoFJnwXa7/x9Iux9kq/2jrW/vjrZ2Ltz0bnrkl79cjNt93xymux9s+zcsf0+T/Mreurqvr5h5Gxdt/Wq8fafbrlflOmt8rNBYz5skes/e2PuXPGMaNy84ytF8g9BzPfvL1j7aqqtz54K9buPd9SsfbYObln7fr0WiXW/mpM7tzp5+D87qxaPNaeMmdUrP3uG+/E2lVVb0zPzW13XyJ3n3bcdxNi7YVHPhrpTp/x768jPeSMbtWhffP/3Q7a9KWmN3+xzLybxtpLbXNprP35zZvF2lVVX+0xLtZue8pHsfbgZTaKtV/rsGCsPXarC2PtlmvdEGsv8tFpsfbwrTePtUc//16sXVW1zZI9Y+3pK+Tuq89sG1wnNjJ3r/H8QxeLtZe4N3cfYrndcue6Dy2QW7H0QIfsc5mdF/8y1r5jeG6esj76JpaeMjG3N9Wgwc/G2qtfkXtm67Mjboq1x3b6IdZevt32sXbXNqvG2lVVr3bIXR/N6pr7HR86JnfO+N0auWuz3htvEWvvs/Rqsfar3XPz0pP+kfuszZ2T+6xVVW3X4tNYu2u/O2Pt125bItaeuFJuf4W97psv1j564dwatSEju8faq519Qqw97yp3xNpVVXffkDu+3L/qwrH23Yfl7jcOGjcm1j5j66Vj7YMWze2L1X3u+bF247K7Yu0Pf39mrF1VNd+UdWLtv6ywT6x99Ca5e1dLv5W5r15V9cSiuXU7yy/ZLdZu9+XkWPv2g3Jr49aY55RYu6pqnT/m1u20nbNXrH3+Fr+OtQ8anbuP0mrjU2Ptj7/fN9b+7u3cM6HHr5Nb437hWw/F2lVVQ0ddE2t/sn5u7qnfnKGx9oM/fx1rfzGsV6y960U7xdrdv+oSa1/7+j2x9pRWuT1kq6qeHfXPWHuhUbnnaM7f6LhYe+dnRsfauzyem/vp/2zub/7Jrrl74w99m5t3Onm53Lz2Hg+8G2tXVfW7vl+s/eYmv421v+2ce/55x61y619emvhVrL3Ucrlz5W/+NjzWnjZi+Vh7yujcfFtV1YglTom1u273Zqz96tO58+WWMxaNtX/dKXdtdtn9uXuV387/eKy9XJvc/ikrfrZ2rF1VNX3l8bH2K/O8HGt3X3eXWPvaH3Nrve5dIrf//wNdc/tibT5qmVj7y1Nzz8F02el3sXZV1Sv9V4i1X++TW8/ZZ70nY+2L983spTqzsu+tBgAAAAAAAAAAAAAAAAAA4H+3Lb5+oeZp0bHp3bXvv77pzV/8Y7fesfaj7+be/bziezvH2lVVc5bPvcPw+yG5vcwGjcjtm7fZuAdi7WNnN2Lt89oPi7U/f6BtrH3CfpfH2me//WGsXVX1/Cm5PWiP2PUvsfa7B+T2iLzqxT/E2pe2yX3Hjzxxv1h72RVy78S9qM8TsfazLV+Ntauqzvisfax9wvYfx9qfd/gi1j7nzOti7T5zfx9r/3OpubH2gdfm3u++8Ja9Y+3Gd7fF2hPGHhJrV1X1PyB3nXDiPs/H2kO+3y7Wvn1cj1h7hbdye6Hu/vG5sfaGdw2NtXe/6+1Yu8OEG2Ltqqr1f8gdXw7YNXed8MPHC8XaVz9zdaz99phWsfbvHt4t1t7xvv1j7Vn93ou1p56ce7d8VdVut+fel9lx6sBYe4nnd4+1e2ybe8f6oT0ui7UfPHrFWPus73PzbZvMyu2nPmG57HtC97g6Nxew5Ssrx9o9798s1t67W+5e6Sd/zV2jzDhxfKz9970+irW3WL9lrH3vu0Ni7aqqQQPeiLXH/j333sh1O+a+4/M9sVWs/cTauXey/PT+I7F2uyVz735++bvcO77umJO7Jq2qGvj4M7H22u02ibW32+3gWHvcLrm5nx86567NXjy6U6zd9/nWsfaSyx0ba2+16qRYu6rq8aEnxdo3zbdPrL3vm3+Ktd8YtmGsPWf4CbH2M9fsHWsPfzj3/uXNWy4Za5/aPvc3//u0bWPtqqpHvrwx1j6we+78ZdnX7o21t67+sfbB7QfE2pdd2TvWvn3D4L/3/bnr4SFX5dbnV1X98FBu7c8aG+fOIb5cIbe2b/Kq18ba8yy1SKx9w6u5c4iT3t4y1p4wYsFY+4WV7oq1q6pmfvubWPvPD+SeOXtysdw16eqX5K6PXhmRm2OdMiN3rnzTWT/H2oMWWizWPv2w3Jqjqqqj+/051t7s7c9i7e5Th8fax3Z5OdKdMe3ffy5h29O2qs4dm3+vd8FLc+tAR39/S6y90eBFY+0HXxgZa1dV9e8xJ9ZusVT3WPuFwcFj03I7xtozz8/d5/zbT9Ni7f0XyZ1vXnn5xbH2wp8cH2tXVW3SM/esf6/DF4i1Ry23R6y98XaTY+2O954Xa+/+95di7Vs7554t+PbYzWPtAzbItauqzn48dx9kbI/cWvNRDz8Waw9fsWusPeC08bH2Hh/n9jA5ql/u2Nbh1u1j7aU/za29vWj7LrF2VdU7bXPPVPT92/2x9gIn/CrW3neH3DXpqiNzvyf/WPG5WPvAdrfH2vuPGhxrV7/cfFtV1TVtxsXa3TbLzM9WVQ19J/esfac1joq1Fz0+t25n0QNz8wD3jrkm1v7TDoNi7U0uzl2TVlX9IbhnzsPb5tZ733TeXrH2WQ8eEGtP7f9jrL3Fdrn5ths3nxVrj7g3t/fc9odPibWrqt7bJvdswbCT+8TaD7TNXRPPf19uH5ODD+8da790fO7a7LgLf4q1152dO768Om2HWLuqarshi8faB1+d+7s/9Mfc/O4Fz+f2/BtxTm7uZ6mrL4m1P7k4dw/lwu/GxNor35I7V66q2vH+3F7RV+7V/Hea/GLVq2bE2tPP3TbWPv2W3DnE+F3XibW7fXNirH3KsF6x9ubn3xlrV1Xt8m3u/Olv3+fWPG888uhYe8/7c2vsD+2c26+n5w4TY+1a//RYeuP5cuuW53v2yVh76W8Oi7WrqmaOyz0PO/y03G/pD22firUvuLVnrD3/vrl1ZiO75O7hXLVlbt/eD1/M7eUxcdUjYu2qqlcH7xprH3tobo3+JuNz12bXNuaJtbdYNXcvYZlBa8XaV7+c+x1d5YncefrDPXP3C6uquvUcEWt32SH37qRfnd4u1j52jdy6wjZnfxJrP31u31h71G2598p2PSS3p+jTLy8da1dV7blAbt6r/4q5/dgP/mtu7U2XwZnr8akzZlf9F7YKyr1tGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApmukBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/8feXUbtVd1tv/7niishSCAEQgjBJTjFCVrcnQKlaNEWAoXiRYq7OwUClOIuwT0ECRIgIRAsEIgQ1/1hD8Z4vzzj3d1tr7PPGMfxOSO/ed/3JWvNOddaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHlapQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/Hd78PKtq0Wbdk3vLvzFW01v/mJQv8Vi7bkPaxtr/23JNWLtqqpne34Ta+867MpY+5w2L8TaX9z7YKx9/et9Y+07Ftg11r5o+Fex9ou/vz3Wrqo69+Nfx9rPPLp/rN139iex9gl/fyLWPuCPB8baEzf8LNZe+LrtYu3Dd3sg1p687UKxdlXV7BO659rnHBBrHzDolVj7jlcXj7XbrdEl1j5g5Cax9pqdb4u1f/jskli7quqcLZaMtQ94+PBYe68jp8Ta8798cKz9/Hp/irV7dlsh1h7wZIdYu89RueP0iwZ0jrWrqs6fvnys/fDauXOUBb8/NNYeN3JQrL3OBffF2ie+eXas3avVvbH2Fpf9Jtbe9boesXZV1bh3B8Tax007KtbucOwPsXa/i1+NtRe7pGOs/fLPPWPtXfd8JtY+965jYu2qqmu23T3WPn6DW2LtzxbP/dzfPH9GrP1Ml61i7cY+uTmQzou+Hms/sXabWPv+b/eOtauqrj/8L7H24+vuEmtfvHxufvfELbeItb/qcGqs3b1/bq7xulZjY+0OP+fm+qqqNnjoolj7qUty58S7dsy9xz9Y971Y+4m1Y+naardJsfaA5c+Ptf/487uxdo9Fcnu9qqqW6Zk7hvl8wCmxdvdDc3Pbaz3cOtYee9JZufbdm8ba58/pFmv/ZvXcullV1cDNBsfaq96/bKy9W6NfrL3xyXvF2pvcPTHWvnd67tjpi3FHxtqnbpHb8zSzbXae8+MTL4+1r901N9f4x3659asBS0yNtb/c4LVYe/NRi8Tav+q+Vqz950Ny6yhVVWuv93OsveIJd8fa9x60U6w9a9CqsfZ8l38Ya3+y0OhYe/eTF461H7k1dz48c4GVY+2qqn4jc/tQ7tvgtFh7o3Vy+0A+Oi73N//dKtvH2n0WWCXWXvmGl2Lt37b6Mtauqrp6xdza2YsPzRdrP/T3m2Ptxx8Z3vTmjCmzq/7Y9CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwv0Crf+Yfz2ndpmY3Wv6nxvI/alONpjd/ManllFi75azczz2j9dRYu6qqxeTWsfakVs1/jf9iTsvc37xdi7lj7ektcq+3NpNnxtqN2V1i7ektcq+1Rqs2sXZVVccZuc/1Nh3+qa/df6sOja6x9sTWudfblFm593jLmbnXWqdG7uee3Tb3c0/MHr5UY07uZ2/dclqsPSn4Wm83vWOs3WLO5Fi7bfB4ddLM6bF2y5ktYu0JLWbE2l3bdY61q6omtsq91nsv0jfWntEq913aanbumHGDay6MtV/r9XmsPWZC7rtsucG5Y+XWnbvF2lVVc83+LtZu9F441v5iaO613mn+3N98zPefxtqTvhkZaw985MNY+6ADd4u1u8wYG2tXVS3aeXasvXjX3LHbxx8MjrXHffJBrD1peO57vH0jd45S7XPnw3M1cu+x8NRPNVrkzhNaBNcMW7fM/c2nN3Lrha0qN//SoW3bWDs5x9lmTrtYe/qcObF2VdWcRm4uoEXuLV6tW+feZ+1mzoq1Z7XIHUNMCX6PtwjsNfrF7Fm5Oc5WLXPfZVVVM4Lv8TnB9j+3G+7fa+bM3DHjdltuGmvfdceTsXaX9rl10k+++irWbtcyd8xYVdWq5cRYu3WbeWPtLyfE0tV6em69cpG5c3u9llt+qVh7noV7xdrff5NbQ1l1jRVi7c/fzs1xVlWtudyKsfbC3XJrOPMtmvtOmTqtR6zdY772sXarCT/G2p3adYq1552Ze62NHZ1du/qo5Vyx9vRX3o21F+yZWxtv12vzWPvLUaNi7Wq5UCz92ag3Yu0l2s0fay+wWK5dVbVii+Vi7Q+Hjoy1fxrbO9YePv77WLt9y9z1RzNb5VZqX/kw913WpUNuD8j8fZaOtauqPh+e2weyROfFYu2ho9+LtT8blnmfzfg3rJm16/x5te/Y/D0N6/Y4ounNX7w+46pY+3fLrRFrf7dudu7mpy9zxz7dP/pVrP3mlDGxdmPsiFi72wEHxtqth78Za09t/XWsPbP7TrH2tMWyxz4Ljl8y1h7VPzdPWbmtWvXt3jvH2uv8451Y++l3+sfadUdufffoBU+LtY9pmVv7qaoavGVuXvyuzVeLta+eN7e2fXbXF2PtS9qvFWvf8Or4WHvv7xaMtTc7YOtY+7JdcmtPY3rm9lFUVe2w7aRY++MNt4i1X3nr8Vi7fSP32bbX9avE2ov33DfWPn3MMrH2Opfn1hq/+W3u+KGqaqOLc9dNvTT/9rF2ryN+jrXbvzlPrL3w+Nz1HH3f+DbWHtPt6lj7+fXPjrXnWym4+baquuya25v32CW5CZhJ3+SuQT75vUNj7Z/fy61tt1wwt4dk8hLfxNq3X3ZYrH3SUWvG2lVVA58fEGv/4ewbY+3eqz0ba09e6qdYe2LXM2Ptz+ZaNNZeYkJuT+IRvZ6Ptff5IbdeWFX13AnjYu15T8t9n817au7eVNM2y+3F+HHao7H2on/L7QNZs+22sfalk5+KtfsPfz/Wrqpq3bdrrH3qyBti7QfavxBr91kgt+eo7Sa5/Qhzzs+tTz86T27/63vdH4i1W9+Um/Oqqtrhstw9Ne76cFys/WSfI2PtH5Z7PdZ+fN8lYu2eR34ca+/6bW698Jq5cvfM+ce03WPtXx2SvR/7usNz60dfHXNRrL3nAvvH2nPuyJ2b9d85+LyHh6+MtZ+b81as/ee/5PbevHDq0Fi7qqr36Ny8+sx1c2tXy9+f2+O2RXDT9PEHxdK13+zcHtaHbsxdi/L6Frlzsy265PYcVVU98HluP+cyF90Wa1/ZP3ed3/ThubWMdZbMHUOc9dWwWPsfne+ItQffuFms/fF5J8faVVXLjl421u66U26f2fPn5Z7x8VT7zH0lJsyZXg+kHwAAAAAAAAAAAAAAAAAAAADA/1pvnzW9WrWb3vTuOqfknv181djc8zl2fGVkrH3cwbn7gFRVtXm9X6z9Yq/cPW8Oufz0WPvNA3L3vHnsdyfG2nMax8baF3z7+1h74HtfxNorXzEz1q6q2rVv7h76dx/4Q6x99qcrxdpfPLtorD342Itj7e16vxpr/7xui1j70Bdy9ypc/3fHxNpVVT265e45vOkWa8faj+6RexbNhANPirXnnH1frD3oxHVi7ctWyb3Wnrswd9+6Wb1zz2N5eL7hsXZV1Tbzj4u17xuQewbQTR/k7rXcctblsfbxhz4Wax990D2x9vCFPou1D/+6f6x97g+jY+2qqkfe/3usvdmYm2LtwSOeibUnXrFjrN14/YxY+7IZm8Tah5/0RKw97tXrYu12I+aJtauqhnwyV6z9+SmnxtpL3fRdrH3agL/F2n/d/OlY+8zPcvew779O7jlbf9s298yCTy7IPbexqur6ZTaMtQ/++jex9l9m/C7W/nJC7tkkK/8qd6x+6Y25OZDN37ki1v797blnXR2z6naxdlXVby7/MtbeZZ2BsfZWp24Raw+85fBYe/DodWPtO1cZGWufMSh3PvzuM31j7Y9OXCHWrqo6aIvc8dPey/WItW+ZmDtevmuRrrH2oTfknrt0xjy55x6t/VLue/T865aLtQf0ye692fOZ3FzAUofnnsG8SuPXsfbX3y4da3fdMPec0IcOye1jXXDIu7H2w3/K7SPd/f3cutnMu+fE2lVV+7VeLNb+/cYzYu2Xfp/7fPnyrT6xdqu+S8Xa83z0day9xD25NZzvT9sn1j5o929i7aqqfb65INYecdibsfbrgzeNtRe5OLfv59x9usbaG322cax96FV/irXfveXFWPvtg86JtauqXrpqvVj7y/1zn+uXXJSbWz7qiymx9qC1T4i1pw3IzbEucv9Hsfb+V+bWxue5/LBYu6rqk3/cHmtf+31uz9Phq7eMtfve9kikO3XipKr61/bXPbH5AtWhRet/z4D+Cd/ctlDTm7/oc1buPXrKhCGx9l57fBBrV1UNHp1b95qywDWx9qBtOsbaszYYFWt/0zK31jjvmNzembNG5a6TO3/H3LX23dY9Odauqnr0ltwcxkl75j5fzjhqp1j7L1/l7ivR48ncuteeJ/8Ua2/36Smx9t6Tc5+rB3+dO5+tqjpo7b1i7Xtuyd3TYuv7Y+nqc3judz5l/9y9Y7psmjtWf3j73D6t373RL9b+cPjQWHuHK06NtauqOm58S6zd9pncnPzVl+XuP3f0GsH5ssM+ibWvXemuWHv7drlrhy44Pnfs9F6fg2Ltqqrz3jwg1l7hzNwcSOeFfo61lxvQ/HuJ/uKwrw6OtbuMOj/W/u1Puf2QvS86JNa+75NhsXZV1eD5u8XaN/x8XKy94b25ayNHnpw7dvok9yuvM7adFGuPm//MWLtV/yVj7RcXvDrWrqraaXrz10h/8dfVcucJw1pcGGufOyl3X/KOv7s+1j6n50ax9tavToy1b12ubay9yfK564+rqj7qNSDWvqB7p1j7tj+vGWtPntU71t64Z25f4OdvnBprr3BKbv/rTb/fOdZ+8pPcvVuqqoY8vn6s/bdurWLt5y/LraMc9V3u2qVRPXLHy/POk7t/7nxL5s6PjvvDebF2u/s+j7Wrqu7f+6+x9rDVc/N9S++Su2/wzd1y13Ncvkjue3zb9XN/7+lX5tZRNtjn21j7jgdy11Q8f+Z7sXZV1cgFfoy1+3w6d6x9+taDY+3X2+X2yd/aObfvZ/VlctcfT5iUe631WuIPsXa7u3P3K66qmvh27jzh/Tdyaxkdb889a2LrZbaMtZ8dkbv+6JOdL421Pz03d45w8/a5+7iesfMrsXZV1dbv56672q5V7vf+yFu5+b6d7j0i1h423/ax9r03Za6Frara8sLcfSVWWy43D3DXX/4ca1dV3bdd7pqzXRvnxtoDL86dF7YZ1C/SnThnelX93+/t0PjPDwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP8WjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0yo9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC/242njagOXdo0vbvkwmOa3vzF+N6jY+2Z3xwSa78368FYu6rqmnXfjbWH/eGGWPu8m66OtZ+44cdY+6zHOsbad57fOtaeOfKWWHvzHdrG2lVVT/7091h75pN7xtojV34t1n53w6di7aMvPSDWvufAu2PtLXa8MtY+9ooNYu31Tz0l1q6q2vC962Ptax8/Mda+4LZ1Yu29enWNtQcd8E2sfdUzj8faJ3UeHGsPOvO+WLuq6s219oq11//r2Fh7w0UXiLUf2y933NbiliGx9v1tbo61l31lnlh724HXxto9tu0ca1dV3TnX+rH2yDdPj7XPvDB3nrDiN9fF2pf89c1Yu+PEw2LtJxdsH2vfuvaxsfb4VhfH2lVVD1z0Qaw99eozY+2FT3k/1t5s5r2x9k73XhFrj369U6x9wZijY+3VJt8ea1dVDbngu1h78tSfYu0TOj4fa597Z+4Yos+nX8Xa7/zQL9bus/YisfYeB54Xax+/7L6xdlXVxUNy5ygXfJ/7XL9k+d1j7Z/++HSsve+2ufm+UQs9G2vf+cHsWHuljy+Itauq2vd8Pdae+4YjY+01Wr8aa08aljtu+3DnXWLtxz7O7Uk4eWhuPeGL956Jtb/e6OxYu6pqxiJzYu2rH8q91j8Y2CLWPnG/QbH22mevF2tP+PKvsfaOS24Wa8/1RPP3zv6fjhy1Xay9/9jcnqe+o9+Jtb874M5Y++6B+8XaA++aGGuvf+hfYu1Bp+XOUca9n9uDUlXV/be519tOr5wVaz92fo9Y+9zd54u1F5nzu1i71Wu/jbUnnLpdrD37j7l1+aqqR3ebFGtvN+jQWPu7EdNi7RGNjWPto1rn9lR+OiF37HTLswfG2m+edn6s/evDc3MgVVUfHJ17rT++T24PzLSVc+fjbxwxNNYes/y4WPuGjj1j7Vf3PzXWXmJU7nq3qqo7j8ztQ3ngxa1i7UP/ktt39ORzw5venDFrQlXN3fQuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8N+v1T/zj7vU/NWuWv+nxvI/mtahS9Obv5i3x9Kx9oyefWLt9kssH2tXVXVatFusPWvhtrF2yzaxdM1u0yLWbtkulq4ZkyfH2u3aN//z9BcTp0+JtadNC77Qq6rtjHGx9rg2nWLtjrPmxNqLdv6nDjf+rWbMyL3PWs6eHmvPDByv/aLRyLXnzJgWa1dVTZ8yNdb++dHHYu2xN1wUa1fribH0nOCBW8tpuddai1a5Y8bJs2bF2tUy9122+Forx9pVVYusv1qs3bbDXLF2h66TYu3WMxaMtT995vZYu+N6ubmf0b2WiLU7zvgk1l54Sq9Yu6pqysTc5/pc7XLzTl+Ozv3N3x78Tqy9+qp9Y+3F5svN/XRaLfc9/uoz78faa60/I9auqmpMbcTa30//KtYe+mXutX7HuVfE2h1ypyg1o9Ey1m4xJzfX16pl7pfeJfj3rqpqUe1j7Wmzc3/zFo1cO3eWUNUy93VSjdm5Y+XWLXLrpNNb5eZf2gWnnf5fuRfc7OCyXefZuTn9ScEF6vZdcnM/bWbPjLVnTPg61p7SInfc1nJOrl1V1Sr42dqycscQX1fuvHSXPXaItb/+OndO+uGo72PtHu06xtqjxuXWEpZatHusXVU1X6dFYu3WXXOfbV079oi1l1h19Vj7+x9yny9z2uR+50susFCs/cG3ub0QL7/8Qqy9/nq5NbuqqvHjcucoYyp33Dj3tNwet2++HxFrV8fcd2lwGaPazcodv3TrFpxfnZI9N5v0U+58/NVPRsXaq85eIdbu0fG9WLvb4j1j7Y/fyX2udu8a3CPfcd5Ye+rk3J7pqqoOnXLHL8uvsn6s/dOPo2PtxRbKXWvXZsansfaYbz+PtX/qkFvIaBu8trFnp9yxU1XV521yi2fffj0+1p4cvDZhZtvMfNvMlv/6seoP+81bkwJ7aOZukXuf/HzAfLH2xwO2jrV7fXhXrF1VtcSGz8faK3fPzZlNeuGoWPvTXd+MtZf5MnfMN/DXZ8TaW7cdG2sv3mGDWPvD3c+Ptauqlpt8Vqw97f5zYu3z1voo1p57x9w5xuNzcj/3H9/OrW3PtXLuvjV1xMOxdP8Fc3sZqqq6/PR0rH31+DGx9twf565PfKBb51h72MQNY+3VT7k11h7zbW7+5I33lou1t7//uli7zR8PjrWrqn7e58RY++O1cnt/T7ttqVj7keW+iLW/vz03F7D44Nw9/8Z+mFtrfHj8y7F27/EdYu2qquf65z7Xe878ONZuPyJ3sdwTb+b2BX68XW5tu3ebLWLt0f/IXWs/4Z3c/QY/uTo3D1BVtfoBQ2Lt/TbM3a9nk49y50efnPPHWPvrPe+LtQ/7JLdXqu2s3rH2sc8uE2u/fED28+WDVbeNtddrPTTWnvbmOrH2Qh23j7VX2yB3j8dBQ3PXVHT7MneNXoeOueO25/qNi7WrqhY9sn+sffPJsXQt9Ldfx9oTP8jtGVp1+UVj7bX2zV1L0u+Lv8TaS/UZFmsvMS53rVpV1Vzz5j7X7+96fazd9se9Yu1DDt451j5q4rmx9grX5NaPVu74RKz9za+fjbVXXnyVWLuq6u8n5fZU7vr3H2Pt0dvOH2sfs9bGsXZjTm7d7K+P3hBrv7NS7jr/14L7vBZ877NY+/Blcp8tVVXPbZVby+h5RW7ea7Ufcs89ePXp3J6AUfMPiLU3uWqrWPvYKYfF2v3WujvWXuzUXWPtqqqf2u8Wa598xoOx9lqrPRprD++cW0dp80Vu/8vMl56Ktafce0Ssff5euftSXddp4Vi7qmq3LrlrgL7703ex9jKrfhtrT338oFj77r6577Ov5srdNOfF0WvF2p/ONyjWfv6xe2Ltqqrl1s89M+r6d3LnCSNafhNrdz0k83PPmTah6oqbI20AAAAAAAAAAAAAAAAAAAD+97t+pWHVuWPznzn+2FJrNL35i91P6RJrt71qo1j74e1XjbWrqp7cb0Ks/atlcs/qvHXP3LNhl179tFj7jtcGxtpnjPgk1v74mbVj7eveODPWfvOwT2PtqqqOq+buY//BK71i7a8PHh9r77DsZbH258+9H2t/v1buuWpXzM49b2rF/rnnPZ12Y+5+fVVV4z64Oda+svWfYu3zN3sg1j73u9zzvj9Y/LlYe5vd3oi1RzYujbUXG7hjrL3R+bljxn3m/1WsXVU1ZI3ccyP3PzL3DOQHJ+b+5vuO2CDWfnSRnWLth4bl7t2//Gq5+1v3fH9SrD3jwtz9rauq3l41Nxdw5h9OibWf2z53btZ969xztrpddlKsfeL0e2PtEVflfucbvf1BrH3JmNyzpqqqDt4995yMgZs/Hmvftn3unPjDAfPE2t1v+jrWnn7tObH2u/veFmuPueH7WPuPvVaMtauqhm2VWz+6Y2LHWHu9/rnjlx/7zY61V9pzu1j78XdzzyhdZcvcs0GOGZ17Pkfnq/4aa1dVtTtth1j79L4fx9pX/GFKrD1np9wzSm+dnjs/eqPP2Fj70nWOjbXf3iX3O1/m/Kdj7aqqX+2Qm3vaeYvcs2FvezH37OmvLtos1t53j9w5yqa/2ifWvvvVa2Pt47baJtYeMS23F6Kq6vE+u8Ta3Re/I9Z+fkjutd79xBVi7asaP8TaE/6aW7vqM/H+WHvi0CVi7Z1uvTPW3vGM7L7ClfpeHmsPPjd33Dbn6Nyz7T9qm1sjHjv5xFj7D/N1iLXPXT73bNaV+/ePtXd8Nbdnuqqq5eLDY+19X38v1p751Gqx9nzH5vZbnXPNTbH25t1ye/v2+Sx37dOwG86PtS9ebt9Yu6rq2Xa5ZwEPaZub0x+/d27tap+JuXOUPa94PtZe/q0XYu1tH/4w1v71tmfE2lftsWWsXVW1/M65PU9XX/torD319fli7a4HZvbJT5k141/+P949+pZq17b512BP+lVubvirkbn9IxesnbtG78tbct9FVVUnrvllrL3Rx3PH2hsuldsD2+bt3Dnlvqd0i7XPvm29WLvvmbn9/c/Om1uHaHNEbm9/VdUPQ3N71Da/4bhYe+NLcteLXXBgbr/1b2bm7luzzym5/be3/3FErL3Y8blrnx/8sV+sXVV1RP8NY+32B+WO3U66uF+sfc8VR8baE047KtY+6rLcMeOY+7aIte9ZK7eXYZMrfh1rH9wxd8+aqqp9n34p1t7/kSdj7fNWzV2nt8gm+8Xax7TOrbNe9NvNc+31lo61Z+z821h78SNfjLWrqo6cmbuvRKtHZsXaizZye2dumTu3l+H4Mf/63PT/X1MfOSbWnrdN7nv0xet/E2vfMmxOrF1Vdf/ZPWPtad/l9h3f931uP8H9qwWvY1kpN++015h1Y+15jmobax8zat5Yu/ceuf0jVVX/6LlXrH32ol/F2jPezN2zeOx5rWPtf2w7ONb+/Ta5+5nucMMlsfawj36Otd8dmNuLWVV16cjcdRXHz8zdZ+DT2bn7c+/fZf9Yu9+JnWPtF4bnro1cZp/c+vRPu/8u1l7i4uy+wA9n5/YFPv3kCbH2G4cOjbVnrrNnrD1P+8Ni7XtW6BFrb3jnFbH2Zp2virV/uPStWLuq6ufeI2PtHZfL3UPlnsVz+yEWvSX3XfrEhzfE2ne8uU6sfc8638Tah7dbNNZuuezesfbRT+0ba1dV3Xnx6Fh78OG56xpGLp67j+uZN/4j1n7w9Ny89n779om1jxjdN9buPPD6WHvnVbaPtauqxt2Ruw/blN1y9zEZsWRuz/SA28+KtbffJHd/hSGH5Z472e3Rv8Xaaw7O7ZGfvHvudV5V9c3Q3J7KXc/LtRc7JLfn6cmOuf0v6x40INaedVXu3nNHr5BbG1/us61j7ZNOGBVrV1UdcH/uXq6fb3hNrL3F+rvF2vfPn1mzmzR9ZtUt//d/1/jPDwUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP8WjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0yo9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC/26BTj682bTo3vfvtwKFNb/7i04uWjbUb09+Ote+4b9FYu6pq37azY+0b3r0z1u699Yux9tL7TYq191rjr7H2+KGfxtqPt/tbrL1Fi+Z/lv+flmjzSaz9be8/xNrzbjo91t74jKdj7THnj461V1yqVaw99IeDY+0vT859tr14+paxdlXVBV23irWvOeLBWHvBNeeKtedec2qsvec7X8faI+7rF2tvN26FWHu9d/eJtauqHvno41j744svjrVP+uHWWHvNTmNj7QU6fhFr73/M/rH2S30eirVXXOn2WHvati/H2lVVrXrOirUHt82dHy3/+76x9uo3fxdrTz/mrlj7zednxtrz/ubKWPvcD56LtVe/4YJYu6rqk+m59/hi1+Xe49vNyB23rTvqT7F27/1y87trHt061v7qyFVi7V4jzoq1q6pOPvbvsfYuL68Xay9x9vmx9vsTusfaqx+dm2Pd6c7cXOO9D/4m1h61cLtYe+XPxsfaVVWXnLN3rL370+/G2r22ye0LWOBPN8XaGwTXxv+wwZqx9p7vNWLtzQZ2i7Wrqk7aK7dmuOzaLWPtxpenxdq3Lt0x1r6q6zax9nGX/hhr9/06N/+y88g3Y+2OB7SPtauqLrz6y1h77F3zx9rv9Vkm1l5uyhKx9sIzF4q17xn8XKy9xi33xdqHfPFMrF1VVQt1iKU3XiA3/3Piybnj5dfGD4+1+902MNZe86QusfZFQ3NzAQ93uTTWvqbrGrF2VdWqY++ItR/76bBYe6XVN461H7g+d/zy15dzezGW3G3TWPvZnhNj7WuXi6Wrqmr57w6Ita+fK7cPpc2Ju8XaPWYeGms/dGZufnePs9ePtWdevUes/cnhV8fa+y23TqxdVdXuTxfG2t3XOyPWfmz93FrGNWfljlk7f/9BrH3at7k9tKe8s0OsffruN8TaVVUPXZvbj7HKa8fH2p1m7hVrL1LNv5Z49vSJVSOangUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+F2j1z/zjBQfeVB06dvlPjeV/NLEmNr35i1azWsTas1rMiLWHfDU21q6q6jhteKy9TOfVY+2O7SbE2mf87blY+8DN1461hwyfGWt3WWh6rD1f686x9tdTcp/pVVWrL9wr1h7yzahYe9Ve3WPtFrNj6erWyH2PT57TOtaeMyt3DNFidu4P3rJt7u9dVdUq+Hqbuc76sfbHN54ea883Nfd6m9PIfY93atuItRszpsbasxu545duKy0Va3deZ/lYu6qq+2orxtqN6bnXegU/01vMmhNr95r6Waw9duAjsfa0tXNzEN/Ou2Cs/cPY72PtqqqFOubOzcbPzL3Hp/6YO4ZYeoWFY+0b734q1t509dVi7SljP4m1v/0xd9z2xPNfxdpVVQcdcFysffJZJ8Xa7Vu0j7W/m5r7bOvWok2s3bZFbm65feX+3jNazoq1W81qGWtXVbVvkTuGmNMqd57QJvcnr0ltcr/zjsHX25zgeeGMtrF0tZwTfI81cp/pVVUtc1P6NX3O5Fh72R0HxNpd28wda7fqlnutt/ypU6z9U4vcGvEj954Ta7efll0bb9HIzbF+MfPnWHuL3/w21p4wMbff6tNRP8bandvOF2u365Y7P1qyU+7gafrESbF2VdX2vz0h1p7VMrdG/PWUcbH2amstE2t/OmShWLvX4gvE2q++9nys/dmwd2LtXgvnPldHvNUh1q6q+n7cc7F2jwU2ibVff+uZWLvFlNzrbci7r8TaM2f/U5dv/Fv1W32NWHvKD9Ni7XZLZed+hg/+PNZerFe3WPv777+NtVvMl5vzWrRb7lqUvhv3jbU//zL39/5p/Ouxdp/eub27VVUjvsidl7aZmZsLWHu9lWLtDo35Y+2hM+eKtYe1yX2XDnvjg1h7nsrNQSy7fG4eoKpqmZVycwFD3xkSa48dPW+s3b5b86/ZrqpqOeNff39/tPG11a5189eg5tm4d9Obv2jsk7sGeNjx42Ptn1cLXiBYVc+89UKsfeRWudfbylvcFWvfe0Vwn9hhuY0Ubz/4Ray9+6arxNrtnr071r5vz9z3f1XVklOHxdpPnpl7ve14w5Ox9jOt1421V1m0R6y9+EsfxtqDn8vtH/nqy7Vi7U7v5dZAqqr67rRyrD3jN7m1iMYaZ8XaF7+dW3taoNMTsfZTpy0aax/2Ym7P86ezctc+v/3z32Lt9ba5Ntauqjq353Ox9tPPjom1X17pkFh7meGZeaOqqj3HXRVrn3/SrbH2K0fljtN/u/qmsXaHz++PtauqRo3I7b+d3T93njDoz9fH2jM3yV1bcMutuXtybbn7FbH2kL4vx9rPPXBkrL3Oka/G2lVVK22WW2f9unXumvOPXls81r7o29zx8gVdc/tQ/7DMwFh7lU9XjbUnLJFbYx3/1n2xdlXVAZvm9uYte8COsfaTLXP3UFnz4dxehocXzu1JnPBNn1h71hm5a5cWvCg37zTPtC1j7aqquVZ7INY++KvcnNvi5/ePtVe7KPddOml6bq30ibG5Pai7HJKbU3/9+2dj7WcPzN2TvKqq+wO579Ivp+fmX448MbfnqMM7ubnGAZ22ibV3GP5TrD1gq9yeoxW32SzW7rJ8v1i7qurCYQfH2i2PbBdrv7dl7rNtq6m7x9p3zv9crH3Sso/H2kNn5a5HfemC3HfZ0EUWi7U3XemhWLuqavq1H8fa3X/MXa92zZTvYu2VDvhNrP3W2NyegAnb5eaWF/lT7rU2ukfuvPDHw3P3nquqmn1Nbs/2Pn1y+wqXmJS7N3jr+XL3QTtqo6Vj7U+Wzu0dXu/03FzfvSPPiLVnP7NkrF1V9dP9uef4LPF4bv3o45dzxxCX7pm73uzdjrnXW49bcte6fXPxr2Ltfp12i7Vfuz/3O6+qerJ97mfff4E7Y+3Vu5wWa3f8KvO5OnPGjMqtogAAAAAAAAAAAAAAAAAAAPC/3aYXL1CN1h2b3r1l5I9Nb/5ivn7fxtpT+t8Ya49aI/cc4Kqqk19cJNYe++NWsXaP9rn7367dN/ds+w+fei7Wvuq652Ptz4bl7ml+z4O5e6Hud+4tsXZV1bDnLo+1lxzybqz95pa5e/28udibsfY6f8p9n7wwKfce33blQ2Ptn8YvH2vvs3Hu566q2ujY3P1ID/1ig1h76kMnxNqX7PZNrP3IdwfF2i2veivW3uWKkbH25a/m7ou57yO5Z13tPT33fI6qqh9ffjHWHv1k7rhxl8VyP/eEW3LPCd2rf+7ZiYvvu0Ksveeya8Taz71/dqx98FKfxdpVVd1PzN0L9cq3c8eNo1/Kvc9+2vXmWHuBuY+ItQ/dZ4lY+9pXZ8XaQ189Kta+/cfcc9Wqqjo9eF6sffjIdWPtf7S+ONbu12OfWPv0eXLvs0d3uCnW7rRO7rkkx73waqw9d9tjYu2qqku7zRdrjx+em2u8+LY/x9pn3bROrH3hCovH2t+un1sb33NQ7n125JW5z5fFui0Va1dVXTLgjlh7o/Nya1dfDLoq1t5rpXGx9vt3bxhrnzeoS6x9z2tXx9oXvZx7vvvLG+fWaKuqBmzzYay9x7jjYu0td50ca4+/p3us/fgu02Ltjh8uHGvv0So393PLX9rE2jfs/YdYu6pq39fXi7W3efydWPv5R+6Pta97755Y+8IRufPCQW2eirVP/3Nuzuv4w3PP6vzdM7l1s5eeyT5ZbdvJuX1m1/T9NNZecvHcd8p+U46Ktftf9kasfffg3DrKgN/n9jud+cwFsfafn9g01q6qOnKl3F6vwae0j7Xv3GetWPuowf1i7XeO3yDWvviJkbH29Jl/j7U/7vFFrP3lvrn5j6qqK89cLNY+4Z2FYu1DFso993rtvT6ItRfZakis/eBVM2PtFrM+irXPeuqrWHuDN3PXNlZVte2ZW08Y2umQWHvej/rF2sefnpkDmT15TtXO/9r/cfbEq6vFjHb/ngH9E87fZ6OmN3+x7pLrx9onLZp7f57wp/GxdlXVcg/0irVf6J/bq7Vdj+ti7YtXyu2VenbItbF29ycei7WPn9Qt1r5z59x113NPyl2TWVV11t+2i7XbHJvbO3PbWbnrpr5dJ3dO2enq3L08dt64X6w9Y/h3sfYq/Z+ItY87ILfPvKpq31enxtqbDMzdQ6XlNSfH2q902yTWHrNh61h75DrNvw/YLw564txY+8ZfHRVr77vnk7H23KvPHWtXVW111MhY+4RDx8TaQ/Z4INbu9mnuvLDRu3OsPf31i2Lt90ftEmuf+HDu8+W5W3PfJ1VV24+7ItY+q8ORsXbvv+eOWR8ZkfudT1jj1lh7ztW5+yvM3iF3f4O7V8td+9xl0dy9yKqquo49PNbebbMtYu1WLw6Nte8bvGesPWTd3L3IPll791j7w+vOjLVHr5e7H9jr9+T2uFdVfdg+t9/7rIP3jbUX3KN/rL1B+41j7TnP5q4RvGb4orH2xdccG2sPmtX8fQi/eOfQ3HphVdU5P5wfa283aMFYe8o+l8XaRyy/aKz9yBq5a3juWfWoWHvv3hfG2mvcvHWsvdFc2eum/rHbb2PtFSeeFGvPHp+bV5+159Kx9rUf/CXW7rZ/bk79zBa5vb9/Piu3r3DujbaNtauqLv0+d/1Q+6P2iLX32Cx33+ArVr8+1l77xkGx9sChuT0Bi7y7fazdavezYu1+p+Xuezf34VfG2lVVL0zNrWVsfk7uPT67d+5a+6tvy+1pvGRs7jk6o2/LrSU8stclsfZan64Way8zsm+sXVX1zru5awTf6pG7J9dZ9x4caz89Jvdstme2yN1fYYmWw2Pt1R7fNdb+/Rm5v/eJ7+0Va1dVnXRe7jmnlz+Uuw/bgr3mibVX3D13Pv73z3NrODu8/UysffP+X8fac721d6y9brfce6yq6qCXNo+1Dx2bO2Y9553c37zbzZn7t0yYPKvq/8Mjwhr/+aEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDfopEeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP/D3n3H7znf/99/5UzyiSwZZoKIEGKkEis2ofau2nurrUoVLdpSe7WoWaX2rtgrVgiCGBE7IkQIInvn+suf39v1+179fs/n73bd7ve/3TyOJJ/PeR7H+3gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB52vx3/uMxLbNqoXaz/reu5b/UdWrrpjd/cv9bP8baO/brGmu3tO0Qa1dV9VuhV6z93LgxsfZmiy4Raz9z+Cqx9iMz28baW/ZaJNZuPW9+rN2qpRFrrzCvS6xdVTV13nexdt9ei8Xa7efNjrVbd8r9m7eZNyfW7ly5+5c583O/4zOn5T7b2jZaxdpVVT9OnRZrz67m36P/ZMEKy8TaY957N9buPD/3O/5Do1Os3bHDorF29zWWjLXf//H7WPuHEcNi7aqqajs9l16Qey5cZrncPcT8drnnwvbLD4y1W3/3Taw97d73Yu3Ja30Za0/qtmasXVXVc7WVYu3Ojdz98pRvX4u19zvmz7F2374bxtrnXXBerL1Uu9x9W8tC3WLttjPaxdpVVX845aRYu1OPhWLt99/9ONZu1SH3bz595txYu03lxiHmtcrdr7aZF0vX3PnBeFW1buR+1lvPC/7Zg2Mgi7ZqH2vPnj8z1m7bJvf50iH47z09+GPe0ip7/zKtzYxYe/ENBsfanRfNvTdr2zb37qpdt9z76Tnzxsfaneb/EGtvcdBZsfadV/8q1q6qaszNfb7NbJ0bf1l3rc1j7WefuifWnj49dw+x2W4bxdpzf8h9ts1bqHus3bdbz1i7qmqhxXPzAhbq1CfW7t8z99k2O/g7vsLq/61pxv+jvv8m9/5o8rSpsfZ3E8fE2tMn5O7b5rVaEGtXVU35Lje/bsq8CbF2p9YLx9ojP30h1l62R27+y5x5ufv0Hn1y36PPfHpvrL18l76xdlXVssvl5oF0bcmNQ8xeMDHWnvrdpFi7U78psfaXX+W+y36++dax9rChuZ/zRZbNzZ+tquq0yHqx9ssv5uY1LtE59zzesUvuu7T7PsvH2quOys3zWnbVcbF22wm5uX3du38Qa1dVLdwhN5d0bMvYWLtX79yY19orZsa1Z8ycWbfVM//R/+Pb08dUu87NX4vcY37uefaBobk57ieu0zvWHtH74Fi7qmrIYRfF2tdcmlv/3P7Y3DqaK+Z1jbXv6dsv1t5qSu45vt9ZQ2LtN9bMrU0868KPYu2qqqU22D3WnjSkR659Ve657t8f5+btTJ8TbPc8JNbu/9yZsfbli+X2MFlv80di7aqqte7PvV+++8vcXNA/t10q1j5/sdwc+3Gf5famOvSA3JjVu58MiLVX3i/3d37zqY/F2vNbvRJrV1Vd3OXpWPurj3P7SnT4bkSs3XmN1WPtmaN3jLU3W+fzWLvfv96JtY/bKjdX6ovPcmMQVVVDVvh1rP3ZU8fF2h13z/25L98tNz/uwx53xdqbXPe7WPvgSZvE2tdclnvH+ukzufu2qqrtnn0p1p74w9qx9l4bPhtrb7FS/1h7lSm55+GO3XPtFT7MzR/ZZ93Jsfaluy4da1dVDX2ya6y9W9+XY+2Nl8nNITlhna9j7UW/yL1HuWaZPWPtH87OPR/9oueKsfZbW+X2bqmqurfbNrH2wKMnxdp7jl4u1v5sQW6fxW+65MZ+1p70Vqz9VOdvY+2D++wQaz8yIzfmVVX1wn658ybWeyS3fujQeirWvnbCWrH2O11zczE23zu3/vnMNY6Mtbd7dtNYu//+2XWZXd7JrUmdf0XuGeXYTUbH2mODv+Of9nor1l5v7g2x9pNP5dbJ/WzSyFj74/p3rH3Ge8Nj7aqqPz76Raw9+qj1Y+39Grm1cidedlCs/e4vcuPaiw/OzZH/88jc3rltN8/9jt1/fe4smaqqmzfJjbkd//QBsfaFI8+Ktbt9MSDWnv9t7h3O1O87x9rbnrh4rP16q81i7TZ37R1rV1UN2DS3d+/bT+XG1fs8OybWfuWm3L41gy49NNbue+EZsfY3H94day/oNibW3njRf8XaVVVjTj4q1v79rbmxxmdnXx1rH9SSeUaZXnP/wxXnVU/c168agfMjD1vx0aY3f/L7h46NtffpkTt7aPL7uef4qqo7X8zNndntztx5Uzefck2ufc8vYu0dd8+t+75gpxNj7VZ7594vn/JM7qzOqqoTu+T+3pcZnzvn/IH3c891d22RGxt+9Mzcmor73s7t7XDc7nfE2jvsdlasPWFwdk+tD3/bEmt/dvWtsfa+b+fm7dx4/Dqx9oS5ubmYwy7NHbx00eO5caOfbZP7Dq+qeuaE3DuYvW48NdbecNsrY+1v78+NW70yf4tYe/TauXWZA1fP7Uc6b3LunNDl783dK1dVDX45t8/AJg/kvksfWXPfWHulDXLzOK6645ex9uP3/jXWbnXUfzo6/P/dwnvk9nKfMeD2WLuqav/zc2veN1l6QKz9+K9XiLXX2vHNWPuwNd6ItU/ru2ysPfmcI2LtzW7Mjf1UVX3+em6O3Gd7nBNrD3n//Vj7b5dtGGtP2zp3ZuXFwTOQDxuWWzd1VqfcHLXuu+Tu06uqej6dO9/s3NVz76inLJz7Nx94Ve4ZZcZGXWPtf+6U26vooLNGxdr9Lzgm1q6qenTV92LtH/qPibX3uCS3Z/Lto3NzYEa3y9239d00t67irnm5e6f7Lzs61t5nldzeMVVVw1+aFGt/+XnuDOZPB+XmPe/UJzcX49CtcuN93777x1j7wSG5dTTL/Tu7Xm3hIWfH2t92y+0VvUPrTrH2Mc/kzsU97MbcuPrhrXNndR3+6i6x9ktfrxtrb75Mbly7qmrEyMGx9sjtnoy1b7opNxZw3k3dYu1v9s6dE/Zpm5Ni7T22uT7W/mZ87r18VVXHU34Va3f4e+737PWbcz9vNeVPsfShp+f2aJr+0GGx9nIr7hxr3/x4bm3kq99mn1EOuvLTWPvt3rn56isPz72v3Ld/7t7pittyZ3wc+kXurIs1ds99n3zx9F9i7aqqQyfk9q5Z6R+5+6cjf5Xby3Xgbs2fsz1j2qw65p//2f9jyu5zq9Gh+WcJDr8qtz7wjL/m1gBvPm/TWPvGB3O/H1VVE5+9P9b+14/jYu1L2uX2AblyfG4f+SOnvBprjzgl9w5kwbW5f+/fPLxarN26XfYd66Sum8fa14/MnSPY4+hVY+3Rz+TWZZ6xWW4PtYN2zM1JPOf83Bq9L3+b+x49/bLc2axVVZ1u/jDW/mD33JlPey/IjV/svHFuLey6I26JtfvtmNs/f/nf5MYIh3z/Zax92Oe5sxpOWDH3566qGvvW/rH22yvn1jW0vij3fbbtPbm5Ur97Yo1Ye8gK58XaJy2We0bofWZu7kr/28Lz6//RNtZe+vHce86dX889E089LbfH42rf5d79nP7OK7H2lZ0vjLW7bJR7vzptZm5Mvarq7k6fxdpd/prb07znrn+PtS8Yn/s7f+Sai2PtF254MdZ+ul3uHuKNo3NzzHuemlubWFW18xvPxtrt2uT2h7pgr69i7XVfy91DTLkl94zSecVrY+131jwt1t5+lUasPeL+7F6qa213QqzdreXpWHv5QZNi7cHr5Ob27/P41rH2WT1yZz/37p77XP3rybmzrvqttlSsXVV11XW581kH7p3bp2jJqy+PtTdv1SPWnjdncqw9+ejc+8ItDsztRdbj+vti7YW2ze1JXlW11zZdY+0ZO28Va7/12gmx9sZHjom13zp4r1j7guBeGrdPyu0TdPjgPrH2yP3WjrUP+nNuj6KqqjP6vx1rd5uYO5tt5QNy+5m23iN3psvkt2fG2t90eC7W7nDttrH2qH65M9aXPjO3p2dV1d9P2SPWfrDP8bH2kuNz+xvUQ7mz2ZZ+Lnf+4e/Xzu2B36/DwbH2cTvlnhG6H587f7mq6uKLz421V38it4fs7X/PjXnddnBu3fVzqz4ca/9pq9w9xBc7/RhrH/LubbH2ykNy72irqs4/Onfe96S3cu8yPtp3kVj7uW8uiXSnzphR69R/9tn24DPvVMfWzT87svM7ubGbRR7JnW12cOXus8ds2jHWrqq6+Obcs3yHTXPvA37/Zu7eZ9Mt74y1z56waaw9Y1zuWfqrk7eLtae0GR9r7zs5t39aVdX0kbn3II/fnzsb5JbdFsTaJw9cItZ+5szcOpqhLbnPl5bTT461z7ssd77XAR1ze0NWVR3yzydi7dV/kVuXOejzi2Lt61bK3bdd9dApsfY+i+XO55j7fe677P29l461b+hwVaw96JbHY+2qqv3WGhlrv7JS7h7iyPG59Rx/eGLjWPvOw3Lvva7uk5vjvsH768faT76ZW3/cqt91sXZV1aCHPo+139whtw/q+LVye8AN+ujmWHv5zXL7aYy6dKdY+5KdcmuAD5qTmxvXt3PufrWqaqFPc/sF7fHDirH206NyawRPefbBWLvr+bn17q2G5O7bOu/961j7ta1z8yg2PmtsrF1VNa7vCbH24lc3//3sT54/q32sPfT+3N75j3SdHmt/+MLfYu2D38vdK+/yWm6+9WVfXhZrV1WNvCG3J9dFFx8Raw/6Y+4Mnm2uvyHW7nZRbo/qMcNzeyTtcs7AWLvP0r+LtX/1Q+7ddFXVus/vEGvff8OmsfZpW+b2z53Y7qBY+57RuXeVGy6b28vjx8NzayPX3qVNrH3Pj4fH2lVVKy6W21fi5BVz57tPfS935sIj+58ea996U24Nz/udusfam+w8Kde+Krfn36D7cver3a5ZL9auqrp2wKxYe8rDufe0G1w/PNa++k83xdr7LzU01j70qNxZWU+dlJtHev8TuXO6HjwrN9ZXVbXESbn9c5c6ZUqsvdjm28faLUNy74h3mbVNrN2SW35ca5x2Qaz95fjcnuhXbJU7L6qqas3Jubk3H22dGws49Z1DY+35/8rtFfTb83eLtffuPiLWPqlHbrzt32fn7pU7rZv9fOl8fW59wFm5KQm1To/ceVV3js/MK5wyY3ZVvfn/+t/ldg8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpGukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHna/Hf+417z21WH+e3+t67lv9RqiZlNb/6kpVOrWHuhldvH2t1HzIi1q6oW6dSItQf37htrd1w097P+0efzY+3Wi7eNtcd880OsPeHLCbn2xNzP2lLLLRtrV1V1WDA71h4/fXKsvcQKub/3RqsFsfas3MdLtam5sXar+bnP9Ebr3J97bpv/1q3t/7jOHXL3bvNn5P7Nq1Puzz1+/qxYu2WFfrH24M3Wi7W/njkt1m41O/cdvtX6W8Xao78YH2tXVb35ydRYe9aPL8fa/TusEWsv2z13z9hmoUVi7U1+fkCsPfjnub/zL0aNi7W/njMn1q6q6jIu92dfpEenWHuX7daPtd999b5Ye7k11oq11xo4ONZ+ftgLsfaeO+XuV59/fXisXVXVvefCsfZHn42JtQeu1DPWHjV2Uqw9fdbEWLvLgtzA04IFrWPtVq1z783at5oXa1dVtWrJjXO25Ib0q21wzK11cJyzS5uWWHte8D3G/AW53/HOjVz7x+C4dlXVzLm5P/tqGx4Ya3dakPtwm9lmoVi7zazcuPbMlg6x9sTvloy1uy8aS9f0+bn7tqqqTl1y96yXX3xtrD1t+vRYe4VVesfa1bprLN12fu67bJ0B68Tai62wZqw9+vUnY+2qqjlTc+8MZ09+MdZuTFsq1p45N3fP+k1wjtv06T/G2t9PyY07TZqSu4f4emLumbTrUsvF2lVVyyyfG1ues1DHWPvjUSNj7ZaOufG27775MtZu3XOFWHv8hE9i7Q4Lcs/ibVtl343PaZ/7s89cKPe5Pm9G7rNtoTa5OY0jX/0o1h48eNtY+8uxb8XaGw5eJdbu169/rF1VNW927n65f7+dY+0+PbrG2nNnTYq1J/yYey7ssWLuZ32Jtrl3CcNafRVrT/4wuBCmqpbdcLFYe6meuWfDpTrk1rO2bcmMBcz9H3iP0fOScbVQS/PveRf+9T5Nb/5kuW+firWXXC73XDf3w9x866qqoXutHmvvtHHvWHvuirn3XjPXvjHWHvjmu7H2Q59vFGuvP+vYWPuAp34Va0898LFYu6pqoVdz4ydrt7oi1t720c9j7S0WfzTWvvuB3PvlJdvk7rM/67RNrL34F2/H2gNnbRBrV1U9Wbnf8fUPz/28nfRi7rluw7dvi7X/3fPmWLvvVm/G2lP658asbgvukXT+Fbn71dFP3x1rV1W98qfcvjU9t9w61p7QPzcHdqevJsXad543JtZe/KQtY+1vNzwq1v7bxNzz0QlH5NYmVlV9PuTwWLvvkNycoaWO3CvWPuDp3H3bJ+vl1n1v9ua+sfZrw1aKtY/5+JtY+4TTsu+9Dnhsh1h76sO5+d69Z/aOtUfO6xxrX9Ql97P+t1X2jrWHDcu9uzrk49zz0Y5vvR5rV1W9/3Run6QVv8it+55wyG6x9um/zr0vfPC3uT3gVhia25/plVa5eRTj+ywea38z5dZYu6pqoS57xNprLXdMrP3Kgtx+YO88n1uEvM2p58fa7Ybl3hEv0Sn3fDT52d1j7b5TesTaVVUjWjaNtee/n9uHrffPc/fL5/zQK9Z+eNdXYu0VXsjNf1m3de45YcwS+8faS734m1i7qmpe/9xauUe3fz/WHvpSbo79Dp3+GWsvNK5rrP30Nrl3GXNuGxZrj924W6x9yZsXxtonLTgh1q6q+tVruXGI+3YcE2t//+EdsfbT6+feH605+qJY+4vPc+MAh6+aex5+88FzY+1BnXPtqqolX86ty3j3nu9i7fbbbhFrrzhp+Vj7+ZG5eSADtv9lrN3pkodj7W2Pze2BP/7F3H5cVVV7tuR+1m/+be658OPVb4m1l1w19w5nnz83/wzhnyx+Vu790Ys7HBdrj7huk1j7y+tz55NVVX0/Krfe/rJf5sZYB8z5S6y92NOZ9wnT5kyvqv/sfJFF7nmy2nRq/nu/o1fMvV8++9rcZ9OBi+Q+m27aLHcOTlXVyqfdHmvv8Vlu37w7hubWi806OfeMcev0f8TaXZ/NjRv9adfcO9bDd8iOn/yw0smx9id//lusffEhS8TaIwZfHWvf+PGDsfbaLTfE2jd+cGqsfcK1K8faff8US1dV1T4P5n7Wbz/0+Fh71RmnxNrv73lYrL35qL6x9rgHc+vkljgmt9Z+l6tzz0dVVe+uf1Ksffzaa8fan/TLfa7v+MsPYu0jGrmf9cEnPxNrTxtzcax9xWa5s0He3za7PrH1bdvH2lPH5d6D7HnF6Fh70+dya0LHr7lxrH3kKrn9W4ZvnVurts9auX3Q/njDObF2VdWJfXLPCWvN+zrWPuSx3D6yV12R+1m/ZmZuzdb7nXJnyt374Omx9uY7Z/fPXfPY3N5YI7/YLNYe9f6fY+3V+v411l61MTXWPmzS32Ptp4/N7a+w6/q5Pf8mXHV9rF1Vdcpmuf0tvz8gd8Z7vy9+F2sPXPTlWPuDo3KfbT+/69NYe6k7c3v+7bHEibF2VdXYv58Waw/aNzemv8vuuXfUH50zNNaePTQ39vPKr4+OtZ87e91Y+/H3/xhrb31Y11i7quriW3N7ud7/6k2x9v5/zK1X+9OKO8Xah079Ida+dK/vY+219hwaa686fOlYu6pqtXZ9Yu0ld78k1l7nntwzysTf5NaTzO6ae0/7629z81ivmrVrrD35ntz5Rfv3PiTWrqrq1fPyWLvPqNwY67BeubOvn9/k21j75fG5z5cRnwyNteeOfiDW7vNJ7nesqurEPXPPZxsMyN03tpuUO9fl6RMPjrW/Wy535sPUk3L7/7/TL7ev6ONDPo61pwzNrQmtqjrtztx80meOy815GjxtTKy91Sa5M4x6bzMq1n5imbGx9prb5fa16LzBh7F2VdWQsbmxxkEd14+1f3VLbky/+4Lm77U4fcZ//ky2X58Hql2n5o/frDYgt3/+Xg/m7vFPGrNtrN13tzVi7aqqfdfL7bcz8J7c/rdLX5H7eTu3w72x9oHP5u49plw6KdZ+7tTc3v27HHRGrH3yb3NraKqqLhl2Xax90qe5xbgnPHRNrH3g/bn9b995ecdY+/mTv4y1pyz/61h7k2Vy86TGHJ57D1BVNer13Hfp9ODedXt0yu3lsWhu+kgt1iM3N+43w3P3yp3/mts/Zd0Lc+cQD9+5Q6z9xn6PxtpVVTdfkltTcWNw7dKTq+f2Ktx1tdw9xM+G5+b2j14ptz7wrRHPx9pPDF8z1p79Vm4talXV8jNz7R2Wyj0XLnp+bpzz46ty/+YTJuTuGR+47spYe4nvtom1xx07IdY+bst3Yu2qqs33z32ffbj9xFh72y7zYu37/pA7k2XosNxY42Lr59bvvNVlr1j7pXVza90bvXL7S1ZVrbzWCbH2YbNy+9j/7i+5dQWrHpTbv/a1V3Nn8AycmttjYPcXh8baJ52QOzOy99Fvx9pVVesckbuHuOeg3FqSSUNzc453uDZ3Rsau3+TOX/77jkfG2of0eSTWvv/D3D4e983Nvrv658O58yb2HzQk1l54k9yc4/rhuVj62cG5eWa//Ci3j8jkl3J7Be3TL7dWbK/Pcp/pVVXtd8h9l14xN7d/yhEX5J5Ll3thxVj7kJ1yY8uL7Z5bT9F4aWisPXab3B74Nwx9L9Y+aodFYu2qqmPWzM2HOO2V3D3EGjflzqzse9wusfaDr+TORltqtQNi7ePmnhlrv77pSrH2Cs/m7lerqoa/0SXWfuS03NrnVic0f83UT85ZJTe+u/29ufdHHXbO7S95/sW5eT9fjs2NqXd4OXemSlXVdm//Itbe5fXcHLdbfv5wrL3k8I6x9lMv5OaSjnvo0Fh7yb1zc0Ae/iq3r0PPFXPn8FVV/Wzf3HPpAV+MjLXnfJBbnDCv85OR7ozZk6vqP9tDZN1e3Wrhts1fz/KPjXPjs2f/Pffu6YA1cnu+fLFgRqxdVXXeBrNi7Y++z82daduzfazdvuWzWHudlXJns17ev3OsvclK78baP79u1Vi72w+595xVVdfvdWysfffMV2Lto36Xe//Tdf/cmW633ZH7Hf9kWO4e4tk7d461l985t67hs11z6wOrqsZ8e16s/WK33Hr3w8/8Vaw9c/2XYu0LO+eeKXsN3DPWPqr7d7H20Yvm9u1vPzJ3ZmSn3rn79KqqE4/OzRl6693cnOeXL94q1j77ytzny5gPc+8hbr4qd3bifT8sF2t/dV1uf+nfbnFXrF1VNWG93Hu3ZzqMj7UXuTH3DuaXh3wUa39zc+tY+7Kngs+kg16ItV+flNtz95HBub0Oq6r2WTJ3z3rpIrk9Jm/7Re53fMkDc/cvg57MvWc94oDc3jHjr+oaaz+9Ye5ckK4nZ8+dPu3J3F6LGy2dG2v882e5+d7Tvszdtz108yqx9mvv5ebm3fV07h7igy9OjbX7H7xDrF1Vdfbc3DviIRNzn62vjc99tp0yObcX/M8PzT0fPfh67ozQy1d/Ntb+/bjcvMCDNpsSa1dVXTnpH7H28PG5fQZavs+td/+o/cax9kPL5PaQHd8ut1fQ/gfmzrm6+fbcOrnftcvtl1xVtcf2ublej1/+h1h7zt25+da75pbR1Pur5cbbDrvvX7H2pkusFmuvffROsfZXc1aPtYft0T3WrqoaeWju732f+8bE2ndOuSPWfq1Dbp3/x926xtr7331BrN1u2dza6x7n5/aCH7N/bmy3qurUv24Qa5/e+vxY+6Y3cvvnbrzEq7H2sFvaxto9j8udo/PgUrm1T7Pfy51/uP2JufG2qqrPBsyNtdftkduL/rFFfxtrb9k+t0fTB8fl/r1bXnsg1l538sKx9iebjYi1T7gwOBBQVb1Xyp2BeNxhub0dVlgst9fh6p9k5i0vmPl/toY3t1sZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN10hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TJn0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP/dHjrqmlq4dUvTuz0OO7XpzZ88cOVFsfZhb74Wa8877LFYu6pqmcu3jrW7/PXvsXaHr9aPtfc/cUys3djv01j7xBn/jrWvfiT37/3CDjNj7aqqXUbtGGtP63FArP30iFVj7XO3HBZrv/7E97H212tcG2uvuPiMWHvzLUfH2msc8XasXVX11R1TYu1jzrgu1m6929Kx9m+2vD3WPvD5t2LtPqt0iLX/+k27WPtf9+bunaqqnl2sZ6z9x44DYu2OlftsO/KwxWLtjc+9LdYeOf6PsfaEbXL3EPtsnWvfcdPEWLuq6u1lc8+lx+14T6zd+6mRsfbtZ+4aay/StnesvfjwO2Pti/u+Hmtf8ZtvY+3VBv4j1q6q2u8PuefxA9vkPl8WH537N7+196Ox9oDRuefCQcdfEWv/eG3u+eic/RePtauqFr3wrlj72zvGxNqnX5j7bF2546RYe+BdQ2PtYwc9FWuv8kbuXvn4jrnvsuNv3TnWrqo6pt8/Y+1Fvv4k1p4x9rBY+9VR58XaW718Vay9YLfc/erpmzwTa7/79ZexdlXV4X1uirX3HTc21m4/YESs/ULXTWPtKbu1ibXbDb8v1h40IjfnadX1J8XaD7ddOdauqnpgwA2x9mKnbBRr73fE87H2wm9uEmt/2CU3xtr3sudi7XUn7RBrj7psUqxdVfWbx76Otbf/x5hY+4XvcvesW9z3dKx99nG3xNqNdqvE2qeenLt3Onav7WLttYZ8HGtXVZ1+fyPWvvrH3Luz57d5MdYeN3mRWHuVtrk5+m0n5p5RllvjnFj705Nzc/uqqla74o5Yu9/ll8TaAx/Pzbf6zcu/iLVb3s7N53z+1Nmxdoftu8Xa193VKtZu6TI/1q6qWvKhX8baH017Jdb+21bHxNofNN6NtTcf2znW3u2yybH2iN9tGmufeN3fYu2qqsO2yf2bz1k3d8+64xMXxNpvjd+56c1Zk2dXHXlT07sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA//3a/Hf+4y6LtK0Ondv+b13Lf+nip15uevMnu/fqH2s/9fyXsfbYR1+Mtauq+v1lz1h75NtjY+3BnXrG2o8vsWys3eeHlli732KdYu2Vei0ca8+b1zrWbrRqFWtXVbVtnesvmD8/1p4zd16sPXdOLF0tbf5btzr/o+YF/85btW7E2i2dgr9jMxbE2lVVczq0i7XbTM/9on006r1Ye+UBuXv11Qb8LNZeqd/gWHuV9nNj7VvvvDbWnt16RKy9af+dYu2qqu9m5H7Hf+jULdZ+cfiQWHtKr3Vj7cWX/D7W7tJ20Vi7c48OsXa3vtNj7R6zOsfaVVWfjf4s1m41Z7VYe8G8PrH24svnPlevvOCSWPuwX50Ua6+3Ye4z/ey//CnWXmGRrrF2VdWkWbNi7U4dFo+1P/s+950yd8HMWHtGm9yz+JR5ubGflta5Z7PW83PjTm0rN65dVTV3Vu7P3m2h9rH2glnBMf2W3Jj6gtyvWbWZ1/z38T9paZv7954ZHFPvEH539V3u46W6BN8nLFg493y02PzcmPr8Nrl34y1zJ8XaXRfPjUM0JuXGvLp36xJrV1XtsM0GsXb7rt1j7Z5dc59tYz8cGWvPbzs11p43v2Os/e4nY2LtlTrl5hxN/nFarF1VNebT4bF295bcz/qS83P36hOnTYq164dRsXSPLgNj7a/G595jNGbkvss22HybWHvYyLdj7aqqWd98E2t3mZp7Lp0cHGNdaYncO7sllgg+jM/JtUd+nJsjv/YmG8faTz3waKxdVbX5Tj+PtRe0nR1rz5qWu29rk3tdWB98OjnWvvuR+2Ltzl2WjLUHt/SItVsWvBJrV1Uts2xujLVby5RYe9L3ufcJCwfXg7RM+S7Wbtc1966y3aLLxNpLTsz9nH85dWKsXVX1xee5sYDPPvoo1u63XO5nvdtCP0S67eo/v3Fqd8oNtVDn5j/nnHvRJ01v/uSNZfvF2n95MzcvcOSEc2PtqqpOR24Za3/3Xm5NxRvf3hprj2u7Sqy9X8/tYu3lvror1r55ncz3QVXV9JVyD9PfjMv9jlVVdb4r94zxRKeVY+1x7zwfaz91/7axdv+HcmPiHSdcHWuPWW3pWHvu0svF2t9+/06sXVU1f5ncs/zFI3JzCm5e6e+x9lWTc+umjjo5N09s1ODc+uc/TsytYzlv5dx926s7Doi1T9pur1i7quofG10Ra7839otYu+OIO2PtR+bmxkhb/y73vm/+srm9PDbtkHunP2fs0bH2VbffHWtXVXV7c1ys/fvtlo+1n/1gj1h7bo/tY+1pV5wda3958qBYe+1tc/OOf7HXY7H2yROyayoeG39prL3pVovk2hOGxdqrrLJrrP38VVvF2isvmtvrsO92ubG+pdv3jbVHLJl7Jq2qWvTy3B5wz550T6w9bfLhsXavF9+MtTdqu1CsPajPYrF21+c2jLXf/DC3NvH7Ebl75aqq1Wfk1i7NODj3e3ZEx7Vj7SeOz61lWebrh2PtjZfKjbc9sORzsXa7LXNzjj7/MLe3ZVXV4Svm1vAs0y93vzz2FzfH2o93DP6sf3hZrP3Wubm9wZ/bMrdZ0Fa/zn2f3PNYbh1LVdXGP+S+zwZ2nxRrt9p0o1j7pZc+jbX77/9MrN13Su790e0r5+b3P7VgnVj7sfcOirUfbvVCrF1Vdc9JuXMPHu2XG1dv3f6XsfZpLbnv8SP2yu2X/NXcCbH2p+fmvsN/1v74WPvutXPrxaqqbnzxzFj7pX8eF2u/sWPunI22o3PnAK7329z4y1Wv/jHW3uDS3L3yH7bOrT1qu0FuLmdV1dftX4+1v/ogN2d6rzG537M/t/k61r5jmQtj7b6f7R9r97ox92585vc7xtq/W/KNWLuqqv2k9WPt1e8/K9bee8/9Yu3x62bGIabPnFn1YCQNAAAAAAAAAAAAAAAAAADA/w/MvGuvWtCuY9O7gx9v3fTmT365aG7P3x075c5j2feXv4m1q6pmTr8+1m488JdY+81Vboi1N5y2bKxdp/WIpfd/fL1Yu9fQ3JnX5zyfO+tqlV/k9sWsqpr9ae4cwavPHhBrT239r1j7nrPGxNrDu+fOL3zso9x5393OmRdrH7FG7jzc87fLfbZVVW1xxtax9mYbvhprfzvtolh74NG5M77GXve7WPvqrV6LtSe8+lCs/dodj8fa54xq/nPwTz4ckzuvsqrq0BO3jbV73f+PWHvdrVrF2tP/vWisPeDm3Dl+O9ySO9/9xzWfiLWvmXlXrH3D57ln8aqq/ZbKnYty2ZW5c7Z++eAhsfaQKbmz1fovdm2s/dWmubPl+x7x91i7w0tXx9obbvF9rF1V9eUdXWPtNgfmxp0OvSZ3vtkyO+XO4116k9wz6e+f7xxrv3nKKrH2ZxPGxdrP98qd/1NVdcf41WPtB7bKnfG+2KErxtpXfvZurD0594hSd+5xZaw99ZTc+MvG82fF2o+tkjsbpKpqzKTZsfZ7tUWsXdfkzui496m+sfb43i2x9uI1P9be9cLc2WZXvpYbU5/46WWxdlXVC8vnztr6ftlXYu2ftxoca6/wfm5MfcRbS8faO/wrNx9hyx65MdYNxv8+1v79xOxZV+982S/WvvXSA2LtK+b3jrVr4dzP+r7b5uYjPN2ycKz97Bknx9qD7j001j7v64Nj7dt7LIi1q6rmbPNcrL3rxY1Ye/pDuXGnxYflft5e2a9XrP3P93NzzDaaf2ysfcbPcuMv+48KDvZV1b49c+9RXj7kplj7mE9yZ26/tssLsfYal+Z+3q5us0+s/a+XPoi1L5h4a6w9b9HrYu2qqn/dnft7H9D2iFj70An/jLWfD84dnn5M7h3xq7ueGWvfdN2Ssfaz2/SJtY9vlxv/qKp6/dPcz/oHj30eaw/t3D3WfmZo5p6x3bz//Fl8q+tvqdYLN3/e9cmv5+btrLPWt7H2YyfcGWvPWGFarF1VtVv33Du/k3pdE2tftXpufv/P/7ROrH3AoufG2q2uuCTWvmvF3DqWg9u+Hmt3u3P9WLuqasSDo2Lt73faK9bed4uRsfYFN+TedR5xam6PgwXn5uZDXtajbay9Y6u/xton/+msWLuqavaT7WPt2y7OzZ05dfTLsfYtqy0Ra/8+OH/l8r2Oi7WnXZsbn+3d8kOsfdjtufmQP7t71Vi7qmq9L8bE2o03cuv01rgzNz770P5fx9rPXppb7z7mvNy7xnlDc2M/Hw/Nvec86rlBsXZV1aEX5eYdr37xxbH2MWccH2ufsVbus+3DjXJjIPsumnsPsety28Ta27+1Waw97tcnxNpVVf+YNDbWXuLjB2PtL4asHWsf2O4XsfY1l9wRax97de7eac7VN8faW692Qazdfu3c/Neqqt2vz/2Od+1weay9/KTcPtXDRufmr9x4Rv9Y+9/9fhVrt6vcHLF583aOtTtvsX2sXVW16rq595Wdu+bmzjy91tux9tAPc3vYbrfRCrH2618dGWtvMeyMWPuSm3Jzb/celDvzoKqqhubWIJ+/eG4N8ntDcuNOsxfJrSUZe8icWPve3b+LtR84JzfH7JHf577LZgTnW1dVrfDCmrH26ONy415rXJn7Hp/RJfde/tIHc/v1XLlDbs7RjQe9F2uv/HhuLmevd3LjHx8+2TPWrqoacNxlsXabP+TOjHr8xeGx9qM9cu8rz7twYKzd52+5vS1Xeyy3j8il630Za3/dbpNYu6pq+Lu5/XqeumK/WPv173Jzpg9/Y89Y+4i9t4u1uzy1Q6y98Pa5dTB/uj63T1GPiV/E2lVVHU8/O9bu/FVuzvT0nXJjjX/pumWsfcd1uWfSve/KjTvdMCj3Xv7EQ0+Ktc9aOzdPvarqsaU3j7X3PP2gWHuVjZ+Mtede+4dId87c+fV/ciJdbqc0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACarpG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4e9+4y6qrrbPfxn81BUREEFpRlQsUSk2KNR7DVoookmxsSuaOyxxBJr7Bg1auxRY4m9Ivbea4iKDUHs0pFehPPl+PGMczLynn2/7xjX9TnxNzfPLmvNNddcAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdOSHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw39t+xx1dbRbv0PTuwvP6N735vcNOOjDWXtjrkVj7suvuibWrqs4971+x9tAfHRtrL/X1srH2zzefGWsffvnCWPv8jd6JtX/20pKxdu+Fl8faVVUvvz8i1u596Hqx9sgbhsXa+x+Re68/PfzsWHvvDR6NtY//+5BYe8aB28TaXf/8dqxdVTV3wiWxdve9cp+z7V69NNZe7ZsdYu3FT/trrL1Cpx1j7duG5z7jiz13TaxdVfXINs/G2r8dsm6ufff8WHt6n6Gx9qMjb4m11zz6Z7H2Gx/+Ktb++ZAfxNqrrJGbA6mqumnLL2PtXx84PNaev13u/XbYjtvH2qN2+yDWXv7gWbH20098Hmvf2GnLWHv1/lfH2lVVg67MHT8N32WlWPvGQe1j7Zv+uVWs/dU/3o+1Pzqye6x96rUdY+3D5wyKtauqfvXo1rH20V9eFGtv9smkWPuWLl1j7XPfGhNrn/HB72Ptc3a8M9YeOLlTrH3s726OtauqFv0pdw3p7Jumxtpv3DIu1l7t4Nw1nMdezh23HbJZ7rzw6N5HxdpvbvunWLuqas/zG7H2gr/+OtYecFTue/1Pu10ba2+9X+760XP3rRhrD1iUOx9vs+zesfbg3y+ItauqNp0xNdZ+aK89Y+2Jh94baz955uBY+9arjoy1/35Tm1j78hNyv+MnD879llVVfdkyPdZ+ccPc/PJFXV+Otbv9cddYe+YJubmAgw4+KNaedE1u3c+/ZuTe5wf/Mnf8UlXVeuVVY+19/9En1r7gqr6x9hqfbxtrb3jFMrH2s2vfF2uvPuy0WHvGRr+Jtauqrt4pd57S+le5z9mzPReLtb947+tYe50dXou1V97nuFj7uUcfirXP/GharP3BmMti7aqqD//WLdbuvfq8WPvy/rn329/PPCTWPvPcvWLtbzfMXT86YPb9sfZhy54aa1dVXTQ5t6ay77jcecJuw34Ra79+1z+b3vxu1ndNbwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/M7T8O//jGfNb1cJ5rf5/jeX/aMiqqza9+b1HPp8aa/+iX6dYu2WtHWLtqqolWxbE2jPbLBFrj/tiaqz9w+6591u75XJ/728WTYm1V2jpHGtPnDwj1v5y/NRYu6pq+szca5/V6BJrd5ySe68P3CT3uv/NQ53/UotaL4q1Wy1oHWsvaLUw1u7QKve6q6omz5kUa19zwX6x9k+3HhJrj/nsn7H2u++8F2uv3LN/rL1km5mx9g+69Yi1e/UaGGvPaDc91q6qmj5lfqw9a+qcWHv11TaNtRd8lzs/WtCmbaw9q9VisfaUMSNj7cUaudfdsuD9WLuqasWevWLtCWPeibUnzs4dL/ee8lWsffwZw2LtD98cFWv3X6dvrL38MkvF2lPmZY9f5gXPiRstHWPtNZdZPtaetFxuDuT9d16Ptce3zf2ONxY0/1rd91otzP2WLViUO1auqupUuff67FnzYu3FgucJi89vF2vPzX3Mqm1LLr6okXufL9HSJtaesmhWrF1VtdiC3BzIcj07xNrjJn4Say/fbfVY++5RubnlQQtyx+rvdMqt+/lw1D9i7e13/mmsXVXVo0u3WLtzh9zv+MIFS8bay/TKvdcH9c99tz315iux9rctuXmAz8b+K9Zu+13wgLWqlmyzYqw956vRsfaYCe/G2jM75c7NFs1bM9Zuv1ju+OXH/XLf6eN65eadlu+euy7fZXT22tW8+bnP2aABuesJY8bmfsdHvZH7m3fecqtcu3PuWLnXD2Pp6ttx51h70U9z12+qqr74Infc2DIrN9/Xa/V+sfbc+R/F2ttsuHas3aFH7rht+qzPY+0Fi3eNtefO+yLWrqqaO/u7WLtXt9y6n5qVe93fTZ4aa7fqkJvzmp07fKlWE8fE2h265l74G8Nz36tVVZ3b587HZ8yZFmt/+nmu/cK7mff6/AX/+Xdqn6cm1xKLNX++8viBTze9+b1hi38Sa6+7xjmxdp/268TaVVXL/GCfWPuWz1aItbuvlbufY/eLP421Px+1Vqy9YPC+sfYzT28Zay+c+GCsPfPO+2Ltqqopo3LnGG8/lmsP77lNrN3+20dj7SX2GhxrP9ItN0G7XGOlWHvLZU6ItReOXzbWrqpauHFuf4VRR+SudR4+Ibfm+fTKfbcd8F7uXvuh83L7G7y085mx9nGf5/aNael9dKz920Fbx9pVVduNPinWvjN3Sb8eePpnsfbJP/gk1j7mud/F2p9NvznW/nDQa7H2TROOjbW3m5y7176qqufkN2PtR1vl1vdf1ZI7ftns01tj7RsO+Uus3efw3BzIjg/l3uc7/CJ3zNj6idy9z1VVnXvkrm2PvO03sfahfR6KtZf6yfhY+64x38bag2qXWHvS3O1i7a0Wy63tX3KT3H4aVVVft10/1u66cJlYe0a3y2Pt3T/aM9Y+te3BsfY1T78da/+4e+7e6x7TJsba7edm9zN95wdjY+2998odNw6flZvT/7Rlj1j7H9+Mi7VfHp7b3+C9rdeNtVuPvT/W3vaI3Lx2VdUWq28Saz/9au7+5y9vPSvWPnODL2PtM5bOzf20PfqmWHtR39z+Ke99cGGsvXnH4GLvqhqyIHff1u+m3h5rf/bky7H2rt1z1zImvzw11n5788mx9l59r4i1P98wd11+2y+fi7X3W/j7WLuqatcuuWul+0/LXSsdvsfHsXa/Ubl1hcv32DbW3nNWbm3fVQfn7kc9bNk/xNo7DHs81q6qOv+2p2PtqcNzf/N1F+buyVjxR7n5tgXHbx9r77vaKbH2u5fn9qEff3jut+ytZ3Ptqqpng2vcLpuS2////QNWibUHXpS7z++Ld3NrOTc8+a1Y+4hTcvunLLVrbn71p/tcFmtXVb2/ee7a+LoLc8/ie+eC3H6Dr47M3JMxv3L3sgIAAAAAAAAAAAAAAAAAAPA/3+lrTayOizV/b/M1Hzy+6c3vLTnujlj7uE9z+yTefFbfWLuqapuNcs/ye+rLgbF2p53/EWsfsFxub6nBY5+KtZd7/s+x9tHjj4y1h55yWKx98fYfxNpVVbv2eyLW/s3T58baD7S8kWtfntu/f43l28Ta80YeF2uvfkJuP69dfrMw1n5igwmxdlXVadvm9r99fETuWVcjn889D2b4+Omxdp/3c898Wv3J3B5qo/e9JNY+77LcMyMf32JurH3k9rnnJVRVjT3hkFh7wZGXxtq7j/ks1r721P1j7TU6/inWPu3UH8XaN7d7JdZe4dPTYu2dthsSa1dVzT9y71i779vXxtq77PhSrH3P0Nyzj67pmpuHWG9K7u+98gu5Z111X+76WPvcR3LHq1VVXZa5K9Z+8OHcZ/wfq1wTa7/d6sZYu1eH52PtVkflngs7cvSxsfaQHWfG2qv0GxprV1Vd+vt+sfbJfXLPDnjo69wzK0e+9U6s/cnJue/VDc7qHmvffm/ut2zL7rljxh1mPBRrV1Vd/MtGrD3r3ty89ltr5J5L2/Ok3DHEVdvnnn30YI/ceoRdHs/NsR66R+9Ye52dst8vfx6/Rqzda9d/xtpLXHhGrL1Z21/E2j/pllv3c93lg2LtC6fnnjd1+JjcmqOl9v9nrF1Vtfm5z8ba/bvdFmt/uk/meVNVVRv1+HWsfdKfPo21h1+dewbyvhNza2/e+sN3sfZ1W06Ltdda7YFYu6rqd9ccFGs/ckzuOee3vDk11r68d0usfeYDc2LtD57bOdbeveuKsfZRk3PPvB4269tYu6pqheXbxtqnL717rN32xSVj7Q+WOz/Wvm6jVrH2jxftFWv/et9dYu3pg0bG2gffenKsXVW1dZ/c3NPYTY+ItTudkbtO+9ImuTXTW392d6z9t3HDY+3XV8rNv4w++m+x9gUXZdfenDFrvVh7mXa535QrO68da7d89VykO6dmVNWm/9F/o8eiztVmUfOvd/752WOa3vzeLdfljgHuWyp3X+ZPX8xdh6iqev/kH8ba9y63Uax9w4KlY+3jZubWDA19LDd3s1/r3JqhG5bP3Y/a/8DcvUMtn2bvOW/34k6x9ldDr4q1Z8+7Pdaevk1uXeBaT+XuRx09IHcev9LAM2PtSxd9E2sff8FasXZV1eY/yt0ztuRmL8ba34zIfcZX+ip3nrDC7Hti7SMGfxhrn/q33LzRld0/ibX7dJkca4+/4stYu6rqvCtza5436XddrH3RgWNi7Vdv2DHW7tLpP5s3+k+s0Tm35vm+YT+ItU/cPbeXx1EfXx5rV1X1PiV3/acxu3+sffHjuTVD3U/Prc3b9LyjYu1b202NtactmdvXc2y/3H49jb/n7oWtqrpkp9z3y4135uadbhvaOdae9pPcdda32v021h41IXcdpd1SufOEXQ/PzS2f39gy1q6qen7r3JrrP406NNa+4KTcHMjYve6PtadPXT/WPvOmXPu8W0+Kta8YlVvbv0uv3BqxqqrPfpG7f2iF+3L34i6+03mx9jcvTo21f9BYM9beeUDu+OXsr3aOtU8//KNYe/rZT8baVVXP/GGdWPvOJ0+Mtf84fmysvXPwuQcnnvFYrL3zCbl5iE9Ozt2/M+zW3DzjlWvl9lmsquo54tVYu3FW7vzo0d1Oj7W3PD733KaP/pzbI3vWbrF0rbzhe7H2Y2fl1mGMG9Ep1r5/726xdlXVBXfnnnXx9Au59buz5+bWc47fO/d7tlTn3OeszVm5+75ndOwZaw86M3ctYcQfc88BrKraqPeIWHufnrl1hae+mbs3csAxufvdb74hN98295bcMxeOPzL3rM8ZB+XWOw37a25/g6qqew/ZJ9aeMjm3pnLTbxePtZ9fMXfc9uDluesoz2+1INaZND++AAE4VElEQVSeMD+3/9uevXLPVHm7V26tVVXVMn/JrUlY76NHYu3Tu+SeA/jMUZm5xm9nLqjln/i/X8vIrSYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpGukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACapyU9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC/t5Yd/lItHds2vTun/fpNb35vmV6/jLVPGrZKrP3gDRvH2lVVdz42Jtbe99b+sfbWP/ks1t7o8UGx9ldrDI61D//l6Fh7jeWPirX36npTrF1V9erap8Xaex18cqz98X3vxtovDB8Ra28z7JlYe9u5p8fafxz5l1j7i1UnxtrX/yHXrqq6rPtLsfYtHy4Za1+25UGx9v7Xfh1rrzt4o1j7+mVzx047nrZ4rP3sPefE2lVVx3Z8Lda+tPf4WPuE85+LtTdf5uZY++NV/hBrf7TH9bH2gHltYu1PVukYa6+41BuxdlXV9vsuiLU/q4tj7b+deWGs/dkXJ8XaV96Y+07f9vZ+sfZBT6wba5/6/rKx9surPRJrV1X1G3JprL1Sz9z5+Pwt9oy1B211Yqx9z7MjY+1rl78i1n75zsNi7UOv3CHWrqp66e55sfbNvT6Ota97dUqsffAjM2LtC3tvFmsfsNansfY9x+Xm2/Y+/8NY+9nVto+1q6o6r7tFrH3ozk/F2uvuMSvWXnBFu1j77z8eG2ufN/WjWPveM3L/5p/e9E6sXVW106DcWpANpp4aa9ezue/WR4/uG2uvOniJWLtHt1Gx9qRFuXmnO0/LnSec0ebeWLuqao/HPo+1X2jk5vQ7ds9dm1+/cmtQtnwkt8ZtYe+DY+3tj5obay849IhYu6rqkT/kjhu/Hb1UrN19bM9Ye59zroq1nxuZ+16d2nJ+rL3PC4Nj7R3/lftuG3xTbt6pqmrUJQ/G2t+ukvs96991pVi7tn42ln7twJZYe/DIn8fa0z5/M9buteXAWLuq6qlrOsfam/Z6INY+YHpurfxnM3P3wrR7KLdefNW5uc/ZbVPviLW/3Dy3FqPTRtNi7aqqHfvNj7X775hbU/lE6+Vi7T4tE2LtHffMrbdqXJtbOzz/xLNj7WXOPSPWrqqavlHu3oghB+SOWSecPyDWPvzGtZvenDVjTh1Q2fW7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwH9P/96T51v/2/+P/xIr9ena/Oj/dtuH78XaM75aFGu/Mm16rF1VNXXKmFh7ld4r59orto21lxr+fKz9zPJrxtrvzPwq1t5sjUasPW7Swlj7h32WibWrqtq0LBdrNxbMjbW/a3SLtecs+i7W/u6rcbH2uJEfx9pPPnpHrP3hP5+JtWdOmhVrV1VNnTk51r7rludi7bntxsfaO87aKtYeduUZsfboSe/G2iu27h5r91q9f6x9283Xx9orr7Z6rF1VteW2P4+1Oy85Ntb+ctorsfayS3WKtUfcl/stW2+jDWLt9o3c+dGCZXLnhT1bVoi1q6rGT8m99i4rdo61J37wdKy9YMV1Yu3Z306JtQdusEmsPXn8qFh70w0HxdqPPvpYrF1VNX5Kq1i776q5ea+J3+WuJ7ReEJz7ab14rL1w9oxY+4sFsXR93apNrL30ovmxdlVV69a5azhdWtrH2osaueO2OcG/ebvWgYvi/1vLgty/eUsj97pn537Cq+28YLyqWtotFWuPm5g7hhg3Mfd+671iu1h7UI++sXb/rrn3+ucfzI61l529dKw99LCjYu2qqicffDTWnjsxd9C6TN/c9+qSH+eOlz+b2DrWXmGpLrH2vOA56eeTZsbabb78LNauqurQMXd+9OnXk2LtXssuG2u/MS63xm3ZxafG2gs+yB2/rBlc0/jd1C9i7UnL5K6bzZs9IdauqurZb0Cs3X5ubq6xb88esXbbltxarzFf5NYELKqBsfb2g/eNtWd+k/tue/1fufUnVVWrr7RGrP3J20/H2r375I4ZZ07eIdb+YuzwWHvW2ImxdtdeuXXqGw7I3fu01NJrxdpVVW3n5O5NmPhV7ne8TeXWLbev3DxE+1ZLxNpLzMmtK5yzcu5cvNu03Bqz/fY4ONauqvrwyzdi7dUH5s5LF5udm+/bapNVI91Zc+bU/c/+8z/7j/yyUdWx+de4fzj/lKY3v3fXiO1j7blzzou1Vxr2QKxdVXXe12vH2kvskFu/cuEO82Lta67NrSdYtV/u+vKo986OtZcamFvLMPaYobH2fjutG2tXVR08Kbd+5S+tcufyz76XO6dcbY8rYu1bXhsSa/fe45FY+4LNDom1R78/J9busfU1sXZV1c3tOsTaG+9wa6z98C6575fZnS6Ptdtfd2as/VLnFWPtCR1zazjaTPhdrP3mqVfG2h/sm5s7qao6cOfFYu07Pr4/1n52dsdY++w3cvtKHNTlxlj70MdOiLWvbpWbn139pdwxY6uBfWLtqqoD5ubWaj0/Ibf2t7b+KJa+dl5uX8813hoZa889Y+NYe/TlX8faPx6Xm/t5aYm/xNpVVQPeWy3W7rF/7lrGHY/k1jPM3mv9WHvmGbm55dcG5fbde/+l9WLtUyq3H9gXXXP7RFdVdRjxVKw9d4sDY+133sjdq3bKVrk9RUf3uCXWfvma3Ln40Z02i7Vf//S3sfbmqx0ba1dVLb147h7Bm3/4Zqz9oxty+yusukq/WHu5DW+Itae2/TbW/tW/cp/xX0/LzUE88nXu711V9dnjud/xA3+W239u/Y65z3iHtT+Ntbtc/ESsPb9/7h7BdSfn5tQnPrJhrP3+C3+KtauqOl2Qu56w4tSTY+1uX+Xmd198Kree8tzdcmvshwy7OdaePfebWHuDb38Waz/VJzcH0eaBk2Ltqqq5XXPXMu5dLPebMuXRbWPtoc/njp1G7PR5rP3hnNxzkzbdILeusPFZbv5j/G8ej7Wrqqa8lJtX335y7nO23uG5+yI6Xp27333EzNwxxDVX/jjW/u3OubXi7W7PXavc+LvcOvWqqrF75177uNGxdPW/6tlYe/qQn8Tae/bIHb+cfHfweLX/AbH2Rt/mrqF03vugWLuqataduXufWtrmfsc7jMndC7Pde5nflFkzZtft6z4YaQMAAAAAAAAAAAAAAAAAAPA/35z5n1fblvZN794y5t6mN7+3/6zcXhwn3rpNrH3wJtln0Tzc+ctY+7zWued933tN7m9+0TbDYu02fXLPKD2nU+7ZrD/7429i7beOXTzWXjQ796ypqqp+a24fa7/54lWx9pDjz461O165V6y96o9yz0yYeemPYu3ZVz0Za99z5Wux9h6L/zTWrqoasl/umXLrrp/7m+81Y91Yu/Huq7H2hWuMiLXb/fbXsfYlh68Ua+96Xe6ZKJPe3TXW3nF0du+42yd9HGvf+WLuc7bFBblnVg44cK9Ye+CG98basz/K7Ql65YydY+1nZveOtY/q/kasXVU1YOXc8XLXo38Va1+9Z25P8/P/3j3WPubWHrH22xvvGGu/vFWXWHv6gbnzk3sfzu7lvsuRl8Xarz35cqx9zBFjYu1W03Kf8cUOyr3u0e1mxtod/jI+1j5hwvBYe+W+18faVVVdDsk9O2DAqK1j7U9mXxpr97n2k1j79jFfxdq/3HS7WHuL13Kv+5Edc9dJT3/4xFi7quqW31wQa+/34XWx9hs/2i3W3mmn02LtS2blnpHR5YLcdbORM3vF2n0fyT1n6/bBW8XaVVX7rHl0rL3EWWfF2pN65a6jnDNiVqx9zdG5Z8Pe+/lTsfaXW+eeBfyX3x8ca3e596hYu6pqsc2fjrVfXv/6WHvyIRfF2ju9n1tfd/mTp8TaY5bMvdfHDVk51r7xoNz1o832ya3tu6tN7je8qurX//ow1u53xyWx9gHdF8TabwzKzecPHnNbrD3txNz8S7+TV4y1+/bMzUFMXO/IWLuq6voeh8ba7/31/Vh76d3axdoXvZZb4zbvjtxzYfdaf0CsvV1dE2vPvDd33WzcSbnv9Kqqlq0fjbWvn3pPrL3f9LVj7Zc67hlrtz51Qqw9eNJLsfYHb9wSa59zQu7eo1F35dZCVFVt83qHWHuDa3Nz+hvvs2qsfcmVmXOURdNnV/2H0xB7XdaoJdo3/msG9G/Y47Azmt783u3/WCXW3vu522PtV1dbGGtXVbXp3C/W7r5/7h7koTfn7qk4qlufWHvU4blz6aWH5+5dardZbp3W75fNzdX1XCu3vr6q6vyhuff6Jz/Mrblu9dRysfaKa+4Qa3+7dW6N2nvTcvfhXtP78Vh70N25vVu2X6FVrF1VdU773Jx87yHnx9r9t8iteX5pr/1j7YF/z+0jsusruff6D351d6w9b2ruvoabL/sk1r72ueNj7aqqj69fJ9be/qe5Y6c7W18Ya68587tY+/bxK8Ta+3TJreHo8kDuePWFvz8Wa/d5O3eOUFW1cdvcNd5vrp8Ua4+7bkCs/cqHud/SL7bLrdsZ9sXIWHuZzfeLtVc57a5Yu91xu8faVVUTdjsw1n7m3Nx5wpgVc/u37LNh7rzwd31z5yjnn/JwrP3aqr+PtXs9lbtX7baHN4m1q6p2WCp3b+Spd/SNtf9wZW7tzFtbjYq1n9sjdz5+3Z/nx9ondtgn1t5scO51d+yWWxtXVXXHiNz9JOe+ODjWnrZj7nv1zi1yc15LL5Hbp+jBN3Nz6t/ulPstO7zdGrF214fmxdpVVWMH5PYsvvnBI2Ltb36W229w8FU/j7V7n7JvrL3nP3Nrf+9eLrfn3/0d/xBrHzjjnVi7qurUB3P7PLb60Y2x9p6X5+a9lm6du370zCudY+3R/zg81n7ngkNi7S8G5uYZF+6S2zfm0SFLxtpVVUcce0ys/ejrS8Tas6Z+EGtvfW3u9+TY63PPpBu4X+7vve9JuX0l3ht7eqz90am57/SqqtOPaP79N997/dhbY+0P9usaa3d7KreGdv8ncnMBL3bJ7TGw6XO547aWB+6Lte/vnrs3sarq8QtejLX/+nDu2OmVvXP3AJ3V5uJY+9o6LtYeelNu371dkuvrPs6tafzs27di7aqqMaNOjrWX3S53T+n2u+Su2W1/X+Z65YJv/9+u0eaOaAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLpGegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZpSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+O+twxWPV9v2jaZ31/7hpk1vfu/e2SvH2qefPCnW/vDgZWPtqqqlu98Way923J2x9ut9fxpr//meF2Lt/o3DY+3z39891n5m5S1j7d+e8vNYu6rq7LevjbVXeaJfrD30qFVj7Y5vHxdrb3H8hrH2ZV0HxtrtNrsl1m7/wEex9pz9d4u1q6q2uPnHsfZF88+KtXueu3ysPej+X8fa7178Rqx9zNuXxdozFo2Ptfe5555Yu6rqonm535Qltjw91t757N/F2icP6RRrvzVnQqzd8+rcOcrP/tw31r5vRO7v/eI6r8faVVWT9pkSa/9u+Qti7aWvyR03brvRwbH2Lx+eHmuvc0Pu3/yF+zeOtVfp0jvWXnbpN2PtqqrrZh4Qa4+4dFGsPW3jK2Lt1hfkjhlfX3phrN352qdj7fPO6B5rD522U6xdVTV5VO77raXNuFh7i93fjbXnnLhZrL36zNVj7ef/tHSs/fj5n8bap887JtYecm23WLuqavB6D8faf5x9Zax99hbbxNrzLv4y1j579H2xdrc3n4q1t1jjl7H2qx0ejLWrqvrucWKsPfkXI2PtSROXjLU/2Hu5WHvkpS/H2n0OPCzW3uyVXWPtumJqLL3V8o/H2lVVd92zRKx99hW5Y7dHx6wVa2//yk2x9oJDnou1j1s9txbj3JF3xdpXTFk81q6qeuilTWLt1zaYH2u33eScWPuDPrl1Zqe9NTTWfumzX8Xay199Sqx92hZ3xNobzfwi1q6q2v+9fWPtG2+9KNb+cN1XY+1Zs7vG2m+Ny63F6JM7bKv2m+wda9/w19yxclXVRocMiLWv/jiWrrsGjIi1+12Sm3t6/Lr+sfZqF+4fa581MfcZv3ejGbH2wAdz12mrqrZ9e4VY+9iXLoq1P+38Yqw97Be5tYXPrtM21l7swUtj7f/F3l1G3VXde//+ZcddSAhJSAgW3EOwBi8QpBRr8YOUAkUKFCe4NYciLS4tLqUUd/fiJLiEFAghQIgS1+cVY/zfPOP5d/Sc/T1njOt6zeAz7zv3Xnutueaaa9IFubU3718zPNauqnromfaxdovhZ8TanYb1j7Vbbd38Z+1aLZzf9CYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwv0Orf+U/fmfC5Go7s/kvUP9q1JSmN3905tarxtqzW82ItQd+MTvWrqrq0meFWLv9Yi1i7RatWsfak3ceEmuvMDf3O1+71VKx9leLYulacuFXsfZHz30Ra1dVffjak7H2R6/9I9b+dvznsfb8eW1i7RaLfoi1uy2WO7507NA+1p49K5auXj1zv/Oqqhsvvz7WnjL1/Vi7S+8usXar7n1i7dUHrR5rP/74W7H29tvkji8rDRoYaw9df3CsPWrUqFi7qurCM0+Ktfc6cOdYe/LXub/1eQt6x9pb77JurP3dp7lrlPZde8XaU76ZHmt/Oe71WLuqarNttoi153w9LtZecdBWsfb0WXNi7XmdGrF2/37dY+05C3PHlxdGjYy1v5vUMtauqlp5uQGx9gcffBxr9+ud+3ubXwti7VaLcseXPl16xNq7Ddss1u7dI/dzT5o5Jdauqpoy5rtY+7N3xsfanWdMjLU7LWoXay9cODfWbt82d2ybvSj3c7dZlLuXsKhF7m+tqqrRs1us/fG03JqErp1zv/e2HXLz2h++/3msvWKP/rF259lfxtqduk+Ntaf/8HWsXVW15tDcfF/rqdNi7U6tcmueVlhllVi7e59BsfZLTz0Va6/QP3e/8I77b4y1e/fNzXlVVXVolZv/adUld846p2vu9z7vgwmx9ifzcmu9OrfLnTO+NWdKrN2v15Kx9hvPvRprr75ybr12VdVXY3NzIDM65I5tNW1mLL1Y99y12erL5s6duvZdOtaePG1MrN2r7/Kx9oZrbR5rV1XNXSJ3zjrm83dj7Zkf566J3/lnbj3EhutvHGt36NEx1p45Jvd9smBB859x+1Hvrrn5/KqqRW1y36ULF+QWjM/9MvdvXosH7ye0WSyWbjUn9zvv26FzrN2hfa69YMG8WLuqque03HMZ337+UKw9aJXcdWnn7pl7pY1Z//6an4nndK1ZgXvcB7x7T9ObP7qk/Sex9jcnHxBrT/nF3bF2VdXei+fu/yy58bax9nOf555r2OPi3FzhKw/+MdbeZMfcPOGXv8rde1rxvE1j7Y+uPjTWrqpa/JDctd3Zo0+ItS+4cnis3fGdi2PtC25cItaeuFVujvSST3Nzdd1Wyq293WLTo2Ptqqr3P8uds445P/dswUpH5fZ2GDMjt37lsxm5Z2EvffW5WHvKmNyx7euf5tZD3rPGerH29ue+F2tXVd0yZ1Ksvc2N+8Ta103J3YNZa+1NYu3rDso99935jtx14bvdcs9999o8d5/zrAe7xtpVVSf9Nvfs9b0Dc+cQ576ydax9W+0Wa3+7zkex9i+XfTvWnvVObv3InU+dGmv3qdxz11VVnx24Y6z97kG5e7z9V8jdc/vypdy9xnlDbo61/zy2baz9bg2NtQdf+E2sPeaqvWLtqqoeB0+JtS/7/PtYe6veue/SWiy3Nm+/83LP+e/dMTcHstLnK8baX3XMXR/NWz43/1FV9fzoy2PtjeatH2s/sX7uuakj98ldE3+6/eex9qKnj4u1b/3iilj7uI9z32XPDct9h1dVvd73V7H21+Nuj7VP79Mt1t7gldw7FzYZ+ptYe/h9ufV1m6yycqy994YvxtpHDM7N/VRVTR2Z2y9ozgu5NQn7NXL7Bp/feWCs3e+N3PdZ+w1y61/aHD0y1u63ycBYe9Q6uePLNr/JvmuiX+spsXbH0bk1jfdNOi/W7rjJ/rH2l+vn9qhuNSY3z/nI4Nz6/PeXHxlr/+KF3H7oVVV7LZ9bZ9ZmdO57/MNLcmsaZ313Vax9TL/tYu0dDj871u566wOx9uhnc88+d1rt3li7qmrLj3PfKXfWs7H2Zlfmrs0+XOGJWHuTKzeKtbfNPQ5SHdbMPe/+m5G5vVQfXHOnWLuq6rNeuefd1rvlzVj703Nz541TH1080p01O7dvDAAAAAAAAAAAAAAAAAAAAP/7rf7Co9WiTaumd39od1/Tmz867ZQdYu1nr78h1t7urtxex1VVnT76a6z96vTce5duuyj3/sRBH7wVa390dG7f3wN+dUCs3f3t3DsEX/g2twfsE6vsG2tXVT106ahY+43Oufd8zT4h956tA49fK9b+es8hsfbk69vF2k8c9YtYe9JSY2LtZRf+PtauqlrtzT1i7fGXHRprr9ojt09i+4dye9f1GPdIrL3uqp/H2mvUu7H25+v8Z6zd9q+5PWDvGPT3WLuqakHfA2PtVzt9EGvvMvmYWHvrv+feRXN/iyVi7Zdbtoy1+300Ota+5pYfYu3dx14Za1dVDTpxv1h74EPXxdqrD34s1r7m5W6x9qs9c+fqXXrkzpVvapM7Z7x/t9x7A/Z84epYu6pq6QvvjLX7ze8Yax837J+x9oF39om1b/5D7r20PabdFGv/8d3c3trnT86dQ+w3/OhYu6rqylMOi7VfvP/TWPup53L37Db5Z+687bYt+8bad7XMzbGO7/VwrH3/b++PtTsvl7tfWFV10PDcPZwub+bOlw8Zc3esPXaH1WLtnRs/ibUPGrtqrP2PbrvE2juue1SsvUXL7NqbT+8+NtZuc/u2sfbhb+W+x9vemju+TPvwnlj7pCG568LlOuTmWN8/4dex9i9+mWtXVd32uwti7QdWfz/WXvucibH2tR9cH2sf2We5WPvxazaOtffq9tNYe9/7cuuWf3V07p7dvnv0i7WrqtYbfXys/d6cF2LtJYYE7xGvcUas/bOjlo6137t5q1h72v0dYu035g6OtReddXmsXVX16HfTYu0nLzw31t54iU1i7fteHB9rrzPwz7H28jccHmuf+6e/xNo79dg+1j6iffOfr/v/+uK0qbH2tu++HmvvcHnu3dPtdp4Ta3+/Vm7Oa5+DcseX9brl1vZ9cm3u2Hbz7P1i7aqqtme1j7X7H/15rD1xjdzzjZM2zazFmLZgYf27V4WXj5hTrVo0/kvG869o8dszmt780YQPL4m1rxr+Say97f4zY+2qqoP2eSbWXqXHsFi7S7tvY+39W+WeJfn7ibl1oA+eeVKs/e3dC2PtE/7wfaz9/QO5n7uq6qo9cs+8/2mF1rH2wWduGGvftMn6sfboJ86Mtc9ZOffM+X3Hj421O0xbMtae0OWEWLuq6pD7cvfVT70vd199sesXj7W/f2OFWLvDgyNi7U+ePC7W3vz8nWPtFsPbxNrjh02ItccGn8Otquq9YPlY+/p1c/d/Lhg7PdZ+5blvYu3jjs3dZ324y6ux9h/Ozq0f2fp3L8XaZz+1KNauqnppYW4/sIu/2D3WHnHnirF2q71ya0hWezf3TMXIFnvG2s///sJY+/IDNou1H/xLbv+UqqoRK+WeSd1qjUtj7fbHbxNrX3f1rFh75T88EWvfce3AWPulfrn21musFGs//3rbWLuqquMja8bat1yae3bpos9z+2nMurD596V/9E7P2bH2f16+dqw97sFBsfbybXM/9wUnnx5rV1VtdvlSsfYOD+euS+96MXcOceVFubmAzf50Uaz9/HO/jLU3PTG3t8KJPbeMtY/s1j/Wrqo65Jjc9dEufZaJtc+6+oZY+08P5+a8fvNibg+4j24bGms/t/U7sfYyj+T2ar54qZdj7aqqzS/fNdbe7vDc3lSf/D33TEX/q3Jrby4YlnsO+PHpuX0ldvr5bbH26n+dHGtfv2RunnH53bL7Dd72zN9i7SPfzj2XeWHr3D6L1/8pt0fScke+HWvfs1ruuakp++X2FH2u/Rqx9kaHHRxrV1XNWv25WPvIm3LzXi+MOS3WHtD/s1j7xd1z+4ic/l2nWHuJe3PPojzaPre+boV2uXfZVFUN22bvWPvC4bk1+j9ZY0GsvUL33Dnje6/mzttOn5F71u3LHrn92Ge8mbs+Gr/DjbF2VdVxT+bW/rR9KPdc54d7585ZD70n8332w6wF9f9npXjuzj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE3XSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8rdIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP5nu2jGQdVlfrumdzfsdVHTmz+a/tmKsXb7k56Pted22i7WrqraeZcvYu092jwRa+91zV9i7cf+dGus3fKhL2PtMRv+NtZu+cc3Yu11/75xrF1VdeS578TaCw+cFmvPvvuvsfYWJ90Ua1/86JBYe7ulNom1X9r3vVh7/Mm5Y/rMnv1j7aqq/R/dJdZud8UWsfY+91wRay+7Z4tY+7Mz34y1T5m4XKw97PXcd9nAGSfF2lVVf+j9cqy99LKXxNr/8ZN7Y+03Dp4Uay8+bsNY+5G17461nx9yWKx9/l/PiLUvvSY391NVNf67n8banx13fKw94ve5c7e3zsj9zo8+4IZY+/4Du8Taa058Kta+vv/CWPuJj7PXKN3WnRlrrzdpXKz9zB7rxdrz++euC8/84Bex9lrDz4i1dxmeO7Z932K3WLuqauScR2Lt3742P9Y+86Hcse2uNrm57SOf7xBrH3Bn7nN22FNTYu2vrszdrxzwyAqxdlXVCad1jbUP22PXWHvMwbl5r0E7fhxrX7HyxFj70aXXiLWf2ODbWHvsK6Nj7aqq49Y7Mda+dcqgWPuWe7ePtVvvvXesfde43Gd81Yu2jrWf+dU9sfaotXL3zTbe6JxYu6pq4lLfxdpvtBoRa594xfux9lOn3R9rv39kbv6lf8/XY+2NB/0+1n7x8mdi7aqq/U7dLNa+/euDYu3dv2sda9cVuXUBHU7NXR/df/uasfYZe+fO1d88+5pY+6WJl8baVVWDd5wSa5/+zAGx9uZvDI+12244Jdb+S7vcMf20S3LPRjyx28Ox9uMXnhVrV1XtsXtuXv3pjk/G2h8e92KsvdtRo2LtW35xR6z9+XkXx9qdDsh9j+/ZNXd8uWZhj1i7qmq1C3LXxHvu+vNY+5CProy1j3j2wlh7n/tz5+rH/jo31zhzfG4t6bh/nB5rV1Wd+k2/WHufATvF2j9cMCDWXmb8cU1vTv9hRtUyTze9CwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzP1+pf+Y83Xap7dezc5b9rLP9XU/p2b3rzRwsWzY+15zdaxNprDuoRa1dVzZ6Z+73/MGFSrP3ua/+Mtf/5xoux9uhRr8faH4x5N9ae9sPkWHvO3Fi6FrScl4tX1by5C2Pt7u06xNrDttsz1t5sg81i7YEr9Iq123ScE2t/9e7XsXbHbrnztjdfeS7Wrqoa9+3nsfbzr/4t1l5l0HKx9jJLLBVrr73MkrH2bXc/EmvPnbterP3991/G2n2XXSLWnt1mVqxdVfXT3uvG2lNnjYm1ZwXPl9dZacVY++WnXoq1N1on933y7qdvxdoDB/SPtfstu0KsXVX1ygu5uYCt198m1v5u+thYu0vX1WLtAT1z1wlfjM39ztt36Rprf/7+Z7H2bjtuF2tXVU2cmptz22DFrWLtq+96KNaev6gRa7dr/S/d5vovNT94/+jbCRNj7UULcyfL4z7/PtauqmpMmR5rL5r5Xa49f1GsPb9V7pq4dcv2ufaC3LGtZfD+9MKWrWPt+Qtz946qqlZdbZNYe/3114m1FyyYEWvPmT871l7YYmqs3WJWz1j7uxkfxNo9+vaJtUc+93KsXVW1wvrrx9rTvhwVa0/5Nve3vrBjy1i734DcvfEWLWbG2l2Xyd3D+dku+8ba0997Idauquq3/Oqx9uQZuevxtr37xtp95+R+7pEjc39vX0/OzUPssM5Gsfa8Wd/G2j1yl8P15vtf5OJV1btP89fH/2jKD7nv0smTx8fag3+yZaz9wzdTYu3WlZvrmzW1Taz92JtXx9qrrZRb71RV1bNFbg5k+RVz634WW3HlWHvI4qNj7UbbdrH2MgNXibWfffP6WHvFlrnr4RmzJsTaVVWLJuWuE1p3zF2Pt2ozJdZuOXfxXLtV7l7lgkW5Oa+FLTvG2p1a5tZCLNY1t9aqquqd73PXCd/8MC3W3rRH71i7Y+dMu22rf/96dOhRc6tzl+Z/Xq4elLv3tPGbq8bau8/InXddObBzrF1V9dWzH8ba8+ZfE2vfu+K4WLvl67lnI09+9NhY+8NPn4+1b7w3d5/z5lVza/v3uyF3fVFV9eQJuWcEW3fOzZmd98vNY+0hO+WeZek26/5Ye+PBm8bah518a6y9abfc3gq33Pb7WLuqav4tR8XaD+x6cqw9/8bcnPgWfXNr807vnXsmtNPwc2LtE36zS6y9781nxNpnbz0s1j7jD2/E2lVVW7bLrTv+uO3bsXa7JXLzlK8NWCPWnrt7bk+uXY/+IdZ+9Juhsfbed+euT47cLnddWFV1z2N3xtqbLn5drP3mqbk1JB9ukrvXedo5uWcjD++Vu6/e6qnc+rSVR14Waw85OXd9UlXV74Xcfbf+Yw+Ltb+eeH6s/fy0wbH2kG9ze3Kt0e7jWHunxd+PtZ+celOsPXjXX8XaVVUvvZZbH9d72dxxvXHDPrH218c8HWu/HNxC5dXKPX/cf4PceqWfvpbbb/CTj3K/86qqwSedHWuvvOLysfaEAZ1i7Umn7hZrH7lV7nr88QW5dRidhr8Tay+zzCGx9mk35t55UFV1xCqXx9rvL5ub7zt99mu59nq5tTdzVsy1X3ogt7/BPt1zz3PsMO/IWHtIx9xnrKqqw4yzYu12J+f2G5x0be755y2Wzp1DbHVtbv7l26X7xdqzD8zNeT27ILe2/+teuWP6y4fl9mCrqnr+vE9i7bX65n729t/nnud46cBlY+1Vrno81n5pnYti7Rvn5vZLfvbD3PzLhNty9+yqqoYd/mCsfdFPcvvg77tR7jm9O17YMdYeNz43xzrz7Sdj7UsX5OZ+dm63R6x90vjsfqYn9Twq1h6xa+5GyiufLh1r95mfW2e2XuXeLdt7+oBYe8onuevhW+bn9m4Z1CP44qSq6nDnhrH2/cvnnj+6fZ9nYu2Dx2T+3ubMyJ2zAQAAAAAAAAAAAAAAAAAA8L/fzVcOqo5d2jS9u+ikHZre/NHVT+b27HvwogNj7aV/v3WsXVW124ztY+23tvjPWHvwfi/E2t+MXj3WfuFn+8faT/TMvQt4zLm59x7VQ7Nj6V+s/GysXVV1/GO59xYstdXxsXa7jXaNtX/36DKx9sujT4m1D3kg976pCW0fjbXPejb3GRs77JexdlXVeVvk9s178Ce5fTk7PvdtrP3wErl3bq9wRO4cYpvn/x5rv37YDbH20ENXi7X3HL5ErD1iYu5d31VVbY7vFmsPOy33DsHNGkNi7cP3/lus/c4Nv4619xuRO6af8IfDY+2fPrBerH3L6DVi7aqqcw4/Ntbe4cvcu4C/XrxjrD3tk+9j7dfHHxVrnzdi71h7fqslY+2d9shdDy95weexdlXVmo/k3md38p+OiLWfPzX33oIO/W+Ptf80Knd99NU2ufn83c/I/a2dfMMlsfaHV5wYa1dV3Th6XKx91A1rx9r9rx4Za2935/2x9saf/DnW3q/xUqy9xGW596P+6soLY+1B/9wn1q6quv2itrH2gGenxNr/sfemsfbbE3LvEFz6gpGx9u7v5Y5tJ+yceydK78dGxtrPHpY7tlVVjXj+oFi7zfw+sfabqy2ItQ+559RYe0jr3Lsb3xuUm2Nd5+IrY+1tl1sr1r519IexdlXVvWv/LNb+7Wvbxtrjr9841u7e/45Ye+HO28TaN62+U6y9wxe599l98sgtsfZDP0yMtdu8nVtzVFXV7pQVY+1V9/ks1v7ipt/F2sec3j7WfmP8mbH2+g+fE2uvMnhMrP3qkEdi7Te+zN3HqKoa98eZsfZuy34Ta785YFSs/WW3d2Pt1ufdFmuPevDkWPvhB7aMtees/Eas/cgPueNqVdWALZeKtY/c6NNYu/MOX8Xaxw57K9ZuPSJ3TP/+gtw84/NLfhJrv/5O7rh67Ta5daRVVY1lcu/7Pnxgbr34hNPHxtr9Fr0X6S5aNK2q+v5b/49Lt7qpOrdu/rrI9/6cOy6+3GphrP32+7lj07FL5b6Dq6o+OmW5WPv9jX4Sa//14Jtj7ec+y83d9F4ic1ysqnr8uiti7dMfzu2nsdROy8bat9+a3dNiyPL9Yu31f5e77zVhWO5a/viN14y19zxiSqx9yJ8fi7WnrJj7Ox97Ze75na7j7o21q6oWTcvd61y1y2ax9rCzn4i1/3BHbj7+yJ1y91n/vHDPWLvHxw/E2q+fPjfWnjgiNz+67XInxdpVVeefkls702n60Fj7je1y68S2nZJby3Do7Nax9rzdcsf0da9t/v6KP3r2pONi7Sem5danVVU98I8/xtrHzXg41n5vVG7Pv6c65+51/nKH3F5kfz5zq1h71rzcmqGlf8jdV9+m5X2xdlXVXXvmvs8GvJx77vvqmbn9cw8+PnfOuMGr42PtwT9fM9Y+7Kncs0vX37RYrD1y9PxYu6rqohdy+3mcdEjuGmXaxifE2pe+ktuz+NRt9o21/3PX3Dxjt2cujbWvGn5XrP3tobnnIquq9t46t6foZt//e2tI/h133JrbT2OtE5+KtSf1mhVrt5yRO1/d+aTc3pojzv5rrP3MW1Nj7aqqM7q1iLX3PG9YrH3debm9gja4pWus/cRS/WPtm57Jzf0MP2G/WPv5C6fH2i3XvCfWrqpaa9vcXmiXPZRrP75O7j7tnY8fEmufOjn3ffLAsNyx7ZM2uTmQa4+8JNY++o8vxtqde+TWNFZVLf341bF23/vnxdp3Ds7t3fvOgbmfu8sLufPVJ4O3aXvdnptj/WSL3F6HX52c25eqqmrzObnnpu6b2CvW3mbItFh78d6NWHv9m5+NtSfdfmis/betcvuBrXhK7tmnE3vmvsuqqr676tlYe4U7r4+1j+l3Q6y9yQ/HxNrtXh8Qa29+Re7n/mLH52PtmUf8I9Z+49PcvaOqquGjc3Mg72x4WqzdZ8/ce3z2WjVzr3TRvFlV9f++SMmdXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HSN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TKj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4H+2vlNXrxZtOza9e8p6v29680ePfPVorD1pwH2x9r5n9o61q6oO3GuPWPvsiUfH2i/+cGisPeaug2Pt74ZcG2tPmvZ0rH3lVifG2u+3PCDWrqq68PKzYu3ZY9+KtR/YavVYe7VZvWLt8795JdY+6m8rxdqtn84dV9+89ZJY+6zhn8TaVVUr3rEg1n655cBY+z8mLxtrbzy0Raz9k8s+i7WPOjd3TF+45c2x9vXfPBhrV1UdP3NYrL3XU3+JtV9rf1qsfdAPP8Tad1/+p1h77NWrxdonPf9erN3ud7nv0adu3DLWrqo6c/vxsfaWi34Za580LNcec+1asfaAax+Jte+ftHys/ZNdz421P9738lj7oF/n/r2rqr7755G5+B8vjqU3+MULsfbla/aLtT+Z9PNYe+iXXWLtDx7aNtYedX3bWLuqqsvbV8baM+49Itbu0pgYa48Yul2sPXn73P3Kzp9cGGtfsvQvYu3thq0bax+7a5tYu6pq6vP/yMWXWj+W3m/J4bH2ZY/m5p12XvsPsfY/1rg/1v7gvdxajPs32y3Wrqq67M+3xNqHHpNbh/Jtt9z32SZffhhr93l4xVh79WM3iLV32TK3HuL303Of8VlPHR9rV1UN7Tsn1l5q3Hmx9n5dxsbaE5bLrUkY9F7/WPuaTbaPtQ/6ebdY+/OHH4u1q6r2feeEWHu70bm1ZpOfzd1PWLTe57H2jQ/m7tNu9dj5sfayx0yKtQecPDTW3nDNzrF2VVW7p1aJtU/s+Wms/cqGl8baGw09J9be/5nfxNqDOl4fa5/WYW6sfXL7G2PtqqpfbnNbrL2oRW691aNvjo61F47OrUHZdNPc9/hnn0+Ptb9+87hY+8udN4+1v3nttVi7qurm7rl785Ouy91H2f+OhbH2EeP/Hmv/dsDasfbJFx0Ta0/+6Q6x9j4fPBxrV1X1WJR7tvPLDi1j7Uk9c9dnkx5q/tzTzFmzm94EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ndo9a/8xxPGf1szfpj53zWW/6vvR41uevNHX416Ltb+cNRbsfaoj1+KtauqvpswPdZu0WgRa89pzI2128ztFGsvbNn848qPOjVaxtodG21i7aWqY6zdpm27WLuqav1h28Xay66zcqy95FK5dqueC2LtGXPGx9ptWneLtZfZaMVYu8O89rF2t6W6xtpVVRPfGBdrD1muX6w9eeqkWPviu5+Jtft27xFrL969c6z90FP3xdq92/aMtRcfkDu2LbXE8rF2VdWgwb1j7cbM3M8+4qFzY+3qsDCWHtBtsVh7bqvc31r7tt/E2u3mLIq1p8/InbtUVbWdlfvZn3vltlh7sd6DY+27nrou1v7d4fvH2vOnT42153z2Xazduc/SsfbzL7wea1dVXfbH38faL7w4KtZeZVBuLmDChImx9vczJsfaC2fOy7W/z7Vfe2NkrN2x9exYu6qq9ZQ5sfbiLXPXpW3b5u6jtF2Qm1uuRbnz1UbL3Ge8dYvWsfaC3I9d82p+Ll5VP9kld748fmbuvt3s6dNi7XVXyM2BbLjiOrH2d9Ny6zDWXaJLrN160vex9uTg+UNVVcuv3ou12y3IfcZHjflnrL1U94Gx9nd9P4m1+7TOHVcXzsx9j3dvn7s/vWiJlWLtqqpPR38Qa8/tukSsvfqquXtXW26xY6x98SW5c4jzDzk81v7q69xxdeqUxWPtTqvkzl/mzMutp6yqeuWl52PtiVNz504rDlg21h4zamysvUSftWPtdm0asfb4sV/G2isO3CLWnjU392xAVdXccc/G2p2Cl6Udxueux+e27R5r9x7QIdae9W1uPn+NDX4aa3/z4bexdtf2uWdwqqp69s6tqZw6J3c/odXC3P2jRqvgPeJGbu1w6/Y/xNoLGsHj6szc3/n8ORNi7aqqhQvbxtqLz+kfa7eqKbF265b/0mPe/6O6H71+S3Xs0PzvxNevzR0fnjnm9li7Xcs+sfbpd/421q6quqndo7F2ry1yc/LfP547z5/4Su6ZraGbXxlr/2xwr1h7fo81Yu3pa+SeOf/rKrljelXVVUNz90E6zN481n67Z26esk/X3DM8y074NNa+bNsnYu3lFgyNtXsseUGsvVOdHmtXVT32j5Nj7e3WXC3W7tX4Ktbe665zYu29T3441r6m39ux9rLb525EXPfVKrH2xIkvx9pLHZd7rqCqqsfbuXO3xTcdEWu/dmnuuDruktxaqS6f5n7uhc/k1hNsNuiVWPvFn/0q1t5qi9y8U1XVVb/J/Zu/N3RIrD1w57Ni7c8vyrU/WpR7zv+uG+6ItUf3mxVrP96hb6z92oTcdWFV1c2n3Blrf/+33D3enlOPj7VPmJHbT6PrC8G9qVbL7W358Zzcs2rjG8Ni7QfWya29raraZ9K1sfZybXOfs8d65Z4RXHnUrrF2y5Vy+5mu3jY3zznzsaNi7U4Lcsf0ZffPPVdQVTVnu9zc0y1P/0es3arLLbH2nzfP7aU6uE/ufHX24xvE2i1/vkmsveYjuTXuN88YGWtXVbV7dpdYu8V+ufndLacvF2uve9V6sfaIPXaOtXddPrcH2196zoi1B253d6x9xsN/i7WrqkYv+1msvV3f3LXhOpvtHWsvdvEBsXbLQ3PzfZ99E3yu4bDcNcpSi+fmtTdb+dhY+56ncvfsqqp27Js7d6q/HxlL/+deuTWNjYdya/uW3OPMWHvo+z+PtU/vnfsuGzIp+D66s7Lvynr89r/H2j9/MLePybfTcnPL6z+Q26v5z8d8GGsPve2kWHv5nrnv8TU65N5/uH/P3Fqrqqo9t8zNc+67x7Ox9tczcs/itl4ntwf/RtsuE2uv9/A9sXbfvx4Xa3+zeu7Y9u2vv461q6rmvZqb7zvojtze4Hs+uk2sPei7zHrOabOnV+7tHgAAAAAAAAAAAAAAAAAAAPxvd8Q5g6vRtvnvWJty0tNNb/5oqSXbxtrXP757rH32zb+ItauqLhm1caz92qm5fUg2vTv3ntBHPjwo1m6/eqtY+/G/5fbz2rBbbu+VkYfk9sw7/+ydYu2qqkemrhprr7Yot8/09ht9F2vv9t7ysfbgPrn3wXy6X+59U1/9JfcZ37rdxFh78aFLx9pVVdt1yr2r866rfx1rNx66IdZ+ed4fY+23uoyMtd/b8spY+9ZvfxJrD+uc2x/yi5d7xNpnfJHbH7Kq6poB58fa/3HZuFj7/oG577Pfv59rH9ymV6w9d6Pc3tr7PZZ7p9vUi3P7sO7e+eFYu6rqxRHbx9qb/TE3F/CXo++Pta8+N/cO5Dc/nBdrL3Ns7jrhiVty76t86f2jYu1TTs2evyw5Nnd8O/er3PHlyeNyn/GPr8sd0zuNyH2Pb3b3mFj7mjm5d6yvfMs7sfb93T+Otauqeu2Tm3M7Zp2XYu1Dns+9q/PWEbn7hYudPDnW3nH8U7H2Xxu59/jdue0DsXa9fHuuXVVjl1sQa/+97/hY+65Pc5+zzYc9Fmv32P2RWPuGdrl3yw/ol1uHMfynuWuzrzvnztOrqoYcdkqs/f2pbWLtp9d9M9b+5sSzYu0FfZaMtVvNys2/7LBkbq3V2efn3vV94+TcO2mrqs7qlnv39O8+OyPWnvpY7n28d+4zJ9aedcLnsXbfbsNj7alfdo219/xb7hplwtG565OfXv9lrF1V1e6F3PzL5r/PraHdc6PDYu2Pbzgx1v5i46ti7QW/mBVrt1inb6y9/dh1Y+0DJmffcz5kw0tj7bkzc+/qHNZzaKw99sbWsfara20Sa7/SNXctvt8zufbVW+Ta847fO9auquo85oxYu/3Ploi1X3zw2Vj7nHa5Y9suV34faz/9l29i7f3Pzt27uqJz91i7/crZuZ8Drnk11p60eu4d73+/batYe6MHlot0F8xeWFPO/vf+H0fP6let53X+rxnQv2DcXm83vfmjX7+Yuxdw6Iw1Yu1xI3P33KqqfnP+hbH2tQ91jLX/MG2HWHv5XvvE2gMPzO1xsO8RuXsB1575Xqz99SY3xdrzOo+Mtauq7v4yd19975Pej7V7Tdgj1r5vv9w93n6r5eYp5+9+W6zd5ZljYu1bF14ba1/17mWxdlXVvFG55753e3z/WPuLNjfG2h8/mbuue+ap3B4qm/48d0zvecXhsXbbq86Ite997YZY+4SnB8faVVVbfJx7ZmvRwbk9cy5bLbdWatItX8Tarf60TKy9zcB7Y+0+Aw+NtTe4adtY+/7uuWvSqqpT9sv93lfb7YlYu9eId2PtSZV7LnPrT8+Lte/ZoUusvW+nk2Ptlpfk7v1sMTK3/1tV1ZQ2ueeAP+vcKdb+826/i7U3GPlBrN1l+Lmx9gabvRhrv/Z+7vhyXeOfsfYjl+f2paqqOvbS3O+9y6jcsXWfgR/G2udVbq33/ovl9ofaYJ+VYu1TR+f2/Bu9bG5OfbGl14q1q6q2uTL3TOohK60da9/wbu7e+PwVdou1Wz2bu0a575vccyyHfZVbi3n+b1aLtZe8IfcMcFVVz5dz+yVf9bf7Yu2+PXNzIJvssGGsvdZOv4m1333xhlj7dy1Oi7XPHXNwrL1Ju9y/d1XVFbvn9mu+dLufxdonnnN0rH3ryxvF2t9N2CDWvvrg3HPfL0/OPXvd+cPcc3Ij/pg7tg15Nrtf8q6DL461f3NEbl+J1d/LPeu/8me5eYixO+4aa7f+8M5Ye95xueuj7idvHWtfdFfunLGq6sRtcvdwvnp531j7+JO6xdpDbs79m//h6jNi7QvXXCXW7j80N+f11SW5e1djp+fOnaqqJq6e2yv6lxvl9of6y5W5vTz6PJXbz3TNl3PPGP7q57l3hPVvsWmsPW6J/rH2ke1XiLWrqm4Zv2Os/fS+ufdHt2+V26to+61HRLrTZi2s7nf9v/+7xn//UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+J+ikR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+D/s3VfYVeUd7us/k94RRUUpgoi9FyzYgsbeezeJGns39hYTe4slUWOLvddobFFiUOwNYxdFBCwISO/so+xrnaxrr2yz5rP2vu77OPE3gG/Ob4x3vAUAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZplb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P9shw0fX21bTmt694H6qOnNfxv51emx9tMn/iHWbn3jiFi7qupvwx+NtU9b+6tYe7URPWPtpSe8Hmvf9PvzYu2r3jko1u57xuOx9jGjP421q6pmDR4Tay8zZfdYe8Gvl4y1r9l+w1j7H7cfEWvffmPuczZqxAGx9kEf5z5jY9f5PNauqtrhs5/F2rfd9VmsffJFZ8Tau1/8x1j79jM3ibXHzbgz1m634mOx9o2ffR1rV1XVWlfE0g8NbRNrL33BF7H24rsdGmtfcesJsfZWv1g/1r745dznbP6AHWLtS3YcHmtXVS3y+cRY+7ILLoy193lqt1i77SK59qLD58fae+3bNdY+fI/OsfaO3Q6MtYe0/y7Wrqo6vs+UWPuFP78Xa8/57dKx9l5/2CTWvnS/7WPtyae1jbUffuShWPv9Dy6Ktauqhnye+4xf9sIGsfbe5+e+Ww8/61+xdp8/3hNrb3vv5bH2qlvtHWv/+u4LYu0zrt8p1q6qen+H3DvDjX/cLNZe8tQ5sfa1X46OtS89ODcG8uXGk2PtW577day90ecjY+2qqr0Wyd0/vfP8+bH2p7utHGt//6vc3J/Op/ePtQeveEOs3WvzX8Tavzt+l1j7hrG5Z/Gqqk6v9Yq1z1xnbqz9t69z71GOvSk37+i3x14Ta5/95Dmx9nd7zYu1PxveMdauqmqx/j6x9oczt4m1R+2Sm5MwvOvLsfaIdU+JtfdY4dhY+/y/DIu1P+7dLdYee/xKsXZV1eidNoq1196sQ6z94Tq5scadzpsda5/w2T9j7X/MOjHWPveOM2Pti7fOzqnc8+GbYu1JU1aNtc/+/tlY+4zhL8Taez6Smyf/1s65Mf3zjpkQa/d+OPed/vBWQ2Ptqqpz7x4Qa99zwRax9iGPbB5rr9Emt86w91WzYu0Xttoq1n5ixthYe4vW2eeElc5/Otbe5IGDY+3hD+buG48ZPKTpzbkLZjS9CQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx/Q6v/5H980uZrVqNFi/9d1/I/1Wpem6Y3/63Tgnmxdtt27WPtvi3axdpVVat16hprt5/fMtaeNX92rN21Q9tYe+7sXHvhLp1i7TYtO8faM7vPibUnd+oYa1dVLbvaWrF2vwFLxtptOk2LtdvOy32nt+uzSqw95fsxsXbrWbn7l8mzR8XacyfOiLWrqhZZpXusPWZc7t+8U4eFY+35C6bH2u+MGh9rt2rZiLUnTc3dQ7RbPHcP8dHLo2PtDgvn2lVVDw0dFmv36NIj1l51jdw9xGefjYy1lxmyWqw9fvKnsfaGG+eeEUaM+CLWfuPtl2Ptqqo+ndeItXstlvt91nPxWLqWGtMn1n7tzfdj7RljPoy1J0/7Ltbu03VirN2503KxdlXVsDeeirW/m5q7Vx87c2ysPX361Fh75sxZsXaPyr27aj8/N9a38hK5cYAZoyfF2lVVLdo2/x3pv7WZk/t+adXIvbtq1zb3XDi7foy127foFmvPm5X7957fZkGs3WJB9t1Vz4EDY+0XP3871n7utjtj7V6n/ibWfunNj2PtNfrknoenfJMb+5k99bNYe6MBC8XaVVVTJ+b+zdvOyw2CdKkJsfbo73Jj+t0+7xdrrzVki1j79feej7UX7d831h6y3IaxdlXVsAdyYwGLL52bZzZv2jex9pzWueejvfbbN9ZuOS83J6DHQrnnhO4tusTa1TV3//DduPmxdlVVzyVz7wxbdPkq1l5lg8GxduspuXGIqRNz8+RbBOdy9l6pV6zdvU1uzvQPI3NjfVVVz76ae1c6a1bu++WHNh/E2t/Mmxlrb7rpkFj7pSduj7XXGLRMrN1v691j7flTc3Omq6ratc6NLbec9X2sPatNbsytRcslYu1Wc3P3Ti0794y1W8zNrfGbP+/bWHv2nNya0qqqRXvk3o3Pmx1cFzE/9+du3SIz5tWqxU//+z7+ljOrZev/aJn6f8WMV1ZvevPf1g6+75u/Wm7eTs9xuXfLVVVdOm4Zax/21dqx9tCnXo21vz3697H2diOfjrXbrLpCrL3hgtz47B1r5t6/7N+jQ6xdVdVnn+1i7buX2yDW3v64v8TaU8fkPmer17ax9revPhdrbzoz9/vkz3MWibVbDMx+v3RdZ+dY+6mbc+vtD90tt3/Lhr2eibWvujQ3J3GH0wfF2qMezD2jvPR27p7x5W83jrXPbpt751ZVdd+We8TaS+y5V6y97L77xNoPbJRbn7jtbrl5oJf8kHvf94upQ2PtT/qfFWv//viLY+2qqjN2OyTWXjAhtxa3z9D3Yu1nVx8Qa/9s07/H2md+kJt3vMVGy8ba6w/I3aff1LN/rF1VNXLacbF2qznrxtrffvhOrP3SP3J7O7yxU27+yo5H5T7jk2/N3UOsOTa3L9UVW+TmYlZVHTp8s1j77iVz77YPWO+TWHts36ti7TX+tmisPfHrg2PtVZfKzRF7bZ3cmoqh928Sa1dVPXjfA7H2EXucEmuve+hvY+3O5+baL92Xmw+53Wa5z/i+/XNrzo/pllsnN2hU7nm4qmraeS/E2jMvy4337b51rv34xH/E2lt+FXxGOWarWLsx+fRY+8SJufdH356VfX80+Ibc2NMGYxaLtdu0zs01Hzr0ylh7/ozc2oLfjcit53h6cG7/t0XfXS/W/r5yZ6qss2puPmVVVdvr34m1n1v3wFj765dzezusfVruvu3pq+7OtRfLrT8+7f7XY+2Pu+XOc+n2Q+6ZtKrqmddXjbW/ODY3pr/zpI9i7VY35PZI6nB4bu5w3+NyZ4SNnpzbF7zdP46KtY8efWqsXVW1wtjcvp5f7p076+KH43NzAnq8cE2sPXTx3J45Ez7JzfPqufRlsfarvQ6NtT9+frVYu6pqynpLxdpfr557Ju6+2s2x9idfZc74mDptcqQLAAAAAAAAAAAAAAAAAADA/z8s2G+DWtC5+XtkTn7tjKY3/23MEn1j7QcGLB9rnz38mFi7qmrpPnvH2i+9flusffrK98fauy+6U6x9XO/cfoF7XXxrrH3aS+fH2k/1zH2vbtD7kVi7qmrlRd6MtWedfXys/dLkF2Ptk2/M7d9/fO443trx9kti7WVWz+2vdPvGj8fag07N7W9dVfXNhyfG2l0/PCzWfnqX3DnE7/zp2Fj71H67xdpnTbg21j5o/nWx9lEH586WH9U5953+5Xu5+7aqqocOyO1ft8K4e2LtWQ9k9gusqjpixdzvk3n35M7nuOO43Fk0axyd27u/4ylrxtpnr94m1q6qeuDOpWLtS3+X24N20L25M59G3Js7H+TpH3PnNQxe9atY+4JvFsTaPx+aG2/7YmDbWLuqasrLX8fax7z+Xaz95Gf7xNpL3J7by33hw3LtN/s9FGvPfyA39vPpnNxZdj9+m/t9UlV1evfcOetHv/lErH3Si7+Ktbu0zJ0P8sCx78bane4aE2uPPW9wrH3nwD1i7TlH584orara+OPcc+mA7efG2vud9kmsfe8NP4u1/7RU7l59+o1/i7U3WTf3LmG7pZaJtTscmBsHqKpa5a3cGYYbdRgaa1/9w6OxdmPA+Fj7ocNy98untszdK8/YqFesPerY02Lt67c4PNauqnqz08BYe4Vzu8XaZ03NvT/6zZ6zY+33Ds6NeR14Su5n/Z4+T8faN03MnenW4ancOaHb/DV7zvmvrsjNoZ2+Ye6c0MtvuijWvuO5kbH2ZiNy836ubDwba2/681Gx9utXbBpr3z8t97NWVfX6Xw+Ktb+fPyHW3qj/27H2sE7Lxtqr93411h61dPdYe/7xuc/4r8aMjbWvnpydt/zIuTNj7ZGr5eZDtJ2Z+17v87vfxdrfvJcbd5rXM/c8vM9OXWPt61uvE2uf9/gmsXZV1dxHB8Xa6+2fG3Pbas+1Y+33dsusKZ08dVp1O2/Ln/TfmLjQodWqdav/0hX9rzvtyty7xqH9r4i1f/fYgbH25Vu2i7Wrqra8bkCs3fKY3Lydh0YsGWs/u1RuLexB92wba381MjdO+cU2G8Tal5//caw98dVfx9pVVROn5ebOvHLWfbH2HcMPjrVfPWhSrL1ru9xY3QY/eyzWfnVSbm7eRS/k2jPWzt0/VFW1PSc3V+vu4bk1guddmlv/POv2XWPtlc/MzY9bY7HcuswP1m8da5/WO/eMcsCLubHh6x7IrZmqqjplw+dj7V3H5+bYX/xkbh3w0Y/lno+O+DL37umiMX1i7XsPmhJrr/Zhbs3Wo4/sG2tXVZ35s9z7gG/vyN23ter411h76rItY+0bD98o1r72i/1j7Sd2eSDW7vtDbt3SOvfm1uhVVXW8NjcP9eo7c+8yrr8uN/e389L9Yu2Wr+U+4xesk3vXOOqk3FyG/bbIrWOZttVzsXZV1b3P5n7e5o7PtW8ZkxuHaN/upVh71+Ny8+Pu7npgrH3lUbn71TaTc2OcfY/8KNauqnr8ztyef2ud8Eys/f2TV8faK36am/M8cth2sfYvT86tf374yZVj7aN2+SbWHrJJ8+dY/Y9GvHVTrL3YIRNj7cMXy+3l+s9b/xJr37Zcbv3QcVvfG2svuXfue/Whvc6Ltdus8WSsXVX197VujLX3vGWLWPvVr/aLtS974vJYuxZZIZbe+JrcGpprB+f2rXnkb8Ni7S9f+0WsvdV7uffDVVX3tM89E7ddJffd9uE2uTm0P5yX+4x/cPWGsfb5Q4bG2vsfl/ucdXos917+4Cdz7zGqqo5a7Oex9vT+W8fa48/7LNbe/De5fegn/SK3Fnbg2Nw89RFP554LDz86t7fCeXedFGtXVX13R+4snaW3PiHW3vCk3Bmnt165Rqz90Ma5+bsvtrwy1u5+7Zmx9kI7TIq1tzvitVi7quqZI3vE2ldtkHtvdvC528Ta5939faQ7c9b/2h4ijf/N1wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9BGukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHla/Sf/4xO7rlXtGv/R/+W/ol27Fk1v/t9azIqlu81dJNZu26kRa1dVNebMj7XbtW4Xa09pkftzL5g/NdaeOSv3557asXWs3abvirn2z9ePtfss3yPWrqqaPD33/dZliTaxdouWuZ/1V/76YKy92irrxtpd+neItbu3WjTWHjd2Uqw9YdK3sXZVVdf2uX/zTov3ibXHfDo61u7QuWOsPWH83Fh7xtRpsXaPRTrH2h9/OirWXnbgYrF2t9bdYu2qquU3WDXWHj8u97P+xntvxtpbbLlLrP3p56/F2t26D4i1L7/i2li7T+/usXaXzkvH2lVVT774TKx9wHa5Z+KRn30Ya4/7ITf+Mvez3LjTVx99HGu/+umnsXarH9vH2r1WzY2pV1XNmTov1h7z8chYu9P83L/5GoNy45xvvZS7b+sxL/e92jb3tVpTx+XGX1o3gu8Lq6p7I/c5m9V6Tqxdczvl0gumxNotWy2ItafMmRxrd2yV+/depcd6sfbgDsEv1qpq9Mp9v+zQLjf2s/flq8Tawz/P3bdtsdaSsfbUkbfF2tN/zD0ntJyWe0YY9fm4WLuqqu1iX8baHTv1jLX7dZ8Ra4+bsVSsPX7u57H2mO8+ibWX7tcr1p4yKXcP8eb43DhjVVW/7daItWf+MD3Wbt8291zaMvfVVl1zr0qrx2KLx9pffZu7Tx83OfdufMGs3Ges16K5uS9VVcuumuv/8E3ud8r33+buWRdbOvd8NOL5obH2qktsE2uPHZG7Z7z9+adi7XXW7RdrV1Vt/vP9Yu0bbjsv1h77fW78ZeElc7/POvfYM9cekJvb13X5/rH2F29PiLV792sba1dVTf7hu1i7deWej9p3yc3XXjAt93feWGTZWLtF5X7WO87NvbObOiv3XDhnzthYu6rqq5G5+8b5cybF2qu0WSLWnjV1UqQ7bfpPv2866L0O1a7R/DVrnyx/VdOb/9bniEGx9je9usbarQcuH2tXVQ1/b/NYe8qGuTn2fbrOjLXXav99rP3N0rn7zW/aLhVrj22dGy9r3/3UWHvRe4Nz46pqhSXeiLV/+3xu/OSd11eKta95LDfHfsCRE2PtHq26xNqf9dot1u7TNzc2/MphR8faVVXLzs+Nz/56tfti7U9fzM01f2PsCrH2j13ujbUnPbdHrL3OnNy8wIFzdoq1d1gmNzduwc65z3dV1aDxf421ey/8s1j7m5sej7WH7JB7/zPmutx7r0NXza1reO3Hi2Ltj7+6Mtaev0jLWLuq6lf3PRdrb7ZsbtxpyMm5eTsf9N8n1t7/DxfG2r9vm9t7ru9fT461r98w93xy28vZNee39szNQ11s6W9i7aU3yM2XerrNMrH2Vcu+H2vvv9hmsfYXn+TWZY5b0DfW3vG93D1jVdUBuz4Sa/e7PzeP49nOJ8XaK31zY6y9+MDc/WqfRXNzSEbdnvtu63jhb2Lt07a8JNauqrrmotzf+4tXfxlrb3Ty+bF2l7f3jbWP6J47e+D+6V/E2sMuze1fW9+9EEv/+je5Z4SqqlWv+jLWHr1Bbk/07+96PdZe+7vlYu3HZz4fa//iw3/E2t8MzH2v7jQs9/7omttuj7Wrqq4eu1Ss/WznlWPtPvvmnom3fW1orP3JL7+KtYfevUGsvdESn8Xaj6y7dazd7cncM+kyi+b2EamqanNqbh5rl865MdbPpuf29WwzNje+++qU3HynO/aeHWsPein3LuGu+x+JtS/ZKzdfu6rq4kNz51Xtcm7unnXq6rl1wPOn5fahP/Cc02Ltb2ZsGGv/crncJkmX35WbK77VVrn5J1VVH96S2w9sxqTcfj2HT8rtcfDO8K9j7THf5/ZxXaVz7jO+4sjc3Junnlo91v52keGxdlVVPX1HLP3l9NzPeq0wKZae98izke70/8Lecz+271dtWjX/LMHFVl2o6c1/G/XzXWPts/bLjV/0XvYXsXZV1WHb5M6lPfr8HWLtP87I7V135C65/byuufymWHvdeQvH2su+kRuz2qJb7uyhqqqV/p57v7zj17+Ntfc4PjenYJOttoq1R498INZe9rXc98u5//gg1l5lfm4tybPr5f69q6oWn3FxrL3vsNxeZpu9vGasfflDuXGE9X+XGyv8arfcXoVzDzgq1n69f25OYlXV52cfEGvvffS5sfZB5w+MtW8ZtlasvWDP3D3rxD89GGv36ndQrH3b4Nyef2eNyu0jUlV16VIfxdpn/nH/WPv+4zPjlFVVKy6eu3daYtVfxtq7bftirP3KDrl1U6e8ntuD7fVlcn/nVVWnnps7t+CRJXKfs9vOuD/W7nRf8Bnlgtxerms9lZsXeGmXG2Ltg3f9eaxdVXX+Brl5Q3csnRvb3uyR3DjEzqf8Kdbe44V1Yu0JK70Xa88+8clY+/iHc+c1HP6XH2PtqqoD1s2Nex1+TW6O/0pb5s5IvfHC3Ny8uYPfirXfemVArL394rm9DtvsfU2sXVU16PLcvfrNc3LjPw9+kjuP5ta1cntjDeq/cay96IzcuNMKwb1c27+X+1n7YV5uXUNVVe+7fxVrvzYut+78rWNy81Cv651bi7vQy7mzdIY/+nKs/c8jc3uDr/POBbF2VdWX3/aOtXfeYq9Y+6T7c/sMHN3p4Vi7Y5vcmH7nh06MtffpfWisvdpHufv0W54ZHGtXVV3VObdnzyY35fbJ/v3ruTMMd73ib7H2wE6/j7XX+/ufY+1Oc/aOtTtemd2PbIfNcmc+3L5ebp7bN5cdGGtvt8TSsXbfnrlzCHdcJXdu1FK9c+sy3rs3N+fptYvvjrWrqi7pemus3WV87r5x1Hu59Qkntc6thRn15bux9rYP5M6279s5ty7joBm3xNpVVRN3yY3xjn7sylh7wH13xdrfdmv+/lSTF8ypxSb9tP9Gtzt+WS3btvqvXM9/4qXFc2ezfrrSx7H2mM9y88yXb5lb811VNXax3NrIw4OPdUe+ldtHbYnXDoy1Xx7xRKz93czcGYLPHvhMrH3IVrn5Qid/njsDuarqoi1z+yucukjufd/sY3aJtS85/8NY+52Rq8Xan1yce65abpfcnuY7X/1OrH33FfNi7aqqfgfn9uw7rGtunvm49rnxso9v+12svejTw2LtC9/LnVMx+Z7cvnlbLZTb+3Zgj9x8xN7Dc+9eqqqmr597v/vCb3JnXT2/cm7t0vkLbxdrf3LOH2PtYb/OPYy/O/XAWHv7Ibl1JHOeGhprV1V1fy73sz75kNxeHqv9LbeXx+uDz4q1V7jltVj76W2mxdqH7HJYrL3jjNw8hj/8PjdHq6pqwnu5eYEPT8t9t33VLne2/YQzc2v0xrbKnTf1w+q554TF98mtk5uXu32pgWcHz0etqj4/5p5Lu7+cO6+h99JPx9qXdm7+Xuj/9q+RuXGnI86/NdZe7ubcOTjn9s3trdD68dz+BlVVH6+be2d4xntHxNrP/2rxWPuyiblxiHGX/SvW/s3luXlS9fwbsfRaa+XOojlnp+z47pO7HRhrtx16X6x99Y25M3jevie399zjO+fOy9z/vNzZJgO2y61F7bVa7jy7SVvkfp9UVX08Obf2+sclc3tk3/DhS7H2tkeuHWvf8WhundoZ2+T2nrtzQW79zjqL3Bxrt9v3hFj7sL4XxdpVVQeetGisPeia3P7YI1fuFmufvmxuDsqyW+X2htpmndw4wJZ/yu3bu9+fcvv2LnJx7pyJqqoRX+fW2u88Pjf/Zd8DcuMQD83bMdY+ZuvcPPlzns2dO/D3J3Pju9t+lDvHZps3cntzV1WtOSy3r+cWj+TuX9Y+cXys/cmlu8faf55+eqw9akJu7fPofXJrvq/8MPe7bJd5uXcoVVV/viz3bHjG8blzLtaeMjnWrgtD94yzf/q48in/XK06Ntr+Fy7mP3P94Nx7zv3ezJ1zftfA3PmoV6+zWaxdVTV/8Vdi7ce2z91r7//l2bH23X/MzY+7dIvc3tqT182toXn1kdw7kDV3y8393Wbp3LvGqqqR7+beB2zy13Ni7S4jcutRd/51bj7ktdteG2sfu2FuXcO7N+TmUbT7NHf28+MXfRprV1W1G31GrH1cz9y8nTfWWybWvrGRG6+bucjOsfaDv3k/1u5wbG7ecYdbT42179omt7fCVu/lztuuqnrwody67yfG5vZynzj8nVj7yZm5OSSDX8qtofmkHo+1j3pwZqy9+493xtpPPZM7C6aq6rEnh8Tam7bM7fm38EGHx9pnv5Q7e+jztXJ75vQ6eW6sfeZ2c2LtUefm5pm/vsjYWLuq6oALcj/rja97xNoL7Zr7nK3wbe4cvY9uy81xv/+Y42PtP7+T+1228T65s1H3/y63r0NV1bDXct+tFzYejbUnHHRdrP3Cs7k1ggtdvFSuPSl3ttiDRz4Qa5+62LGx9i9nXh1rV1WNnT4m1h726Dux9tu9cj/rg9/OnYHc4/e5c9V2+0Nuf4WBi+bWNZw1oUWsvd3Ne8TaVVUL3zwp1v60a+7cxpsnXxZrv527bav9Hr8k1h7+eptY+9G3cmfxLrlc7h/8T/Nz6yKrqi4b+kKsvc+zC8Xaf+6QW8/RGJx7j3L7vNx5uC/PyJ1lN/LB3Dmd7ft+EmuPnZWbf3LE0p/H2lVVd8+6Itb+dvnc3uBnjtgg1n7u3NzZbL/cNbdW7V+zH4u1D304d07XM7/M/Xsv/GzuLJmqqiMnjIq11z9luVj74M03ibX7fZD7Oz9zbm6scfByP8baGy+0Zqx988Tcmowz1si1q6oWuT93r/6rnrl58pcttVSsPXlabi7pmGG5s2W7d87NK1xjg9xc8R+659Y2bnBJ7j69qmq9u3NzEk7d4/pYe/thuf3Yq0Pm/dHkxpy6sJ78f/zfNZpwLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/B+ikb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqfVf/I/Xrtn3+rYss3/rmv5n2q1oEPTm/82fc6UWLtDY26sPafRMdauqprdemqs3a4RS1dj9uxY+7u5rWPtVq3/o6+i/6rJ/VrE2gsP7hVrdx8wLdZu1TX3566q6rNk51i7eyP3GZ8xLfflNmDNVWLtd1/6R6y93Iw1Yu0FPXP3ED165z7jE74ZG2tXVU35/p1Ye9z4ibH2xBm5n7cuXTvF2jMmjYq1G21z923jx0+OtefPmxdrjxmT+3OPnpd7Jq2qGjdzTqy9z45HxNqbbrRurP2PV4bH2uPG5n6XLjk79/tkkyG7x9qvDnsg1h751dexdlXVluuvGmu/9fk3sfbWi3SJtWtm7nfpxAW5sZ+q3PfL3B+nx9p9l1wo1h7/Q/b+pfunH8fa//rok1h78KqDY+2/vfzPWHuhufNj7a6N3Hf69z/kfpd1apV7Rmi0av47yv/RvLm59wmtW7aMtecuyP25+3daOtbu2CI37tS/+xKx9rSaEWsv2nVArP3t9AmxdlVVh1a5z/gNz7wXa6/eNfe+smXH3OesY+8esfYPw3LvC+fNzo2pL9Ql9+du3aV9rF1VNW927nP2w9hPY+1OvRfPtVvlxli/H537fTah42Kx9vLrrBNrL7nowrH2x+9/EGtXVbUZn2t36zAz1m7XIfezPrt9bgxk0tR2sfacObnx3UUX6hZrN5YIzu3rlnse7tgmN65dVfX12NyY24zpuX/znsFnlM5dc2Osu++7Z6w957sfY+2FO+eeUXbcdZtYe+7s3NhLVdVLrzwda0+dkxvf/eyHr2Ltrfvn5rHOmzIp1u637Mqx9rzxuXe047/Kfa8u12e5WLuqaqGFcr9LJ0ydFWu3aeTuWVt2zf0ubbQNvittkft9MqtlcJFf7lG8ps3Ivhtv08j9vffosGisPenH3J+7S/vMWt65s3/657t3/57VITCfY42WublSXYYvE2t/3z+37nrzBT1j7aqqD/b7Taz95Y/Hxtq9jtov1h7x4tBYe+LSuXcwC329VKz9h81y61i+mPJirP3yw2vG2lVVL190eKz97spvxtonLtsn1j6hY27d92ln5v7cd6z2eaw9pfNpsfbsN5aKtU+58NpYu6rqo+f3irVnXrJIrD31wJdj7SM2zc0h6T/9xFi7xam5OUPT18mtyxzT6odYe+JDuTUVvVptHmtXVb006NlYe6/rF8Ta+6zzbaz94JcPxdqLD7k11r5/19z7vpWeyD2Tvj8qN+Y1+r6RsXZV1RXX/jzW/uS73Jznxdb+Itb+9Kq/xNrfH9wt1t7k3g9j7ZNeyX3Gb1s2eM84pW+sXVW17We5d9uvv5DbD2zQPrk5z1ssWDbW/vSDtWPt95/Ifb+s1nOpWLvNhNz81w4PnBdrV1WN+sXFsfbI8bmft0Gb5Pap7v1Gbv+Wv7XKjbHuMmu9WHvoXblxxl0X5PZxve/b3DvaqqoB6+fWjJ3d861Y+6Pnjoy1/3XARbF274Xvi7WnLbgz1l60V27uzaf9bo21u005N9auqrp0m9wYyPfP554Ne2yam3f8ypffx9qH3pfbb/DWtVeMtU/vnRsD6TA49xn75xXvxNpVVSssnFszNnmx3Jqx9v1z78a/HvzbWHvc+0/E2ht/nHtf2GbdTWPtdS76LNb+5565/dh3HrhhrF1VNfH+3B4Hay+V+z1+xXe5tWrtPlk/1t5tpdy7hJc/zM0J+H2f3HuM4Ud0jbVP7pp7Z1dV9f47J8XaI1fN7RU9+6vcfmBvzL071t7u271j7b+ulzsbbaEFubWRF9+R2xSr08zXYu2qqhFvbxxrf//P12Pt+2/fN9Z+/aWPYu0PX8/dMw754MlY+9tPcs8ob72fW/u8advseTIdJ+R+3n65a278ZWhu+9zquGcm3nLqjKqrf9p/Y7OfvVEd2jV/z8IDNsnNJ3j8otx7zsOWyq1jeXPNbWPtqqoXRt8aax/5Y2497Kpr5X4PL9H/3lh75mm5dbhnXXBIrH3Mgj/G2ts/dU2sXVV17AtHxdqtNsqNmR16Ze5n/c9vHhprDxh0S6y9+8zcn/uSOiPWHnThM7H21Ddy79Wrqla8L7fWf9i43PfL0BuPibXvenbnWHuV13PveA+5OTcev/Axq8fap9yZO1+squrgewbG2iu9sEusPWK/3Djlq3/Pvev8++K9Y+2vDsiNS//QfoVYe9ahufd9gzoHz36uqn+ckztv/PZjc+cILjIw9zvlrA+ei7WfeOKVWHvCv3Jrzvu8nVvHslGv3Dve+3bbI9auqnqpX259wdY9cmuQ+12a26vo2dyjWXVZkPtzH3bb/bH22Ndvi7UfeSp7NsnPTsqtt9/gu9y5S6velJtrvtanuX3FZ5+VG9/9y5K5Z9IhT+XGWG/ucHOsfd+Kx8faVVUbX5w7OKHlubkzDG/aJTcWsPuWD8faz2+e2w/+kPNzY+oXbpk7++jc+bk151VV249ZJda+eYnhsfb902+NtR9ZkBvbfvHT3Pjup2/nvld3HnBVrL3497k9VN79+ZKxdlVVz9sujbW7zFs11r7+gNzazFPH5+a/HLRS91j7yq3ejrUfHnRArL1j+4Ni7aqqUYf9ItaeeGFuv+aBe+b2B79n1z/H2jv+Kbc+8oX7c8/j2966Rax90765f+9fnJCdz/nUgaNj7endc+esX33USrH2xRdfEms/f0ZurPGcx3L7wc9Y+bpY+8l+u8baVVW9zs3dLw++JHdm1Ytjc/Mh7rmzX6z9wD8fjbU//kXunPWTvs6NqZ8wITcX49Jh3WLtqqqOR20Wa6/+du67deu+X8bac+a/EGufc0lu3GvQ8rmftaWOzM3n7Pun4BnvVfXOBu/F2lc/k9sPfu9xP/3c7/+3fnyw+c9HU6Y3qg7+af+NlR8+pNq0bP/fuaD/wBmV27v/nQ1z85UOeTp33/P+YkvF2lVVba8+Jdb+euXWsfYfTs+de33r9bl7rr4P58bqVns8tzbyoxFnxtoPj/xNrL38X3LzGKqq2qx1Y6w9YP2ZsXafcZ1j7Z7j/h5rH33BFbH2zoPOirW/6NMq1u4yJnf+z2dD3o+1q6ouOTF3FvE6S+bOGBtx/Hax9pDTc/srtJyR2yvozjfeibV/fXXuPUDfld/Ita/PPZvN/mq1WLuqqu1pj8TaA9d4Ktb+5OHcPNA9TsjNf73jrNwYYd+uuf2OZ3bO7Z+y3gO5eTObTNgk1q6qenrW1rH2YWfl7tV/Oz33s/74v3LzrR/okhvffffZT2LtVz7I7Q3V/ZDcuUerX7lErF1V1ffs3O/SzX6fG/vZ4je5f/PTj8kt9L/vxbax9q9Pzr3fvfOU3B4Daz6fG9fu98QGsXZV1eK/ze0jcvZRuTXAR35xQqz97PDcXMhrtsvtG7zywNx53+ftmxvPH3Rgbmz58G3/FGtXVW2/SO5++bqf5fbTGPSr3HPhVft1jLU32XVErH3g2d1i7W/Pzq3RO+yg3DrYRzbPnTVRVXVDl/1j7T02zu3/f+UxN8Xa3Y6/L9a+6i+5n/XNv/hXrH31ZcNi7RX77xVrn9d5p1i7qurkM3LPCfcdlFtrf8MDubGfV1qcH2tf12FSrL3enbl11/9aK7cu8oTxuWeU9zbOHeq2yXl3xdpVVW8dl9sz57WrT421j1kht3bo1L/kfp8t82iuvcGC3N5QD1+Q+149Z6O1Y+3Zy+beoVRVDT85N8dtp6G5vQ7funxQrP2Xj66MtQc8+odYe4W/5/aXvGX13L3ycqPejbW735k7i7eqqk+XX8Xa107YL9b++59z36uzt8yd9TlvdO5s2ZkvXB9rD3w4d9bEwv03ibV32z37/TLpyQtj7X0/6htr/3HEjrH2X4dmzpafPv+n/w5fdbc7q3Ob5s+hGfLmDU1v/tvTvzo91t5zcm4e6DfPZd+rH33W0Fh79Nzcvc8FG74ea69w24BYe/lXc+Nlz5ye2//1rb658dlzrz4u1m5z/UmxdlXVwq1zn/Etbs+dG7nyyrnzeNtsmFsjuOSVb8XaC7fIzRm6ffJP3GjoJ1jh8NwcsY8Xz52dWFW17x92iLW3Xjs3P+6q23JrkN+9Lvf98o99c+v8X+o8JtZeZc3cO9Z97zwi1v7kptw+RYvulDsHuKrq7Y96xdqjDsr9Prv4oWNj7SXfmB1r7xg8137E/rlzSb6acU6svfbBe8baR/bNngs7sVtuzvPEIbkzUfYal1uDfPKhufkEb66em6+01X7Xxtrz5z8da6/wy1/G2o98kts7v6qq10O5M93WPDK359931+bmkIx6NHcW8M+fz81RG90299224r9y8+v33DT3fPTam7k/d1XVFotvFGvvvvRusfYRwfWop52wfaw9ZUa3WHvI/rnnwl2e7xBrX/fuX2Ltzv1firWrqob/Oreu4qBjcmvlDjzkx1h7jzVze3kcNuzVWHvC8rk1oWu/n5sPueHRuTGvrabdFmtXVZ1361ax9nrP5tbR7PJUbtzrjFsOi7XXfjD3DueM9XNnTWw7u0usffGlufXu9x25TqxdVXV9p1di7TG35NaTPLdt7v7lhV1zc817LvNDrF07XhZLX/O7xWLtmbfnzhl/4bGFYu22x68fa1dV/fHhPrH2Kn+9PdZeZoXcWMBRQ3Lz67pNfjzWHr157syovtv9PNZ+YPYXsfZRjSNj7aqq0e/m9ph86+7ce7PFVsvNJb3/3tz5h7fN6hZrH9cjNx9h1A7HxtpXHPu3WPv51ybH2lVV9670dqw9Z9HRsfbVNwfXPg3J3bOeuHXufeF2v8ndKx902jax9u1zcu/s/nr70Fi7quqoi3Pvzvb/U79Y+4Mdc+9RDro70537vzicnjuVAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApmukLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4v9i7q6i7ynvv37+suJJACB5IggYL7u7FrcVKobhLcYfipDilaHEaHArFSpAGhxDckgAhSAziLu8RB/+Dd/zfjr33+naPcV3HDD53nudZc815z3veEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZplR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8J/tmq1WrpadOja9u+mVdzS9+YuFb10u1r51+bNj7cV+fDvWrqqa//R1Yu3dBz4Sa3c/+s1Y+/dvPBlrP7Vsn1j7mFMei7XXXmKvWPv73f4aa1dV3dr+uFj7tHfej7WPO/bhWHv0dovH2r2W6h5r/26ro3PtiffE2ket8VysffvZx8faVVWfDbol1p795p2xduPqDWLt83d7INZe7IKpsfat006Jtbc+/qNYe79PHo+1q6rObNMy1n50h4ti7bO3XijWHrjsPrH2P7s/FGufdOAisfaMKblr0n1XeCnW3u/U42Ptqqo3Fskd3yZtlTt/OXOF1WPtIy5eMNY+pe/QWPu2VfvF2vfd/M9Yu9WpU2LtW09/Itauqtruiumx9rsX/irW7tV7v1h75vttYu1tbr0r1v5+wy9j7dMvzB1Xl702d+5UVXXwfbnr8WnLLhprv/H0FrH2JzvfEWv3GJKbW15hkXGx9rZnTIq1t7tqbqz9100/i7Wrqlbs2jXW/ukvg2LtF/doxNqfbJH7jJ+1Te4ezucTcsf0qVOOirX7/WPtWLuqav5rcsfWgxbLzatf1X+TWPtvJxwQa7c9sXOsvdwuuXulH38yNtZe+6TfxdrLvLl0rF1Vddf4v8fa9+x5eay92c13xNpv7NA11u47YsVYu/2ka2PtVu2ui7W3vur1WLuqquXls2Lt9btvG2vf+3Pu2Np54d/G2g/cm7tHvNEBuWuUEVfl1jx13Tp37tRv1EaxdlVV68G5tT/9Oo6Jtc+88PhY+4qeW8baffbNPRvxt9tza29e3/KaWHu7P6wVa1dVHfth7rv0wiNy8xDdHxkcaw85N/ddOuCg3HMZD6+6W6z9zYQzY+25e+XW/Wz6eG4taVXV2l/2jbXvf+3iWHvM5Nw61r3+Pi3W/udBrWLt7r+5Ldb+460vxtpLXHdzrF1V9ePo/WPt0w9sH2sfc8itsfZLizf/WeKpMyZV1WlN7wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/+Vr9O/9xh+mdqmPLtv9TY/m/mtuY0vTmLzrU3Fh73tyWsfbMWeNi7aqq6bNbxNoT5rSJtWe0z/29dVxtuVh7zPpbxtpLtJ4Za7dapEus/eTD98XaC3d8M9auqtpg8+1j7dlLzh9rd545J9aef7HFYu0ZvWfF2p98MiDWXrXH4bF2mxk/x9rzLdw91q6quu+WB2PtdddfL9Zef8MDYu3LLsz9rffokTumjxoTPFdvmbtGadEqd40wq3L/7rVWyZ2nV1W1aZW7Pvrk88dy7YdGx9qfjxgRay+7fO7vbcUVloi1X37hn7H2Vr/aJNbu9u7LsXZV1cMvvRVrn33Ib2PtibNz85yLLbpQrP3Zzz/E2ltv87tY+9jT1o+1jz7017H2Ym3HxtpVVYM/mx1rr9lv3Vj77meei7W7tp8Xay9Yi8TandvlrlHmm92ItefNzV0jBG5R/n/0nH/ZWLvzlM6xdu+FFoi1Z82eEWt3a79orD17Zm5eu33bFWPtdpWbW57XIncPpapqTsvcPeIjdlo91n7nq9z8S5d+S8ba7w0bFWv3bP1jrP3qxz/F2ptt0jHW/nbc57F2VdXKi68ca383KfcZHzc+d40yp3LtKT/lziG+G/JKrN2mfbdYu8MCuXPlqTNz5w9VVXPn5b7PRr7/eqzdslvuHKJ9h9wat57dc3Neo3/O3RufOS33OZsxZlKsPXZ67vpo6SVz8x9VVdOmTIu1ey+TO74M//SdWLtto3WsPXPexFj705deiLWX67t4rP39V9/G2h3b5+6TVlW1mv1NrD1q5PRYe/6uuXs4Pbrn5vPHfPlprN26Re7+0XwbbRFrLzzzkVi7VbtlYu2qqplzc/MQrdvknoWpNrk1Aa1a537msxu5f3eLFu1j7bZtc9fDc2bn2q3n5f7WqqqWWzx3z/ClxwfF2pO+fCnWbjknswZl2uz/+rzy2j1HVec2zb++e/vZbZre/EXv5XP3vXpU7t7Pyx3Gx9pVVT8/0C/W/uyojWPt9gfl7v/0rdznrOYcEku3GrtLrH3Vgb+KtVe57/lY+7dzJsTaVVUb98g9B3zXfLk50u0ey93jXeGujWLtJffKzRUePmFYrL31D2vF2stO+j7WPvj8D2Ltqqqljsw9877Bbbl7fmscf3ys/Ye9c/dgFuqxd6w98tDcOeM30x+PtcevcnesveH4gbH26G3ej7Wrqtbqlrs+Wvy4nrH28Zvkzpdf27trrN113zGx9mHXXhlrPzpg11j7ysNyz8K+ckzu2cSqqjNv2SfWvurEk2LtcR/l2nVY7ly9/dO5c+W+rQ6Itac+kPs7/8sfV4m11/o4d5+zqmrYibn28qceHGt/+nru723giNz+CsuM7xprb9wmN+fVesJqsfbQ73NzEPsudGGsXVV1Wpf5Yu1DV10z1t7yydz9yhdPuS3WPvzNhWPtuYvl1qAu03anWHvCW1/H2gut+1GsXVW14MXXxtrb7n5jrN1+4rmx9ge9boq1r350hVj7hhtyn/E3j3o31l7kotdi7YFdc+eMVVXbtdwz1n7iuxdj7TFdc/Oc/X7sE2sfuGruXH3b956Jtfu3WiPWfqrzPbF2u+83jbWrqrrvkNvP4+L5c/uSjx72+1j7p43OiLX3vTO37973O98ba1+2Xm6N+0Yn5N4n07Hj+Fj7+cG55zmqqra9P/fc9xPr555PXOvpdWLtFS/L7T/Xok2HWLvVTafE2tsdlfsePeOOf8TaW66Y3dD0qCGHxdobPvtUrN1y99w85z2jno61Dz36jVj7q61y69Tv33zDWHvz096Otb/vlHvOv6qq97G549sXz/WNtbd4J/iOstdy8xBfHpb7jHdstWmsffemuTmvvdvmnkUZsdz4WLuqqtU5uX0lXlwvt8/j0vs+GmtP33mvSLdNcO85AAAAAAAAAAAAAAAAAAAA/vc7+qEB1alzq6Z3pzVObnrzF499dVmsPWOTR2Lt9d9fNNauqtpgpaNi7bXezr2D+cpXcvtrrzcut4/8Fx13jrU/nrpYrH3jLkfE2mvvdkOs/fv9Yumqqmo9LPfepQUHnhlrf/PRd7F23yWvjrUvXrllrH3i2Nz7Cyc8uUSsfd4VufdNvbhG9l2d122S27Nv3S1z+0uN3ujPsfay820Za/f76oBYe+WXz461W7yW2+/43j6Xxtp9Tv4x1h708iexdlXVza+sHmtvPN+8WHvmKrvE2jO+2CHWvv93D8XaE+ZrE2v/+eUPYu0v9su9B+ecwbm9SKuqZnd8P9Y+ZpfOsXang6bH2oMuyb0j45uFp8TaO611Xay9VLvcO902PqBXrL3q0Nwe9lVV5/1qVqx956F/jbWXeT73HuJfLXVIrH3KhNx7YRfo9Xis3WX+3BzIucH3bZ/xTe47vKpqtZ/Hx9pXL35BrH3Lcrn3s/YYnzt/ufzmfrF2x/cejrX73ZV7d+IpfXKf8Q2P2CfWrqq6cEKnWHvTKcvE2u9+sHmsfdLPuXd8bT+uf6z9/OG542qLbbaJtb/d4qVY+6e+2fOXN8f/FGvvscf8sfZXZ2wba39zd+6dlRt9nbtPO3h47j3E+z2am2+7vsUDsfapix4Ua1dVjT89987KL545Ltbe5f19Y+1eN+4fa49ocXOsffu2ueuj8/u9Hmuf/HbuXPnNBw+Mtdf96yaxdlXVuyeMjrVXnJ5bxzq45f2x9lkb3hdrb9srt67wikdz77x+uE3u2qz/JrNj7ZfvHBZrV1UtO2y7WPuk536Itf/cKXdNetez/4y1bzos91164YYXx9ptjhgaa++/6oOx9jI75dbWVVUt1ye37mj0kbfG2n//c+5eRo9POsbaA068KdZubJqbW75iwORY+9odWsTaa334WaxdVXXT33LzEOdteFGsPajLLbF2i8Uza45mzZlb9V+8HD6xzxHVun27/54B/RtGDh/e9OYvXjw7t07rykvfiLWnn9U61q6q2ufE3Gd09ODTYu2rWn4Uax9898hYu+vqM2PtDXfNnete9dYGsXbLS7eItW+7+OVYu6rquB1z1/Jnt3kp1p54669j7d8/nvuML/Zs7pmthc47NtZer1Xu973E3Gdi7d98ulesXVU14Pk1Yu3T/nVXrL1f99zamTXvy91vPGlY91j7tEevj7VPntM11r5mu9yzakvMvjPWPna53N9aVdX8z3wfax83+OhYe2i/3D5sF3yUux5ffuigWPvKW3P3QIZut2CsPWn/3Drza9utEGtXVV0wIHf+cvPmuT0Oftwtd/7y9fK5tb/f3J6bd+p5ee5ZkqeOyK0f2ec3Q2Ltpa7MHduqqmbtmtsPbJW5wb3v5t841h44Y+tYu/2IS2LtS49ZMtbefKvcfFu3drl9sRa8cbdYu6rq6k9z61dGr5NbH/dFcP+W4zfJrWV4fJkVY+3HFsgd2/4+8N1Ye8KA3L5Ux+2Xm/upqvr8wbNi7VXHvRJrn/tMbt3xoMd7xtpzK3d86T8kd9/s8P1z16QTVnsy1x66cKxdVfXAsblnOlZcrWusveupuTUBjTunxdpXbXZkrL3z7sfE2ht1zZ2vHjoxN8fZ6tncfoNVVV+89JdYe9Iut8faNw/vHWvve9GOsfaRe+f2WTzs3gVi7VEH5j5np+yfu4fzw8e7xNqH/7h2rF1VddZ3t8Xas/bI7Tf4Rod/xNqN4bk9Lc45Jzf/svaVuWfOu3ReK9Y+rEXufPWYLtn9kq/uknsn3bC3c3NuvXfNrafc/o3c+t0Nd869n+zzK5eNtf/w6jqx9tTWq8ba73w7I9auqho5/L1Ye8e9cvuw7bLhHbH24Sfk9sz56vtHY+2rNs3tkfTavBdi7SXPzD2T8dLv2sbaVVVf/px71v/cx3LvEn5jXu6e3V6jMtek02ZOqhfq/38OpNGEsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8B+ikR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5WqUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxnO+vaTtWxdaemd7d4pXXTm79Y8rk7Y+11dukQa6+48SOxdlXVohtuGWtvNt/TsfYmi+4Qa/feZ7VY+9pnZ8TaN7YeHGv//PkFsfbONz8Xa1dV7bX2wbH2wWN+jLX/3vuhWPvjbs/G2p92WSbWPnr8V7H2wDmvxtoPBn/fp9/+TaxdVXXQuOGx9uO/XzrWvvv638Taq25xdqx9z9NXxdqdFvtrrL3tJnvH2p+fmPuMVVWN2KdFrD3svfVj7Xv7NP86/Bdt/vlZrH3YQblz9da/PT3W7jGtTay9w7obxdpbb5ibA6mq+nxM7pp4j5U3j7UfmvBDrH1hz+ti7UPv/CnW7nbnobH2bbuvG2uft8M+sfbjW+0Ya1dVHb7N/bF2xzVz12f77LNQrP3+Nbnj6jXtdoq1B++U+4yPu3VsrL3YhEVj7aqqr6a2irWXaPFWrP3hErlj64BbcvdReg09P9Z+cVjHWPvPLZ+Ktf9y9MhYe4nFX461q6p6HJq7Pnvr2fax9in3XxFrP39j7nr80GVmxdqLPLlmrP2bmVNj7T3vmxJrV1X9eN6oWPvjeb+Lta+/Mvc5G3zhpFh72FsXx9qvDzou1t71pk1j7cPefTzW7jA8d31UVbXzcbn1EJc8Mj7Wnrh171h7hQduiLWfviJ3bJt8Zu68rf8Ky8far93VP9auqhr2Q26N3e2vLhZrr/R4bt3Rydvl1pL2aL91rH3QB0Ni7aE3fRFrH/XT9bH2tuc9E2tXVW2wYbdYe63dzoi1V979gFj77CnPx9pn9vgk1j55zV/F2t+MyD2b0H/f3PqXqqpfn/73WPuiHi/F2p1b5eaeeo0ZFGvvsOcisfbIE2+PtT+7LXd8eXVs31h7QPfsmu0j78qds/Zomfu537V2bh3tBnv+K9b+5oTcdeHsJ3LfZcfs8JdYe6X1z421q6r6X5n7nR+195Kx9ie3vx5rT5nW/LU/U6fNbXoTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+N+h1b/zH7doN6NatJz3PzWW/6vW82Y1vfmLtm06xNrTZsTS1bHRyMWrau7csbF224UWjrVbbL5HrN1+0+6x9rJdF4y121X7WHtCp9yHfIVVTom1B7/6VqxdVTXkvX/E2n1nbBhrt++5TKzdoUWLWHvx1XvH2oP+NSnWXmHUxFh75Nzc77vN1JaxdlXVEn2Wj7UfH/hqrN33ixGx9rjZs2PthXr8W5dS/61mzsudt40dNSbWnldzY+2pE3PXR+9+8FGsXVU1ZU7u577AfAvE2j9PGh1rb7zqlrF2o0vbWLtT7tBW2y25Waw9a/rwWPvlZwbH2lVVffrmzp2GfTMy1u7cNjcXsNQKHWPtYaNnxtovvvpyrD3f/N1i7XmTf4i127XtGWtXVX02Ondsfeu7f8XaHVrmvsd7zG3+faNftK+psXbLWZ1j7X4Lrxprt2nTOtZesE3uZ15V1bZy//ZZgfuzv2i0HJdrz+6Va7fJnb90aNEl1p5TP8XaU6a1ibXbzM61q6rmzZoTa89YvF2svViPhWLtK1/J3a9c5eM3Yu1h730fa8/tnlsTMOTrybF293a5a7Oqqimzc9cJk9rn1mJMGjcq1m60WDLWbr9AbpL15/G589XOX74Ta6+2dG5uuXv7TrF2VVVj5o+x9rQpue+zFtO/y7Xb5a4T3hr+bqy96MLrxNpT5+TWLY8bmfs7H9UytxZiyrw1Yu2qqp8/yN07e+ulabH2QvPnvlM6dcjNt03+JLfe6YeRb8fa34/9JNYeOeLrWLvt1Nz3aFXVz5Nzx/Xjj/h9rP3UU6/F2iuvsGasvcRSS8faE37M/a11CN5DadHIrTGryq5bbkzLnbN27Jhbg9JokZvzmpmbAqkWc3J/b63m5OZY507Nrd+dMjH4TMZrH8baVVXj38vNBSw+OfdzX3z2fLF2VeaYPnXOf/35nwW//aq6tGr+MeqQP+eeXXryhJ9j7SnDc88Ovb33b2Ltqqrl9noq1l5p2jO59r2bx9rDP18i1l7u9sVi7Vmf5J7hmdphp1j7kl73xtrf3vl8rF1Vdcg6N8fad6xzZKw9e0ru3vYrR+eub/ZeM3c9e+ebZ8baP47LrbfufnFu/5RD/pm7tqmqWmpg7rmG3R4bFGv/+urfxdpdV/w21n5/Vm6esstyuTWJnRbIzUv3HJ47h5h5cO4eSLvbcmvjqqpmfvnbWPvZ1TaItcdOfTDWXuuE3N/bxssOjbXPOOSvsfZdrbrG2h/vMjDWvnK/3LOwVVXtph+Qa4/O7Qf281t7xdrXfn1urH3Qqs/F2te2Xz/WHv96bn3a2DEPx9prnL9VrF1Vtf5ZX8baRwzL/ds/3/WFWHvpg3L7aZx274RY+9EjVou1W26c+31ffFFub8vH1lsh1q6q+mf73J7FA3vsGWvP3yt3DrHVxefH2p90PTrW7rN17ve960uxdP20We6+/B5XrhJrV1VtPzK3HnODV3Kfsz5ffhVrL33eDbH2lA9fibUv/jI3/zLp7qVi7RmPrBxrL3xp7lmSqqqDV/xjrP3Rqrm9Y4ZX7hnkLuvfGmvf0fH1WPvrLrm5nzl9c/fstvr57Fh76Mm565OqqtdmXBtrj5i8XKx9yZDc9/g5I3rE2u+3zz2rNuPj3DNb6x+YW8vZYULufuGg/p/F2idsktv3rqpq4O7nxdov/iO3fneF3XMPTs0blltDO36Tz2Pt+zrn1oGs/thfYu0fhuaeB9luZnbd8sw7c5/xvW7P7fn3+rm5c/Vhe74Xay+87qax9rAvjom1V9slt372/sG5PXP2vS33jtOqqifOzZ0vL9Ent1f0p91za2i/uDr3Dp8fX9k51u7dK3eufsbFud/3StueFmt3u/6BWLuqauoFuf576zwda7807p5Y+4jFQ/PaM3N7sQMAAAAAAAAAAAAAAAAAAPC/3zlvvFSt2zd/j6l1dpnS9OYvep5zcaw9crncewP233ZkrF1VddaWE2Ptm77O7e+0zYDcuzqnnrhlrL3gSbm9fnY9N/delINX+GesvXf342LtuX3ui7Wrqm566KBY+50uY2Ltvd7dItbe+oXc3t6H7nZorL38m7k9+xbc+fRY++mx28faO1yZ23+2qmqp+38Va282tXus/cBPufcnjr7soVh7rw1OibXHbJN7B8+1j50aa88ekXvv9Cqv7Rhrr7tX/1i7qurALXaNta/qlntPxXt/yJ0z3nvHNbH25tvkvsdvPT33PrvBT/WOtddbKPc9+s57e8faVVU9euXeG3ntElfG2vvNye1h/8JbB8TarTvn3sFz+nW5dw/tNutvsfZiH3wcay9/+qxYu6qqx7zc9/hmuSnWGrpzbu7nm01z7/F7b+Y+sXbnHTvF2vu1nhprf33Z17H2AWOejLWrqr7ZuGOs/cOoV2PtVSv3c3/iw9z7lw9YcrVYu/exN8fab/4m9z06+eN7Y+0Vx+WO6VVVEza7O9b+y3e5d3S8NeqOWPuZa5aKtT94PXd9tMavY+n6/MV2sfbUzrn3bf+4ZPb66LYLnom1n/1+yVj7nVVPjLV3fOXLWHvs2U/E2qNmvRlrD+mee9/3LY+eHGsv/9TgWLuq6sYz2sbaBw7K3ZcfNGhIrD1g69x6q4/vzH2X7nvDhbH2Lu1y94/uefKDWLtvi9zn+9zHz4y1q6rOaLFBrP3lqX1j7YfXuCrW3v+ZsbH2Ct2GxtoDHj4s1l5y6B2xdu9D2sTai+zYOtauqup4T+7a7MqTcvcMj35gj1j7wdfWirW3mJK7Tlh1h+dj7ZPGrh1rD79pmVh7jdezx5eV/pK7Ht99jTVi7Q3OWD3Wvnl4br3VhLNzazkPnZ5bO7zHJufE2ovtcGmsPXDH9rF2VdXP9+funfWdmGt/e3dujf5Z/TPPH82YM6mqlv0v/T++/KJ/tWzT/GfOV1wutw50cOOlWHtGmwVi7X6tto21q6o2n5J7LvOdX3WOtY9Zv2us/dVi68baI3e4MdZeaYvJsXaL53LP0Dz13FOxds8tcsf0qqpN974+1j5q1O9i7a9f2zDWfnbK47H20/1z1/Ln/26XWPtX230Ua999/4hYu3HrO7F2VdVtY66ItS97L7dG7dqzctfyv5vVLdbeb5GXY+3htzf/muwXr2yeuw+x9W25+7tPr5R77vvQ0TvF2lVVG0/IHdd3vTO3F9m9jRmxdrcXc3vfTei3Xaw9bMulYu2nT/0i1j57x9/G2s+ut1GsXVV1+Ce5z9mWv74k1m7ckVtLMXK33D39C17ZM9Y+7IPcM3r/OjZ3rnzUfbk5r8/OeizWrqrqM/Y3sXbfc3J7U/3l/tw+Sb0fzD289JeJufUr57/3Yqz98u0nxdrHn5t7Fnav14+MtauqfvpXbm75iaFbx9pbrfp2rP2ru3J7ZPeamZv72eNXufVKxz52SKz9wT//EGv3vyq3p2dV1Up9Voy12/bNrVm6Y9vvY+3P3859j3c6IvczHzQyN8+59nq55wNH3Jx7bmqlGbnnWKqq5h+de37olVNye8fc3jK3JnHD3JR6fdt+dqy9yIF/jbX7b5i7Ht5gZu677MlNcvfsqqrunZpbc73Gny6LtfcckXvHx4STcmu9Bh5+Qax9x6ubxtrrdL4/1r6kT25vqF7nTo+1+wzYIdauqurXLfcMzyJTc/ePer+7Uqx94SMHx9o7dcztW/OPQxaPtf/8Sm4v+K/qvFj7ssHfxdpVVSd8ulms/XKL3P2EdmceGGuff0huXrv/aV/F2jcvsGmsvevBubV9Gz+em89vceSkWLuqatCSuXVHC56xS6z97JIfxtpPDc+t7fviglz7uTa5dwm/8VHu993qktw84wMr546rVVXnv/evWPuGW3Pvtb3u+txzfpMPzfy7506dW/X/sAyk8T8/FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/lM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPq/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP9s363Yv9q3a9307qqrN5re/MXfDp8/1t7u+3ti7VM2OD3Wrqqa+vBNsfayc7eMtQ//bJ9Yu+u9C8TaD15xbax930/vxdqvbtUz1j5nwJuxdlXVeUscFmsPHbFOrL3tGbnj+i3v5r5LN5uybKz9wcGjYu1XXjo51j6+sWusvUDbE2Ptqqr+bT+MtT+pu2PtcctcFms/cVv3WHvD0fvH2msemPtb//nBd3LtR+bE2lVV/V//ItYeP/muWHuJEfNi7WPnrRpr777os7H2e+vfEGuP++btWPuB5yfH2pdcvVysXVW196m56/E1D+oXaz+8zOxY+4nht8TaV/2UO6Y/Me+0WLvjncNj7T2Xyx3bLm7bMtauqrrwvc9j7T/98aJYe5t5Z8bau3XO/c7fP7FDrL35og/E2hMv+jHWPqrL8rF2VdXp+x4Saw/6c79Y+6oDto+113xvqVj7nuuOjLW/GvhSrL3+Ablz5fdn5+4X9l3owVi7qurFh3vH2n2/nBRrD78kN9d43qG5Of2Fj/5TrH1/Y2Cs/V3738ba24xcJtauqrp73xVj7TMOuDzWbv3+R7H2Uu8/GmvfuOBbsfZuB8yMtdfcdr9Ye5dh28bad/fLnTtVVV3S6fFYe+lf59ahjB+eay9+7Bux9uQdW8Taw+ZbKtY+pjaKtWefl7uPUlX1w3MrxdoH9sxdI+321TWx9tH/yK0f/vKs3Lz6HUc+GWvf/bfcWtIH3+sWax90c+48vapq2Lk/x9pvrNUp1n7yutz9yuvWPyjWHjFk7Vj7D8vl1r9sdHRuDe0PN+0ea1dVjd09d302Yb1nYu12O+8Za5/8XW6t+mIX/xBrr/pZbr34UV/n5pZv231wrD3/n06Jtauqrn13t1j77Mc2iLVPGnNErH3Ot7nv8YdOPCPWHjn621j7hsMPjrVb3No+1q6qOr7LyFh7UIfvYu2W9+WeK+32wPVNb06fOLnq2NWb3gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+87X6d/7jObNn1Zx5Lf6nxvJ/NX36vzXM/15zZufa83Lpn6b/kItX1eTWzf87+8Ws5RaKtVsv3Yi1l2rVOdZuBD/i0+ZMirU7zW4Za89pMTfWXmXtFWPtqqoRc9rH2vM6dYu1R7eeEWt3mZM7tuX+0qv6rb1+rP3Rl6/E2msttGOsPfrnybF2VVWv3n1j7QU65r5TpndcJtY+bf11Y+1nnnkh1h49blCs3aJN7phes3LtRovc9cnUaTNj7aqqzvPNF2v3WmKRWHvjPrnjy/vvfBRrL71g71j7x2+mxdqzenwSaz/8yIBYe8zkibF2VdVWPXvE2iv0WzzW7r3E6rH2p6+9HWuv32+pWPuFFz6ItaeOnRNrX3TxrbH2r4/4baxdVTV3Zu78qWejQ6y9YIvcJOuy7RaNtdfs1jPWbteybazdLTif36l9x1i7zbzs9VGbRqdYe3bLWbH2vNm533mX4JzXjOm5v7dW7XLzEI05ufsYHTvk5n5++HFsrF1VNer76bF260Vzx7Yf7/1XrL3suNzP/If3P461V196wVj7u1m5c6cxP+TmQJbuuUSsXVU1t1VunnP25O9j7fm6To21J8/MfY9PzP2za75Fc3NeLRZoF2t//1nuh95nnezxZfqoMbH2lJ9z540d2+Y+40NH/BRrd2iXm/P65OsnY+1WLVrH2lNm5uaWf5qem4NoOXlKrF1VNXPiqFh7+vivYu32C+bWOz100z2x9syZuXWkSyy5QKz9wZDvYu3Phw+Ntdu3mj/WrqpaZ4XcnP5P342OtVdeMTe33KN7LF0/jczdn260y82//DQm9+9econc/Ee7WbnztqqqRufcNcq8ucF28D5tY27umYxGi9x9s7lzc+sRps7OPfP11eAvYu0pnw6JtauqOk7Mreds26prrD2jRe740nJuZs5r9n/Ds+LvzFitOs5p898wmn/P+NNza4aGT8mtQe32aW7N88ZHvBxrV1W90+nGWPuR4zeOtX8/PTc3vOL1ubWg83fNrYEdvHluj4HftMg9L/Z8z4Vj7S4PZa+t7rw894zgUrPWiLXfnZWbk/9u42dj7ZXePCjWPqJL/1j7ww/virVHPrtKrP2PycFNTKrq5Am55+332TO3TmzaZs/F2js/k7vX+euvhsfa55+zd6w947SVYu3h3+busU68rF+sPeT9f8TaVVUzW10Ra4896fZYe5Ufc8+7v79Fbp37nIm5eekjrtov1t5mh9x5+oCD74u1J3+Tfea8z0m569ItuuWeH3p8i7tj7REDcp/xM/68Z6z92upPx9ojTsodX245Kze/e+kO42Ltqqr+PXP7qa60We66dJcdnoq1//Zhbv3t5tvnrkmHjHo41t5j63Vi7VEPbhJr936hV6xdVfXhnx6Ptbs/PDDWfnO53Bzrjqvl7pV23e+oWHu1/rnnOW4+9LZYu9clf461L7jymFi7qmr6QhNi7SGv5PaKPrX7JbH2u1Nyzyf23SF3f/r9T3PX4v8antu/dv/f556L3HvS0bF2VdWni+bO1S+4Jfc8ycE7545tjedy6xHe7Z57zn+B1Q6LtTvP+TzWfr9xVax9+LjdYu2qqnsm/TrWbjN5m1j7lIl9Yu2Pu20ea/92XG6P6q8/zN0rbTzZNdZ+frP3Yu0eJ+TOV8/P3TarqqrxS+SuEzpPzL3bZMq7N8XajR7B7/Fb/x5rH7HUEbH2/ANzz2wd3uLeWHti+9wakKqqFRfNPR+wzQq5+wm/Dt6z+822y8bad1yfuxbvtOAfY+0pP+b28lh3Sm797Lsf7hxrV1Wt9P34WLvHNrn3qsw3NrexxApn7xFr136vxtLf/5i7RvlgSO45//suyK37WXBW9gKp40W5vYoW2fqMWHuZ1XPP+b3xdubYNrVl8H3dAAAAAAAAAAAAAAAAAAAA/K83sstF1bJD8/dxe3LADU1v/uLutrn9dqZOOCnWvvbyn2PtqqpHgnuhLnx/bj/SPsedEGtfvnmXWHvzPdeMtX+ovrH2sdd+HGtvsd5nsfaGXbaLtauq9nzlT7H2hUeeGmu/eUXuXeOD1rs01n5999z+lNsfe3CsfeY7D8TaS6+T+4w9Min7rs6xq6wea3e66Xex9rhz+8Xa35+Texdwn93WirV3eu7MWHv7nr+Ntft+9M9Y+/q3Ho21d+qxe6xdVdVy9t6x9qPXXRRrn3B07j1bt9+9V6z9h8G575Mvb/gi1j5i7NexdtcTcu8CXuqp7F6oy82f+7ePeX1WrL3g+SfG2iudumSs/fXLy8fay26Ye4/fET/m/t1tB+Tel3DVJ7l3FlRVrXFH7j3E55zyUKy95bq599ltsnJu/mWvz56JtUfV17H2sTfl3kM86JwfY+1HB0yNtauqOjybe1/m67c/GGuftFDu/Yk9Ptw/1u5zbu4d6w+dnrtvtsDluXeU7rlM7mc+bd5fY+2qqmdv3jfW3vP6A2Ltd7fdINaeu8DrsfbjnQfH2l9Pzq0D2W+/3O/7o14HxNoXtMq9O7GqatwXB8ba3/ycew/xa4fm3m3fZ3Tumnibjf8Qax/z+rex9s2Thsba51+Ve3/h1998FWtXVXV9LXf/qsXDbWLtL899OtaeOP3wWLvnm7m5xr4vnB1r333TLbH2qUflro+u/2nVWLvvMrnzh6qqAaf8K9Z+sVXu/ayPDMy9u3HN9rn7lavslJtr3OXF7WPt9j+8GWufdmvufPX+kbl1XlVVh/wr93zAFjvlfud/OmZ4rN1mtXti7XO65do3Xp1b29dnxcVj7darnBNr3/T8ebF2VdWQMbm5p4FDct+lCxz1ZK7dP7eucJFWuTUBy8zLrb1ZY/vLY+3Ln3kk1t7/7aNj7aqqudftEGuf3fObWPvvPXPrWF+ZekekO3vu9P/y/+P6W4+tTtX2v2E0/549R67U9OYvfhjyVKw9dE5u/mTgO7mfeVXVwwP/Emtv8kPz/8Z/cdEx88faJ1/bI9ae2jc3X7bx7CNj7VOvz61BXW/y1bH2gdv8I9auqup21zqx9mXtfh9rr/fmzbH2lB+2iLXXXTw3J/7DgNtj7ZfGDIm1e7w9MtZ+8pBlY+2qqlVG5NYdL/h1bg+VNdudFmuP2vfqWPvU7e+Ntf/YP3c9O6XDhrH2FfvvFGs/0+/8WPuOM3LfJ1VVvXfZNNY+etH7Y+1/fJ5bi7n+hItj7ecPza2d6XFw7pr0vMsPiLX/uf66sfaQv+fWzVRVTXk9929fYWSHWLvlA5/G2pcc2C3WnnN3bn+oFVbM7fn3zajccfUPB+T2N3j69Z6xdlXVc5fl9iqad1ZuT4t1vs79zv/U5cJYu2+73PHl3CEtYu3vuufm24Yek1vzfM0fcufpVVXTdss9n/hJx9w5xN0LLhBrr3Nubn739ltyezv0eiV3r7LHxPNi7SNPPS7W/u6wt2LtqqpXPsjN963cOfeM4LML537ujw3cNdY+66musfYTa3aPtRfoukesfelth8Talz2aW49QVbXwoOti7cfWeDXWfmbVpWPtoVdeFmvf1uWUWHuxTrnjy+lnz461t9lioVj70q/virWrqtZtvBFrn/xWbp+BLb9r/vuafnHN53fE2k9tkZuH+OaG3F7Nz/TNvVuk13m5e+OvvpnbE+v7s3Jzu1VVv/kit7/CXdfk3hl14uW3xtoXPvVhrN1j7dzc8uLH5uZA5szZKtY+5+HcnuQXrvNwrF1V1euLlWPtQ6YtF2uv9PwSsXaf+V6ItTvds3OsPemg0bF2lzm5+2b735l73+WVj+eeta+quvHSu2Pttd65Jta+uXtuP7CR246Kta+8dnys/bdDc+8P2rf9n2PtY/6YW2N26emPxdpVVQPWyu0Nflyf3HvCFlol951yatfMvuSzWs+p/5enpxv/4yMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+D3v3Hf7nePd//J1P9hRiJYLYEhKb2JQmGrU3NUIFqaJ2larRql3cNVuqtcVeLTGaxi12EBGrkYEEIRLZ6/fPz++/+7iP/u7en1d7HI/H3znyPL/f72dc13md13kBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC/jEZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmVHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwr23KbSdVu0bHpnc7Db2t6c1vffDhZrH2uuceGWuf+fdPY+2qqq/feDHWvufhG2LtRcu9GWt//M34WHvs0nfE2gfUw7H2clcNirX3XWeLWLuq6o7vbhBrv7X8abH21dd9EGtfN+H0WPuktW6MtV8b+dNY+7o3jou1v1mya6w9cEj2GGKPlr+LtdsNzL3Wp+30m1j75eN2iLWn7b1jrN31iGdi7TPOOibWXnbQcrF2VdXCn7wea586eFSsPXrrfWPt/Ua3i7V3PWZerN1n7+di7Wte6xFrb7LS8Fh7zuFDY+2qqmHDp8baPzksd25484AFsfbKV46LtQ/fbdNYe+cnj4q1D3zx/Fh7kwvPjbVvm/G3WLuq6pxfPBVrn7/W0rH2Z0OvibUfuap3rD1iv6ti7QNPXjHWPm7pjWPti1+/Mtauqtrv1sGx9pjua8faQ954KdZufVTuffar+bn5vnZr9I21d+nyw1j75K7Pxtrvr/+HWLuqavOv9o+1j7slNxdwwDW3xNpXH3dRrL3Mng/F2mfkPlZro0vHxtprbPlkrF1V9c3B/WLtHp/uFGtPO+SsWPuVzn+JtUeNnRBr3/e7/rH2a3M2ibXPajs/1r79quNj7aqq1YdcH2tfN7X5awq/9fJRuevj3x2bu25389tLxdorbPVJrH3+DrkDmPPfuSnWrqrq9eSUWLtxT+7ccOCvvx9rX/HiyFh74/FrxtqjNlw31r79oMti7e9dnHuP33jB07F2VdWEv18Ra3c5s1esffOBuXsEbh15Rqw97JpOsfbe4++Mte97OHfcdukvc2vVq6oePH2PWHvib7rE2u3XOjzW/vryubH2Rls8EmtvMDX3c5/UeDTWPjN4XvjgjD/E2lVVa750V6w9ocdnsfaxn24ba3+x7jmx9nmb7hdrd9g1+Jm+Y+4+nF1uPyzWrqo6+LPcOreN1j871t59ndw6kDsfaP5n26I5s5reBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP49tPpH/vGi+roWVev/rbH8l1q1bdv05rfmz5sTa09p2zLW/rRdu1i7qmrC+svG2u2XWRJrLzVxTKw9bfb8WLtr+0Wx9nKr94i1u3foGWu3aDRi7fFj/x5rV1XNnfNNrN2j0TnWXrnT0rH2vPnzYu1vJk2NtTssXhxrd2y/XKw9t23zjxX/n47/0KHtP13rRu733liYO3754p0XY+3llt821t5uh21i7clTZ8Ta3dp+FGtPnvl5rP3V51/E2ouDx21VVXPmzQ62c9+lDw57ONbuukzuHKV1+w6x9pIWn8Taj9z3Vqw9ddL0WLvRMvceq6q654EnYu2p49eJtb83IDf/0nP1NWPtj7+YGWu/9cGHsfYzPxsca9fchbH0ah06xdpVVVt26R1rL9c+97MvWZQ7T1ix86qxdvcW3WLtjm1y5+KtWy6fa7dYEGsvbhNLV1XVolm5axktOrSItTu1ah9rNxZ3ibVbtM4dL7cKHqpPm/dBrN06+Dvv1jr3WquqmrdU7tr8E3NyxxAb9Fsr1m4z8uNce35urnHqktxneqdlcl/kK67SP9buvfbqsXZV1fSJufPx9XpvHGt3WHH7WHtRp9w6kFEvPBNrr73tjrH24nnTcu2ZuWso30zPnZ9UVa2+2maxdutFy8Tak19/LNaeNS23/uXzxe/H2q2W5M4TJk7Nzecvqrmx9rz5s2LtcaNz56RVVY12ufm+b2bl1kyP+Nt9sfbsmbl1heuunztWnzYzd3/ADjsPjLXfuOLdWHuN1bOTy1vveXSs/fknb8fa39v25Fh7xgevxtqLF+XOUXr1/V6sXR+Pi6Vbz8kdv8xol7s3oKqqw+zc3E+rpXI/++LFufUQLRbl1qq3WJg7R1lYuXWss2bnjhkXz/gq1u6c+3NXVdWC4L0wnVt2jbXbLM6toW3dNrMWo+U/4XNtfovnq3WL5n9OHLJux6Y3v9Xm7g1j7fXW+CjWXjQ6t/a2quqp/vvH2h0vyV3/+Wiz3JzVwjNzxz6dbjoq1h5zeN9Ye9LoDWLtNo1hsfZvf587xq+qWmGrVWLt23u+EGuvs/ZWsXanzkNi7c/fPCHW/vLF3H0Nr6w3INbu1rJXrN1nfG6esKpq+Pa5e+UOeu+8WHvkuw/E2r0W94q1O+6UW8ex2xu5eyNX3zC3Nq/GTo+ld9g8d93r0cdz6/Kqqtqvkvs+u2/z9WLtwW//Otbuvd5usfabbW+Ktb/T50+x9lEv5vZnunHhqFh76fVz60CrqmaN+CjW3qdV7rrXmsNya4Y2uvBHsfZrO+Y+X1675bJY+/PzvxNrP/TQTrH2e8+vFGtXVR3fb79Ye9W/7xFrb9M7t25nmaW+jLVf2vzsWHvtobl7C5Z0z73Hx94zKdaedeobsXZVVZdnctfO9lgl93qbNCB379Lzj+f+5t888F6sPblNrr3xTbn7WKb1+WOsvekuuT1MqqrmtPo61u7z9vBY+4vHzo21X1/nsFi77ba59bfHf3dyrD2nd24NyJ53fBRrj+mX3ZNrerfcHOv1g3NrnrdZd89Y+4VeufW3N22Y2xt8t482ibU3fD/3PJk3JuXWmN1z0vdj7aqqj1vl5gIO/Dx37equvrm1GEfde2es/cyil2Pt50ZNibVX/U7uvu+XvszNsR63T+7exKcuz62frarqe8OBsfYL026ItedfmnuG0B8vHxFrV9ufxdJrbT491h6+7jGx9nfuvTHWnvRx7ni1qureA/aOtec+mDte/uzU02Ptp467JNbueGPXWLvn57lrlXeNXz/W3uWi3Nq+RZvn5ryqqv66Qm6u8cRrcvPaVzy9aay934LcnPrYJ3L773/YyN0DNPH53JzXnJVzz1RZ//7c/e5VVRN75/ZoanXdD2LtJQNz63cPaJ95vuqMRXPq6MrN/QAAAAAAAAAAAAAAAAAAAPDv7XdLTahOHds2vTvyxNw+Qxcu3SfWvmHpWbF2h/2y+xOce8yzsfaUPufE2q8/k9svsPMhQ2Pt/lffE2tPH7JnrD2g/VOx9rEHLI6177zg2Fi7qmrk73PPGHv75uNi7al7HRFrX7xU7pm4ww5+KdZedX7uuSgj7srtAfvgwHmx9n+2HxJrV1Vd+Ob4WPvKG3J79p3W8dJY+wfbnhJrf3zin2PtQz7PHa8OXrRWrL3Ss1/E2kuOzO3ROPuD3LMaqqp2WXF6rH3fmbn9Amto7tlqDwzIPWfrx9fnnpf5o+8Pi7Vf7vJcrH3O+NzzGj7b+qNYu6rq2Aty56W3vZ47H7/6zNz50eSTR8bax92ze6z9q9OvirU3uf6dWPuTLoNi7SO32zzWrqoa/Eb7WPva25eJtU+6YHSs/W6n3DNKf3PaT3Ptuf1i7T7X9Yi1p8zMHa/++cJDY+2qqnt/fF2svceRR8faG/4l93z3CRvnno+6/IT7Yu15m+aeq3bg9h1j7V/s+qdYe8c33o+1q6qGHPRirN1jpZti7fufWS7W7n3L47H2uLVzc6xHvpy7hrP1Vgti7RtfPS3WHrLFfrF2VdV1a68Sa//0j7lrOIdd90Ks3Xvb3HqIExb8NdZ+ZYv/jLVfXjv3PT7g2e1j7e32z82pV1Xt/Epu7mncoFNj7aEPrBtr39T+tlh7zLq557odeNxFsXb/vrlz8eqRe48f3n5grD3ooYNj7aqqSefnntW57zu5n/3xP+XWHPWb98NY+/dr5Z73vdeQ3PN4txi8Q6x96gczYu1VWuWu0VZVzb9gVKx95Pm519ufeuWeuf3VFbnv8d93zl1LuKNr7rn2e7XKzTuNbPdwrH32A9fE2lVVZz+1Wqx972ntYu2tR+XmIR7aZnasvbBTbj3lhb87MdaeMy+3BuTm03PnZqc/kltbV1V10SMnxNpDfp67x/Cux8+MtW+/6S+R7oJv5ldt+T/7P56++pFq177lP2dA/4Arf3p705vf2v2LK2PtJ9e5LNbucWvuvK6qatIlN8faz1+eO/5Y6vWLY+3fTfl+rN1pwsRY+7CDcvfaTx3WM9Y+pW/uutcd/XeJtauqBi34MtZu02/fWPtvp+XujWz17KJY+w+/ys1h7NcjtxbztjM+ibVXeu3Xsfbn9+futa+qem+n3Bq1n5yWm0e44/TcOvfrX1s71l62e+6ccvQKufv8t9x4hVj7iBvHxtrbjs7Nj15253qxdlXVm5fm5o0GPpq7HtDz5t6x9rZr5l7rd67YJdZe+8Dcdc73+5wXa/f8PLf+dclp+8faVVX917si1n53yhux9viFuWvbxx35i1h7rVb3x9ofPH5DrL1Rx9xaqXE9c+fi57TKfZ9UVX2626qx9jNP5PYLenDMSbH29O1ejbXP/E5uPeQVt94aa+96f26fxTXfzX2+3PbNVrF2VdW79/0m1j5ij9we2f0u6BVrf3PV9Fh79eFnxNqbnfZKrP3akRvE2g+fOzfWHr785Fi7qmqf2bn5l7OuzK3FeGSHa2PtM/e6Jdb+3uDcfXLdp/ws1t5799yx8rgTNo61N3utU6xdVfXqVTvE2leck9ufe+b5uXmnRw/4INYeMDy3J9eEX34aa6+8VG7vu09vye3J9cpuS8XaVVXP7JNbW/jQ7dvE2rNeyH2uP/Jy31j790fmjleHtc19tt23wn/E2qMufDvWXnHuBbH2uHa5/Wurqhatk1vz1Pq23JqnOcvmzgvf3250rL3nzbl1pC/Omx9rX7Jz7lh5sy+WjbX3vCr3fVJVddeg3D7VC89bP9Y++S8/ibU3fuO3sfb9fXP3onzxUO619sDbuX2Dfzg/N+fV+7zcnjVVVYf8ObdOvtOlr8Xa85/fM9Y+aEBuPcKJn+f2A2u/W+7e69lnXxhrX9DjrFj7tstzz02qqnrtwZVi7YO3yq3ZvvXE3DNd/twu83zVJYvmV9V/fw2n8b8/FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/lU00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPq/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH9tt7R+sBot2za9u2st2/Tmt/aa8MNY+525t8Xaa/7knVi7qqrzb3K/99OG3x1r91lni1j71h+vHmu3+/5ZsfaCn74Va/eb9kqsfd3EKbF2VdUrn/SPtfc5+8ex9kWDfxFrX3zvybH2bUtyf++dZ90aa4+97IpY+9HRj8Xaq87Mvceqqv72g16x9qZn5V5v417K/d7b39cn1l567wdi7XcmXRprT3t0WKzdb1auXVU190dXx9q3XvlmrP3e2bvG2ptudlisvcfLm8Ta988cEWufvdETsfbLo6+LtU+YfVCsXVX12Jefx9ofbbB/rL3cdYfH2l9e9UisvcpLM2LtlfaaE2t/vePkWLv3lQNi7bZX/zLWrqo6vu0ysfa893Pnhs9f3yrWXnfKWrH2sxcdEWs/euDfYu0zJkyMtadde2WsXVXV7pLBsXarbrnX+svjL4q1nxvVL9be/IQFsfbI1t+PtUf8+uZYe85uf4y1Z/42Nw9QVfVRz/Ni7Z2GtYy1Pxp8Yay93Be59/hXG18Va79zQ+4Y4ures2Lta274MNauqur9RO689KNbLoi1Dxy1Uaw9bWosXW+Ozn2fbT7s4lj7+akzY+297vhprN2t002xdlXVcj9aFGs/uNdvY+05k7aNtU88MrfuaPjfno+17+56f6z96YTNYu3p7z4aa1dVXd7pi1h7tTVXjLVXHNo91u54x/RY+5d/yc07PTKvc6z9Xu+RsfZaPV6ItVe96etYu6pqyF8/ibXXm3hsrD1ytctj7auOHRtrr/zhi7H28T0fjrV7d8+tr7t3yphYu6pq3Y1+FmsP7JRb+/PFZ/vF2jfudGasfdKE42LtESd/Fmu/tXJu7c2Gf1gq1v7RGb+LtauqrjijfazdeeYZsfYbh14Sa2+02fRY+9offhlrd3/iiFh7pwnHxNrHbd8u1q6qOu6S3Jrx8x/Prbfa/sAbY+0Wo5u/Bmbewpn1atOrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwL+DVv/IP+6y/KDq1Kr9/9ZY/kuLv/ms6c1vdVt6x1i71fxXYu0ZG8yOtauqOi29dKy9eMGHsfa0BSvH2vPGvBNrr7b2KrH2F6/m3mdLei+MtbutsFSsvebavWPtqqp3Zo+Mtf/+7sex9pzKvd6WXqpTrD1/ydRYe0bbFWPtDo1lYu1OLXPHEG2XmRdrV1UtmN8t1v568RuxdttunWPtJUti6Zo3e0qsvcuAPrH286/Oj7W/GfFlrL12v41i7ZffaRlrV1UtnJ/7bP37+2Nj7cXBD5hevbvH2jPnfBJrP/bwy7H2kkWLY+2WrXLv8UOPPiLWrqp65823Yu3nns+1x06YGGsftPvesfaaK3SMtfusvmqsPf7r3Pfoup27xNpdqm2sXVW1Vofcz95yXu4Yon2HNWLtrpWb+6kWC2LpuYtyf+82rXJzXnMW584L28zuEWtXVS1slTtebszLzTVO/DJ3/NKxXW4uoP3CNrF2687rxdpr9Fw21v5s2oxYu9EhONFYVcu2yb3eLmndLta+fOlce8N1cusRXvvP3PHyCisuF2v3Xn+DWHv4yBdi7dntcucnVVWLuzV/jde3vp6RW3uz2h7HxtqTx34Ua2/Qd5tYe86UcbF2/y03ibVnTP801v5k/N9j7aqqSYu/jrWnzZsWa38986tYu/dG68faY0Y9E2tX1xVi6T7Bee37nnk71u68ILfmaNB3c+ekVVWTvsqtr2vxTe78qO3C3O/9jYW5+bYWrXLn4t2Wz7VXXC73Hv/p2ZfG2nM/HRNrV1XNn5Z7rW+/0xGxdsdW38TanZfP3Zswq2vPWHvhR7nfeWOF3DrSxfNbxNpLdcitG66qWlhzYu22wXWFS5bk5rzmz5sba7ddLneO0piXu0b85eTcvQlz38/Ncc6fnbtuVlXVoVXuc71lcNl0Y3Huu7TVwtaZ7j9h/Wyvdj+vzq06/BNG8485q3vumO/kvs3/eb91xWrXxNrHX9U/1q6q2m+N3HHf+z1GxNoL9z0w1v7jaxfH2qdMHhZrd/157ue+s3XuHpr+t/eLtQ8dH7wOUVXPHfJ0rH345rn1tyvfn9tX4oV5z8faz3TPrV9ZdsBfYu3tJ/wt1r6n00Ox9sXTVo+1q6o+/u72sfZvVnou1n5qQW6t1oXzc3uorD7miVi749yzY+3jln001j7rmI1j7Z7jc6+1AbvtE2tXVZ2/dm4N7DaVWy815t3cWvMTtsvNgSxc5eFY+6E/5c4Ld9kht6/Eyh/m5iBa7Pz9WLuqao0O78bam1z+VKw9aVFuPr7dyHNi7S7d1om1Z43ZM9ZeHJz7qS1y3yc3HrBFrF1VNWR4bl/Pd/d+PNZ+6MAfx9otF+d+5x3OvTzW7nb4kbH2QzNz5+LbDsrd5/9c14GxdlVV2y1y50c3jB4fa/e7K7c3eKc1vhdrT/0qd7z8wJq3x9pPL5s7H35mp9dj7TkHB/dPqarH5v8o1j7q69xc46WLc99nG1w6PNZuuVFurvGJPY+PtQ+al9v/bf4huWdNLOiS3Y+932OTY+2xfXJz24+smPubD13/zlj7vIdza73mduwba09bNvc9vtLCV2PtEU/mjh+qqhYOzc3vfjHm/Fz79b/G2rM3yH2XbnRjbm658965e4BnHnFdrP3chv8Zaw/v9ttY+7ZlJ8XaVVW/+O2LsfZBV+fWej1ydG5+d5VeufvdB3+1Uqw967HpsfaQs3eLtb9Y8Wex9pPv5vbmrqoa0b0Ra8/c7rxYu+8fpsfa/R8aHGs//3ru+OWPk3L7sR/2/Gux9oE9t4q1e3W8K9auqhq53pOx9q9e3zfWntwld0565u259qx5uXXy61TuHqDP5uTuOT94+dyzbN788PNYu6rq86G5e842HJS7Pt1omfs+e26ZzHnhrIW5YxcAAAAAAAAAAAAAAAAAAAD+/R2yZE61XLKo6d0O1+aeS999dm5v7f7jcvskvvz+8rF2VdUnJw6Ntbf8xemx9indJ8TaV598Yay96cDcsyL2u7drrH3j71eItYf9PPfMyFdPyz0voarq+NG5z7fV387tH7dg6R6xdruDDo21V7z4/lj71lsHxNr3P3hfrH3MW8fE2jfedGasXVV1925nxdptPtss1p4w9Nex9lc35p4tf/VBl8Ta633wTqw9qlduD/v1Njki1u5/d24v1GVGfRJrV1XNHTgo1p78g69i7ZWGTIm1J32S+3wZN6NFrN3j0Adj7Ve7bhdrfzD1ylj79pdzz9uuqprY7ctY+7Tf9Yy1T9wyt+fwHm1yzwLud0rumbjbzsgdp6/0Qu5ZEbsFt6AdNDS3529V1R59c8/7Xvncx2Ltz97KnZs91eHRWHv7AblnjW+6w0Gx9uLf3hRr73xtq1j7q2smxtpVVRNHtI+1l98/d83w4idz87t9z7g71t71u7F0bf5Kbj7/5z1PibW3u+kPsfaJh46OtauqWu/eJdY+eszusfaPRuWebd9+s9y18RNz0061bNvcnPro9baOteuEL2LpUz7IHT9UVU3rl3tm5U07/CTW3u+5A2LtQeMPibVn7LNNrL3pvrnzwsYxbWLtCeNyx22zhrwSa1dVtVkmd/1qwOW55yA/suy5sfYm++TWQ1wzOjfHekGXi2Lth++5ItZe/s/7xdqbDc2tP+n/YqdYu6rq7Fm51/pR73WLtb/+Ve757kd99EGsvflBXWPtoUeuFmtft1n3WHvsI7m1EGs8un+sXVXVb/IvY+0XnxsZaw9Z9Gqsfcvtx8fa4wf9Itae8LOnY+1em+fOxV+/MHfNbs6rp8baVVXn9sudE3/Wee9Ye8idufmXZ2f/NNZe7e4bY+2TL7o51r72moGxdp/Ndoq1z9k195zxqqpN1x0da6/1px/G2teem7su/+WiNyPdhYvm/c//j3sX1YLAUpJlXnyi+dH/a/5ruWOfEWecHGuf8072voZVH3gg1v7xd3KLSBbvlDunPOS6DWPtORfk9pV4+b0NYu0RD+Xu3+m/1VKxdp8LP4u1q6oWPj4i1r5rx9yagq6rNGLtv/ZbEmt/uv++sfakzh/G2hM/fTvW7rhbbv+Urifk1jxXVQ0auH6s3e+A3D4DS182ONa+v29ufVyv2++MtS//01Wxdp2VW0cx59PHY+0/dD0s1j7ysdx+XFVV//HX3LXO++bk1lK83SK3V1DXMRvG2p/37Bprfzrnnlj716N/EGtfNOWGWHvz9Q+Otauq1n08d+w2/Ienxdrjtsl9vhyw6fux9pTLD4y1H3wld//zT7Z8MNY+++jcfbiDPswdt1VV7bhfbp+knY9qGWtP6ZO7xtvu+ty+Ess892msvc1hmet9VVW/Oj635nnR1bvE2m+vvlysXVX1nbfeirUvuG5MrH3yqWvH2icd3yvWHrp2bg3JVdusE2tftk9uj6RNBs6Otbcdnl2389C9W8Tar+/wcazdctwesfaYT3Kvt6cfyd1TceiuuX3JV//5U7H2KZfnjhkfvva2WLuq6ulVc2tQtt0stx/YpDa562Zjfvk/X5/3/2v2H3N7DPR4Pbf53eyRc2Pt+0ePj7V/tvVesXZV1Qaf5dag9Dln6Vh78ou5e0K36Jt77sGUHb+Otc+4O3ctYbstcvP5B229ONYedVbuutk703Lr+qqq1nzx2Vh7nWNz7/H1Dh8Wa+/ber1Y+61xub08tvjg97H2KVvcG2v/4KvctfGPX83d715VNXNY7hpOnx/8KtYeeEbumHXi7k/G2uc2cnNeLw3OHb9s2al3rP3k9bk1Zpvelduzpqpqi765fSU2ePaOWPv4o3PzfUt2y10rXWHCR7H2Z3fPjLU3eDJ3rXLYlbl5xjtOzZ0XVlXdu0Hu93737bnv0qsXnhFrX7Zb5tmPc5bMrtPqvz9ezc0GAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/h737jLqqvNe+/WfRq4CggCLYULEXsPfeexI1xhKJLfYSNUbNjiVqNGqMvWCNsfdesMUeu4KCDYKigPRenk++3/Z4d4bZ63yeMY7js8PfBO57rTmveRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmVvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/26HP3dvtevSaHr38knvNb35g4VfXRRrb7ztb2LtA595Kdauqtp5g8di7b8c9fNYu/dxr8fab43PtS85985Y+839cv/eZ+67Taz99Nq537GqqpHD5sTah497PNbe7eY+sXbfhy6Itf9r8h6x9ucjT4u15173q1h7/1b3xNqjDsj9e1dVnbretrH2c2OHxNovr/1trD386Ktj7RX3HRFrP7LEA7H2yTN2ibUXbN4y1q6q6vurO2Lth57bNdaecMWOsfYq764Wa/95QP9Y+5Rn/hxrrzWkVaz9+BW7x9pXjLo21q6q+nrOibH2dav/PtZeeOSXsfaQTX4Xa194UO5zde0NR8XaA3fPtS8/4x+x9sS9Lo+1q6pumLtZrL10q4di7aP+sDDW/mD/3D3je4tsHWtPOST3ffL3le+KtU8de0qsXVX1h1cuibU7/DU3BvPsM4Nj7dPbToy1b3341Fi7W+OvsfbVN2wfa2/e69lYu+fs92PtqqqXrvt7rH359NNj7UsP/jrW/v6BybH2gzOvi7Uv/jL3/qhn3ydi7QFb5/7cVVXX/eqgWPvcA8+ItQdcem6s3XWtA2LtlffJjXud2evBWPuRySvE2v3f/ybW7nXV3rF2VVX/7svH2hM6595frbZp7v5l/PX7x9pvbrVorL3cpU/F2isHv0eP75N7Lqyq2rbzuFj7gTNXjrUvaZcbX27b/sJYe9SDuWeU0Xu3jbXv+PCTWLvvRbn5EBe17hdrV1X9dO/c/dOmXz0Ta5+0V24+5/cPnhxr9+t2W6y9wTa5uerbD/tXrL3C3dvF2lVVm59xVaw9uOdWsfaDe+feX83c6bNY+5kbc+ufjvrb4bH2Kn/IzYe46POBsfbYzQ6Otauqvvt731j73qeOjLXfWeaYWPvrbQ6JtY/8as1Y++j5h8ba1690VKz9i81y85arqr45Y6dYe49pvWPttjfsF2tvN+CNpjfnLlzQ9CYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw/4ZW/85/vEi7rtW5dYf/rWv5b42ZvLDpzR8sudbUWHt615Vj7ZU36xxrV1UNbrlIrD2nzbqx9vw582PtuY2OsfbsBTNi7dGffBhrv/PRx7H2qi1Xi7VbtZkQa1dV9V68d6w9tkXuO2XBpDmx9rTWuc+2dv0GxtpLdJ4ca4999/NYe8zINrF2j6VaxtpVVfOnfh9rfzByVKw9u2XuHqLx7Xuxdp/OPWLtd95+P9Zet/+2sfYirfvG2u9/+nKsvelKK8TaVVX/GD0y1p4xdUGs3aJFu1h78rTcfdt7r7wday9c2Ii1G23+reGx/6ijDv9lrH3NVdfG2lVVG2y7caz9uzOPiLXffzs3DtGjR26ssf2ifWLtjh3G5Np9mj+W/v+1J+Q+V/s1ct+jVVWdWuTaC4LPR/On58Zf2i6Su3+ZtCA33tZi1rRYu1PH3PPR95Nz4y+LdpwZa1dVdVyQe3c1Yfb0WHuxLt1i7cbC3PhLu7a57/EFM2bH2vMm5z7bOnfuHmtPaZGbj1BVNb+R+zf/YMasWPu4RXP3ED975vZYe/sVBsfa3Qbl7iHmjMuNv2y6xX6x9vL9c++mq6qmdv021v7s7dzYcpuxY2Ptxbq0j7UnzZgSa88I3qpP+vKrWHvWgtz8unldc/dOVVVtK/ec0HexTrF2m+V/GmtXx29i6Za9lo61v56am1/XfX7uvq3v0ovH2sstmRvPH/5Fbi5EVVW/lRaNtdu0yP2bvzPx61j71AMujLW///67WLv1nNw4wJyZuXkYyyyf+zmfMO6NWLuqqvtirWPtOeM+ibXnLrJMrD1pdO65sGffLrF2zR6XS3+be0fcrWfu73z+9Ny84aqqNp1yz0dz5s6LtVsH3xHPb5F7Vzpjdm48v+2U3M/6gi9zA09zJ+Y+2xrzcr9jVVWd2uTelc6bm/t7X9DyX7F258YSke7chT/+GWHStsfXvHbNn7C11ldXNb35gw/nrR9rTztySKz94hqZn9MfLH1Q7r3XBi36x9qzp/WKtccv/l+x9oaLDY+1Zy59fqz9xi0PxtrrnrVXrH3Ziblnm6qqPjvkxoaffDk3L7DDtNxc87kH5OYMXdzI/Z59uGzuM/3xHfaPtX+9/IGx9iMbnB5rV1WNefaeWHtmr61i7eU3zM23/ue43GKSV7deKda+6sBXY+2DKzd289OP1461z9x2vVj76Ytzz8NVVRsH51LMWPfFWLv9b3Lzdj7pMTrW/vKz3HyCAR1yv+Mr9Pgo1t5xtdxeHtfefVusXVU1f5vcHJIxT54aay/2xzti7UEXbhFrPzB7s1h78X0ujbX3OmydWLt1331i7X7n5ObXV1Wd0yG3F9rG43LzMT+b89dYe4OXcu8TWl6T21tzjb1yny8b7Znbt+a6v+T2rVl3uU9j7aqqbWbkxvuGjs7Nsd/ly/6x9g2n5e7buqx3Y6y9+dDcmPouu+Xmj/QctUOs3dhr91i7qmqt54+PtUd33jXW3uGobWLtKeN+Emufv+RFsfYi3+XWiz33XO7vvP3vc2Mgu4zYMNauqhpx+Dmxdsvjc/MCPj4qN+/492d8FmtP239QrD18zOOx9tpLPx1r37l+bh3Ljk8fGGtXVY3/MjcG8sWCJWPtWcscEmt3+Sb3Xn7YOrm9VP/5QG5uX5/VDou1V9sut6/DJ/Ny+8bc9Vjuebiq6pA2uTU8D/bPjenv+P3QWHv6Ernv8a+vvzjWXvfk3JrzhXfnztGZsFlu/fGwxohYu6pqma9z4y973XtlrP3OnNx36QUvPBRrvzkrt5dqlynvxtpjVsztyXXskrl3KNe1yZ6VddFjubMHrv/8hli75QqnxdrrDNgo1j5us11i7WHfHRtr3zE6N8ba++Hcuu8Xbs/NOaqqWmpi7vOtS/vcGOt6XXL3rCdsldkje9as2VUvvxlpAwAAAAAAAAAAAAAAAAAA8P++P79yRHVs1/x9aHuPyu0jv+rxb8Xa7323Say994N3xtpVVd0XmxFrb3zolrH2mM1zZ/Dc05gfaz+y/Bmx9rkdpsTaq7d5Ptbe6szHYu1e+9wda1dV3Xlsbm/MIzssFWs/2ip3lt6eV/0r1r7g2ydi7fsfOijWPuuAA2Lt1066OtZe7JafxtpVVXf/NLef2CFXNGLtPVa7K9be9JPcPvKP75nbx2zssB1j7QsfviXWnvCrD2Ltv7zyUqw9dKsxsXZV1eC3T4+1z7lzhVj7jJa5Z+LdB90ea6/bYr1Yu+dyz8XaBz6TO+Nrg2cnxtpLfr5TrF1V9VjvI2PtEXv2jLX7bd421n5+VO5s1p/8PXeu2tCvFou1Zx0wKtb+qkNuX+9d/tw11q6qOvCM+2LtzU/pGmuf03f7WPuXL+bOPrpvwOux9qQ1dou1d7oyd973DR3/Hmsf8daQWLuqqv+k3BhIHZgb+9n82Ftj7VEb5M7E/cVOl8faP/nDtFj7sdVzZ8rd0DL3O/an4QNi7aqqJefnzuqc8/TwWLtz95tj7d7PnxJrrzkt977wtZ9dEWsvs8zZsfZd6+fmHD25c+55uKrq1ba5uRgbttsj1n78xc9j7Rab5f7Or95nu1j7oUX/EWvvPvmeWPu+Hq1j7a+PzP2OVVXdduvfYu2H9svNQen1wVGxdvv7T421z+58bqx95x9yZ1YesX5ujtvcXr+JtXc6OHeW3R9f+SLWrqoaeOalsfak6bl3hrcsn7tXH7/r72Ltbf+ae0f85BJHxNrjR+Q+X448Yd9Ye7ELv461q6qOPLBrrH3yE7n5dWNv2SLWfnm93PmovZ7Mze1r02r/WPuMB3Jrn3o9eXKsffBKv461q6pGBucF3PvM0Fj7zH02iLUHbJ2b2zf82kdi7cnn9Y+1l+gYS9e0302NtT/frlusXVV121Zrx9otD3s11r5njxNi7TsmZtaUTp0+t5b7kf+PRx88s1p26fAfuZ5/R++/5saGZ204MNb+dJ/c3JlDO+XeuVVVPT/0hVh7w1Y9Yu2pu60Va//93dx42WkTH461f3/ehrH2Na0Hx9pv7NA71h41bGisXVU16Ovcevv+HXPz3Ld+Izdm9s1Pd4+1l7yrRaw9a/Hc7/htV+TGhj/ct3Osvdge18faVVUXv3RNrH3apcfE2ne2GBpr/+Wx3D3jh292j7XfXym3RvDlI34Vaw9dY/FYe9CY2bH2kEdy+xtUVY3+XW5+3Ma73hBrbzIpN+/4vPZ7x9qnnflKrL33jNycoeMezt23Dfwud982b/5qsXZV1XHHToq129+Qe7/8sw65MZBd9/gk1l7nse9i7U9Pz61V2+Odd2LtQffl1pJcPHmfWLuq6p+zW8XaYzfPzcd8ZtKjsfbp5/w+1u45LTfHffQfcnv+dVs9tx51uzdzc4a+6T4r1q6q2vK2t2PtmddtHGvvucOFsfYf/5Tbo/rt4bmxgFMu+FOsPeipvWLtjzfKfZ980enDWLuqaszgB2Pt4V1y86Uur21i7bM3y81BuXBk7r5tv4/PirWnzR8aa/eelPsdm7RKbj1qVdVBXefG2ifc9nisPa9H7ryHO9fPrR/a+8T+sfbICbk/9/B3c++P1uw5L9be7q3cOGNV1YQBW8XafR/NfZde83DXWPvJU3L7Bv98/vux9qC+uXGIjb7KrSU5fpGnYu1Df/FGrD17brtYu6rqlhVye6J/8s6ZsfYTA3NnJx3XPrf//3MH5NY/Dzhvv1h7/H7jYu1vPvkm1u69QXa/wSPP7xpr33hGbg3ysifm1qPMeGCNWPuhddePtZ8ecHSsPW9g89eZ/aDjqrl3KHdfnztjo6rqD6fm9sG/6b7c3nerr/3HWHutZ3N7eTzzdW4v+F/0Do793DY51u62UW5Pi6XG5PYYqKra8rXdYu2ThubmyT96Rf9Ye4ODd450F86eUvXX////LrdLPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB86h1wAAE4VElEQVQAAAAAAAAAAAAAAAAAAAAATddIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0+rf+Y9bdmhbrVq3+9+6lv9WzyU6Nb35g8/nzoy1Rw/oFmv3W9g61q6q6tFpdqw9f26bWHtu1/mx9vdTcu3F2+V+3lovv0qsvfiS02Pttu3bx9pLdOsTa1dVjZ/ybaw951//irW/n5P7Lu23aIdYe+HU3PdJ+5a5duvGx7H266+Oi7W3agyOtauqxnz7Saw9eM1NYu0rb/5zrL3ZWifG2u3mNWLtjddcN9b+dkLue3TLrbeOtT8ZOSLWXrJf51i7qmrLns0fA/jBlNkdY+1eSy4Za7/+yquxdmNh21i7V/9esXa/XkvF2pOmzom1+w/oHWtXVW296vqx9szZ42PtqbNHx9qXX3tBrH3QPrvG2l2+zI2/DJrQNdZuPb9FrN2hRW58tapq1px5sfaqi/eLtefOWRBrtwo+H3XvmLtfnjo19/nSfkHuPr1Xu9w944K5ud/vqqqWXXJ/9t5t58baVbnfs9bzc++P2nfKfba16ZL7WW/dKvdz3m5Brv3drCmxdlVV77bBv/d5uXeGH83JPRMPXnSdWHvxFXPv5Vt37RJrT1v4Tazdp3fPWHt6i6mxdlVVz8Vzz2ezVsg9H82c/HWsPX9+7jmhd5fc3/l308fG2vNado+1uy+SmxMwoG/uPUZV1djRY2LtqRNy74+mtMrdv3RuHfwenzQp1v7u29y9U7sWufH81VfbONZeeZXcO7t7bsm9l6+q6jFgn1h73NujYu1luua+x9t1zo15Ldkpd+806v1HYu2By+bmHC3RN3ev3KJnbvyjqmrOlNycyra9N4i1a3zunrF9+9y4dvv2ufe0bTvm5uh3Gp8b1547a1Ks3bl97p1dVVWrFrl3GQvmfB9rz2mV+1lvdM79js8d92GsPXV67tls4ojPYu3Jk3P36Ys2cmNeVVXzZ+XW07Zpm/tOaczPPRPPbT0p060fP961521Dq9Gy+evGHl4097l461G5caNV2+Xm/h51R25MvKqq989yY0efPrV6rP3lil1j7SPb5Z7lB376j1j7ut1ya/SO6/tlrH3FosfE2h3/vnmsXVU1bcWLY+2uc9eKtf85Kvds9cCMf2uLm/+oq4ctEWuf/sAdsfbV/3wx1t70vS1i7V1Ozu3XU1XV76K7Yu1WW+T2lfjbUjfE2mNuuy/Wvm9Yy1j7/A49Yu0Og3PPCbsdtlWsfejfhsTa5/12xVi7quqsRYfH2rcvm3vnd9ioQ2LtVW5/P9Z+Y+3DY+2DxjwUa/+6W24cYIPDc8+kJ97WP9auqurQfWSs/eiry8faPQfn5kNecO21sfa2D+f2rXl/dG5seeWD9oy1L2l7XazdptaLtauqtlguNxawzwObxtrL9j0t1p4xeUKs3ebnz8faT7yZ27dm2R0ui7WPW7hNrP3lrOx79Y/GPxFrb77qRrH2nae/FWuve0Wu/cY5/WPtdTvm3pPuMmb7WPuOh7+LtT/Y9fZYu6rqjXFfxdoH7J97Jn7xmMtj7bsWPzvW7tJ3Wqz9Qs9c+6suuXUsywX3FB13ZnbPnH7dcvsGL/jZWbF2p5ufibW7/SQ3rr3alNz3yfkf5/7Ob1vjsFj7l3cfGmt3Oji3t0JV1eNv5sa9/tUnty/5thfmnsff7bN4rP3125/H2h+v1zXW/uTl3Ny+w9bIzeX82UUDYu0bJv4p1q6qGnbKEbH25Bdz8342Hpkb5xx7W+4Mn8Vm7Rhrf7pG7vlo/Lzc3OE23XNzxW+ZmHuXUFV1c7fcn33VKxaJtR874o1Y+84vc+vF9t4stz9Uiy2Xi7VXvCQ3/vLGIrl56l1b5PZWqKo6crHcn/3bx3LvxudOza0HuXrHrrH2khdPjLXrhadj6Zkjc/OdHh59f6w98unc71hV1ZCrXo+135j6Rax9R7dBsfaMv2c+02fM//HvMTbb9Ibq1LL58yLPvv2Upjd/sPcSuXduH07J7Xlz6I6rxdpVVX/Y591Y++XHcudsLfmb3Fq1D1rnxm6W+sP5sfbYf64Qaw/pn3uWnnBNbk1oVVW/d3P3P7+6/L9i7VuGLh1rf7JH7s9903e5eai7zc29C+i70zux9k9uPD7W/mBY8Hm2qk4+77hYe+2jc/Pjtnk19312+JG5P3f/X+bORTng29yz9MX/zK2T6/tydl/xHe/J7S0xd9jCWHvUS7nno9G9doq193n2llj7o+dy+x2P+TT3Xbbmx7nPl7W+ys2dqara6oI1Yu0l2+V+1rc+I3eW380HD4u1FzstNw+1d5+XY+0Vdv5brD1isdw556sNyu5NteX43DkZIzfIjUMsevDNsfZl5+TGApZ+9iex9j2nnhNrb7PlGbH2/HfujbWrqpa9+4tYe98hu8Xai2yS27//6U1yY0/T1sr9jnd+ZFKs3WPX3Fr/n+2ae0f8ySG5PXOqqq5/cttY++W3H4y1V55ySaz9xwU3xdovdcydwXzAornn8ft/mxsDOeXK3Bz7qqq9d82tJ5l4ZG7O9T6r5p7Phpybm/szZcgqsfanG+T2yD7mrtax9gnvBsc5j889H1VVdez7s1j7z51z9y/9vsnNv7nqu9x3yuIv5O5ZW52b+1k7afNnY+1Be2b3Qlvp6Dtj7dtvPSHWvruRO5P3po65P/fcR8fH2q0n5MYaJ+/2cKx96MLcfh6vbjYj1q6qemtm7s9+7rK5PU1vPS23R9OVQ4fG2u/2za1JrWF9Y+mvNv041n52TG7eT1XVoK6XxtqHXp8b9zrrqV/E2m+e+MtYe+ZLuXWhS7fPrX8+ZETuTLxDPv1nrH3B4rl2VdULf8ids9rxlNx8iOlb5s6NWuzXA2PtP96TO6vrwZ3XibWvuHH/WHup23PjAFVVW0/M7Q9+w5O5Z8NdV/sk1r5/2+afzzZz7oJ66P4f9//odfzk6tSl+Xvw7jQw97k0f/3c8+SND98fa7+28dGxdlXVqldtGWt/fHjuM3mr0wbH2nNOzJ0/9MISv4m1H79/pVh79re5921bbnNurN23/R6xdlXVByt2ibXX+Dh3vzm0+2Ox9m8PvjvW7ntVboyyzeTgWvv99421D385dy7sHufknuGrqoZ/kNuP9N5Fn4y1Z185Ktbeeof5sfac4M/68yvnzkB+fYfJsfZ/3Zxbk7lj59w43Uk75u5Xq6qemZyb+zvtm61j7e7/lZu7csPQX8Xa9z+dm3PcmHxArP3ZnNzelAddktuH9fEru8baVVX7/+WjWPvgXx4Ua6+weW6vw532fiXW/usvJ8Xa/c97JNa+ZZXcffqU8aNj7Zu+yJ2JUlXV9/DcOOdlG+X2lbj6otw55yd/eGyufdjJsfbWj+fOEPxgndw7nE3Xya0r2OzbBbF2VdX2I8bF2m9NfCnWvmuT3Py0iz7LvS98ZsTjsfZGD+femx3x2Vqx9mWn7xJr/2T/JWLtqqp11s2NQ9w25IVYu9Ovdo+1b944tz7woS6577NR9+TWPrcYdHis3Riyaqx9aqvrY+2qqi4v5vqLvDw01v7TNbk1NFu3zs13Xne5rrH2enNOjbXPvTM3/nLl6rm9FXbq82msXVX15cq59sdv5J5R3p2eu3+5fkhun+h7t83N332jXddY+5hbLoq1R/4pd+7ACfvn9iG7YeXc3rlVVff9dlKsfVKX38ba4y7JrVW7fLPc/thjx+bWAK+0bO5M3PX7bRBrX78gtx70xTOuibWrqlr+I/fubPtHcmv0DhuWW4t677wVY+2eg/4aa99x+rBYe70Hcr9ngzZ6M9bedOr9sXZV1Xe/yo0tL7fe7bH2ftedGWuvNzy3FqXDuBti7T9dkRvzWn3z3FyIEY/lzn1c9YUTY+2qqunv94+1f3F389cu/2DAnkNi7Vc3zOwTNGPK3B/9/9h+qwnVtmXz91Lb/Xe5NXodls/t633f6Jmx9jPH594tV1V9d9Z2sfZLA38da2/yk9x86+cb98XaTy68ItZ+/aTcmorV1hsZaz+8Ze5dwJlzcnuwVlXNWD/3+dJ5ydx71pv65D7bfhncv23AKbkXnQvb5/bWfmvUVbH2O31z+97evHFu7VBV1a2v5Z5vHlw9Nz576bc/j7UPnJvbr2e/nZu/j9gPNjrpyFj7kS2PirU7/DZ3zvg/fj8s1r7yjdw63Kqq2Wc+EGv/8dMlY+2LZuf2Uj/xlEdj7e7Dc+sT9x6Zm+v9zvq5/Zn+PCT3rvH9h0+PtauqtumbO1/sijtyY27dxubmwF63a27s59TXD4y1L3krt1fQ8cvn5v6ueMF3sXaLvrl1kVVV41fKrU/85Zzc+qGz13471v7indzny8L+uf2hzmhxSax9R7fcWVN7drkw1t7um9wYRFXVB0/n5pCs/FXuPcppm42NtW/d6LxYe/NLd4i1rx+wTKz92Qf7xNpfHJH7Dv9io+GxdlXVmx9uEmv3Wiy359/4gbn7xsWn5z7bNgrOeV5149w88/k37BZrN8bm9vV84s41Y+2qqrXG5Z4T7u+U28/0un65Z5RNh+bWCLbeLPc+Yd1NcmcPXPT4KbH210fm1jW8/I/cXh5VVe+clxt7emqN22Ltf05tG2uv12+LWPvxd3N7eaw/u0Os3Wq3N2LtC/fO3af//O+bxtozH8me9X364G9i7dM2z903vrhzx1j7nB1z94wdRuV+x/e5PjcnYMh1z8faK/TM7Td447u5OUdVVb88Kbcu48xTc/MCHu6cG+c8/8rc79ku1+fOyuq5f+482kEX5eaK33xQbo/q322SO4OwqmrYnbvF2t12XjTW7n5e7u/923dzZ030PSV3Jt0lh8XSNWxEbh3M7UflPtO3mJMbg6iqen2p3F6uN73TM9a+5rVjY+1Ll1k+0p05c1r9T1YmNP7XrwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP9rNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPO0+nf+47kLFtacBQv/t67lvzWm1YymN38wec3FY+12jTmxduuWjVi7qmra3Pmx9sKWsXRNnD4z1p4zO/fzNn1el1h7kU5tY+3ui3SMtVtU61i7devcz1pVVZtOHWLtFpX7bGvXZUGs/a93Poq1V1tvzVj722nTYu1vpn8day+++NKxdueey8baVVXfvv52rP3JiKdj7cXaLhlrf/Les7H2uhv8NNae0cjdsF5+0cWx9l//tHGsvdkGvWLtTl37x9pVVbfd92Ks3aF17vnok5GjY+0vxnwRazdyt4z1zWf/irWnjZsaa7dpn3tG6Nq2W6xdVXXL/X+LtWfP+reGRP+jPh35aaxdLdvH0vc/8nysvc+GW8XaY196M9ZuzG4Ra89uMTvWrqrq3rZ7rD12wrexdve2uTHWTh07xdrtWwYH9NvnxlhbVe7vvGu7WLrmLMyNt1VVtVyY+zdv0a5zrD115ohYu2UNiLUXzJgXa89vm3uP0bJNj1i7zbzc7/iCrrk5AVVVz3+du3867qHPYu33ju4fa38x8olYe4stdo613/jHh7H2wmm5e+VFW+funSbPHx9rV1W1nzk51p4/fmKs/cWXuefx/gM3j7XHzcrNr2vZOXe/Ov6L3HjbzKVWiLVHvJK7T6+q6tO5T6zdstN3sXabRm7MbdqE3P3yd7Nyf+6ll1431m7TKvcOp1WL3Pdom3YrxdorDNg21q6q6tQ29/5oStfcPNbBi28Qay+69jqx9uzXcu+ull85dw+xRLfcd/g3o3JzQDp1zc1vq6qqxiKx9KQxw2LtDt3Wj7WXWHrRWHvSmG9i7ZZtc/NfFumZ+3yZOTf3TDqrRfDFWVW1mDgh1m7fNTfm1qZT7l59zvzc89Hc76bH2rMWzo21p36fW4syb3bu73xG++BciKpq2yY396ZNy9zzUae2uUm0LVtkvs/mLvzxa/ze+vqN6tJo/r/b/iNy8yEPuTP3frf9+7l7n5H7jo21q6pGvLZWrN3v3Jdi7cPezt13bbrIkbH20GG5cYTvP1wt1n5tam5t5JW/y93rnrRXbs1WVdUJb+XeRQz76tVY+85JuTHxvfvk1sIO3v30WHux0bn1qE883Pw9gn6w+/gdYu1dlu0Xa1dVfd57j1j7jxO+irVbjNoy1h7U+rVY+6f99om1Z9+Se5Y+/9HcOpb5b54Qa/+2Re5n7cNx58baVVXnzdss1n7+3V1i7e7desfaM/YaHGsv99yKsfayG30Ra39SubUFgyfkPl/evKV/rF1V9flNuZ/1eZ1ye8A9/fkVsfbOK+fu1e9bKjfOefott8Xat941LNZe44Dcu+2pv8/t/1ZVtdSSuTGQB3vl9tPY7IOdYu1//iL3nDB40HOx9k1v7xlrb/JQbh3LI+u9EGvv0WnTWLuqauRruXXAS3ycm0vx0X7LxNoL6otYu8/p18XaXc/fOtZ++bjvY+2OZ+fuGW/9MjdXqqpqt7Vy81CHnH9/rP3Z6j1j7RE35r5TBq53c6z99jkXxdqDWu8faw9YMzcv8PajcvsVV1Ud/8ThsfY/18nN+3lw5jOx9u7zL4m1n77v3Vh73Xm58bbPbside/BNt7Nj7Ulf5vbEqqq6567cPvg/bZkbh5hw2oax9ohnc/OtXtg8t3fMcXVyrP3e17n5/dN6PBxrj3r6+Fh71R7XxtpVVQvuza0JfavdYrH2E5PGxdpr3blqrN3z5Vtj7YH9fxJr/+Od3BjEIn+8INb+Wa/cPotVVS+umNvzb4Pjc99n905sE2vv+JddY+1djx0ea0/79slY+6Edcs+k7dvk5g5/sGx2zfkHY3J7TD7VYr9Ye4WjcnuJ/Pq93BjIV8/dGGtPWHW5WHvZe3LrInpMzN1D9P71yFi7qurtt3JrztpdljtL58H3c/vWbLows2fx3IXTqurKH/X/6NhxleoUGLN7cXjufLGvzvo41j7urdwc96t/MTDWrqoauP+9sXaP/rl5O3/Z+fNY++5rc2vVRqzzeqy9+pG5dd+n/2xQrL3Uy7n9SKuqNnz9qlz8g9xe8m03zu2vcOhhd8bal6ydW1PxyVMHxNqPnJxb737vgbk5QxM3Py3Wrqqad01u/srzn+XWw95x8a9i7Z1eXCXWbn/U9bH21MVzZyY0frt0rH3N/UNi7aqqR2/IjRV2Xiu3p/p2azwWax9zeG7+yuDTtom19zs1Nxfz1qNy8ziO2TA3/nLnqbn51lVVcz4bGmsPXmX7WPvZS3Lv3d4cntvnccg1W8TaN+50Saw9u9WPGxv+McZPzO11eMX+2b3vfrFS7vus74zcPcRjRx0Ra69zSW6N4LJ/3jfW7rDMjrH2lsu+F2t/t/orsXZV1Zm7XRprn/d6brzvtvcuj7VfPje33n7EyYfG2ktMz32fDN8+N9Z42Re5z/SN78qd8VVV9f3w3J5g76+dO2vr8la585+POSa3r8Rnr+fmqG32Sm6v5mlr5cYhltxx5Vi7qmrbI7aKtV9aLTcX473RuXV67QYfEmuv2+uBWPueMbm9FoddfFKsvcfJs2LtxTYZE2tXVfXo/sdYe9Wvr461X+yRW/v98Lw7Yu0F/XLjEHd++WWsfeB5uT3/Nv0od25kVdXOZ+XmPT83K/fztvYbufWwg/Y8OtZe6qKDY+1fz8zttTh0+1z76+ufirV3mpv7Lquq+nZw7j3OSV/n9ky+oMNlsfawfXLnZXUad3us/eYrf4i1B7+dOwv4hFVOjLWrqlY7M7cmde7ffhZrf3x4bj+Pr1bP7WtxeMt1Yu23vsutef/oV8fF2kuflBuHuG7N3NqnqqrPX8ydKbPDtRvH2j1Pzr2/+n5mbg/dIS/k1n299X3u92yvgTfF2mMOzu27V1XV/pXc89kOB+TWnd86Lbc+YeP1mr9vzrRZs6vu/3Fju3f1nVdtW8z7D13R/9wDw3LPk8Pb5X5O1uqRW5t4+v25OYFVVdsMOjXWPmbD3LkoPTboGmv3vCg373j3I4LrWL76INYetFNu3dIT9+TOm9q5U24vj6qqfg/n9iNdbFZuHsXEfXLr/Ifenxuru+wvuXuIqZN2j7XHdsrtCfry2bk9rTptd3esXVX12RX3xdpXPpo7b2rCu7kx6XNH58akl7gl9+feYvh5sfZOi78Za7/3em5vhf0vyO0xMOHF7Bz3Ea33jrVfvTY3b+eoa3Nz4ybn/srr40Vz690XfP1SrL3Kw4fF2qs/k3vH+cDE3D1jVdX1fz8n1p77u9xZer9ZLDcvb8r03JkJ+66a2zemz8O5sZ+Xz8rt1/PTrXLrCi45p2+sXVX16y1z85We3Dw3tvzW73LnVJx7VtdYe8CZufUUF/aYGGsP+DL3PPxVx+a/J/zB8HtGxdpVVQ/c9F2sfcFlubMbR/bJjbFe3Sp37vWBr+fmUKx8Xe7cglWuz/17PzE+N9f6+5bZ+5d1T83tDf7le8/G2p+udUOsvey/cp/puxyZO1PuxXtzZ7KcvXJuT6yDFuTuGSfekb1/eXF4bq393wauHmsPHZjbg/+LwX1i7Rbndo+1r3wnt39Ku51z+8bMP+eaWHvggv1j7aqqbsefG2uvvEnuTJdTZufGX3afnlsLu8y1uX1EJu+bWzN1yM7vxNpnd8zNnz3r9ty49j0dL4y1q6p6tMytHbr08tx61Odm5tbvrLr1PbH2wyfk7l8aT+XejW/xWm5Cwjv3vRBrH7Js7nu0qmr07Nxzwmc35M6eHnBdbi7p1Kty+8a8fW1urnibHrm1T51a5P7Ojz0wt0f0o4stEWtXVV196fux9vbn5tYfz1+zbay9+u259wmH9nkt1v7+y9y5JoefnXs+uv2F3DPKWZ/k9gmqquqyaG7v3rNueCfWvvzY3L3T3w97MdKdO2fhj/5/vLD77GrVrvEfuJp/z8J9cmdu73TZ8Fh7tTa5+64rWuX24aiq2u6gn8baq+2Qm2v+22PHxtp9puZ+1ofslDtfrM8LB8baJ2wwKdZe9qknYu0FY9aLtauqfrHg17H2gd1y++6+feK1sfbsDl/H2h/1eTrWvved52PtPlfnftb67Pd2rP1po02sXVX11xNzY8OXHp17lh83OHf20FqfbhZrjzo/t4fKW3+bFGuvOGTTWPvpo5v/LPqD0VNya+33Gpt7r11VdfOtk2LtJ5bJzY+77vPcOaG/3Tf3HmSn3+b2zHl+idwY6Y2P5cZH/7HMq7H2qi/m7pWrqkbcljurc6uTc+vdV+/xl1h7+81y+7d0Gtj8PVh/8NGnubXXL7+ZmzPU6dTcPcSw6bnzlqqqXvokdw/RY+HkWHvHdrl1wL12OCPW/smD42Ptzkfnxn6Wb7lbrL3EJrlzIub8Jrf/W1VVq89y+zWPvC93TsVzX+bOvN5zjd6x9u9eyY399D3mvVi7bZ8DYu2XP8vN9d7+xgGxdlVVrwdbx9rnfnRUrP37Nrn3lRdulVsL+7eDcvNfzp2TW88x84+5P/c5PXNnRr4+NTv+st57x8baHz2V2+/wqqtyz0eHXZu7h5jwQW4N8tKr58ZABozMzfW+bvvcvfI343LzCquqLr08952yyh65+XWDFsnNvTl/RG5N6E/WyI01nrhn7p3d76+6KNae1jO3T/T9H+XOqlzn/Ny4U1XVXbfl3tOe1if3b/7dB7nPlzkLc3OOPmqX2yf6sE657/GblsmNv9y2Ze7e6YCTusbaVVUjt38o1j5wpW9z7W/Xj7Uf+V3ufLJjL8udO7nDYbnx3T3PXjvWvvDnuTkBDyz/11i7qmrX3XJrcS+ZMDTWvn6vA2PtfSdMibUPPDR337bxE7nfs6865r5Pjui0U6x99Eq5ectVVTd8nztLZ7v9b4611x/yy1h7hT3+FOlOnzP3f/Tf5WbxAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAA/B/27jPayure+/ePRW+igAWwAHZF7FFj7GLvvSX2EnuJPXbsPfbeE6Mmlthj11hRURG7iA1BREHqpuz/i//wxfPijPOckees7zljXNdrRz43O3uvdd9zzntOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnTWtra+t/9h9NmjSpevToUQ+vcUZ1bdepGdf1f/hg5R+a3vzFFzU+1u7Sce5Ye7H+q8baVVULL7tgrD315+9j7X59BsXa7498P9aePG1mrD1wyf6xdr9ePWPtNu2nxNots2Lpqqr6Zsx3sXbbRvO/Q38x+cfZsXbbtrn2rDajYu0XX/ks1l5tqaVj7W9GvRdrj/lyTKxdVbXwKrn7l3Ejc59tvXrOHWv37rp4rH3ZXefG2huuuVGs3bG1a6z9+GtPx9p7bbVTrL3QIgvE2lVVtz9wTaz9+Zf/6XDFf5uxEyfH2mO++ibWnjU792zWe575Yu35+y8Sa38w4o1Ye/aMWLqqqtq0bcTaHdu1j7X79F8o1l564f6xduucH2Ptx599K9ZeonPvWPvoFTeMtXtPahNrV1V1atM51m6t3L99ruoQa8+akxv7WWCuuWPt6a25gc6WmfPE2u3n5L7DZ7fNjv10aZ/7ubfMaRdrt5+Va7fp1BJrd6jceH6XDr1i7UZr7nu0c4/cz/ztjrl/d1XV0rcOibVnNybF2guMvCLWHvpg7jN94Xa554Sf58/dt/30xWux9sQJuXU/v15q0Vi7qqrdjO6xdtu2P8faE77PDXzN1z9379R3pRVi7dde+DjWXmTBuWPt1pbcup8uA3PjjFVV88+TG2P99pPHYu3WbrnP9TEf59Z6TWmX+z5Zat7cespx330da/cekBt3WqRv7rvsq49yn6tVVT0Ht421x3w2Pdb+4OHcmoBNttsu1n7uxSdj7QX6LRdrL7XM8rH2mI9z69S7dsmNM1ZVzcx9jdes4Lx8S0vuO6XzYovF2u1bct8n7Sbn1i13aJN7RmidmZs/6j4ru7av64J9Y+0OXXJrvdo0cutYZ7dOi7Vnjc+tafzhq9y6n+evzc0lTPsp95k+oF32+ahzp9xcRqfg3FXHth1j7ek/zxXpTpk9ozb77OqaOHFizTXXf+0afnnn/J2tTqju7Zv/sxv+q9y97n2v3h9rr7XL2rF2xzf2j7Wrqna7dGys/cQJuXUcb1z1eaw96I2FY+0p49aNtfu9+UmsvXX/3H3X6D/nxsRnPTBvrF1V1frIlbH2l/1zn+vfvrRbrN23Nbe+f+y2b8baL9yam+dcddN1Yu2X73o01l5tkdz8S1VVt+93jrUnds2Ni8/5/UOx9tdDj4i1/zDlH7H2I9NejbUv7L5GrN35udx42er75tYd77py7r6tqurVy26Nta965MRYe6kuT8XaXRbP/Y0fNmfXWHuxO3Lr4+Yc9EGsveaFt8faDy1/SqxdVbXOw3+ItV848tNYe9Nud8Xai86Vex/10YcfjLXn3iu3bmeubXL3L4/du0Ws/eIt/4y1q6o6rXtUrH3zYn+PtXd8Kve++wEb/j7Wfn5s7nN1ynMTYu2Bc68faw9acXisPe+cwbF2VdXFLWvG2kd9/1Gs/fKsr2LtqWevGGv3eiE3X7jLTbm1v09s9NdYe+G2ufcDn1omt/9bVdVSv8vNEc89OLcX2ovfHBZr3/90bsyt0/u59beLLZVbBzrXjH/F2vevkvtMP+3SP8baVVVj58uNsX46Ivd9duiyubUYV748MNZe8bbcOvNuz18Wa7/42vax9pTlcmtv9/1tbi/VqqpXu+beH5ocfEewd/u3Y+0nfjwm1l751dzZA/2mrhBrD9pmvVj79Dcuj7XnOjZ33sLq/8rtSV5VtcaQ3HsNo/6V26Np/L0Xxtr3r59bc/TT3dfH2lttfUCs3Xlybq34ex/nngvX3yl3vkdV1cjbX4+1tx6cmz+aOXZ4rP1m7/lj7X7f5d5H/fSPx8XaPxycG1tefMebY+3JP94Za1dVLfNY7rt0zPW59+0HfZb7G/95WO4e4ruW3O/blD5Xx9o/npmbq5z71dyzWWPzfWLtqqpBSy4Ta9/yzbGx9t4L7Bdr3/vE45HutNlz6tDh3/xb75w//4ebqlvHLv9NV/gf63d07v2hbR7IrREbfM22sfYSd5wca1dVzdojd1bnDncdHmsf+3huT625b9kk1v5yg9Ni7TUOy83/HDIu9y7J4Xflvv+rqg5ZJfcu7tQOuXuAH+bPncc758XcPMhaP+XmA65aOLfHwbb3bx5rN1rejbW/3333WLuqao9bcns77HVfbt3Q0HPXirUXWOCHWLvv07n75VVXyO3RdPobufW3HR74U6xdVbXhDrkxs0fvyn2Xdjoz997UmT3GxdpXdDkr1r7t1htj7RfeyK1laDsuNx7f8Y+5d0mqql7cJ/f50tpupVj7dw/MHWvvdctlsfawJZeMtVf55KVYe8sLcvNej/TbJdZe8ujLYu2qqh5DHoi11/5t7rn0nlm5sYCtqvlzGL8Y2/flWPudzYfF2h8cmFvn3ve0kbF2VdV+8+bmMp7qcFKs/eG5uTHW2iE39vP5d6fH2vcf+7dY+5Arc+vjXtp541j7hTn9Yu2qql7XZPaxr6q66u3cPPHLp+bmKz9aMHf/8vIJD8faWy2Q+zsbsPycWHvnnbeKtauqLj0ld9/43qHPxdovn5MbA7nrvkNi7RVu/02sfed1B8baq+60Qaz96hN3xNrbnpHdR/bC/XPr7G++JTeX8dWhubU/fx+ZO0fw+Ynfx9ov75mbP2o77eNY++rvP4y1q6qeOzR33sS6p1wca/95n9zZBzs/nDszc7E7doy1R/4td47PKwNzzwlbDD0n1h63QG4dSFXVknPlzvK75Kvc8/iYzzfMtdfKre/reWNuD/6zt1w21n5hndx7W08teHesXVX1z3OGxNoL/Ca312O/n3J/Z4MH5L5TJr99RqzdOOv5WHvop5n39Kqqbj07N9b3xiq5vWOqqk5sza3vO6p7bmz72t/mvlNmPXp8rL3WYbnPtklzvRBr934/d1bXeid/GWtXVa3ZK3c23LQtc2t4118rt3/vSTs0fz5h+tQpdeoBW/xb75y/ddBu1b1j88/DebfvDk1v/uKDZ3Jns954aG5Pzp975c5qqKoasnzunK8+p+bO4Rm6Rm4P2IG75c5mvf6u3Ltqmzdye1q075ibU293U24v941mjI+1q6pmD8i9W7DLqcG9pXrl9hl4YOvc/Euv26+ItT9+K7cm8axrc3vYP7NR7ryEkx7MntV526O5dwRP6JPbw+2Lp26LtQcseW+svfuIrWPtAc99EWtf0egea69+cu4dmnGN3Hssi313XaxdVfX0aXvH2tuvljvj68KWZ2Pt2/rl5n62WDn3PPz4kVNi7f3O6Bpr/2PR3B4mq22eeyezqmq++3JnPj05f24f+42HHBxrH9xpeKz9Q9/7Y+0Vvsit03roH7n1G+ddmRtbXmfo+7F2VdXtp/861u7wz9y634uuyY1D9OuXG2v86fvzYu07T7wn1r73usti7WH3bBNr/7Bfdu6q29K5/VsG/K5PrH3oqBti7XfWye0NfvfDuefCwRNya283HnZBrP3uvR/F2k8fmX0+evDI3HfKYZ3mibVvXHBErP36B8/F2iet/0ys3efuvWLt2Vvnzkdd+dDcfjkLnJc7T66qquMuuXm7/Y+YFWsv+33/WHviqDNj7S7vHhRrH94zt/bmL7fn3n1e6KeJsfaKNTPWrqpauUvuTJcJT+V+16fd8Y9Y++o9b4m1z3+u+WuGfzH4vlVj7bMPXirW/vib3PPR/UcPjrXPW/P8WLuq6qjNcvu4Xnl9bpxz9F9za46m/SH3fdLxhP6xdvcvcmshTjjw0Fj7mxVz57u/N3/2jI3F18ntz33BJ7l5+XWuax9rz7wyt6ZxmX2DZ4s8mjt3ep5dcvt4PLZA7t3APr1z71xXVV31UW7f4IHf/hxr/+WGdWLtSZXbI2nkr3OfqydMOjXWvmPT3BjnmJNHx9p9P/8x1q6q6jIst6/nxj2fiLVHb5nbs+bEvm9HurNnTK13L9v733rn/MMj94m8c/7pGV80vfmLvX/Ire+//e7cWsz7D8u9k1lVdf5lubHhs7/M7Wm+8em59ZhH7ppb83xdcB/Uyz/K7fty65zcO+cnXZg7Y33wr3Nnc1RVLfrHB2PtXpd/EWuvdEJubrvn0rnzMvffK7fHwcsv5trLXJ47X+zJDQbF2jts+HqsXVX1fofcHrBtJufOiphyRG6/4QOfyM3pH96a2+N58tq5PbnWm5xbZ97z5ty+VA+celmsffBRuc/VqqoHfjwh1v7tfblzKm4f3xJrb/WX5WPtN3Z+JNY+fulRsfZWA3PrKP7ZNreHyfwfvBZrV1Vtc1bu2WzFe3J7TJ70dG5++bOR28faN5z/dKw98va2sfYTm+4aa+/ZKffe1Il/zJ4L23mxfWPt1XbN3bsteH9ufvnTtXJ7HX75z9yZbpe1vSbW7vNObt+9D+fNrbd+cJHOsXZV1f535/7GB5ya27N47wVz5wbs8tinsfYTb+fGX37dOTdP+qv2l8XaMw7K7RvzxcTcnhJVVX8fv26svWG33B5wX/0jt/fdmy25ce1ZA6fG2mdvdVqsve3Nr8TaZ22ZW/9yxYyfYu2qqs4n5NZ7/7hF7r2p/V/LPaPs/pvcnqLX/z63R9Pqm+TOk7t8jdze/7s/nTtvaYHweTK3bb9urP3167lxr8OXvCrWHtsztybg98Fxp58m5fYpmtYt99n2wge5f/eD7XLzN/v9PrdXc1XVklfuFWs/fELuXn2reY+Jtft9dWCs3XJ27l21l1/Lrd8duWnuvO2fL3401h5wwyWxdlXV8RefG2tf+6fcPklnvJbbq/nD9rl/95Brh8faj07P/Z3t22/RWHvQs7n3vt9d/OxYu6rqoI+vjbUX7ZFbX3fA47kzhA597eFYe1jf3J5/vU54Mda+6orcO35XB9eY7blO7j3/qqqH3r081j5l0tBYe6PDL421B/06M0c8fXJrnbN+y3/6znmjidcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBYI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE+79AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/7N9v8zAmtqlW9O7X7Tu1PTmLzo/c1ms3eG3rbH2UsedHWtXVb2/7vex9pwtxsXaLz3bEmtPmL5drP3XSZ/G2u8ueWusPer9DWPtQwbNG2tXVa1+8F6x9nfbrBprd9l7q1j75e9PirUfPObyWPu2+b+OtbfacI1Ye/omW8baO33+aKxdVbXjKZfG2j+/fkqsvdp7r8faxz6au2+bdPLjsfag1/aOtacvPH+sve4/ro+1q6qu/PHEWPuhH56JtW85pRFr93vw3lj7zgcOi7WXHfpKrP3yEv+ItXe761+x9vtbLBhrV1X985j+sfaLjUVi7asGbBNrn7DsUbH2U2teE2uPah0Ya19wzvKx9mkfd4q1h86bG2+rqlrui8ti7Yu/6hhrr9EyLdb+zY0rxNpT5rst1n5m6R9i7T8eOSLWXvObY2Ptqqq5HpwZaw++P/d8dsnRI2PtSWsPirXX3O6IWLvx2pGx9rfz7hFrH7b+4bH2jc+/FGtXVW37Ve5vfGzPJ2Ptyy9dKda+a/HusfZXLbk5nPn2WT3WXmRUbg7nH289EWtXVV353Kmx9m5r58ae5l+/R6zddv/cXEavI3eNtbc5KDdvN+TGCbH2oIdz84WjPp4Ra1dVXXD+4rH2QR9+HGt3OmlIrH3b9Dti7b0eXjrW7rxK11j7jt1+jrW7nrharF1V9dbWf421L9/j/Fj7w4kXxNqrvPJdrP3zzTfF2k+t/06svfm3ubmMkxdeItZu+0q/WLuq6tWt7om1b7vkj7H2g5teG2sv8+x6sfbHq86JtQ/v/GOsXfM+EEtPP+C1WLuqarObj461r/3ukFh7x59za5fbb9M/1t645aFYe8WLj4m1B7R9K9aefPoBsfZfp50Ra1dVTe/xXKy94YWTYu3Tlt4l1h593mWx9vUn5Ma1D3/2olh74AKfxdqz11ku1q6qenTlX8Xa+y1/f6x93RJjYu3HFnmj6c2WKdOb3gQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+d2j3X/mPX5r6ZnVq2/6/61r+Q7Onr9H05i86dJsTa3deYPFY+4cJX8faVVXT3+kQay/2q/lj7XYdm//39YvefbvG2lO++DnWnt6mc6zduXObWLvadI+lW2ZOjLWrqmZPnxFr/zx1TKzddmrPWLvmbhtLj3sv9/kyqHePWPu5x5+OtXffddNYe1T3N2LtqqqRr4+LtX+Y9UOsPeO/9kjx/7Y97d1Ye+/Ncr/rjW6NWLvPvINi7ZUGd4u1X3/3p1i7R8/cfVtVVa9Oi8ba3875LtaePv3HWLtz99w9RMus5L1y7jlh/Ftvxdpt23eMtavNrFy7qtpUa6y99CqDY+05P86MtYePGBlrfzf2+1h73fXWjbV79OwUa1/60qux9k6brBprV1Ut9VFLrN13eq9Ye3pr7v6lY7vceP646ZNi7S6N3N94m8boWDs3a1bVqdEvWK/6uSU3/jK1JTf+0r39XLF2tzm5e4g27ReKtafNyN2rd+02O9aePHlKrN1pzdz4R1XVpq+9HWsf3Lt/rL1vY51Ye7lVcmONo4fdE2svO2CrWHta19zP/KPhf4+1x07IfY9WVc2ZmJs7a989twZl4s+5eZTJn+fGvFq7554L527kfuYfvfN6rN2mzfRYe+6RfWPtqqox/XLjPxO+zj0T/zgz115yzeVi7SV6rBVrv/rNi7H28kvk5hJm1/hY+7sfc+OrU3vlxvqqqmZPzo33de+Sex7v0if3N/7JF7nf9cWX2zDWnt4xN9b30SejYu2eHabF2rM6zBdrV1X9MHp4rP3Nt7k54oUXXTHW/uK5d2LtxfrME2tP+ia3hnVA/wGxdqc+y8baHdpl195Ux7lj6Vmzc2P6jcqNQ7S2za3tmx0cf/nuzRGx9vTxufGXHq3B9wu7ZdcOt7RMjrW7dukSa8+ZlXvPr0unzP3ynNn//jjA8d0mVvsOzV8Lu/CVzza9+YullukTay/+bG4e4o09H4q1q6rOPH/zWPvy1hdi7Zt65+Yb575/eKzdu/fQWHvllT6PtX+cmbvvGr33BrH25D++FGtXVf1t9maxdseJufem1pnvhlj7mX47xdpdhu0Ra/dsf2Csff+pufmfG4dcGms/NvLhWLuqasSzw2LtWafkxgrfuHS1WHvpr3Pzy0f8Prc+7tfLrhBr73Fxbo61/5DcHOvwJxeItXu3za29rap6b5HLY+02a+fW3150+xKx9sLbnRZrdx32XKy90OilYu06a5lYut+auX3QXh+UG/+oqpowT26fpAED1421t306t8fk8B1y77EMWju3HnLJzkNi7W8eyc2BHHpP7m98jVVy36NVVQt3uzfWPnLU9rH2K4fl1uZd/NCdsfb0yo2/HLTe8bH223Pl1iTO/9D1sfajB/wj1q6qmv3qdrH2Pf1y32c/LJ/bS3X2pNx+g0/duXCs/aeWeWPtETsOjLVnnv9erD3o0ZVj7aqq/V7IzaMsNG2lWPvk4DuCA4JrpV6a/kysPW2B3P3q1GG5MfXxV+bOXHitTW7erKqqd9fc3Hz7XXPv+p8w+sZYu9PWd8TaQz9bOtY+setusfbwIU/G2kPaLhlrf7h19r2Gd3bPvZ/YOuqTWHvB+XLvVFzROfduwZsb5NZbP/rBdbH2mK65e4hf9f821l53x9z+bwuvlzuzqarqrtG5vaLXuWu/WPuq1XN72O73yGexdpepuXdCf5qTe+/76davYu1Ndvsp1l7kp09j7aqqfx2Yexfm8rufj7Xv2Sy3j+spj+fmcObplFsHMqJl91h7x0Ny54wOvjk3Vzls51ti7aqqN5bdM9Y+/vdvxtqXvJV7z6/X20fl2gvk9hFp89LHsfZ7C+eej775dqNYu9vnuTVHVVXjP8+d47NO9wVj7fa35M68fH6lzHkPLdGTBwAAAAAAAAAAAAAAAAAAAPjfbuonl1ajXfPPYV5z3tw5OBs8mttn6DdL3hZrX/BUbh+Qqqp+p7wRa9+wf+6M0mVuyu0rvmnH9WPtM0ecGWv/6+TcWXprdc6d+dR36dw+JANH7hprV1X9uTV3Fs7WZ+f2FV/wlqNj7ZbnL461+6yzaqy9fWvubJDtfpPb9/eA8QfH2p1fWCXWrqqae9/usXanxXrF2ptuMiHWnvPcObH29nNtGGtvvvshsXbr0WfF2hfXZbH26VufEWv/cb/cPolVVZvek9sHdoX1c2cIfjDso1j7tFm5Z7NvPl8h1r7gxuC/+8jLY+3XpuW+T1Y+aqtYu6pqm/23ibVPeuWgWPviva+Ntec9M3dGxk675s51u3GB3Pf49K1y59ofdV1u/GW5dzaJtauqVtl4l1j7mN7LxtqXHnlsrP3Uq7l/d4/vD421N7n/D7H2Vt/NjrXHH587t/GYvx8Ta1dVHXHN2rH2IX3+HGu/9ZfcvdNjU3LnVBza56lYu8/A3NmJH20S/Fz9eo9Y+8GVdoy1q6ouWDx3/vPgq34ba19779BY+7er586pOPOx3Pf4ukcOjrV/vVfuTLfqljsT5ZMtNou1q6qOPDt3fmKbQ3P3jWu0z51nd8A8LbH26GVyc8Q/LB9L17bBNWb/+HzlWPv8Ebmx5aqqR9vNF2vf9/nVsfaN+/wp1l734Nx5drd0zz0fvXJD7nf9zYG9Y+0r/pBbt3zfg7nx3dMWyz0XVlVdN88lsfbwBXPju2sfNjnWnrnda7H22RsuFmuf+Xruu6zlzty/+43Nc2deTxh8c6xdVTXPbQ/G2gv1z82Vzj//PbH2HSsdF2vv8+k8sfah7+TOpB2xVm4NyrPDto61nzs1985XVdXO4z6NtVcJztstu2XHWPuEXfaKtQ86LLem8W9Lnx1r9/m0Z6w9doXc98nAI3LzGFVVu5yT+xvfcUZu/mi/i4fE2qOXuDHSbW399z9Tb3rk0OrYtvnznefffkTTm78YNunKWPuKd16OtVe+OPcdXFU131mzYu27782tGbpps1/H2lOPeCHW3me/3HtTd26S29Ni+Q1zn21X/CX3N7Zb+9x4WVXVgFVy8z9H75Nbq7X0BY/F2of3yH22PXZi8/fK+cVpTy0Qa2+wau7Z6p4LcmM3vUf+GGtXVb1w3AWx9oiXv4m1P3pg4Vj72r/lvlMGXnVerH3Wn3LzIH1OXDTWXvjiNrH2ub1yYwgr9Pk81q6qunz73PqVTTbMrSmY58nc/+efbPZkrL3hqHGx9rHn3BVr33HlxrH2449sE2t/s+M1sXZV1eqz/xJrn3Nf7t3rbs/l3hcb92T/WPvMltxeQW9elFtHscS868Xa5yzaJdYe/2Nu37uqqo3XWTPW7nV6bp/HqWNy9+r7TT851j6k25ux9qEvrRZrLzlvbl+Jj+/KvVNxwZO5+4eqql073h5r3/LyF7H2Rdvn9pV4uHNu/5YfP86N9Z10Yu69hu2v2DbW3qlfbn56QqfcOtCqqhPn/12sPWWJf8bap47vFGuvsEBuX/L2R4+OtTt0z71zfl3vTWPtiZ/m1v28Pjm3V3NV1dxPPh9rn/zMwFj78vv2irX37b95rP3N0H1i7X2G7h5r95srN194xqYPx9ordcv9zKuq2tyZG+dse1Ju3fFNI3PvTR06Ovee/4bb5PZSneet3D4iO03fINZufSm3L9Yyw3P3DxOuGRBrV1WN7Jt7Trhw39w+AxdskRvv27v9B7H29peNiLXfunyhWPubvXPjAO8/lHsv88pRK8baVVX7PX16rD3zsNzedx8//Wqsff29uX0WD7l7Rqy9ZtvceP6tZ+SeEW4/7KtY+6irc2sCqqpeGLllLn5cbn+oCZ/fEGvfdGpuH5G//v2kWPucHfaOtffunrt3mjX3X2PtltbcmbZVVU8+nXs+Omxy7jlhu7d2iLWnTcjcO02ZMrnOqbX+0/+u0YRrAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgf4hG+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiedukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP5nW2m1SdW9++ymd2d8+l7Tm7/4621Xx9pjbjsg1h7Rf2isXVW1zZwnY+3HX5wn1j6w25ux9rbt1om1B912bKy9z9TvY+09t3ow1u6443WxdlXVuDcuj7UP7LJ4rL3U1UvH2qsc+HysPeSqj2PtZ08/KtbeZP2vYu0h7e6MtRvn575Pqqp+M3hqrL3z2FNj7bNXeTzWvmbNwbH2JtecE2t/d9XKsfauO46OtevbA3Ptqrp36lKx9q++WyjWHnP4PbH2DvtOj7UXnPldrD3guAtj7Q2ffiHWPvesTWLtIRvtFWtXVe24c+53ffurP4y1Dx9xcqz95IG5e4iNFjs71t7njY6xdu/3fxdrL/q3a2LtYavm7h+qqtZ7av9Ye4mzr4+1pw3ePdYev/OoWHu1Hn+Kta+eukes/ehfc8/DO4z6Otauqrp7g4mx9o3zLB9rd7vihFh7+eXax9of7/VUrN1y77ax9qZvLxtrP35uI9buccsSsXZV1eJnXRVrP/li7ud+yN93jbW3v39ArN3t8h1j7f3/vnesPfiug2Pt2aPOiLWrqhabsXGs3WbZ3Of6GZflxiEueXpIrH3F27m5jC6XfBRrf7n7ebH2hItz32UDlnwm1q6q+vyhHrH2h9+sF2uPP27TWPu2a2+ItVdcOvc8flu/22PtZbf8bay969t/ibWrqvqsl1v7M3lMbp3b2J4rxdoD/pBb+/Piibn7l90OHhFr33ZKbv3Ls4OOzLUn5Mbbqqq6rvVErN3jytti7cOn5j7Xe589Ltaes8pBsfYxo1ti7X5758ZYX23pHGtXVa38QG6+8sTrb4q1b3hms1h7/6Ufi7X3aL9TrD3hyfdj7eEb5eYMR92c+y674rvcM0JV1ejth8fa932RG4e4+8tPY+15F8o9m63xbm4cosPEe2PtjR7Pvdv5zgcTYu2qqtOWz70HdNOLa8Xa8213fKx9zKVbNr05eebk+nPl/r4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/7na/Vf+4wH77FKdO3f577qW/9CySyze9OYvZneaEWuP/ennWLvDzJmxdlXV7Ja2sXbX6hVrNzrMirXn69491p7YvSXW7jR7YqzdsdMCsXa3trm/8bm7NmLtqqox40fH2l+8+16sPU/HhWLtcaM/iLUH9lw+1v5i0mex9r/eeCHWfvP9t2PtnXbYMNauqlpwoQVj7dbRU2LtNm2nxdpzdV061q42Y2LpCT+MirU/HTUp1h477ttYe6+djo61J/6Q+12rqpprvrli7WmffxVrj/1ubKzdrk0sXVW5e/UuwWfSGTNyz4XVkht3ahP9XatabtkVYu2uHXvE2t+0fh5rT5s1J9ZeqH/fWPuFZ56LtTt2+C8Nv/8/tfWmQ2Lt9yZOjbWrqj6Z98tYe71e88ba84+bL9aee2buHqLlp9wz6ZzWXLtDm9x32Zw5uTGICTNzz6RVVfO0bx9rN4LtuTo2f274F9Nn5D7balbHWLpTx9zf2awZ3WLtdu1z907zrpcb262qum6RrrH24LlzP/cvr8g9E3/RZlys3XPu4N/Z19/F2p989VGs3b1b7ndt3r65Ma+qqnY9cnPE0ydNjrXHz5oea7ftnLtX79g29302vUdunde0L56Ntfstu2qs/fGI3DhjVdVKLbl5uy+n5r7H+/ZZKtZu/SF3z/ju2Cdj7Xk79om1p87O3UN0ntMh1m50bo21x739WqxdVTW1kRsLWHOT9WPtBQfm5nDGfJ37fJnx5dexdtdZubXDffvn2lO75H7XZn/9caxdVTV1Wu47Zf5F14q1x32bW/PUqW3uuXDYm+/E2mussESs3X2+3DtfNSt37zS1JfceTFVVx9bc91n3brlxiDaN3DjEzMm5Ma+p346Ptcd/mXsfpHO3hWPtdnNmx9pzZuXuH6qqugXHOVtbO8faLe1za57ats3M2bXO+vfHAbYfvEF16dT8dQWr9H286c1fDJ//iFi75eFFY+3fdn8j1q6qOvfx3LjVTbPOi7UHbJT7uX82/M+x9k+Dc9/DPZbMjZ9sd/vasfapq/4l1t5ovd1j7aqqoTcNi7UvuuDmWPvtlXeJtedf6fxYu9+bB8Xak7/NrXG/8c1rYu2j37k31r74vOzYzeSV14m1F3049+71Q8s9GGv3Gn9crD1yvtzn6uHHbB9rr7p4bp35WV/k/sYX6ZV777r1gwmxdlVVr8Vy+5isflPuOWFsn9zY8DJv/jXWnqf/9bH2rCVza4YG9P0+1h42/xqx9lN9cmuOq6oOPGFwrH3ZK7k9LW78LPduQb+hD8XaPd7ZN9b+ue1hsXaPuXJ7is7c5u5Y++ojcp+rVVVnv5ub65wxIvdd2v7T3Lss+4/NzXW+9VVuPcGs9rnPl2X3yu2R9Pmip8fanz7RM9auqhry9CWx9lMH3xlrL3Vfbh5lwIitYu3Ggbm13j1+92qsvdkPj8Ta7xy5aaw99uo9Yu2qqmMm58a9dvxom1h7jWvOjLWnrbBNrD178Tdj7Z3fzr33/fLk3N4x6w55N9aetVruXdiqqn+ce2OsfWfbPWPt46f/FGsPuD93zsWBE4+MtZ9pzb1/3POb3NxVyxu5vTw+65lbe1tV9duLz4i1n9k3Nxbwyeu59rEH5N4teGiuf8baEx/NvSe38W9y74v9vEzu7KI3js/Nkz7bmhvbraqadnpubd+sc66LtY/9euVY+92j/xhrv3Vhbq50tRGdYu3lg3PELW/mxrXPGpPdkH2ZLXN7936Vu1WvK4dtF2s/2+VfsfZHG+e+x/+05Aax9tpPbR5r37dxbm+o+V7KjQNUVXXYZnisPaZ/bj/TgR89GmuP/NWWsfYKV8fSNWeD4Jm61+XOAXx+Sm5s+b7FV4+1q6p+969+wXhuXeHo/gNi7QMmZ9aSTpk5ve4efnykDQAAAAAAAAAAAAAAAAAAwP9+8++4WHXv3Px9nl48772mN3/R9p7LYu3HLzot1j7u9bti7aqqh4a8Fmtv/flVsfa0I3PtixbJ7R93fcfTY+1OO50caw9YNNdece8TY+1VHsidsV5VNd+hp8baj/Y8NNaes9b8sfa5fz8l1p6xyA6x9ssvLBJrP/23l2Pt1S/8U6y93D25faWqqoY9MTDWPvHz3L3bcd/3iLUf2+eIWLvR/pZY+58X/xRrH7lUbh/5EVMfi7V/rNyZSxfteUOsXVU1474HY+0tn8ntYz9qy41j7f6nzBNr33xRbk/QsyfnNmJ95Ozcv/vNZXNnJx5xwSuxdlXVnc9MiLXPW/zsWPuSzXNnNy7/We6M0lcWvTfWPnfZ3DjAJ4d9FWvfvv2HsfYVC+fORKmquueo5WLty47PfbYteELuvKk7Oh8da68y9MhY+8eL+8TaNy57a6x9/gE7x9p7rPZ0rF1V9a8Hfx9rd/voglj7L5+PirV3e+zcWHvohg/E2iMX+CLWvmRI7myQy9fvGWvPt/NmsXZV1bt73BFrL/rwfbH28qfPiLX3+CA3lzH9zMVj7bWPz90z7n1E7me+yXO3xtr7jcuuvblp/y1i7TODZ7w/9u3DsfZSa7wUay++6t9i7Q1XnRhr9zwkd77YzBdyZ9KuvVZ2/qjL9E9j7b5b5f4/P27EmrH2BRfmzgI+c4X5Yu1td8+N7z6/dEusPWipvrH2V3vk/t0bPJobb6uqWqLLMbH2zivuFGv/PD53/zLzkNwzyj+P2irWbmxyTaz9h59y5xCPXPk3sXa3876LtauqWhZaJda+5pTcGre3+x8Xa9/wp9z/51f+IfeZ/tJlHWPt9SZvGGtftEnufvX3Fw6Ntauqvhj/Zaz9+12a/27hL+Y59uZY+8MLc+sRdhiVu4dYa6u9Y+2+f86tI+26We5Z/LrF2sfaVVVbP5R7/2j6xbmxxm8vWCzWXn7RzDsZs2a3rReH/3v/G+/WSpX4je069xWB6v9vyu9y4/EduuU+m4b/NvdeQVXVd9vkxhH++G3uHcHeJ+bWmj95fu57eP9JB8Xas3b4V6w94dlFY+1hH+f+xpb79QuxdlXVNXfl1g0dMSW3l8jpq+XWmre8k1tL8e6bH8fap9x5Rqy9xNjdY+2bHxkXa683Lfd+YFXVdzfvH2svsvB+sXaXUXvE2rXfQ7H01M65+5cneua+xw+9/PxYe2iX3DznPHseG2svN7FtrF1VNejE3DPx4wfk1pDMc9vkWHvKrffE2mP2zd0rX3987l750O1za/POHL16rr3a47F2VdXJb+X2YXv3zrVj7fMefifW7rfnbbH2uUsNirXX/Cr3rtoWD3eJtc9ZKfeM0GG77Njy9vvk1kRudWTu+6z7zrNi7XEH5Z5RHn3n0lh7xtq5/TQm7rdSrH3cHkvG2kc/lbt3qqq65IHcOtRFD8vt1Tyhx1Ox9s09V4i1V2x5PtY+/9LDYu2Zx+wZay+5Te7dgp1qcKxdVXXi4bl9a17c+cJY+4jdu8baOwy9KNb+edXc+tuxe+f2kJ3dbYVYe+KXM2Pt8as8GWtXVS2zXW7t7+Kr5e7dPvwo917DljudF2svNjm3FmPDFXLzhStfmNvD5IxVfhdrr9EtNzddVdX3+tx+7D0Pz927bfJxbmz5lNdvjLVfvr8Ray90fO5ZfKdnc+eq7PVMbg5lsbd7x9rf3p17F7aq6qHzFoq1T/pdbs+/tab+KtZeYc3c50ub3/SKtW869ftYe8mvc/ux33/jSbH2srs9EWtXVb2//9ux9hbv59aqL/nr3FzpM9fkvscPPu6bWHu9t3LPR29NzO2ZM6PHJbH224OujLWrqj5abbtY+/3+Y2LtW1pyZ5uce1Nubd+wU3JnJ7246o+x9vN75doTdhgea2/8Y/a9qy3a5vZ2mP1Y7nv8jIVy7x9tMeTaSHfapP+7dVa5pzcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqukb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAACA/4+9+4y6qrr3eP9n03sRRRArImJX7KIxlkQTa+zlaKyJXWOvSTS2qEkssWKvMTbsvSuKoogVNYpYUCz0Dg/3lS/PuDf3nLN/54zx+bx2+J3A8+y91lxzzQkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPm/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP/dhr/eszp26tL07h7tP25680dDTx0Ta6+4avdY+4DDFsbaVVXj9t0q1r5tvamx9tQDbo61L/7yg1j7rWfPjLW3PfjBWHvSVf1j7ccu2yzWrqoa3e2JWPvY0+6Ktd++baVYu+1B82LtiYePjLW7nnBErH31Um/E2tsOOT7WfvrkcbF2VdUjvSfF2hOvfijWPvPbIbH2i/dOjLWH7PxDrN37lQdi7WtXmx9rjzjqF7F2VdWha+auGy9+asVY+86hq8ba952wVKw9dOSesfbqrb6KtVfc4MZYe9BuZ8TaFy3dO9auqrrt1Jdi7Q7j74y1d7zxqlj75rdz98SjxufmX6bd8Xis/eWel8XaZz5wTax9Qfc/x9pVVfuPyv3ZL7vg1Fj73CN/E2t3XHv5WLvPNrn2z3vkfsevufjIWPuSRUbF2lVVl5+yXqz95Gl/jbXXXnJmrP3eDvvF2tve+26sPbz9O7H2Hi8cHWu/0GanWLv3zgfF2lVVx2/b/GfyP9pl+Mmx9sUv5eYC/vLLE2PtL6+5KNbe5+Bfx9rbn5ebf1l63o6xdlXVZgNvj7XbXXtrrH3jI3vH2hM3GB9r777kIrH2Gue3jbWfWfT6WHunlU6Itbsss0msXVU15ZbvY+399nw/1h6ybe6zbeSYVrH2u281Yu2WW3LXq6PWyc33PbtU7jltVdVNH+eun1rvs2Gs3WdY7h7li5dz32entHk91p6y4iGx9jnv/z3W/vKjybH2O4d/HWtXVT37eNdY+7DgWvkl5uaeEX/xp21j7WeG5O7Npr11f6zda8q/Yu0dL/1HrF1Vtddi68faVx+bu2ZdZ7Hc+uHTGlNi7R8W5j5fprU6INbeYPVlY+2D9s/N7675Tm5dYVXV+bO65dp7bx9rr7Lk5rH2Lbfm3gO6c9oOsXbnFYfF2t2eOSrWvnWJ3Dr5qqqpty0aa1/wTO6a9bGJn8fare87u/nNhXOb3gQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+b2jz7/zHbVtNqnatZv9PjeU/NbdT56Y3f7R4zwWxdrvOvXLt1rm/86qqxsJ5sXbb1jNj7bkLO8XacxqtY+0lll861l6yR/tYu3O73M/53Lm5n/OJU+fG2lVV7dr3jbV7LbJsrP3dN5/F2l3aLRdrz25pibW/euObWHubHbaItd99771Y+7nn3o+1q6q22XSZWHvqrK9j7YULe8Ta3eaPiLUnzmvE2vNbFsbaG6++Xqw96o3nYu32HT+Ptbv3+SHWrqoa0LJ8rP3ki6Nj7UbNj7UreG9WC+bE0rPn5u7N2rbPtVu3bxtrd+nVIdauqurQKzfvNen7qbH21Cm5+/EVB+fmX1554dVYu9rlfs86BX/OP/xmcqw9bU7u+6Sqqv2c3PXyo89eF2sP3XDFWHunZdaNtZf7pmusPe/r3PdJLcy12+Ruh6tLm9ycelXVvJbgM8PgbcJ3k7+PtTt2zX2mN9rmrtsWVu9Yu9HIPcNZ0H5arN1judwz2qqqdsFr1jFvT4m1P5mY+z6b0yWWrs5dF4m1R425K9ZevMMqsfb8Bbl/8C6zc3PLVVWtOuTuz/ottWWsPa/tS7H251Mnx9rrLtY/1m5TrWLt2ZNWj7Xfff3dWLt7p9zfeVXVtD6550eLtuSu1Vv3WiHW/uiD3LPSNTfYLNae13pGrL1wTu45bfdFloq1Z0z5MNZuNSs3B1FVtcygNWPt8W/lvlMmfDwh1m60y61VH/FS7vNlrVWb/y7Gj/oGJ3i7T83Nv3w6q1usXVXVpdu/9crOf6s3RtwXa8+b2THWbtNlYqy91sq575MO7XLzTrMrN7fcrlXud2zStO9i7aqq9sHnlW2X6x5rt26Vuyee8lnu/YBvRn0Ra3eckbuGaDUvt5ZzYeWuldu2XTnWrqpaMDd3zdquQ25dY5vWufePZs/LfJfOWfBfX4fx6rKNatep+Ysa9j54WNObP+r9Vu4e47GLV4q1j2uTfWdr5dkfxNonDro61v5qau57+OHlc9+FLR+dHGuvsfHPYu1n+z8Ua/d5Jrc27vjpD8faVVVHNzaItTddd61Yu8f9uXvKbQfn7imvmJBb3/98j9y6nZ3OPyLWHnP6kbH27586Idauquqx/wGx9ohfXhVrdxua21fiyAOuj7V/fd6Vsfb+45+JtU9c/MtYu9Hmxlh7+u65OasZi+Y+V6uqer/+m1j7q+9Hx9oHDfpzrD17xtBY+5N/5Z7xbvJWbv+UV/cYEGvPvGu1WPtff9so1q6q6n5P7r500u9y66XunzMr1t5j7Hmx9qejTom1x202JNbu/+KnsfamP8m9nDjoiudj7aqqY287MdYecUxuX6xHvsp9vrx/WO6adfSQ3H3CvEHjY+0ury4ea/dYNZaunq/l2lVVd+2eex92sym5Z4Z9tlg01n7t2txeHvPeGhVrX99+yVh7g5/m3j/+6tXcvNOZXXeNtauqHv/msFh746efjLXbb3Z5rP3VO7n954YPfDzWHtWSWwcyb+KOsfZmn+bewx34Se5+uKpqxX656+Vjv9g31n7jldw755f/cUysvcaSt8fag1/IvYc7pe/bsfZd334Ua3+x6BuxdlXV2F/vFGt/+K/cdeMaf8jdjz8xLHfd9ssBB8baO9yWuze75brcO+cHb5+7fvnioUGx9qUj7oy1q6rWXTm3t8PNJ42Otbdb66lYu/3vcp+r1/82915mvwP/GWvvtMxlsfajr+Tuh2cMCO6PXVXdfp97N/KGeevH2m9clrtHGToht3/LQb1z+yX/fP5XsfYyz90ca78y8OVY+65xufUIVVUb3X9+rL1Mh8Vi7Qm77x5rfz8qt79Co/3wWPvyi3PvALcbsl2sPetPF8baJ1+9RqxdVfVdh9y811q35N63f2z/3D74P2lk9rCdOjd7tggAAAAAAAAAAAAAAAAAAAD/t/380jerdevm77uzw8NPNL35o9kv5s68Pvq03NkgY876Ptauqlp0ydyeFE+/lTtj/dgDc2cg3z41d77Z0OH9Yu3tz9wy1t7yw2Gx9vqLj461X9366Fi7qur5PXJnde7XL7fH0jmH5fbQf33l3Hm8ly28Lda+8/L7Yu1dnu8Ra++127Wx9vDTbo21q6pqpxmx9JUDcmekPvVC71h77LG5z5fnlvhFrD3w0p6x9llv7BJr3zo4tyfnlz/NnVH60muvxNpVVWfljoOpm0bkDjE8bKn7Yu1RD+XOy9zm9bti7UtfejHWPv/1c2Ltc5bNnWV36Ta5+Y+qqrv6/jXWvvSo3Dk4vX6b2+/4rq1y14wvH9gSa3f9xTux9tvbdIq1l9noH7H29KOOirWrqh68I3fG+5xDTo2139l3XKx90kG5cyrW3n9grL3431aMtftdlpvrW+ZfsXRdMGnvXLyqnh2Qm3t66tA1Yu39+x4eay96Ve554Van94m1lzg0d4bg8afk5ryu7HVErL3GxNxZdlVVqwzPzavP+E3u3MiDOu0Raz83eHqs3X/gabH2MX96M9a+dMm2sfbtZ/861t5n4d9j7aqq37x3Sax9zYa5c6+PWyN3Xub4s46JtdeaPTvWnn3bhrH2S6vvE2vP77Uw1v7VEnvG2lVVHefkzjlfe4XrY+2FH8fSddoJPWLt8aP+GGvP2nZBrP3+itfF2r8YPSXW7jYqd15l6z9fHmtXVQ24+ZBY+8Wf5q4hbngid37h7CdzzyuXuiiWrmseeTDWXvO03HsRJ32bex/kd9fnzn6uquq1Vu7Z+MLbt461l7rg7Vj793vl1tc9sN0JsfZWn8yMtQ/o9W2svf2vcmfLX/vJmrF2VdXjh5wca//z4fNi7cevzN2cnbdtbv5l15VyayEu/dvfYu3FB14Zaz958fqx9h9W2TjWrqrqdEtu7unNj7rF2m/ffkOs/cPZZ0e6C6bOrVr0v/b/+GjXq6t1h+avk9tk1qtNb/7orA65d693+GtuHejA6T+Jtauqhm6Wm7sZNf2MWPvzRXJrKZZfYa9Y+7Krc+uO9xmxeax92IGnx9oX35p7L/Klfp/H2lVVV185MtYePz+3x8Fql+XeXVp7QG6+rt24ZWPt/Yfnnm2vstKNsfZ59/w81j7y5rGxdlXVhWc9FGvv2qVVrL39obnny19MyM3XbdNx3Vj7hHNyP+tHPXNNrD32b7n9mX77Ye6d0OWvXi7Wrqpa6bT9Y+09h42JtV+6er9Y+76bO8fad/T6Zaw9c4/cHOnGc3Lvu7drPzrWfvF3uTXuVVW737p7rD30+Sdj7Xb35dbtdHokd49yyo3Lx9qDZuaeNZ75fm6e8YiVNom1X9st9951VdWmr+T+3ntOGRJrr/6T3DrUM/rnfs+uPzG3j8ihbXP7oH0+7dxY+5WT58TaR56WXbczbuXcXONuW+XWY37xbe49mp13uCHWbpmTm+fccHzuHZqvp68ea3e6Nfez9sWFP421q6pePGxyrL3rPbk1Qzc8ndtvcK9dno+1b10ht6fF7zbtFWvPGp5bg7JjY4tYe7eRuT3Jq6ruHJWbh1jxvo6x9nZtctfq8ze+N9Y++IrcOpBjFn4Ya2+97E2xdtutcv/eu+yTO9+jqurIE+fF2uvt83isve21ufvCh9/MvT90xeePxNpdpubObXqxGrH21H/l5hnvG5rbR+SL03P7Y1dVdbhks1h74TG5/XOf+OruWHutN3N7ir7YY71Ye4VhufOqnn7knli7/z4jYu2fPZ6bb6uqmrtibu1N3xG59/TOHJ77WR8z4L5Y+/hZuf3nbl7+z7H2u8vn3oN5erfceqc7T7ss1q6qOnNs7r2Iv92Z219ht/dy9yi7/SK3l8fzp+XOGd3ngFmx9n3n7RBrHzAit2/vYre8H2tXVT23f27t8v375z5fVjsgd8bHxb0PinSnLfj/9ow2N0sCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDTNdIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0T5v0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/3T6Z1LHaz+7Y9O6sL5ZoevNHPR54MNY+ZdlvYu3z5/wh1q6qGrzapFj7jD0HxtrP/65TrP3McVvE2k8s3DrWvuLpd2Ltcyf9R6y9z0mfxtpVVbv3PCzWvm3SRbH2sn+YFmuvPeC1WPv8sdvF2pMPyX2Pn3vAVrH2EksvG2s//vPpsXZV1ZDffBJrf3D1nbH2+3vnPtt+3/fkWLvf2Dti7ZVe3TfWbr9a7nf87KeejbWrqja/9dxY++QlF421549YOdaecMHoWPvuX10ba+899btY+6FbpsTaRyyZ+x5d7O+nx9pVVdcv8kKsPezWl2LtFSedF2tPWuOJWHuP7+fF2guWPDHWHndD8+d1fzSt3SGx9sgLno61q6r6jXgx1l6030Gx9iL3HBpr3/dC7nN19lr9Y+32Z7wca2+02y2x9tmzcz/nVVXP7pq7P1v0kR1j7VX/46xY+/Zpc2PtEz5aPNZ+7Be575PHhvSOtQdeNDbW3mX7h2PtqqobHtoo1976lFh7r81aYu39Z54Wa9+8e+6Z4VH3To21Lxidu0/oecjwWLuqapnDW8Xa/+h8QKx90V65+7OLN9og1v7bkVfF2s+udGas3b3LU7H2uVfkntl9cNjOsXZV1R1Dl4u1L3819/N20oe5NQnDBu8eay99fm593dkPLh1rX7Fh7vpl4q9yny9VVSMWXhFrT+t2dax9x1q3x9oHHbx/rP1Nv9zczyun3xNrX/KX3M/amyMXxNp9Hs19rlZVXd7+7Vj7g4ufibWPO/vLWHvKw2Ni7Wdv/FOsXbdNiKWfO3BGrP2zX+Xmd6uqOl/4Rqy9fudtY+2r1hwfax89dWisfcKHk2PtH55uxNoP3p1rzxrx81h72vU/xNpVVWv/4vhY+6cv5Z4T//HC3DPi16bn1i6fvd39sfa/fnNOrP35BuvE2n/fbNVYu6rqygM2i7Vf2nxmrL3Y7Nz90bY7Nn/tT8u8lqrcrzcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwv1ibf+c/7tp9UHXq1Pl/aiz/qXatvml680ezZnWMtbt1aBdrL6gZsXZV1cyW1rH2wrmtYu1WnWLp6ty5Z6zds3P7WLtDq7mx9pTps2PtmXPmx9oTvp8Wa1dVtcyYGGvPb5X7N+/Yvk+svVifebH2jIlvxdobb799rP3+ux/G2iv0/TbWntm2EWtXVT0/9utYe3CfZWPtke9+EGu/P2lmrL3Mkv1i7XWWz1079WkXvGbsvVys/f7rn8far3w8OtauqlpptTVi7e4du8TarRu5e9IFuUun6tCl+XM+P5oza06sXQtz1xBtA/NsP5o7O3dfWFX11siRsfYKKw+Otff79cGx9l/OPTPWbt26bay9/iY/jbW7d10k1v7kg9zvWPsOuT93VdWkuVNi7alTJsfa7w/K3ZNe+f1zsfZW3ZeJtYe2Xz3WnjcnN/fTas4SsXbnztlnV52C98QzpueeGXbuvjDW7hC8Vp83tyXW7tShV6zdpvWEWHv2zK6xdvvu2fujK4bn5jkP/UmPWPvzrdePtX949IFYe+ac3PVqy/TcgoT2A3LrMNq2ys0D9B28fKxdVfXJmHtj7bFjH4u1e3XMPcPZdrO9Yu3pMz6Otb99+7VYe8klcmv7Gm1yP2sTxuU+V6uqFu+d+05ZruvKsfZHU96Ltdt3GRBrTxv7aqy9oMusWHvOvNyzym/G5+Z3p7/1r1i7Z9/c73dV1SfvvRhrd+61bqy96GK5eYjv2+WeEW+89dax9vdffhprj333hVh74LLTY+1J742LtauqxszMfZ/1X32rWLvd1NGxdseWf+s1qf9Wi/UdEmu36pC7T1g4v3usPa0lN787ZWLuGW1V1dJLrhRrz5iY+x5fMG9crD3v8+D7Zt+Nj7W/+zq3hnaRdrk5iOlTc/eFs9v+EGtXVbVuyf29t5mfu25cOD/3jmHbRrdIt/HfsBxgx8e+rc7tmv/vtvwxuc/FYy/bJ9ae8MVVsfYl/b+Ktauqnlx211j7ief/EWsv0T73s37ra7+MtXc9vEOsfck7k2PtfZ/dLdY+sMNpsfbO128ea1dVte01ItZeuOKTsfY93x4Ua9/3fG4t6HnrvhRrn7HgF7H22a3eibW3W3WdWHvkiB6xdlXVU51ya9QOGJ2blx7xy9y7BZdMXDrW/ultuc+X3v23jbVbLZ6bj5/S+oxYe9Vhud/vm17N7RtTVbXcmbk1z7365Z7pL7vSqFh70eD77j90zT2H6LxFbj3kpMaSsfZ2S+a+R9etTWLtqqpOe94Qa584Jfee3t/P+j7WHt76wVj7Dxu/Emuvvkpu35qP5x4aa283Pje/+/KC3Hv+VVVjL8+9I3jmQ7n53SnbbBhrX/7QBbH2oh/m1gWOWmTPWPuiYbln+sc+m7tm3OiFS2PtqqqNJmwXa8/rmvt8eeqH3N7giw67I9Ze9oRbYu0t7/su1j554fux9unDc2sSLx2be1ZZVTXskdz87q82yu3tsF7LKrH25o8cGWv32eX2WHuZ1/ePtfsP/iTWvrR17vplQO/cdXpV1WvTct9nX/fMrftZcXBuPcSTj54aa//9wtwz4udHvhtrf/PT3LXToMUOjLX//ETufbGqqj5L595PvLvfm7H2Mt98GWsv3Oi4WHur+3KfL8++lnsvs2ff3DXE3Z3ujLVbPZi7Lzzi0tzcblXV08H14of3PjzWvnPcpFj7nqNzezVfNGhYrP3md7nP9FMvOi/W3n+/4J5/j03NtavqssfWjrVP3fX4WLv70rm1fSt3zK23Om1mbv5lmxG5s2y+/mnud/y73GV6bf3Derl4VX25Zm5fiSfe7RtrP3987n3UzQfn1mK81v3EWHvhoN/E2htfmFu3fM1/nBNrTxiRW4dRVXX3HlvG2tdv9s9Yu+v5uXMAH9glsw/9zHm5PegBAAAAAAAAAAAAAAAAAAD4v2/bY7au9p2af97W+zPWbXrzR4f3PT3Wfvrt3D5DHeY+HmtXVe356BGx9kZjboq1H9gisydFVdUDe+T2zTv0T7m93E9af/FYe6MTno21P/xb7uzEhzd9JNauquo9bbNY+9atcnv2rdkzd1bEdXd/Fmt/vfTRsfY9jz4ca/9qrytj7bkb9ou1G5f+Ldauqpr8s/Nj7SP+kjurc/SNubOA19o8d60+e/VFYu1zb+gRa//sjLax9r7Dr461V7kpt0fjvsP2i7Wrqu7pkNu/v8vpXWPtwzreGmsPvbR3rL3JZ1Ni7VZL7hxrXzs1dwbybmsdG2svMfLaWLuq6g+nj4212+yVO3v65s9z5z8/0u/uWHvpN6+KtV/fb9NY+6W/5K4hjtimc6w9+fmRsXZVVdfWN8baU196LdZu1Tu3l/siD/891v7NRbnv0m7/eCzWHrRo7uyh31+WO/P6mHfmxNpVVeM3ezbW/mGFa2Lt5/8xJNbuOe3zWHu3uw+KtU8449tY++a9fhJrn/Pu67H27R/8Ptauqtri+Bdj7YcWz/28zV3ihlj7y+Mvj7U3HP52rP3M5jfE2jcc0z3WPv74S2PtPw3J3Z9UVfVrtXKs3Xg2t+bpoa3mxtovHpM74+vDu56KtS+a+OtY+5b9Dom1zx3zy1j7kn3WibWrqjb8PDe/e/nDuXPdrj45t6Zx1+CU/pEj94y191wvd67avfteGGuv9UPu73y73XJny8//U/az7f0tXo21J3yeu37ZfsuNYu3bLsg9P7ro5dVj7UEnj4i1+27w11i7922/i7XbPZo7o7Sq6tM9joy1l7trRqz90sRxsfaMlXPP5U/ukntmt2u33JnXR6+c+z654rjcmbS7vZub/6iquva+w2Pt1Vu+jrUP/+vusfbve6wWa9eDuXOv3z4995z2o4dy9+IPv3xurH3qxrnP9KqqudetH2uPn5ab7ztgs9z7bidt/XSkO3N+Sx3wX/x/tAw5pqpzq/+W8fw7dm/ZqenNH029eVCsPWSP7WLtvy7IPeesqlrr5dx7wMMv2y3WPvTogbH2Msf9Odb+3ZK5n/WWVcfF2h+05NbO7Dw796zx0u2nxdpVVSPH5dbmvfqnO2Lt9e7J/bw9vXhuHcf9v7kz1j72u46x9tAHcnOkT/T4ONY+7YHc33lV1eTWf4i1Nzn9/lj7/uA16xU3fxdrt5vcKdb+6865daBjX1sh1j54u2di7Q9OvCfW7r7Dg7F2VVXPnw2NtcdPyu0r0eWV3J5cPea9FWsP+6ZNrP3qUbmf9fPrqFh78sWXxdqfDtw81q6qOnuPU2LtHW9txNrHTt871h62IPecdfzDuZ/1AzZ8LtZ+5YMxsfbyA3Nzfb3WPTjWrqrqMjX3XH/kHpfE2r3Oz631XvBVbi1o7wfOi7VXODP3Pur9G+b2ZzpreO5efO+97oq1q6p+vvKEWLv9+7k9i3e+fcdYe++jx8Xaq5y9Yax940v3xdp33ZN7RrvrhKVi7fYtu8baVVXX75hbA/vJzS2x9uylT421By89ONa+esvcu9ffrZR7r6HzL3LzL7f+Ze1Y++7Dcs9Jq6oOOea2WHvtA3L3Cd//Jbe35m7r5NY8j2r1bKw9ePZ9sfasxb+MtTu0ujfWfvr4cbF2VdVqW+f2Krp/Ru68h+FP5+Z+7vhnh1j7vCG567azK3fmwgn9/xJrr9gpt470h7v3iLVbjlsx1q6qWtDx3Vh7/J27xNo95uTuic8flnsXdtzXuXdoPrswt2/NoJtzz+z6PZV7z/+tQ3L7alZV3TMnd+204P3ceVUj1vgo1j5teO6a8a4OuXNVnno4N5+/wq9z75z/8tbRsfYdk06Ltauq9h2aO3Phg3NyG2NN6XZSrH3QXVfE2vttdVasPWaP3Hsw5z/861j77TdyaxqPWSH3LKGq6vs5uTOE/vzAf/UN6P//nt8gdw7gfZ9nzheZtaClqv7fzz3IrbgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpGukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap016AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/bg/NvK0aLe2b3j291bdNb/5osev2i7U3WvXeWHvNrrvF2lVVb7S6M9Ye1vP2WHvjP24aa5+7/v2x9vAbWsfa1x4+JNbu1e+9WPvyqU/E2lVVaxy9Yqy939V7xtpnf75prP3avXvF2u/c+2GsvXXfF2PtTUfvHGv/8+0nY+2Xd7km1q6quqHV3rH2Gac8EGuveeM2sfaSJ3aKtQ/5zcmx9qndvoq15/zHCrH2bfdvF2tXVbXukbtPueK9UbH2DRsMirV3vP76WPuipT+Ktdve8ttYe9Ljv461j9j1nli704LPYu2qquU3OibWXubri2LtST/pFWt3vOH0WHuPLw6JtSc/9tdYe8jhuXuUHddeI9be5/M/xtpVVaec/E6sfeKa/WLtDX4+OtYeePAJsXav3y6ItR/9sFus/ft+R8bajz+waKxdVfXW97nrp68G9Im12x3XKtZ+cIXBsfaTq+WuIXYevEms/foiz8Tah5xwZqz93ZObxdpVVe/MuivW3uLLq2PtFdrMiLV/ufbbsfbQ/o/E2mePz833vTm4Taz92pVXxNpVVT+559RY++V9c89xrj54cqx9yBXLxtpjD8vNa79/4gWx9qN35+a1bzki93O+dUtuHqCqqvtR18XaY36Ruz97o8/EWPvJl+fG2v/86NxY++Uvtoy15wxoxNpdgt9lVVXjPrky1u4zMved8uXccbH2Td98HWuP3vLQWHviyOVi7UFn5L5Lz31weqz9l0umxNpVVa3OOynWXr1r7jlOn1N3jbX/3m9crP1V/4di7eW+y61Bmdo+95z2oKG5ee2qqgHXfRxrP3187r2M6/6Zewdp2sjcuxGHrTwm1m6zd+79hFcGzoy1B/wu93f+3IG569WqqmWfys3/tDz4s1h7+z+uHGvvMOvgWHu17XaKtb988KxYe1Df12Ltb0fk5rWrqu6/Jvd7tsIRv4q1X3s59/7Tme26NL05s2VBHdT0KgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB/QZt/5z/++puPq2PHjv9TY/lPdWg/oOnNH83sMy/W7ragZ6z9w7TJsXZVVafufWPteTOnx9qTJs2MtVu3nh9rz2lZPNbuGitXte/aiLVbdWgba7fv0i3Wrqr6YPSbsfaMSa1j7a49F421W9oviLU/+3xCrL1su49i7U7zP4u13/0s93c+ZtwnsXZV1bI9+8faU1fKtTcbslqsPbPl+1h7xIu5n7fZqywfa4/9+p1Yu3+fpWPtLh16xNo19t1cu6oWa9071l51QO6zbdKkybH2W20+jLXnLmiJtRe2bhdrt27k7s3atG0fa3fs0CXWrqrqsXjuHmX+glmx9kXnnhNrV/DnbZ9994m1J0/NzfWNfP3lWHupJZaLtSd8Pz7Wrqqa8OmnuXjr3Jxbh9Vz7SWWXiHWfmN67ne83fLvxdqrj8hdO3XsODvWnjUn9+euqmpZmHuO0qZd7nllq5busfa0lomxdocOufn8WW3firU7z9so1v5w8qRYu8eU3L93VdUv18v1b/vgh1h7xUU7xdod530Xay/slZtvW7/XMrF2o9u/tTzpv9X0zrnr1a9+mBNrV1XNm5Fbe7PagEGx9uRJ42LtSfNy1y+zp8+Ntdst0iHW/mps7tn4/Lm5P3fHXtnrlylfjYy1F1l161i75ZX7Y+0FvZu/bvdHs7vnrl++HftNrN1vuSGx9rRWud/xF0Y/EGsfueuesXZV1RsvvR1rz53waqz9/KjcnPqGO+wQa7/xXe5ZxtSpk2PtDvNzq6b79J0caw8YMjDWrqrqvyA3B/Kvr76MtWfXtFh7k58cGmvPblkYa7ednbsvnDcjt3a4XYfcs6tuwfX5VVUL2nWOtTt0zN0TTxiV+zdv+33una+pX8yItdu25D5fqiW3tm9um9y8dts2uXVeVVWdKjcP0bljbl1Aq4W9Yu05oV+zVvVfn4Po0v2H6tK++d8LOw36SdObPxo0KffZtNjbm8Xad32Zfe61ytSLYu2uq+TeZTlpi5di7SMfOjjWfrdT7lr7lKuejLWP/jT35/7trkvF2m0PuDrWrqq6+OZVYu1BndaJtde5MPdM/933c/ezm76T22Pg2dG5+7ruY8bF2u8P/mms3fqTybF2VdXeYy6NtR9fLndfeeDgw2Ltrq99EWv/sFPuWUCr1c+Otfv0WD/WrhuPjKWXXHybWPuB/R+Otauq/vjA87H2u71+Hmu/fcafY+3xh+XuC+eemFt/+8lzu8faG26Qe0ev8wu5/Qbf3Cm3dqWqap8Xl4i1h7XJ7aFy/thWsfZ53XNzARdtkduLbNGRG8TaRz+dW5s3f6XcnPoS2+X2paqqeu+WYbH2vpuPjbWfeWyNWHvNk46ItRcfnPs9O+GS22Ltl7vm9k+5sO8TsXb/NtnPlztWyK0h6bF17rn6OqNy6wKfWvlvsfYm9+XeF+vfJ/d8eq97zo21/3jhV7H2gT13iLWrqoYeuEys/eqk3HOUB2bsFGs/9kPuZ33wp5fF2uu25Pafu+vAN2Lt5a4bGmu3nnZ6rF1VtfcjuXXuH++c2597hYEXxtpzls+tt37j8d/G2ouscWCsPfDu3B7Vr4w/P9Z+eauVYu2qqg/feTHWXu1XB8TaHX99Vazdc+fcHMh1R+eeEa+2yeRYu+8Kufemvr0n97773YvnvsMnj/lTrF1VdfDU3LP5t1d4Pdae+GVuvdNto2+KtR8fnVtr9cr5ubnlo69YO9Z+pHduH9d1d8u9d11Vdcp+uTUJs57Lrb0Zv0LuOW2fr3L3R/vOyM23PTm0X6y9/EG5vTzWHZX7bBs76oJYu6pq7em5NZWtez4Ta2/0Ye59t6v65do3L3ZPrH3lJ7k103f8PLcPWqu7t421f7fULrF2VdUfV82tvWnXY9NYu+Nvcmv0t+57SKQ7dXbuOQIAAAAAAAAAAAAAAAAAAAD/9y2y7k3VoWvz9z0+be6HTW/+6K15m8faF7bJ7QPyz7a5Pa2qqo4582ex9jlf7xhr7zR93Vj7s0f2jLW739Uj1j782V/F2gd+83Gsfe6GsXSN/9XOuXhVvX7R3Fh7TLdusfa6UxeLtddpn9trecA1A2LtS6//Rax96nZfx9rnbZjbQ23/lX8Za1dVnTIjdw7y4lddHmtv3HPrWPuKtXN7uI28bnKsvfFRd8Ta36y8Uaz921u3j7U/7X1vrD3v0f6xdlXVRwcMjrWvfCN3duOxR9wZaw8/IHePMvCMu2LtdpueGmufv0jubNYR7abH2n3nHRdrV1XtMnCvWPtfwX1/b7vxrFh7jTUejbVfWm+5WHvLew+LtTe549VY+7i3V461z17j/li7qurdjrnnCe+NWyfWHjht6Vh7iw0+i7VvGL5DrL3dkPNi7d9OyM07nTjrj7H2Ym+cFGtXVd1zxYqx9sWHfBBrTxg6Ndb+6Izcd+nDE3PXjOsekjvrauf2I2LtQzqfFmvf+/2WsXZV1dWL5OZ3f1g8dw7OsE2ujLW/vzZ3BnKbF3Lz2sc//USs/c5Bud+zf1yWu1b+jwn7xtpVVSdfOzLW7rfX3rH2U4+cEmtPOzm33qn/HblzaR8ddkOs3f/D3D3p8MNy8wCzV/1nrF1V1e7K3DPicYflrp32XzL3rHTS7rkzkO9/v02sfVO73DqvxQ8YG2t/sebhsfa9nXLfZdsO7RVrV1XtcFNuDmTu6ZvF2ls89v+wd59RV1X3vsf/bHoTRBCkiBXFgoo19l5iiZ2oiS0mxqiRxKCJGruxd2M39pho7C2x924sWEAsKAhIUZDe74s7HOO8OePc3Nyzf+eO8fm8dvidwPPsvdZcc851eKx9wLzcs9I5N+SunTa87sex9sDbc++k/Xyf3NzyRwtzn6tVVc9sdnqsvdwyuTmQo//SMdYetXCVWHvWFmfG2o2bc9dOHy2Zex/u5Dd3jLVHvJt753VV1eezvhdrv1S55/IjKzcXsMWw3PzunM+3jbXX7p9b79Tilddj7d0nrRVrd1t35Vi7qmrbW3PX6i/ckZt/6bnB5Fj7/SczzxPmfjuzqsu/twZl2Ql3V6v2zb/2u/iQO5re/M7uCzeMtZ9+7Bex9kNP5vaqVVUdfcpVsfawDTaPtc9eZ2ysPef+m2Lt6TcNj7VPW7BerL3T0rl9Uyfek9vH0mHZ7OdL6xOXirXbtbkx1p74ZG593Ifthsban7TNXedfe3HPWHvJK8+NtX+316Wx9vDlfhVrV1U90G1ArL3M2blzkq47NvfZdmC/Z2LtKS+tEWv/tseUWPva3+X2o/6sW+667YhTlom1J8x5Ptauqjr+1tw61IOvyp3J9aedR8fa988OrkncI7f298cLc+tAbz1heqz95Qa5tf3Lbp3bv1NV9avDD46117/+7lh71Ytz6zjaT5kVa/9i+FOx9rrrbxlr35+b8qpzr/861n728twajqqqC5fOrQts+ae2sfYK2+fWUnTeK/d3vumjl8Tarx+ZOzPnVx1zc17XXfVVrP3uA7m9sFVVR/3ki1h7w/m5/fZ/Oj93xsH4v+fWx20+a6tY+zenfRBr3/zTLWPtR15vF2t/NiO7J3Tufrnrp3/cujjW/t3ra8faSxz211j7hqWeibWPbT0+1u60Vu5crHktcvParSe/H2tXVXW8ONcftdULsfawIRfF2p+Myq31GjUgd2bxfR/mftbu/Tx39v8jG+Ve+PDmE/+Mtauqtlw3d294zZm5fZknLMqdk9Rmv2GxdrcxR8Ta41fPrXfqtW1ur/1XPY+JtXfbOHfm3rhhue/RqqqL+ue+z8bOzK1pfPXeU2PtFd7MnVF94cO5d9l0OyA3p/7cwpVi7SlH5t7nsvub3WPtqqr1rv1prD1pYG6N27jT34u1OwzPfZ+Nb39brL3b+Atj7aPvye0/XnZIbh3GSUvkPlerqhYO6BJr3/ZGbr14vXdxLL3REZ/E2pdOvCbW/nz73AKYS9rnfs+2/yT3rHLkTVNj7aqq5e94KNb+U+cFsfam83PPxp99PvNelfmzF1f9HxzR1PjvHwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9TNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0T6v0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/2abu3rUands1vXv35us2vfmdYx88Otb+aI2JsfbA+zaJtauqXu03L9ae8cS4WPuBfZ6Mtcf+9bNYe4eePWPtZ46fGms/MPonsfbvxrWMtauqxq3xRax9wuF7x9rPtsx9n91126Gx9gVn/CnWnvvSY7H2kLu6xtq7fbA41u7zweGxdlXVff26xdqbrJC7dhv+95tj7T89NCzWfnjoBrH2li8cEmsfd8rbsfakttNi7aqqsddtFWv3+eD2WPuSY7aOtRc+1/w5gO/8fMBOsfYR+3eJtR9frm2svczPcnMBg49bLtauqrp/yMmx9lYPbBNrrz1hiVj7231ei7X3OPb+WPvYAd/E2pc/tEOsPWKLNWPta57/W6xdVTVs2oaxdrtrT421O76Tm999evO/xtqrb/hgrP3VP9+KtbdfPD7W7tNlbqxdVTVqTO5a/cN7cvMQB814NtZ++zfvx9rnv5K7Lzx0lUdj7SNeWhhrf7zySrH28a/n7gurql6Z9PtY+/13c/Ne7/S5JtZe8NymsXafP78Say9epn2sffbIzrH2Sa1+FGtXVa077qNY+/wjJsfarz2Wu35Z45IBsfacZ5eJtf928I9j7QvOvTfWPmfXIbn28NycelXVah/tGGsfNOR3sfarSxwTa/90pedj7ccGbhFrX7lpbk3CG2/9LNa+5eFOsXZV1VbDr421L3i9Y6x985GLYu1/tO8Qa6/f5qhY+4IJR8bai85oEWtvNvTYWLvvfpfF2lVVU0YuGWufsW1wjnez3D3KRQ9/G2tvseVdsfavL8hdv6x0UyxdQ/+SezZeVXVit0Gxdp/hj8fax878Qax91Fm5Z/O7/f6fsfYfNt891p66IPfZ9of9cnPLNz6fe1ZZVbXEw7n1fYdtk1uH0unEh2Pt23vl5hpHvTQz1n562V/G2sstv0asvfAHl8TaVVUtNsrdE69yfP9Y+8Y/Toi1Xx/6YdOb82cvqspNrwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/g7X6V/7jSV+8W+3atv3vGst/6sNR/2x68zvf23bnWHtB+xmx9pgvxsTaVVXd+i2MtXv27Bprz5s/K9Zu2+Jf+jj4f2rC+M9j7S4r9I21p89qGWtPmxX8WWvdiLWrqtp36xxrz168ONaeOXtsrN2j9fKxdq/urWPtl996M9bedK3NYu2V5syLtRfEyv9by8W5n7ex33wday9akLtua9+6e6y9xw6bxNqvD38v1l5tYMdYe/w3U2PtFXstE2uv0mu1WLuqqt1SuWunXsv2jrUHVe66bdedNo61PxozJdYeOfKDWHtRI/dzPmN2LF0zZ4zLxauqdcvcPfGI4Z/E2o2aH2vvs/8hsfY307+JtafNmhZrt23T/Ln070z/em6sPXb0hFi7qqrzErnP9fU3zd0nLNUudz8+M3fpVH175+4Ln/hwUqzdfcU+sfZyY2fG2gtb564fqqpazs09t6vKfbbNb/lZrN2hw9Kx9uK5uZ+3RYtbxNrfLsw9S2jROncNsUTX3N95VVX/lu1i7ffaBL/I2+V+z1br2S/W3mTb4NzPM9fH2mNHvhtrrz/k+7H2x2+8EGtXVS29xuqxdotl1421lxiRu09YPHuJWLttt9x9wjfjc88q+2+7Xaz91pO3xtqrDcx9tlVVjXjnr7H2nAUvx9oTg3ON6/XKPTdru8LusXbP3hNj7UkfvhRrL7vSjrH2cZc8Ems/9eCpsXZVVdse28TaH7/7fKy9zs5bxtrjx42KtfsvkVs7vLjtV7H24E1+EGt/9XZuTUDNDj6Yr6rOnXLPcFbusVKs3Wvg+rH2Em1y90dzpufmQKZ9kvtcnd8xN9fXocdSsXbL2f1j7aqqxXOmx9qTR+fmlttMmhxrTx+Vu0fp3KZrrN26W26906y5ue/Rbos6xdrtF3WItauqFrbI/ZvPnJd7bteiRe7zpVWr0JqAFv/+GrNXpqxS7ds0f4/Bt21GNL35nfU6vh9rP9wYFGuPH5R7FlBVtcebO8Tac6fk1h2venHuu3DJbx6Ptfved16sPfH5DWPt1w8bGWuve2duvqz1U1vE2lVVfT4dHmtPfGerWPueN3LPA37UO7dPb/jA/WLtE0d+EWtf13W9WHvp/rm1cWdOeS7WrqpaatXcd8rILu1j7WNG5/arrfVxz1j7xA65z7ZBZ+SebU84vUes3WnRqrH2ttvn1mIeMnp0rF1VNb3zhbH2Rj+6P9Zec5UDYu3dG2vH2pM/vTzWfuPc3H7UJbvvGmvvssEPY+0vO/0x1q6qen/n3PzL2D/nzrdc8d3RsfaAmx6LtZ/slltv/fLHf4q1lxjaNdZeseODsfbEZ3Prlaqq9vk498yv69m5P/uglQfH2p1v3DTWPqTjKrH2sA3OjLUPWb5XrD3xspNj7ZEbfxxrV1X1PiQ3t73CU7n97jNa/DzWPn27u2PtwcFnlS+8nduf2OmktWLtnw/J7QHueWHurKCqqk+6XR1r79rzoFj7pZ5PxNrrXHF4rH36skNi7dOWPi3WHn7TobH2Ry02iLU/vjr3fVJVNfvtY2Pt3svn3nVx3ZB1Yu3VZ+TWmXV7elisPfbS0bH2gitz36M9+t4Ua/cZll17M6Hl32LtBWefHmv/4ajcOfQ7t1wUax94V+4ckbkP7BFrv/Hn3PkGz5+8U6y95pO556T93rky1q6qOqhTbq//Fg/eEGv/YKkjYu03Xsk9sxs3MjcP0efnubVW7VvlzhtcpUVuPn/wF8vG2lVVNz7zVqy9dN8DY+0NgnvV2l4VPCN7p9z5UMOevy7WXnX3WLomffP3WPv5PXP3pFVVLda8KdYedGvu3OAJg3J7Qs84/8tY+8qJueeFj/bJrZnu2+XZWHuHrXLnUh28TO4ckaqqjn0/jLXvejB3b9a6X27dT9sVMnvtZyzMns0NAAAAAAAAAAAAAAAAAADA/9+u2OScarRo/lmN84/InTl8y/wVYu09Jv8u1h4yNfeOjKqqC7a/JdbutVrurKGdnrkr1r60Z+6M6R3Omhhrnzrk2lh7p/1fjLWXOeP2WLvvtcvH2lVVXaZ1ibU3vSb3jtTZB50aaz8/IvfOyp1O3zrWfqX3e7F2u9cvjbWXvTz3PtwDLsqesfTCL++Ntf/58uJYuybkvlPWe3r1WHud/beNte+4K/d+sdOezL0T95h1cu9HfXdS7ry+Bwb+Idauqhr36Qex9vrzc+85X+tXe8faL5yU+1yd222/WPuGE+fE2tNvXhhrv9X/lFi77a1vxtpVVRftnns/yPYrvhprD980936xlQfnzlMfP2OXWPuYQzaMtf+4Ue7+aMtuuXcWfK/HZ7F2VdWUe7vG2u/tsmesfeSVP4y1ex2ae5ax7Z25n7c1Rj0Xa6965Xax9v3T7ou1++36aaxdVTV5yNqxdu/KXbOeMvSwWPvYfV+PtfussXKs3aJn7h3IC+d3irUPWj/3Dp6vjjwq1q6qeuy03LX6L/6Se5Zx2/O5+d3fb597Tjtr1OBY+/UJubmf3W/YNdZu8XJurq/FBifE2lVVdzw6Ldb+0RbPx9o7r3tNrP3wnrn38d44NXcN0X5E7p24H++fu17t16VjrH3do9n3nF/wca693aO5Z6Xbb7xRrH352PGx9rY/WSrWnrtnbv3LoMsej7X/2j33Lr0TT18u1p43Mvvs6tk1/xFr//WYP8faY7fMrR3+9sLcfN+ap/4m1l58UO699md3XDvWXmaP3OfqoQNyP+dVVVvvl5vnbNUity9iWPd2sfZn/8i9G/aGZc6Kta94dESsvfRhT8baf3woN9e39zm5dYVVVYMe/HWsPfsPufnd7T/K/Y7v/dxmsfYXG24Sax/ULzfnddPo3BznkbueGWuv8IPm79/9j6bs1jPWPrjfR7H2X3u9FGt/sN1rke6iBYv+7f/Hda+9Up3bNP/a745BxzS9+Z11dvo21t54z9zv57cLt4+1q6qeHpubk3/46Nwz3kG35J4HHLl07h5jtbmvxNq9Ws+MtdufdVCsfd0D82Lt7S75RaxdVXXv6Znv4aqqHT/PrUMdOGTnWLvz8vNj7X1fy62V2vux/WPtzT89PdZ++tDcPv+HP7011q6qumrvVrH20O8fH2sPOO6MWHvkyEti7f7Dc3OFg3fInck1Yc8HYu39n83tR93vptw5RZN++kysXVV13rwesfbHu+auWUfv+USsfdyf+8Xaty+V25e58ccnxdpjZh8ea3+yf+7cmPt/2TbWrqrac/rXsfYh5z4Ta/c4ObcYs+1Te8Xa+x6fW3e8/Te5e5Q5gybH2t0+yO1N/GLMPrF2VVW/dXLX6nf0yM33PX/Z2rH2c2ftFms/tmHuTIuNx+aeba/cLzfPOOnyjWPte4bl1o9UVT33QO65/gmr537Wl+3221j7wyNz92YHH5Y7I+nzGbk59ZO77Rtrb3FAbv7ljLHBMz2rat9Vz4u1P37z77H2Y2PWibV7DTk51n7hictj7T8cl9t7feg+uTWoz16wVazdqe/AWLuq6v5rcmvzXn3xslj73Ym5s0Q6rPWjWPvlbsvF2gdv/XmuHbxuu2xm7h7lwJ1z61+rqtbZbO1Y+6zjc88rT3oqtw/4igG5PTx9pi0da49aL/c9fuQVC2LtYx/+Ita+f07uXM0LG9nz2O96shFrz6zcGbZ/7pm7Hx/xdW6Nfr9Rb8TaXc7L3Re+OnzVWPvWV5+NtR+6Prsv4vZJ42Lt4asG37PxQG5dYcetu8fabdbMrWOd+LPc2pt7Lsw9G3/zrNx67ceXvi3WrqraoXVuf8DNG58fa7e+emisfUOb3PrdHmfm3nHa5qaHYu0NT8itIz10xMOx9tP75T5Xq6o++vLOWHud3+T2GO71w9x124j3h0a60+fPqXvrv74fz90xAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZp9a/8xxvu/vPq2LHzf9dY/lNTJ7zf9OZ3enVZOtZudFgQa7eY/HWsXVU17rNvY+3W7TrG2st37R1rT5kzLdZu1zKWrrlzF8baCxbOj7U7d2gba7dpzI61q6raL9Ut1u42t3WsPWXB5Fh7xPsvxtpd2veItddevX+s/fW0b2LtdVcaEGuv3HvZWLuqatri3Ofb4nmLYu2OnZaItUd89kWs3bpjh1h73YErxNpTp0yPtb/+Jnfd1n2J3Gdb7wHZz7ZF8/6laYP/p9q3y/3Zp0wfGWtvut5msfbKq+XuEwausnysvVTPfrH2p2MnxdoPP/R4rF1V1bZNbjKg21K5+ZfuvdaLtV98YWas3WJ+i1i717K575OZU2bE2guW6hRrb7HxNrF2VVXfHt1j7RXXXD3W/mTce7F277arxtqzpn8aa3ftslSs/eJSs2LtttO6xtrdx2XnlqtN+1i6fZvcM8NWC3PfKbNm5b5L27fIPS+ctWhxrL2odW6esW3rXrH2nQf8NdauqlrrjL1i7R1Xz825vT0qlq6p08fH2hO/GZtrT50bay83cHCs/cUHub/z5VffINauqvp6cu45SqdO82LtOcs0Yu1Gq9wca4c2ufUI81fMPbta9GXuM33A93aJtWe0bP4azv+oXZfc59u4r3KfbWtt+ONYe8RnD8Xag3tOjLXnT/g81u63zvqx9uSpY2Ltz597JtbuukxurVVV1eL57WLtvqusG2u3XJyb+1lhrVVi7SceeDTW7t05tw5j0pe5/QGN1l/G2p1b5tYEVFW1apWba+y0fO45bftZX8Xak+blnhd+OzF37TT+i9zfeccll4y1W83NfYc3Wn0Ya1dVzZmYm3ObPSG35mnWiM9i7Xbf5p7htGqVW7fcen7uu2z2/CmxdqNl7rptUSP3711V1Tq4P6Dbotw9yuy5uefyrVtm2ota/Pvz6V3v7hJ5vt7j5I+a3vxOi+22jLV7Twju0Xs7uy5w9iPPxNpTxw2KtR+7MHetvck5uXWBjRPaxNqTT/4k1p7YPfecc/KCM2Lt1c7sGWtXVV3089zcUdsTLoi19741d911wYRHYu0vvrkl1j74udwa1FarrxNrdzjynFh7i7m5tQxVVaPO3SHWvv2Hb8faJ5+Yex6w7lpPxdq/6bZjrD3xvNz626dvz51TtMGaueuX097KPYeYNXjNWLuq6qk1c9esw9oMibX7HJw7v+XUXQ6Itduul9s39c7c3Pq0L15/JtZe7W+55y8rvJ5br1RVtfHmuXnpRZ//NtZ+eZ/c3sjGp8/E2hNa/CjWHnlg7hnr6D9eH2svtXi3WPvH3/9BrF1VNfrC3HfK4Zv0ibVPGpu7N9tufu4a4vy2/4y1x3yWm3+5c9vlYu2jD3g91l518LWxdlXV0yNeirWnr98l1p7z3POx9p3TcmepLmqXW7+yctvc2bnzLr0j1u53Su7f+7Rzjom1q6r2vT/37GyzJ3LzfQ/2yn22PbLbcrH2iDVzm+2v3mzPWHv+5rk51qfq4lj7mv1/HmtXVZ255Uqx9jrvXB1rb9PntFj71Jm5/RyHHrN/rL3ue+/G2jNeyj0/2vj83N/5PYc+G2tXVa3/4OGx9jcvXRRrr7fvxrF23XtjLN1li9yaxk59c9eM/X6W+x5d+ZUVY+2P3s49qxyz9e2xdlXVoC9z16xTBrwRa0/omDvfss8LuXODHxw/LtZev/8asfbXl+f20Dx5cO58ybozd+ZeVdU62+WuWacud1+sveHU3P3R3y/LnRO9+Xu58y3v2Dt3Dv2vP8/N7x747Vax9kPjcvNOVVVrv5X7fDvn7a6xdqu+r8bas9fM3aP8cFFu//PVrR+LtdfOvdK2Bn99a6y9T/fcOdFVVb+bu3ms3euQ3O/46rmpgOq2QebfvO28RVX/5tbtfT9vUW07Nv/ar+sjubNvL5qfe8f6yN65Mylue2VCrF1VNWlo7ozIK+fm1lx/uU3uDNrfD9ow1h7TMvh9sOlbsfYzk46KtUdPzJ21XFW13L65ueld1t021l7x1dye85dHdo21rzs/N48w8fClY+0df5Lbc77Dpbl7ys3P7RprV1XtMD738/btnNwZbiv+M3dP2+bu3Gf6E1/n1ubdd2nu3UN1yN9j6d9umTtbu6rq1bVy+0nuviq3NnDgjC1j7dtvy103/mHMmbH2KX2vjLWHffBErL3J1vfE2lt/HVynVVU/uW2jWHv1ebn9ajv3fTPWfrDliFh79pgfxtqbrZI7X7v9apvE2gPXzp2t+fg2ubPcq6parDw11j59+T/E2ju8llv33H9o11h79EO5dzBfvERuPUP7q/aLtW+avHOsXVV19Gu566dz1poaa1938+Wx9vcG5b7P9nv/41h78HIjY+2v7sv9jo85M7c279l3tou1q6qOG3pkrN33rdxZi2eNz50x+dtVc+dz37N6bq7xqPG592Wu/NvcfcJfhr4Xa1dVjTtjQKx97Vlnx9ofXPZ0rr1Mbn73mr/9ItZ+uV3u9+y99XKfbQvXyZ11eNOI3Dr3qqpl3sudhbbjQ7nr5RtPye0nOemu3Jnsfb6XO39ujQNz5x02tsmdMdnq6OmxdlXVqN1z61CW/9X8WHvRZ7vH2uP3OyzWfnvn3BrauSfmzhV9fMbAWLvVP3JnRX/yl6Nj7aqqQed1jbU7zdon1h6zytRYe/Rav4y1p3zSNdYefEvunOodvso9wzm8xfGxdlXV4T/MPcsY3jH4btrncutvzuiX+2yb1Tf3no3jT9o+1v7w9tzP2lWtDoq1b1iYPU/1p3fn7g1vvXmtWHvAXrm1GCvdnXuH0OLf5H7Hjzlii1h7nwtza0kP6//TWLuq6obrP4i1j3sp9/d+1hO5s6J/ckXzr1lnzF1U9/6b/4+drz2q2nRo/l6aNdv3bXrzO7P6XBVrr7RJ7gy1Fwfm5sqqqqbunZuP37Ldc7H2gyfk3g/yctvc79nLo3PrrU+5LncG7Ebv5f7cn4/NHb7S++e5Mxqrqh5ZJbfve/R7l8ba477NrdN68ZLbYu0jr83dx39/XG7e5t73cveyH2yVe/bzVe/ceaBVVe0vy93bXHHFebH2i7vlDpDbZHHue3yzC26KtX+yXe4e/sGhuc/Vb07PzZ3sekHbWHvrpZePtauq2j61a6y9XvcTYu19JubOiPyqW79Y+41ncv/eO76Ze6/90GEPxNp/m/FhrD1ujx6xdlVV+6G5OZCjF+fOYT3n97m1DGNXy/2OL+rwq1i71fW5Mwb23jK3JvDdyu2hWffS3LtZq6pWeST3ftYHfveXWHvcmbl57dd65N5tdu9SK8faZ+99eqx97TG5P/dD2+b20PyqU26/VlXVwjuuiLXfOjB3tubT4z6NtZ/6bW6t0pB9boi1t+ufW+O+Ro/cO2nnnXZSrN2nRfY89mn35b7HR1+RO1fivb/fEmv/44/bxNrXHJz7Lu2/52ex9i0/za1HmLZk7trpkDtyZw1WVX3ym9/H2me/cn6sPeag3Jz+GqfmzpRoc1Pu/LfJH42NtT/svmWsvd+FuefTl079c6xdVXXnwcF3qy3KnWFy2Mzcu+0/Gpx7//Nuf3sh1l57g9wZJo/tkbtuW/m+c2Ptv+87Mda+fWH2DNk1Pnsl1j7hqH93hf//vatH5N41/vSB18faM1+8L9be69m5sXb3q3PnuB79l9y+yOuDa+SrqjpMHhZrL/+P3LOM81bL7Qd9/+PcGWxf9cutFT9iq9z5tcttlntf1IRrc++52OaK4LuLqurNnY6ItceekrsnnvOb52PtGV/k3mv78Qf9Y+0xH+XWOw1+Nvf5ctAOufe5XL3mzFi7quqdHfeIte+7P3fd2P5HuXMdbtnz2Eh35vyZtXvt8G/9P349/rRq3br57zk/+pbc877Xpi6Mte/tkNu/8/KtuTMxq6pOeyF3Bslea+Tu695dkHu3/cFT7o6158zJ7alYeqPc9+ChS+ae9537Uu5zddeTcp9tVVUnbJ7bE9r9+xvG2gNaj4+1T5v+x1h7+2PmxNpbzMrN3ey21Sex9ic35/YHrjQut26mqmreFxfG2ic9kHu/2BGDc9+lXwy4KdY+dmHue/y+czaItUe93jLWfvf83Jk5+/XIzd302C63Nq6qas/gu1lbbvmPWHuN83PP9Dd65fFY++arc/Pxu6yW+z2bM7l1rN3/vNzZ1hdM+nWsXVV129a5c0z++fvcM5hdfps7H+rzy3Jn300femis/c5euZ/1X03MXTPedP5GsXb3fuvG2lVVHTc+NdZudcEusfaoL3PfZ89utUqs/f2LZ8Tafzo49/yo1xW5Zyg3tN4z1u4+MXd+SlXVWZfMirW/DP6efbl27h086z+S+045bd/c+djv39491u73y9yfe40Dc3ufJ9x7XKxdVfXlB2/F2pe22jLWvufY3HuIl707d55pyxNy69xnvpE7I2mtT3Nnkd3xVKdYe9snusbaVVUX9869L/OKb3Lvw73qotyagAf2uznWvnKJ3O/4Mdvl/s7PuSHXHv7uk7H2m1/l9oRWVT12c+4Zzs86nhVr7/vLTWPtqcfm3jvdeXbufnyXJXP3haNPzz2nXXv13P3RwnMOjrWvnZt91/eB74+Itfd8uE+sPeCT3Dv8Zg7J7dl68IzcnPryl/4t1m71i9xn+icP557RrtD1sVi7qmrG3bn53bdOuybWfvZnq8badz62Zqx93xO5NUe/fzT3Xbpj59w5RSfdkVuvPWzDrrF2VdXJQ3LvCRtzRW7t8LRbc++W3XVx7h0fFz94YKzd8ofbxtpfvZM7y2Or8bm9z20Oz53pWVXV+Qe5PWc3rrNerL3NOW1i7QP+kjmfe8Gsb6vu/q/XNOZ24wMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0HSN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwv9i7q6i7y3vf27/MuAtEgCQECQSXQHALbsUpLVAcCqVAFy4twbVAWbhL8WJFijWBoqF4cA8WIoS4yz7icI/9drRrftc7xnUdM/jcefJkzr/cAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mn1r/zH/ZdcWJ07L/yfGsv/1bQOizS9+ZMZLafH2gtmdY+1+3TM/cyrqr6etSDW7ta2Y6zdun37WHupbvNj7enT2sXa30ydFWsP6No51p46Z0as/fn472Ltqqp3Xv081l5ltWVj7X691ou1n334ylh72Y1WibVfHP5srL1yvw1j7R+njY6173/i3Vi7qmqt1VaMtcf9kPtc33ydnrF238Vy104TxkyJtXsumrteXbZX/1h7jbZLx9qTcrcntbBVy1y8qiaMyV0vt24xN9ZeYbGVY+35C3P3Ce99+EasPf6bMbF2iza5z5cZM3Pf4Yt0zX2fVFVNXDg71h68/taxdu9euT/3iL+/Emt//33uWcDM4PfJzr/aO9aePD/3b3z9ZXKfq1VVH4/+Z6zdouuSsfakr3LPvL79YVSs3adj7vdtyYG9Yu3G/B9j7Vu/+kesfVjP3LO+qqqOMxqxdrc2i8Xa8+bNjLVbzsu9u5o3P3c/3rFVj1h70sxpsXaH9rn74d6ffB9rV1WN3Pv8WHvykI1j7U9aDI+1ey6YHGtPmzow1p47Y1KsPafDlrF27+UHxNqTZuS+R6uqplfu+2zpGbnv8dkD+sXaMyZOirXbd8hdr/Zr1zbW/nHm+Fi7Q4/cfeGcabnnjFVV2x26X6z97bffxtoTvpgYa/dabGis/f2I3PO29X71q1j7kxm5OQGdxube2S26Rm4OyJj3s9dOYye+HGu3bt861u7ecUisPW967nN1hX69Y+2pU3KfLwvn566d5v+Qe4cyucsXsXZV1cyxuWf6fWbnnqu3WHSZWLtDm9z18vzOK8XatcgnsfT0SbF09ew9L9aeMSF7/dI2+Lxv1qe5a9ZWk7vE2p3a5J4tz5+Xe/4yv2Wu3bJFbv5Ll0bu/qjRcmqsXVU1d1ZuPe28Trm5XtOn5z7Xu7TKzH9ZsPDfnyfe/c1x1aFzh//AaP41jZbrN735k6sezs3hOL7z4rH2p3vn5tdXVd18642x9vzZ+8fal798fazdcWFun4Hb/pRbu7Tt1iNj7RVG5O7rRvRdPtZ+7aDXY+2qqm63PBpr3zO0a6y934a59trn556RHtrpwFj777tOiLWv2GaXWHvtL1aPtWc8lvserapqu/ldsfaJK28Sa5+8cW6t3Auf9Y21l/j41Vh70qa5914/3DE21p7+eO79y6i5G8Xa6734eKxdVbV9y09j7ReWyq1d+uyl3LuIHl0Gxdqr/3hSrP3I+NwzkIWL/ktbMv5HLZi1fay9UetTYu2qqsV7rRlrP3V0bj+Na89YN9Z+7cjjY+1xD7WItVcZkluz1afPFrH2wlW+irV/vcMGsXZV1T3jHom1X+jTKdbe+t7cmvMTBt0eaw/ukvtznz5gjVj71jPeirUvHpR7b7bX+Mti7aqqyetvFWv3eyc3N2/SrlfH2l2e+2Ws/frU3PPdXrNyzznvaZ97Lz9ll9yare8vyO2dW1X1x32D7T+8FmtfdF7u/XTPU5+NtTudmbuGaH1zbl5gj81zz7wG/5B7BvHunDNi7aqqJ7/I/b4N77NdrL3vvOdi7cN/cU2s3X+L3BqeTvceGms/uPDUWHvoKbnn2rM+zs37qarqs0FuX4k2h+S+U+59NXdP/PHow2PtDT7OzQkYs80OsfaM796LtbdukVsnN+ugHWPt1796Otauqlp4yAOx9pMPHhRrnzklt4bnH+v+EGuv+3wsXd/OvT/W/ur3ud+1Uz7O/a7d2PueWLuqqu1iZ8Xae7Y5JtYeM/13sfaSXXJ7TI4as1as/dqsq2LtfnPWjrWPvSu39nmHU3NzOauq3r8wt3/Lr3rmzih75vLc3OHdF/0o1r7t/dyajL9ukZuD0qX90bH2iZM/jrW3XORvsXZV1Qfn5J79nHFcbq/D77b6Q6y9/6jbIt2p86ZX1b+3P/ZDf1qiGq2bv+Z871VyZ0auPz33mXzBwbk5qJuP3DTWrqr6ok1uX4hDLs6th917v9z8uK7HHxNrL/f+zrH2Fkfn5jyPWGG5WHuZC/vE2lVVE3PH0tYOZ+8Wax+5RG7P4WMn5NbpvfmL3Fq5VteNiLV/mJGbHzfszdwZX7v/mDvHr6rqyn1z/RffXyHWfvq1v8baLz73VKy96Qp/irXvPqL590U/ueiVy2Ptif1zv+dVVXdueUesvdRVuecIS280INY+8d3cHJLfTjgq1l515C2x9vO3bxprf35obv+3LvccEWtXVa29VW4tS7+Vc2tZdhvWLdZe+fXcmq3Fzt8w1h569E6x9pw/5ubt3P7hcbH2ueOOjLWrqk4Zn3sW8PkhN8fafc/J7eexzNa5d34Hbb9rrL3b9Nw+JoeeEtxL9YGLYu2qqn7v5b7HP1l4Yax94vqDY+0NTspNBm31Zu6+8IXN5sTabXLLUWv3rXNzQVfbIHuPMvb73J7Jfzk4d+b2O/ueGGv/ZWZurdw3p+XOm9pw1dzz3UfXnxRrzxma2yuoquqgubl3Gf33y52NcmC/bWPtd1Y/JNa+bePceTDPrfJwrH3RUZfG2uf1zs2B3fS3uf00qqr26J07i3jt/Y+NtUffk/t92/y2dWLtVRbJrWVZ9JzcuoZbO74Za89eN3fmdlXVwxflrtV3f/vaWHvfD7aMtTefm5vz1FjtoVh78vO5z5dfDxoXa7fYa9VY+9rcUrmqqjphwz1j7UlP5ubY3f/tFbH2on/PXUMct8Rnsfa+f8/tF3TyMrl1U9+dk7s3q6ra+a+5tXrfDO0ea/9m2wNi7R875c5gfuDT3NqIu4fcEGvftnTunWHLy3Lvxrd897tYu6rqtvvPjbU36JE7R6j/O7+PtT/eLrdG4JLjN4+13//yglj7r4dn1gFXVc35NntmVdvvc3OefrdMbh+VeZ/m9mJb+ptfNL05Zc6Mqjr43/p/zJzWo+YvaP67tw5/y30ufbnmb2LtERfk1qO+0iZ7DvH0+3PnTf25a8tY+8w2D8Xax13ycqy99065e+khB+TO+Dp1xZVi7QcfyZ3bePaGF8faVVXXjs2tvd53ZO4Z5crr586s7L38PrH2rr/I7WP29r25s/S2OzV3DvHAtrk1DVuum/uZV1VtdnHu3OuvpuaunR45/ctYe7WZzb+v+snau+X2176r3c9j7fH7vRNrXzs093x0YMdpsfZi21wWa1dVdThq91j7vQNyCxsOXGHjWPuNTZaNtbvf+WisvctauXfLn+w0PtZuNya3l8ffdt4l1q6q2uyb3B7634+JpWvkX3OTht6+Ive5usL8w2LtQx7KnQs7fHpuv5xbNsrNvR1ybm5eXlXVS8G11wdtlHvfdv+BufPdB67XLdZ+uOPCWLvXLt1i7aFz+8fae/wyt07tTzvk1nxXVb3ZL3cQ8bCTcns79HnsmVj7xzdz56L84eOTY+177ngo1j5kZu790Uav596bvbDovbF2VdW0U0bF2oeePCzW/mSjD2PtvXLTQGrFr3LfpSdvkNtLdZ+tcnMhf9sq94zzhE65c9WqqsZM/Vms/eE9n8Tat/0jt3fMe7c8FGsv2D33DueAA3PPnTpfkVuLuvXVuf1yvts9d5ZNVdWPa+fm143c7YlY+81NcnOOH/ntwFi715e5c3S+mbNErL3Yurm9VAesenWsvcfvO8fapzybe5dQVXXxkbnzeC95NPeu9JBlToi1j39ok1i71wVnxNobHb1ZrD3s0dwa3B2Oz32+PLdV7uyiqqqRa+Xejb970cqx9sszJ8Xae2ye2yPp3Pdz+xW/e1ru7/vza3P7l1y0/4JYe9sBS8XaVVV3dMnNM5uxZe69/FNX5Ob29f8u997s/pUHxNo3fZGbQ/tc98Vj7a/f3TrW/q/Ts8+Wp9yYuz+qW3LnyZy7esdYe58pQyLdBXP//Xk3B96+Z3Xs0uY/MJp/zW6nX9L05k+GtsutR+27Um5fym7t2sbaVVXf/fbsWLvVXbnvo49fzH0uzv0xtw/rhZPujLXfPj13j9Hyjtx6jiFTr4m1vx2fOz+wqmrAJbnftwUH5/atm9ond87W9xO/ibWvemq9WPuAdXLnTh+0d24fkW4Dc2u2Njo7tz9jVVW/nXN7qGzTM3dPO2y33F6k2z+f2zvuiFEfxNoPzMudkbFem9zcvN/udFOs/fvRuT1MfrVIbi1JVdXm88+LtTcdldvP/LS+ubm/322eewcz7tvc98kuz+TWJ55612Ox9g635d79NC7MfY9WVW2ySG5vqtuP6B1rzzzp8Fj7mF1y/87avHpOrL3dzrkzUXrdl3v+cu6s3H7iK329aaxdVbXOYbnnnGtel9s/98Qju8ba9126ZKy9R3A/83W2eijWfi+35V/9dV7ufPVB7+XO/qmqur91+1h7zWP+HmuPejq3nmOvK3PPGk/7NHcmyn4tcntrzv5z61j7he+2iLWfnJfbK6iqqs+OuWduF3YI7sd+d+7Zz/qH5j7T13j0llh7/yNz+xssEjyDuO9BuX1jRl6Y+5lXVW0RnJu38fDcvntbnpz7fXt6k9ycgK0W5PZQ6X7CYrF2zzGTYu2Nb8xdr3Z4LrdXUFXV3KO3irU/3ub5WPv0fXJnP7/2zVex9jF/zJ2d1OLXuffy7X7151j78kdnx9pbDctt3Nvt8qNi7aqqjrvlzgEevWfunLDxn9wSa897cmSs/ei03LPlCcPuibVX/H6PWHvEurnPl/OOyJ7Fd3ff3Fk2ba84NNbeaLnTYu1WH30ca49dLLe3w5Qpuf00FpnxYqy9/i9ze5i0Wz87b/nOF/8Sa3+/ce69/OM35Oa49RyQ2+vwzG65dRHH3p/bi2yf456KtT9/Ijfv54KRuXvSqqqXD9w21p7XOzd/d7HuufW01xyQ+S6dtmBaDf7/8N81/sdHAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/xqN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmafWv/MdTxs6tBdPn/E+N5f+qTavFm978Sa/2P8Ta89otjLVnTukda1dVrb5cm1j7xwmTYu1lOvSItds2usXas+dPjLV7tWsZa08bk/t8abRqF2t3mjcv1q6q6tdqbqw9ecK4WHvppfvG2pttv0Ws/d5bL8Ta46YsiLU/+ebLWPvLHz6KtbsvOi3WrqpqMWtGrL1El1i6xkycFGvPD/7MH/37B7H2ykt3jbU3XX/jWHtO7vaopjdmx9ozJ46PtauqRj7/aqw9YJWlY+2FrXPXrPc+cGus3bFz7gul9YLcc4C37r871h604jKxdqN1+1i7qmrt5ZaLtTsu7Bxrj/r4y1j7m9GfxdqtWzRi7W03PTjWHjw493u+5KANYu12rWPpqqr65NqvYu3uXXO/62utvlqsfcufLou1Wy+fe845bdKUWHvixK9j7VZLdou1p/TsEGtXVb3y8sex9nbzc9duHdvl7onnLsx9rnZqn/tCmzXv/Vi7S7vusfakObn7wq7tO8XaVVWrtcy9r3x6xEOx9mJb5eYkLNl3SKz97avPx9rtOvWJtXsuPTjWXjgpNx+hz6L/0rSs/7iujVz/+8m5Z9vtZ+WuG6eNy80DmdthUqxds3Ltdt1y3yfzF+SeM/bokbt2qqp6/rnHYu3e3ZeItSeO/zTWXn7ZlWLtH5bpF2uPDT5rnP1p7rvs2zm5z5c2rz4Ta7daGJwUUFULJk2Otee1zM1pnDErd/3yfnBu3+AVVoi1P5yae4/Rcnbu/VGHdi1i7fGTsvOWZ43PvU/oP2BWrN2i+6RYe/6s3HfpN8H7wumTcs/ze3bKfZfN/mGpWHvuh9/G2lVVX4/Pze1rMS53vdx50dw98fTgu4w2jfmxdsc5ue/xdgty7bZtct/hjRaLxNpVVdNmTIi157TPXbt1aJubo7+w1aRMt/7964fGiKHVaN/8+cc7dBnd9OZPXuq9daw956PbY+1er18Ta1dVHbbDBbH2mDNej7WHb51bw7P0lFz7hmdy19r7DX4p1h50/pGx9s09Xom1R+aWo1ZV1Qpr5OaaX3PII7H2h+cfFWvvscTFsfZjn14ea3/yee4aoufzI2PtV3r8Jdb+cvahsXZV1RJzboi1u76X+z57e9Resfayu58Ya29+2jqx9q9Py733Wnu1D2PtTjvm1lTsP29ErP1iz9x7iKqqK595O9be8/41Y+1O5+WuXz56NLem4oqbN421z7s092z42s3/GWuv8JfXYu3Be+0Ya1dV9ZmVWyP48JO5v/PrRz8ba49/J7enRfeNfoy1p/8wLNY+5LzcNcTYRm5e4DKHDY+1q6qm9sjNS9xy53Vj7bUm5ub+HnDlHrH275Y8K9Y+57vrY+1J+/wi1l5q+dzclV+MWT7Wrqo69Ia/xtqLTwzuHbPMu7H2m7vkPl+Gdm0ba380e5dYe7+/Pxhrj9o093y1e7vcM6+qqp2+mBprv3fPvbH2pxf9d6y912a5/XrOPvXSWHvXHXOfqy03y81BPe3B3N4tp3buFWtXVf1xldw+AyN2zO21OHPSoFj78xFrxNqrLsitw72n/8BYu+VGuf33X3stt57j6lH9Y+2qqiXG5c5cuLzHMbH2Dt/9PNYeeNI9sfaT7XPf41tOzD1vW/TRT2LtW9fM7RO94KZzYu0nNrst1q6qGnpN7vpl9Wty8372G5Sb//LNcrnv0s223STWnjYq9w6nyye5fdDaXpPbq3nWPrl111VVG368Vqy9SL/cPgN3PPVcrP3zUbn7hIdXzf3Mf/1ht1h79luLxtr7fpG7dpo/9eVYu6rqrT65uRhbvvtWrP3ywt/E2pt88V2sPXP73HztIaOfjLXnfpNbf7zaMt/E2gMX7BNrV1VNPiS3J1ermbk1QDss/utY+/49z4h0Z82cV/Xsv/f/2H7AC9WmbfP35BizSG7f3dfm5T4ffrPsTbH2EZe9GGtXVY1YIXdf+bMPc89nt59/c6y91ZDcO7dzx+XWFqx9wxux9u6L5a7xf9z/jli7quqCZXPnCN575sxY+4xNcs8wrt9vvVh7uQNy3ylXP3B6rP3AiNz++Wcsl1ufOOmBYbF2VVXXzXLtqdvnzsnY8czcOTh9t869/7lju9y6qcMuOj/W7n9z7v5or4XZZ6QrP527hllpzdzZR48su2es/Y9f5vZ2OG353H3hxLvGxtrPj7461v5ytdy+NTddkXv+UlX1xZzc+sRZZ+eeQ+w0NPferfdlR8Tav26T+5m/NOncWPukIbl3vPutkjuM5tg1T4m1q6omfNYx1v7i7Rtj7d4r5s4wPPaN3H3CKffnngW8/8wtsXarnYfF2v2v2DvWrqpatn9uzvXIFXNzcAd98Vas/ekRY2LtlhtcGGt/f2Xu7MYnX8rtVXTDRr+PtYeckbs3q6oavHXuu/R3+98Saz9y41Ox9ul759b6b3917nr5weG5tZGPHJh7P/3mrrk9/6qqjtg9d+7TwGtOiLW3vi23hqfv4bn2Jm/lzjA8cLODYu1tX7gv1p5456Ox9qilesbaVVUP/FduLujNp10Vaz82OvfnvnfNTWPtbg93i7XHb/2PWPu48VvE2lP3j6WrqurYM3Jn2k0/a9VY+4ZRT8faOy45NNa+afCdsfbsnXLf4x/0OzvWfvW43JrU1lNz766qqmY1cveGhz6UW7/U2Dy3Hna5Dz6PtactcXisvd22ue/xV3rm/o0vOTS3PqCqau///j7WXvXd3N/5OkfkziK+/swdYu2rts2tQXphdO497XnDc2duXj8sd67KFo+uH2tXVT17SqdYe/Kqud+3kSfmnkO0PS93vXzsQ7n9VF99P7c24pU7cudODpj5bKxdVbXhYrn9e/t9/8tY+8+P564hNnqw+edXT13477+z6vpeo9q0bf56lvsuyb1vO/EfuX8ff3swd1bne3seF2tXVU186/5Y+8rNp8XavW/NredocU9u7syFc06OtQ+9KbfnzS4f5dbhdhqbu5cdOi53nVtVddOo92Ltdk/k9nnuvuNbsfYtbXNz4149NjcPdPdNc/N+b5v9fqz90R65eRRzFubO56iqGjEgd6bcS/+9U6x9fOX2tPhorSNj7ctabBNrv3XDlFh74X25ddevdcjNjfv9Jrnrh+u67R9rV1XdeOsBsfZxi+beeZ32fu78oZ1fviDWfviHxWLteVvl1nyfMXNCrH18z9yeWFe//fdYu6rq65ty64c+7vdErD1nx9z5rD+/+eJYe4k9Doy17xt+SKy97vZdY+2Jm+TeeV2z/1axdlXVGUsfG2vfuuOwWHu31XLr3c86ZslY+4XNP4i1nxya29/6lTdzf+4HHsyt1/rTidl9itr3WSrWvnzJ6bH2Wafkzp4evk3uDOQDJ20Za7/4VG4/jWO3y619/nDV3Pkchz+4XaxdVXXj8Ny5KJdvkXvutfTyufeVu26QOSuiquqBJxaJtX/+Ym4dycB3Voq1p36cuze78ODc90lV1f27584w3Oruv8Ta007Mrcn88t0BsfZpf8zNQdm8xZex9stX7Btrn3rIXbH2jK9ye4hUVS155IaxdqtVc3vBt5qU2x/7jAM3irWfXurxWPufuccvtePvcvdHi+2WmxNwetfc2fID1sm9m66qWum13Bnvdxyfe4fzh3NyZy6csGbu7Oc2t+XWm0+/Knef0Hfyn2PtizbbOta+/sjcvL6qqr3m5uagXPCb3LzlXe7Pfa42Fv4h1h4wNrf3f6tFcvOWH98pN++nb2PnWHv4gbl1z1VVq5+Re3e24u+2jbUn7/enWHvWha/F2sd1z+0xcOzo3H1h10P3i7UPHHZmrL3Lx7m1jVVVuw3PnY92wBW5P/vc03P3RwN/+2akO2/6zBr/b24F9sTQ66pNy+ZfA/Xrmduvb/33cnN/X377gVh7xKrZ/bSea5u71n5pVO4Mwb02/GOsfdKNuWuA6fvl5lu33Cv3zu2RF3P7aTww+JJY+443cvuIVVWdXrnndW2Wzr1zO6Jzt1j7y4ty5/i12CS3jual4bn3yyd/mXvPOe3k3LlHHf+Qe+dWVfX857m9CkdsfVKsvWuv3Odq73Uy91ZVVZseOjrWvm7n02Pt5bc+PtZut9ursfYhf8vtkXTG/v+Mtauq7jwgt/75tFVz6xPfeCr3cz+z0TfWnn9fbi3Jn9aYGmv3Xi+3Z87jo3LPP8bckdvHvarqs3Nz770W7Xh0rL1047pYe+D83Hv1pW5cJdZe5IkPY+2pC3L3pEM6fBJrX9fp4Vi7qqr/pgNj7Yc/fSnWvu3c3Hlyi12Q+0wfMnNGrL3w+89i7ckv/TXWXuTy02Lts4/5VaxdVXXrprlnT+d/8fNY+/Njc2e6fbJj7jtl4e65/UyP33CFWPuH6ffG2pt8knvmtcX4jrF2VdVuz+T2Erlx2dzvW783l461T1479wxk1I25/Uy79cjt/X9s29y92fBf5OYczZyZ25u7quqWlXL77r350dhYe/+Tesfav++Xe865+xu5c4C3Gp77fDloWG5frOvu7Rxrt1p3TqxdVfX0/vvH2o/t3SfW3vjRW2LtRafm7s2+unxQrN3jv3P7Jbc6sn+s/fyKufujG9rmvssG/tAj1q6qevPS3Frc//501Vh7tctze/f+cYncHNq/HXVZrH30B7vG2h+ekPv7bvt1br/BAX9rEWtXVXU+NPdnX2PYcrF2v0G5vYJefTW3R/V3jdxz7SeOy10r/+6g3FqUS+9bOdZeY3bunO+qqgOfOiLWPvTmN2LtLhNzc6Yvvj03D2SxGblzxue89nKsfcTFuTkgl755VKy949xFY+2qqtM/yv3Zew7JvZef8kDufLRVL8nskT1j5oKqw/7f/13jf34oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8b9FIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieVukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+73ddqbLVo1brp3SMGvd/05k9aPN431v70z+Nj7TVv3yvWrqpa7YVRsfZO9z4Waz/7zF9j7dMnXhhrX7bLk7H2Rf3fjLXXXX6DWHu93+Y+V6uqTp2/XKy972obxdo9hp8bax/1wDWx9s9evDbWnnHkH2LtD2a9FWvv2/eIWPvQCx+MtauqFjtscKz96P2Px9rb3P1urP3BKrvF2q3W2DTWPmXZ3DXj+BP7x9on3nVArF1V9fNVlom1B/X6Zay9ydeHx9qP7rN3rH1Ji1z7qgt7xdodR5wca78yetlYe/PNusXaVVW7dPoy1t5vvdz3eGOTrWLtx17qHGuf/sUhsfZJi+8Qa48+4eBYe8Z5c2Lttf9+VaxdVbXtkCVi7UPm5j5fuj77t1j7ijZvx9q39do41n72q1ti7Xcemxtr33ly7jq9qmrDIz+PtR/67MRY+6T3bo61779mvVj7qzU7xtozT1gk1q7HVoql5554Uqz9/F1rxNpVVctdfGusffY9Z8baJ7y6e6w94KXcv/Ejbl4n1t500qqx9p+G/TPW7rnD0Fi7qur1M3Pvznr+YdFYe7Ndl4q1n3kp925+ifa5v+9z7+4Ta7/3Vu4Z66Xdf4y1z1qmXaxdVbXvNbnft6PvvyHWXvzas2Pt4Zc+Gmu/vtRvY+1v738o1j7kw+9j7XOvHx5rV1W9celpsfY1I1+JtWdNWjvWPvfkV2Ptq648I9a+bFzu7/v593JzUOpv68fS2z2+dKxdVbXuzrnv8SOW2izW3uKN3O/6Q0vm3tO22KtLrN33hYdi7VWu7xZrn3zWKbF2VVXHtXL9TW66LdZecofcepS68plYut/2ufd2a/XJzV3+4PbcHJRv7s7NqXzzk+di7aqqNTvm5my3+DJ3/TL06ty1+qnn5+bp/23TmbH286cuGWsfsfGYWLvLmVfG2lVVHXpcF2u/e1huneGwR3Lf41c90/xr9VnTpldtnlvPCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzv1epf+Y+//OLL6tCh4//UWP6vWizyLw3zP6r1gvmxdrf2vWLtLot2i7WrqmZNGRNrTxs3PdZ+fcaHsfYiPReNtTu0bxNrj/0s9zMf883sWHve7NzveYeujVi7qmqRHp1i7dmNZWLt0e+NjbU/+ei1WLtHt4Gx9vqr5n7Xvhn3XazdsU3XWLvmtMi1q6plu9z32bxZE2PtudPnxNq9+3eOtfffaetYu12HJWLtuQtz92aT5v0Ya7eak/s9//btz2Ptqqoes3J/9vHPfRJrz2lMi7X7dc59n02cPDXWnjUvd5/QoXXu3uzbr7+KtddZI/ddVlX1w6Tcv/Ef2+d+11s3WsfajfmzYu2+y60eaw8YtGSs3bldrv3dd7n7wg7ts89+Vll33Vi7W6f2sfbnr46ItXfbeedY+5qb/hxrd2nf/PdlP9nxZ9vG2rOm5O5RXpj4baxdVbV5vwGx9twZud+3mblLiOrccUGsPW1W7jO9Wub+3Asbuee7rRfm3mN0ajUv1q6qmjqnT6w9qF3PWPuLGbmf+/wJn8Xa48ZPjrWH7py7hlgwf0Ks3atr7nO1Re7xalVVff1B7rN1yvwpsXbf5ZaKtTsszP0bb9cpd83YYmYsXTMWBue/LMy9u2o5d2GsXVU1Zlzu/mxytYu1u3ePpWtBu9zf+fwvct+lnZbM/bnHt5gRa7eekPt8mTgzN/elQ+vvY+2qqoWtcr/rS/XYKNZevE/uw23sFz1i7Q/e/TjWXnPFdWLtxpzcu/GvZ7wfa3fqnPtsq6rq3mm1WHthq0Vi7Y7t+8XaY77KPed8/Y3HY+0hSy8Xa3frmpuvPfWdj2LtaaNz96RVVa2n565Z27bJrXfrWLk5+nNbzY2158zM3R+16ZS7Vu7RMjdXfG6L3LVTi/C7q1qQmy8+ZV7u2q1T69zPvcX8bpHugv/A3/WHN1xb7Vo1/5ndjb/ZsOnNnzx9yNmx9m/OPiLWXjj11Fi7qurow76Ita9eJXfdt/4Ni8Xa04c/EWufOyH38unjURvE2o+9dW2s/fCeuZ/5zlcdG2tXVf35ozdi7SH9doq1R3y4aay9x8wbY+1R+/wu1h7yX0/F2rfNeyXW3rDLprF2297PxtpVVdst8VysvfC93BySyT//Q6w95bPNYu3hZ70Va/94W26t2uln5u4Tltttu1h72YNz6zLnv52bl1dV1fXDZ2PtZTf9Z6z94dW5+8KZM3LPyw7su16sPeyB3P3wLnftGWu3/Sx33fbzE46JtauqHn4md284fKPdY+0N33o+1r5wUO7d0wYDH4u1rzsit67hoXUOj7W3/vSlWHvhA7l/Y1VVh776bKz9xoLc+8YR/bePtZedtkOs/cqE3POXdQfn5nB8MfXuWHvxVXL73q343FuxdlXVvqvl5v72bhWcM/R17rrtnla5+8IZP54Xa89s+Uisfeo/z4q1bzn8v2LtiQsHxNpVVb1f2yPW7jZs7Vh718m5a/X5f3o11l5uo9z8l76dc3Pc3xi7dKz9j+dui7Vbjs7Nva2q6jvnyVj760Nz7xO673Z0rL3E7Htj7enrHBprd77zt7H26x99GmsP+8XKsfbh246PtauqJo/9INZ+/Kvc/P7HVsldt7WempuPsN6j78XardfLzTn6cufcmoqr2uf2Wew4Iff3XeO75dpVdcmoXHvQVqNj7Q0OyV2zfnZXbo1gq2fujLXX/3aVWPu6tQ6KtVfKbdVcG70f3FizqkYemXsO0fLC9WPtZa56INa+dNHctXqLrXOfL0sv3CvW7j8stzbh/cmPxtrzL8mtS6iq6tLiwFj7iknvxNofr5zbI/ucd3LzCs9fPbfX4bjuuXfEr3XN7TGwS+/cfITnHs7Nz6+qWmrv3PvKY25cK9ZesPHIWHvLZTP7LE6blXvWBgAAAAAAAAAAAAAAAAAAwP//DR+wZLVs36Xp3UtPXr3pzZ9c/3juPJghp+XOX357Yu7M66qqux7KnRUx/evFY+1O3XNnAHW8/bNY+6Ync3vYrzMwd77YvANz+9b92D639+2v2uT2jquq+mZO31j7heNze+h/u0eLWPvgk3N7uHW/dGCs/da0K2LtTa68NNae0nHVWPuHqblzG6uq1vx57jyYoSO2irU7PZTb7/j1x3JnfC016/5Y+7tWub/vy1ptHGu/snjus23kxSNi7aU2uyPWrqr6+ODcXoVnz8ztd/zPc9eMtUe+tFSs/d5fGrH2mxv3ibWvfCF3LskPA3PnHj3zw4uxdlXVA61y126NKfvH2n+5+4xY+43ZN8Ta+957e6z9zpe55069e+8Ta58yMfddtmKn42LtqqoZQzvG2o1Buc/1D274Rax9/xW5PabXuij3fTb4su6x9nqf5w5d2uitl2PtXy+3a6xdVdW262Gx9reDc/v314T9YukndvnvWHv03/aMtce+/UKsfdPLx8Taj7yU+0y/ts1DsXZV1f4zno21276/bax9xcErxNrPd2gTa++z49ux9lYtb461v7sodw5xrwm5M6/33iH3fLWqapN3/hhrD5nwm1j7V1fk/o0/Oq1VrP3qoNwct716TIm1t29Mi7W/XnrvWPuqc3K/a1VVE3b8a6x93RezY+3nb8+dMXbjvNxzzh9mnhVrj9h6i1h75uDcM5A+w38Za7+3/aBYe+G+N8XaVVWL7Jc7237W/NVi7ZYn/z3Wvvr83HPOATfnzgkd/t13sfbJq+V+5tcfkHtfePsl78faVVXfn5Z7ZzjrwNyzn3/ecX2sPf+Dr2PtFzfIze0bfOXqsfbRn10Xa//46fxY+6hfHh5rV1XdN/h3sfaSz58Yax80/PFYe8jQWLrmzF8x1t5j/ddj7b0uzD0HWK7XQ7H26eOOiLWrqv78Ss9Y+4zGF7H2Em/mnrl9tcejke6ChfP+7f/HnX8+uFp0bv0fGM2/5tW1c/cYez3yYax9ZI/mr+//yS93/yrWrqra5riLYu1F5+Xmrxx9Z/9Y+4mXfhZr95uTe1b3j8tya5eu/PmcWPutnqfH2gNX+3OsXVV13i7rxNpXzX8y1u551l9i7StyW6jUtENy6/yPmpqbH7fqUuvG2pNP3zHWHvmPh2PtqqrffJa7hhj0m5Gx9ton596DbPLMDrF2r9fvi7UfXTm3t8Pxi+fmgd5+cu552SP39Yu1FzaejrWrqjbbPvd3/tLYj2PtHY7KPYdo9/bdsfaZT+8Ua/+44yqx9jKzcnvP9f80NxfzT7sOiLWrqvo/cUys/ZfhuevGc7pcEGvfdVZubl7L3XJ7Wpw6N7e2oOdO28TaH8zPrQF++qzs9ctXB7eMtRf88vNYe+69K8Xat54/LtY+ZJfcO5xf9Hgo1v7Z25vH2nOG5eautN1z51i7qur1cbmf+4/H/FesveNuuc+2M4PPnV5aMjcn8eXz3421W/41t3bohl1vibXHnpZd13DLMx/E2j8bn5s78+PsH2LtNaedGms/u3xuT/QnL86tXdr9rNya0PO6HhprL1jn6li7qmqNM/ePtbdZbWKsPeSH3LqpA4/K3ZPetucBsfbpMy+OtV95Pfce47JVc/NPrtzi3Fi7quqdM3L7544IviP+/trc/dGE8blnbrc3fhtrL3X1ObF23ZObh3HOtbmf+eDjn4q1Dxue3Y/9m1G5e5R9WuT+jT+9YW6fpOsPHB1rb3NJ71h776+GxdqvvJS7Th+3d3Du8GK5NVNVVSvMyj1bvun03OfLrUd8Emt/mZtCWyvflzvb5MAHB8faq3yfe1/Y5ds1Yu3nVsudOVlVNbBD7lnj0X/JrTn/ZIV/xtpf983t39L5s5mx9ll35vbTGNd3uVh7wrzcM691vs2da1JVtfWtuZ/7L2/MnXPa8+bcs+XPbsu0p82ZX1X/7/uE3Ow/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACarpEeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADH9e1AAAE4VElEQVQAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAACA/8PeXUbdVd1t3/5nx4UIgUCQBII2BHcSoEihlAa34kULtHhpcfdihSLFvbi7BHcJlGCBEBISICFC3PN+4uM9nqejvffZZ7zH8TmD37wu9rX2WnPNNRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8rdIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP67/bYOrbbVsendyyec1/TmT364ZaVY+6ATFo+1t/hk5Vi7qqrbtrNj7YOu6BJrH3zj6rH2P166Ndbuf+DmsfZ9my8Xa5/+7rmx9pjTloy1q6o+PPyCWHvyeTfH2g9/PD3W7v+H72LtVW+bH2s/8bs9Yu21d/8s1u735oKx9qHPvRZrV1X1/OPkWPuXMxaLtfsufnKsPeHkv8bad+92W6w9afoDsfZiz70caz+75IOxdlXVTdfeE2vfNfbeWPvi9XeJtR+/5ZNYe40R/WPtv+02ONbu3PPMWPvk4dvF2t8u9USsXVV1yqRLYu1endrG2kOPXCTWfmvfY2Pt1mfPjLX3P2tSrD1vYm7+5ayHcufK189/JtauqtrpoUdj7QkzXoq1d134gFj72cnLx9rH39wm1p6+wuBY+5buuWP67rddHGtXVf1+aG6u8S/bbxpr/235a2Lt6e+MjLW7b/x6rP346bk5t2++mRFrj+39Uay909gNYu2qqrN75OYh/tw+d2xtsdGwWLv7V2Nj7V/VV7H2Wdfmjm1/P2hQrD3mog1j7aqqu/b8Y6x9x07PxtqXLZmb257w6Emx9rQzR8XaC//6zlh7k0tyv/MlfrdCrP34D1Ni7aqqu+8dGGt3OyL3PX7ocb+Nte/Z+qFY+88f5s4hjr5v6Vj7zfPfibUH/pA7tlVVnfpi7jtlj2O2jbX7LH5VrH3XGmfF2g/cmDu2bbniMrH2ntMvjbVXGJSbA9n46m1i7aqqHnu8EmsP/Sw333daI3feuOY5uftHj1x+eKx99b17xtp9nlov1t57+A+xdlXV9s/dFWuPeue9WPudqbm1y+ev+EGs/dtJt8TaJ414N9ae+4fc+cuMrc6OtRc+Ivc8SlXVWTfmnsVZ4c+DY+3XH3sy1u71wa9j7a2uuzrW/uKEFWPtATfcHmt/eU7uurCqav7g3Jz+NTfkvs8mL3tYrL1V/+Y/czZl/uzKzngBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/61a/Sv/+JvhX1S7du3+t8byP/rxg9lNb/6ka5cFY+0F2o2JtZdfe7VYu6qq5b/20fyPWnChzrH2N18Ni7VHffF9rN1loTax9qRZs2LthZfpHmu/8fQrsXbP+W1j7aqqnp02iLUXX3hSrD1s+uhYe9FF+sTaKy7ZN9aume1j6U+H5o7pu279i1j7q69y505VVe99+kWs/cmHuXb7bmNj7Y2mrxRrL79M7vyla6fFYu2Jk6bE2h+9+Xas3Wru9Fi7zTczY+2qqp6dc5+3uY1xsfbEid1i7Xa1cKz93YQRsfaUqT/G2v265z7nY1rlzhmfefXhWLuqqlq3iKW//PLrWHvc5Ny5+pob9o+1+yybuxafOTV3vvr9qObPpf9krQGrxNr33XNfrF1V1XLenFj7wyGvxdqL98p93pbplJvn7Nd7qVj7g08+j7Vvv/uaWPvovQ6ItYeOGxJrV1V93Sd3bTjrtZGx9pIdFoi1Z07rGGu3bDkx1m7VJvc7nzt3aqw9Z15uTcDkqbm/76qqqdO/ibXHt5gca0/5fnys/fnE3JzbassvE2vPqy6x9sQZ02Lt7u3mx9rjxkyMtauqWvfIzT0t2n7ZWPvNx++MtRdsn5vn7PBJbp5zkW5LxtrT5w6PtRfq3S/WHrNgbk1jVdXoEf+Mtbu0yH2Pz/5hVKz941eDY+25HRaJtWe99Eas3avPGrF2687LxdrT3vks1p6VW1pXVVW9l8vNq8+amTuHGPTsoFi7U5fcWtKWcxuxdvuWubU31TG3HqFX9yVi7dbte8XaVVWtW+bm3Dq3y61/mfxNbi6gWuTmltsHrwvb9Ooaa7erxWPt+Qvn5n6mD/k21q6qat+mdazdqnVu3mnWrNy6wjbBtX3zKnfu1GJ27h5Oi+m5OZD27XNzEHNn584fqqra5JagVOsWuc/6/Lm5H7xFq4mZbv37n/PF+vSoDm2a/70weNLEpjd/st2hH8baV692b6z9Y+fctXRV1d5X3RJrT1pinVh78BsrxtpP/vhOrN15Zu53PvXJ3DVl7+Vz9/RPG/BIrH3/6Nx6yKqqr3bfKNa+9e3cvafPOs+LtU+fn2sf93XufHPO1b+Jtffat0Os3WGf9WLtQa9tH2tXVZ3wRW4fk4XeyN3/6dUmd1zdcInc2plTP8qdL8895KBY+7DPc/Ozz+6zTay9+IzcHMKYMbm5uqqq/QbuFmu/0C33PMmoH86PtQ/ZKPf//NMhf461Bw4ZGmsfuM3msfYbX+bWDA14c49Yu6rq9HffjbUfvXy7WPuWlXPPksz/Te7/+XI7HhVr33nRV7F2z1k9Y+1+J6wQaz98bu6YXlU1psWlsfa7b+buJ4zbdvdY+y9bLBRr73PEi7H2Kq/k5rXX/uaMWHvMGblnznv0zR5f5n6Yey7z83a5vTVX6ZCbC+j4ziGx9nq93o+1X36rd6x9wwpdY+3e/XLnjN1a5NaBVlUN+yi3Z8/8kbnr0rn3vh5rv79obr31qCG5Pf+6Tj4s1m773XmxdtcJP4u1X/6uR6xdVVU3tIyl1345tw/+o+dcEGt37r1trP3INwNj7Y275t4t8u2L98fa3Xrl9q154bvcPkVVVU+clNsT/eGBuWdC3x72TKzd/oPcNekf2g+OtffdJnff7NoP9oy1X/pok1j7geVyzweO+zi3l0dV1WaN9WPttsdOiLUHX5NbzzlwnU6x9qSX1o61Vz0k9z066JvcWvFvxj0Va/9wZG5eu6pqiwdzz+JOXPKFWHvg1bn3VY1eNzcX8OCA3DPI532WO6bfMz743oOOuePq5zvl/r6rqgbfkjuH+M1WuftHt993Xaz9zrGnxNqtP3gy1u40M/f/++Rtc+8W2f3NA2PtI/vk5iCqqraZlLs3v8ZauWuzLxf5Ltb++MkZke7MObl3ewAAAAAAAAAAAAAAAAAAAPD/vgPmHVLt57VpeveyVXPvKD1z9xti7bfvye35+6edc3vfVlWd33rNWLvHyCtj7etuyu2/MvXB3Ls6F9rw8Fj7yt1PirVr0s2x9JV3to+1u56Re8d6VdVx+3wUa2+x8xKx9s9/PCbW/vDe3Dvlxn+S+z755xu599k9ds7vYu1G59zeTk99m3v3UFVV/9Vy+y2fukzu2Hb79rfE2tu3yu0fd0Ajd3y5+YjRsfYhQ7eMtbtetEisfc7Ei2Pte489Ltauqvryi9y7Isa/kdv/dvys8bH2kp/dGWtv32HDWHv19gNi7f1n3hNrt9sm9063bqd2jbWrqj5vvU+sfcUVk2LtddocHGvvv9UPsfbLv3s51p7w5vmx9uV7597XMGCZ/WLtnpfm3idXVXXmR7n3fR/48Yqx9mMnXxtrv7rt4Fh77S6xdC34Ze6dtGd/lNtHvjHj+1h7397ZuZ8OHV+NtTs+npvf/XHdqbH2dnfk5lh332DlWHvksbm95Pfom/s7a/9y7v3u6191TqxdVXXKelvF2vu+1D/W7nfijrH2G8/tG2v/cnzuXeOvtHo31j5mhdz9wg1uzr176LrFPou1q6oOH5x7D/Ljx+8ba+98UW5O/7mdc3P6Le/oFmsfODv3HuJbZ+4Sa3/14tux9o8L5N5tVlXV992fx9qLr5Rbb3XVb3LvSN3x/NwkyCPtVoi1L1wv9z3+1FZbxNrHb9gi1u4+bptYe+C4xWLtqqrRy10Sa984/PpY+5GpO8XaG791U6z92BfDY+0Tf75ZrD3yqK1j7RV/llt/ctoqf4q1q6pu7nZyrL3N0GVi7Y92ya31mrRmq1h7SOt7Y+0+dX+sPfNvubUQ1x2cO4d46cDc+pOqqqvW2jXW/vqxR2PtTzfKfacsdnXuPu2vf/hjrH1ltwVj7XXfya29Gfer3JrpQ4cHn3WrqkGffBprb//K3Fj7/L7bxtrvTz020p08b0b1mfz8v/Xf6PDwWtVo1+4/NKL/e7dNzj0DvGvnlWLtXzy6cKx9xLBVY+2qqnV2yc3Jr//mdbH2gWfn1mqdP3i9WHv42bm1M39t5Nb3r35U7hmaJ07JrZW64/RxsXZV1aA3Hou1z6rcHir9PpgRa/9z49z620Mn5M4hWh2xRqy99kbfxtpftHkj1n71zw/G2lVV316RO3/64zq5e357P/RSrH1Y19x6gu02uyjWfn2F3PPuX8/qGmtf/MYZsXabtvvG2g/3y9732nqFX8Xal8y4MNae+9VNsXa/wbmfe/7MB2PtwZfn7jXu8N25sfbZP4yItecdsnmsXVW11bBBsfaBWz8ea9/1WO65qQl3587bPh2e2/vu8eG53/km694Raw+/J/dsYp91c2tXqqrW2Dm3d8ydE0+Ptc9bKHe/r/MduT1s5/bIrZ3ZvdPVsfYdB24Xa+8/ZFasfeh+HWPtqqpeG4+MtX/3Wu785dc77xVr333U4Fj7uUG5tb/zN3sv1p522r+3nuDfsfQ7uX1r3rw89zxHVdXKH38ea4+aPDzWHnJSj1h76se5fT0vevXHWLvjeTfG2r3+kFsjNvjrE2Ptd9/KrcOoqjp0pdz5yyvr5n7vj7cZFWuvekVuTn275X8da/9y5Z1j7V2Dx5drOx0Sa28VvE9aVdXjuumxdsfTNo21H3g4t3fMS18/E2u3aZ1b/3L33rnzl0N2yT3XMGTGcrH2Hot+Emt/1DO3tq6q6vddcmvcLhuX26v5qXtz3+O3f5Gba+z1yF9j7WGdcvslj708936y3/5s7Vj7T3t8GWtXVd28TW6d2fP9z4u137o3d7/ygjNyz4ReskNu3qn3YYNj7dd+f1Os/d5fLou1v3gltwdbVdVuXXLvNll6h9Vi7fW75dYk7HTcWrH2Nh1ya/T36395rH3yQbl3bNwzObfH47NP5d5HV1W1y4aDY+3uD+WuzfrUQ7H2Yd+cGunOmDOtqg76P/673JUEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN10gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPK3SAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+u31+xAXVeoHmvxp9u8fbN735k847to21D/489xr6D0c+FWtXVR3xYr9Y+9LuX8TaC/1591i79wt7x9pD7/xlrD3unsVi7VcvGhhrb3J0/1i7qurSYz6MtZf78rFYu9fluc/bpketGmvf0/69WHv9zXLfpa17/iLWvvnQ2bH2xYv8M9auqrp/79xn/cDPl461D72iXay9/ZTesfbwEW/E2gMmvhVrb7L4WbH2GRefF2tXVT1/0Bmx9oXL/CXWPnqJhWPtk1ZYPdZue+dmsfY27xwWax834/VY+7YlHoq1zzj/wFi7qqrr7R1i7bOuuDjW/ub3uWuzda87ONZebpM1Y+0WS54Uax/eYfNY+7PdXom1O41fJ9auqhp32Jaxdqt2s2Ltyz+bG2s/NfPzWLv7XblrlDFTr4m19x99Vazdpf+DsXZV1eXPt4m1Vxs1KNa++MncvYyb+9wba9+3X+58eeV7z421x2z8Uqy9yVE7xdpDb90u1q6q+njpObH2r9aYEWt3P/XXsfZ6rQ6Ktbf400Wx9q3Dhsfao1fdJtb+03I/xNpVVScNGxJrv/zFhbH2k7v/IdY+/N3nY+3Bu34Qa1915nGx9gW/z83vfvirK2Ptl1fJrQmoqtp83aVi7SfPeTPWHjMod9549ZzXYu2nh+Tu4bw37pJYe+nfbhRrn9b+21i7qurPqxwZa3f6bHKsvfn2ufPl1tfm1v78+O1psXaHI5eItQ+b9PdY+/h1c2tvnj3ltFi7qurQcbn7OK+/nls//MzHuf/nbVYZFWsftEYsXces0D3W7np3bs32Awfn1qBUVQ364a5Y+9rRuePL4efNj7XbL/lcrH38Cbn1EL/udnusvf/o3PNP/c7YINZecovcffmqqpcOmxlrt93yiFj75JUuj7UPmf1xrL3KfWfH2gPWXTHW/seg+2PtL2ZkzyEe2WjlWPukse/E2jOPzM2BvLBs85vTZ86purT5XQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC/X6t/5R+vs9nG1alTp/+tsfyPvv18ZNObPxn86Yex9rhvG7H2UsuNj7Wrqlp0WyjWXmjhGbH2hJk9Yu12M1vH2iM//jzWnjFjRKw9bXLPWLtv361j7bmzcr/zqqpPPnkt1v5xcvdYe+rE72LtmY0FY+2b7r8y1p48Pfd9suYK/WLt776eF2uPmDI21q6q6rNQ88+Tf9J/r1/H2p8PzZ03duqeO750mr9MrD123OBYe+783PnL/Ak/xNotR+WO6Yt1zB1bqqpq3ORYek4j953SrWWuPWlEbg5k4fltY+0tu/eNtXt2XiDWHjMtlq7Phg3Jxatqbvvc522JJVaLtdv3yZ2/jJj5fazdqU2HWPvDt16OtXc94OBYe9KI0bH2jFktYu2qqifuvynWbtcq97N3ablGrN2zd27O66A9dom1Dzzu6Fh7zqz2sfaL734Qa6+80s9i7aqqmpu7bzd91dy528yvcp+3NtOnxtrz/6W76P9ZrabmzpW79GgZa4/MTf1Ui39t2cR/3NwWX8baS3btHGuP7pr7rK+79pax9jLr5+7hdFm4W6w9ffiYWHt2rFzVuWtuHqCqqs3M3LzX6y++FWuvuNJmsfYb778Ra6/aL3fvavzs3Dnj5G9fibWnLb54rD35zW9j7aqqtp36x9oz5uYm1jsumvu5v5/wdqz93ehPYu3+i2wca7/14lOx9spb5daArLDmmrH26LeSZ25VrRu9Yu3vx+a+z2a2nBRr910wd4946vzc523q7Nz10aI928TaP0ybFWu3XiA351VV1abVErH2rPY/xtrdu+fmQN5/+slYe9Ull4u1e7XLfZd9+2luff6c4OVRh5bZ85d2bXNrC+fPzh3Xp0zuGGsv3CW3lrRN59x6hPbz2sXaLRfKnTvNmJo7h5jfyJ6/zM7dpq02LWfG2tPn5X7wlh0yP/e8ef/+8Xyt9uvXAm2afz9i+4mnNb35k9uXyJ0DdLrowVj7whd3jLWrqu685phY+45f5Z6pmL7wybH21pNz7WHtzo+154zJfRft8MdNYu03Nx4Vay+/Tu4cv6rqFw/m5k8G9ngn1t7t0dxeHpt9ckisvcHzl8TaE3bNzc8+vXjumvKN516NtXuMnRNrV1UdvXxufdxay+0Za189ZbtY+29jn461Lzxnt1i7Z8tTY+0Lrrw01n77idy+El/udG6sfez0K2LtqqqXlv0q1t7ygi6x9lc7/ynW7rvowFj7lDGLxtqXTc99j459KXeNsMLch2Pty67P7W9QVdW6x/qx9nYHzI+1Xwuu47i865uxduPM3Pq4R9vmHl46fvncM+eXPbBYrD1xzF9i7aqq1W69KNaeNnStWPuTeb+JtT/ovWqsPeCsWLre2uTeWHvGIrn53VUGfhprt+++e6xdVTWqV+6Z8/VG3x9r/7xlbk5/0o/rxdrPjL8q1p7VOjcX0Ln7XbF2ixP6xNqTVss9J1dVtc+3uXs4owcvG2vfdkRuX6wPdsjt13PVFrF0PbrPE7H29pvlrlH2+P7dWPvtX7wea1dVjTw2tybh2Ddyz+n1ezW3V9FRPxsWa+/cO5au+jC3xn33Drnf+fzf7BBrP/V27thWVfXG8MNi7QFr3BJrL3fj5rF26z/k9gZ/+ZHce5v2npx7h8/4QYNj7S02/SbWHvljbp+irb9fN9auqjppmQ1j7Qcm5daBbLhUbs6r75jlY+2rOubujd/QJvesWt/hc2Ptz0/dOdae+EHumrSqqu+aud97x31zz0XcfMu+sfbdC+b2A2uxQddYe5P5uXnObx/PTXotOWzvWHuJ7rlncKqqpm2U23fvlaldY+0XZubWoLx9wcex9s4L5PYKenxS7vzlqe9ze1oMGZHb4/G+rbJ7Wry/Um6/5K7tc9cJ/e9eOtZuvUjmPYDT/gPPnAMAAAAAAAAAAAAAAAAAAPD/XxsM+bE6tWnd9O6LR73Y9OZPtn3uplj72Ilnx9pnf3V0rF1VdeIti8Tac377Qay9w3p3x9qvfpx7t/1RJxwQay86LLf3yynLHBprf351bv/Zej/7HuK/9Tkh1v5sfu49oUNX7R5r//Pt3D5DE1dZLda+9czc3nUjBraMtc84JreX2G3zc+2qqlce+DrWXv+p3LsDRg3LHdvevPWGWPvARm4v1Ec/yb0v871zc9cJRy57fay9Ttfce+3vPe6eWLuq6u1/bBNrD3h311j71UfPi7WX75d7d8AjZz4Zax93wIqx9ogTcu/73rJX7vzhjk9ze3JWVbU7+cFYe+GpuffS3n7cC7F255Nz+/dvOfCRWHuFlw+Kta9ZOfdekqd65PagfXDt3D7PVVUPz8i9J3Tk0NyxdflVTou1793nqFj75nVzcyBPX3N7rL1A59we9utPzb088ZQ528XaVVV/PCz3WX936UGx9gZ7nxlrP7xO7p7dwYNzf2f7vLNgrD3+ydNi7d175e4Pf/n6RrF2VdVSt/8x1t7jvSGx9vMj14q1dzggdz1+6Em5e+O3dTkx1n5ikyVi7dOezN0nXWup3FxfVdXZ3+fmQPoN6Rdr/2p87rN+x8RzYu1T598ca39794+x9kYP5Y4vI7bN3aN968KHY+2qqv2v2CfW/u2Jl8bag0+4Lda+aWhuzuupRXP3Sn9zVm5NwCm7577Hd+n3p1h7o7UvjbXP/90rsXZV1ajWY2LtFdY5Ntbef5uBsfYxSw2OtVvuuH2s/YdWb8faU059Ltbu9fIZsfb1218Ta1dVLfHhtbH21SOej7W73pJ7BujsVfaKte++9OpY+w8f59a/HNHuoVh7o3a5+d3Pj58aa1dV/e3YrWPtM2fk1jVuveNhsfaHx+WehXl29W9j7ddX3TfWfnj972Pt5x+8L9ZeatmlYu2qqr0vWD/WXnzl3PVRtw0ejbXPOC5zj3jW5ClVq/17awI2OGLxat25w39oRP/3Vn3vm6Y3f9LnhtwajnFzHo+1t34wd2+5qmrzVbeNtacMmhZr9xibO/c566Dcd+H3f2wXa/84NTdf9sXXi8baa3z0fqx91l8/irWrqjY/7ZBY++8nt4+1z/rjjFh7j89z9/Qn9D8m1v5+z9wajqOuyj0fuMhDuT1Mjjkpd6+xqqrxTs9Y+7qdfxdrf9s1N2e27L7vxNoDHrg41j6nsX+sfUSb3NqZBZbIXaOMu6RvrH3R07njalXV4B1y6+M+3vaIWHvWDVvG2l1OyF2jnPVl7lmS669cLdYeNic3R3nW3rm95+aOyK5JfPytVWLtZ479ItZ+f25uf4VXZv891j7klgdi7XWOzJ1D7PBS7hmaY7/MPQu796Z7xNpVVW0+XDXWnjZz7Vj7x4GbxtrVK7c2b1SL3Fxf35OvirXXuGBmrP3jznfF2gPPHhBrV1Xd8ZfrYu1Nj3s11h625A6x9r7D9461OzdaxNr7Ts7tnbvTvu/F2j2uyj2r9uyNubm+qqqBZwX3gPtinVh72gYLx9odPjgl1n5i+XVj7XP+mvusLdO4JNZe9+iXYu2H9sy9a6Kq6vjrT4u1u9+0Xax9y6Gbx9obDX821j5m5M6x9ut/uzLW7nnj6bH2K9e+HGvfsdvkWLuq6ugT3o21h73aJ9ZunDI21n5ssdxz/iMv3CXWPnTJ3PPuL76duz76aNPcOxceenvZWPuP9ZtYu6rqjdfPirWfmZD7rA/dKve8WO+7c9/jz1/T/OchfrLzhQ/G2tv8KrevZudTVo61X706+1zEyGm55wMW++KxWHvs/YvH2k/tskmsfc7GuXUg2y+SuyZ98czcGrc9J+bWyO84ILfWqqqq3S65vaLffWC1WPvN27aLtT8fkbuXcevFq8faM27Lva/q3MnPxNpn3JS7V7nPz96MtauqOt2Qe95t0CL/iLXPfWTjWPutvS6KdGdNn1P1f7EFXON/fygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPy3aKQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonlbpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/3Z5YeKGqzq2b3r3otyc0vfmTA6etEWtf2vrDWPukl3aItauq/rTQ9rH2YSdcGGsPnp/7vR9/yexYe+Nv14m1/7b0brH2YX2fjLX32Pt3sXZV1bP7fR9r997k9lh7wuG5n7v/421i7a1uaf65w09uXm2RWHvsvj1i7cvX2CXW3mvEo7F2VdWsa1eKtRc89a+x9lb9h8XaH/9iXKz9x8ePi7XfP/CNWPvkV9vH2i9sv2CsXVX1UOupufiADrH0QRucG2u3u/6fsfZuR+Z+7nV3z5233TXyzVj76CuXjbXXevGXsXZVVa+/546tZ/X9fax9z5lbxtornv9SrL3rg3+LtfduOTzWvm/OB7H2uGty8xC/3Tj3c1dV3T1lVKw99ZiBsXbjxgNj7V/ulfsbv+GwT2PtoSd+FWvfdEznWLvH15vH2lVVXU/L9Q8ZvVOs/V6L3LXZOn/dOta+Z5NrY+2fDxsQa49qXBNr95tyV6z9wCnTYu2qqnM3/SjWPqdNi1h7bOWuEzbbdXqs/erfcvcydlgsN6f+0LUHxdpbf3x1rF1VdddC38TaHY68LtY+f/eRsfalC78Wa6/y18Ni7ecfy61JOPS7l2PtLruvG2tveNjpsXZV1T3/3CPW/nLSmFj7nHUHx9rbj7oj1p65+tex9p/OOzHWPvygJ2LtIaPWjrWrqra97vpY+4D+68faY8bn1pKOWfvYWPvBfTvG2ofvmptr3PqVs2Pt+fsuEGv/s1/u+qiq6qQt/hRrfz0gN7/c6unTYu1P3ukUax+0/iax9p+PejDWvnO33Lqfc05dOdauqlp2+d/E2qtXbj3Eei1y12c3d89dm714V+47pdt+L8TaZ+2yXqx9/fj7Y+1Rz+aew6mqqum5e0j79WgZa+96zNux9hKNDWLt517LPXs1rHfuXkbvn/eLtU/+5otYu6rqgcm59TdTLtg91h7Ztm+s/dnfeza9OWvO9Kp6vOldAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4L9fq3/lH8+dPbHmzJ79vzWW/1GXRRdsevMnq3YcEGu37DA51q6O3XLtqlpyoa6xdqf282LtuS06xNqN1u1i7a4L5T5v8yfmji/ffZn7rI378s1Ye2bL0bF2VVXvZTvn4jOnx9Iz5uY+b199/Xys3bJ97viy4I+tY+13P/so1u73i6Vi7QGdesTaVVXfTRsbay/Qon2svdKqK8bai85ZJtYe3/LrWHvyuB9j7cb8cbF291a5z/kCbefn2nNaxtpVVa3a9oy121Tu9z5jznexdseOXWLtn7VbINZeuG3u5247v02s3Tt3ylj7LLNVLl5VX04cmosH5jd/8vUnE2LtObN/iLWXW2XRWHt8m9x5ett5uWvSybNyx7blVshemz3XKXfe+OVHH8Ta33w3KdYe/M8XYu3V+64Wa+81cPNY+44HXoi1P/gw9zkf+tFnsXZV1e77bBtrt+u5bKw9emru3GmZb9vG2u1adI+123SaGWtPnjQx1u4xv2usPamRm+urqmrTculYe/aUWbF219EjY+0+C+Xmnb55NncP59Npubnln221fqw99YeJsXajkbs2q6qa3Cp3j3iJ5fvG2uPG545ta284MNZ+7+krYu1NNt0r1p45b4NYe9yQKbH2wl1y8/lVVRNnvBNrT5uwWKw9Jbgm4OF3c3Pq08d8G2svvvsKsXbH9kvF2u+/MjjWnj35i1i794K5ewlVVRMn5NZDtO+QW7/bs9sqsfbYsbnzth6LLhFr17zcZ23SpNz9wu5dloq123ddJNauqpo9L7f2p1XLRqzdpV3uXukiXXPzu4uttm6sPWNUbhHK2BG5Oa92X+XW57ee3SLWrqpqMS93DjFz+oxYu0u33PzuvNm585eWczvF2jPm59ZTzp2Xm+NsGbxfOHP2nFi7qqptq46x9tRG7nnaVi1yP/e0eZn7CdPn//vHtYX3GFqdOzb/d/fuQpc1vfmTb0Z3jbU33Se3duat1tl1gTu+/W6svfB5Y2Lt3iceEmv3nTUo1t7xrJdi7Zt3OTzW/nzPNWPtL579KtZe+6jc+vqqqovOXyfWHt3zqlj7rl1y6xlaXTgk1t57l6di7UWn7BprP/LCY7H2bpvn1t5OXuC9WLuqasCQ3FrQK7bL3Vdfs1fumfMbnvow1n5h/Nux9vybc/e9Xtn3zFj79D65OfER268daz9+e+78oapq61aPx9pfrfWXWHvvIZfH2h9cv2+sfdTBufOXa36xWay9ziv3xNoHbJhrz10h911WVdVq1iOx9oJtcuvcr5yR2/uuw8ipsfaxSy8Va09a6KFYe80Jc2PtXpvn5tt+/2r2vteEkbm15p3fyJ27NaadHmvfv2pu794uSz4dax86Mrd/y3m/XCvW/sfI3JqhGR1Oi7Wrqg7+R25tXuf1+sfah4/NrdupfXLPu3e68eJY+3cHDo+13/88d77af7V+sfZCk96Ktauqrh6Ym1f/bMGzYu3lP8ytSVhgxGqx9rxpuT0GNul6Yqw9a/XcOowt260Xa7ddcHisXVU1/vMHYu2beuTmX+5aN3e+fMWGn8Tao96/OdbuvVzuGcEhc7aItcf/Mje/O/DgC2PtqqrW7XLvHjjxotwzFbce91ysfczxn8faD7+cW2N/9Pq/irVbTOgda588PvdOl3U+uy3Wvmbl3P3CqqqHP87du1r98hNi7XcPyx1X51yXe9790CO+ibXX65b7nb+/We59VZcNzD1/PO4fuT2xqqqGtcrdR1npwdx834fdno21+3y8cqzdd3Lu/R7nts/t13PwiNx67W+OzF2fPH/JarF2VdX0lzaJtYcdklu33GHnabH2zy/J7aU68r6lYu355+eeb9yif27u5y8T3oi19/z9E7F2VdX3s3PfKQ8/mXvebejY3HMRv9/p2kh30pz5VbltFgEAAAAAAAAAAAAAAAAAAPh/3I/tX645bVs0vbtu/983vfmTrQcNjLUH3b94rP3O9dn3hD7z9vWx9i/PnB5r37FGr1j7k51+HWuvvtdfY+0+X8+LtQ/9Pve+qZfuyLXbDrgm1q6qGjSmfaz9xcBVY+0eSzb/+/snyz3/aKx986nvx9rHvXV8rP3oorm/sz6fDY+1H90+976EqqqL3/wu1n7zgNzPvuc3ub3EHvvnZbH28z8bFmvvcMS6sfbyPY6Itbc7O7cX6pfH3xhr//h+l1i7qqpLm5Vi7afv3zfWXnqvd2PtL55fPtZ+acJusfZJt58ba7fadWis/eeFL4q1/3FR7pheVbX/W1Ni7U3WGxFrj35551h77+WfibUfXCX33sZ2y70Wa8/7/u+x9oor597Fe/hDufeqVVUdOzO3n/o91/481j7+y8tj7cfn596RMXDEYbH2Nm1y522dPs69D+b2B2bG2v94M/euqaqqHlcOibU37N4q1u56+AGxdv+bb4q1Jx/5dazd/cufxdpHX5C7l7DFe5vG2tNWys31VVV9f8k7sfaEK9eJtZe5Kze3/OVmd8Ta/dbfKNY+bn7uPcTLfrx1rP2HR3PvVev0ZO4+RlXVvHumxtrvPzMh1p6yypOx9oWjc+udfjvj7Vj705N2ibX3OeDhWPvX3+fuD7+6RO79y1VVY3fdPNYef9lVsfaHC4yKtTdo92KsfdysPrH20necEWu3G527Hh7efolYu+2W42LtW+8dHmtXVW242XOx9phzc3Osm708J9a+sMclsfYhm10Qa6/W88+x9pTBnWLt9bY6PdZ+pn1u7W5VVb+lc+/EferEK2Ltc4+8PdZ+5/Z/xtp7v3ZmrH1iv3ti7auuz807PXxfbn3b8XM+j7Wrqo45a0Cs/YfBuWvin72cuza7pmNu3qndoNxzfktv+FCsfeMjuXmAr2/JPW927xptY+2qqqW75N6zvuwDuft2Z137caw9/9zMGrcps2bVv/v00Rm/OLQWaNX8+8xDt8k9e/3qi/fH2vuNPi3W/uj03L3lqqoFr889/zxo9iex9tHrLh1rv3Pk2Fj7uAO3j7Vvvv1PsfYB834Taz+w6H6x9qKXvRlrV1Vt9Ehuj4OdO+fWFHxw46BYe/7ad8fal215b6w9a4PcGvcjLs6tnbnqd6fE2tdtOjjWrqr6+N1lY+0x6+eeZfn6sdxxdanNcs9sHdshNx//SPvc3M3hX3eOtf96Q24+fo03cudtN66b2y+nqmrUfvvH2jsO+T7Wbt11cqx9/YW555/PPe6VWHu1I3LPLl20zY+xds+ZuWP6S5fcGWtXVZ10eO68cekDB8faOzy7Zqz90gIXx9pPn5H7Prl7Xu5ewJTnXo61f3VP7r76t/stF2tXVbWfflSsfc2eG8faq66cO19esOWFsfY9u4+OtX81KfdZH7N87tnnXmv3jLXnbnJorF1Vde37uTnWEavk1gyNWXZWrL3vJbm1oPvflVvzfP6jj8XaXbZ6IdYe2PLbWPuhW/rG2lVVhy+0Sqz9VbvhsfYNw+fG2q8/kPs7e+HTH2Lt7o/fFms/e+/BsfbIi9aLtb9o2zHWrqp6dM3cfdo+834Ra48fuWWs3eKg3M9dL+TuJ3zz9exYu8tZuTVuf3gztw/9cq89GGtXVa2zQ9dY+75/7BlrH9sqt0f2Kne2i7X33D93X/7n730Ya8/bL7d37z8GHB1rnzI2Nw/w8WInxNpVVdd12S7W3uvck2PtYT1zz5IctnPu2chfdsqt137wt7lnEzrMXi3WvuqR3Pq2Hj1vjbWrqiYGt4Nfrs9JsfaONwTXNL6Yewfhbgfm5pbvWu6NWHvu6rn3ewy7Lfc86mZL5fbcq6p6Z2huHetfxqwQa487LPfs9aTeuT2yt948d1xd9p7cfNsR3+X2eDz9zINi7cfnfhlrV1W928jt87jtH3PvCfv2rtw9uw7d/hLptmw7pao2+z/+u9zbTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLpGegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/H/s3XnYntPd//tvruTOPEoiBJEEMRNiJoYagop5VlWKKtpSPKpKqaGmqmqJlpbWPIQi5iLmGGMeEmKKIQgJGe5Ecmf/5dl/Pcfe3fpcn98+jtfr7x59rzuu6VxrnesEAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdMhPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/2wDnhtdje5dm97d/uYhTW9+4/CRd8bah7auFWv/cevlYu2qqtdu/FOsPWro72Ltwzc+Ita+dNKCWPvwCTvE2m9/eVOs/c6cE2Ltx/YdFGtXVa3UaVKsPeaeS2Ltte+5Itb+8RrrxtpfDP1JrH3S3afG2gt/tWqsfei+e8TaUw69OtauqvrT8a/G2jOnHRxrX/bXM2LtU/b8Q6x9f8/TY+0vT3kz1h4+doNY+4YtctdHVVU7jsl9rt/2169j7bcOvTLWnrb4c7F2/zE7x9rXv79TrL3ohNxcQMupf4m157y9fqxdVdWtVo61h394Yqx94XbXxdp9e/8i1t7yuIti7bFPnRZrL/nazrH2Tw+7Idbe6Jnce6yq6olLc7+fOv3wslj76t+/FWtvfdDTsXbHO5+Jta9devNY+49j/x5rf39sv1i7qurHf+8Ta/+06/xYe7339ou1tznhsVh73qQDYu2Hznkg1j7jwhGx9oQTZ8Taj4/ItauqPryhf6z91BadY+1D9t8o1v71iVNi7am7d4u1h76xSaz9j6MnxNq3zNg+1q6qGjvshVj7yj/nrpGWeiy3fvXq++fG2vc8n/s3371P91h7vSvPirV3WD+3J+DWHgfF2lVVr6/fLtZ+6/LDY+0Vh70caw/8yfdj7a1+kFtPmPbqmbH2juNy89pH/CQ3z1lV9YM9B8baazVeirU3HPabWLvLoblr4nsOHRlrP9LzkVh75r9y/72P23TDWPuyG9aOtauqlm47KdY+5trcd8q+b14Qa7+x292x9qxhvWPt807O7dE/7p+5ffJ9t8rdH1BVdcxuS8TaF/3y0Vj79s36xtrr9c+t4ZwyLrd21jrxmFi7/xHDYu3rO98caz916gWxdlXVx+fk+nPv2DLWHvZQr1h71yv+EWvf+fdce9Ly42PtB7fK7fVaa2huf11V1Sd3LhVrP3zc5bH2cn/KXZ/t/8q1TW/OnregrsxttQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+D9bh3/kfz5vdsTpUx/+tsfzP3QXzmt78b63/1j/Rf1TbvNZY+6UXH421q6rmr71RrN27d9dY+6s57WPtRQs+jLX79V4i1p78wRex9metM2Pt16bm3uPrrLRHrF1VNWvau7H20ksuF2t3G5j7Tvlsxuex9nKL9Y61O66+TKz9jxuujbVnzst9nyxa0D/Wrqrqt3BArP3pZ+/E2p37do+1p3f8ONbu2qlnrP3kY5Nj7bUHLh5r95qeuzZrP69HrN2x05KxdlVV5zlzY+32LZ1j7cUaue/xdp0XxtpdOuWuSbt2yF2Lt2ubH2t36pT7fFluQe4aoapq0IDc9dGcRYti7eGtudfb7B5rxdr1wBux9IgVlo+1P37glVh7/pItsfZTbz0Va1dVvfviq7l47qu05n35Uaz93tzcH/7+hw/F2luuvnKs3boo+D0+qxFLz+mU+w6vqjrvnEti7b1GbRVrT/8oN7+719zhsfbQXrnP1Y7zu8TaCxu5z/TWltwcRLt5q8baVVVtLbn/5p9+lVs3m9U797n+3pcfxNrPvvRgrL3oy89i7TU3WynW7tazV6y9qLK/X154K7eOssqyuX0gfbpNi7WrU7tYetOtDoi1g8so1WvhiFy8fW7uZ/JXs2PtqqpXXs3teVpxxaGx9pPPPBZrLz+4d6z96Ku5306PPHN/rD144Iax9rzWT2PtTYavHWvfePWlsXZV1fa7575LG1/n9qDcfF3ufTZoaG4fSJepb8ba7dvlvse323zdWLute25eu13Ll7F2VdViXXO/Xzp0WyrWfv+D3Brx+qNGx9ozpuauST+bOSPWbpmaa7fNys0td+gYvCCuqkUdpsfa7dvn1hPaZi+Wa3fP7cVo1zYj1l7Q1jvW7vh1bl/hwuD6dEsjN89YVbWwLddutH4day9sn/vd2H1BZo9+28JvvwfkncmrV/cuzf9O3PeF3Av13r6537q97jw51v75gtx1fFXVlQtHxtrn/XrZWHv3g3L36f2zde9Y+5R9L4+1b7v4yVj7kGdfjLVX6Z3bK/XqzFGxdlXVci+eF2s/OP/HsfaTt+f+m3+ybm6tsU+XXWPtxTfN3Yd70gG5e6/7PHhmrD2115hYu6rqL5/nzkla8sPc2varn74ca9+1Rm4PycGfnR1rb/TqsFj7tPc3iLVbbs6tq6/wm9x6X8vK+8TaVVV/n3BCrL3bdbn/5u/03DLWPuqgNWPtXq+/HWvf2vMvsfbA9bvF2uf9I3ef3IE75f7uqqptBp0Yay+YvVesfeXzK8baL2zxfKz93kO5Oa9xv9gp1h7Z9pNYe8Wtc2cMjDz+uVi7qur+xabG2p8flvse3/rxIbH2pJXXiLUXnpQ7p2j7Xf4caw+77Tex9nrTcnsSnzsot3+kqurT0afG2ie1PyzWHjB981j74geafxb6N+Yv8XCs3XeT3P3HS17/Xqz93ODcfd+vdMidh15Vtf6zuTnW8TNzvyFu6bd+rD1mxmux9t2fXR1r/6AlNw/x7Fu5M9h6fXJzrD1pQu4aoarq1Ym5z/U7g3tBO2w7J9buF7znfNDOubmAt178XqzdY7E/xNr9hj8ba89qy51hUlXVYXjufbbLldvE2jt1z+05+u4KubPvdp9yVKz93bP/EWvPPCO3RtzlvZ1j7fNqQqzd8YLc74eqqrnH3hJr93w8d+/SW0f1ibXfX/LYWPviBzaOtX87PfdaW+bo3B6ULf6Vuy/zzgW5vS9VVYfddkOsPXyL3F71Hp/kzhn4aPvc6+3Wc3PPuTh7w5di7Ssez/3dR+/9RKy91n3ZZ/FNa//7WHv2uNzZDt2+lzsfqsMbf4+1p+5yeKy9+Yq599mVY3JzyxMXrhNrtx2b/XzpvNqRsfYJk3P3nH+w3iax9vT+m0a6Xy38uqruibQBAAAAAAAAAAAAAAAAAAD4/79b3ju1OrY0/1z1S0Y/0PTmN9o9mzvD/rTf5M4BeXXa57F2VdVNL+XOOVrphgNi7bPOyj2zcvLYp2Lt7zzz/Vh7xc2mxNo7LXtfrL3dxbnnbS93Qe7cuqqqRZ0uj7UH7Zw75/nB1c6PtX/8Re782zMvy73Pzh2dO8N+9su5swrPfO3cWLvbitmz3I/oknuu20O/GBtr37PbNbH2GQf+PNZe7NHxsfb1Hx4da0+4ekCs/caC7WPtX511VKz90O6PxNpVVQvXvz7W3rjjglh77663x9qbPvRWrP38arnnNs4bknsezCUn5b5PWq8/JdZeeehmsXZV1Tmr5J57/bcvj4i1110191yUi4dcG2u/9EluHmK7C3Lv8f0H5Z7Veew2uff4yHW2jbWrqn48fVSsPeKm3FzAu++8GmvfUKvH2tsMy82BzDn2j7H2nr0/iLX/tk5uHmCXTrnnHlVVnfpi7vrob/N2i7U3eWJ8rH39Pn+Otc+fODLWfne73DOv5x2xWKz9/HG5tfH33u4fa1dVHbl9+1h7q165Z7yPmtIr1v767Nyzrr4/ZKtY+/KjL4u1T3nj9Vh77Fm53y+XfnfvWLuqaubuT8baK2yXuzY85K7cc/y6XPlmrL3pkrnrhJdWyl2bbTtmlVh79yOuirV/2DX3Oq+q2n2rtlj758cPirUv3zI3x/rQ27nP1RNuOSnWPveN3L/5rItz6xgTvn4m1n5w7oxY+879d4+1q6puvCh3Tfz6flfG2q/+/r9i7Trjjlj6oOdz9ybMf+J7sfby3XrG2ude/WmsvdiPBsfaVVW9Jo6PtfvcknuPP/DbJWPtW6/N/d1Dx+XuB7n6uVtj7d0PvCnW3mJ+bv3oz0N+HWtXVfV9/W+x9ia/2TLW/sm9ubmAEe+NibW3ezz3G2LRIblrlINPye1/mbV4bu7nwiVujrWrqp466JBYe7GNVoi1N2zN3ZPx400zv9XnNb79c+V733xX9ezZ/T8wmn/PWcvn7hcbufnZsfb423P3Le006r1Yu6qq/8LOsfZDV+T+9l1HzYy1Hz8kN4+w3xe567obu+4Vaz/94Mmx9oTDLoq13/zsuFi7quqEPXPXdhf3y322XbPGLrH2r4/M3c+xy4Dce3zzfV+JtS/aKzc/u9yPfhlrn9T+tVi7quqqg+fF2ueOy81hbPu96bH2D+/J3VOxyv5/ibVvey6WrqtPvS3WXmfi/Fh7wg9bYu0z7n0o1q6qmnRx7pp4zcZ1sfYb5wyPtUecOCPWPnK73NrTA8H7Gq48dOdY+69Dc3uezx3ZN9auqlpsXO4ck+Fv5v7d+wyfEWu3HJy7n6PLWXfF2ufs3DvWnvDdbWLtN19/PNa+o98FsXZV1Yu759YT2j10day9b9u6sfY1p+0Zay98/dFY+08Dc3vcH9tvg1j7+DmNWPuovufF2lVVCz7P/X7Z8obPYu1zx1wca49Z/5+x9jnzhsTaZx3SNdZ+rWPu98vjo3LrGK3L5PZDVlU9Pim3b+jQjXL3Xu/07Jmx9rEn5vbmTThg51h7zZ92i7XntH4cax85Ord+dPl2o2PtqqofnZVbn5690g9i7W7H5O4f2v+B3HXhl4flzoK/qd36sfYfR+f2gCyzWG4/Qsevc2soVVUXr5Z7psuZx+Suj+6aPDjW3qDDxrH2pKV/G2uftHvumVF7X5w7z/TwS3JznI9/sF6svc0HT8faVVV733JhrD31hW+/x///qzO2OSXWnjin+c/B+8aJj+XuJXnxsdy800eLcuukp7S/Ita+4otlY+2qqgsezc2B9Do891069ce5+b5JA3NnyHbfYkasfd1l42LtCf/I/Zvf8GLuTK6PfnJJrF1VtfKj38nFO28RS3988Lux9tif5eYaZ+9+eqxdz+0YS9/y3Dmx9sguuXv8dgzeb1ZVNemcobH2bvvtG2vv8eL4WPvCLpnfbYvq/91zZXM7RQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLpGegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzdPh3/sfTp8+puXPb/W+N5X/UaLQ2vfmNfoOXirWfv//JWLs6LJ5rV9X9t98Ta3fvtkys3a/PvFh7zleLYu1OfV+ItZ975L5Y+7tbHxBrb3TQsbH2lNffi7WrqubO6RprL5rbFmvP+Oz9WHvlxbvH2sstu16s/dzUp2PtlQf1jbWffOnNWHvFpWbH2lVVrZ1zr/VlV1g51p77Ve73y9zZX8XacxblrlHWW25orP3Bs2/E2kt3XjXW7tL9y1i7bf7XsXZVVZcejVi7pe3fmrL4j+rY0j7WbpuT+7vbV+6/d8eWjrF2+wV9Yu1587+ItRfvl/s+qaqaNeejWLvH17lrsw7B66PW+Z/G2gtmLx1rz3//k1i7X2NGrD379dx3Wadl+sXaVVU31sJcfGHz10/+b7n53bbgP3mvzrm5vs9mzo21111m+Vj7qam5uZ8OuSmIqqpq18h9tn623sxYe+KUd2LtPZfIrdM2vu4fay/qkLsuXDSvU6zd6BxLV0un3NxPVdXChW/F2gO65/7hPxiY+x5/4JZ7Y+3uC6fH2tO/zM01vvPiK7H28muPjLVbu+TWEqqqVh20bKz9wdTJsfbQ/gNi7eqZ+834/Mu53+pLr7lGrP3lvNwelJmf5+bbuvfJrQ9XVR1x8tmx9rQp78bai3ouFmt3nJX7Hn++/+uxdp/2A2Ptp58eF2t37dA71n594mux9qDFc9fDVVXX3XBTrD10+W6x9tJDc/Mvn07P7Wns0ze3Zrfo09xvxgfumxRrr7tybo5z0PAVYu2qqu7dusTaCzvk2gP65e7JWDg7952yYGGPWHvOm8H9lNNmxdpL9WiJtdsWZH+/zJ+fWyPu0JJrL2rk9oF0Wpjbo9+uXe711m5hrj0ruHbVMfg6b2nJ/Xaqqpr/da7f1rYg1m60z+15mtOSmeec2+7bzzldM//F6tS++et+p8/cq+nN/9Y+t//1lNm51+kmT+0Qa1dVHbH1D2PtIaN+EWs/NGBQrN1y/E6x9uXr7R5r39D3mlj7po1zr/PDf5FbAzm/5zaxdlXV5N/l5sXfui73ndI6MPd7t0v33LkS7WdsHGtvfs/1sXaXIbm17T435/bO7LBsdt/OrSNz5wy0PbRZrD3k5Nznertf5M4ZOOXuHWPtlt0/jLVv3zR3j94KV+U+0xf9Mrfvd6OJuc+Wqqotp+bu9Z8R3GveWLB5rD3utb/G2sOey933vcYeubXGOZ1+FmuvclHuN+Peo9eMtauqGqfvG2v3G5b7d1/r1Nw5A1f3uzbWXnnLB2Pt3caPj7XHbphb225ZZWqsfcV5Y2Ltqqq35mwYa08dt3es/fAOY2PtxR/J3S82qd/wWHufz3Nz6u99uU6s/fkLuXtJhl+SPc906fXOjbW3bLddrL3fgJNi7Q8n5OadVlj3zFh76I25e2Gv/PKDWPv9drk5kBO7ZNfGx7+Qm+f8Yu9hsfa2Mz+Ltftd82qsvULH4bH2B5+NiLW/On/PWPvtn+euzbp8nrs2q6pqW2V0rL3atOVi7dun5u6N3GDw47H2CXvk1guHHTon1l5t0uqx9vrvT4i1RzRy1+JVVc+tlTtjsmufJWPtX62ZmwsYODi312u7V34Qa8/b9cBY+7WL7oy1N2zJrRd+/EJuz1Hfl5+Ntauq+m6We1bXmNNy93N8OO25WHvKordj7WPu2yrWfqz9HrF245rcPVtLdfldrD1i89x8W1XVG5vmnkM4ZfPcutmbV+XuhVlhUW7f8so/Oz/Wvnj73P66N+/9V6x94IDc/GqP7afF2lVVQzfJXY8/M2iVWLsxKbeesOLYX8baD16WO2/wO33fibXPm507N3i91ty62Yf7ZZ/FN/6q3J7KN9bMnWe62Uu5NeJJ/TL3T8/6el5VfbtnR590/T3VpWPz9x93ODH3e7Pb57n1l4GvHhNrb3xU9rNp52G5ueFBM/4Wa297Ru71dvJqu8Tap12be72dNTo3T/hat9wese/0PDjWrqqatnZuffmWdrn7Gjb6Q89Ye/nVc3tBrxmSOxvzoWdzc+LPn5M7j3Sjq5+Ktcf9a79Yu6rqs0N3jrVvXSL3jLFT7t881v7009wetXnXXhFrn903d8/W4b/PzQ1v89ElsXZV1QZ75Z4xduq6h8faO07KnY055e7cnqFxp+auie8eeGOsPWJ+7n221h7PxNo9V/xxrF1VtcFiF8faa4w5OtY+qG2lWPsnF+bmArb4KrcGs27rVbH2iQ8eG2uf2+8vsXb/qbn3WFXV36fn9kSOfSR3b+Rhn6wVa/9rQu5ZV6v3+EOsfdFHuTW3FxfL7Xm+8IrcnsSqqo9XzJ3RtMseuTMOrng79/ny6e0XxtprrZt77tLc5XP73EfsknsG0PgLb461R+yaew5xVdWPf7dPrP2ze3LrCT8amLv3u/0KE2Pt2Rc9GmvPfDP3LOBD1sqtZez31N2xdlXVxJ/mDlts/1xu/83crg/E2lOWvyXW/vLt3HMPDtu8V6y9zAd3xNqH98jtCxy/7AGxdlXVrn+ZEmu3/jZ3pumn9+T22H/3F1fG2s/Ozp2hMnpA7tnTc5/9Z6zd8kJurbKq6oiHt461z1yQO8v1jc7XxdofHpz73fijP+bOg2+snzvf8uT/yv1+Ob/15Fj7X4c0Yu2qqrN3PirW7vB27vfL70bn5iEuPCt3PlXHn+XWEy75x4xYe82pR8Tas/vl7k+sqnpl99zn21NnHxJrj+mf2yv/yZ25z7bv/+SMWHupA3P34UxbLbffasKxuf3iv9/nrli7qmrkLrn9GPv88rFY++xncme4HHxObk/llI65M2w3+91Rsfbxj+SeUXbojG///Olv4wfb5M4mH/yv3D79uSvm1on/+uyspjfnf7mw6o/f7v/j10+PrJ6N7v+ZAf0bNp6zadOb3xh8aO518sSA3P3Ht3bL7eGoqhp+0sJYe3zX78Tal7f+Ktb+2S6HxdrHj3wi1v7pO7n9r8cN7h1rvzYot87ZdVK3WLuqas8He8Ta51yYu1etW68+sfbBV+XWQD54b3CsvdRpt8batx1+aKy9VuVe59+5P7dPqqrq7Rkvxdq/+0luvuzB80+Mtbce/6dYe8N3c+vaewTXlv/y1Cex9veXyJ05fNqgJWLtJ6bl7pmqqtpjl9zvxrUvz80ZdXg09/znuUNyZ3kcf1buvu9ljh8ca+/WJ/fZtsXU3Hk99x6Yu6ehqurnT30Ya+98Yu7ZAbOezp1FVjfnPtN37XpUrL3zsrm9cdNfOivWvur438baR+z0VaxdVfXZH3P34d70Wu78/oFrjo+1N1yQew7xlT1y8xDv73V2rP3ylNz+jbPG5M4wOeXX82LtqqqxE3NnDKw++qFY+4Qpb8TaXy75YKx914vDY+2x3XPPdRs5O3c+U7vDF8Xahx6T/Xy56prc2vz5a+XOYJv+o9zzWXcJ/mY9YI35sfa5j+bOoX+zdVysvdwmQ2LtXbqPibWrqtZoy50j8oeTP4q1J3d6Lda+8sjcWsZGR+bWp9eYmLun4YPlcvP5ve7O7e3b8B+5305VVX2+yq1XXrhG7iyySX/NnaV6zn65Oa8hr+T+7ttOyp39f8tdubMON7su99n2o2Vyz/dY8q7cvr6qqvX/+oNY+5NPc8+Xf/Or5t/T8I0/t8s9y+acPrnPl83WyTy/sKpqxK9zz6vc7PPPY+1FjfGxdlXViE9zv5cv2PXlWPvgp5eJtb9+O7d+1OXZ3D7SbU7P3Yuy1SG5Z/H96YHcs8bbfpa95/uTs5aKtc//28qx9utP3xZrH/d87rf6DjNzazg7D82dQ3/MnNyzxkedtkGsff36ufMdq6o2/HvuWTYdNmmNtXf74+mx9s0bnBPpzpv/7c822PjlPavRrflnqR1+8eCmN7/x0oDcdfzt5+XuF5t187qxdlXVrvutH2vPWD13ntb5YzvE2nvcltvL8PfZl8faNx22W6w9f3zubKW/PZx7j5/xfu4evaqqpZe7Itbe+qzc2doDT18t1h7QkvsuPeOJ3F7MZ4/NXddt/9NrYu05bbm5m91/mLueraqace+gWHvN3rk5jEW75/YFjr4it2fog01Oi7Vbn/hNrN1tx9x+pYP6fxxrz7kvN4fw8gu5fTNVVQ9flXse78Qu34u1N++dO5vqsb1y+1e+v/b+sfYLWx8Ua2+xQm5euuOHN8baw/bL3QtbVTV53PGx9pyf5d7jF5+T+7sbp58aa3fYI3dvwaIdcueZPnP0RbH2USOXjbUvOTc311dV9faA3O+nrZ57K9beqNcVsfbLj+TOMXl49Zti7fWH5fZRtF2TO0N2zPDcb6dXts/93VVVN7bmzm/peFPuO+XvT+bWzTbYcfFYe+kuN8TaK/9zp1j7tw/k9pl/cGvuPtxPn8rdH1hVNXricbH2bz/JPaPiyKNGxto/Oj73ffZ++wWx9h175dauJn5n21h71XPPj7X/a6vlYu2qqpUfyj1b/rhHc8+WX+2NdWLti77K7fu5v+uTsfY/e+buF1ut/8ax9nbzr4i13/3OqFi7quqQO8bH2sesndtT2X+DFWPtKdfuE2vfu+0FsfaO950Xay/4a+48sLGH5M60mHBS7r7I2wbeHmtXVW11yQmx9uOr5fagDDkzt242atzgWHuXn+deb0d3Hh5r/+nuy2Lt/d/4lg9P/Bam/S2336mqqtug3DzEq5N7x9rtXz8y1j7wyNz5CqPuzM15TZicuz9w63M2jLXP3zi3b/neqT+Ptauq5s1vF2u/e1/uN+vGJ+XmvIb2y10nHDLs0li781W5PW7vvZL7fBkwLvf7Zbf3snuH97+jV6w9atTvY+3Za98Ta3e6MbMfYdGcr2rBAf/P64XNv6McAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICYRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA83T4d/7HEx9/uDp16vS/NZb/0ZR332568xs77Lx3rD1k7c1i7a7dv4y1q6oWf79zrD39/Tmx9oC+3WLtWqotln5x4sux9vMT34q1p087N9befuSoWHvZ1VeKtauq2k9ribV79sp9tk2e8lqsvdQyg2PtTz6bEmt3/nJBrN3S1ifWfu+dl2LtpTotFWtXVQ1dZpVYu3PnRqzd2qFXrN0yb3qs3TX3Fq+Zk3O/1ZdrLBFrtzRaY+1OHdrH2h0X5dpVVY0Fi2Ltru16xNod2ueujzr2mB9rtyzoG2tX8LXWaJsba1fu8qTaWr/KxatqUWvz5xi/0alH7h++Q/vZsfbMuQtj7e5dcu+zxqIusfbcWbm5vnY1I9Ye+F7uu6yqqoI/n9ovyn2+tC3MXaQ0/q2Vpv+sr2blvs/6D1wj1h60ZG7up+MNb8baC7OXR9Wrc+49PmnKrFh7y16DY+1eHdvF2i0du8banYLXpNWW+53evkPHWHv+wu6xdlXVotxLvT6emXu9LTkz9+9+w+sPx9pL9c393cv2zq1VflW5z5fqk/vB2m5O8DO9qj6Z/kmsvcbyg2Pt1g6Lxdofvf9urD1klVVj7XZL5OZfpk14ItYeNGTHWLvH0gNi7aqqe269N9ZefpUVY+3Bg3PX4/M+y+0J6NJvUKz97NPPx9qdFsu9z4avOSzWfvKp3L6f59/PraFUVXVqmxFrvzkltxdjvbVz+6169Mu9z9oW5fberLRG7v6Alsa0WHvJFbaPtTu05u4NqKrq2D03F/D1vNxviIUdc3MBc9vPjLU/fjJ3Lf7e+Btj7Q4tuTmQj77IrU8v0T33Hquq6t4x9/myaGFur9ei+bn5vrntPo+1u3fL7adsq9x+hC495sXaja+T87u5OYiqqsbC3PVZl56593jr57n9dR279I90v258++/RB8eNjaz1PtvrlKY3v7HCqDNi7aGf/zLWnj46dy9sVdW+W38Yaz/z4YRYe53Xc/dstR7611j7i4NPjLUHP5Jrf2/py2Lt7/beNtZunZM7R6SqarEOS8faD3+yWqw9Z4XxsfYawzaNtSdv90CsPX7ckFh71xt2iLWv+XKFWLvnnjfF2lVVnb7KvdZ/ulju3usDrnww1j7ok9y9SwOPzu1l+Mus3PkGZ56Se61dtdJ5sfaRz+TWWKc/mj2v5/XRn8Xaa22Q25vXf7nc+vJ6rcfE2p8OzcxZVVWtGLxPrm3yjFj7knffj7XXXrx3rF1VdVif3Jz8Lzv1i7Xrkjdi6ZVXvTPW/nxgbr7t98Mmx9qzVt8n1n7/4Q9i7ZEtuWvxqqrR770aa6/z+dhYe86TT8fab7fm7oVd4esXY+2OX+Tm+lbtvU6sfenaV8favca+EmtXVfX99Hux9sNv534vH975+7H2FiuuF2vf3f3iWPvVZQfG2hselftM/6/DF4+1Xzj6kVi7quqZviNi7VVfvyPWvm76YbH2wR9cGmsPXjG3Tvud3i/E2tftcX+svc+mh8bavZ8cHmtXVXWYfHqs/ewBuT1PW16fe739ZY2fxtq9H8n93V9vmlunvXHf12PtEaMuj7V3a5+7Jq2q+s01uef4fPjb3Frpeq/k9jxP7pN7pssGo3Nrdi1n5/bXbbZo+Vj71PVzr/N9F8/dJ/dIS25fX1XVMz1y/Tl75+6j+del3421N+q3R6z9o3/mzmO/9KD1Y+3Xz8/td1pt8/Nj7QEf5dZQqqp6L75frP389blns+2z/fBYu7Fk7nfbyWfk1sZ798qdybX6kc/H2tPm5a6PeryZO6+nqmra9BNi7emdc5+t339qUqx9ZVvuENmDB74Ta898M3cf7nMDc+fezT4w91prvSm3Nl1VNWqj4bH2vCdj6Xpnud1j7ZenXBLpzv0PnCHSf+Di1bVz888bOvPim5ve/O/2kKdi7V9t+FysffJuf4q1q6ouvmB0rP3bpe6Ktfuvc3ysfeUtj8Xaz07P7b+dftr4WHvMVrm/+80huedsVVU9PSk3R/r5oN/F2q/OGxNrH7hP7r6GXqv/OtZ+59zcOme7LXNz4lNbr4u1Vz7g+Vi7qmrv138Ta3da8Eys3f2dT2Pt9zb7ONY+/YLcGbSHr5A7P+6yA8bF2pv+OXcWalXV0I9yZ3sPfPmKWHvV7c6MtXf+aW7t6dFtc/tXbjnj2Fj7n8/n7iWZcPcfYu2+H2wXa1dV9fpBz1x8u11j6Rueyv1e3qFT7t/80ntzz6w8b6ncvQVLXZF7FvBlo8+OtTffOHcmV1XVLR9tGGvf/vFtsfaMdhfG2md3/kesvaBtz1i7ZeLhsfaah+WeIfjKHcNj7aqqz1bOrWX0XT53X+jRl+TOpjpzyn2x9oNf5PZ7D10md2/B4Xvnnlk5YsEhsfadn8yItauqfnhr7jfMrgtza9Qjd7021h57/lqx9g2H565RJmyUu+d8qfty5+DfNyq3TltVteby+8baR6yZe/7QiCXvjrWvvjp3NtZl5+TWp68dkzsr+o4Hcvv7r+memwN5amxurbKqasToA2PtcfvnzvPY/v7c2vzNe4+PtU+ftVOsvcbLufXK1b7+Z6z9xSMXxNpV9X+xd19RV5V3G6//76J3RFQEEcTejWLshYi9i7Fr7L1Gk6jRWGOPsfea2FvsvWDFHoioqCgWVMSC9CrsI8fYJ3uML5/fXvfJdR0n/ia8L2vN+cyn1KrXnxprnxRcJ/jOH8+JtV8Mnm1/w29yZ8r1v6r5Z5P97NWXNoq1D/om9zx8zoDsfM6Z++XO2fike+68zgu3/UusvcGK/WPtSxf5e6w9+ejcvnufbj441l5+rdx4flXVjQ/2jbUvvyI3t7DdiDtj7QG35M7S2bpXbj3syA1ze4KtvV1uT42Pf51b7za+7w2xdlXV4d0PibWXGnBSrH3nW6fG2gf8Nbdf818XzO1xsMhRufdmE0+5Jta+ervcu9Kqqoe2mBFrb/XbIbH2u31++bnf/1vrd2z+PPnpc2bVnfXL9iy+/ok1qn3g0W7rSbkNCnr/NXcuyekr5e6xj/s0t2aqqurGbQ6LtXe7PvcsfVAjNx9y0AO5eRRLLbFirH3CbTfF2hccnrvvOblbbp/Ely7NvXeqquoV3EP/V5u3j7X7T+0Wa0/9Lrd//quH5eY8v/DCorH2/mvm9hw+ZHDuGX6xw3NrGqqqWj14aqzd4eF/xdpPnzI81l6se+53/Vd77B1rz+v0fqy9zO65/VOWeS33Pv/Wv+eeERbeOve5WlU1X8ttsfY9rXPnFty0cG7t0FMv5MYJb3ovNy/vpom5/Q16PbJ8rP3oXrn5I6u8mxsTrqraY1JuH5HWU5+OtaedkJvjfvxOS8Xa83f+PNZe6bbusXaPK3Prdz4Z1zPW/mjcfrF2VdVJ1+X6s27MrcO9oUNu/c7jm+T2vhu+UW4Pk4/3y+3lftaA3P4Ggy7JzQH9pHX3WLuq6rYBubNo9h12dKz9xwtze+bs9EhuL7Jru+TmiH05X+7e6bs+z8farY7LjXHOO7BNrF1VteliuX0eZ22Re283dmbubNhbrrg/1t758eaf8/Czm2/vHWs/MPmIWPvpl3PPZl0PzO0FVlW144jcmP4f2zwRax/xem5/y9XXyc1H3PKM3LvxI7bZItY+vXNuX4fF2+TOR11q2tBYu6rqqady835fvzL3u37x/gNi7b/cPibWPn6f9WLtc+buH2vftU9u3vJDHXLfJ9tdlVsPuvCmubXuVVVX7HZTrP3XbXPviK/d9ZNYe8d9voi1V3t57Vj7D8fl7iFePuUPsXb37tvH2gvMzX22VVW1DM6thX10h0GxdreW3LyfBw/KvcPZtE9uHuvSPfvE2m8Ny62zv3fL2bH2p2fm1uBWVd04X+4cwE8uyo3pH9E3t86vy8q5cwde//bPsfbkKbn5dSNn59a6zbkld7br5CNzc8yqqoa+MzfW/nqr3PfZc8Hz8I7rlvk+mzFtdtVNv+y/8XDrTtWldav/k+v5b5x17UdNb/5s9ccWi7WPfXpsrP3+Rbn9hquqBr2c28v9onG5PcU32TY3frL6pNyail89tm6sPfq03ByOC3/IjYlvvFPuzz3xjNy+cVVVgx5/Ndb+x4DcGuSt9rso1n7sp1Nj7b+0nBFrf3rbvrH25a/l3unvd06/WPuar3N71lRVtb1l01j7nIdz7b4tub2Oz+qWWxvZ84TVY+393821H7q/EWt/dVVunvl7j+bWscx8LbePe1XVyRNzcxJPfTR3lt5hy28Qa292ZO7d9s39hsfaO+96aay98bu5dbi/7pZb17Drrw+KtauqFrsnN1fr1k65fb0XXjt33tPfns2d47fk47k5qBuNyp1L0mfF3J6iez2Su3/pNzZ331ZVte/4VWPtt4/IjS2v+FnuHmK9NT6MtbtskxvrO+zMg2PtNxbK3Ss//tllsfZVC06ItauqHvz9wrH2tDtyZ7qt9MQ/Y+0HR+bWRr7+xImx9grf/ifWXmBE7jnh+bdz693/sEluj4Gqqlu+Py/WXvT43DviJ85YMNZuu2ru8+XXJ+fONtt3q9w6/zOfOz7W/nG9XPvh1XLn6FVVDR74Uqx90RZ3xdqjb8/9zH/VPfc9vsvGubneO/S/KdYe81FuDc1uq8+Jtffr98vOHvqlJvZZM9Yev0LwfeWg3Jrza/6Qm8959hnDY+1Fv9kr1n7pm9x32YfbHBhrPzgvt2Zr9+9z7xKqqrrljnSptSbmzqucMDP3TDr6h5Nj7c9+l7tXv+/i3Jqtf83Nzc8fumFub6ivN90j1q6qWn3iRbH2K91y+8iO2j93z3jkh6/H2pfunDtPZpM9toy1+y6d+zu/oPXVsfZKnQ6PtauqfrPDOrH2lcNzezUPn5Sbk3BIl9w8+Y+H5z7Th5yWexbfZGbuvu2vo3Nr/K7+LjfHrKpqnRm5eWaTN3wl1j58z9yc6W3XysyhnTJ5Rv1PdtPIfQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANB0jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Dyt/5v/8acfv1ht2vxX/5f/Ex9NnNX05s+++GpMrD32y59i7b5928TaVVVtal6s/cIbV8XaM2d2iLWXWezXsfaKq60Vax/QrmOsPWLsG7F2x66537W549vG2lVVC/bsHmuP+WxkrP3jlKmxds/WC8faE78bH2u36tol1l56ie9j7R6dl4m123XtFmtXVc1Z6NtYe/LMdrH2rO+nx9ots7rH2h8+/0Ks3bula6zdvXXnWLv9rOY/i/6sVeXuX1q1tIq1q6q6tOkba8+e+0Os/dOc3P3yT3Nzv+szW3LP4p2D4wAz5+XGX1om577Dp7eaHWtXVTU6zom1Z0z/MtaeOmWhWLtt+9zPfMLs72LtDpV7Ju3QZXSs3W5u7nft20nZseWNO/WKtcfMl7t3Wvm4A2PtZxY+Ndb+cdzYWPu5V16PtXvMnxsD2bnv8rH2rAnZ+5eWyt039p6RG2tctn1uLKBnu9z3Wcu83FhAmzm575O5Hb6KtSdOyH2mt24ZEGtXVc3fbYlYe+WBS8Xalz59Z6y9wmKLxtpjv/wk1u6xau7n3a1HbgxkxpTcPcSCXXPj+VVV7aZOi7UnThwXa7ftmhtrXLBn7nd9/p6dYu2f5uXu20Z36Rdr91kid9/24Qdvx9pVVYt2zP3MG3Nz76c7teSej35oyY2x9p6/Jdbe57DrYu2HH70i1h724luxdpc2uZ/39Mp9j1ZV9ezeJ9Ye9u6IWLt+ys3R77t87tnsk1GjYu2OreePtZdfeo1Yu8NC3WPtCWM/j7WrqjrN7Blrd+44X6zdtiU392b23Lmx9pyVusfa8723Qqw99+Pc52rr4LhTq7mNWLuqavpPud/1Tq1z415zWuXGnVpqsVh76qTcu6vZc3P3jO1a59ZFzBcc350+NftuvNW83Fjjj1Nz7ytbtcn9zOdOy8y3mvt/8F2y9TOfV/uW5s99vqF/7ll6o4Vvj7WPXfqLWPuD4VfH2lVVc7c6Ktbu9d2QWPvTQ9aJtRv9c2OFPX+fmw/Ze5MpsfbOG28day+8aW79zmMPLhJrV1X1H5F77zXunJdj7Rnb5J6tGpfk5vd3u3njWHtY99wc1J5tcvunzF7/T7F233dz+6dUVX242T9j7ZdG5+aav75xbs3WEhO2iLXPb//XWLv3S+/G2n1fz61//usi28bay87IvQM5cvB+sXZV1aZj7o+1hx+ce7+85NUDY+1h3+fGZ4cdmntOmPhQbo+ktt/l5qd92fu3sfbIJ3Jjs1VVe27WPtYeMyX3nfLvge/F2lN3fT7WXvHJ3D3jrYvm1j+fct3kWPu97ZaOtT/f8NlYu6pqj565f+MT+78Ta5910jWx9qMHbRBrD/omN4/i/LXvirUHrpr7d3Zg61Vj7YUn5cZXq6qOXzq3j+zaC+T27t2wY+7fePdFZ8ba2//+V7H2v4/JPSdM7vz3WHvIYbnftad6vxZrV1WtOj635n2lNS+OtSfcvGWsveQqubGfp7v+I9a+vtM3sfbArc+MtSf1vyfWHvvnXLuqqveWy8baH5+zSqzd+fgHY+25v5sUa5/QL3fP+Mh/cmto3j4n9/P+7WL9Y+1+j2bvX95aKjffu2OX3NrrD/fMvSuddVpuTL3frH1i7dVPy+0v+eKo3D7R6/3zL7H24AVyz2bTWybG2lVVPW7OfY/P6JAbdzrtgOGx9q6Dt4u1x/3n1lh7iQOXjLUXWv3jWPuOSSvF2vvNuiDWrqr6fNHcO+KFfr95rN3nndw5XUfe93WsPW/ihbF2r5M+iLVvPnJorN12Zm6t/bwhC8TaVVX9vs3t5brg1Nxz4d8G58a1t7ky99k2ctfcWN+sCYfE2uu02T/WXqR37ndt/KjsuojWl+TGtj/q8K9Yu+/8uTm0HT8P/cznzamqF3/Rf6LV6eOqdUvz98V4d7nc9+C8N/4Ta/+wd26N3rBVro21q6pG7Zx7rhxw+5Wx9tnL5+bONEadG2vffeTdsfbhu10Waz+z7Iex9l7vLRhrV1WNfie3pmP80o/G2h8cf0Ssvdxlub13F381Nxf0oycujbUH7vRkrN3qmN6x9pK/WjvWrqo6ZfHnYu223XP3rKs9m9un8dpXc+8bO6/3Y6z98bmHxtpPXpZbP3Tmmb+Jtauqtn4lt0/jQ5/fFGv3ffmPsfa/TsztybX4o7n95+68OLdX4XNX5sbj1/5t7j59hU9z98pVVaOm5PYSeXWF3Jj8Ga/nztK76uPPYu0DF/h3rL3N27m9vb8Z/n6sfdizuXduC/zm1Vi7qurpkbn3T1++9kys/cbVO8TajRHnxdp7Hnt6rH3Nt7nv8cPH5eZqjZ6XO2u8qmqFPXaPtccMze0/t9iquTNhhj2UW4t79JLnxNq3HJcb391/1uBYe4f3Noq1h6x/dKxdVdVx1JGx9pb35Z7Hj3nlkVh78+33jLXHL5Xbh63jp6vE2vcGnwvbrtI/1q6qeqZD7rzxbxfLnRX6Wp/c2PaVd+V+3/7+Qm7//62+ze2vsMCE3DNKh0G5tbjHv7l8rF1VNeKSobH2i+flxrbPfzN3tsr0x3PnHjx3fW5P9L435PYju+7a3J5/O6w2Ptauqvr22Nw65AFzcu9xzrgmd35Rn7P2jbUPv+GYWPuPl3aOtXd9asVY+5PuJ8baY5e5Mdauqlp3ZpdY+4BZuXko/R/LzZvud+ZusfYXPXP74L98bu6cjb265O5Xt94z9+6qquq9r3Pjy18dkfse/12vjrH2lpNz5xBecPsmsfYNV+Xmsb7+UG79U+89c/skdRyfeyatqnr/uFdi7Q2uzN1DPPLtHbH2LnvNi7Vrl9xc0sdXmRFrH75N7ll87Jq5PYurqlY6PTcfYu7BuX0mXz5hQqw96B/NX8c8bfovfz5Yf5W/VOeW5u+XeNTCuTmJD8w/NNb+8rLcc9WB1wyLtauqpi2d2+P65sNzc727fHF2rD3swNx7iMd+yJ1DfM2Mv8XaO66QWzP1j4Ny9x6nHPBCrF1VtUmv3HPdLS/n9v1tPSY3D/SVk3PnXt8xK/fZ9vDgvWPtDU5bP9Ze80+5uXFvHpX7eVdVXd0rdybLsUeuGWt3eSy3z/R2V+f2gL37x9xatd99cHOsvcd698baA2/L7cl15MDcz/uWG7Ln+K2+1TKxdsdLxsXar1yW2wft7VVyczFfbPdwrP2Hf+fW6G1+6rGx9qc75PY6/NdmuXPVqqo+GJQ7r2H/r3NnPg2ddGes/UOb3Ny464/oEGsf8H2fWPvwtXLzNx54t3+s3W+73LzfqqoDbs3tw9ZhWu777Lx/59Yfnzz06Vh74BO57/Ehm+fe599w2AGx9u5v5fb1bnkjdzZIVdXYN7aOtb/+PHcu7XuL556Pvpz8eKzdqt+XsfYn+24Xa2/89E+x9ntrLRZrX7bdNrF2VVWvCbk9VJb81amx9tnf5ubennXB6rH2c3vn7pc/OSu33rzr1Pti7VvvyK27vu67E2LtqqqHFx0aa39+Su6c0BP3y+3Bv9KHR8fav+ma+3y57ILcOpJtR+fW7+y20fWx9pgfc/Odq6qOHjI81j5mmdy4+hHdc3uYHDYn97n6+YznY+0d18ztEz17n9yZcn0f7R9r73Babu3xbz/uEWtXVa2wYe53vdUWuXGIfR64K9Ze+Y3cvuCvdPsu1j7p4txn+iLTb4m1d9wyN7fv6lnZuTcvt82dE3rlvbn3KFMuy40FrPnYXrH2m5Ny51Wt9MlHsXaf/XNnjc932OxYe/il+8XaVVVd2uf+3tfv+btY+4CZO8badUFurd2Mk3LtcX/+ZWcg/xJLrZo7U6Xvi7l3CU89m10X0evPuTHWBSfl1tr9ZVDu/fQS0zP3L5OmTKvj64lf9N/Yd8ZW1apV8/ee+cfm2ze9+bMH+rwVa4++4v5Ye9VfN39vgf+3EUNz4yfDns99F3a6Mrc/5LlH5daEbjg2t9b+oDNz99nHzL9ZrP1939yeVm0OzN13VVU98MgnsfZyW+b27v/N9bk153e8kZt/O/7PufXPg7Y/KNZefYncWTCvLL1srH34fJ1i7aqqW3+Tm/t7X7/c/P6h/XLnnL/RPTcmvt0zrWPt7suNibVr5JRY+vOpubVDO660Wqy98vu5/Syqqu67Kjdet/iJufXP818wM9Y+6t3hsfbQN06OtYdMvCTWPv3W0bH2Acvkzl8+ao01Yu2qqpljc3trj5k7KNY+aJvcc+HfF8ndr864NTcH9vKzc+13d8qtHXpywv6x9kHb5sYZq6ru2aF7rN1xiUasvcHhuXV6X12Um5M4uHPunvGoI3N7DAx7YrtY+9X9j4u1+1+f20+0qurKl3M/800OOTjWnnLc17H20ZfmztG765ncHmyXLpnb32C1qTfF2s+/kTtPrtvHufkIVVXteuf+7DfvlNtr8bj1cns03VC5tQWb7jlfrN3SNrev5+cf5vZSffyV+WPtvWf1j7Wrqt4bdVms/f3s3L7BT52Y2wf/wPMXjbXnm3hOrD1g3uax9phnc2tJVnku9472zktz53tUVW08L7e/5WUfD421D30s95529NFbxNpT9sydxXv/jT1j7Ts+zu0x0G6J3NrnXrNy921r7r1nrF1V9WOn3J4WY54+KdbucsxXsfaYLn+MtV95JHdu4uQ1f9l6jl/i8JPuj7UHdDol1t78rNze/1VVI17IrV1a9G+rxNodF98l1u5+5lKx9jvD3461Z66eW3P+QtfcPPVb2+fO6Vr+t7nz6KqqvhuVW390SefcO8M/fZBbj7LLerl9TIaskxtv2+/HX34O8v/Werfm5rhtcm9LrL3A3MNj7aqqjS7I/b3f0faCWLvX5Ny6iN8fe3SkO2n2tP/R/y43IwoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKZrpC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mn93/yPN9/1yOrYseP/X9fy/+mHH39oevNnY0a/E2vPbfOfWPvKEx6OtauqqmX+WHrQLhvF2m/f/2is/eHIabH2hPETYu0h224Ra09smRhrf/DRR7H2l18+HWtXVW2/4zqx9tc/fBNrD1x3zVh7/OefxNqLLLJirD1l+hexdrWZL5YesOIKsXbPPrn7h6qqGbPnxdofvP1WrN0yfU6svXi3AbF2j4k9Yu1ObZr/TPazDvNyv+ftWtrF2vN3zn2+tG7MiLWrqn6qubF2+9mNWLsxb2as3aZd71i7fevJuXZ1jrVnzJsUa89rn3sWb9sp9x1eVTUt90evNq0Xj7W7dp0Sa1ctHCu3n/dTrD19Xu4eol1tEGvPaHwbay/YKZauqqpDlxwSa+/1wa2x9rg3H4+1f5rzX71q+j/Vb5k1Yu05s3Lju+M+zo23zVy7f6y9SuWeEaqq+rTKPRv26b5orN1x9vRYu3Wr3HNC53btY+0ZM8fF2l065G7Ue87sG2u3at821q6q6rt6blz9hy/Hx9r9F8qNe9068v1Ye4l+rWLt+196LdY+Zo3fxtoLdc99n3zxTe69fFVVr25dY+1Oc9vE2j+1mhVrfzMpNwYyecSHsXbHRXLvj7p2yd1DfDjq7Vi7/Yzs+6MZ8y0Ya4965b5Ye/UlVom1x77xRKw9ZM0NY+0Xh94Wa282eIdYe+TIs2Ptrt26xdqNiVNj7aqqT3/4KtZerP8Csfaozz+Ptb+fnbtv69urX6w9YszHsfb3k3NjP3Nbcu8SevRcMtauqvph/GexdkvPWLrmtcnFpwffXXVs5NY+tV4rNydg0te5Z9K2M3MvqGfMzd6/dGrbEmt3aDc71p41LTd/t9E29298XkturK9jS24+5U8dcs8os2fm5tc1Wgcn11XVvLm5P3urqbl58q075J5RWrXNvMtoNeeXv7fa8IrB1alD89+vr9g2N2do4TevirUPGph7nl32rli6qqqGD9491t6v0xGx9imjb4+1h3zVK9buuNxzsfZOO+fm7cx7ar1Ye8E7r461H7r/lFi7qur3B18ba2/ZbplYe8L3ubHhOe1y81eeWSv3d77Fd7nP1W/XPSjWvnvSv2Lt55dfJNauquq2Vm4e6l1n5+YzPDUjN46w1Eb3x9oDb809z45tlfs3PnWnYbH2cW/mxoYfXS+3Vm30lS/G2lVVPf70Xqw95pnVYu257XJzQSd8lpsrtekGuc+XkR03jrVP3S63ZmvdJ3L3L6vunl1TMa7xbKx9+9u5+5dv+j8Zaw8858ZY+9JFcnNn1huX2+PxsZVzayrmrJ0b117h2tz+b1VVJ+5zd6w94b13Y+27P/4y1v78nDtj7U832CnWbj0+9453fO/gmtC2ufXHrTbfMNauqpo268hY+7StcnPzJn6fu1/u2zf3jrjVO7lxiAM6PB9rX3VI7nftre1z+7ieNTE3nl9VNaf1qFh7wrujY+0HFl091j5vUm4t7HFjh8fa9VRu373R1+b2Zzr98G1i7dfGHx1rV1Ud8dWxsfaB+/471j72H7lxr5VG5taqXflp7jN9n+dzYwFffp7bG+qErrn5J8uum3t3VVXVo16JtT97Z/lYe99/5d4fbfJ07me+x+Yvxdp9n1s71h507cGx9nHX3hRrz9o1t0Zvjb65eV5VVdPvyY2rfzEgN777xcjFYu22rXL3q6OX6BJrP9XInS0y9r3cOrmu2+fWfb+0QO75pKpq9GO5NSF/HHNxrL1Lv1/H2tu3z407ff/00bH2Bwvn9rY8v/eWsfbNS+XOIOy111OxdlXV0A1y676PnJcbA1m+7xux9sjpH8TaW1++a6x9Y5fc+O7kLY6Jtb8+Ijd/d+Mn7o+1q6qWXmzpWPu4R1+PtRe9/vBY+9A7MmdGzZ07q2rML/td3++A5aolsKf78y25szrvvuKmWPv2D3JzMV/5ITcuXFXV9oXcPPeNRq0aa5+7yohY+6Xbfh9r3/Nobn+n++b0ibU3mLB1rL3TkL/G2lVVq717Yay9y165/QJvHpJbp7fbSn+Jtdueunms/cw9uXmBcy/bJNZe9rzcPIpvr8n9nldVfbF1bh3wyKVz+yv88/LcnuYdh+TGpfc8M7c35sALc+twh238daz97kXfxNpVVbMGvhNr99skdxbOlYv/Ltau1XJzSBa9Onc+69Nv5uYz/GeL3FjAgEbuOeHZKcfH2lVVg07InRs5YLOFYu07R+T2vvvx3Ny/s0c2HBxr7zY4N5/gyksmxNr7Pjkw1v5g5+yZuCNfyJ1v1m5C7r3+wQPnxtrnHn9crL3Y+HNj7Tt75fZvOWpQ7pl0m3m5v/Oqqna3PRBrH/rJy7H2USNWjrXX2nRIrH3J17n2ocNy+/ffdcPfY+3XTt8s1u7z++ABQFX1/FK5NWO7Lpp7d9b6w9y41/ov/jPWbvdjbm+Htl1z533vt0LvWPunzXJrSaqqOl/8WKw98tnFY+3frZr7fXv4/H1i7Z2ffCbW3uS1h2Lts8/OfZ+sPG3vWPvGXXPrpqqqLml7ZqzdY+kDY+1eZwyKtRvX5D7TxxySe3c1+L3gfdt6uXk/E5bKnfdQVXXRhENi7fOv3CDW7t12eKy90R65OTCnXJw79+DoqS/E2jf0OCrWPmPL3L3TSm/nztKrqlqlVe5zfYFZuTUCi36T2yv6qxVy80C6rJ07m+3hvwyNtS+clVv/fNgimfVDP7vxxPGx9i7v5PYH3+fk3M/8lJ1yZzctvX7u/fQj9+f21hz4eG7sZ/ABufv0ia/n1h9VVW144Kmx9rTnc/uRffTkm7H2I/fm9r/bequFY+2vxuT2OHhl7wdj7XkX5sbUq6peOvCCWPv5EVNi7R3XyJ3x/vSY5u+pMWveL793WOHUNtW1ffP3ez510/Oa3vzZN3/PnavWY1zue+jE63PP0VVVh3+Zm6/0/lu5vXcXvX37WHvsG6fH2vP2WyrWvvDu3JrQa7ptGGv/a4fcd3/HOy6JtauqTnrnnlj7kEtuibXHTZ8Ra798ae7cpbPP3ijW7vbtWbH2p+fkvsenfJ+bS3Dr6Jtj7aqq8yu31n9Oj9xz/OVH5M5dardL7my1tgucGGtv/efcfuo9NszN9d528cti7TMuzn2m/+quK2PtqqrlDno81l6zbe6d14035OZwXD3z1Vh7wevvjbW32yK31/LTt+buIUatmFsnN6BX7v6hqqrvr3P7mAyY1iHWvveF3PyRTz/PzRdq2Tb3mX75Y11j7Snb7hJr/3X/vWLtC/6UPef8s6G5tZE9hufOy7zqqdw+IncdlpuL+bcZubNoVtsyd//Sbrs/x9r79s6tfZ76QO6ciqqq6Zfn7l/2uCe3pmKjJ++Mtdc9Mbc31NAeuefCr+5aJNZ+9Te58zlOeT13/vJTy60Xa1dVvbHUpbH2gq32jLVv7nlCrN1YoW+s3WvwOrH2OwucEmvf/EhunPGZC3Nr5A7u0j/WrqpavnXuTNzr5svtszh/S27NVttXc+MQDx6Um+M+bf/rYu1tHsj9Gx+42/6x9lt1V6xdVfXZJbnf9XUvy63zv2Pv3DnEK7x+Raxd43Lvp7v3zM0JeOeI9WPtJc/Pjb+s9HFu3GlYn9w5E1VVF9+f2+Oxx6G5vVRXvXyrWHvyvbm5nC17/jHWvv203JmR+8/O3bfN22C7WPvF+46Otauqpi60bqx9Q7ebYu21B+XOpLv4hNy9U9+dc3sMPDwodw5x5+Nz62BHDcut+Vp1rcVi7aqqCR3GxNqtNs6dQzz52Ltj7ZXuze33t9Rt78ba877Pvafd7ctxsfb9z+b2Ibvri9yYV1XV7dvmzoy6/uzcWeOfvZjbh/6cgzN/7hnzZv7i/8b8S+xXbbo0f/7OLsOWbXrzZ3N2zM237tI19159j9sXiLWrqja8/6lYu83Kb8XabVfMrdO7/3c3xNrXHZR7tpq/7U2x9t4/5saNNj/7mFh78qW5dlXVx0vn3gess0Vuvne/k3Nz1G7a7Dex9rJb5PY4uHXf3Nql0afmxssuWC83Ht/mndy/76qqazrtEGu/tmFu3vHud+TmJD66TG6csvucp2Ptx1bMrfNf6KRVYu19P8rtS/n25rl5v/ttmD1zqd/eufWJT76Q+zd+7b658yqvWz/3ffbTxbk1yEdccUCs/dBbufv0GZ/k1uGe1PuwWLuqaqc5rWLttw7OnbP1jy65z/WuA3PvAsafkjtrvNeFuffq3126Rqy94k0/xNr/mJybe1tVdfsj18TaBy6+ZKy9zg65eTt7L5I7h+YPu+XuIbr+M7d37mmDdo+1l786N9d7/V65PSWqqjZcIvedctnWuTWCXV7PjbF+9NiOsXaPPrn9wK4dkdsnuv3KuTli5/VsHWv3nZXbY6Cq6pLvc/fq53c+OdZeYffcfePyT+TGX049Kjf+cutLy8Xar5+RO3PhnifG5tptXoy1q6r+fVpu7s+9V+TORz1tTG4u6OzVf4y193kot37o5cU/jLW3eT43xnpX3zNi7ftOz62LrKqas83OsfagbdaOtZ9fOzcPZPWdcu+n93zu+Fi7a49NY+1PnxgQaz97+oRY+/2Tc8+FHx2dOz+wqmrqzWvF2v275P7et+u5RKz9h4G587Yf2PekWLv1tPdi7b/ckPtsW2m93L+xPUfsGmtXVZ270OWx9odnLhNrn/fGj7F29ys2j7VvaJtbg7zHS5/G2h88fWisPfb93J6iQx7J3r+cPTp3RtmBk3L7kq9/yOhY+46/5fZq3umgX74u9H9rrflHxNqLvJ37c381rVOsfe7zH8XaVVXbXP5srH3VQrn30691yL1HeWKxzPuEqfP+Z3u45mb/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAADw/7B3n+FWVXe/v397bYpUQVEQFFEk9o7d2Hs39hJ777HFbuwxaqImMbEkYtdYMPbeY+8FLIgKKEoRlN7PK8+75/qfXE/O+j7nf93361z5DNl7rzXnGGOOCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0yY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/ti8G7V9dW7o0vTt8zW2b3vzJMYM2ibVPePMXsfaLC7fE2lVVK3V+Idb+dML4WPucty6Itc9q+4dYu+fiu8baH397Xqx91sMXx9r3rLN/rF1V9cDWd8fa7888Idf+7bux9pAP3o61u167VKx95iULx9o9/7BqrP3kbs/F2j1XujDWrqp6fseLYu07jugVa+/yyF6x9oj93oq1dz/j6Vi7pe2WsfbeJ7eNtZ+59oRYu6rqrYVy/+1733RYrP3NqYvE2mf06xtrn7L9t7F25yG7x9qXtv8+1r5n8oRYu3Hbu7F2VdUP8x6LtecffWWsvee5x8XaHx4yL9b+YNMtYu0dgvfj7/7tj7H2mI9ycyCvd3wx1q6qumuv12Pt/ocvF2vf+9cDY+0HHnky1u51w0qx9ttH5a4Z91kiN8f68d2bxdpVVbP7nRBrPz58/lh7w5fWiLUXHBRL15R1cnOs/VsHx9ptbrk61v7zitvH2m0/+CTWrqoavE3ufvzJo3PXjd9tl/uZb/GHNWPtr06fG2v/a+JZsXaPKafF2uPfGRRrV1U9smnu+unALrnv8YHtcnOsn17xaqy98BZfxdqXr94u1p4wNtfeZaOusfaQvsNi7aqqMe/dEWv37T051p638YKx9q17XBJrfz7oL7H276/P7cXoPvK5WPvoOcvH2lVV5533cKz94dQjY+1zNtox1p55WO56eezAdWPtexbKzbGu/tcPYu2Rd+wdaz942ZRYu6rqxG/fiLU/3zO3Ttu+47Wx9tAdcteN7zQ2jLXXHZ+7P1pjzdy/+b9u2yHWrqrq98/ccyGtR50ba9/2q5Vj7ZlfnRprf7NH7nv8qYt2jrVXffOUWPvK6bnncN5aNvfsU1XV/mfPirWXXujdWPudzwfF2uPa5Z69+v1ql8baJyye+zvb8tuHYu3tl8vtJa2q+v7Jy2LtPT7PPRvx2t65ObcxP2v+voBps2bVdfdk18YBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/5na/Dv/47HffF7zzTff/62x/JcWXGjJpjd/su++x8baJ/5631h73Lc/xNpVVT9brl+svf7qm8Tah+9/UKz95pMvx9pbbbdNrP396C9j7dWW2CDWntv3x1h78uSusXZV1cv/+jbWHjf1+1i7ZdLcWLtzp9mx9qSpX8baE76YGWu3b98Sa3fp0i7WbtN+gVi7qmrK5Ldj7fnn/7cu6/+jRgz5MtYeNm50rN1jTvPvi37SWhNi7WosEUt37JD7XJ0yJXft1Llzz1i7qqrROj7WnjezQ6w9o5H7mc+ZNjXW7tgl930yp23uenVe5T7TZ8/I/Y3Paj8i1q6qamnbJdaeNzf3u17VNlZO/ldX+9zPu/303DVjzct9prebL/dvPmNmbv6jqqpfhz6xduu8WbH2Ky/eE2vPyX2NV4epk2Pt9u3ax9pzG7n5tvteyq0lbLzM7rF2VdV8lfuZt52em+/r0CH3ndI6t2Os3TJ3Sqw9t6bn2tNzc6wtwev0PmuuFWtXVU2clrt++urTj2Ptjyd9Fmt/92PuWn3NBQbE2m8Hb4+6LpCbf3nt+ftj7QW6dI+1q6pGT/8k1m40JubaXXJzblMn5+5RJk3KzfctNjt3jzLkjSdj7WdefiHW3niNrWLtqqphn/411u6zVO5v/O4huc/VNVdeL9Z+6e1/xdoLtzRi7Q8ezv2ed203L9ZepEfuvnDRlVaPtauqnnr91Vh79szgXq8eub1e33ybuzebO21krN12sdw8449fTou1J/d4INZe/Zufx9pVVRM6566XV2w/I9ZuXXSRWHvSdxNj7a9H5yZgnn3l8Vh797W2jLWnvDI81m43N/eZXlU1d17uGmL6vOBaadvcHtr283JrV3Nac5/pc6fl2tWS+x5t026hWLtm5a7bqqoabXL9OXPGxtqdW3M/807zMnum59V/f+5l6nuLV0v75n8+rrzfLU1v/mR850Gx9vLP5NaWn35+21i7qmrR3XeNtfsetnas/dHeuWfOR59xQ6zdssrvYu0lR7wXa6+224Kx9rNTc9f4Hy/6QaxdVfXGyNxn68Mjr4i1t9gvt846653cXq3D++b2Q7731aqx9ogd78y1x+auIRZ8Ijd3UlW1wNW5eYSxW+baqwYfLrj3kTti7eWn5NY6t+2eW+e8o/3OsXbfiWNi7XmffBFr91glt5+gqqrXaofG2h2f+H2s/XWP3N7fSQf9I9a+57e5/XHjbzkl1l60dbtY+/jFh8Tacy7K7dOqqnpjYG59+YgBuedRF+u+Yqx9T+P8WHuftZaJtRc6OXduzegVr4q1e3y4aKz93OjcdXpVVefBR8faj7z6RKz98qDc8+4ffLVLrL3sqNdi7T79fxZrd/9br1j72cNyzybetWruvrCqapmLusXa7591Rqy92e17xNqLrbxSrP3pYsNi7WvG5tZRluuwZ6z9/eyhsfar6x8Wa1dVdf8qt39lxAI3xtoX9JkYa3e5+JtY+8pj9om1+69xXqx9xr65szwWWij32fb8msfH2lVVZ7+Y+z57bMfcz/ycvXPn5350ce6M6vWvzZ1bM3P7I2Pt1dbNnU110hW3xdp7zl0t1q6qGj3xrlh7016nxtqrvj4x1j59s36x9p0Tcnut5o7KnRO93Z65fV59F849hzvuhdxzuI+ee0CsXVV1yE39Y+3uvXJzjU+sntvHOnOvt2LtUccuFWv/bd3cWuWCc16JtRe4bv5Ye+Ujc+eIVFUt82Hu3JqRn3WOtQ+9IPes2l1T3o21d3kotzY+6IHc3PLLg3J7pl8789JYe8EB2fOS9//+zVj777vmfuYLz3gn1l5u69yc14Dtc/spu2yTe3/QsOB32V6b537PO89ZLtauqjpsydtj7SdndIq1l3rg2Vj7xmmZ9cqpc6dVbkcAAAAAAAAAAAAAAAAAAAAA/697aqV7qmOn1qZ3l525W9ObPzni53+MtV95Z91Ye8fpB8baVVWzDz881t7igNzv2yIb5d5DvOh+ufOO+x61Rqx9xre59wYMmrlrrH3iLV/H2iOfzp0rVVW11p9z53kNvuqCWPuOjr+ItR8+/rpYu/ugnrH21j1z7+BZ4ZoJsfYpx+Te1/DtYdl30Wx21MBY+81Zc2Lt787OvRfl6NmDY+2lL98r1j5vUu78tnuWzL2zYIHl9o2119n/llj7237tYu2qqj2ezV2/9LptXKzd/6ARsfbz7+X+ztpNy50x/eu+38Xa1977cKy902lLx9orPnd2rF1VtfruuXd1Lnrm/bH2P3f7U6zde5Pc39kmR+beRbPhQy/H2sfdeGWs/fQ7uWuIw7s9F2tXVe33Y26e8+LLF461d3rul7H22d3HxtrDTtg41v5i66ti7SG/HBBr3z+yX6y90j9/iLWrqt44LPdetyvOz62jzDjhmFj7+NVz85xbjXkm1n72wIti7VFv5tZJd349Nw/wq7XviLWrqiZd+X6s/dFyO8favd49LdbedPr5sXZNPTSW7nvIjFh7n21zn6uX/7hirD15n9x7/Kqq9nt2kVh77tO5uadBe20Ra293VW69svWKPWPt3VfLvffonM2HxNovfr5orH3gmDtj7aqqk67JzT2tdGhu/8ta8+euWZ8/8f5Y+/wFc+8hXmz6I7H2Bpfm1gtPPeq4WPugc3Prw13W3jrWrqo6YY9vY+23+uXec37HxNw6ygkL5OZ3X7iv+c9D/GTRY66MtZdf8d1Ye/qqufmPz554Mdauqnq0zT9j7RPq1Vh76DajYu3xr60Xa48dcXWsfciqN8XaK+/yQKy9wn25/+7GVSfE2lVV5110QKx95g3fxNoPTXg71l772U9i7WmPbR5r95+du3baf49XYu3ub68Za0+6e2SsXVXVZfDQWHuDb3L3KGttm3s+YNBLmWeYf5wyr877b368/HH4H6pLp+bPF/5pm181vfmTmT9+Fmu3tJwaa+9xTkusXVW12mP/iLVfmZHbF/jrOZfE2ntcnJuv++6sc2PtOjH33PfSX24ba0/5e+65hoEty8TaVVWzz+oda/d/ILe+fNtZuTW3cbfcEGtvtfVLsfa+43N7Mfvunnsu88glcvfSn+y/Q6xdVXXb2s/G2nd+cnesffTDuf0M+3Y9K9ae/fxRsfZrtWCs/c1uB8XaK8+8ItZ+Z+nc/OgGx50Sa1dV/X7mNrH2TiceEGs33l851v7wZ/fG2r/6y6RY+/yP9o+1vz4md+bfmue/Hmsv1+fiWLuq6sUHc3vN/7xobs7tF2flrp261gax9p3zTY21p652Tax91qjc73mbY/4ca784f5tYu6pqyA0bxdrzH5h79nrj7XL7+09r0yPWXnLX3Jz6XaevGmsv8sZasfbpH60Saw9pn7sXr6r6asxOsfZZ/2zE2j9un5vfPfWvT8XaA7/uHmtv0Ct3vsGDpz8Ya6/6m9zczxd/yp7JdeltZ8banXY8Nta+bGTuHPwbb+8ba0/YPncm197jcvfD0zbJnQV/1oa5e7PPDs/tP6mqmjZiWKz9wNa5dy6sNij3PMlfV8vth3h5UG4N5+n3c7/rX089PdZe/r0+sfZ8z+wea1dVHTnjxlj7oj/n7sf/PCJ3VtGLP+T2O212eW4t48PLc/tfVrp/bqx98NJdY+3evXPnUn30eu6soKqqISvlzud+9JN3Y+3l/5j7G7/ql2Ni7en9ZsXaD7fm7ofPHJs7/+2pi3Pvo3vzxOy+5X8dn9uTsHHXx2Pt3j1zz3237XNkrD3/L3Jnx9w6JfeurKOuyN2jXH/bvFj7wPVy96RVVXf++rFY++Htc8+j/uboW2PtjQ7K7adsPJB7Bui1W66NtVd89PNYe+xCuXNEWq/M3h/1nJub01/6udw76bZ8LPe5PvjCzDs2Zk6vqv+Do5pzOxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi6RnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaZMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/23O/2qc6zdf8V6Mvt/2RTW/+5KlRK8baQ3beI9ZebPvVYu2qqnO2fz7Wfmn08rH2+E2HxNqz33k91r77yqtj7V/cen+sfdajn8TaZ/ZtF2tXVV3x+lKx9pB7Xoy11/3drFj7hy7PxdovLbJ0rL3tkFdj7Y/OeSvWXmKjZWPt0eduEWtXVd029KJYe+F1j421x382NNb+ZMhHsfY+NSzW3m2l62LtvY6ZFGsv/PCasXZV1TnvLhNrr33jVrn2qK9j7b2+7hRrv3/8nFh71h07x9rfDPw81h7z7cmx9vAtL4u1q6quW3LPWHvdn4+KtT9Y9rFYuzHu7Vj7o/e+iLWfXuHKWLuly1Gx9h3nbhBr/3jGFbF2VdXf/r5hrH31bw6Ltdv+ukOsffsauXuzG488Ltbe+c9Px9pLnvpArD19u91i7aqqvVcYE2uvM2PtWPukNS+MtS/pvXKsfe/rueu2WWetFGsveGgsXWv2eTjWfuGzU2PtqqqnB38ba+9+YW6ucf7HfxNrn/3Ym7H2FYMviLU3v7ZvrN3tktxejL6P/zHWrqrae7nFYu2OA2+JtY96OnePst+md8baD97TJdb+x525tdK1jvs41l7/5pGx9lsXXh9rV1Ud9ObYWPvgpXJz2289mpv36nb8GbH2wkNy3+OtJzV/D+lPBt2+Q6x9zYG5tfGqqi2fyK0ZXr5lrr3h87nP9Z/vOj3WnnTXI7H23uf9Lta+fu/dY+2D19wl1j7p5n6xdlXVLTfk5pdv6j9frL3qkvvG2jeOy+3FOGlAbi1j9VefiLW363RJrD1jy6ti7aqqc8fl9rK+8Y8jYu3ul+TmQM5a7A+xdr8Nc3sqr7z1wVi73Ua5PU8T/7ZgrP3t2sfH2lVVn7wwI9Z++4/PxNojD34y1q42e8XSSz14SKz9zHy567bNb7801v6mb24PbVXVFhvcEWtv/01uXv3pWe1j7bGHN38vxqQp06vuyc1BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9ztfl3/sezpk2t1nlz/2+N5b/0/XffNb35k7dfeTTW3veAI2PtLvPdGGtXVa291sGx9sZrrhRrTx0/NdZee73tY+1eHVti7R69Fom1Hx/2WKw9fVy3WHvBXuvG2lVVO2wwPtYeNv7rWLv9tC6xdrsu7WLtCWO+irWX6pv7N5/dunysPX36mFi7vl4g166qcaM+irU7z1421u40tm2s3XP2fLF2tfm3bqX+ozpVz1i7Tc2KtWcF253b5T5fZs3M3Q9XVbWftWCs3TJf7u+s3Yzc9/isdjNi7Tatueu2OS2zY+0ObVpj7ZauuXuE1rndYu2qqnaNObH2nLbTYu0ObTvE2jNmfR9rt8zsnGu3z839zJk+L9buOG9irN22tV+sXVXVrs2PsfZve+8Ua584+p+xdtspk2LtlkkTYu3pbXPXTvPmNn+t7ie9u/WNtWdOy/19V1V17tgj1m5pCX6Pt+0Va7ebm7tmbG3k1q46dPgh1p71Q+7+qN96m8ba7eY0Yu2qqvnG5uZ/xrfPfZe+99m3sfakmbm/8U9HTI6157TN/Y1f8pvLYu12LbnrtnWXyc2vVlV9/33uO2WB7rl59dmtuT0BM2bk5n6GjxkZay+z+sex9qjhuc/0Oa25+6O1d8/trauq6vPpKrH2+B9yc259Vs2tjY+f0j7Wfv+lW2LtE39/faz94V13x9qrdMitYzz+4Xuxdpt5uc/0qqoVBwyItV976aVYe8tNV4m1h4/IXatXcC9GnyUXi7VfeHJorD3nrdGxduNnz8faVVVbL7ZTrD189PRYu3/X3PXLtLkzY+2vPhkWay+6UO7fvN36ufvhNlNz+2dHvvR+rF1VtVi33PXThIm5PW7duwX3oDRy807tpvaOted1zs31zZyZ21dY03PrR983cvswqqqmjM3Nv/ReJLdPfsbk3Pp0+3YLRbqz6r8/B7H8GsOrS8fmP9dxx19ya43D194q1l5s9Jmxdv8zc9e6VVWLv5mbK+y48O6x9p0nnRNr/2rVtWPtHqt2i7XbPrdKrH3s9N/H2ksF93D8epncnFVV1TonDYy1P/zDBbH22N65vVqTev4j1l79pdwzPF/1yf13//KDo2PtL9/OPXM+ZYmusXZV1eS+98bak14YFWu3GbxRrN17cm7eqHO73L/5+JVz3yeLfzEi1h49JvdswYhVc9dOny2WvXaa8mluvu6gpTeJtR8Z+WSsPeeDv8Ta2+y7eKz93so7xtrTW3N/Z4NbV4+1O+y/S6xdVdVy1q2x9nGvfBBr33xr7nmxBbZbItb+eGJun9ZlnxwQa68w/6BYu+3kibH2Rjvkrp2qqrrP/2KsffiC42Ltbqvl9pp3WP2FWPu797rH2ouslXvuu8cGuXvSbbsfHmvfNDt3ZnBV1SX37htrv/pk7nu87wa5M4vvOyX3nP815y0Va2+9/KKx9nev5Z4/3rLX6bH20Em5/SNVVR+8/2UuPue5WPqNLzN7Z6qqOnyb24+wxve5fe6tKx0fa//ix09i7SMvzZ1f+9J9uX0/VVW9R+U+3+Y7Z2KsfeOsT2Pt2avmzs8d9ZfdYu2hA3LvdFn0m+di7d6fdYy1D3z71Fi7qmrcJQ/E2idel3sW97T+K8fa1+y6fqz9488Hx9onHpf7bPvXe7nrthU2yK2TvjA5d+108tjcdXpV1csbbRhrtzkyd+bfXr/KPTc1+LIdYu02fd6Mtf/4Qu4ssi3XWTLWPqoOi7Vfe+zOWLuqar9tL4+1R46aGGuP7Zn7XO017olY+50fP4+119s8d0/6yJx3Y+1TOuXmX+5b59JYu6qq1+KrxdrL9cztC1jsxdwa8fDdcvNtWw1bL9aeuH7uGuLARXLr8sMn5ua1n2+Xe+a7quriv+X2Dj9zwrmx9grb5Pa/fDwoc35Ly9zs7xoAAAAAAAAAAAAAAAAAAAD/b+uwy7bVsaX5Z9jdcNo/m978yZDDcu+8fnr5jWPt78c+EmtXVZ34aO59vFOuzZ3vdMWVuTNv3h32Xqx9xrX7xdrrnrF0rD16549i7fZ9voy15/twlVi7qurQB3PvT5y7w2Ox9iubXxxrb3xU7n2Z3Q7LnYV6/ytHxdpX7Zc7N2+ZkXvE2t1uacTaVVXfz8q9U27XYblrp0MOvSPWvuO93Fnutz45JtZ+6NHc+90f2fPmWHud8VvH2tsfsFWsvckpXWPtqqoTRx0Ta8/dZ/lYu9MaW8TaV22wQKy92G+7xdpHL/FVrL3JjNz16gk97om1N930lFi7qqrTw5lzOauq1llreKw95r49Y+1bj7sp1r5vr41i7cVm594TevGHufujuy47INbuffnmsXZV1Xs/3hZrj1lq/1h73+d/F2sf/FTu33zso7l3ZNx+3y9j7ZX/mrs3W/umD2LtvTf+LtauqtpjUm698pSDcu9rWPLd3JzX7FG5+ZcjN8y97/vj3sNi7Y92OynW/vsqv4i1f/v6ZrF2VdUSA3LrR7u3z61XDn/43Vh7kQ1nxNp/fWJErD1s1Qdj7btefS3W3mH6lFj77IEjY+2qqvVv7xtrL/aPP8ba+62YewfyXs/n5rzuWOfkWPuCG96Otecu+06s/eDQNWLtm0++Idauqvrksatj7d0evSXWXnFU7nP90lcWjrUX2D/3vqtZj/WMtV9aY7FYe90DB8XaV43NfZcN3DW3z6uqau8r146154zNfZ8tukzuHaVLLNMSa2968CGx9tqP5faBnJ97XWXdP+vUWPsXf9kp1q6q+mbKrrH26oduGWuv/dvjYu2bF849D/JA+/dj7UdaLoq1Lx+ZW7N7edOzYu0Dv869A7mq6q6nH4i127W7PNY+a2TuebfvXsztW975q9wc68EzV4+19xp3Raz9eqfTYu27P8qt31RVzR16QKy93p37xNpnbNYaa/fZ+ctId+6Pk6rqv7dfe89Vh1Vr1zb/mQH9Gx48/eimN3+y5qa5ubrF+70Ra889Nftcw/Wv5669Ot40Otb++1e5vVpDux0Yaz+/2fax9iUX5OaGnzk6t5dh0mO59kJPZtfVB/2Q25v3+HJnx9pH3PhDrn3AzrH29V/krjfb/OXNWPuRU/8cax/xdu5Z2Ckv3BhrV1W9e83vY+0xT50ba7984fRY+6qJA2Pt6a++HGt33TU3V3d17wVj7cF/vi/W/vmluWdhBww+M9auqhp8xVWx9ncrt4+1tzk0t7Z92/ChsfaDfT+Mtd/Yv1+s3fvT3DMVy87KncF2+MeTY+2qqod+83Gs3fcv18faG32fuz/qf1unWHvnqbnncB+77JVYe/1jcueBDb0j9yzsNmvmntGrqlp739y+nd1Wze3b+duNubnlW9fL7XO/9c3cnqHr+ueeXTrkrf6x9oiuuc+299vkvsOrqnZ8a91Ye5Hf5M7FumajbWLtNsd8FmsvfnduLWHArbl78RVGdYu13238Jda+vd11sXZV1U735Oa2RyyR+33b5vzc86ir7zA+1j7lydzcz/Rl9o61n765+XuN/rctcvsC73stN/dTVbX/mNyZPfdNvSvWbhmVe17svs65M7K73JHbd/zNa7+OtY/eNPc86le/fz3Wbr9Ybr9TVVW/L3Nnol/88u2x9n3L5p7nuOmdc2Ltc+Y9G2tPmJp7h89a55wYaw+4YGys/e0PuXWMp44dEGtXVb11xbGx9isX5s4NXqIld834l5OfyrVfuTPW3mtYbo/8Pg/cHWvvvfZ6sfaT998fa1dVbX3MUrF2pze2jbXP/rr577r8SdsXzoi17387d47rz9fLXUPMfu+aWPuQ03Lr02dfPDfWrqpq3/2bWHvDjXPP+R1+du6cxQlXnh9rP7F97vrlm1M3iLX79sitT/f5U+685LHX5ubzq6rOW2FmrL3Ji7vE2hfuc2isPe6HVSPd2TOmVdX/92d69u2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0VSM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA87RJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4n+3Wh5avtq3tmt7d4PdbN735k467Hh5rf3rCa7H2ll8OibWrqtYd+nisPeHqp2Ptr3utGmvvN+XDWHvSMbn2QqfcHmsf232JWPtPR1wfa1dVPT7+q1h7+KRFY+2FZg2NtQdeMTPWPvPOA2LtJzbYN9beY/j5sXbbsw+Otc9c+NZYu6qqx5E3xdo/LH5BrH3Lp8fE2icv/9dY+/zjctfqzy6c+zefte+IWHudI3aItauqHu57ZKy94aBlY+0LBzRi7VUPnRFrj1ilfaz9yPUPxNpbfbZOrL3l1gvG2vcPWjrWrqp66PvlY+3uvz4p1h46bYVY+/ILfxdrn9w195n+6eedY+2/7HRhrH3RxQvF2s92XCTWrqp65NMzY+13/9Qn1j7vpDdj7RGLdI21J40/KNb+w5LjY+3dz90z1t5j1quxdlXVAzc+FWvffFLufvySf+4Va+/+9T6x9qKX3RxrTz3/wFj7yKV659qrdom1D/p57h6hquqivy8eax+75eqx9nwP537fVjwud196xXpvxdofHPTHWPu7V3M/77Mr9zdWVfXMFcNj7YHb5u4Tuh7c/P1GP9l5/n6x9u7bvRdrn3JEbr/VrcfH0rXtuPNi7fVuyK3hVFXdtcRjsfZ1PTeIta8ffGys3TgmN9f47Af/iLWfO2OjWLvl2NxnW/etBsTaVVWzWjrE2oNO3yPWnr7ZSrH2nS8/Emtf8N3YWHvtqTvG2tOPHhhr79bmZ7H2LRefHWtXVY24bm6sfepZW8Tad0++NNae+0FrrD3ks09j7V1OzK1X7vviZ7H2pl1zn21VVce8mtun/9uHT4u1T9prVKy93zndYu3Jtz8ca09vOTfWXmnuoFj7vTVyz0Ws3D/3N1ZV1an3drH2NjPmxdq3fJi7fnlvpzax9ptjnoi1Vzkrtxdjm3N+FWt3vPOSWLuqqsN2uTmYX977bKy99IdLxtq7P7ZM05sz5kxtehMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f0Obf+d//MpbQ6tt27b/t8byX1qsz4CmN3/S2nZKrL3isivH2t07zx9rV1XNnfp1rL1Q13ax9tDPh8bajZoWa3/bYdFYe+Swb2Pt3v3WirW79u8Za89pOz3WrqqaPHxYrL1Er8Vi7alTZsbajcmTYu1pc4K/6zP6x9o/tPk81v523OhYu3ub72Ptqqr52+R+3z5+/vVYe5FqH2vP36lDrN2mtRFrt5szJ9Zu3yn3fdJ+Ru6acU5r7vOlc/u+sXZV1ZzWsbF2+5ZusfbcLt/F2h1m9Ym15wQ/0zvMmxdrz6qpsXZrm9z3Sc2akWtX1byWf2ta8j9qvvlmxdrT/r3p2P+oNnO6x9rVdm4s3aZ1dqzduUdLrD1tRm5+t7Vj7uddVdU6JXe9vErrMrH2TQMHxtr3zv9erP3+Ox/E2uNbct+lY74aEmv3XrRXrN06JXfNWFXV0jZ37dba0iXWrum5+Zd2jdz32dzWibF225Z+sXafTbeMtSt4CfHj6NyegKqq90d9HGs/NfKZWHv4zNy804x5uZ95m+Zvufnf5nwzOdbe5Ze/iLW/++rLWLvvzxaJtauqek/OXT9NmJZbMxw/NrdO26Zr7vNl7R7Lx9pLLLNkrL3s4q2x9tuf5fa3jf5iVKxdVdXzZyvG2qNfyF079R+4XKy9RrfcOu300bk9blNH5D5XW3vl9lNOmDBfrN2vdaFYu21Lbi9nVdUqa60Qa6/cb/VYe/iXL8bai7b9KtZut8ASsXa37rn16ZVXCO7XnpC7fnno/udi7aqqObNz87sb9s19tvXq+1ms/cOkb2LtlsDzVj9pnZlrd5gvN9fXZbuNYu3OPYPrN1X19QO5+d1OHXLfZzVz2Vh6biM3x9po5PYc1ezgz3v2+Fh6Rvvc/G7Htrm9nFVVHRfJPfc1eUpuv1X3jrn9u1NC/+RT/wPbrH5xx1vVGrgGmn/9nzW9+ZOVX8vNG3U8JTd3s8RRufv4qqpjJuaelesw8bpYe7stc3t/Hz8htw7ys4veibV/NfvuWHverrk97vs9eXqs/f7EV2Ltqqr1/pSbR7jy+JNj7b6Dc/eUw8YcFGt/teWCsfZv5jsl1j7m09z36Mylc+s/pzyfO1OiqqrdiNz3+Afdx8Tav/0idw3xxPy5PbB9tn4q1l7indyc1YDlc/sopq/7RKz92c82i7W7jgrO1VVVmw7/irWf6vtjrD2iS+6ZijVWyK1F9HqxX6y90tCrY+2P78+ddbjcte/H2gv3D25yr6pVHrkl1j527n6x9hF75PbA/vhu7r97+fa5/QRt/nxCrP3SmrkzTD5afMNYe4svT4y1q6pavs6tJ3zcK/d9NmXRcbH2V2u9HGsv25K7F39io9w6yrTbc+difdZ37Vh7oV7ZZ86fu3PpWPuQLmvE2n1fyz0/9GqfpWLtUy/+Y6z9xRnrx9o7PJS7hvjigty5ve/OyX2PVlX1+vIfsfabnXaItRdc80+x9r/uvSzWXrPt07H2O+vnzo65dq/1Yu0eXTaOtR/+V+55jqqq1YbnziqatVHubKpX7tk/1t5gpz1j7e8OvSjWPvWD1WLtzqtsEGvvPOPeWHvY6bnz0KuqZtclsfZJH+WeQV7jpdxaaY8ZubnlT+fsHGtPbJ/b4zZh/y1i7R+D75oYf1LumrHLutvG2lVV3Tb8MtZe87LcGvH71z4ca680OzfXeNTmuXOKTl0ud48ytFtuTn3EuA9j7R6tuTOxqqpO+8OOsfbAXx0da5+64t9i7TevzK0X9hmQOzumZaObY+3Nv/lDrP3SzRNi7V2u3CjWrqq6b9QqsfZy3+T2FY66IHcu1lHv5559eqHfrbH2KiM6xdqX9l8g1l52SO4zfd/uufMlq6oe2Tj3vNs343PXbn0/ye3Z7jvs8Uh30qyZVQ9E0gAAAAAAAAAAAAAAAAAAAPz/wKMr31HtWhtN7/a759KmN3+y/WYHxNpvvnporL3xJ7lz5KuqRi/3Qay90ujjYu1/brBOrH3okbnzVy6+dLdYe/enc+9m3XTr3LtBDmk8Emvff+0qsXZV1dbzbxJrr7bK9bH2UcMviLXvX+LUWHuXTT6NtW/7+Pex9nfvrBlrnzTzrlh7yYW/ibWrql7954Kx9raPjIy1Zz2RO8N+wuu59w99f8Y+sfaFd50Sa//w6uWx9nn9c/dHa+yXu04fs/JpsXZV1Q2dHoy1H56Wu15uv8vHsfYWHW+MtY/d/55Ye/C328Tas3eaG2vvvmLufSxn9X421q6qOuLqrWPtZc7Lvbfg/itz18tbjrk91v7HE7nPtt3/8ddY+5B5uTOmP+j7Say9RM/cZ1tV1ZSeufeDnHz7k7H2vSe+H2sPOD337saNLh0Qa7/Q+dhY+923X4+1Hzs+95k++5SBsXZVVY9Gbu5n333GxNqbfz001u5184ux9od7LRJrX7ddbq3yyFm5a6f1t/p1rH3pZ+fE2lVVPf+U67efnlsj7jI0t2a33qc3xdrbb7d9rD3grKtj7Yt75tblW6bn7s02fPn7WLuqasln+sXaZ/w6t9frowmTY+2Wzz6Ltff+Onc/vHqna2LtJ04+KNbecPCfY+1XW86ItauqFuiRW0/YfeETYu3r2m8aaz878ttY+8WJuTW7Pt/l5iEGrjIz1p7029z69JEX5L5H75+5UaxdVXXUirk1nKO3XDfWPuSy3JrhzTNvibV7HT441l7mqNxa5chRmXcnVlW1Hj8o1r57p46xdlXVtm1yz0Vc9YvgfohNOsfaNy26VKy9/jvdY+2/37tHrL3wwH1j7avazo61R4z8Z6xdVbXHpNwc61Wnbhdrv7PBtbH2agfl7lG23zg3z9l+q7Nj7Wt2z60fXbVZ71j7kDfviLWrqpY9qUOsfckOc2LtQQO/irU3Hfn3SHfu5On/7f+P1qvGV+t8rf+B0fx7hu6S26f1h1UnxNqT9ss9Q7Pf9Ptj7aqqp6/9Zaz96Gmfx9o9Doilq9tLq8fa6171r1h7jb2OjrWvmb1LrP3HuQ/E2vsucGSsXVXVbfsTY+2dFz8z1n6gXe5z9f7T1oq1e+30q1i7989vi7Vf/+KFWPt3A3PrLxuMze47XmTlv8XaHdbN7Y+btt34WPvKhe6PtZfYJLe//8wvv4i1f35gbv7kl+vm9jxfPblbrH3LM7m9/VVV596zZ6w97YYDYu3Hzs/9u08+IjcX0HPL3L7j/S8cFmt3vzo4P3tk7hngZ+87Pdauqjr/stzP/MEPc9eNEwbm5p0GHvpYrP2nc3N7Ge54IPd3ttj1m8faw4f8GGv/6fh3Y+2qqlGdnou1G6s9E2vPnvnbWLtL19xzNGtV7h5l3PjcNeOw7i2x9ss/3y/WHjfg/li7quq2YT1j7eFf5u6Jd57UJdY+8blDYu3jxubuhy/umzu/ZY2X3oi1Nzw8d4bsb77sE2tXVXW4JHd27+Jv5Z4f+mXn3D6x13dcLdY+ZdvfxdovrbZ0rP3E531j7aUXzl2v3v5Sj1i7qur3/XKfL93Wzu33fm/w1Fh7jb/nzhHZZ6t5sfZLC38Xa6+1Re7cveEbPx9rD/giuzY++ODcPpB1j38t1r5n9Iax9l2fto21Rz95X6z91ujzY+2br83tvfll/9zz7ltMzO1pfPyU3BlsVVU7bJ27Zv3NF4/G2l+8F0vXo+fnvk9uPzC3Nv7iAi/H2it9/06s3Wm/J2LtW5fOza9WVT201Umx9tYb5J6NXGZwbr3y7qtz7wgb0jd3fstFCy0fa9+6Rb9Y+4Rn14u1P1kzd3ZuVdX9Z+WeQX6uf+4MlcbBu8baPVbJ7Xd66Ovceex3nXRCrL3X9bk51kkfDIq1Nz48d19YVXXljrm/s5WGbRVr7z/2+Fj77GmZa/U50/7PnhVv/lvMAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAID/xd59hltV3f3+/rH2pkoRARUQxd4Rjb33XrBhr9GoiRp7rzn2HktsscUSu7FrYsfeC3ZRQEUBBRHp7f/K/7tznZMrz7O+z7mu+36Nfiabteeac8wxxgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHla0wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/M92zbPDq2vXtk3v9lzy1qY3fzXqlJVj7c8Gnx5rv33MuFi7quqCxpqx9n3bLxVr/26DSbH2fO/9EGsf2/u3sfbLXx4eaz849axY+9zXDoi1q6quWHifWHvEkLVj7Y+OXS/WXu7uHrH2xP13ibVv++eLsfaRva6Kta+fd0isvcMNR8XaVVUHvTcg1j5v4Iex9phVb4+1l589NNY++6sfc+13D4u1N7uyS6zdp9/esXZV1YTdBufa298Qa7/zcodYe+TluZ/5fnc/Hmt/0G7VWHvKO7mxgLO6fhNr/+7ZU2PtqqoFlpk31v5wbGusvdzP88TavVc9ItYef07zxzd/dcphvWPt17Y5I9b+cs3ZsfZvvhwUa1dV7bFz7vzy4NTcdeOUee+NtVsP2izWfvTyjWLt+dYeFGvffvr8sfbRzx0ba1dV7bN+11h7zVFXx9oL7HdzrH3+v+6MtYcffnys/Y8dd4+1j7/2D7H2Wlv+FGs/M/qTWLuqavBr/4i1v1zw2lh75XVzv+Nnjsw9y3j8nc9j7XceOjfW7rnjl7H2fP98KNauqnrn65di7ZYTcmP6B+6bezb/0stzx9rPnLlnrH3hzNw4RJ8Hboy1j+6dG4d4Z/xesXZV1ZCvcuNe6/+Qu2a9aOTPsfbUQXfE2m8fu0CsveYTz8TaLdteGmtftOcysXZV1e6Nv8fai5w2M9aup0bH0nd1WinW/uP53WPtJbZ6MNYe12axWPvZH+6KtQ/a++FYu6rqhSG5eY3rX5Obu3z33hvE2n9+8f5Y+8TLc/P7Tvk0Nwel35W53/F3Hl891q6qal07d15/bvq+sfYVPy8fa3/+v/4Ra7/w6mWx9tbb5ua4vXfMSbH2rXufGWufflPwOr2qtv92q1j72YP/EWsfOWlarD17/dw5fbUOL8Tae12Wuy/c78zpsfa4z7PPK4/eMbe2c43F1o+1O+6yTqy91aMfN705acbUumxY07MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/wNa/50//N3Yb6ql9d/6T/5LLLzEIk1v/uq9oa/F2nfdcVus3dptvli7qqp19tyx9ptPfxRrz5h7TqzdfsK0WHu+7lNi7X4LLhprd+rePtb+6JPPYu1u1TnWrqoa83OvWHv0Zy/G2n2C5/WxE8fH2lPmdIu1f576bazdmDEr1u7fsWesPadj91i7qurnr96Otedr0y7Xbtcl1m4/e3as3TqnU6zdqcPMWLvD9L6x9pz2bWPttpX7PpkztSXWrqpq7dAnF5+V+6y3NrrG2tUyKZZu19Im1p42Z+5Yu13LT7H2lBmTY+02jbli7aqq1ra5/sxpufN69+D3+KTW3O94a9vc2M+MGbnrttk1PdaeNjnX7tYje2/WWh1i7d4dOsbaS8/IXTd+PnxirP3y+Kmx9vwL5L5PZnbPPTfbqmvuvnDB6T1i7aqqXm1z55dus5eMtTvMlbtHmT09dw3R2nGeWLvHkqvG2jUtdw0xZcyYWHvE6Pdi7aqqt4L9T3/O/dznapu7Vp93eu5+fPjoCbH2H367S6w9deroWLtrlxmxdrvxuXkYVVUdeua+z0aOy81/aenwS6w97KvhsfaSOy8Ta/fsnbte/e6n3HyEZZfJ3SOMnpR7TlpV9dkTj8favXrNG2s/fvNfY+3Fl87dj8+enbsff2rIA7H2wovlvkd7zvN9rN1v8dwY5w8jcs9QqqpmfJMbA/nwg0di7WVWGxhrt5mwcqz91ke5eV7TWvvH2gv3z829GTZ8eKzdb77c92hVVe+e/WPtb+fKPSOe9NZ9sfYS3TeOtTv1zK1NGPnj0Fh7xGefxNrLD+wXa8+/2YBYu6pq9NDhsfac776KtWfPzo01zqkFYu3Z7XJjy9N/jqWrTZuFYu2Wltxnbca0uWPtqqqJU3Lj6p075MbcZlRuTH966+eR7n/F37nvl7dW28C86/3nu6HpzV9t8fOtsfZKwy+LtWf02iPWrqp6YuHLY+0OS60Za3/3+nqx9oBBY2Pt9xa/M9Zecq1jYu23ln841r5142di7Yc63h5rV1V98f3BsfYfu60Sa2/02YOxdp9zcvMJRtzcP9a+dch+sfYWA1ePtT9rt1Ws/cKCufnWVVVD3jox1l5nhUti7SsO+DLWXnnNs2PtLt8dEmvf37gw1h7cMfc5P2PB3L4xr7QbFmtvvnxuT4mqqiFvLBdr7zo8N5/htE655yALPnZQrF0Tc3vfXb3Q/rH2VgcsFmu/9PVPsfb7T+Xm3lZVPXHsarF2t5ZRsfZ6W+WuWS+Z9/xYu2Xh3D5oS7SuFGv3/ejHWLtjn/Vj7amjcs9+qqp6T3gj1j7/401i7fMWys1DveCj3DjEfT98F2tv/Mb6sfZ9u+wTa/d9JzdXatuBI2Ptqqq5euwaa0/u+FOsPfzSFWPtL1tfjbU3eid3P/6n9XePte8+OTOXoapq0Cu5e7OrOl0Ra1dVXTgwN39l0VX/Emt37HlvrD3PjNyY+vCFc8/N+u2Sm2/d7+7lY+1G/+Ni7YX7nRlrV1V1nD+3Vm7HWbk1W990zs2H+Pb83Lj2tn/KjbcNnZj7HZ9r3tz1av/vP421v381tz9TVdVNnf8Wax85NTe378rFn461R52b+z0742+5OQFvz8o9q2xz7GWx9rBRubn9m2+X21+y9cLNY+2qqklzcuf13hfkPuu7n7tzrH1Fj9z65wXa/CvWPnhi7n14U57OPbuaq2Pu+uWUx7Pnl6ePyO3f8sjfc3s73L5Xbm3k3Evl9lmc2Jr7Hr/sitw96YYb537mZ82b+6w90nuzWLuq6t3bHou1G1s8FWuPfHJErP3QCmvF2ncPyf2eHXtRbs70Nm/lzm037JxbbL/EvLmx3aqqaXcE3+86JTcO8eqtc8faRy6Vme80Z1rufZcAAAAAAAAAAAAAAAAAAAD8v++bW9tU2y5tmt79bJncfupLzn4o1t7zksGx9iedZsfaVVUv/Sm3D8kLLcNj7cbhb8XaT/XN7Z//+JQ9Yu3dz+gaa2/2TG5fqR0Wej/WPuzDv8faVVXdV9st1v7yke6x9i63XhxrX/KPz2Ltd6/LXUNMb8nt9zP/zO1i7d3myr3ffdrTuXcWVFVd9F6/WLvNxbm96/rfkdt798VXc++iaf3xjFj7gmNz+3Je86/cPs99J68ba3+9Ve7+6NTtt4i1q6q++Da33/GPe/0z1u69xcex9iWbHx1rj3higVh7q9N7x9rXXJ17T+hj9/8u1t7z1rVj7aqqBy/IXb881XpTrP2bu3Oftw7vj421d56eezfIozNz753e6/q3Y+1Lv30i1t73pMNj7aqqd487KNZ+YnruHuWLPtfF2r+skftOWWTlx2Pt85bMjYF0OTE35jV04L6x9okjro61q6qeeC33nq/D19061t7umHNj7QPumzfWvnfcuFj7440WjrXPu+yyWHvM+xvE2jeddXCsXVX1RfcNY+13F8i9q/P9E5+Ntfe7LPc9ftrZl8Xamyy5WKy9eiM35vXcwefE2r+97/pYu6pq9J65f/Nnds49K71x99y49jrvdYu1z9xvaqzdZtlbYu2FNzsu1r647Tex9uxtVo+1q6oG3LtxrD3yvtycpyE//znWvvuokbH2lWNyz806n/r7WPuW58+Ktbe46o5Ye8HDd4i1V7wsN/5RVfXgo7vH2je8cnKsPWzH3POjVxbJvWP94FWPiLU3PLxXrN13udz1yxpvXRlrr/DXK2Ltqqqlblwz1t75+blj7cn97o61D1uwf6y9WMcbY+2HF8jNFV95w+Vj7R+P2TPW/mGJ3P1wVVW3V/vG2quNHhprT/4utx5kg61WibXfeiO33mz1NYbH2ov16BNr77fpVrH2JQ/n1lVWVS057thY+4S238faW+zXI9b+Ze1Jke6cqTP+4//HCYN+X506N/8ze9JL45ve/NVp2+fmr2y9eW49xwdX574Hq6pe/mSzWHv9b96ItZf+ekisveia28faT22+fqz91r57xdor7/5IrL3fgrm5/T/Nt3+sXVX1r9tz5/Udj3wp1m5s9Hys/Y/zGrH2Eh/n1rvfuFZuLuYr890ea184YFSs/cp3PWPtqqp7fpe7Zt3uitzapc32fSDW7rJh7mf+6g4nxdob/Cb3nPX483PjJwMqN/d3mY6588vgo7NrtlY4dlCs/fcpubX+B/7p3lj740s6xNqXV27/lgeOze1F9sjzy8bag9bKtbc7cHqsXVX16KwVYu23On8Va//x+tzYzxt/eyfWnvKHm2PtQ74aHmt/Nyu3P9Oh3+S+T069+sVYu6rqsbNzc0GvmDt3T/zoT4fE2hfvmptvvVL/3J4WDx+YW7s0um9unf/B134Ra489LzdPq6pqrody36WPde4fa7+4e25Mf/9BuTGvJVb+S6x93+B1Yu2pL+eeY7w6rHOsfeNOR8TaVVUnnJIb0//tE1Ni7Sm75J7h9Bk8d6w96rALY+15OuX2KWrskFubuP8ZuXXffS68Ndauqrrm0bli7bV2yY2r7372irH22A8vjbUX2CQ37/iysa/H2lucm/sePXHqPbH2h8H5bVVV97ybm++9wOhOsfbZ/XL3hd8ukNununWp4Gf95iNi7W6dc+fVRV64L9Z+8/zWWLvrFrn3dFVVXbhxbg7KQkfkzqv39t811u4wPbde7JK3F4+1j7h51Vj7iRNzcxq3eyz3jrAD983tb1BV9eh1S8Ta+26We0/Y9W/nnqO0rJ77Tpl04Xmx9hU35vZ/2/Wr3LOE63bMPTd79tLce3Sqqnbomnt21vfF3H1pu812irXf7JqbQ3vEqFx765X3jrUf3CX3OT/1okGxds9Vcu/YqKra4ckHY+29xufeqftK29y6q7GPzx/pzp75f/fncqvCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoukb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ7W9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/7PN7nVVzW7Tpendlnt/2/Tmr65Y8MpYe8LON8TabV4dH2tXVS11Z9dYe8+v746133/16Fh7s60/jLVfb4yMted7+I+x9uaPHB5rH3LDMbF2VdUHi54Wa391/qxY+4sT94+1z/1D91h7t32mxtrbbTUm1h7Xo32s/ch5u8faH169TqxdVbXjGg/F2hPP+F2sffqY92LtB9d5I9a+esU1Yu3egz+PtQ/dfU6s3f7FD2LtqqqhK02MtU+6dPlY+/EvZsfa467aINY+7zePx9qPfbRLrD1u3OWx9hsb9Y21z3z+iVi7qmr+XvvG2oesclesfdasUbH2iXVfrH3hP3PXL88+PTnWXnSH3PjLzEM3jbUHL5X7PqmquuiVYbH2Dq/kxiEWOTI3FjBr3HOx9uaDt4+1zz1vdKx94Fs7xtp/WfmZWLuqavfBi8Xam009OdY+fJMDY+2Pznk21l7m+SVz7V6Hxdq9Pz0o1n5+jS9j7be/zD0/qqo6fLu5Yu0JDzwfaz/wxVmx9o7D7oy1r7wzN+408IslYu0BR74Va/+0XfYa4rodNo+1T/3bKrH2qr/knl8933u+WLvvn3Kft+fPyN2TLrLPObH2yMdz59XD9/w41q6quvbeXWPt3SfNH2sf9/x3sfaji9wUa+94yZOx9qqtz8XaP5yfm1/XduM7Yu2qqvZf/jPW3nGf3WLtGc/ME2u/e8ulsfaECybE2rsslDunX3n/zFj7pXs3jrV/++G8sXZV1Sk35J4Tr7fk6rH22EuPj7Xfme+UWPvQnXLXELdtknte2afD9bH2qHNejLWrqrZfKzfOesRlQ2Pt1c+6INZ+rPfNsfY7PXJzC3+8dblYe4fjcnMxznsv1/7uvdxYX1XVrNYBsfadXfeLta/a6C+x9l1f/DnWPn+d3NrOvz26Vqw94OQrYu2ndlw/1q6qarfY32Ltv76be263145bx9qrt2v+84SfJ8+oyi3BAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4Ha/13/vBqqw6sdu3b/Xcdy//WIw/f0/Tmr8b/ODHWnvjLuFh7y7UHxdpVVSuuv16sfc9d18Xa6262Xay90mpLxdp9+vaOtX+e8nOs/eIzb8faP/z0daw9odE91q6qev3tR2LtSb+MjLXbLrdirN1uavtYu9u8XWLtzt1y57benReMtdu3nxprT5vYMdauqhr57D9j7X6ze8Xa7We0xNqdW3J/75bm3xb9/9q1zZ1XW2f/W7eQ/6VaGt/G2h3bLxBrT2szPdauqmq0zIq128wJ/qLNyn3WGzUj1p7ayP17t84cEWvPaekca7edvWisPWd2bsyrqqql/Vyx9qzZv8TaP09tE2u3azst1p45I3f9Ejy1Vc3uGkvP3T13bzZzVu67rKpqrq6NWLvNpOB3aa/c99me7VePtXeed4dYe8asMbH29D5tY+3u7XPjL7+0jI+1q6p6dcyNNc6anBt/qXa5+6PO7XPXTu2XWzbWnt0yJ9aeMyZ3zThubO68+v7YL2LtqqqPJuaeH01unRlrd5yd+z7r1+gRa09tkzunz999cqz92hvDY+3Nttom1p4xPTfvp6qqa2tujHVE2w6x9krr5ObeLLz6pFi7d+8+sXbXhXLPUaaPzt2jdJsxO9YePyE336mq6l+PDI219xqcO68vusJvYu1JP+fGtcfP+DHW3nyPfWLtOeNz4xBfN3L3w4svPiDWHtbyeqxdVfXcy/+KtVdcavFYe9leueeVf3vyoVh7wCrLx9p9Fu0Xa7ep3GetdWpuzOuz70fF2lVVz7+QO7+tv8lKsfboL3PP7PqtNTbWHv9L7hpi1JjcPLPOHXvG2i3tu8XaM1uz92bzbJVbHzDumty4V4eOufuj9m1y32dTZubGITrMlRtTb52VG2+bOrVTrN06O/fvXVXVba7cM8NfJi4Ra3ftlnte2aGRuTeb2fjP55j1X+3eat+u+eO0Wz3zYdObv1qiTe6ar88ZE2Lt41f/Jtauqnq/ZZdY+5V9Ho61X97nj7H2RavkPm9d+uS+i3ac9WKsvXzj5lh7051y1z7D2iwSa1dVbdh2+1i7f/C6a8uXc+NGT512TKy9xqafx9ofLL5+rD2mFoq1T3knt7bglvVy65aqqlaZnLt+2vXv18TaX271Rqw98ovcGp5bds+tjdxp8uaxds/F+8baPV46ONZe7djTY+2BW+X246qquntybu7Mncvlfscn9cutxZ3n4z/H2qPWOTTW/uLp3LzAOe/l9o2ZZ4MlY+2BO+d+v6uqugz8LtaeODU3Jv/BqNxatYHtc/NXrn06d15ddsXg+O6KuefqbVtyY14HTs89Y62qOm5wbt33Tvfl7ksXH7p7rP3U4bnv8S3Wzu1vObJv7r5wv++2jrXnWmlIrP3VS7nzalXVOp/l1ghev2xuf4X5XsiNO600T27+yvcte8Xa247NfdbnbuSe4bx+92mx9iG7ZJ+NL//5q7H2Z8FT60P37htrb79nbp+Bb7/aNNY+5IbcvOMP++4da/9xtdwckNfOzu0pUVX1RudhsfaSO5wQa7982X2x9o133hRrL/RObq73rEVz4/kd5/441n5pzR1j7RVnrRtrV1WNfnnlWPuaN2PpOmu9FWLtj0bk7o/eOSJ3nzD559xY30pHHxRrT+6c24996Ha597ls1ZKb31ZVNeW73JqtxS7NXTdO6XRmrN1th9x5ddrdG8baq84J7vm31cmx9h0P3hVrnzcgt79BVdXoI3LzrY49KPec9q+T7o21T22TG4d4d8Q7sfZa/XP7ge3aZXSsveb7uT1k5zs0uyZ00D6565fXX8vNHT783Nx+yaPuuTnWXmvXv8TaOx72Uqy91sa3xdrnDNg/1u582GGxdlXV4Rfm3gt3/j79Y+0TXsqtdz9srsGR7rTpk+va2inSBgAAAAAAAAAAAAAAAAAA4P99I3ZapFpamr8fyJ5X594VsdUFq8faK/6yRqx9/9jcO76qqr5/89lY+6AnP4q1r/xky1h70YNye7h12CD3Hpz7rt411t7pnrtj7QUfuiLWPv2+3DtRqqq+7tou1j77qpdj7UX//mis/dcpR8fae2/eP9bueeNbsfY9n+bOq1PuOzvWPu6t3LmtqurHB3J76E+anXt346Et58faoxa/NdZeu66Ntaef9X6s3br9k7H2ejUh1j7+89w+rKsduWasXVV1c5dRsfZmm+T2iLzokONi7Y/b5+5Jvzs3tx/pQ0suHGtff/6CsXbvr3Pv59jm5D1i7aqqDfbIvVNui/1z73gf/fqqsfbSe6wSax/6xDyx9lfdroq1j/r+nlx7tT/H2mcP+TzWrqpqfXa3WPuj83Lv6Hj0+Nx5feCxh8TanZ/NvRuk5y6Xxdp9T30q1t72gtyY+suXrBVrV1Ut+kruPcQHH31hrN1hm3Nj7RX3eDvWXm/MDbH2Mffnrl8mN3LXEH3f6hNrnzn/vrF2VdXav/kh1p54Ue69Swe0zY01Hnle7v6o94/7xdpvv9kSa4/ov0usfcUPufe7D+qfexdMVdXVe/821j7mmNz3ePsd34u1xx8zJtY+b4fcc/lXxnaOtZffLfd+985fHB9rH3Rs7h3rVVWvnZF7R+rZy+eeH62/RG4+xKYTcu83W+bzO2LtYz98JtZepU/u3YmL3jYz1t5lRu7Z1aRln461q6pWmPKnWPu6s3Lnl1vv2SHW/t16v8Tayy1zbKx9y8APYu1tL9851p626DaxdueJue+yqqoVVvgk1j73wyGx9tLfzhVr7/Zm7t3P24+7MdY+Yr3ce847r5+bp/5qr7Vj7X0XfSDWrqrqsmDuu3TxSxux9gfLXBpr/+Hn3PjuTY/NHWtvelFuvG3ZnXLj2rNG/S7WPvjJLWLtqqpXnnos1r7/oytj7Y635uYOtztjRqQ7Z/rPNanu/Y/+H9/8NKw6zmj/X3RE//d2HJpbo3f2xXfG2q1DToy1/zSiW6xdVfW3hXLfCWscnZvnPuO9rWPtI9sfHGtPOWFwrD3w3NwamnNvOCDW3mbb62LtM4/ZJNauqhp4/D6x9tO9psXal5+TGzMbtMXisfamt/SMtSfv9XWsvdjXub0dfrNl91h7UptvYu2qqpWH3RZrT75qiVi7ddujYu3NOnaNtZe/a89Y++3+b8Tam+0+MdYedWvuOeeZY7vE2r/9ODcvr6rqNxPfjLX7rbRurH1I+0Nj7a6LLh1rXzwut/fdxDYXxNqH3pObk9h/7VNj7d69esTaVVWjXs4982u3am7dVLvLct/jjd65dd/T18jNt+5wVu7c9m6f3JrQ57vlnv2svW1ur6CqqofvyY2rb3pN7nt8Vvfc/rlvfZqb575lh/Vi7aH/vC/Wnve202Ltz5a+Ptae94HcGpqqqj675a5Zl+iV28fkzY659UOHntU/1n53z8tj7Xs2XT/WvuTq3PPCjl++GGs//PD2sXZV1YaV22dgzsDcd+ntj5wUa5+8SW4s4P3P+8faZ5/yc6y9+SG5eRiv98rtnfvL7Jtj7aqqRe/IrXm//Z2vYu2Fj24Ta191Z24PlSdm557ZHfRYbm/wF/+W+6z9dWSHWLv3T7mxvqqqc9fPPTNc5w+5PXPWWT63HnXx026KtW84ctlY+/YXcs9pF5qYu2Zc9fTcPtG33ZabX//nb8+Mtauqjr0x9+xsmxdz4xCXDJ0v1h7aLbcus3HCUrH2kst9F2sP6ZJ7v8ffFss9xxh2Ue59LlVV707IPT864bRTYu0lp/0+1l63Te4+YWD3V2LtLTvl9jc4eswRsfatV+XeR/fkSkfG2lVVC/64Uax90Du5OU8XrJ2bL77G2NycxneW+inWfvSo3LtFBl98RKw9+ZEDY+2dn8jO7Xv3hNzvWY/jcutRRjz2aay95aObRrqzJs6uscv9n/9cbqcRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACarpE+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoCZHAAAE4VElEQVQAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqn9d/5w2N+GFdt27b97zqW/60u7Ts2vfmr5QYsFWtvuMWWsfYnbz4ea1dVLbv8gFh7tYErx9rd282MtX/8cUqs/U19GWvPPc8CsfbYlrlj7Q6zPo+1P/n6pVi7qmqhBReLtTvNXijWbu01PdZeZemdYu32HabG2i1zusbabWb+W5d4/6UmjPkg1v7l+29i7aqqbjN6xdpzZuauIVpb54q1Z7bPfdbbtnSKtVsbv8Tac2bMG2vPnDMt127TLtaePmNWrF1VVY3cfULb2bmf+9Qpue/xLh1i6Wo7O3dOb9va/PGmX02dnjuvtm/krlenzMn9zKuq2syeEWu3nd2Itdt1yZ1fZs/M/b1bgt8nk6fmPmsd2s6JtatDSyw9a3T2+mXCL5Ni7Ubn3M999vT2sXbr9Nx3SreuufNLS6N7rD1xQu6z1rU1d53e6Dg71q6q6tw5d15v0z33c/9lTG5sue0SC8faM1tzn7fWybmf+Zjvfoy13xrxfKw9YtYPsXZV1ew5uWv1Zdv2jLWTt6U/zJoYa787vU2s/cqzb8faK6y4aqz93bhRsfYinbrE2lVVP40cE2uP/To35vZx4/1Ye7mt14m155o396xy6ozcOOe88+XuzRotufaCc3LfJ1VVbw64P9busXDuPmHMJ7k5bv37rRRrv/rcsFj78UfvjrUX6ZJ7Nj7fkkvH2u375OZM92vpEWtXVX3y+bex9i8/5OZzjvw2d1+45o6bxtoTv/ow1p7VsmCsPXN67h5h9Ixce9jQsbF2VdWSA/rH2v3mWTLWfv/b3PjLGyNGxtqTx+XmuC24QG4eaYc+nWPtSdN+irUnfJN9dvXMJ6/H2vN1/SrWXnzKorF2cj5l+5bcs4T2bXPntonBMfV2M+aLtdt3yl6/TJ2WG2vs2BJcFzGnW6w9dfbwSHfO7P/893uVLz6rTq3Nn7e0Vvvrmt781YKDJsTaS8/K/b0ve2b5WLuqau+jcmPyKzyfWyv3+fz/irX7vLhjrP3QF5/G2u2+eSvW/uSFRWLtSVfm5qAO3uXPsXZV1UdjesfaL/ywYax92QNnxdp99ng01l5srv1i7eeWeiDWHvD6CrH28FNzc2+7H3Z6rF1V9eAVj8TaV919ZKy98A7Hxtpb//RMrD3PY+/F2o19/xRrH3V2bj5B35fWjrV7vbtDrH3TD9l7s593y42ZtR34YKx94jO5uaCvb5u7H25pzf2O37HaoFi70ycfx9p/fCA3Njzi99n9enqsNi7Wfu6jj2LtYX1ya2HnunmNWHuFk16Itb88OzcX89Fvc893O/2yWqzdWD23jqWq6rivJsfajyyRm7ez8rTcM7fvX30l1p65ayxd+w07MNae1ZKbm/fkB7l9XBfunL0/6np3box14Yty3ynLjb0k1m7T/alY+8dH+8Tar26Wu3b6Zancfj2Pb5P7nLfplHtGW1U1fuTqsfbAW3JzZzZYJLeeo8f0dWPtV87JXa+e9VRuvvWawy6ItU+aukWsPWrx0bF2VdWc0bm9ijb/+MxY+74OP8Xa/TY/MdZ+ctPcefWgl5+ItRu9r4i1t+2e26/nxxsfjrWrqjac/odYe+8dc/dmozu8HGuve3hubcH9k3LzQGYMyz2Xn29kbj3qwyfmxn4+XfTcWPvblbP79fxw//m5+N2594R9f9TgWHvwPbm5XjdOyP17T1n497H2i3deG2v/dv7c9eqE6Z/E2lVV7QctHmv/pUPuu7TDp7k1oUOW+lusPWJc7vtsmRe3jrUHrJ/7rE3uNXesfctXuX2KqqpmHJI7vy12fe653SPv5/br6TEsN7bc5bzc79kz7YNzppfIzd/d667cOyd/90j2fQ+/dM69v2jx6SfE2j/9/oBY++kLr490J8+YVf/pXcIJly5V7To2f3+Iw6/ct+nNX3W4/41Ye/EeuWfLv+2yW6xdVXXOp7n9MPrd9nWsfc9bw2Ptx1fLzYf87s3cHtNXDc7tP3v94Nz6wL8sOz7Wrqpa86+5cavTP8udXxb5e27N1vdXbRtrP9XuH7H2QsNze8dM6ZN791D/dXPPtte7c59Yu6pquYt3irVf+mSTWPuDI3Ivxb3359w1xOADc9+l932YO79sc3Tu/HLXmpfG2lVVnx6RWyu3+nq5ec9/vTY3TnlHn9xcimX2zD0HmX+n3B5Np+62Zqw9ZKPFYu0BHW+Ptauqjph4Zax95fDnYu0n31k51t7/4NzY8PFb7h9rH3NKbj3HC6fdE2t3fT13frl43hdj7aqqr3bOjT3d/tddYu3nH8894502bJ5Ye6tuuTn2sz/LPffquU9un4Ehn+bG26qqeu2Uu4Z5/Y77Yu3XvsutV9tmo3tj7UXGXR5rHzM7t7/lxBdz7yZZ7fXc/fAZq+b2pqqqmnVU7rrxzsdei7Vf6pd7T8YOz+feS7vFelfF2t+P+UusvfAKuXvxkx/Kvtv+3cYSsfYCx14Wax844YZYe50lv4i1p657Uaz95qLPx9o/X5ub8/zVuKGx9iZf5t4vUlX1wua5fSZv3mD7WHuNyu3/f957uX0GLt53UKw97ubcfeE63x0Ua9/yQm6fx6qqrSfuG2sPuzZ3Tzz3TefE2rP2fjfWfnFQbv7ws7ffHGsffnRuj6b6/uRYuvMaF8baVVV7Hd0x1j7h92fH2l275M4vm2+UWw+735jNY+23X8pdQzzSJrcn+kYTc8/Gq6qW+Db3HubDRubuS6/bOLen6Y3nHx1rv3hLv1j7jHNz76V76rGesfYzi+eeEbdfYFCsXVV1b/A5zmedc3smH3Bfbk/2k3sdHGtff0Buv+bLl/lNrH3imrk176cdlfs+qaq6b8Pc9fJ9b+T2iDr/xtxY4wlv79H0Zsv0Kf/x/2PY4SdUm47N36fg8nmOb3rzVz8Pza0/Puyka2LtodfmzgtVVfe8uXusPaZjbl/OOU/m1k0Nuzr3vO+l3FK12mKT3ByO9vPeFWu/u01uL9STV7k61q6q6jEp94z1iBNy97P7/XPvWHvf93Of9SMntI21P9vioVj7/tG5d9GM/11wnlb74H7DVfXlvLl3dBwzPvds+8ztV4y1p458NNbe7ZRjYu0P1smt51jsw9yzvhs/2yvW7vZFbv7rA6fn9reuqjpsxdyY+LDW3H4aP4xdNdbeo0/u2fKKqx8Va0/ceM9Ye9F7z4i1t/nLvrH2vm2DN+NV9YfuQ2LtGzb8LNber91tsXbPNv1j7VEr7xhr99pw6Vj71ZeGx9pDj74z1v5pv7GxdlXV2Mtzc9xfmSf3brXBGz8Sa29zSG4t7D2vnxdrP/XdzbH2ak/kvkfv+HBArH38u7n9cqqqbhqcuzccsvXwWLvx99z55ZC+uX/zAXvm3ht58jnNn0vwq9P32jLWnrNY7n24O530XKxdVXXf7fPH2lcvsXCsfdIjuTGQxw9YK9Y+5OBlY+2Lz8/tZ9Fpem687YiTcmsa+txyU6xdVdWzxyKxdqehw2Ltr/ucFmuv/ErmXTRVVXtekzu/tDknt+568x65Pck/eTi39//AG3L7WVRVLdynNdZerX/u+qXD2VNj7f4n5eaBrLvxdrH2VndMj7WXPjU3F+LCx3P7gu8a3Frh8HduzMWr6uauufeU9rs9977vNd99K9Z+dYfc/LoOf8i93/24dw6MtX/XLjdPfa+hC8Tap56bGweoqhr1u9x6sb/2HxRr990qt1/ysC1z4/mD78/t63DrkNyeexN658aWj/sud05fdNCrsXZV1dYr5tb5D3w19/zo6v8VS9dJT50Va2+4eG5fqkM/3znWfvr03DqYNbbP7ZW87ZO554VVVWe8nnt2dcBfn4215+52eKy9/I2Z5yhz5vzna84veneZanTo9F9wNP+etb/KzUm85+fceFntn9vXaZc7snv3371G7t5ut9/PHWsPuS3X7tv7wVh7qRG5/W6ePT83djP3bj1i7fXG567xr30t166qWqPt32PtxXceHmv3PT03V+vCMbn1if9c4pRYe9WncuufGzNy97MD3s39vQev9a9Yu6pq0Y1ya87POrgl1n7srNy6qS3ez43Hv7NA7j3Eh7fk5qjtcmruvQFnf527N1tj7P2x9ic9smtCR56wTKx9/xpfxdov/fnxWHud3XPfpW2u/yDW7rbKL7H2EhsfEWufu1Fuv98rj/801q6qOuOyRWPtS1buHmv/aXzu3awD7s21649dYulJ8+TGGRc6L7cH2+ffbBprH7hKbu/8qqrTVsk96/zwlY9i7VU7z4q191lwpVh7cM/cuznO7Z/7HX/mhZdi7YvPzu1Z/NmM3PPCqqqBbXN7it7yj91i7Qlr5fYSWf7F3NqldrsOj7U7L5Hbf269H8bH2vtesX+svdddufHVqqr3rs3dGx5y8zOx9vmj28faI2atEGtvfmpuDfBa43PP5Vdb65ZYe4tBuevVV0/Orgk9Zoc/xdpHHp67N9ujX+6Z3XpX5ub3Tzk1N+/ntVNzz6d/s1VufeCbZ+Z+x3ba6JBYu6pq/EO5Pf9mDcntr9Dt8tz7i449Kte+9prc88IzFs+d0697LXdOf+qJQ2PtX67JzbW6aulNYu2qqm1+zC1e6rXBHbH2kjfn1sotvW9uv56OfVeJtTsMvTbWnu+93F7N1y2de4Yy7ZKTY+2qqk2f7xtr77zT3bH2fCscFmv/84fc/gqfr5ub77TknNw6/wUOyO1RPeLHybF2/55bx9pVVYvMtWusPXjX3Lufr3wuN8/ss9ty8+vO/cNmsfa8HZeLtRc6KPee0YO3zs2Rf++x3L5UVVU/HJ17D+G7PTeItW9ulzuvd+w0KNKdNWt6Vf2f1yY0/vsPBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/yka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAOD/Y+/O4vWe7/7ff9a11sogc5AQREwxE2Kq2zzXVEWNVZrWUBRFtdXWUO5qUXNLTTUUQc3zHDOlKErMCSGEzPOwsvbBfuRgH/wf9+7W+3rvg+fz2MPrm2St6/r9ft/hBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGietn/nP+7Vb8nq0qXr/9ZY/o+md77d9OYiu+55RKzdt88XsfawEUfG2lVVL9/251h7g203jLWHDtoy1v6iy7hYe/qs5n+uLNK1+7RY+8OXHoi1Vxs8L9dedvlYu6qqo/Pf+ur7jxr70fux9gbD9461eyyW+x1vtMbSNX/ejFi7vTX3O97e1hlrt7XE0lVVtWDS3Fi7Y2Hu562zfelYu2vb5Fi7W0vuGqK9Y+VYu6Xl01i7tedisfbCORNj7QH9u8faVVULZveItTuC32ctnR2x9oLKfZd265r7Mm0sbI+1u7X0jLVbK3f90K2tV6xdVbWgM/dv3jEr9z2+oGNqrN3eJZau1o7cz9ti/XLPAWZNy/17t3bmPttaeuW+y6qqunbLPQxondon1u7aLXfd2DlguVi7Y+rCWLsaU2LpJZZbNtZe0JG7P+o7uVusXVW1sCV4nzA+1+6/0fqx9sKJM2Ptjtm57/HxH+eeeb3++Wux9kfTcnOVH9eUWLuqqnf33rH2Ct1z3+Oz58+KtZdeuGSsPaN1Sqw9cU7u2c8nwTmcL19+Kdae0Ct7/dKy2JBYu+/Q3J+9s+bE2o/cenmsvWDW/Fh7fnvuenW9DQ+Itfv26xdrJ595VVVtNHznWLtb+4BYu0fP2bH2hPGfx9obbL5frD170iex9uSO3FzChHG5++FP33k5154zJdauqjriwINj7cceuSTWHvvZE7H25ssdHWuPXWKtWLv3Yrnvsk8/z322Ldd/hVj7hZ5jY+2qqi7dc3Nni7Xkrl8+nzA+1u7blrtWX27x3Nq+N//+cKw9d9qXsfaE+avF2rffd2esXVX1/D9ejbXnTsrNZZzcOzc3vmzf3OdLZ9dBsXbL9Nzz/Pltuc+XauS+RxcuyK37qaqqbpNi6Z4tuWunzvZlYu2WuZmJlJbOr/88/fEV368uXZq/HvSdrb/f9OYi+799daw969u5/Tsfn5Bbr1RVdd5P/xhr//hfv4+1r+6Zm+tc5ZPceoKDvnoh1n5y6xVj7a7XPB1rN1Z6Ptae0HFurF1V1fvi42LtjvG5M1TWHfmHWPug8VvH2k/teH6sPfgXm8fas1Z+J9Z+/8+5td5f1BaxdlXV1OV/HmsP+WHurKIJ++auIe7dPzcXMXzZP8Xa/W+4Ptb+7YjHYu1eL+aeGy08ITf31LJf7vlFVVXb1NznS9tXufX9e9+Vu0fpd2DueVlLx8BYe/kBx8TaW62Vm4f48oDhsXb3lXPrtKqqbvzza7H2nG/sGGvPPTr3Xdr1+dw5IutN6B9rP7hJbg/wPQNWj7UP/jK3Xqn9s9yZe1VVf17pN7H2Ol/m9rvPmHNerP1qY5dYu0a8FUs/d+p7sfaM7rn74SlDc2dDvf/iOrF2VdU7d28Qa/dfNrfmef703HzC6NmbxNpDtvpXrL3fU8/F2mfdvG2s/cFDuXVam+z+vVi7qmrmVrn1t3f3yu0tOGavlWLtla7IXbOesnfuzz1m+JWx9qQRuTOqP71mh1j7wR+OibWrqt557qhY+8QVcucl/+CGKbH2BdNy60AmLZu7J33hudw87X/PzX2Pnv6Pm2PtfYJnkVVV/XTtq2Lt6Z/m7seHrx+clw+e+XdU8AyVSx7KzZX+/dTc+vpvjM09fzn/ltxzgL8Py+2Frapae9RfY+0nB54Va293We4dQvO7PRhrb91/n1h7lc1z1y9Dh6wRax8xLzcvP/H1vrF2VdXPvrV4rN1/8oRY+7Yv+sbaU47OzZXusW1uz/mt210Qa1/Ylvtc/fCmjWPtHpP3jbWrqh6emLtHefq83L3Zsdfkzq1ZelBuLWmfXXLzZh0Dcmc7zHjmoVj73S0viLVXHntOrF1V9VSPZ2Pt5978Saz9yWG575T338/sP5rTObuqfvq1/h/nfX9w9e7d+M8M6N/Qtt9FTW8ussEluT3AHY//PdZe8qNrYu2qqtkth8Tad5ye2+9+x2u5Z2ZH7pw712rcG7lz5B9fLXcu53bTm/95usgfp+f+3FVV7WvlzhJp3/mHsfakVx+NtZ86Jbd+5ZaVPoy1W4bn3qV3wHq/jrUfOyu3p+KvW64Sa1dVfW+pLWPtXSbk3v98yP65dcf/eHRkrH3wC4fG2jetcmqsPbVrbo39/H6Hx9pVVTetl3tG+vGvc59vo9/Orc0bs/k/Y+17Npgea0/6Y+7f+/JBC2Lt/Xvlrttevjt3VlBV1ZK9cvuvlxmWe/7zaL/c79kvHs+d13PEVSfH2u88OizWXjAjd8142ajcecdvnJtbp1VVNeO0F2PtNWbn9l6PHXRkrH3F/NxZrgMH59bHjb4o9163Oxbm3rN1+OwTY+2qqt535Z5tj/5m7rzDj3e/I9b+4vBnYu2Xdsnt6Zj8689i7UmD9oq1//pV7rOt7sg9+6mqWuO83Jzhjh25vbhj310i1j70x/fE2hfcmHuH4eN77RFr3/d57p50+8dz72atqvpB8D5lsz/dEGu/PPiaWPu5/qNj7d49cufgv75Zbh9w56qnxNqvnZbb9z3njdw+/6qquU9+O9b+56m5+4R3JubOU208kNs7tfTfgvMo19wda48bmNuzdXbv38baVVWTN8md+7fNG7m9U++8mjvf4dnjc/NXZz8/KtY+9KPcHPHc2fvF2i+eck2sfdqj2bPoj98zN3d21W65Z7wbX3lBrD1ipdzan2GH3B5rb7hW7uy7E7bKPfvZYf3cmoCqqs/PPCzW3n6j3H654ybm3g/7au44j9q7y5RYe4cpuXmUi9e/LdbuU7lza3qd+UisXVW11Me5tT87nZ97v8m8AbnPthl9b4m1Lx29aax96z9zZ4Kd/+arsfanK2bee73IhWf9d6y90hm5vZ0bbf9Krr3tYk1vdsyYX/U1H73cMuHM6tGt7T8zoH/DxG81/+9rkY12yn0X3PNqrn3esgfF2lVVj7/ZHmv/a0Humfjg866Jtb+zcm6/2IZ75c7sazkn90z6+Lv3jLX3PCV3jvwxh0+Otauqnjkld47JJffl9g/dtu+BsfZNh+TWQ640NDff9+dpuX3f1y/8Tqw95MDce+3X+EEsXVVVb72QOxtz5Fe59f37d+ba572XOyfxyXPujLVHXZtbK3Xe8JNi7cd/3/x70UVGnZx7z9aSwd+xqqoDJuXOdjjjlHNj7Vm3584wuWzL3F61jwfm5hl/PTp3f7T/bbmLiFEv5/ZM7Xpz7h0ZVVUzT8/do/xiQm7t7TJjcuvythqQW7tycLfcOor323L7lm64KncNcfkPc+fIfzEod8Z0VdXw7XN7gI/fKXeG7U1Dc59tv5n/u1h77bvmxtrd7rw+1r7ojEGx9rIv5ebsjj37u7F2VdXpg3LnW/7u+9vH2v/a6uJYe6Onc++WP2rz3FqlITcPjbXv6MjtD7z34mti7YeO2y3Wrqo69eQLY+3pe+TOLN73qQ1j7WlXbhdrT+qWe+a1xsDcftAR7+Xuh4/t9l+x9nOHPhdrV1WNvPiIWPvxt46Pta//QW4fS9fgeqeb/vsvsfZD38/dH3XffGGsvUtL7p1Lw+Zm33O+1dt3xtpPH79UrH3qh7nrl147fRxr/+jh3D6ST67PfZddvnTunSrLjdwq1u5x3O6x9kXdpsbaVVU75F5nV9d2HxFrv9Aldy7Ved1y+wPHjs+986DvG7m9Q8P23DvW/tVPc/vU1tzho1i7qqrzqxNi7Unn59ZM/7Yl9y7gR9/MnVP0i4tz57/9ckjuXPBZk3N/5zu/lHvPxGb3Xh5rV1XducVxsfbQP+TWYjxz0+Ox9u/WejPW3vLL3DujntvxjVh7i59MiLWX+2lufvr2n+X2PVdVXbx77hnrEz1z74y6cP0dYu2NembOl1ywsFHPfM2lpHu8f2Z17dL89/Ie8Ms/NL25yLt75c5xHzanNdb+4O7c84uqqge2uTLW7rrO72Pt3bbI7fUfvVXued05h+eez95aubOdOnbMzffdNjU337fy8rmzlaqqut6TeyfLvZvk5p426ppbJ7bcQ7nvs01fPDvWPufI3DPS03vlzmdct+c3Y+3L+ubO06iqeuGj3Lsbf7dybh/w4L1yz0+e6rtWrD303dyaoSe+zJ2R9NdTe8fai22W+y679Ljc89Hf/Dg3x1pV1bNf7r1qWz6Ym3M7Y9iPYu1vztg11p6+Qe4dPN9fMneW+tFrN/9Z1yL/6pP7HX/g6NxazKqqdcbmznnedkRu39S+T+aec7Y9lZtf3uzE3O/ZLd/O7X/e9Fe5d5yf+fpVsfaqoy+Jtauqxpz/Vaz9zZXGxNqr9D491j5pz9z5ufvNz/17/2zv3L1ZPZc7g+17P8i9d3rhtXfG2lVV35n4p1j72J5rxNrfXSZ3T3zFB7m9sNf/Lfes78wPc+8M2PG4nWLtO7b9MNZevXJzdlVV3c/Lfad0XJj7e3/ynNx7/F79/Bux9gbX9I21l382t9e+xyObxNqNUbkz0bc/ITt3deEbuTNFB+6be6nbCvfMjLWvPTb3DuLt18qt/V36+dw6r8vOzZ2zuPZBubPn9p2QnT9a6fbc/sTj1sud5XrZ1XNi7cP+9nKs3Xpd7h3EX7b+Itaeuv2KsfZbd98Uay9+T25fwY5fjI61q6p+uGfuPRvbXnBdrP3CS7mf9Qeez51TtOtSo2LtC2/M/Z6du/lGsfYhY3PngR0yPXf+W1XV1C/Pi7XXfCf3/GXkJ+Ni7WF75/a7D5x/b6y91ce5d2wcufH5sfbxS+Tmxlc5IXf+flXVNvfm5jJum7terD3y2Nw+4Hu6Do+1u767Wqx903W55y8vbpP79x7ZOzd/8+bRe8TaVVXP3p573+b4d3PvL9p1fO668abNM3PjHR0d/6/+u9zqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmq6RHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8bf/Of7xq/xWrW7du/1tj+T/qvd2cpjcXeWP0A7F2/17zY+1Rd06Jtauqjjn5h7n49Emx9OzWabH2kr2WiLWnLpgRaz/30KhYe9UBC2LtxZcYEGt37bF4rF1VNbD3oFh78JqrxNrz2ubG2uNn5L7PujVmxtq9W3I/63Pn5L5P5k1fKtb+7I3RsXZVVdfqE2t3awyMtVvbcr/jCxcuHWvP79ISa7cu7Bprt3dbMtbumDk71m5v7RtrT/mqM9auqurepUsu3v5vPbL4j5obvIbo2tH85y6LdM7N/bwtbM19rnYuzP2cL+zeO9bu3hFLV1VVZ2vunrit+2KxdvduwZ+39kasPadlYazdMTd3vdpzidz1ai3IPVOfM29qrF1V1bOzZ6w9r3fuWr0j9yteNSP389Zj8dw1xILOfrH29M//FWvPW9A31u7VPXetXFXVOnNWrr3+irH2grm53/H5jdyzgPHvfxVrfzb1nVx7Wq791WK5a8Yhnbnnq1VVvbvnni13bY2lq2dr7t7sq8r9jq/ZyP25+2yxV6y9oPXTWHutjfePte+75dpYu6pq2aXGxtoDB+XmSnv2zz3nXHrIsrH2F59MjLWX6JtbczTu49z1y8iRD8Xam623bqxdVTWnPTeP0rbWvFh7xVXWiLWn9M/dH834KLe2b8rcXHva+Ndj7VWH5J4DvNk6LtbeZd1tY+2qqpfefzzWXnyFXWPtHt0+j7Uf+OdrsfbGg5aLtWe3tMfaEye8F2tP78jdI/RtDa59qaq33/gk1m7v+lis3dI1N0/7+ee5+6Ohq/xXrL34oLVj7WdezM0R91jiyVj7hdefj7WrqkaPyz1z65if+x0/de49sfaFAw6PtXvNyX22zenMzeG0d+b2/3Rpyd2LL6zkIpCqlvm5PWeNLrk/+4TZ78fabW2ZNdML6+vvNVt7u4Or22I9/gOj+fdsMf+opjcX+aBP7trns2tz7d3/MT7Wrqra4ZK/xNpjj8qtE3trRu6ab7s1vxtrz53981j7+RsejbXb/prbl/npOrnr7H37vxZrV1WN/fl5sfa5I56JtRcbkHtmdlv/W2LtJQ7LzQV8unvus23Qu0fE2us0cuvrb+76caxdVTVpcO6+cs191oq1p4+/O9ZeYvoLsXbr/blnhZf9KJauxU/8Vqy9wjG5fZm3rrpmrL3q2OyaxEltX8baPQbk9g8tt8+esfZJV+XWcRy8z6uxdsual8baYx4dFWv/a/3c3PK8lXPPP6qq7h3z61h752OeirVf3+fOWPvYJf8Ra186Ibfeemzv3DXj795aKdY+b/UrYu3Ou34Wa1dVzfv0rlj72W/n9rsfPnPlWPvODXL7plbeNXe9+ulWuTO5Pn4s93O+3GU7xtpbrHN/rF1V9cn1G8XaXw6fEGt3rJc7Q+WtTXPrId86I/fnHrVHbo744ptzv2f3b/xBrH3jTtl1O5Mqd7380ydy69xv6pPbq/bokblrp343Pxhr77JHbk/opPG5/Rz7bb1erP38VVvG2lVVU5Y8K9Ze8GFuX+Yv982txVhhwLux9opP5fY/v7FMbk3Apr+/Ota+4K3cuZpHrvS3WLuq6rNn74y1178+N1k6cYXcdeObo3KHBU2cmdvD88YOG8bawxq5NUendM+dFXTVEbkza75/e/baafqC3DmPM5bNzU+/sM6NsfaTr+TW7+6xzCux9pxDT4y1e4/Inf2/3+cvx9rvtObW9VVV3Xb7TbF2/41/GWuv1zN3vfzKp91j7U9/mFtX+MmDO8TaD9+Ze/4yeOFzsfbVnbmzW6qqnl36zVh7592Oi7W/dVxuLemPZ+TmxvdfmJs3e22f3BrajR9aJtY+9d5tYu3P18/t+aqqGvP2G7H2NzbYItZ+ZdAGsfb5AzNrAhYumFX1NS9fFv/l36qla/PXTH304YdNby6y16lfxNoXLp/bszW235BYu6rq92PXibVf6hwaa59ydO7a593nno61l52ce7na05eOirWv/HPuvMBVPsw+P5k4N7c38tyVto61R364caz92e9Pi7Wv33W/WPud7+TWwF5174Gx9snbD4+1Z9+W22tfVbXto7l7+Y4bc/sqRuyY25/4m3U3ibWnjdg91p7+7bdj7cvag5vO/5q7Vq6qOnCXVWPtzX6Se6/bzW1/iLV/8NqmsXa/C3PzXmPGnxtrz90/97xsudn3xtqnnpFbB1pVdelHuTPglmnLfbbe/OLXP6Py/6vnH8qdQfvBB7ln8pc9n9trf9Z2p8Tat950eax98WK5uYCqqjP+lFs/s/M6uevl787LrXv+7bu5d+G8+GDuXXq3zck9a5xw4Gmx9i8/PiDWrqo6fWDud3zU9bk53vPvz72P97TvnhZrr/PmmFi7+3XHxdqb75A7H2r4Obl3T487MPd8t6pqmXc+i7XvX2/7WLvfm7n58TXH5d5hePruufeUXvdqbi/Lqav+Mdbe9abc2ZpVVR2rnB1rf+/p3J73UUtdFmu/c2XuvvQ7M3P71VpWz+3FnfrZT2LtfV4cHGvPGHpYrF1VtePfcv/mJ7/2i1j71vNz60CGduTeMTbznjNi7XFL5c5oembw32PtEeflrp2qqvZ5Yt9Y+625ue+zVW/L7VdbZ7ubY+1Rhx4ba/+46zWxdu9Xcufnbn7pIbH2hoNya2irqu68ce9Y+9SncudaHHxN7iyRD//S/HcALrJWt9xz7SU/GRlrf7XasFj75Mm5d09XVZ31jRmx9k+X+V2sPbRvbn58v3/m3j/QMmenWPtH294Ra194Uv9Ye9qxuXcB97wj9+euqrpn+q9i7Q3Xy83jrPtxbq3XkUflzhy8/Qe3x9rXT8itM9vgO7n7wn02yZ45eGVr7h3ST7yWO6/5vw7dJ9a+7MDmz493dsytqoe/1v9j1sMHV7U1fx/PIafl5n7eHvBsrH3i8NNj7dc2XxhrV1V99OiFsfaj7+TOafzhVrl3k/xq6h6x9rf+mnt/Ya+J42PtE289NNZec3Ruzc77O5wTa1dV/e7h3Jzbb9/O7ZM776HcGtSLtsm9b+rF76wWaz9yxZhY+7u9c+8NuOWinWPtg65fMdauqvreGrn3rN+32Yux9l2n3Rprr3xj7j04j/8m9wxh5BHHxdqzb8h9pt/3Ym6t0qZn3RlrH35U7ozGqqp/zM59tg64Nne+wtkv5M5QWXFI7l3jU2fmnlGe8avcud7L/+WYWPupDxaPtf+4Q+5d31VVP39gVqx94Amrx9pbTM+db7Bqvymx9ujFvxlrb3rgpFj7kWOeiLXHnZ/baz/npNw5z1VV9/wlN58waNPNYu2NKtceNfOnsfZqz/wp1v7lp7l1DBe8kFuX9+2f5c4TfeCK3Nn9VVWPP5K7bnx275di7Rl/uCjWvnj7j2LtOZXbJ/fzVf8aax9z7JhY+7G5ue+TpX6Se8d6VdVWD+SeNfa4LnfduM6aufdeL7gqt19rwaCvt27n69jkR7l9LHuMPjLW7lO/ibWPmJFd97tTW+48jY+OyZ0ds9nTuTm7tZe9INa+eof/jrX3/zz3btaVh18Ra584+IRY+/7W3F6xqqoXfn5JrP2d63LvZ53467di7T/sl3vmdXTP3LnBDw/JnYk184LctdNZY3PvKP3uRrl3F1263kmxdlXVrp/knm3f1jO3d+jyI1eJtWfumNvr/pMlc2sxDnhzcqx93NzcPthdD8mdWfP713PPV6uqPl4rtz/g0G2vibWf3Tn3vu9198ztdZ817IZY+/L2/WPthbt8L9Zedtj0WPvZGx+Itauqrvhl7n1VM3+9Yaw9dN4SsfZ295wcax91fe7Zz1KX5s4yfXRKbm/C1ANy76r61szs+djtZ+Xuz6ae0S3W3rQuiLVXnnBtpDtz2vTatt/X+3/M329ktfRo/nvObx+wUdObizyzcm6t9+XBd9KetFru3fJVVTs8n5tnvXfu0bH2nCNy73dfY83ce0l2/PGbsXb3vXNrpd7aILe+/tk3+8bah570TKxdVXXnFbnndW2vfDvW/vYF3421f9b9xFh7zJ65z9V7N+0day95fa9Y+65lcmdb7311bs1QVdUre50aa48f+m6s3e/63HvO3/jpxbH2Fc+/Fmv365E7R6T/A7lrxi8fyb1ve5Odc88o3+zXGmtXVd09+YJYe48n3om1z943d/7sK5V7B/JpI3NzvDN2y52f8sAeuWcgxz6R21Nx+xPDY+2qqmVWXzPW/lYjdwbrDnfm9jUc/kDuvOFPp+aegXxr79y+zM3n3h1r7zUzt75+r9Vyzz+qqra6O7fm+qFdc+9c+tMq82Ptn727Xqy93F9Oi7Wf2yIz31dV9fy03Fke6zyZe+f1umsfHmtXVV14YO76aYsL22PtebfmznHtfUxurfc75+TOvnts1xtj7ZmdubXemx2Vu07veuiSsXZV1Yitc+t2JjyTu2Y9dspnsfYv/nJbrL3zFrkzVNa+dYVYu+cN78XaZ500OtZec15uPWRV1ejhueun+z4ZFmvv/vZBsfZh1+XORL9vTG6e9oRv5vZlXvHefbH2Ud1y7zhf4R/PxdpVVR8tlttPssyIlWLtH3UfHGs/e1duXn77a/4Ya19zfO4ssmd/nNuHO2C33Lx87ZU72/K8lux5YGeuntvr//qdufeEXfFy7p2Rfxx1Zqw98OzcXMaQt3Nntxy1ae579Oqzc+8WWX+7q2PtqqrOn+f2pL63ee475ZWjcmeRPTYid63+xrHHxdobHJSbJz3uotw7zn90Ru4z/f3Pcu9sqqq6e1JuLuPx5XNr9L/xZO7nbYkljoi1x6+VOzPnpCG5Mwb2OXRqrH3YuNw7XR66LnetXFV1efcxsfbhN+f24ay6bu58hX36nBvpzlkwv3733v+8F6XRhLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPD/E430AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZp6ezs7Pyf/qNp06ZVnz59avi6a1Zra2szxvX/MHb8xKY3F5n21aRYe9kB3WPtE0YcEGtXVW2w7ZaxduvsxWLt3ov3irUnN9pi7afvuCHWHvfl2Fh7qw02i7V79RgUaw8YnPts+7/1jpV79O4Xa/fp2TfWrvaWWHrOrHmx9uSvcp8vbdPmx9qP/+lvsfbcL2bG2lVVS0ztE2v36tKItfu15/7c3br2jbUbHbNi7R5d+sbaba3/4+3j/5pu3RfG2gvm5X7H5nfkrtOrqto7F8Tabd1zf/aWjtzPerXkrhm7VO7fu6W65NpdOnLt4I/agtbsvVmP9tzP29xq/vPNRbq15547TZ04J9bu0XturN0WfA7Q6JVrL5g2JdaeX1Nj7aqqrvN7xNrzeub+zTs6c/Mo7XO6xdodHbn7hEZ7rr1wVu76pXvfJWPtBXOnxdpVVe1rDIm150/PPe9bOG1yrD318y9j7Y+/Gp1rT/881v50Vu7vvNEl9xygS+V+x6qqunTpH2u3zMtdq/fom7uGmDk1d3/0QeX+zudtOTTW3nLvPWLt008/NtZeoiX3bLmqalZjeqy9y9Y7xtpfTc7N0y7WPjjWXm75NWLtFTfeKNae83Hu+qXLakvF2i8/cn+sXVU1YcwnsfYr/3wm1l44LzdHvNmw3Odqtz65a6flVl031m7ttXys3TI/d1/YZ+Bysfa093LPOKuq5s/NPQuYOCX3XL21JTd3tfLg3D3Kp++/EGsP3WzXWHvamA9j7Xndc88Z77rljVi7quqNDz6ItddYN3ePsu02uf0o9//t6lh74qzcmukdts7dF456+vFYe/rU3HPGt8b+M9auqpo1K7fwqK2jPdbeePUBsfbIP94ca4//w79i7Zqcu1Zu71g61m5py+0pbV2QW49QVdXRLfd71tY6Jdaujp6x9KwFmfnKGQvm1FYvnllTp06t3r3/vXVPi/acH7b1sOrS1vw1mc++l9vH8tLsX8faq/Q9Mda+bc3VYu2qqgdvPCvWPvGM3LrAz0bk5htnrnxfrD3yjtzz+IGjLoi1t52zc6w97sjDYu3X/zE71q6qGrJD7nr3mh65NUPXjsnNdX61au5ZYeezu8XaHR/9JNZedWpufdxdV+fub77omv18GbRW7h6jx+W58xU27pFbQ/L+sOti7W5v5uae+h59cKy9yrnDYu0JnSNj7Ut2fD/WPm69S2LtqqppLbl5t78/MiHWPmmx3LqdW754Ktb+fOUNY+2N5uXmQK6ccUasff+2e8baX152VKxdVXXKXr+KtWf22zTW/ubA3LXTUx9dGmuv81BurXfftpVi7Wkta8baQ1bMna3w+JC1Y+2qqh2n556xPjQ5N9e52qzcPpont8o9hzhzTG4e5U9Tboy11988ty6wY2ruPNP+R+TWv1ZV1b65uYzRM3L3KK++/0Ssvc3iuTOqX9o8t27nm8/knoG8fGPuGeflx2wRa7/7Wm4PTVXVurvlnjUe3vZSrH3rRQfF2hu/klt/u9ZfHo61b1olt29q1oY75dqXfRZrDxh3YaxdVfWbwW/H2g9sk5vLuPThl2PtPRf7Qazdfe1lY+2eu+X2VCz/3JRYe/Lyq8faZzx2bqxdVXXyg8F3m0zN7Ukdt++nsfYqrbl9mc9vkjsD7oB+ufNrXx2Um6ft035XrD3on5vE2gPH5a7bqqruWTE3P91+fm7N0+Avc2uHux+/Q6z993lHxNq9H/ko1t72D7kzLT4/KPd89aLXL4i1q6rGzc09e9p9idyahDc23ybWnj06Nzc+Y6ncu5MeWSW3HmH16VfG2tt+mJuXP3uN7PXLykP/L/buM9rK8t7/9Y9JRwVEUUFRFLvYRQV7b1GIvcYSDWgUW6KxBMuO3dhb7DEae49KNKJiib2BDRuKUhQVlN7W/5Uvzosz9tkjY8/vOWdc12vH+Dy41przee7nLrl79Q6nvhlrn7PZerH2Vuf+M9Ze9ZTcWN8/uuT2SNrq7cVj7dmb5c5X7dx+cqxdVXX7j7n3KOt99kqsPfDGjWLtxy/JzHGbNmdWbfb3U/+jNee7HNi92gbOULzk2c2a3vzZwLbPxtrbfZ7bb+f5R7PrGi4flVtzvk6vf8Taj+92Yqw94Yvcs1Wrp3Prxb56PzfP/Pw/HhJrv3bkS7F2VdXvjsvtOXzUFrl77V8+ODbWXu35obH2zYNzzxgdTszNM1/2qd6x9i3H5eaZ/3XtJWPtqqrblz8j1l7/mtzaggkf5949fXjsDbH2uzv9O9Ze9Q+5/WfnLLg31t57WHZ+3EJn5ua53/Lb3HzMm0bnxk9+ceSfYu1JZ34Va++28kmx9sGvnBtrv35Bbs3Wmuvm5q9UVR3wXG7s6fQeubNCF/17bmx6mW9zcxKfOzg3z33AUrn2ZrvnnsVP2CK3NvKpu3LfJ1VVh/fK7e29xMjced8DZ+TWIG/WJ7eX/FoTN4m1x7W+Nda+8O7cc8Izt+X266mquqdNbmx78PB3Y+2R3+fGWC89Zs9Yu/ubuXXAG76d20P/wHVze4MPuz63Fnaf83NrQquq+r/ZNdbeZMXc9/iBj+TWq7Ue/3Ss/ero3L36n4Lzb9+Zm9vD9vvTcuO7VVWX7hkc51zozFj7ic37xtp7PvlirH12v9wZhi+/lttz8IQ1/hJrn3Fvbl/yWUtcFmtXVW05eEqsPe2b3PzfFVZ+LtY+YdNTYu09d/0o1l7+ztyY/t2rTsq1X8/NvamqevXA7WLt/W+ZFmsP2uKWWHu7aQfG2u3XWCnWHnzbv2Lt24YtFmufv0XuTNznzj8t1q6qev/93GdrpzVz59lcv11uTH/kDrm1uONOOyLW3nzTt2Pt1drn9sie8IfcfM6qquX759ZODT85ty/Xrc/nPl/eWCy3X9A1N14Uax/1bO5dxk97586k+9vgs2PtvQfl1vpXVY3f6sFYe50tcuesTh+Q+1x/YcvcO+Knhr0dax+wRu59wsdP5c4y3nez4bF2VVXPvR6PtYdOzn22jj05N5/z3COaPx9izvQ5dfvAe/6jNeeHdP6y2rVq/hnQlx/atenNn/1mq9x4+P07to+1zx2eG5Ouqlp/dO5ed/fJo2PtF/cZE2sP/2RKrP33LkfF2md8lDu3sf2Wg2LtK5ZfN9b+7rXc2GxV1cKDcvs0Ln7AErH2Fr/Orcvs9MUGsfZSJ14aa9/9Y+5MlrMfyq1H/f0KubXP+z6ZWx9YVbXsVgNj7QOvyH2XnnRl7rv0qf1yYyf//umJWPuyRXJ7uY+elZuXV20WjaWHHz0/1n5k8N9i7aqq5zbP7a/deCa3Tq7PVYNi7aX7555J7z4utwdsx979Y+237879jd9z6P6x9t4X5c49qqr66bTcPvZLnHJ/rD17k9wesHecmVsnd/kGuTHW99fP/bzHLJX7TJ/27Fax9rJv5vYTraqat0lu7u3Niz4Uax/1SG5Mf7v9cvN+Xzgldwbywuflzj265+Xc+sAHhl4da7+/Zm5uWlXVpyvn9t3bpUPunvWs73LnL7deNrcmdIsHcmOs74zI7eN67tG5Oe6tT9sy1l5jQO5ctaqqJffLncNzxbH7xdqHb3N7rP35Orm95zbaJrcW9uincvs6fHdY7nt02W+fj7VPu//4WLuqao/5ubMu9pz151h7/aG53/X9Ns2d8XXjobn3CV3OPi7W/npB7p5x2rm58+TWG5xby1FVVWPeiqVHds6tAd7s7LNi7V+/nFsfOOSU3H7JoweNiLW375l7Ntvrr7k9Hnfa7JFY+/Z22T2qn+mZ62/74L6xdusOub1zh0zfJ9Yefv3JsXaPEbk1/h+tcmqsPWrn3M/7uJ4PxdpVVQN73Rprd/42N6fxtoVz6yKG3Zg7e/r+1rnx/I+uyK2LrC65seU1n8y9n541MnsOcfsZl8XaB79/WKx9/X1rxdqdHh8ca5+z+DWxdstPubnDX72U25P8+FMy505XVd29S24v06qqlc7+a6x90WHHxNqdju4da1/zXWafoBlzqg66s/6jNecb/v7hatO++XO+z3krNx7fe5dzYu3pPz4Waz815s5Yu6rq/NdyY4X9n82tm+r4+0ti7WHLrBlrXzD+1lj7rEVy34O3bPNQrH3YorkxyhtuvTDWrqpa8+bcnjNXVm798/sP/ybWXmbRX8XaHZ/MrbVfYWhuTei8+zaMtd/cNLfHwFFDcvssV1W9uGfueXrFo3LPlUe3ys3befH7b2PtbT++I9beYaWOufYOuXHCd9bN7Z3/wp25vQJ79zw01q6qWu3K3JyCCy/O3bddtnxuT4tZ3+fONhu0cyxd647I7R3z3L65/+cvf7hKrH3wCdlzG7faO/cO5vDHcmfiPnxrbr71/W0eirXH3Jjb/+29N3PPw2Pvyu2t8MbA3HkFR+x9ZaxdVbXcgbk5JAPezM3VWujT3B4Hc7fKnSe3RIf1Y+1B/94m1v7dt7n59ZuOyu3BdsJ542Ltqqozrmr+vtw/O+vB3FjAA1suHWtf+/2cWHvEP7+LtY98+ZNY++QnJ8Ta15zcJtZesc1NsXZVVb/Vcueqvdsn950y6b3c/i2ntV4u1m7/Sm7t9WHLXBxrD+6eWxu5bN/cO7s9Vsqdf1xVNfn3ufHlVrvn1qP+/rbc++m9PsrtydVyWO55fJsPcmf4HfrlTrH2Zx/lxpY3OW1ArF1VNWin3JzK3xyX+1yftXLufnnfF3P7Kyy0Yq79t7Vy51X+88PcXM6Wx7vF2u/8eWysvcGILrF2VdWxD68daz/yQu589yFDcuuA1xn0daz9xYDcuYkr/e2hWHu//R6OtY9vk5uvvcVl2XmFS56Ym8+5devc8/hf18l9rv7lwEGx9qyJp8faz/05985ujbm5Mdb/Ou1PsfbWh+TeJVRV7brNs7H2iJm5M4Q+PD035nbjh4Ni7Quvzv2Nb79H7j3GToNzZ9p3G5V7d/XB3tvG2lVVJ8zvG2vP2i84rr5l7hnl6Z6ZMda501rqgS3++zXnjSZeEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYY30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8rVpaWlr+u//oxx9/rC5dutRii/WoRqPRjOv6v+i0cPObP9t5h+1i7b7LLR5rr77yxrF2VdXSS7aLtSe1nRNrL9pYLtauVv/tR8H/mnHTxsbaU0a9HmuvsnS/WHvhnovG2gvmzY61q6qqzcKx9GLtO8TaMzt0jLW//25qrN2+kftsm9+S+z6pKQti6U8ffSbWHvXYy7F2VVXvzivE2j0XmR9rz525SKy9aIfc7/qSXZaMtWf+EEtX64Xax9rz50yOtdtWq1h74c6dYu2qqjkzF4u12wSfzTq0y923zVswN9Zu02gdazcq97u+oNWsWLtVS+77pG2HabF2VdX8+QvF2gva/RRrt8yLpWve9Nx4W+cuue/S2XPbxNptWnL36S1tc5/p8+dnx35aL9Q51p4XvFlvG/xdb3TMfabPn5v7Hu/YIXf/Mnt+8AtlWu5eud2a2eejebNz36VtZs6MtadM/DrW/mLCpFh7zHcvxdrj5/0Ya3dsn3s/3W5W7v6lOmTvXzq2yo2/LNKYHmvPbNU21p42P/dMPGfR3Jj6Jjf8Ltb+y+VnxdpL9sjdQ7Ru5MZ+qqqq46qx9GId3oy1Z83JPY+//NarsXafZZeJtSd8lhtvW6Rd7l3C0n3WjLW79cjO7fupTe7v7JvPP4y1V+y9Xqz90D0PxNq9e+bu25Zbp0usvWBurt2re/9Yu9Wcb2PtPhvl/t1VVR+9806s/eSDd8fam23XNdZebIkdYu1lGrm/8VHffBZrL5iVm2v1waejYu33R/0r1q6q+vD93LuMZZbOPROvuXTufvmrWbm5Nx99NS7W3njDlWPthdvm5s/eeMfVsXY1gu/sqqpV8He90TE3R/+5my6ItXutuFmsPXtC7l3C5AtujLVnzcvdvyycexyuVvOyY8tt2ufenc2bk/uZV9vcmFerBV0j3WnzZlX/l/9QU6dOrc6d/2dzrn5ec97twBWq0a75678H/GPZpjd/tv7xuffqk+f1jbU3XL13rF1VNWnfrWPt1ec9EWsvOj/3u/76tbn7jzXmXxtrj/soNw903K/+HGtvvs7wWLtjh9Vj7aqqUW90jbX3eL9nrP11y5RYe8HS38fas3tMibVXeDv32fb82L1j7XFtcvMCu9x0bqxdVbXM2N1j7Vajzou1bxj6y1j75O65MdI+09aKtduu8kqs/dSro2PtxuzcvjFbtsmNj7bplftdq6rq/EZuTsGU5XN7NL36cW4s4KUpvWPtAUd9E2uv8NrYWPuRrXLjhAe2z/0/7zi5V6xdVfXppNy77W5b5/Zhm/Vwbt7xN5fmvlN6n7VErL30Xbl1cu1+uWWsvdjXn8bap07OPpsd1yG3luXDRu6d/qb75p7HL7k695yw7i65scbvVvs41l74/G6x9nLj3461v9/zgFi7qqrHLrlxzg+D+89990NuX4kZTz8ea094Ife+8Kv2G8bavXf8MtYe+21urf06y+bmgVZVTXh2tVi7X5/cHpOffLdNrD3j8b/G2rfM6RprP/7aKbH2xXe+G2svvextsfaYj3JjnFVV/XfMtfcf2yfWPr4lN8/9ku9uirXvnZH7gX/0+n6x9tcb7Blrt+63Rqx90tjc52pV1R2HD4617x+eWxN6xvzcfeOAt3LjnDttnLtXX3V2bmz5vU65+f2D1819to17+4NYe8ZKuTGvqqqvX5oYa78w7/ZYe9mLc/dtV12YOxeuU/fc2PKYx8fH2j+Ny/277zwyN9b30a3XxdpVVWNfyZ0Z1aZX7vtsnyM/ibV/fLR7rD36uydj7Wmf5fZv2eaSI2Ltb/veHGs/sHJu/7eqqgN+yL2vPG/13L36Lpf9NtZ+9d3cmQuvrZmb09gy+R+x9oI3psTaS478KNZeZLMpsXZV1fvP5O4bN188N+b27km5vTXv/Cnzjnj2rBl17WkH/Edrzt9aamAt0mj+Jg2997mv6c2frTokN7++1yK58Yulnsqtfa6q2rdtblz6T1/kxq1eXSK3B+0yfdePtft+fkesPWHEPrF2vz7HxtqrnZ2bB1pVdefQ3O/bshNy6xNX2yA3V+uBPXPjJ5e3fjrWXnG3gbH23Tvm9p/ddMgjsfav9n8r1q6qemz13Dnr0284J9aetm9uH9iuh+fOEOx+Qe4cv2+PzM1XGtwqN4fk9qdz5+BUVX00PbdvTpdpuXvWjT56LNYe8dTDsXbrT3P7TF+zwt9i7RVfGhpr9xr8X7H27n2ei7Wrqg7++JZYe+d9cu9BDqspsfaFe+cWTs25/cRY+84dDoq1+2y+Qay9zrm/jrX/XLm9Y6qq1t46d27kh7f+KdY+Y/XcuZGHj82tSf3VyNye5vtseGqsveJeufXuY3+7U6xdVTXykNy60JMn5t4nvNA6d2bllf2mxtr3frZRrP3eqn+PtbtelNvrsPuBufkER16We0aoqtpoSu4ZqffgXWLtfiMOibXPWzK3H9kTG+fm7dyx89hY+8U9cuMQV3aeFGtXVR0x8K5Ye+SVuT0OBnyd20/1rc+ej7XvPS13/3LmoLVj7VUOuCbW3unvU2Ltd54fG2tXVb3W7dlYu8vwS2LtPU7InSu3+YLcOaVf3ZLb1+LxM16OtW+8Ifc9PvT43FyMqqqZnxwaa/e4P/d+fOySuf17X3grN+9o3ITc+8pP3sutTxw2NTfeN+bK3H7Jh/bN7StRVXXblPdi7ZGr5ObKD7krN/bUvm/uOWHA5qfF2puMOirW7rZz7r5tfo/XY+2qqnfXz93D3DMwd37SsD9+F2v/687cGWV3rJt7h/PKiMtj7cmdcs9H0/6+Tqz94RtLx9pVVfdt3zvW3n7z3BroJSZdHGuvvO6jsXbnnXaLtfe/Jvc3vu9VL8Tax722a6xdVXXvQbk1Aou0z92r7zH86Fh7t/ZrNr05vWV27Tzzqv9ozfn52+5eHdo2f835zPa5++w+w/eKtaf12iTWfuz53Py0qqqv7st9Lo2ckJsHOvnd3Pqhbt1y85VOvTn3HD/wkCGx9sjuXWLtl1a9INa+cHRuX8yqqi1ez322bnpe11j7mtdz61iGz8uNVw3ZMLeHyaBPcn9np7/X/Pu1nx1z/FWx9rlvnh5rV1X9+4NLY+23z7sx1p5xWvOfbX52dOerY+1fzsvtr7DJRn+OtU9/Jre39rZtcnvH/bRZ7p3XqIf2iLWrqh7tNjLW/nql3BmlR1Runvk3vR+Mtdd6KjeXYKnFVoq13x1yZKx9ype5tYmH9zgk1q6q6tAvdxbwzIMnx9ornDI21h70cm4s/ql9c/tbj387t+/eq9euG2u32y7XnvPNgbF2VdXoIe1i7R7b5vYD23+rrWLtu7++NdY+vFXfWPusRu7MhC+HHRZrH33mnbF2Y8lXY+2qquPH5OZ6t+q1e6x97/zc/JHb982drfaXZ86PtYffl3tfuNez+8bavWflzoro8faVsXZV1QebDIu1tzknN1dq296590fXTf9FrH3y1rk9qjtud2GsfdqeuXP85v4yt57igx6/ibWrqvovdEWs/e2tuWezE/rl9sA/8JjcWthtfsztGzxn5dwZX9tf9PtY+8jWq8TaE7fpGmtXVX3cKTff6uOvcns1L/r1hFh7+KO9Y+1fH5fbu+XcP+Tm3rSamFuv9ezwLWLtlsG5Z/Hte+fGXqqq3nhzZqw95K3cXkHPnz4l1v7TqbmzbF584N+x9pLP5caWJ9yUe4fTq3Pu+eSsm7L7xqw9LTe3b9fD3oi191h4h1j7pP65vTzuOeOBWHv1C66NtVsGbxNr73Jx7iyZLs88EWtXVW3xbW6Px2euz/2dvTsk9z5hxafXirX3HZKb2/fqt7nzom77fkCs/dCE3PNwp865MfWqqt/t+n6svfpNuX0dhk7Jzb0Zf9GLke6PM36qnnuu9B+tOR+15a9qkTbNfyewwl0jmt782YHzc+/Vr3sid57c+yvfH2tXVb2yZ27t0pHjcntTzhq8cKx93dK5n/lOjy2ItTfYOTeH49uB58bac0bk7rOHTsydt11VddBZubNohrYdF2u/MDA3d2bEGbn9+tZbJDfHfp23Xoq1l5nySaz9h/65fWuuveeLWLuqarulcntaHPRJbr39NkNy7/TP3jN3PupFe+X27j9tt9z+LUOXOSPWHtXjmVh73ve5dyD9hmXnJM48LHcu7UKf5vam6nnAprF23ycXirVf7N071j736tx5uCusdEisfecXuWfSj9rl1uFWVT27ZW5dZp/9x8TaQ0f1iLWvOiR3lt0vZy0Xaw/pm1tDM2yzv8ba5/21Q6w9+/7cWtiqqlYP/Rhrv71lbp7YCX/M7eUxqrFzrH31tMti7Xa35c4Wu33dP8XaA66cFWs/un9uHmhV1a735uYszTk2NyfxlN65c2jW/Vtun+irO90Uax/9Um4/jdXXzo23TXl8nVh7p8PXi7WrqoaNuCfW3qtyc5YGPZvbY/KHV3Pv5YeOz83Tuv8fp8Taq22Um/dzwfG5NaGT98udh1JVNfXh3HkPx/yQe3e149K59c+938mdPbTFRrkxkD8ckJsH+tiOuTnurw7NrZvq/k7u511Vdd0f/xBrz9jzqVh76qzcedtn/CP3jLLVXzaOtbttmnsvv16P22Ltld/eMNb+5olGrL3z6dk152uPzv3bd1u1f6z90SpjY+2R590da3+yUm7+7qqnvxZrTz4g9/7opUm5cwe22yO3PrCq6quL74u1l5p/cKzdvlVuD/4+G90Qa48emBuHuPzk3N69Cz2yXazdf9ncvfIRPS+Jtauqtp2WO5Pu0LNyz6XTn8jN57zkH7m9Dtc8P/fObtzFufWNvXbOjQMM/ndurtU2fzkm1q6q2mqf3N/46OA5Poc8lzvL5sFdMu/NZs6bXYNfuPa/XXOee2IGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDpGukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHnapC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+H+3frusV63adWh6d8nDPm5682dXbXNurH312UvG2td3eyPWrqra5PKXY+3OV60ba4+dNjXWPqXrarH2sJ53xtoLHdMr1r7uvSmx9nPHLBRrV1Ut+sJNsfYXe78Qa2+ze/dYe+ga58TaE/55fqx98uIzYu3BHTaMtdfb+epY+5FTHom1q6oOvG6ZWPuNYWvH2vttvVesfc7b18baw7d+Ptbe88zc/cvLT/0z1t7hqX6xdlXVht+Mi7W3OuigWPugGf+Otbeft1Osffr4SbH2rGeujLWnfrlWrD1kl41i7UmtXoy1q6rOfOiDWPvqWSNi7XMvyt2r3773Z7H2Evf2jrUfOvvPsfapX+bu297pPiDW3q3rFrF2VdWvt8x9p0wZ82ysvffal8bady17Q6z9wF43xtqDtlgl1r7n8Dti7YFvnRhrV1U9PfSKWPvQvvNi7aNuei3WvvC53DPxGg89HmvPuXnzWPvqVrln8eXPnB5rvzjglFi7quq8Nxux9r2X5p5RFt0297n+1dcHxNqd75oZay/0ywdi7bbX5z7b2p1/X6xdVfXQ5mfF2hs/cmGsPXqr22LttbodFmvf0fboWPuaHqfH2s+Ovz3W7n7YPrH2x/vMirWrqq4ZuFWsfdoVS8Xalx7UEmvv1qtjrH3aOu1i7ZZdfoq1TzqhVaz941Ofx9pVVV2XyM3v27zPb2Ptb/qNjrX3/8WasfaMnS+KtS9YZ26sPf323Nybrb/LPSe06p+bx1pV9fRD+8baJ338aKw98civY+3lup0da194zLux9okL58a13xyZe5ex+N9HxtpVVWt+tnSs/beV9oi1N1l2Yqz99k7Lx9qbH5kb7/v2ndwz8Wc35+bXLXpG7r5t/ou5+U5VVWt0/EOsvfQzufunvhNHxdobdcj9jb+31rOx9jJ3vhRrn3hG7nl4sdVz4/lVVXud2yPW3mb4GbH2DQ/nvs+6/7P5432z5syt+kvTswAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/B7T5n/zHg4/arzp0aP+/dS3/t4bf+0bTmz9bd7llYu3lF18+1m7T7vtYu6pq4vdtY+12XbvG2o0238XaM1svHGt3anSOted3WzbWXmS1hWLtjvN6xNpvffBKrF1VtfzSuf/vP81rxNpt5sXS1XWhxWLtqXNmxtqzp+baLVPmxNodOi0Za/+Pbmz/F7RaMD/WnjWjY6zdZeHmPx/8rN28TrH23LlTYu35bXL3yq1atY61G60WjbXbt8/9ns+b3S7WrqqaP7sl1m40cp/s8yr3md4m+HfWql3u86X13Lmx9vzKfY/Oa5kQa3ds6RprV1XNb+TGnlra5MYhFsyfFmu3tJsda8/rkLtvW9A69+9uPTv3udpmiW6x9tSJX8TaVVVtZi2ItTt07Bprt158kVi7puc+0xcERwPm5W6Vqxq554SWPl1j7QWV+1ytqlrw0w+x9nfjx8Xan0/+ONaeNDX37570U+4ZpWPH3Bhr55bc2HJ17BBLd26bu1+tqmrTNve53npB7rt0/vQZsXb71l1j7ZaOubHGT175MNaePP7bWLt+yL0fXnXABrF2VVXHH9+Ptee2yY2BTJ6aey5cq2fvWHvS1z/F2u3n5B6QWrXKtT8b81ms/dwb78TaVVVLLtI11v7mh49i7dEv/zPW7tW9S6y9Wv+VYu0v3ss9JyyzwuRY+7NPHoi1P/8iN/4xr3X22WxGS26c88DfDIm1//XU9bH2pHefibXHLTM91l5+ra1j7S9f/jHW7tYm9+7q449yYxBVVbPm5uag9Ft95Vh79Q2XirU/fjL3PNx9ieC78ZlTY+1BvxoYa3//Q+790YP/uCzWrqpab6XcZ+vpJ/0i1u7Zu3es3bpNbtxp0V6zYu3pux8aa0+888ZYu3UjN67duiX3u1ZVNXf2ErF2oyU432pBbv7ujHlTQt3//LPl8qXWrU7tm/9zG7ZvbqHc71boG2t3GPXbWHvcF7l3P1VVSx3+Tay96aYrxNqvP527zx+yXO657sv3c3NnunXeLNbebmDuHuAX7+Tmj5z3z9z8tKqqvbbqE2s33s7tcTDgldGx9hcH5z5fRj7dL9b+qRaPtS/tNyrW3vzW3Hj8K1/k/r6rqnZcffNYe/Jx42PtS55ZO9buNCy3t8P3d58bay/zzz1i7TnTH4q1hzU2jrW/3PTgWLvt53fH2lVV1590cqz99BVfx9rL9c19ru4w/NlYe9S9J8baHVe6IdZepntuX6x1hh0Ya1/ycHZN6KAtc/Mxp7y/U6z98Em5tQXf3PhVrL3thyfE2pP6jMi1e90Way+5aW4/06lHZ+fttOmd289j055bxtrDd8jNnWl3Uu9Ye8b3Y2PtHafmPtOn98u9275hi1Vj7S2mvBprV1V9ODy3F9oHs1+OtcecnlufuM7l/461t1k6d/8yZYXcvfpF3+f2zl3hq9z+2PuN2STWrqra65nc9/iuv8vNh3jt2k9j7T69P4i1NzokNzfvrS1yzwlzbngs1r7+yNze/7v8+pexdlXVuIfPirUPOjQ3x37a17k5R6d9+G6sveCem2Pt/1qif6y925q5Pdg+Hjk01p7+Yu7eqarqlQW5d+PbLZ8bVz/2+dx8zsZWz8faF3zYK9a+fMwWsfbvN87tb/Bu7RNrt3lx51j7p3X/FGtXVW2wUu55/LxresfaJ5z8Saz9+vRWsfbsltzvW7uFB8XaP/QfE2uf/Xru2WzYZSvG2lVVa/82NydhdodJsXb3NlfG2ncsenSsvW733HzKTVbbLta+5Mjc+oAXjjgi1h55YW4eaVXVzItycyrfub5nrP3iJrmxxvaH/TrWXuHp3Pju2a+fGmtv3yW3p+ikH/eNtTf4PvfzrqpqbLR/rP3EtNw+Satc8GCsfcr4zF5BP7XMrGsjZQAAAAAAAAAAAAAAAAAAAP7/4OZFVqjWbZt/bsOwR3N73x65SW5/6xN3y+19e8683H5aVVUvDv9NrD3o0Utj7Y2OOCrWPmqPe2Ltc1d9INb+YbvrYu2Trtst1j5gv1x71c+vjrWrqh7dfpVY+1/n5s43W3tq7kzcj+/eMNbe7JrcPs9XHvuXWPvm+n2sfcVfc3s7dXnm81i7qmq1c3N77z7Rar9Y+9AnD4q1v1j2oVj7q61zZ2TM3S53DvHCd18Va18yN7cv5uvv9Ym1uzyS+y6rqmoZmtsvsNUfB8baa23wfay9wl1zY+05n+0Va7dslvsb/679MrF2q8NPibVXnpg7B7iqar2Tz4i1l+/2Zax9z7InxdoXrtUm1j6xf+658I89J8bav99wp1j7/u1zZydeE3xGqKra/5PFY+0Rfxsfaz8/8vFY+6ORC2LtBTctFmsfPPXIWPu2tXJjP3ccMyPWfvbB3JlLVVW7/+PpWPvry3M/8z9NvCjWfuqTEbF2y+OHx9qr7PyrWPv1P+Z+3t8eu16sPWr8DbF2VdWlUy6PtRe/Knd244i+ubHGmy/JnYty8VK5dwl3j14q1u703qux9ir3tYu1N9og++5q6/sejrX/Per1WHvv68bG2mt1eTPW7rlO7lzaJZ6cFmufMLR1rH3K7XNi7WM6vRFrV1XN23ZQrP3bgzvG2su9kDvfvd95ufNZb91prVj7sZs6x9rbPZw71/7Az2+MtT/41Wax9mp75Oa3VVXN+P7TWHv93Q+OtQ9++r9i7TXHbxRrz3/2nVj7sYOPjbXvOiY3V7z/ZrmzeDeallsPUlW11qTc2dOfrpKbk3Bcp9xYwPjBuXcZi22Qey4cvmpufcBFx+bOAm734q6x9nkn3BdrV1X9dN3ZsfaOc/8ca3//ZO5E3vFn5P7ddw3oEGuvNOH6WPvdS8+NtacOHRprH/N67hmhquqgXfrG2hNXnxdrLzR4Zqz960cy85bnzvnPx3bvW2fN6tC++WN259zeq+nNnz3/1C9i7Z5Pd42152yXW7dUVXXc4bn7/CvGLRprj9n3kFi7T4/c+59O7+fW8Hy+/LOx9pgf7oy1ez9wYay9yErZeYEH9H0u1v7tI0/F2u8v/lis3bXn9rH2jk9uE2tPvDS3dunkq3Jr9HYc/fdYu27JrSWpqtpqwYBY+3dX5fYLOnmn5WLtP95yTqx9xf65MfGRK14Ra4++KrcmdK+Dc2vtl/vjrFj7tcG5McqqqrOWXzfWblyRe8e71DY9Yu3f9lwt1l51vdy8nU7Dc2v0vlzz9lh7/bdyc9xbj8juadH4xaax9nLjh8TaG3w+OdY+YcXZsfape10Ta998Wm7d98wxufcQo959K9Z+9PousXZV1YB3cv/21TvtHWtP+jJ377TGk4/G2l8etUis/cvFc89HHebnvk9m9Mvtnduvc25/pqqq717PrcVd/pGvY+1D1svtW/PIgO6x9p8n5j5ftmyV2wft/ZUnxdqnTM21zxp3ZqxdVXXEork59nedc0isPfO8ZWPtIR1zYyBTp7WNtefcfFqs/Xz73Pfog3vn7iEm7/O3WLuq6q49cmNux49dONZea9sDY+1Hfxwba9/3dm79c8+19o+199p291i72xONWPviH+6KtauqTrlvcKzd6Yncvp7zz/gs1t51uVti7Y6L5Z5JbxiUG2M9qeXjWHvxl3Jrh7aekXt/827bZ2LtqqrxZ+fWvHdbcetYu0uv3L7BQ77IreE5oXdLrF19c3OHj2ysH2s/sGXuM/2y8/4Qa1dVtblhWKy93oTcHirP7JHb63DRrXOfL0N/ldsXa+bDuXeVL9/6Uqw94pTcmZO7Dsqdt1BVNWPacbH2+CNy7zK2mHZWrD2mR+497fhbcmN9Kz4zP9bu827/WPvj8bl1EUdd9mGsXVU1esvcnn/TWq8Ta7fdODemv/GUVSPdaQv+n82Rz42EAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/4e9uwy3q7r7f/3LSnY8JARCcA0OAYIVh+JOcXfXFije4sFaSouVoi2uQYpbILgH1xBISAhJiLvs8+bw8lz/0+t5/uv7PNd1369pP2PvrDX3nGOOOSYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA87dIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP5n6//UJtWp0bXp3c4TOje9+Yvbz5kv1n5o381j7dNeeyjWrqo6bOPDYu0ttvlDrP3p2/fG2nu8dEysPfbdZWPtPW/dLdZ+Zr5jY+3Zi54Sa1dVfbHrSbH25q8cF2sP/WJkrD39d9vG2qePnhxrX7t/a6z9/rz3xNodVlgu1t7i74/F2lVVf5i9V6y9+5S7Yu2pG68Yaz8wa95Ye4VX9o61P/lknVj7mnO2ibVXO/LxWLuqasQtz8baAwblPm+T15sba+9z4aqx9sSncu11938g1t7kndti7e7HN3/O5xcd+xwfa1dVvTBvbh5i/o65v6VnXT4w1j7kxUasPfeOZ2LtYz7fL9aee+UqsfY26zwZa/929LBYu6pq8K92jrWPatku1r5l++6x9m0dcvMv0ybmjm0LXPivWLvr8H1i7Vl39Im1q6p+3vqnWPvR53L3rzboeH+sfcGMWLr26TIq1v73t7l7OJ/0eynWbr3o9Vj7d6euEWtXVd1zzg+x9klr9o21O43aMNZe5JS3Yu3NNsldj5+3Q+7+9GPbPBJr/7hH+1i7qmruLZfF2gt0viTW7rvq57H27v1yc8sLHdgx1t6wTf9Y+1/HLBlrr7Xa2bF226W+i7Wrqraf7/ex9stzno+11988d3zZ6PBXYu3+H68ba59ye24dSJ95c7/zLX84MdauqmoZckesffzCB8Tay3ya+73/6eypsfbQGb1j7bM3GBNrP3bnhbH2SbtsH2svNTR376qqqu/aO8ban7z5faz9aI/c+r6J+70ba/9u+Aux9uCTN4q1z9z72lj7oQXPjbWrqsbv/EGs3dg191mf99bc9dlbt+f+ll5x1Gqx9pOHLBRrr/H29Fh75JcDY+3T/5ad51zvmtz6vt/8faVY+5EJF8fa9085L9Z+a8rfYu3W2bl7GZcNvTLW/nKxObF2VdUlX58Va6/VZkCsPXVwbi5gxz2bfy9j4pTZdd4NTc8CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/wu0+0/+4/cGvVkt7f6j/8l/i+12X7HpzV907tQr1m7tPCfW7tjI/dxVVTM75H72KRNbY+1ZHVpi7dlzxsTa02fNjbXbtF8y1u44a9FYu9FmbKy9XJ/cMb2qav75F4y1fxo9MtZu1zZ3fKm5U2PpOZNnxtptZs8Ta7drNznWHj1kaKw9X48FYu2qqg5zmn+e/Is2rbnv+KwZuXOI9p1y37Oau2Qs3dL5p1i7ZubO21rbxNLVOrNtrN22a+5vWVVV20bu+qhtS+4fvc2cjrF2S4/2sfbEUTNi7c7dO8fabdrk5iDatsv9DZ/TJvc5r6pqFzx/aanc8WVma9dYu/08jVi7ZuR+543gtVl1y10PTxmVO2ds3657rF1VNXvG7Fh76tRJsXbHyeNi7Xbte+fanXPnq1W564SWpZaMtae1mRZrt343Itauqpo2Mvc9+3HsD7H22PG5n3vk1NznrUv33PlL5zbTY+1unRaKtdvMnRJrN1qz5y/tOuauS3+aOD7W7t4ld13YvVvu+qjjltvF2oM/eCPW7rNI7h5tz6XWiLXbjvso1q6q+mZ47hxiektubnvxpZaOtbsuuHis3alL7m/phOB9+a+//DrWXmLppWLtGd2GxNpVVT16zh9rLxL8m9KhsVis/cabL8Ta0wfm1jtNGf9WrD113BKxdvcle8baiy+Uu2fXaB+8j1FVHSu37mjC2O9j7WWW2CrWfv+j52PtEYO+ibW3b8n9HZ1eue/ZxJZZsfbo6bn1lFVVSy+YO7Zuu/HGsfa0nrm5xlmtuevhxrTcvYz558/Nc7YOy82B7PXr1WLtFRdbJ9auqlp75TVj7WWWXinWbtu+S6w9KbiGdvh3n8faS62X+/ce9Xhuff6M2blnvtrNzK3lrKrq2DIh1m6dmzt3mt02d2+8bWvm527b+l+/T3nnGYOqJbA28ewTcnM3nb49KdbuNS63BnWJYS/G2lVV7Xf4Oda+flLuPshRU3LP4j7T79NYe6OuuXsws+f8Jtb++txBsfZzv9st1v7qhNx666qqN1/NPcPT55lvY+0Xt86tgZ32ZG6t97ilc/eXD/+8R6z98/TcWob9enwcay/51ZaxdlXV+yc8FGufMDx3bdXl0O9i7R/G5NbOLJ77saul19BYe8Kyt8XaZy97T6w9a90/x9rLf3F9rF1V9e4Xb8baiy6SO3fqMjB3bdZphR1j7U8XHxhrb/LxNrH2I12Xi7V/7HJErL3b33PPRVZVLdortyZysbNz97aHD/oy1h49cpFYe9eRw2Pt+zbJ3QN57S+xdPXutUqsvehpV8faVVUdn8w9//z5Xk/H2j/tl5vXHrp57pr0qJblY+1hhw+ItVsWujTWHvfE6Fh7wtC3Y+2qqr4r5Nav3PjFzbF2v0v+EGt/uHjunLHly4Nj7Wvn3TXWvnGR02Pt88b8Nda+a+/gPkVVter5v4q1v+2Wm/uZcsm+sXanLbvF2ksusUGsPfjr3Lly+7abxNp/XHGHWHuFtrk1R1VVj7Q+G2t/+1zuma2WCfvH2lsuckms3Xa7HrH2bc/eH2u/M/iDWHvYdjvH2t92ODbWrqpaaPKfYu0xX+fWuE1q1yPW3vGq3LORA1e+JdZ+bFbu3Gm/yRfH2iu03SjWHr5Kbl+H3z2Rm9euqnplh8ti7UGn5J7F3fDt3HrOh9YbFWsfe3Hu+aEPe+TWQizySu6Z0Ks2zR3TH277bqxdVbX+sNy12b33PRNr3/9Dbr/BLV87PtZ+dZf9Yu1N1z031r53ndzz7tO3zO0Nderpueeeqqr67pyb7/ticu5+5Upv/z7WXviB3O/83AVz6xH698m91/a6Z3P3iOfss0+sfeLU3DG9quqLibn9ktdu5Na4vbHkvLH2fSs+EulOmzWrKnd4AQAAAAAAAAAAAAAAAAAA4H+5/oO7V5e2HZve3fOKe5ve/EX/f+fev7z4/LmXJy65cG4v9aqqwefn9tCf8Pz3sfbavXPv6mxcNzfWnn7hK7H2Ove+FWs/PLhnrD2j11Wx9mdvHxxrV1WtfcrIWPvTgbnP+oMf5/Z3+sug92Ptnt+dHGv/buirsfa9SzwRa9+3U26v5aNWyL7r6qnz14q1Ox2ee5/dRSt8EGt//Vzu8/bsy7l34s5778qx9heL3xBrX7ncc7H2+n9+Oda+7qR+sXZV1ecTnoy1V/wu916US87/daz91Ja5Y3q/0x6NtS9a6qlYe4kfto21N13pnlj73LZHxtpVVW9/vXisfc3918Ta910zf6y97Y+HxtqLfn9nrL1Qx9z7xXba96JY+4BLc3MQx/6Qm2esqnph9cy+v1VV2x3wWKx9+Au5OZBluubmQFaY9ttYe9AK7WLt1w4YFmt/cunEWLvfKQ/F2lVVR0zNvW/qzqVz16VfDs5dj591Te79hWePOCbWPu6lPWLts/odHmsv2OucWHuJZXLvw62qOnrPHWPtAVP/EWu/cXn/WPvTj3Kf9QH9c3Osq3XOXRe+s0tuzmuJLXPnTsdc9UmsXVV156UHxdqfbJa7Ptr5xwGx9iMbnx9rXz4o9z7eWX/LrbVa+e5TY+1FP/sy1v7nhK1i7aqqrw49KdY+5vDcvatHNsnNq1/8Ru6zvuVnuTnWB55aMtY+8S/Hxtp7jFwj1j5+o9w54xujs8e2DscfEmvPPic3v7vTtbnv+HbdcmsC2ty7c6x9/oO5d24//kTu3c/Xv7V2rL1T9z/G2lVV7dZZKdb+YPkrYu0zL/gp1t6lJXeNMmzQ87H2+Y/l7k//cUxu3c+LJ3aJta+7NrcWoqpq3QkjYu1V3s/N9106/c+x9t4jvo21xy83JNY+6rCzYu1vN8jNA0y96ZZYe6Mb14y1q6oam+euj/r9PncP56Yxo2PtPY9YLdJtndxa9V/8qF/7+P3VaBtYQ7PQrc1v/r+W7bpLrL3uv3aKtV8ce2KsXVXVf/VNY+31Ns7N1/W67o1Y+4RhufZZh+fWkBz5q9y11QoHDY61xz7yUaw96vKjYu2qqrs+y625/uKJ3PV07xXOjbXXuzq3/vaErc+ItZ9c/+NY+99d9oq17z4ztzZvsyVyn/Oqqn127xRrt7spd231WmvuuamrFuwba5/c/sVYe9yKO8TaXTa9PdfukrtGOXWdM2PtYdu/FmtXVf2tQ+7zNuyK9WPtu5b6d6z9wQG5ueET1vprrD1o3W9i7dWnXBprXz4idw9kROdYuqqqNuk+T6z9zU65fR733jh3ztq+Q27dzrnf5uZfLlx74Vj7yyv2ibXnWbYl1h7z661j7aqqzbbIzf1MvDZ3T3+NtzaMtZf6R27tzEPD/h5rn9Z33Vi796Z/i7X3O/qBWPvCHXJ/y6qqBo/NrcdcaUDu2HrJ4rlz1o93ze3xePPyB8baz92c2xP94aeGxtpnLnhVrL377rm/4VVVT0xaMda+ovv0WLvn/LlnYQe0z+0Bt/x9fWLt99/oEGuP3iC37uegSwbG2ostld0v+W89c9dHb7xyXqz957ffjLVP6tk21v7u6N6x9urf3BdrT1x6l1i738Dccw1n7Zl75ruq6k875vb8e3XN62Ptj+fk5rU/f3FqrP3uj3vH2j8Mbv47sn5xyve5+d2bj/wx1j593txzDe8ckNuXqqrqV4+uHmsPXDu3nvPhp3Jrh/f4xzOx9pSNc2vcXtguN6d+wWm5tZwLv3N5rL3zydfF2lVVN7+UO64f9dtBsfZNjTti7acv/yzWfvik3P5zazy4e6zdc99lYu1N378s1n5/1dx5elXVjsfl7hF/fu+Nsfb3bXLXxOePvDLW7n1Bbl+szVt2i7UvnJXbU/TCBX6OtZe6Y51Yu6pq3Mu5+9Orf5Q7V2/zxXGx9jH9Mnvgz54zteqH//N/1/i/PxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6naKQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonnbpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/s+1+7D+rW8f2Te92u+KGpjd/sfTHB8bax1/zRKx94aW9Yu2qqjX3uSXWXn+/M2Ltyb/dMdaes9m7sfZlZ1wea28z8blYu83r18TaWz36eqxdVXXjVafF2qNuPjbWPrz/1bH2du/uEWvv/tJXsfa4oTfH2gfs0ynW/rhH7ne+VqcRsXZV1Xyztom1h+2SO3frtviAWPuzBf8Qaz/66mKx9jO3bx1rD9j08Vj7qjeOjLWrqtodOyrW3u53E2Lt8S/mfu+7Ld0m1t5u9uqx9pt9T4m1Tzz6uFj7qMt/jLVfeXFGrF1VdczbueP6Nif0i7Wvu/utWPv1JS+OtYffs0us/UCfeWLtV9+8MNaefdLLsfbq554aa1dVHfzY72LtGZ/cGWvvsO5usfY6vW+KtXfYdY1Yu8uxm8TaD9+Sm2/716MDY+2qqkMWOSTWvvTo3L2z/kPmxtqHX5e7n/DzTrlj+kGrrRNrv39g11h703cWj7V/dclrsXZV1cfv5K6R1uyamwP59MxXYu3Xtjw31j7o4Xti7XN3zc0F9P0mdw7x4U/fxtpVVQdN+kesvUjnobH29VseFms//vDBsfYz3YbG2qvuNDPWXnSv3P2jkdt3jrV/v856sXZV1fBTcn9T9uo/Jda+5YajY+2Fj8+ds4567bNYe8I/+sTaf349d+9q47u2irWrqrZ58ahYe0j33LrGF94YGGsPOOSKWPvYAUNi7XF3/ynW3um98bH2BYstHGuPuHDRWLuq6o5d7ou1//x67n7l2efeFmuvefEBsfarvQfH2hv8ZWSsvezD+8baz269UaxdVfXzVRvH2i0Tl461r122Jdb+16/mjbXHn7xFrF0Dc9fj912Xe+5r8pFHxNq3Tctdi1dVzTr+hFj7uw9yv/cXGu/H2pd8nVtLeuP3D8baN/y+d6w9eOj5sfaJx+4Qa1dVbXpPbg3Mrb/OrYf48ta/xtq3b7lc05uzZ82sqjea3gUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+52v3H/3HXTpUu5b/6H/y3+L6vz7T9OYvdth4VKx9wF57xdotHbvH2lVVU6ZMjLVnt06PtRszp8baHWqeWHvsT2Ni7U7zdIu1q93MXLr7/LF2z8mtsXZV1cjhw2Ptebu1jbWnTxwda09pdIm1p0+bFmtPnTAl1m4M/ynW/varj2LtBeb0irWrqma1yX3eWhq540vb6hRrT5vePtae0/GLWLtr63KxdqOR+5w3WnLH1dY5XWPtCeN+jrWrqrp0mS/WnjMnd67e0pgVazdm5s6Xu80TPG+b3oi1G+3mxtrJa/HqnLsmraqaM6dzrN1as2PtiVPGx9rdgr/z9j1y54yz506KtWfNbIm1G3M7xNr/2V2H/34tuY96zRgzJ9ae3mHeWLvd5Nw8RPseC8fa1S13bGs3O3dsazsmd99s4ogfY+2qqjFjc3OsP0zJzWt/P3lYrN2109KxdqdG7l5lh465c4h5O+WObW2C5y+tbXJzP1VVM6fm5n+WnmfBWHvu7NyJ46SZuevCXivl7mV8Nio379Sx+wqxdo/eC8XaCy+ycqxdVdX2k9y9jMljP461p40dH2vPrdw8Z4dOvWPthXvl5pYXWHqlWLt9I3dc7TwiOwGz/GK5f/PqvEgsPW/n3L2rZdfOrSXtPid3zvj5N2/F2s8/8USsvdTM3P2j1s65+Y95Rn4Sa1dVjR8/JNZecp4FYu0e868Way+ywJKx9riJuXnOWcF5xl7LbRprf/jEPbH26v36xtpVVasulDt3a+mcu3H29oe54+pXH74Xa6+zYZ9Ye4k+ueujkbN7xNo1Z0YsvexSm8baVVXzzZ97JmTK1Amx9sy2uWPbxGEjYu3u3XPrd3+Yk5sH6HnilrH2nHdyzxf+/OxTsXZV1ezg842t1SbW7tCauzabOzOzTn7mnP/673vs9ltUu3bNf65jp09z59lXd30z1l7++9yxael3N4m1q6o2vP+8WHu37YLXVpt9HmvP//k+sfbvV1w91r7xtQGx9vsr5p6Tu/K3uXO+f8yffW7qqUHvx9pT/vRirN1nr9w6ju8G9oy1278yPta+/YPc3/EhG90Za89+NPcs7MxG7nnUqqpD1n871p5yS+7+8uf3PR1rr9UlN3/Sf9czYu0xHy0aa097+slY+5k1L4y1u3yV+4492On6WLuqata8a8Xa3y6We47mmr1y+2LtMuaqWHu+LbeOtfsvlLvHO/vn9WPtp/rkvuNTVj0w1q6qervujbXP+Sq3z8CGN+eem3pz+Pax9itH5O65/X30dbH2iRfljm3LPfV6rP1459yzalVV9211Zay98sG5Z6+XfSS3fmWrKbl9TJ58LLf33cprnx9rP//JYbH2Nx/mjquLfbtOrF1V9cOk3DPIH622eKz97Pu542rrFrl57S/H7hJrn9Ah91m/c+m/xtq7Ts/tid7a94NYu6rqivGfxdqHPLZLrL3Mwrlzpwkv5b5nPZfP3Tf7+v5bY+0FhuTuEe/YL7c2rseQ42LtqqqtNzov1t55zLax9oeTcusC+8wZGGvfumpuzdHUj34Va+94bL9Ye8Tc3WPtqe0eirWrqs5Z8chYe+wBPWLtPV7Mrbf66KN3Y+29R/wQa6/1Ve4+yqjVN4+15xmc28Nk/Hu55xom7XxMrF1V9eV8b8TaO37+Zax94zq554Af+Ci3Vv2CxXL3C5c7dItYe/KgWLpm75zbk2u+7cbH2lVVp6+X+6w/vv3VsXanc3LnL39+9etYe8szDo21O3fNXYu3n5z79x485NtYe9f1Hoi1q6qGP527Nz9Px0tj7ZYlj4i1b1r4pFi7V0v/WLvLLrnr4anTc2shNlss9x2/8IqNY+2qqrtbc3uhfTbytVj7vg6nxtrtGpnjaru5uX2aAQAAAAAAAAAAAAAAAAAA+N/voH3vrTYd2za923rhc01v/uKInXPvw52zwymx9k1fLxNrV1X9fsDYWPvk9X8Ta597Um7vlz0e3DPW3m3Mn2Lt+XZbNdbeafsPY+33Wi6LtX8z4dNYu6rqi/NXi7Ub1/461r693dBYe8S6uT2H1+16Tqw9YI87Yu2tD819x6eulnuP35J/6BhrV1Uts8aJsXa/k3PvlFv/t7l3lC7+1pqx9k/t/hZr//32+WLtZ584KNbe9IL1Yu3VTs3tD/lt271j7aqqxY8+Ktbu8OR7sfbFLz4Ta7c/eUqsPfe1f8Xa6+yXm3/5/Mk2sfaKn3SItR+fnvuOVVUt/5vc+zIf7Z2bf1loxdz77GYddVGsvcVuS8TaI2fk9hze7p3ce4j3PO/+WHuB47Lv2fp6sw9i7cP2z10fzfwy976pTS7MvXfpz4vk9pF/aPz8sfa2e20Za5+0/sGx9tNP3xRrV1Xd//YFsfaRU3Lvuup92hOx9q0b597/c9VWE2LtQzbJze/ev/6xsfZl/Z+Nte+ekJtvq6pq+2nufVOLfpR7X8P4NT6OtQcMmx5rf7N37t973x8+irXbLPB0rP3k9vvF2m0+ya0/qap6pUbH2i1PfhZr37nfsrF217tz9+z27pf795743rmx9iJHbhVrv3HkH2PtGR3vjrWrqm66Y0isvdu01lj75d98F2v/8NL3sfbAf+XO2967YY9Y+7Y/5uadJi3zcqy9/bKjYu1Je+bm1Kuq7vvjw7H2ofPm3vG+yz23xtota30Qax/XPze/++bkHrH2k9esH2ufdW5uDmKrCx+Jtauqnls3t65wp/dy65aPOGTFWHvXvgNi7S+3Oi/WXm7auFj7oXlyc6yLHDMn1l50gy9i7aqqI/6U+3u26n65+5XPv5A7ts09fN1Y+8YXcn/P+q+cW2f2706Zdz9XVW03JXe/8NUvcnOcVVUTew6Mtfd8YZVYu81BQ2Pt392aeZZ2xsyJdUUt+l/6/3j30m9rni7NXzv09UufN735i+Muyz0Le1Zr7ln7/Td6Pdauqrp04vGxdp/Dc8+yXH9j7n7jJuufFmu/PeWFWPuf9ywda8/z2Vex9kcH3hBrf3XeWbF2VdUdw26PtW8/8/FYe9Q1h8faG7fNPc+xzOxce+jtQ2PtjsOOjrW/OvavsfaA98+OtauqNhrTLtZestdxsfYKa54ca+9x8P6x9iIdcvfVt9txm1j7h1U+iLU3Wj63J9cN5z8Yaz981X2xdlXVqf1HxtqPPr5jrL1525ZY+/72V8XaX+2b25NrmV/3ibXnf+DHWPum4bF07bB291y8qgbs3yPW/tPre8XaXy3cKdZeaYfcc9+n7Z87vqx8TW593Lt75O5tj37hgFj70Jm5592rqsZOyq39HfP7V2PtQcfm1qEOvfSlWPuCY8bH2o903DjWfvaK3O98l20Wj7X3/UtunXlV1Qkr5vZJGvHuwbH2Z9fmnkH+/qeFYu0RX+VO1vesM2LtVf/8fKw9c4vcfP5aG+Xmdquqjlz/k1i744+5+3YLnZD7rP90ce766MV/vxtrt3sotw/azsNz+5lusXNujrV359z6k6qqrQ/N7Xd4yMu59RADLsldmy22W+6z/sCXR8TaBx+yS6z9zcu59S9rHpN77nrGJ3+Jtauq2vRcO9b+sNd2sfbbV24fa986Ibcm4KNb9om1v7o8926T+cfkzpUP3SB3fGkcmtu/dsaAu2LtqqorOlwea/d6amKsffVmb8faN5yVew63pW1uH9cdHs89ez1o+bVi7Q9bc++L2uCmK2LtqqqPbpoUa1/XMzfP+cCuubUY/7w5d3xZcKfFYu3eL78Yax95SO5v2an9ctfD5+2ZWz9bVTVkZG4P/lHf5z5vz0/IrVVf/+bccfWCm3NrITb5Y+6e3fHzd421R9XkWHuPu3LXZlVVz/8z9x1/9qXcWq+zNr8u1t5yuQ0j3emtc+v/zwqU3NsoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoukZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmXHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwP9vT1x9XnRpdm95tTP6s6c1frL/0B7H2pIu2jbW/WvbAWLuq6rJ+i8bai2z9SKz9lye2irU/u2ZGrP3gP/vH2me+912svfUdbWPtTdd4O9auqnrz2z1i7ddvfCfW/mKBf8Tare9cEmtfc+EPsfbafZ6PtT/svn2s/f4nuWP6Hg/n/o5WVb2+Ze64fvblO8faM8buE2v/9ZzFY+1Pzl461r7hzPVj7dvavx5rr7fw0bF2VVXL/ufF2mt9eUys/XG/n2LtPpc+G2v/c+4LsfYfX/9VrP3YvbfG2gtv+7tYe5XNRsbaVVXLrjcq1p58yBux9j1b94u1O36wY6y9wuk9Yu1Fz7gq1h59Z89Y+6lD14219+98RqxdVbXl4kNi7afuzn3Hz+o6b6y99l/vi7UHLjom1j6xZ+9Ye9DrN8XaP/TKXR9VVT128lmx9o27fxxrH/don1j7/dVyc26N016JtR/Y9tex9k+Tn4i197kpd006aZGFYu2qqj333jvWXrTROdbedocPYu1Lut0da6/28vKx9qqrPxBr73fV+Fi741qLxNpVVacfkDtvHLTuzFj76NuHxtovnNsx1v7DEw/F2sf/e2KsPXza9Fh74GrLxNp9v1k41q6qen/4UrF237XuirVvXSv3c/efsGqsPXiX38Taf/5L7rP+2erHxtq//+PoWLuqar6+d8Ta7+9+WKz9/dm59cNvXfF+rP315H1j7VcnLhlrzx2waax92KpbxNr7775nrF1V9eCdT8bal/Z6ONY++/r3Yu3l9sqtQbn3oF1i7Yuf/EOs/e2ajVj7hJZrY+2qqo535ua9+p+Qu381rutrsfbCLz4Yax8/K3edUGM+jKXHtY6NtUc/mruXccjU3Bq3qqoLt5oUay+2weqx9vfP564NF/p52Vh73yVWirWfG/R4rP2HC3P3UcYenF2zvXCnq2PtdkNuibXXO71TrH3lW/c2vTl3WmvTmwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/Du3+k/94nVWXqY4d2v/fGsv/p4mTci9t/37YD7H2zEYsXR1aZufiVTV5wvexdrs2C8faHRebJ9YeM2dOrD2709RYu7Vtx1h71qS2sfbEqZNj7Xk694i1q6p6LtAr1p4wZmys3Tq7JdYeN3VGrD2r7cxYu83UXHv4kM9j7clTJsXavVoXirWrqmZ0mpCLz1k6lu7YflSs3blz7vyldXanWHvK7Nzf8fZtu8babaZ2ibW7dspdk3buukCsXVXV0qZNrD117pRYu6Vdt1h7TrvcdcKsmbNi7dY2zZ9v+kX7Ru53Pqfj3Fi7U6cesXZV1eTxueujdh1zk24dgtfE7So339emTe642m5i7jy97YIdYu3Zk6bH2tN//jHWrqrq1CU39zNP7/lj7bnBeYg5Sy0ea7d07x5r18zc92zuz+Ni7UlDh8faEyb/FGtXVQ0bn7tnOKrGx9rzd5sv1u7WOXdN2tKSO6bPmZab85oavC/frVNu3qltS26+raqqTefc96xj+xGx9qwuuXOI1om5+9Ndl/yPlun8t2rplFsLMfijB2LtXddaLtbu0bt3rF1VNX10bo710/efirVXWW+zWLvHEsvG2jOn5s6dunbNXR+N/ezDWLt719yc14qrrRNrV1XVmNGx9NCfP4u1f56UW9s3eXpu7c3o2eNj7ZaePWPt/Y46JtZ+4eHHY+0540bG2uNHfh1rV1Ut2Ct3XG+dlfuO926bu0YZOSd3z65nr9w8RLvgudP0ubn78gstmDtXfvqd52LtqqpOo3Nz+lM2PzLWHjk9d66+cO/cd3z1RVeOtZ9++ZVYe6+9lo+1B76Qu0b45usnYu2qqpMOXzfWXna5vrH2j6Ny9wwHvvRmrL35hivF2kNeeyPWHj7ipVh7r23Pi7W79j0w1q6qmvlq7v7RzB8Hx9rjRuTm1Ce3GRrpTm3zX19vdODaPatTh+avk9v0pdy1VetFN8ba21+2SqzdZf2DY+2qqrsWz/2bD/8xOGf21vWx9tR3cmtITu93f6zd+eIFY+3DTtoj1j5ijdz55uHz5c43q6o67XdRrL3IFefF2tMnLxJrd5h3aKz9Re0Ya/fc+JlY+/ufPom1Z34/b6y9VvB596qqW6/vHGvv+/1tsXa/5XLPJw7fckisvVnweY6nV849777r3tvG2qN/Cj6P2vpurL3xwZvG2lVVLVflnsX99u3cXiJXzZu71/mb3ivG2q+8k3tm67gZJ8Xat7+1faz9xmO5Z0kWPe/pWLuqqmvv3Lz4RYO/irXP3Dw3Jz5jrdxairf65ubjT170kFj702657/h5ldsbaseOD8XaVVXndc6dv3x13D2x9hfHPhhrH3Nr7lz96D3Oj7Vf/3tu7e+on3Nr3E8c81qs/fiuQ2Ptqqqpw3N7aox4O3cvY/cZufm+hx/LPY968DqHx9r3Ts8d2064Pves/e3tNo+1x1Rurq+qaufg+rhh210Ta686ZM1Yu9PPv4q1r/gitx5hlZm5PYuHDM7tPdd5ydzPfeiOJ8TaVVWL/+uMWHv44I1j7caBufX9U1fJ3Z/eYdM+sfaLn+X2wP/L1XfE2r1Xyc31nbTu8bF2VVWPucNi7S+PyK07+vgP+8ba987K7eUxY/Pc+ep+C64ea6+5wHux9mkfPBZrd1hoTKx96sjc9XBV1REjct+zzV9bMtYettzQWHtuS25vh6965J533/jB3M/943q5a4RVHr0h1h4765+xdlXVpaNPj7VXOO/LWPuLvrnr8cfWzK31OvqA3Hz++P1zP/eQDS6OtTttljt32uvq3PxqVdUpW+eexV399Nx6q3un55777n5Ybg/ZCb+6PNb+bGzuO/7jB7n9NDZdMLde+7ItTo21q6r2+yL3XOe/u+T2kf15xBGx9gcL/S3SnTlnatVP2ef8AAAAAAAAAAAAAAAAAAAA+N+r0WNQtenU/HcnDO+a2+vn9XG5dwF/vVRuL/cZH8fSVVXV6aBHYu3z98q9f2jQdUvE2nvMm3sHT4cNLom1X/p171j73H99Gmv/PCD33oCTOmT3P1nq7Nwe1zf2fzTWHvnO2rH2iztdH2vf2TX3d/wvN+X+lt298/6x9uZnnhdrb3zbYbF2VdUTly0Tay86YtNYe+Q/cudOa4weF2sPvL5HrD2xkdtr+erTc/uKn/Rqbh/WQRvfEmv/9urcfsNVVbufcVWsPfuUPWPtq5fLvd+s78DcXqh7nPNhrN110SGx9rgzcu9tPHmzjrH2CW8MjLWrqu76cGKsve7f3om1B11zU6y9zJS7Y+2tzzo41n521dz73Zca2Bpr/+H7A2Pt2viyXLuqdt0n9x6eI27Mvff6yT/OjrV7bZs7trUet0GsvcVFuXmIV5d4OtZ+7rWXY+2hw7aItauqZvfJHd92em1GrL383f+Otdvc8WqsPWHz3BzIuf0nx9oXbXVsrH3EJrkb1G/tnH3P+Scjcu+lXXtg7j1+T7Z9O9Z+/vVFYu22++8Qa49a8NpY+9zVjoq1lxy5e6x9xbe9Yu2qqo9vfjjWPvGwC2Ptj67OvYd433E/xtqnv/hCrL3hdWvE2kNXzL0zctqM3Od898O3ibWrqv5+a+a9S1VVd866KtZe68PcdeGMtY6MtdvOyV0XLrFiS6z98QarxdrvnZy7T/rUDrl1hR+slvt7UlX19vRLY+0TRuWuzdpefECsffxlg2PtLw/8Idb+YutNY+2/HvNErL1Uvz/E2u+skpvrq6rqeMO0WPuhuRfE2mN2OyvWfuy+3Pq6i296MNZe4rrc37JPuubeNX5N39ti7UcfOy/Wrqoa8tlGsfbx++0Ya/+0U26N2y37fhNr7z3knFj79nNy93Ae+GvuWvy2i3Nzy3fM2SfWrqo6rmf/WPuYzU6LtV9su1SsvcvANpHuzJn/9e5Z819Q7bt2+m8YzX9m1TZnNr35i06vN//n/cWmX+WetZ873xWxdlVVnfR6LP18pwGx9tlP3RZr33LYlrF2h7PWibUvfvPmWPuKTx+Itf9030Kx9lPrjI21q6o6rvz3WHulE38da++288Ox9k+7554RPGiN3HPfVx31bax9/c9TYu1RH+bW/l58+k6xdlXV2//M7e2w7qK5OdK5p/4p1m5/5TWx9kkbrR5rt9t2/lj78+1z92DWXH+9WPuOCzeJtT/6ILcXWVXVEU/n7utffXru2uzE7ovH2sc+lHv2urF37vmhfX/aJdbe+aHLY+1dnv1HrD3w9tz6+qqq277KXY/3vSJ3TbzNS0/G2guMz+0Bt8c8L8ba894yPNZ+Zpm+sfalvx0Vax94WnZD0/Nm5vb8+/S+3BzrDcfmrklXGZd79nqTzWfF2h/Nn5t3uu/hTWPtwRvl1gUuOim3j0hVVZ939o61N17x1lj70Etzc24DXlkx1l6j7Xuxdv+HcmulPh+Ve45lgYvXj7WfaJc9f7lh1dx54+L3DI21V7kyt89j+/1+H2tfvd1Bsfbrq+Sem9rgxzNi7SEL5L7jt+2UW59WVXXMyDtj7e1vWzjWPvWx3H6D4/rcGGs/vFtuf8vX71o21j59yq9i7b/+6cpYe8Mpy8faVVWXjs8dW+/ucnKsvcnU3NzyC7e/GWsfu2TPWPvM75r/jqxfdOmWu2926ea5d2w8u3PuuvDKLT+PtauqLup+cay94d9zf8/ufzy3Z8479+Xe03XmvRvG2nv/8YZYe+G2A2PtaZ/k9pf8911dY+2qqm775tZUXrZJbv+59ifm9o6ZvOqEWPsfj+f2QWvderdY+y99c/ePfjc4t2/vRjfl1kJUVQ2fN7cP2/QNcnvHrLX82bH2pw/k7mUcfdHKsfZLy+fWme2xQu45/+3u/D7WvnLv3L5UVVVj2gyMtc/5MPe+hwe2ejbWPuaazDrWOdOmVZ14zP/xv8s9rQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNM10gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/8PefcVbVd793v4zgcWiF0Wxg13sxt577z2WiBo1Rk00dhM1sUfRWJ/Ye4099l6wRw2W2AsICqggvS7gPdm+Z89n72zzzN8+uK5jP34HsNacY9zjLgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPB3+rf+4W+/q0Nrpf+pa/ls/33pg05s/aje7W6w9tzE11m5r5P7cVVV9F+4Ta0+e3BJrT5rbLtbu0zIz1m7p3SvW7t21EWtP7jwj1p6v47yx9vSWtli7qqplbvtYe9aMabH2iNFTYu1G7tesZk9s/n3L/98eOzzW/uj1j2Ptedr3irW7dJ4ba1dVzd+S+2zt0nFOrN2pZUCsPWvupFi7U2O+WLtm5O4h2trlPtRbO+WejybMjqWrMSv3fFJV1doj92zYeU7u+Wju7Nx926y2zrF2+/a579Iu7XLtqXNzn6sdZua+w2d3y947zQ2OgXRoyz0fde6Se0aZMyl37zR18qxYu0PLPLH2nLHTY+1ZHXKfbe0r911WVdXomLt/mtUh97neMmCRWLvRu0esXV+Ni6XbNXKfbeM+y407jR7/faz93eQfYu2qqh/mfBdr927pEmu3tAXv23Ifq9VhWu55uFPwe7xjh9z9S6Ml97k6Z1bwh62qZk7O/Z5N7bJQrD1vcByib/fc73jr3N6xdkvjw1h70QGLxdotXfrG2l9/mbtvq6rqvXDuOWHVjTaOtRstuUH9xpjcPWOvfj1j7anjPo21F1+if6zdrUvuO7z9pNzzcFXVV53ejbXbjV8w1v74m29i7YEb7x5rL7NQbi7n8FeejrVnd849Jyy/+MKxdu9FVoi1xw0fHWtXVY0fOTLWXnrpfrH2mOkvxtrde/1byxj+ozp8MjHWntkj9zzce8YCsfaYEW/H2h3bZectf/J97j1tS6+Osfaay+W+UzrOyn2+PHb3Q7H2Yiv1j7W//CL3Pd6n3/hY++k3cuPaVVXXP/jPWPuPv9o81u45Y1is3anl21i7beJSsfYyi+f+3KustEOsPa1z7t1454Vz7xKqqub0WzrWvvPWV2PtFVZbPta+89pnI91Zs3/6vfJbg16vlm7Nv/8a+vp+TW/+aGyX3HPdCmueEmvvOCb7Xv2paQ/G2ptvnFuPetNLG8fa+9z2Qqx93/jM52JVVePWQ2Ptp2c+Gmu3fJibR/HdorvG2lVVI5bYM9YetdJbsfYig1+LtZ/qlVuHO3q5IbH2Fs+PiLUfvzT3zu3AZVeJtdu1bhprV1WdtMJnsfaIbc+ItR/5+olY++gPz4q1H1o6t/558Pi/xdo9l8t9viz12P6x9sSnc+9fXh6RmyNWVfXu6u/H2v9YbK9Ye/Lfv4y1+y+Xmyf2wgetsfbeO+eeza5ol5sbN2pg7v7lnl3WjrWrqtYadWas/eLk3P6Woyb+Mtbe/MPLY+0r2i8Xa9d7uT/3JuN2ibUPmZtbA/zXS7LzdhY88E+x9rDFL4i1N7x9mVh75PG5n/Uutx8Va3+y6jmx9qj5c8+kB7+Vmz9y4z25MfWqqu7n5sbV93rpiFj7/em579Lft74Za/+hb24uw/XDc2tJfnfK4rH2rx/IjQOMmpX7PqmqWmmN3Dq9UU9fF2svuP5dsfZCh+X2FD36N4fH2mf1zu1ZvO0mV8baF+y2Vqw94GfZPXNmPXBzrD3/vCfH2l2mXhxrL/LDGrH2DZfk5nqtc2Lu/dGmx/9XrP3u57n5Ttt0WSfWrqq6qy239rqt206x9uSVbo+1f3Vo7h7io2Vz61jWGNQ11h7fPzfeNu/mL8XaG/fNzT957YXc80lV1ZyrcutoLll02Vj7zm4Hx9qNt1eMtb/tn1s/dPPDub1zJ6y+aKz923dvjLUvmj/3TFpV1aVLbg+4uzrk9sW6/7nusfZ39+8Ta1+6z42x9pE79Yq169DHY+nel+fG87d+//NYu6pq4nK5tbhPrJObB/L7HXPv7C7uvlWsvenY3Dz1BV75Q6x92A659UctbWNj7cd/mVuLUlXVmJSb1/jy/YNj7akdr421J33150h31qy2qnd+2v/joxe+rk7dmz+Gs86vcp9ND12aG589asZusfYe7+bGEKqqDjv/1lh7yHe5d/q7/ulnsXanu8+OtV//58Wx9tFP5dbwvP70hrH2IpOWjLWrqrbpdGmsPfOK3L4zr9yWO0tvxbbcmPg7n+8Ya5/w2Y2x9umf59b5bzTx6li73aa5dwFVVTfukjtz+9lLL4q1rzkh9y5i7LGjYu39Pzs91j7gwfti7a3/mBtH2O64p2Ltqqrffn1LrD1kwdz8/sd/MTnW/mHz3PfZeWfm1oRO3fG0WPvgRu6dW/8zc8/i876WHYdYpnL7cm5146mx9nLPHBZr3/J9br73lV1y+wwstcvvYu0bt889k65x1k2x9jU/z85Ru++U3PP49j/MjLUv3TLX7nVbbm7e21Ny773Was2tLXjoq8ti7UXX/ijWrqoauPP2sfYKVz4Qa28xNTdH7e2OQ2PtKYvk5jNcMSu3nmPVL3JjIPvOzJ2D0/eE3Pz+qqr3O7wca6/3dG4MZMM/XhVr/3pibmz5y3Uei7X7P5ObL3XAyF/F2jO3zY39VFVd2mujWPvqvXNnPmz+dW4s4ML9c/PEXn4r99m2zQrzx9qHHb91rL3cqPVj7Ydbs+MQf++cm+O/Td+LY+2DB+fWAQ/+w92x9vgtcvdte87KPQ8veHju3IPN2w6MtauqTlw9t5/Hfs/n9t67aZ3cPgNLrL5FrN1YLLfP43aP5tYuLXl4bu3SUdddHGtfv+4vYu2qqhOPy903Xtd91Vj7wA65s847PJD7Hp9v39zcm4Uvzt23ffXYcbH2ozOzcyoPWfSTWLt1QO48mwfOzu2T/cICubHGrXsMj7UX6ZmbW3j5n3Pn2TT65OYELFm58+WrqrZaLTcX5LXdcs9HY3LLzuucwbmft7XP3C7W/svcY2Lt+a7JzVW/foclYu2qqnVWyJ3p+6vXcu/Hz74rtxfbvU8+2fRm28QZNeL4n3bGxhETt6nWmc0/5/yyRu5d4/5tX8Ta/U6+MdZe+dncHvZVVW9eNSbW/vnINWPtDz85Mdbu8U3ufu+CzrmzSZ4dmXsP0fZZ7vNllVvXi7X/NT33Tr2qas5xuTVb2x/UK9Ze86MHY+2tH7om1u52SO4959cDD4i1h0/J3WPPOCa3h/0RC98ba1dVXbTV6rH20O5HxtoPPpwbtxkwLrd3zJ2THoq1d/w0t15s9dYNYu0Pu+bOX7762NzP+UudH4i1q6rOD+7tPc9NubOAn1nylFj7j8M6xdp79cmdX9jnqNzn6mt/6B9rL3d1bszrzbbc92hV1eGLvxVrn31j7r5tnf65+QT7z7gi1n7wzoNi7X+05eZpbb1S7ue83e9yZ/A8usj5sXZV1T9WzX221gO/jqV3PTE3j+Kej3JzUN+ZkFvHssz+K8XaH7Y0/13djw59Z6FY+8iLcmezVlXdcHBujtgdkxaItd87M/fe7J8r59bCfnFE31j7sWNz45wnD86t0dvlD7m1HM+Pze1vUFXVqU/uzMqnP8+NQ1y+X+7e6c+v5O5Zu377l1i77f43Y+2pj+bmt/fe6afNlfopjr8gew7xevOsEms/eXXus/Wgu3PvUY66JTe3v8+APrH2GTesHGuvemFuTcPfR+Sezb5eKPe5WlW1554LxtpvXJob73t5x36x9mlP5saW170qt0bv1j65v/M3+ufOpH1uwqBYe/xzuffDcybnxtSrqo7YJ3eOz8yDcvM5B56VW5P5/dV3xdp9XsmN/QwalRvr6zM4N69waGtu7OfRY3L3LlVVr1+Q29ehz4zrY+2zNngj1n5+09zP+g2Dcu8S9ngttyfWwwvm9meaudOLsfY2Wywca1dVjTktd7bJQ8ffHGsP7pObZzbkk9y5kzvvltsvZ+Rquf1EPzg4t4fsuefcEWt3u/3OWLuq6t7f5MZfbtg+99l2wxdnxtoPvJiZMz21Mbl+6omXm734dHVp7fgfuZ5/x32H5uavtO73Qay95km5d0/7HTQr1q6q2nrj52Pt1e/PvXv61aTgeTAzc+vdn+w8NNbee533Yu2bg+foDd94Uqy9zd4bx9pVVXf37RZrtzt30Vh7q1tz82+3WvuVWPuFgfvE2mdtlds/5aJJuXWZEw/I7SOy3Se58+SqqlaZm9uTc/hduf1n67ncmq3HZywVa79+cO798qC9cnsd3z7g61h729HHxtrr98h9rp7VJbenRFXVAWfk9qa86cFNY+3R6+X2Un93q9w7mI9ac/sULXR6bp3cgA23jLX7PfdZrD1+8dyZalVVS3TK7bU8Zt/cHqxPXpCbh/rG++fG2nttmjuH5l/XdI61v1ioa6y9/i9HxtqTXsm9a6yqenvuPbH2P+fJPRM3JuTWi/3y21Nj7dnz587p3PTx3FzMXxyZW7/zykm3xtonrRY8NKCqruz4aqy93fK5s+X32z64P3evHWPtLXbO7d/y5K65z7aO8+TGAS7YabFYe/7JuflpVVXX9Nst1t5vxdy90wu9e8TaBw3OvSvd8a8bx9pHbJHbh/6Iv+W+R18cn/s5H7P/ebF2VdXFw9+OtSfsm3s+enz+3L57b4zP7Sux8be59wnvTR4Ua0+9K/c83KHDwbH27S9PjbWrqs5ZamasfdnQzWPt07vm1pO8fnXuGWWd83NjIOd+MizWHr7nHrH24KfeibVvOf/oWHvWwNzzcFXVibe2xNrH7p+7X/7sgdw64I+n5PaQvXjN3FjAWWfl1qMusXFufPfDjrn9me4+IrcusqrqgVNmx9p7zJube3PaPrlz4dbdZUisfdzauXnLG3bMrY3cfPPcPmiHvpnbJ/rKP14Ya1dVrbddbtxr1ydya0I/f/inro78v7fZL/vH2v1PuSTW/vbX98faO88zPtY+86Tce4zbLh8Ra1dVbbpVbr74qJ1ze6GdOWONWPvTte+LdOdO/j8b52v8D18HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/D2mkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDm6fDv/McTJ7fVzFnt/6eu5b81YMCKTW/+qGf3+WPtDrOnx9pTJ3wba1dVzW7tEmt379wx1h71zcex9nwDlom1+/WbL9ZuzJoTa8+dOynWnj1tVqzdbtrcWLuq6pNxI2PtEV+MirU7z9s91h796fuxdk3vFkt/9dQbsXZL2zyxdo8ObbF2tzm5z7aqqpYOfWLt2XPHxtrTa1qs3X5W31i7XfvcZ3qjV+6zrd3UKbH27Om9Yu1pnWbH2j07xdJVVTVlxsxYe2673B++bWbuZ33ezi2x9pzZuXv1SR1zv2ftZs0ba8+dE/wO/+G7WLuqqn371lh71syesXaHDrl7p2ktXWPtzh0bsXajfe7vfO7UGbF2t8rdM87snfsuq6rqMDc3vtuy5IBYe/b4H2LtxsTc9/jsGbnv0onffBNrjx03Ptb+8rt3Y+22Hrn7h6qqHu1z9xCtnXKfba1zc/cQ7XN/7Jrbbnys3bVd7u98ZrvmzwX4UWvlfsfatcvdO1VV9Zg/92efPTU3J6Fdz9zPW6euuXGn+brlxl8WX3WjWPvxc86JtTfaev9Yu2+//rF2VdXUttwz8UIr/CzWHvFB7h3OrPa5sYDPhv4j1p63NfeZvmT3RWLtORNz36PffTMs1q6qmtiWu39aqGNuXkCfxVaOtadMzs3F6NqWG/vp2KNfrN1pUm5uX/XNzad84x8vxtqjR02Otauqdlhnw1i7Y7vc+8pGxx6xdreeE2Ltlh65+dpdu+T+zvv1yc2FWHnx3JzGL8fm1iVUVc2e828t2fmPGjt9aqw9Y07unvGbUaNj7UbP3LN425zcoHrnqbn7l9sevjrWnjJ5YqxdVdV+Wq9Yu6Vn7nl8zLTc8/gWG+4ea7cLTsWYOSH3LN6xkRtT79ApuO5qVm6csaqqa2vu823rn+8caz/72sux9gq77RTpzpgxvZ76y2s/6f/R/bKe1aml+fe8ty+bm7dz0Se7xtrHzHNHrP3qSrvF2lVV8/1shVh79oTcPI7t5lk71t55x9xc86sm3B5r7zhpr1h7yEKLxdprz/derL34pSvF2lVV05Z+O9a++8G3Yu3eC+fmcRww5KNY+6qPH421L/74wVh7/tX+EmtPmbBFrL3ZvXvH2lVVV26QGytc5Z3cHJLFl1o21n6mno21v3on9/5nxNDVY+2Dts89m71zZe775P5RvWPtZb4cGmtXVS3RcnCsPc9V58Xah22XewdzytprxdqjOubWbO36rwVi7UPfWjrWvmHN12PttZf6MtauqnrstdzayO6rbBNrf75ibs7zqNX2iLU3HZB7p99rrVVi7TUW+CLWXvPeI2Lt1bu8E2tXVX3w+pBY+59j9oy1H10nN19p9zNy4/nX9czNV+qz5eex9nzn3BVrj7hzfKw9ePvsmtDnr87Nc/9uob/G2n0+yu0petmr18bah+2dmzPU1u7VWPt3j7SLta8e9lCsvdaeuZ+1qqrdv1g/1h6xaO65tN2Y3OfqQ5/n7l8G/JDb47FlzMOx9jYtT8Xaf/1u51i708u59YFVVY0Xc/sM9Nwrt2bs2gtOj7XX7pe7Z111ketj7Yf3z62Tu+SBD2Lt4Z1yY8u7t+TGnaqqhk/Ozb15a1xubcFGX28ca/cZm/s3X+aO3MKGMZ1z81ifui43r3C9lk1i7dcXyH2HL1PPx9pVVevu94tY+4N/Bfdj3+zKWPuLp8bF2tu23RhrDzsld0bYKcG9gi76eW4exvk35NaDVFWN+sd6sfawg3PzCt8f832s/befnxRrr71Wr1j7xhm58bZ1Xtk21v7H1Nx8hIuXzp2bVFX10Izc/v8HtB4Qa29zZ26cc9ljcntyfdG9c6y92MzcuPawpX/aWtifou2l3NqA1o9y421VVS9NuybW3miDdWLt12Z+HWuPnrhupNs2c0ZVvfKT/h/bfn5Mde3a/GeNRb/fsenNH/U4+Q+x9lvz5ebmXbzC3bF2VdXA0X+PtR97Ofcs3/rqrbF2n0dXi7W7L3BqrL35zQvH2r0759aqPbn/0Fi7qupP4+6PtQ//PLefR99vcu9/nvj7+Fj73kEHxdobPv+7WPumYavE2vveNybW/t3Q3PdoVdWlB98Ua/+s+69j7WcX/SzWPv/FRWPtZ247Odb++oDcOMJe9+fuldc/M7eOpapq1g43xtq7PZ4bv7n429x6+/23yO3lvsPNub2WF/xyuVj79H9dFmsvfP7ysfbEtXJnJlRVvT0wt7Zh8b63xdqfjdw61t7j2dx7/c9eOz7WPnJubn/tEX8/JdbuOiL3XfbNDzvH2lVVWy+yZKzd/9rcZ9v1l+fWbT2+2+Ox9pd/PSHW/nBQ7nn8609XjLVP2eDEWLuq6vYRuTGY+6Z+G2uPvj+3luWKs3P3jQsdm9tTdKunD4m1J7Tkxp3GHvKnWHufrXPnLlVVfXtL7j3xw9seGWufd+2wWPu1CVfE2r+ZnjvnfMZK28faBx2Taz9zVW5fz6qqc9uejLXH7Jn7XJ93k5tj7XU2z+2f23pubmz56n65OU9bXJCbC3r+R+Nj7ePmzZ3xVVW139Dc+PLgYbn97x4e80ysPe7gG2Lt4U93j7VP7JU796D3h7k/96rXnRlrV1W9NTb3nvjqTXJnu539eG4v+h4XDY61dzktd+bDjB9y5wFf98/c5+ox4+6LtX+9ZW68rapqrTv/FWufMzT3b953cG7N2N3n/TLWfm+D3PPRHhMXjLVbN8zN2V5n36ti7aqqw9bJnT+w5D6PxNp/vyn38zZ/cG/PzsvmzsS75JSzYu2vR+fuX8avlFuH8+XWuX3YqqqG9z081r5zXO756Livtoy1r9pin1h71565Z5RnVhsYaw97LreHyn79M+de/2juHbnvs2d2vTPWXu3k3JqQjQ5u/pj+rJk/fa72jIumVLVr/przY+/M7bez4L8ei7WHTM7t+zK8e3Y/r0ufyezNUFV10M9za5cWXGbTWPu99wbF2re+fkGsfXv/3Hkwk/vk5iuN/Sb3O/6bP86JtauquozLfae8d0tuT62XX8id/3z+gX+Ota/aIbfOf+gbuTMyPt0zt5ak35ab5dq1b6xdVfWn+5aItc/bNPeec52/5+aI7bTwabH2Br+9ONb+Wb/9Y+39zvtVrL3/RivF2pudfFGsPeO63P1DVdXoFXLzzIc9fE+s3W+Z3PnPpxyfW2s/9LbcfhpbLJvbl+rJi3NjP5dfldsT6+M/bR5rV1Xd82Tu++yGK+eLtXcOnu9+/akTYu2/t+X2rdnjmNz9y/fn5tYO9W/NPRd+2Zr7Lquq2u+SDWLtXS/NjUOc2CE3trzDErn9Dbq1uzHWvufV3Bz3VU7fJtZe7fi1Y+2HH8rdt1VVzdeaO4tms4lDcu1XP461z2h3eazdo8NXsfa423Pnkjx8ZW5eXrcJuT1MVjk+d89YVdXvta6x9h5Dcmvtv313lVh79D//GGvvcsfwWHvFIz+MtXdaNLdP9Lv3585j+W7L3HmVVVUT/pk7R/CQZXJj+lMeyu0NddjNuXmY/X+be1d54+wRsfb0zf8Waz97Q26MdejDr8baVVXrfjg01p63NXe+yIkDh8XaPXovFGvv/3FuX83Tj3g+1h5868ax9obDc/Mw+m6QG3c6eotVYu2qqkcG5+4b/3L7GbF2u+/ejrXve/T0WPvK0bn7lxm7nhdrj9v7n7H2+PG5d+M9jh0Za1dVnbBr7nP95g9yY25PXfF0rL3oG7n1Af1Wz+1TtMm+uTnye+1xVKz91vv/iLUPWz675vu2Xp/G2gcuOCDWvnzrllh72MTcfO1lKrePxyk/PzjWbj8yN854y4e7x9qr/mxorF1V1Tg6OM/sudz+BmPezu1v8M1/ZfYznTZxUtVPPPax08Bnq1PX5o+Nd90ptx71ryObv8b+RzcNGhVrv/7mA7F2VdWwi1pj7bu/ujHWPmS+3rH2og+3xdp3D8rtD3n8Cm/E2kPH5fY3uGKj3D6F1/QdFGtXVW17TO692x29j4m17zo+97n63oHPx9r7/CY313vAprkx8c3ezb3/WeKyb2Ltn+2QnXd83AFTYu2pK+4Ra+9/WG5O4olH5/Z2mD05tw73mOdy5+GePCz3nvP0wRfH2me9l9vv9zdL59ZMVVV93j23dun2826JtXe7IzcH9o6euTWCb92RO4d475dmxNpTx+bO4t360NzYz4c7585Uq6paa2BuDfKHb/7EQdKf4OSjX4+1dzgnNw5xzO1bx9oPXZLbB+3ZNXPn2p/dMfd81HuR3DlXVVUnPJc7h/i6Nd6Nta944i+x9re/z907jfk8t7f1kWflzpYf+XFu372bblgj1r74iNw5NFVVdw9cPtbe/OOnYu1Nt8mdGfm7t+bG2ktsnFvHcsc1uXla5y+a22Pg/Bfnj7V73ZEb66uqOnLe3Fr/X5+a25Pr/b65s4Cf6BU8b/u9o2PtC7bJfa6ucMR7sfY+2+4Va5/1dv9Yu6rqtHG5/YI+PvHcWHuxY66MtUe9n/tMP+adx2PtscF9gx+6JzfnedCjJ8TaRw3Nzfutqjrh+Nw45xHrnhRrb/bn/WLtg6a9GGuf9UZuD7YLW3NjfasdunKsfdezh8barcOaf6baj54cnFtDU1W117a5ca99eufOL1zstM6x9pe75p5R2q+1W6w97x6597Tn35jbZ/Guybl/7+/muSTWrqpaqVO3WPuTB7+Ntfv+MbfWf7FLc2cuHL5Bbs+/Pe/NnW2y1ku5tfbL7tI31l5iydz+b1VVi3x5e6y98AUvxdor/PX4WPvLx3Pvj35Y/IVY+7RLct+lG5+Qe0Z5fsKFsfZSo3N7VFdVPXf99Fh75pEbxdqbPJ5ba3fxA4dEunNnTa4Z9b/fgy37EwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFM10hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA83T4d/7j++59pNq3b/8/dS3/ve12aH7zf1lv9SmxdteefWLtMZM/jbWrquaOXSDW7jb/rFi7d7cBsfb0trmx9nxzp8faU1v/rY/B/6h2bbF0tc/9sWtCu965eFXNnP1xrN1omRxrj/90Zqw9+ZsRsXb76hhrf/7Fh7H2Uu27xtqNzgvH2u1be8XaVVVTp+d+3vp06RFrT5+d+0JrmTk21m50nyfWHtUh97k6sUPuXnmBTrkbmEntW2LtcXNmx9pVVb3mzom1G22B8Yf/pUfnXHvSpNzzUe8uuXGI2TNmxNptbeNi7fazcr9jXbvl7l2qqmZUbhxidvCzbfKE3Hdp5665v/MO7XI/b1OnNWLtTnNyP2tt7XP/3o0evWLtqqo5Lbln4pqWe59QE6bG0pOnDou1J46clGtP+SjW/mxy7vtkbtdOsXbv9t1i7aqqKXMmxNrtpuS+Szu15J7HW4NjAR1yQwHVmLtIrN258UOs3a6mxdrVPjfWV1XVsWPu3m1Wl3lj7U5zcu+ups/sGWt//sGoWLv7grl5GFPmfh9r//DRB7F2+2VXjrWrqsZPzv289eo9f6w9YOnFYu1p3+U+2xaa0znWHvPx07H2Z51y7yqXWXKZWLvvilvE2lVVc4a8HWuvsn7ud/yL4V1i7WUH5O5Zx8xojbVnjsx9j7frnhtn7Nqae0boWbl3le9+nXsmrap6+JG/x9q7HrhPrN1x5Hex9tiOY2LtCRNyczF6t+SeSTt0yg16LbzANrH2mDHnxdpVVYfttX6s3TL1m1j725G5uRiPP/FUrL3wgrnf8c1Xy61FWXSx3PPw6LG575M1VhoYa1dV7bX7zrH25ODc4Wnjg2PLXXJ/7vm7557NevZeOtZuq9z96pQOuTmNjbG57/Cqqhm5X7Oq4N/71G9y7ys33GSNSHfq1J8+1+ntmbdXh2r+epb+H93e9OaPVt4y95m81JjNYu12V18da1dVvbZU7n730xNy43Urjdsk1m776rlYe8/xZ8fak79cMdberscVsfazfY+ItX/4Ojcvr6rqse/vjbVPb7dHrH3/sH/E2mfX4Fj7+YHXxtpbvr11rP3EqxNj7ZU/y823/mTdd2Ltqqq3Ry8fax/5cu7zZfSE3H3j+PHLxtrzbZr7PRt/TO5Z+p3+uTlioy7PjVlts8b9sfboN38Ra1dVzZh4Uay91Dy5+8aFh+f2SVrhV7m5eQvMzM2P6314bj7k9Plz32UDPv1drN1nsddi7aqqFVZdKdbuNuSZWPujB3JztV4d1C7WntKle6z9wXfvxdpTN82NcY7bJPeMMPHW3BrgqqpeS+fGOXefm3vp9tw2K8TaL16em6t16My9Y+1PDng+1v5w5oKx9rEH/i3Wvu+jF2Ltqqrua/w+1v5h+qqx9irTcvescwddF2vP94/gOMQSufVDL++5Uay966ePxdojvr4w1q6qat/rzli7tWffWPuukbl2r41z+5i89u3lsfZxV+Xm326+X+5d5XnfnBBrd+q9ZqxdVfXUNrn7l8W/PCnW3n/bVWLt92cMirXv/PbXsfbxr+Tu2yaNHR9r7zJP7pl08AbPxtpVVV1G5/ZEv23L3PlFOzaGxNrTp+T2t1zq9dxzYfs+p8barSvn5nKu2OXBWHvI0Nw7lGd65vZ1qKqadUTu3dkK5+beTy/+cm5vquNm5ea/nPbR67H2a1/k7ttOmZgbW/79sbl9Y7Y4NLcPWlXVzqdm1g9VVa06MbfWv6Vv7p7xs2uXi7W7X5jb/23I97k9qqctlFsTesCYc2Lts+c5P9auqjrm5O1j7Zs3fynWvuqCLWPtCzY8N9Ze68LceNvXi+f201hwxdyZk4u893Ws/cruuZ/zqqoH3svNk19/mcti7Q5n5L7HN9p73Uh3+tTp9dBPXHZ19RXfVceOzZ+beMhBTzS9+aOj5ywZa1896+BY+9Ovc/PTqqrWrT1j7Q8rdw+w0Zp7xdof7H5QrH3rl7m9fsatdnqsPWFGbl+rk/+a3VNr9KO5PSKnzb9orH3MWbm9d3c9MXdm5XynLR5rb3zHMbH26Wvk9sx5fWhuP9Izjs3dZ1dVfXvI57H2qX/InT09d/CwWHvZU3JzzW8du0GsvcVi88Xaj895PtZ+a82fx9pVVWd3ezfWXmiZbWPtd27IrU/sP+SOWHvb7XL/3jff/lCsfc6GuTMT3r/iy1j73QUfjbWrqnZpza1tWHG91WLtdxbKrUmdd6vce5BPgs9HW11+fKw9aP17Yu1nv8p9pq+74cWxdlXV/pNy8/Ou3SH3bn3j43PzGdZ4Zlis3W3R3HvWge+fFms/clvuWfzA+3LfJ1VV43ZZItZed4vcXovDK/d8NGzdm2PtI/6aO+tqgdVy431t27ePtU+/MreXx/W9joq1q6oW+e1hsfb7e+b2zXlkidyeYDdvnntHvP+fcvslH9Wau2dc8bbcvdPe22XPT9zk40Gx9rIdcuPqa4z5S6z97m9yY9v3DMrtw9b36WGx9qxDc/NAfvFQbs3WN6flxparqo6dkFu/9MfrcnOe3vngtly7c27u8fzv5j7bfnj1D7H2kJVmxdq33LlprF1VtfXVuX1znrj90lh7y5cPjbUP6HVIrP3FcrfE2kOm537W/zCiY6x94xW5sYDlXr0m1q6qemr53P4xOy6eG2t84KB5Yu2dB54Ya//pudz660XWyX2fvL5ebg+4vz1+cqxdVbXyIrk9e4b+emis3WW+3LyAT+7KnYnX+fD/irX3a58bc7v2iitj7WU+6xBrb3ndr2Ltqqqnf7NxrH3dlNzP+ul3bB5rL/nsyFh7+J2584v2PyJ3lk7nw/4Za1/+XG7+blXVPnvfF2uvPie31+OIm3L7iUycflzTm5Nnza4HfuL/Y/v7xla3ro3/xOX8W17+YOWmN3+06hm5PUF3zG03XNu/khunq6r689jcu6fhv9ou1j5wndyZCR0/uSTW3vC13HrUe97JzdkZ8npu3swXk3LvfqbO3xprV1UN2yi37++bK+U+Wz/4LHcOzs/e+CrW3mPmh7H2B31uirWfGrRWrD2rf25vhYEX/DLWrqoaOSL3vm/CvhvH2p9em5sj9ofNcnuan9czt6fFgrvnzmT54L9yewz0eDw3Tjfw8kdi7XXWyL3braq64/DcuQVvnrpvrH3DPZNj7T9ekvtZX/X3uXunV765Pta+b4u7Yu2F7/sk1n79zty5AVVVJ66eG3/5/fjVY+0bzs3dv5zzxS6xdtcRue+z97bIzV05ct/ceXb3r5RbH3jkfLk5gVVV9+7wZqx9XuO9WHvIErk/94GL5PbTeGifWLqe+DB3v3raBbn3q/N/3yvWXnCR3D7RVVX/OiU3t//ZD0+JtTe/4+FY++VDcmumfvlVbv/8n+2dO/O6d0tuf4PPp+TmI25/9sKxdlVV56dyezV3uSC3V9ADwT34P2/kPttWPSm3/1vn13J7K1x4Ye7nfE5b7r382hMmxdpVVbu+PTbWfvbeZWPtxQ6+MNbe4JvcmoaHnn8u1r7wmNy+mvsfnvs923+F3H3b9Z0nxNpVVX+9PrdWbb8uub17l1/whVi7dWLuuXDAGv1i7YWOeznWPvyo3PrAQwfk/s6/WOs3sfa6h2wYa1dV/er93L/53Ebus+23f8qtk/vZt2fH2pPP3yrWPnj13BzWK/b7Ita+a84vYu0PH1sq1q6quuyV3HnfZ/wit6fFukNyz+P7LZ+7d+p92aBY+7Edc2tRe2yba3cekRt36rna67F2VdWRXXPrUWfMeDzWnntqbr3Zhu1yY+pv9svdQ2x19W6x9st75f7cRxyW+z5ZfZfce9Kqqpeey+2z2GOpKbH211s9FWsPOTmzR9KsGT/9XLTuvxhUXdt1+g9czb9n9x1ynw/bfpybZ77wobnv4LdvzY1fVFX9+l+58zl+d3zuXLep/W+MtZd4KbdO72/z5dbwLHhEbr3Y7FNyayr2OzL3rnHfy3PnwlZVrXdCbu/+Acfm1qOe/N6wWHvP47aJta98um+s/bt/5N6xjn5rvVj7retz+zqdu8QbsXZV1d635NYPnbL63Fh7x0+bvyfVj0av/E2s/fEyB8Xa1+ye2xfr8C9zn6vHvphba99/zdzZhQffk52T+JffHh1rP79E7pytRYedF2t/cGmuPWaj3Pf4yIG5tWojxrwYa7+8zWKx9us33h5rV1W9NDG35nzDm3I/bxMu3zLW/njSTx8f/r+1U9smsfamu4+Otffrl5tv3f6I3LP4Yfdl91JfaP3cerXTd9oz1j6tkZurNWrN3FqSlxfMPRfecPWfYu2uO+fWDp20/Jmx9hsn5b7LqqrWuyK3d/+RW+XGGl+9Prd37zYX5vawXfyM3JrQGT1yc9xXnbRxrL3FmP6x9tWbD461q6rWPSk39/foK4bH2u3n/DbWPr1z7tnsnrHvx9rnzZubi7na2bn9TDc8/vRY+8g1J8baVVVHfPJqrL3AZblzD/Y7LjfutewVN8bal/bO7Zkz6uWrYu3en3wca/fqndtn8cHgvuBVVSv+JXe2/FHr5sa9plz3r1h714dza7YW6JXbA+7+x3Pvxjd6JTePdNBuz8Taz62bO1Ol74wbYu2qqssG5N7N//a+3JzpC059JdZuGZrbN3iTvTvH2ustv3Gs/d2/cvMKlz0st2fOJiNz+4lWVe2w7kexdrs1c89HW1+Um0/5/SO58bYTHsm9G3/n1qNi7VsHrhBrn3l37h1tl3Vj6aqq+tO5P4+1H/xjbj7EvLflzrW9dGruOeG+43M/cJ9utVGs/eC2PWPtC5fIrftuv+pJsXZV1fVPjoq1T1vy01j7kZ0fjLVXu/yMSLdtdud6/v/gv8utGAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAA+P/Yu69oq8t738M/Jr0J2BVFVLArGCSKLZZYE2OLNWokxhaNGmuMPdYk1hhjC7FEjRixl9jBDhYUBbuCYKGogCCddS7OyBjnXJxxdobZ87svnufa4eddC5jzX94CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8bf6d/3jylM+qVatW/11j+X+6+8lHm978l60HHhFrL1qwbKzdoV3HWLuqatq0SbH2rBmxdPVcskOsPav9/Fh7SqsVYu1q9XUsPWXqtFh7tfU3jLU/GPNmrF1V1TJ7dqy9VNcVY+1vWqbG2u07rxlrv3D7E7H26ou6xdptuuS+xztV21i7mn+Z+n9Z1Do3gDZLtsTaLZ/PjLUXd8x9rv513oexdqvP3421V1p/7Vh7xKevxtqdu3aNtRdOy12vVlWt0Db376xr6wWxdrc57WPt3h17xNpz582KtTtXI9ZePHepWLul67xYuzEvd71aVVWLc/dm8xu5a6eOnXKfL+0bueu2mv9vPYb+j2rfqnWs3Sp4DdGycu47vMPChbF2VdWC+Yti7cXjc8+1J386PtZuvSj3uTr169xz7a9bcs8BOnXI/c4XLchdQ3TqkLtmrKrqsqhTrN2pfc9Ye1Gb3Od6q5bce7MFC3LPOZdc4ptYe97Xy8TanbrkfucL582JtauqGi3tYu0eS+c+W2dMzf0b77xE7uf+8JncO+KlD1461t53p51i7RvuuTnW3nKz3WPtqqp1B/aPtRcsyD2HmD83d922xHK5z5fJ43PP2yZ+OTHWXrZL7vqlXbvusXarWbnfeVXVqqvlnrlNHPdBrP3xpFx7te8eHWu//UbuerXado+ln33n4Vi7z5K9Y+323XLPlk85qX+sXVU1J3c7Xi2Ve0/bZZXctVOPlu1j7e+s93ys3al17nfeoWPu3fgSvXPPGfus2jvWrqpaqvNqsfbEt9+Otd8am/tsm/NN7nnfllvtGGuvs8G2sfboMe/F2gP794+1B229RqxdVbXcut/NxefkPtd7rpP7vT/38OOx9sxlc7/zZbrnvsvaNL6ItTu2yl07zWv5Ktauquq43Kqx9pyvcws7jzjkB7H2K69krtvm/Aduht84ckK16tLlPzCaf8+QgYc1vfkvr/04t1Ztw+U/j7VHPp57Hl9Vdf5muf6up+SeYbS6JPf37ZAd94619+nxTqzdse+UWPuZOd+PtSe/3TfWfvVnn8baVVXP/GqdWPuqfuNi7UfbDYi1V9yjT6zd775DYu2lp+bmUWzT6/BYu88Vz8bab0+5MtauqlptYO55Xftljoq1r5uXu6dcaq/JsfboCbnrtuN+0D/WPn+v3EvWrd6bEGvPXpBbJ3fnF6fE2lVVe47Izf0de+hFsfbMSbnrtl9+mXte9uxhufd9h068NdY+87NTY+2VN8g9E+/RefNYu6pqrXcvjbV/s/GgWPvQb3L3Zm1G5t57fX7B2Fi77YG5P+9nxuX2zDnr9dxzp6f/cE+sXVXVfnju8+WD9XLPtbc4Nzd3ZujCj2Lt2WMOirU/2e3JWPvl9rnv8QGdh8XarZ67Ptauqvpygy1i7ZYHc3NIuux3Zqw96R/nxdpT+s2Ntb+z8e2x9ui7cnvfbbX21rH2Z5f9Jtauqrrh/I1i7d3fXynWHjF5uVh71BKjYu2+oz6LtT94b61Y+7yhR8baPzv23Fj7qn36xdpVVR9eukms3en13J5cD/f4e6z93U1y1+pbX5X7nQ/ZJLcv1vovPhNr//y43PvCVR/L3h+91za3v0LLs7k/88mb5NacD9hwl1j74Wdz+6D17fBArN3lidz1y8zPcnsF7dEm997s0J/m3ptVVV03Kvecs+OM3JkuD233Vq69zD6x9uOX55713dRtcaz9ybO5/bFXaMmt2er0o1di7aqqNbv9LNaeFHzutPCF+2PtfRbm5pltHdx3r+0358faT036eazddUJwPeoNuf16qqpevec7sfY3G+fObXq7f+56+ZDL1ou1O/0utx/75xfcG2u/9qf3Y+3eW/421l5p2phYu6pqxz65uaRT9zwu1r7i4dz7yt9csGmkO+8/8NHyxmvvVuvGEt/+f/Rv2vWj3LVPv91z63B7Dvp1rP3ZNh/H2lVVi+ddGGsfecl2sfZDf8rtM7Dw3Ltj7cfeyL3j/e2+ub9rT1TufPdB760ba1dVXTY8tw/sts/+Mta+ad+XY+3vH5Xbc7hvr7Ni7ZHX3xVrv7587uc+rltundxl3TrH2lVVPTd5JNZe78Q9Yu3tu+TOAr7us5Ni7elDcs9P2vzh8lj7k74Xx9o/XyW7L+eFXY6ItXuNOCDWfnXPY2Pts0+7Ldbeqcctsfa2F+XOVvtk39w+Iu3v/FWsPWrv3DmhVVUrXZxbk3rQzNyzgAnL5Pa1eHRE7hycP/bKzf19an7u3uyry06PtT/YNjeX4fOpuf3Uq6rOWuupWPueNrl5qKes9mis/d6FuT0me4/IPQtY4crXY+0nRubWNVz3UG7fvaqqS3faK9a+ZutrY+3Rn+fmSy14+LFY+8HrfxRrPzApt8fBD4bmznx6bYvcc85ZO2Xnoba5+Bexdr+Tc3O1Bt+dOw/4tavfiLX//Fjue3x6I3dvdvMaB8bap6+Ym+tdVdV9zHWx9tIH5P7MB9z1Wqx9+Rm590cLh28Yax855qex9kf9cnMxdpk6Pdb+aLfcHLeqqtajc/scvHxT7u/bDwbm9iOb0CF3/bLrmcfH2nNG5PbWvObt3JyjmUNzzwGqqp7t1j3W3q1vbh3Pyh1z73Aeuy23Xm16q9xeaK+sfGOsfdVGuecvK62WOyd07auzzzm/f1DumnXkwNy6rU1Pz90fbdQtt2/xZlMmxtpbnpw7x2fBabk9i8+594xYu6rq+jty76g3Wi53j3TFE7nv8bmH5ebpX/PHN2PtHdrm9vPY+avcmVVb3Jn7uzb/q9z+/1VVo47JrXmbeVVuz54fDf4k1j75zOGx9nu/yT1/ue7F3J49fZe5I9a+5sDcHJSqqiP2zl0vX/urjWPtIw++M9Y+qVPz53POnj2n6u5vNz9/2IXHVvs2Hf9DI/qve6vz1KY3/2WXhbl3y1tOzT0XPvHXA2Ptqqq/Xph7XnbH8Nz8/gv+fEGsvfw9ubmYwxu5eTuXT8vNO+6/2z9j7Z1/kVtX0Hd89pzzux7ZP9a+/ffHxNpde+XeLf9tdO53/si9uf1n1/syt2brxF/1iLU3bnkx1j5wzZtj7aqqpVfI7a+96/glY+2nl8o9M+o7NbeOZfSE3PXLvfvm1sm9vkpurdq1J/SPte87I/c8vOdtW8XaVVWnTMytdx/9UO4dyIan5t5DLPNy7lzadS94Ida+qP0fY+172+T2I/3uFrn59e8em3sWX1V1/R656+X9Tsrtob9W79w5fvvckHvX2OP5Z2PtIy6bHmsPWCd3NuvzJ+b2YLtj2oOxdlXVCndsH2vve+pLsfZPHsq9y1hydO475eLPc3N2fnDCP2Lt7/0wdzbrXyfnnkGs1yW3Pq+q6rpek2Ptc644J9Ye/PkysfYvW+fOAn5o3Dux9qMb5tZ8j+qUe49x4Xa5uSMvDszNd66qOuie3Bkdp5+e2x/q07G5dUt7/G23WHvDlXPvpzscel+sPfiebWPtRYdeFGtvOiT3jLOqqvuquXdne/8xd2blqjfk1mzN/GXuc/XWv5wWa89dZ2isffCITrH2+nvm/q4tOXz5WLuq6oaP/hRrP9Y2t2dx7z0fj7XbLu4Sa6+54cqx9gFXjo+1J16bm/9y/uTcs76Tjjkx1l7v1eyazH365s7q3GVQ7jnEBrMOi7UHPJS7Zrz46ty78bvuyT3f/WT13WLtE+7K/dw/vLhvrF1Vtdu4VWPtB+bnrln7d8qdc7HPP4bF2udfkNvDZMyQ3N4tt7ftH2vf/UFu3s/A5Y+Otauqjn8pd9boRz/Mnb94X+PyWHv2Jrl90F55Lnem7jYH5J55PX3rd2Lttvvl1l1ddOaZsXZV1U7n5val2n3Ac7H29y7IzR3eeKnMnMbFC+Z86//HST+6t1q3a/4eBbPOze1hdt2o3JmRw47NzQvcalLuOruq6oiXl421J66bWz80/m8/jrUHrDg61t6zR249amOL3LnTS/18eqy997X3x9pfzM/tb1BVtfOg3HzvJ3Pp6vpObu7vWyvm3jVed1huPcfYw3PvtucO2TnW3maNt2LtwYNXjLWrqqYckru/eefog2Pt352Wm9+/7Ma5857G9Lss1h5/8W9i7ZYPc/NX/vJObv3OyNW7x9rbtMndG1VVbXla7vnJiE9zZ7NeXl/G2iMeyu27d830b2LtHx+d2w/0pWNye8/NujL33uvYc3Ofq1VVxw/NzeM4f+Xc58upq+fWu6/zeO5531EjRsbaF3cdEmtPujv3cy+4YlasfcmKuX2Oq6pe759bl/nszQfE2q/9Nne+2FKXrRVr9xiUW8NzZ4dbY+2J83P3ZofMz71L2Oyqv8XaVVWdjwvuJTJ2g1h7zuDcu9JnP7891t7o3k1i7UvuyT1Tn/DC1bH2Q+vl9lLt8/63n0vxbfx9l9ycpVuOy+0rsctZuX1cPx1xXKx9/lK5ZyA3tsvtfbf77++OtSfefHas3W9Kdk+u5PvKl2/KzUm4bNfc9/jXP/1drL3kBrm1JDfPz+3d23HU2rH2m11yc38P+uPCWLuq6ss3c8+eTt9g/Vh7ya9z9yifrpJby9JrZu75yxWPXhFrn3PWlrH2yfv3jLW/Gdkt1t5hv0Ni7aqqab/LvbvqNmBerH3oS7Nj7Y0H5/bTuGD53Fk22/3o6Vj7J2fm7hEe+U1undwDW+T2Qauq2mPMZrF2l0Zu/9y7dsiduTDvlWmxdudHc9+lq4+6Pta+eXDu/uidh2fE2lf8JbvuamzwunGrW3PzWKecm9vHdcURr8falz03ONbu8/2rYu3BY3LrQQb8Nnf9ctpPc/uhV1X1XGtcrP39C/4eaz+yT26voEO63xDpzlnYUsP/C/9d4797IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/M/RSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAABK5F+4AAE4VElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonjb/zn/8y8O/Vx3at/3vGsv/0+1Dxza9+S8tLcvE2lNnfhlrd2w7LdauqpoxY2KsvcySS8TabZeaEWt3nNsx1m7fZlasPXn++Fh78dc9Yu03xnwYa38zt/nfI/+nkSOfj7Vb5jZi7WWWWjrWXnJB7uf+fFzuc7VPp9axdrtFrWLtr9vm/rxXbJP7Lquqmr3EzFh77AcLY+0FK82Ote9tlbtm7Va53/n8JVaJtd+Z+lWsXe1yn23TJ30Qa/fosFysXVX16uQxsfbMhd/E2uu2XRxrb9hxzVh7064rx9qN1j1j7ZbgPWmrue1i7QXt58baVVWtW8+JtdvO6xprL6jcNWNjcZdYe2ZL7j6h2wYrxdotMxbF2m2m5a7b5uW+Rv93f9qnsfbcWbnPtnmzv4i1P57zSazdtlPuWUCrxbnv8VaL/q3Xe/9Ry3XLfY8unjsv1q6qatch90y/5ueu3bq06RZrt22f+7vevrrH2l/PaIm1l146+Mxrbu45Y5f2vWLtqqpv2uZ+75275j7bFs39OtaePHtKrD3vy86x9ufvxNK1Yr/tYu3DVhkQaz/53D9j7aqqh373aKx92GGHxdo9euaeQzQWd4i1e6/WPdae+/VmsfZnX30ca8+emnsG0aV77plXVdWMLz6Ptd/98KVY+9Ovcs9YVx+fe+609JK5+/HGos1j7aXffTPWXtwu92y5Y9tVY+233pwea1dVdWidu0fpvcJGsXar2bk5AQuXyN2btZ25bKz9ZUtuLue0cQti7UsvuSDWXm313J93VdWox1+MtTv0HRhrP/zC9bH2vIW5eWZd5uXmoDSC71HeeDr3DGTTLXvH2ttvc3CsXVXVqubH2lPefDfWXmGNPrF263a5+ZxP33trrL33j3PPfiZ8lltfuPzawfc3HbJz+76ZlfsunflZLF3vT83FF36cmfezaN63f+Z0+cN/qE4dmj+H5rxVcpPUftDm/lj73bNy79xGb9Y71q6q+vnU82PttWffGWsvsV/vWHvxUpNj7fe7bBBrD3nxlVi7ls699/rijD/H2rsO+U2sXVV15vO5uaAPXJP7XG/X/ZRYe8Cc3OfLnAm5Ofajv1w71t542ydi7eumbh1rHzAx93NXVXXtlnv3dOh3H4m1j5j4o1j71hGPxdr7bHBCrP3LM7rH2hu+c2ms/eDqR8Tarca9FWuv/swPYu2qqtN2yL0POLHTDrF2jc9dO/3lpNx79caIvrH2lzvk5vcvt2FuDuro4d1j7f59cvdGVVV/WGbHWPuUdXP7txxzyd2x9pztdou11748t1fQG4Nz7xqX+DD37mnwWv1i7U9uy61NrKrqPGNorD2lZatY+4Hew2LtL144Pdb+/saHx9pbPZubKzVz16tj7a8+zO1TdOhXy8faVVU3j8rN1Tp62dwctSnbHhlrv95tXKy9xjcbx9p/mTA91r52q2Nj7dcfzT37eeuo3Pubqqquyw2PtTssvVasvWj+TbH2xz2PirWnPH9LrD35udyZCz379Y+1t//7d2LtG57Ozcurqnp/nytj7a03yu2DP6jNP2Ltwz7aNtZ+fZvcvOOJb+Tey3/cMbcOd937D421Z3TKrQ+squrbKXetPrjnubH2nffk5kP0WZib49YyKTeXc/WVc+c2dZmQu3aa3CX3DmfYByNi7QV/z50lU1V1Y9vzYu0jpub2CtpnyL6x9pjVh8favX6Re3/04pCnY+1x3W6Itb9cOffu6sBd28faVVUjr8itlVu2de659rQBT8XaF66f2z93zd7PxNqv/Ty39umZcR/F2r0H3RNrb7t77v1NVdWUi3KfbwOfzJ0v0n7d6bH2PVNye8H3vjr3rG/+0bn52uPb5eYjXPhSbi+yiTN/EWtXVb0/KXdPPH3zh2LtfYbdF2v33n96pPvN7NlV3/I2Ya8561SHRvPn4b59VW6vwv2m5e6txvfcI9Z+c2zubNaqqpV+/7dYe6O9c2eyvHzTz2PtYd8cHWtv88GGsXavkfvE2jtdnruXPuLz3L67VVWz/pJbR3PNm8G96w7LvYN5pWWXWHuJiXvH2sMfzM23PmfnLWPtJzrn5oi1PjS3HrWq6hf35NbK9XkkN3dm941za5dO3ja3/+2bj+f+nU26K3efMKt/bg3y0eu+HWtXVc2Y+VqsfcQruXdf/9gyt6fFKgv/GmtvsVzu+qXNHWfH2mse/NtY+/z2ubX2H70wJNauqprwxkGx9v575ebHHTc6t2ZsSIfcfMwznsytOV/vgNy7p3Uuzr2L+N4Rue+yL966ItauqlrhjuNi7SEP5M6G/d7buTmwZ8z4Vaz91n1/irWfWuHsWLvvCpNi7Uf2ys3Nq6o6vkfu/KGeP8/N3dm9kXuH89Gc3Pz+227InUVz6dT9Y+3py7SNtU84O7d//3VvDYq1q6r2fjx3P77y4bkz7fa7c2ysXfvl/o2vun/uHfGuJ+R+7hV+mptvPfaea2PtqqqTx+XWR/Z/J7fH5LTLc/MClhyTWzs1Z9LqsfZ7/XJ7OxzYOrcP2+k7rhdrX33e7bF2VVWbs16Pte/YN7dX0e4Lc+cuHHFk7t38Lbt+P9a+5qbcORubH3NqrH3q6rn1Q1VVP+uRO+djw7OXirVXm/CTWPvwn+TWIN89Mrd+6LjjcmuQt33m4Fh70iGjYu2xZwXPTqqqtuuuE2vve9DnsfYN3XPzQJZ/KnfdeMB7ue/Svx2Vuyd9Y9m/x9rX7zU+1q6qOv2o12Lt5Vb/JtZ+denc2syd+10Ta7+/c+4s4j2m5J73nbRb7lp9WvvcGWVzD7kq1q6qGnbG2bH2Nnc/GWvPWWt8rP3hEyNj7XYzcn/XF+/fPdae/Gnu+cvg+y+Ltauqlt8zt7fnrNvfiLVrne/G0j98eXzTmy0Lv/07+Z4Ht60OnZo/r2DUgbn32uOvyH0PnbzpwFj7sh1ze9hXVe3y19zc333f6x5rH71Lbj3qnCHHxdqXnbpbrL3twtzc/scaB8Tae3e8M9bu/uMBsXZV1ZdP5/auO+Gw3NqC7u/l3u9ufvLNsfYlD+bOWH/r2Pmx9h//mVtrf9Cfc+tR79y7Q6xdVdVr5dwcte/uk1tLsusGS8ba4x+8K9b+tOf4WPv+jgfG2v13yt1Hz9tljVj78L1z+1ns0zl3X1hVde5auevGh76b23/uH3vcE2vf+nxuH7QnFp4Tay+cuH6sffxZx8faR++QW0/x8P63xdpVVTtukFuf+PV2m8baJ9yXWzfV6odbxNptls3NR/zzoSfE2h+NfC3Wvn/z3Nnyhw8fHGtXVQ09IDfPfM9Jq8Xal+2V2+d5yNhlY+0Vrv51rP3WO7mzxp9eJzcX8s4uubWJvz4lN8+7qmrGxNwecIf1y32fDX44dw3Re1huv8G+v8/NjRt2Re5ct0vOzJ1Z8Oqw3F7NE47OrQetqrp0rY6x9sl91o21r+qTu4bo2f9HsfZfts3dF/b6Re757tIzct/jD/R4PNb+5PlnY+2qquE/zs1BHfZybr7VBefknkMce2Fuz78+77wca2//3H6x9pw1Voi1B76wW6x9559zZ4tUVZ12+S9j7TWOy80LuPHi3LrIXx2YWwt7bvuNY+1Xlhwea683YIdYe9Y5O8fao7d6IdYetuUDsXZV1Ufb5PZ43He73LXTS4Ny5/iNv22JWHu5C3J7JA1aJ3cO8RaP5O4Lh36ce6a+YOROsXZV1YQ3T4y1tz38q1h7oxdzz3fnnJ97f/TuU7k5KG/cl9u/9u4tcvsVPz7mpFj78AG5/ZGqqu7ofFysfdinub/ri2dcEGu3tBoTa69xSW7/t8eXuDDWvv6k3D7R1xyVO0t4yP65z/SqqlZ75X72zVfKra2c0TF3xuk/L70x0m35embVvd/uuXa3vRdVm84t/6ER/de9PSw3v//+m3JnRm54Su48lseunBBrV1XduEru+UmbA7aLtbv+8Hex9v0n5tYW7Hdebj7kfdPXjLX735g76/v+1rl9UNd6IrePSFXVluvnrgHWfy+3z8Da//xxrL3Z4bvF2pNG5s7Se2W93Nmsr6+Tm582arvcNf6I7YfH2lVVq83uHmt/OSp3Nuy9++X2V5i9WW4N8j4P5/atO/ja3P6vveflrp0enZW7Vr5iTm5O4umv5eauVFUtmJI7Q/DJ63P79Wz6ys9i7ZEzvoy1D1qvd6x90aW59YF/Pm14rN1hm9xeQQseuzHWrqq65TvzYu1VegfnoU7PvVcfNja3RrDzLrk/7wkD3om1D/g6946122fTY+1H3s6e6Tbs2j1j7U2nLY61u/xuVqzd/dbfx9ob75jbZ/GqXQ+JtTcZlNun6Jw+ubN4/3J9bp+iqqpzTsi9t7vxuR1j7XuuzJ2j99rLnWPty59eMdb+2VHHxNojv9cp1r7vrtz6wFMG5dZdV1Ud/ZPc9csqvXL7Kwy9Kvfc6ZOvc7/z4V/kznT79bu579I7n7831h5zW+68pwt3z+2tUFX1wu1XxNpDpm4Va98yaO9Y+63TcnNB92+VO0dv+bUfi7WvHJvbh37R+S/F2ueck93z79TVcnuKjn/puFh76+1z691HHJ7bx+TVtrnzg84akjuf9PDRufkIq2+V22/w1J89HGu/tGnuO7yqaqtXn4i1Nztsm1h78vHDY+1p9+4Va1+799mxdq9f5f6uHX5e61j7wA1z71Ae6HB5rF1VddETuTXvd1yV2xfrqFG5PbKPn/JKrD30g5ti7c0fyM0dXvau3PP8qwauF2tvdUfurKqqqrG39Yq1hz56Y6x924nvxdqX75Tbw/aMPQ+OtXs+lXt/NK7rvrH23IvXibVbj54Ra1dVDdwiuFfR33LnPWx7c+5z9e4rMvsUzZ81t2rTM/+//12jCWMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/iEZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPO0SQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+J/tol6XVqs2nZreXXjrc01v/ssqP30/1t73llax9rLdN4i1q6qGXj041j5r1rOx9h73nxZrN3a7KNYeuNSVsfZV+34Ra79y5Hax9vd2uD7Wrqrqesq4WPuYW96OtVtt8W6sffaw3rH2Mj0ejrV/v8TiWPu9S06KtX9y0YxY+47rcv/GqqqeuvfJWPvXG1wbaz+44J+x9sXjjoq199y+JdZu/5M1Y+1ej20bax+w25BYu6pq1Pfmxtr3bXN6rL3z5o1Y+9x3/xhrv3r0b2Lt+3ufHGuv+53cz93rDzNj7X57PxBrV1X1+GCLWHvZNyfG2ie90z7Wfn3/nWLtn92yZ669XvdY+6iP2sXaV7YfGmv/ecjIWLuqqu/9O8TaK5+6Tax9yHvrx9qDjso9W77p1VVi7aG/OyfW3vrdrrH2fc93j7Wrqnq3z32fvT52q1h7UI/HY+3tf/y3WLvfaXfH2k+2WTvWvvLl82Lt5/vmnrcNuzB7j/LoKTvG2lPOvi3WbrP/xbH23QPGxNpdL/8y1n6uQ+7n7j9lxVh7xJm5eSBVVS++lvtOGX1s7s/8/DnLxdpvdlo31l775YNi7X8M+kWs3XPrI2Lto045Jta+8rx9Y+2qqk+e+zDWPnWTTWLt1z/eJ9YedGDue/wf38k95/ztwNy/s7Y39Im1H/577lq5qurBAbl5bi/88YVY+/qNr4m1Z7+fu365df9esfbwls9j7QPW/2ms/caGuT/vQ7a7LNauqjq+x86x9tAlNo+1Px7XL9a+f7M5sfbID38Ya79+au53/tcj94i1L7n+6Vi7quqslwbF2l989V6s3WXCM7H29DV2j7U7/y/27jv8z/H+//8zr7zf2YkIQZNIzBCb2lspalPU3rOi1GhRqtTW2qPU3pvaBLVjE7FnQiJEtuz5+8tx/P75HL9vj/bzevT7O263v3Pkfr7X67qu8zqv87p5jVi76/TctdldO9wUa58w86tY+9xGa6xdVbXfYnvF2o8PPyjW/mzUZbH2ru/k7qNcNXfRWHvnTyfE2qecn7smbXltrVi7qmrg6P6x9jLfnx1r9+94cax90s9/2/Tm5Omzas3s8joAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgv1TLv/KPByy6ZXXq2PF/ayz/o/OPW7/pzR/NqImx9sw5k2PtKaOnxdpVVa2dfxJrd2mdEGs3ZvaOtWe3HR1rz2jbNdaePq5TrD23dV6sPWzo47H21NmzY+2qqvffejXW/nj4iFh7leVWj7UboyfF2gu1nxFrz5rb/HOmH43oMD3W7t6mbaw9rDV37lRV1XH+zrH2kH/prP4/651pM2PtbvPlzp3GzP0m1p46dVasPfrbr2PtGZX7bBs/emSs3aHzmFi7qmrmxNx1Quc5bWLtL1oWjrW3XnxcrD2r0S3WntxYKNZum/tYrZZOuXPluVNy56tVVfPm5n7f2rdOjbU7tfaItVsWXSTW7tHaIdaeMz73Rz593NhYe9r43Lx223nfx9pVVZPG5ubcZtSEWHv0rNwxpdHaM9eekbsg7tIp+Ls2Pfc9nzdtfKzdsW3uPL2qqkObCbF22065r33unLmxduu83N945w65+0etLY1Yu9G2fazduVPu/tHsTrnveVVV90buXum0ybnz5cmz58TaM+bk1kNM+Cp3v3D0K7nzl44L5OYBFuqxRKy9wc/3i7Wrqjr1yK0LuOySM2PtXbfdJtZuWWWNWLtH79xaq87t3oy1WxZdMNb+4v13Y+1OXT+JtauqFuy5VKy9SK+lY+03PxoUa5950iGx9hV/vyXW7jT3h1h75srLxNoffJK7Pz1h4rBYu1ev7rF2VdXX3+TOl0d99bdYu+9S/WPtme/l1nq98PL7sfacqbk51nZL5n7eYya+F2u3/TS3HqGqqhZfLJae9OSjsXaXebm55U49c/OcG666caz97YjhsfbPt/pprL3UslvE2pO++y7Wrqp678Xcufo6u/0m1p4zPTenv+rqvWLt1+/Mfa7edNFZsfasNrl16oss1jfWXrh/7l5lVdVPV+8Ta7cZn1vbN7nNF7F29x7zR7rt/gOfqe+2X6Lat2/++sDtf79B05s/GtH7oVj7L7scH2vvOv/TsXZV1Te/OyzWPvCirWLtsV+fE2uv8Pfc39ljB+SeT2yZkFtj3+mDbWPtz06/KNY+/OG1Yu2qqrsWuzTWHjLtpVh7i5/lnmu48ZEJsfbZJ+euMZ7t+nasfeH03PMcuy0YvO+14YBYu6pq/LjnY+2u198Ua5913JBYe/I7uedRlxr7eqzd8mTub3xQl9yzagv+5KhYu8vQj2Ltad1yc7NVVa2dcvsrPLNa7ny53/QPYu3jXst9vtw/MLdP0XUX5e7pL9grNweywXvLx9rL7/rXWLuq6sw+ufXez293Y6zd5dXcc1OTFj0g1u6z8Zex9qr3PRdrP/dxbu+WVQbknk0celt2bnn9DXJ7Fd3/3n6x9qQe18Ta2888LtZuN2mPWHvUl7l5gM0X3znWPn6Rx2Ltad/n5jirqtbZ8MVYe97ymfvLVVXf7TQq1u788i9i7TfbTYm1F/kht1bqgs5PxdpL7Xt1rD159MexdlVVyxN7x9r7HfjnWHvwsbn5vuXey+3zuPLVn8baZzyQex518Kq5Z85XnJ17juXLbXLHk6qqDTqeH2sffedusfZqS+SeA37ql2/F2vt0yK0DXXXR3DM8s17L3Ut469UVYu2xm98Za1dV/Wq93F6LG75ycax95yvPxtrbHP1grP31fLnnWO7eP3eNstuZi8faf3uuS6y9/rrB91V9nHvvQFXVib1zz4zNnvlsrH39uNxzU+M/fTnW3vq63B5sH52X27v305bc8+7XvJ27Hj5pq5Vi7aqq8etdFms/O2OTWPtn7+euUS7slnuvynGr577ndz59eaw99u3lYu3F1s7dl//gmdx6p6qq7U7PPXf10mm5tcPLfv1krH3Wjblzp3O2fzjWbnfJOrH2N/1z980+eaRdrD3thtti7aqq8Y3c2r4xK+Xu4Rw2a3CsPbexX6Q7uZF97yMAAAAAAAAAAAAAAAAAAAD/d3v83kHV0tra9O6YT49uevNH9/x2h1j7mc9y7yVpXfx3sXZVVb9up8Tas9ZfP9a+7LLcvjMDz3081n5ro9ze2mPuy71bvt8LuT3N++w2NdZe5ZwTY+2qqoNvPzrWHvuLc2Pttb/KvQP5jpv+FGvPGrNPrH3FupfG2hvN2jDW3qPdL2Pt1kuPjLWrqmqpn8XSs5+6N9Ye+WDufby/WvaTWPuhgTvG2qdflXs3yPM3PhRrT7n61lh7h0+PibXPvOKkWLuqqjEz+Dc+bG6sfd71J8fa219yfKy9YuXeL9ZYMrfH9MDBuT05f/XNpFj71Xa596NWVR0y/NtYe8PP3oy1B4+bHWtfdHjuvQV37p7by/3ya3PtHZ89NdY+vTrF2t9t9UisXVV168W59xAvd1fbWPuQVybE2lcMvD/Wvm/Bv8baOx1yfay93Qe5Pc3f6r1GrP38NVfF2lVVj991UKy94dDc+0FmPPd0rN21zbWx9pzzjoi197k3Nxdw9YHbx9r7n7p0rD2s6+GxdlXVM8/uGmvf/PrvY+1Lftkj1v7rkAVj7av6565Rttl0u1j7lB57x9pDbl8m1u6/zpKxdlXV5yfm3skyc9lFYu07frdDrH3JiG1i7Sk7bhBrH/j8XbH2FautGmtfuWXuvY1LbTYv1q6qmvBJbr1Vu765d7wv/9mesXb/8bn7CX/rlJtv23vuF7H2Kq/m3oE88K7nY+1xo34Sa8/9x6axdlXVJR/tH2uP3LhbrD3wi5ZY+/RNBsXara9uGWtffuqVsfZRP3kn1t5j1Iqx9rfdct/zqqrhlz4Ra8975p+x9qI/2yPWfqR9bl3h7GNzayGG3Ng11l7/jtyzT1f/fvVYe8I9S8XaVVXbLJm7P33xESNi7VMXyz2Hs/mk22PtW77pEGuv9sF6sfYiX+bWDi+9X+6+fJ9u+8baVVVtzu4da++90y2x9phr14y1u6/4QqQ7Y96Uuvzf/D96P7BttbZr/x8Zz7/iomcGNL35o/3uzn0mt87+NNa+74mRsXZV1RHd58Ta9y+9eKz95cCNY+1apvn7Sfxoz1sXjbX/Pi53XTf3wNzXPWTkmbH2/QMujLWrqnptvXys3ff0r2Lth1fZK9Ze8IzcWoajf/tBrL3jmbl56f3uODTWfmGJ3P3dx/c6MNauqrpluwti7Rt/lps3ah2ybKzds/ONsfbmg5p/XfSjx/cbHmvf0ueeWPutS3O/a18+9ttYe846ub2hqqouPX++WHvPG3JzAZ8PHRVr1yaXxNJ7T86t27l+s2Nj7UsPyZ0zHjlhdKz99bfbxtpVVTcesU6s/dyVuWcL3nq7X6z9j/nPi7Xf6Z87hzh3wg6x9rYtufm2wy/O7Xv30l25fR2qqnZfPXe+/OiYYbH2mDV3irX/un3ueviI67eItd/pnPtdP32FybH21M3viLU322tarF1VtdpFf461H3vy17H24P0+jrVPHZw7h1jgkbVi7Z+clVvrfeXuuWuzDs/l9q256Yk3Yu2qqglP/CXW/tXM3F5F6z+d23dvwpU3xNqzXv8o1u4/Jrc3+MeT7461P+j3Xax9z8TcPkVVVSe9vHWsfe3MdWPt3Y7ZPNYeskhu/7nPvxoaa9/Ukvtd63J391h7icY/Yu1/XppbV1hV1fjgw1h74hlrx9o77J/bM2eZM/8ea29083Ox9np75dY7TTg/98zWuHtyx9FFn88dT9a4phFrV1UtsEL3WPvy3d6KtT876OZYe4Vf5/ZEn3n+YrH2FZvm9o755tPctdmAK3Lnyut1ze2XU1X1Wp/HYu0BuxwXa/+yU+6ZrYdWyO2l+vjjuXPlXq/k9hs8/JyBsfbAg9vE2q9v+GysXVXVctqTsfZHfXJ7FR18+y6x9ojVc5/pd3/SK9buelj3WHv/g56KtT9/9+ex9mbP5J75qqoadEruPT7XnP2HWPu683JzIC+MyFyPT5o0s677P/h32St2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaqpEeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeVrSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+u43c8Obq1r75r0a/fasdmt780eCtp8Taa+40NtbeoufbsXZV1YIb7xNr37n97Fj7+X7Pxdp1xvex9FVb9Y2173tjRqy9y0GHxdpr7T4h1q6qWm3hjWLtBbu9FmuvPf20WPuoLgNj7bf+Pj7W/uO382LtBxfeMdb+aO/WWLv3l6fH2lVVB47LnUMc94vLY+3O+8XSdcWE38TaPfuNirW/OKl9rL36tEdi7V3HT4q1q6p2/rJfrL3dUk/G2neu8FSsvdNhn8fa9627a6z9eM9/xNoLn5A7f/l08DKx9qiPvoi1q6q2v/uAWPul086PtR8cMD3WHn9bLF2vLXxkrL31+rnv+dIPnxdrD/3+vlj71m2Wi7Wrqv68U+5nvkr7PWLtH1ZfNNZee+/LYu22tx4ea6+/VSxdO5+5Saz90I1Xx9pVVTf/Lfe7vt/vh8baB722Vqz9j9UfjbVXPvrXsfZ2O+8Ua+915A2x9ifDz421X9r/2li7qqrfE3fG2lsfekms/clHuXulww6cHGt37bd4rL3d2q/E2n0n5o6j883pGWtXVV27312x9uc3bhZrt52WO549u8KQWPuB3+Tm3A7f6uFYe/etc+0xy+euC49568JYu6qqzydLxNr/nPlprN34/ulY+/qPusTaf3yzT6y951pdY+19v8z9vNf9de6csaqq444vxtqvbJ+b9+q+76Gx9lYnvR9rL/nuFrH2Lwbl5n4Gjv0h1j543T1j7ZuPya2hrar68yVvxtqndcytC/hi4Jax9s0nDo61fxiUW/uz8/W589Un+y4Va69/XXY9xBfr5j5jHlrs+Vh73vK5c6crb9km1t7m6q9j7edWfCPWPniTW2Pt3++zcKz93R4nxtpVVYt9tWKsfe6pq8faN4z4JtZ+/PljYu3bhqwTa/96tbtj7VU67RVr//Dr3D27qqoNBnWPtS8elDtvXOaxQ2Ltjeb8penNuXN+qKrcfSsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgv1fLv/KP23TsUm06dfrfGsv/aNT3c5ve/NGyC7WJtadUI9b++vsvY+2qqgUXWSDWnjv5X/qz+I+a2CH3dTdafhJrD/92Wqw9dUauPX/7rrF2775Lx9pzxn0Ta1dVDdh191j74Zeei7WffemtWHvFafPH2tWuWyw9s0/3WPv7MZ/G2p936xFr9x2wcqxdVfXo++/H2h/OmhhrL7H4ErH2d+M+i7V/+D73PZ845utYu8v888Xak0d/F2u3adM21p4x/ttYu6qqzbzWWHuBNrnz5eVbO8fan02aHGtPnjUy1l64tV2s3at9+1i78+TcudOsNuNj7aqq2W3nxdq9Vtww1p7Tdk6sPbNz7jN99ugJsXZjbK49a/K4WHvKuNy504x5uTn1qqrxs3LzfW1acsfxNnO7x9pta0qs3b7T7Fi7pZG7lzCv49RYu0u73HVhm7m5+4VVVe0avWLtNm1zv+vz5uXmWNu15I4prV1y14WdWnLXw7Pmzoy129SsWLv9rOavgfh/m9Ga+1xvac2tSZgx7YdYu23b3DzEgpNzx7PZ/deKtTu0zX2m33XBX2LtjQ7YOtauqtpq2/1i7S5de8baj/7jvlh71tzvY+2lZvw81u7Wd6VYe+KoD2LtT3/IzbctNCt3jVBV9c+hj8fa3Vty5y8VnPbq0TkYHzMslu7emltz9MXo3DXKkI+Hxtp9ftI91v7kszdj7aqq9Vb/Zaw94ovcuoC2E3K/6x++nVv/Mm9M7h7Oz048MtYe9W3ufLXfCsvH2nMn5n7eVVWvPJI7d5r3rz0u9B/VOjV3b7zNvNw54/QxuedwFl88Nw/RZpEOsfasRm4tZ8vkUbF2VdWW+xwVa8+dlTtX/2Zi7nmUkR/nfubLr9E/1p7zam4txA+Tc+36NPfzHv5+du5n2P0XxNot7XL3UX6YmTtfnjg5M/cza96/f862y3xLVpeOzb/fevg7ufX9r+63Vax96RK55yK//z737FBV1ex9fxVrTx3xYqz98dIHx9qrzp+7tlru1Udj7XtWGxBrb9D7pli778RdYu0+22avrfZZKPf5tudDuedR73s69ze++4MvxdpTF87dCxi7c26+bP8v3om1R45dN9Zet+/isXZV1QHTg+vjBj4Vax+Ue5SlGtNz9wMGz+wSa3/3Xe5ewK4zP4y1Hx2UO47+fMT2sfYLU7LnThMnrhFrj90htyZx+0m5e/oPb7lwrL1W+xNi7W79Toq1u069LNZud8T5sfa5T+fua1dVTR+6Say95MgDY+0PVjo21m45+qFYe+5Buc+2Ll/m1luv+8PnsfbT8+f20/i8d249QVXVkMG5ZwQnLHZnrL3RhNz58ujgY3orLPG7WHvOKmvG2h8t/m6sfVq7frH2nX/O7dtbVXX/mNw9nLc2WizW/uy8N2LtpefLnUN0vTs317fs0bnjybjf7BlrD73ugFh78JtPx9pVVXOXzp2zXrdzbp17/xdyf2fDVrsj1j5819z96S3uWCXWXnTiE7H276/MzbEO6J07Z6yqWn5kbo718gUPj7V3n5m7P33p8Nz+/+t2yO3x2KZ/7j5tu43fibWX65Nb7/TAU7l9Nauqhj2Ue45m8Pq5/QZHT3ot1v7dYrm/8V0G3RVr9/rLIrH23h/lnn/u/mBunVe/o3Prfh56NXeeXlV16H65uZ+Fp+8aax96Qu44/tg618baQxbKHU82u+2UWLv/k1/E2lN3zH229V5hWKxdVTXqmo6x9s7L5vaif/6yG2Ltjjfl9v9/7oydY+3f/Tb3dY9adcdYe5O1c+tnnxnzVaxdVTXm7HNi7VUWza0LePLR3JzblK9y++6NWOy6WHvSWbl9XJfuOyjWnn3UMrF244LsfskddsrdIx45J7fG7a4e78Xar95ydKQ7e05uHzIAAAAAAAAAAAAAAAAAAAD+77fNEmOrQ/vmv1Nv9gK595zfcWXuPedHHZnbc2b5d56Mtauq1v9rbg+3i27I7WP//dPXx9pLLbpPrL3EhX1i7b8/kttT63d7596BvPDTufejnnPv/rF2VdUFX+X2eu72l7/H2r/c7ZJYe8KYX8Ta2w08PtZeZ7spsXanx1aLtee9fHOsfdiF/4y1q6p+2+WtWHvIw/fG2ttv3DfWPvnp3Ps5Hlr4t7H2X57/Ptbuc13uM33Gg9Nj7UfOz+1v3Tp961i7qmqrV3LvMHx88fti7Yde3zjW3qBz7t1me2x6S6x95UJXx9p/WCK353C7L9aKtXfZcP5Yu6qq75Tc+fKbPz8p1n5j0F6x9t93/CTX7pV759O7Iz6Ita/tEny3WeX21v74V6/E2lVVPQ/JXRsu9PYDsfYXa+TeL7b+sL/G2nstkntvwZ+2+FWs3X+T3HG09y63xtofv557F29V1ePLXhNrb7ffhFj7jYvnxtpH3pd7v9m83rnP1amLXxVrb3nsHrH2Pi+uGGtv/tQ2sXZV1Z333RZrn3Vd7jj+yLKDY+1ld8qtA1ln/dz7Io6+crNY+/3pq8bay8+fW/8yeMORsXZV1feD3o+199wnd+60492597M+sNeCsfacfw6Mtbe44rBY+4yjNoq1B//x2Fi7/TtLxdpVVfs9OCTW/sWL38bah345X6zde/gWsfY6O50Xa/daNHddeE+n3Pd817tza/v6P/NIrL3X6ZvE2lVVW448JtY+4tb1Yu23thgQa2+yTe59mVddc3+s/fE2uevC44/Mre0b+nDu3vjfvt431q6qOu6oj2Ltl/v+Ota+eIVTY+03Tjok1p45N/ce4ttPXDTWPuTQF2Pt4XNza61aB78ba1dVPfztxFj7uFMujrXf6zo11p7aPjenvtkGw2Lt9WcdGmu/OSv3XMSwU3LrCkfum7tnV1W148Dc80ftjsut+1l61rax9pN3PB/pTp0yo+qX/97/8fIOO1ajc5f/zID+Bcc881nTmz8afc5Nsfbpo3L3QB49+8JYu6rq5jvOj7WnfjUu1r7t5Nw9t7Vm5daoDZhxaaw94sDJsfYfns6tnTl5y01j7YvOvyvWrqpavJE5DldVDb3m3zwQ/xuu6PezWLvr6rlnCw46Knev8cV3c89zXHbypFi7/YzcMzRHdt4p1q6quurS3DXGkQ/m9lf4rtdBsfah3+Q+23a8JLePyNjtc+v75/XMzQ23PrJYrL3UXrnv+XJ35vZgq6ra9oHcHGnHr3J7U+3wxOqx9rffPh5rz7dc7nN1ziV/jLXXujJ3T//N9XPPFew7JbfWu6rqN2c8G2u/9+oSsfaWP8yLtbtNb8Tajy+R27dmly07xdrj5ub2l/zota9j7cVv7x1rV1U9udJLsXavux6OtVf8bLtY+5blcl/3HWv/Kda+/7WVY+2nVszdPzr2xty+vZvumd3PdPuRuc/Wo6/Kfbaef0Nu/e2kg3P7JZ9zZ259/+OX/ibWfvey3Br3XV9+O9befLfsM6Hbd2j+Gowffd0t9wzPl4M6xNq3nj0q1v7ps7mv+4gTc3uwDRr+Taz98uTc2v65S54Za1dVXTB/j1j70I1zayKv7ZA7b7t5oYti7TVXfi7Wvv/63Pr+q7d6NtaeMyH3PEe7KQfH2lVVu36weKw95MZdY+1+1+c+V0948MpYe8sbc/t6Pvldbu3NyX9aJ9bedO1VYu0Pd1gg1p7Y8aFYu6pq1dNz66ZPG9Q+1r7g1u1j7YUeyJ0zbvzT3O/b2svmjuP3rJW7Z3f+8Nyef4Nn59Z5VVXd+3hu3fL0bXPrORfbPfdeuPu7545nIyYsGWsvs2DuWZQe+x0Xax/57n6x9gOXLhNrV1WNG7pGrH1Dj9y819BVL4q1N70yN5+/3KO/i7Ufe/XjWLvNnCNi7b2POCrWXvLm3WPtqqqVj8jdn269MrdX0anrPhFrn7HkFZHujHk/VNWd/5//LrfyEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApmukBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ6W9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/243jm5Ux3aNpndPnrlE05s/Gnfx4bH2mt0/jbXP/uCwWLuq6ry/rhVr79tj61j7qRMHxtqL9+4caw/r8WKsfeVCl8faz51ye6y992LvxdpVVWcMvzXWPnLAKrH2mWflPtvuenpOrD348ktj7ZXenxFr7/l8z1j7js6585erlt401q6qmu/oC2PtnS/+MNaefvrPY+3PHrox1v7DYi/E2me1uS3W/uqsh2LtBybtHmtXVXWefkysPfmYZWLt1S6eF2vPt1LuHGK1lQ+Kte8Z9XGs3fPYbWPtP0/Ona8est6CsXZV1aiT94i1P3to1Vj76wdy506Hj88dU17bYWSsPf7w3M/7sCUmxNqXfTUq1u556GaxdlXV9t98G2u3O/GSWPuOFz+PtWfseUesvfIub8Xavz3j17H2S2fl5kAGnr9mrF1VdV09HWuvfniuffziG8fan76Rm4cYc9SxsXbrBR/F2qNmNP/e8I9uPeJvsfbBHX4Ra1dVvZe7PKtefzgq1t6655OxdtcJX8Ta0zoMjbUHLzIm1p5yznqx9k6T9461q6ou/GB0rP2rg3LzfSOXzv3Me+x7ZKy96RvPxNo3XnBvrL3dubnro2t/6BZrrzPwg1i7qurApTrF2gdcMjbW/t1VT8TabTvn5liv+ejlWHuL906Ntcd/nbufsNsJHWPtqqrdPv4m1r6w08qx9l2XLxxrHzK+Xaw9asbVsfZdi74Ua1+8yrBY+5Ulro+1v/7hnVi7qur4K9eNtTf7/eRY+/bXcvfm73hxy1h793a548l5bT+JtS+984BY+yc7bh5rV1Udtu6JsfZSs3PHs77Tctfj3fcYH2svt+IOsfY/l8idqx9/Q26t+m5r5O6Vdtsse6906QO2irW3G/aHWHvrc3Ofbe/flFs33WHtRWPtNRZZKtb+/rNzY+0vv8jN9VVVXXPQSbH2Mm3fjbXvWCY3r77yJjs0vTl72px6Orc8HwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPgv1vKv/OM2EyZXmxlz/rfG8j+aM3Nu05s/GjGxa6zdaDRy7YU6xNpVVZ98MizWbvTuG2u3n29GrD3l+69i7fYdxsXabWfPirVfff/JWLt710Vi7bat/WLtqqq+fXrG2u2ntYu1B0zvFmuv2H21WPvD0UNj7Uab8bH2lJbc3/iMAX1i7X+89WisXVVVC+V+1+fPnULUt9/lftenfv9hrN264Eqxdvf2M2Ptb4aPirVnz85dH83XOXd9NGn25Fi7qqpd5b7v37fkPtzum/hprL329Nz58s8W6BFr/6Rn7nd9Tmv7WPvbaRNj7dXX2CrWrqqa13WBWHtGu2mx9uyvv4+1u05dMNb+7osvYu2aPjaWnjytY6w9dnru93xKm29j7aqqLq25uZ9Zc9vE2l3atI21/7U7Tf9Z7YNfdofK/a51bskdR9u2nRJrt2ubux6uqprd2vx7pD/q3Jg/1m67QO6PvH1rbp5zduuEXHvC7Fi7w2LzxdqTxnwda7dp0xprV1W1zMvNPX3y5cexdpt238Ta0+f2j7XbtgleJ7w4JNbu1S+39mbNbbeMtf/5xD9i7aqq22+5K9be/zcnxdrrbJebaxz87Aux9rjh38XafZfdLNZuG7wv32f+hWPtD3JfdlVVffrpR7H2h9/mzl8WaJc7jvfonGsPH/FSrD2lMSDW7r1o7tps0gu5e7Sz2+TWcq61Tu54UlXVuX1ufve994bH2kcdd1isPeyTB2LtuVOmx9qdZuXm2xbolVvD2u3zqbH2s/98N9auqurdkrtPO3527sSxd4/cvHbLtNzf+Lhvfoi1+/XPrX+ZPDa4rrCRm9du2+OnsXZV1cjPc9dmLT1yz11175Z7BuiaQY/E2qMnTIi1T1jvF7H210MGx9odpueO4ZPaBRdDVNW0ybk1brNn5r7vHdvk7tm1bcmst5o579+/Fj52pcnV0rn56yl++stdmt780cYfPRRrL/rO9rF2209fj7Wrqlo73Rlr/27/TrH2VeOHxdrzL5abn/28zZqx9vZTcr/r2z6Ue85/z9VfjbVXHjUs1q6q+utyJ8TaR7bNPQ/74I25eaMBp90ea9+xzjmx9qypt8bab8yXe55jrfVy59lXDs6uOz5+ydVj7T88n1s78+HWufusByy7cqx9yW23xNorzjsj1j7/7btj7aGL547hw9Z8J9aetXz2s229Obk5+VlD94q1/7hs7v7PVvt1ibUXGjcw1u78dO54cuUPF8TaLfcPirWvPviTWLuqatEFHou1d15kyVh71RduiLVvPy+3Ru3tjxeLtcdvc2qsPey95WLt99vnft59x02ItauqHmldK9buOzu3f26Xzrk1ahvmlonVMufl1nG8uGfuma0N2u4da780Oves/Vd/uiTWrqqasNbPY+0X73wg1m5cukKsvcaAN2PtBabljiczT8rN/bzd84ZYe75JubVxCw/LPtew/OqXxtrf/TX3bOSsUbl1Yquue1GsveXBx8baqz35k1h7wmrdY+1tO+aed3/42Iti7aqqgV/k9tTY6+Lc3g6HdRkRa7/68OOx9ouPHBNrr3DMpFi70cjtizW5bfdYe5XdHo61q6p+8+iXsfZ7jdzzzwe+nHuO5vLJubUY65/5Sqz9wDLrxtrf9Nkt1p42M7du+aFPcnuY7HXUibF2VdWSH3eOtf809INY+62Dlo+1T3ovt06+y4DbYu2ZQ16Otedrn5vf/Wzd3LGsxzW5d4tUVU3fJfd39tJnuXcubHf+ubH2Of02jbXvHfFOrD15k7Ni7UGzb4q17/hN7mbl8ENWjbWrqroOyx1Tfnrv1rH20PlviLWXOC13vvz62jvk2rfk9hi46dXcsygTOr0Ra/ftlF07fNn43LOVSzZyz9v/s9MdsfYJXzwf6U6dN7cyZQAAAAAAAAAAAAAAAAAAAP7/YIEh/apTS/P3wD1zVG5fzG67bx5rn31vbq/CZ07N7UFSVXX5pNz+2ntelHsXzak9F4y1X9s6tw/rwl3eibVvnpl7F/Abey8aa4/c9ORYe8uNcu8lqaq67PkBsXb/tXL7Wh272QOx9sjXDoi1V+iX2z9uy4dz7+ocu3ivWLvl3tx+XgddOD3WrqoadONXsfZfP8qdQzz55n6x9ud/ye2TOH753DnjfZ1vjrXHjcjti/nN6hvF2l++e0OsvcrWwZdGVlXLCRfG2vsvnztffnKD3D6Jj5+Qe59dn/f3j7XPG5z7XP39nIVi7VNm5t7VOWJkbh6gqmrY+UfG2v13/EWsfe9hufejPvZu7p0sV07bMda+9tp9Y+0HDt4z1n6i5e1Yu8t2ufOHqqqTFjgu1j5xo9y7A2Yd1T3W7vHxZbH2jFG59xCvdstpsfbQrrm5nxcWXjHWfviwi2Ltqqo1W9+JtV9+IPeer/ZX/z7W3nG7rWLtUTvlrs16jv9HrL3a17n3o47eLPe7ttkrf461q6qevOfgWPucrx6Mtbe5fI9Y++HTLoq1l3s6N8c6cpncHMhC91wTaz95Ye56uFPn3PxHVdX1I1+Ltb8d9VSs/cWKN8Tae5yySax987q594R+v+lesXaf3e+JtQ/fPDcHsulRR8TaVVUbzpd7t/3wfXLv6qwOufvTz2+8Tqx97sldYu2D3z8/1t5nxdw71v+06XWx9quvtcTanw1aL9auqnrlzNw6s9vumBFr14u5Y+kfRufeNb7A6hfF2sNvzz0f8Ow5H8Xa327wdKz9989GxNpVVQMPzh3PzhuVO56NP//1WPtXz/4q1j5x5N2x9qHTdom1V1011x58fO766KDZK8faVVU9+98Vay+w9+Ox9pYb5a7HHz7vp7H28stfG2tvuFturdV8D+TuJcwanVvn9fSOs2Ltqqq2f38n1n5wm/Gx9i1j1461e23+60h3+qR5//b/semKx1a7rs1fd/3MVy80vfmjtx59JtY+/pjesfZK93wYa1dVbX9D7pmtt7caHmsv/02HWHvbZXPrxHot+Wqsvf2FuTUk56x5daz90te5Z87P6pw7z66qOvuEb2LtP190X6w9ZaltY+3WgcvE2vfcm3sO94VNB8baC3/cKdY+97uxsXa3ns/H2lVVN3z5eay94vT2sfaYG26Itfc9KbeeYPJHue/5pI/Xj7Wf+kMj1r5nx9w6imW/jqXrirvPzcWrqu/hy8Xa33RsF2sf8FTu/s8Bd+fWBbY/f3SsfcDo3P3lga92jrXHHJU7X332b3fG2lVVH4/J7fN46tq5ueE2c3ePte+c82ysfdHp78XaY3beIdae+/IasfYF7Q6PtV/aY+lYu6pqy9dya2cW+yR3n7XLsJ1j7SM2yq1R22DTjrH2/pNyx7JVjsg9z/FOr6Vi7Z275vbrqarafcqysfa7r+e+9g1zj4vVX27uHmsPWfm3sfa5XU+Nte84ZuFYe/OpuT1zHvjjvbF2VdWFU26Ktb96b2isfdbDuevxJV9/N9befZ/c3PLJ128Qax9+QG7tzYY/5J77XmuT3P3CqqrlOubml8du+adY+6lLcmsSxp2fu1e6wtl3xNodttwi1h544LRY+2+35PZu2eqU3D5oVVXXntgj1s7Nqlf9YovcXq6n/y73DM9VwfUvp/XOnStfvdzkWPsPN+eeTTzy1tx67QO33i7Wrqra+7iJsfZ8K+Xes7H15Nyz9j+blrsvv8AfM89zVFU92CO3Z/GEvXLrMHrstGWsfcB3ub0tq6q69s3dM3xircVj7RlP5vaYPKnnY7F2mwNy+2M/empu35pPD8jtQ9/lgV1j7a0/yc0DVFW91/+UWPuKlXLvk5k8OXe+/MbSufUIfSblzhn/1ObZWHu1686OtY/4fe6dUX97IfvMee1wbCx94OOXx9qfPJy7V/r0aR9EunOmTan6Pzhtyz1BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA0zXSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P+wd19hV5X32rf/zIeOFAEFVLAh2FCI2Ili19hrQuzGJEaNLUaNJvao0VhiNzasMRp779h7B3vBghXpvb47KxvfxnusN4drzevbOM9tD38DeJ45x7jHXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mn9n/zH8ztVze/wv3Up/3dt23ZtfvS/dGy3MNZ++ImHYu1WLV1i7aqq3j3+ox/N/1GtF+b+7N9/82msPXCl9WPtd165Idbut8zGsfZz856LtW+85dFYu8+SS8XaVVWr9eoda4976YNYe/nW/WPthfM+i7Un95kXa386fXqsvfygjWLtdyd/H2tPXNgz1q6qGv/BU7H24NXXjrU/+OTtWLtN9wGx9oSxr8TaU6fPjrVnzZoZa7fOPSLU3FaBB+H/0rHLsrF2VdXcmd/G2tOmTYi1W7duFWv3bpd7Jp1bs2Lt776fG2tvscU2sfbC1p1j7QULc5/pVVULJ0yLtRsdZsTa86ZMirW//2xsrD1vZm6MdeqCibH2lAXfxNrturSLtedNXyTWrqqqNrnvlC5ze8Ta7Trnfs9at8mN93Vuyd2rN9rk7p3mtl4Qa3eo3Du7WTNbYu2qqq7tc5+trTvlvs9a2i4fazdaN2Lttl26xdqNRYPPCd/m7pXnTsj9js1o+3WsXVW1YGbuXUa1zv2bt563eqzdEnxOaNfI3b90e2tqrD1/41Vi7RdGXhBrT13QKdauquqzdO757PSTj4u1f7HHzrH2GltsGmuPefjJWLvR4/lYu0+v7rH22O9ycyF6tOTuGauqNv/JerH2ku/nvksXa5u7Zx03Kfd81H213ByUj556IdZeZNm1Yu1hQ3LPCBPG5+aATPj+o1i7qmrxvlvE2rNb5+4bk+OcW22/b6z97ZK5uTcTb8nNFd9u861j7auuOT3W7hVci1JVNbtd7ueta2Lxz3+ZMzf3zm5mu1z7zhtejrXHvRFL1x5nHxlrfz7t81i7fSM3V7yqamH35WLtnv1yc9weujU3F2NWIzffaqt1B8baS2w3JNZu80Hu+Whcy5hYe8lp82PtqqrpnYPviBsdY+3Pp+eeSzt1zqx1m71gXtXEd37Q/+OsCW/UIrPa/g9d0f+7tn/MzTN/Yt+9Yu2HX/oi1h644l2xdlVVr/Vzc/OWfWPJWPupsaNi7a7DVoq1W064Pdb+eKPcO5Btvs2tfX719r/F2n/4Ine/WVXVbufVYu3NFuTeRfx9hf1j7ZaZt8Xac0ccEmsvP/mtWLvz0PGx9iuXvBtrDz42N05YVfXx0d/F2j/a+5ex9qi2L8Xa+/b7V6w944tPYu2nN8mNEzY2GBRrT3k1Nyi+cOXc58sXn+0Za1dVjV8291za9qvcM0qHRfrE2ot3z62jeWjn3H4a38/PzXm+eJNjYu0xP8m9Azlhidxeh1VVk+96L9Z+fEr7WPuFTybH2m+0yr33WrDEh7F219G5OSQ3Dcrts3jIAb1i7Rmv5+5Xq6q2XeqJWHtkp9xY46RdcmuQXzg9t36ozUa5uZizlx4ca1+24thYe/c3cuMfPX62W6xdVdV/0pRY+7MV5sTaVwzMtee8kJsn9n3v3L93lz12irXPuTU3L/DaiX+Ite8I7mFSVTV58Vdj7YMezK2N3OuL3B62tw/K7SE7dKPceo63f557h9OycW5/g2fH5cY4XztkdKxdVdXvgB/F2s+0Gxlrr7h0bv//tYfcH2vvP+vkWHvqa2fF2ov/KLcHW4fNc+syb/lzcLPmqjppp61i7b0+yr1HWezUB2Ltrb7aMtZeuMPSsXa/h3K/48vPys1HuP3q3LkD7355Yazd6r1usXZVVZv5P4u1+8/Kzb25cuHPY+2vz2kTax935N2x9ml/yo3nf3fhmrH2F0fm9oaau2vuu6yqaolZf4+1t1xz+1i79b2bxdqHbZX7bPvNn3Jjy+svc0as/Zun/xpr3/Gr3B5sa2+bm2NWVbXwzdy6iONWze3lutbFN8Xav90vd5bNKS/uEGuPHbRMrL3PLcfG2tdPOz/W/vbHg2PtqqqD3svt3ftK+8Vi7c7tcntr3r/17yLdOXNmVd38w8aWV72gQ3Xq0vznuwGf/7C18j/EReNz8/v/+dvcvi/dT82tu66qOmPrp2Pt8x/7Vay9yK9y4whDJ+buN89on1v/fOWVuXcgKwzI7Xd8xEe5tc9VVb/Z+7FY+9F/Toq1z+6TGz/Zq2tuLcv9nXP7cq63ZG6ud/+zXou1a/zjsfTLax8Va1dVDdrw5lj73jNzc2BHfvxirP3RfiNj7Zkdc+9BPtvuwFj7pnbLxNqnjsueKXfq3b+Jtd+48uBYe9bf/hxrdzjpmVh7pdyyhnppo9y8nSn75L7LNtz1olh79eVy81+rqk686MFY+82JufuntT/LjT293K1brP1M+9yaivfeze2L9bd+uf1nP105N+a1+Wm558KqqjHLvhlrb79Sbg/9d/6cW5O67Ma5/RWWmH90rD1j4qGx9q1n5+4hjhuenccx+tTcHgdDDs/N/71s+9zaqWWfvi7W3v/h3FzzU07LrdN7791NYu2/Xpr7fNnk2ez+llP++G2sveynuXnuD251b6z9yNm5e4hTPj0v1v7++Nzz8LzcUF9dsl5u3nFV1V1f5H7W12mX+4t/sd2zsfZyXXJ7ZO+4Xu6cjf59c/vuvfru+rH26Ddy80B+dVFubUFV1Wk75T7Xr+2f+3tf+Z2fxNqfrP5lrH3MW6Ni7evW7hlrr3Re7hziYX/MrS2oqvrRZbm5Zh/Ny7Xv2T83rn7Nq7l9Bja9LHeuy02f58ad1np3mVj7prVz4xBPD8mdX1RVtcHBub2qV5p1faz96BnjYu35S+c+V1uePDvWvmt8bs+eh3vvHWvfsdZ2sXZV1Q39cvtMbvVBLF2L75zbu+adltz4y4ZjcmP6n++bO+tixX1y8wKOPnyJWPvPd+fWZFRV7TIxN8567n65vVxH7z071v7l7rk5T2Nuys0D2fGiw2PtVZ7MfaZf/t6ysXZV1dsfjY21R16Rm4ux8I7cfIjef7q66c05s2dU1X4/6P9xa+/lq03b5r+P2GBB7rypve/OnePXbbvc2OzD51wZa1dV/TF43lTPT3N7FZ6xbG4Nz9QhS8XaNz+Rm8Px98dz6xqOmZf7/h+wRm6P6Y+/+yrWrqraedj7sfYH/XL7eT0y44fdA/wQu+yWO2/q+O47xNqXP5nbC/WSy3LrOe54Zd1Ye/sHcmeDVFWdsGFuH7Uz7tkm1l7wfO679MUNcp9tH3ySexfw0JhJsfaYITvE2t06/SnW7nr8pFj73eP3ibWrqra5ulus/bthubNozt44d896c5thsfZW9+XOdVvx7WVi7T1/fEKs/WGn3L6YP+mSm79RVbXo2SvH2hN2zs3bmbDNpFh73QW58bYVl87tp/G7qR/F2iP/NTjWvvDN3J41fd/NnkP85vR2sXaXJwfE2gf89K1Y+6o1cvvuHblDbl/xz3+Z24vs8eG5n7Ud7noj1n7xstzPeVXVll8PjbW/2TY3l2GPl3Lj2h9cmNsb/KzVr4m1Lzsv117Q+YBY+/h9d4i1n+iVG9utqvqudW6e+TkbjYm1bzwhc15DVdXTj+bmgc4/8LhYu3HkJ7H2NSvl5odtcsIusfY+B+XG26qqruiZWwN8Vf/c99msg3PrxX6+Ye7zZcC43O9Z3/ty836u6Tc81j7nsemx9r2XnBJrV1X16pJbmzhydm7eT8/rL461f3V27vlozNOHxdr37L5KrL3K041Ye8Eh82Lt2jC3bmjfm3J7elZVHfLI97H2b59YMdb+5du59YEbvpzbU/TTJ3LvEtp2yu1Ldeiex8fai03LvT868rE1Yu2qqi0P+EWsffJGK8Taly16Z6z98/27x9p739Y11h6/a+4+fcZS98Xaj52fm/fz7PaxdFVVHfltbj+NR4c/GmvPvyA3b/nsp3Pz5A87dINYe997cudcHHhEbq377LVzY8szj8ytB6mqmnXnyFh78gZPxtrLdc+d93DV+pm5NwtnT6uqH3a/3Djrsmq0XeR/5oL+A32H5c7j/fmpuXWZn+zfOtYeOPKKWLuq6pDvcusTz17lH7H2tpfk5sfd9dzkWLvzIj+Ote+7OPfn/vipL2LtU1fLndt4xqm5Mcqqqm/n5+YN/e31lWLt/Zf8fay93X65tbBtNpgYa793Xm7M6vqvN4u1j17k8lj78Yey+/U9u3xuPeyKj+XGhkd8lXu2unqx3HlPPdtPi7VfOzQ3x37nrrnP1VOvejzWPmfb3Nzb8+/L7a1QVdV35dxh43ttPirWvmfwr2Ptt47LjRV+cd2OsfYD9+d+1qdtlpvbv/n5ufUcw3+7XKxdVbX96Bdj7Y5v596zbrj7iFj7hA+virVn/Cj3s97n8dy77WPevivWXunD3Du3j8aNjLWrqo49b+tYe/djcnup9z1vcKy92dE3xtqf3J6bb73Vw7l5x89e9mmsvc7tuWeEsw8/ONauqnrpuNyz4Tvb7x5rL7jvglj7oXG58baR+4yKtc8ZlZsfN3xBbp7Wiavnvk+2OqNvrF1V9fwF78Tad976dKx9/9G5NaGrvzk11v7x1Ny7yp0m5ibBTlk1dy7Iqgfn9gpq99yusXZV1frr5s4o3Wiv3J6idxyae59w8Q25fff+0qpHrP3CVvfG2n+af2KsfcLIzWPtUavm3mNUVY2Yljuw8rBLcnNJv756/Vh7+U6558IzT8zdq/ealJvb17XWjLWnnp3be+7j2RvF2jcccWmsXVX18Dcvxdq/eib3bz70w9zeMYO3y703W+d3zT8/8N+eujy3v8KnJ+Tmkf7r+iGx9qON4bF2VdUai+TuXy7okpu3vN/f9o2111iQmxNw5663xNodz1os1v58ldzn6gHTc+eMXnl5bv5sVdW9fzw51p47KHevfuxZuT3gljkld7bsli25PVQemZWbg3L4jqfH2rt9nJt/cu2DubMmqqqu2yC3x8FJB+XObXp702di7bZLbRvpzpq6sN76f3hEyc2QAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6RrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5Wi1cuHDhf/cfTZkypbp27Vp77z2i2rZt24zr+v9Yte8aTW/+20dfjY6121ZLrP3lJ8/E2lVVA1daO9aeNKMRa6+8Ss9Y+8N33o21v/1sdqy90aYbx9rTp30Ta7/2/sex9s23PhBrV1Wt0C73e7ZidYq1B3RePtb+uNPMWPu+z3Lf4+2XyP2sta1WsXb/lVePtVs6do21q6pmz5wRa0/9/otY++uvv4+1F06fHmvPrFmxdqNN85/J/q19+0Vi7RkTcz9r1Tp3vzp9+n/7yP6/auHs3O/Zgrm5e4jlOud+1tdvWSHWPnXY72Ptrr36xNqNbrn79DlTxsXaLXNy4x9VVTO/nxZrz5mZa8+fODXWnj4v9106bX7rWHtOh69j7QVz5sTa8xtdYu2OLbl75aqqdpX7Hu/aadlYe+bcT2PtRVrnxp3atI+la+683HNC23a5P/j86bnP9HY92sXaVVVtFuT6jU65f/MFi+bas2fkvlPaV+55vFVwKGDse5/E2t265sa8ps/P3bdVVbXMzT2fTZ6U+3vv1D34e9Yld8/Yfs68WLvtFdvG2s/c/1isPXVBm1j7ttvPjrWrqnotumSs/fTrb8baCyfkxl+WG7hSrL3k8ovG2jM+/SzW7t2vV6y9SM/c+MtSnXPf4VVVLTM6x9rn3HBzrP2T7YbH2jO+zd2rb7rH72Ltro3cHNrWXXrE2o9cl7uH6NBusWA7996sqmqF/qvF2hddelWs/eudNo+1W9rlxpa79fxRrD153uRYe9Zj78Xa7z33WqzdqSU3n7Kq6tvpE2Lt+Y3cuPaCeQti7fmtc+N9M1sF340H5wTsfuCvY+2ltx4Wa38zKTcGUVXVoWdu3Ourcblxzr9cekasvekaK8faPx42PNZuNzs3R3/hE7m1bp/f/2ysPb917nm4qmrOjNzv+Ox5U2Lt74Nzpucv6BDpzlowt0765t6aPHlydenyn413/nvN+X7r7l9tWzd/vLLL8Nxz3Rctufecfc88OdZet2tublxV1fwdc2M3HUbn7rsm7JibOzPvwtwzxoW75eZ679pzfqw9s/WGsXY9mfkuqqrab4/cO5Cqqm27vhpr9z51qVj7Zy25NTwTvsjtMzDq+9xY3UdTtom1P17uqVi7/9TcM+XAVbrH2lVVS2+ee9/YZmZuDslFo++OtftOyM1lWHj9rbH2yq2ui7W/3Db3e7Zlt6tj7WsvmRhrz+t/caxdVXVd49BYe9DA3Huv3z6TGwu4c1junnHyxr+KtVv65vbk6nhnbq+gNzfO3TO+9dXIWLuqqt+zF8bacxb+ItZ+P7g2csmXl461J6zxXaz90FdfxtqbbjMp1u6zWe57dKtf5+ZbV1Udt/7rsfbI1YbH2he+nFvX0LtV7vno53stF2sf89fcs3iHfrnx3Q3v6BdrrzQru1/yxO2fjrV7bX1RrD1vWm5fz8efy72v3GOre2LtSU8fEWtPnn1brN0yYJ1Y+8nXcmOcVVUDv1oi1n6rc26dXs3Mfa5vMzC3juZfM3Pz3Ls+mJsPufQvcnvnvjQpt979/PHZPf/aHpwbiPj80Ny8gK/n3RFrL9Ent6/n1rmPtjrhjdyeXKNXGBJr/2qz+2PtLfusGmtXVXX/6sFY+18nz421+xy5U6w9+K23Y+1Nt8vNObqtkTv3oN2muXmFY0c8GmuveuWIWHvATy+JtauqPjgm91x60r/uirU/GZC7ieg4LDf2c8+8XWPtV0bn9utZsEpuT4uN1s+td39g0OGxdlXV67nXCfVYj9xa/8Mfz32XtrTN7Uu+1Ljc3/lHPbeKtde+Mnfew35LXRBrP/jsV7F2VVVjldw8+cndcnO93r72z7F2qz33i7WX6v9BrF1v5v7cvZ/Nrf+Zcmxuz7+PlgsO9lXVOlttEmufGZz/sk6v3JlRz3x2b6Q7d8GUumvcYj9ozXnf7ktVo9H89yEDV/x705v/ds5Dufe7y12Q+3z4+WN/i7Wrqm7ZfINYe8cnc+9/Tr4kt9Z+pdXPibUvnfR5rL1b39y6zFZnbx9rX9o/t09iVdVhr+Y+39aekpvH0e6x3By1njt1jLXXPv/4WPu65XPz495/PbeG5v1WL8Xau3TM7RVUVfXVOgNi7R9/MzTWPnfVI2PtTc7JPN9UVW3cJ/fv/dQqg2Ptr3fLrTlf7M7cetSqqqvXzM3d+eCdx2PtYeNz71kPnL1HrD1psRmx9rrTcvsM9Njl9lj7jAVPxNrH1UGxdlXVOsfk9h3e5sJ9Y+1vWuXav74ityZ1n8/2irUXmZPbv+XTm3PzAlsuzY3v3rN3bm5eVdUpZ+beP33/3Mex9k6P5OYUvHXloFi71+Tc89H4b3Lv3K4dnvtz/+bo3LmNVVXrfPGTWHuRMbkzOl7b4KhYe703cmP6h5+VG+c8tlVuP7CPGrn3CaN/d16sPfHyP8TaVVU918qdHXDTVgfE2jsum5sTudv+B8faZ/00t2aszWq5ObDf7Zz7Ox9/802xdlXVNU+eGGt3PeKOWHuRfi/E2ksOvSbW3nLuLrH20h/nnkmPXjm3993WrXrH2mc+MTzWrqq6dpvc3/smh+TGf25ZdKNY+6abcmtZLluYO+Ojx6DrY+3LB+Q+V7/5JndmZVXVxTu9GGvvdkruLOJOfa6MtQfemXtX+t5HV8Taf5uau19+9g+5PWzPPDC35vyy6xePtauqdhyXm3e06JvHxtpPnZybY/d0u41j7aP6nxRrL3NGbn+FLTr9ONZ+stWJsXZV1Xav7h5rX9Yvt8/B63d9G2t3Pv8fsfbHI86KtWunv+TatU+sfFf/G2PtV57P7kf2x0m5tRH7fp6bRzt6i9w81g8v/WusvfxGW8faMy/Nrcs49N2RsfZlm82MtauqPj7/+Vj7j8/k3o/vtPuoWHvzzs0/Y2Tewnn1xLxRP2jN+antqtoHluotaJfb3Kn9Lbn5r8fNyM31Xnj3mFi7qmrFcafE2ls/mFsrd8aPcvuoHTM0t2Zr4065c5eeOiB373HiSW1i7Y7rT4+1n9s8d99RVXXF0rln6ftHT4q177kqN172wce5+72/9/g01r57jdy5KB93zX2XnXbugbH2za+cH2tXVb02PffZ+ujKufN4Xzzp5Vh7tdaTYu3PTsvNxXx5udzc20e2XxBr7/3ombH20i/lvsvGvpgbk66qWnlAbpxw8u6vx9pnbJCbG3f+Ubm974bvknun/sC+I2Pt9dcaHGvfPCx3HsvBv83NJaiqevFXN8faK52V20fkd3/OjTUucfq6sfarXXLfZ2suOC7WPnGD3DvOo446Mdb+5MDc2WZVVaOezLXnTcqdddXt8dy+nv/sm5vj/u4puX2Kxp54baz9y3tze7n/YVRuLep9Bw+Ltauqblwt93vWbU7urPG1j87tD7XET3Nnw47dNneW3tDJfWPtOXNyZ7L0PTM3T2rOP5aLtauq9j029+5s/W16xtr775nbJ/reR3LznUe9klujt+as3PvpJVbOrVu6YL3ce9Ibeubem1VVXb9Jr1j7m6GHxdqnv5Pb82+FObn7l/P73Bprt5+2Zqw9on3uvdkO1+T2av7nK7mzRaqq+i2bm3vz/pjcHia7zdwm1j7ztUVi7WU/y70rXWdEbh7GYkNycxpvHp47z+WuZ3Lr7H/XOvf7XVX19L65fUQGTMuN963edsVY+4Y+uc+2K/bOjb98+Fm3WPvwPlfH2t2D3+FrDMjNAamq+nX/3Hnfd+ySm4My/a+Xx9rDb86ti7hv33di7Y33zb0bH7j/ybH2X1fP7Q114Vq5+SdVVS9/l9sb6vRuub2ar3zwd7H2m1/uH2sPfzB3psqNb02KtTc9LnfG+m2rbhprbzB0u1i7quqQnrmx5QdWyd07rXHxMrH2k28PiXSnz55TP7nkxh+05vzhzSZXpzbNnxd5bc+fNr35b4fnPppq0tRZsfan52X37n/4gNxn0ykv5M5Yf3iN3Ofi6C1z89yPb6wVa89c5LNY++c35OYkjr81997rm8dy+zpVVX28VW4MY+A2ubnmO7XLve+7dpvc3/kqN9wQa/df6qNYu3PrU2Ptv16Re7454Ce5fUSqqu7rOinW3n1M7tyjqy7JnS+21sa5MfF3n3s71j50x8ti7eNevi3WPn39N2Lt3/7pllj71Ta5uStVVX9qye2nfmuX3DyOA9/N3betvmju82XE0Nx7rzOWGxxrt3R4MNZ+dtq/Yu2D78yNf1RVrbvsubH2j1oHf9a3z+1b8/ac3Hr3sf94K9aefWFuL/WDnsjtmTPuntxz4aLtc/dOVVXXnZEba1z+jNx+PdtOXS/WPv2F3HrUnf7waKy9QY9xsfaty+XmUTTWy50LMvKp3L1yVdUma+buG9998I5Y+5F2uX09j/nRnbH2FnsNjrUvPOPEWHvoJh/G2hse1CPW3u2D7FkwEw/rFmtPujm3Xu3tU3JrkJ/YYmCsPX313B6yW+w6MtYeMzs3DrFx75Vj7Z2H5M6crqp6cEpu7s9JLRvG2uf/OHee3Dd9gvOtD8iNa5+wVu5d5cr/zJ2rst27/WPtozstE2tXVXUbkZtUOWlibvyl7aDesfZ3i+f2Bj/3iSNi7T//fmis3WGz3L41e7b7INYe94uLY+3HVso+mx15Um7/3BU67xprt/rgk1h7sbXejbXPW/fPsfbPNj491m7799xeQed+nntXeV+b4bF2VdXynTrE2t1G5OZzvvn7O2LtgT8/JNYes9pRsfbfvtg51j73ti9j7YfGXBFrn7Jdbu+WqqorJ+fm1137TO7PPvPZ3PqA3j1yZ9INH/vLWPveA3PfJytstUWsvfjruXMHHn32oVi7qmrI6rn19pNeGRFrL3NTS6x96ReZ9/Jzp02tu9YY9N+uOc/ttgoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNM10hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA87T+T/7jR594rhqNxv/WtfxfjV/++6Y3/63vMh1i7dc//TjW7tdpyVi7qqpDuzmx9pBBQ2LtmvVRLN1+6aVj7b5D+8TaC9r8Rx+D/6PGTJoVay+9RO53fLOVBsbaVVUtY+fF2t3btYm1p/TK/bnfmDgh1p62cGqsPWCZwbH2+KmzY+2WDl1j7fFffxNrV1W988HjsfbK/deKtRftkfs3n9c5dw8x/dt3Yu25U3L3EPNm5O7TW9q3jbUnTJgRazdm577LqqpmVe7Pvmrr3D3rzRv+LdZetnevWLulbUusvWBurj33m69j7fEfjo+1F+uVez6pqpr6xVe59oLcZ1vrRu5nfVYtFmvPafNBrN06d/tSC6pjrN2jTZdYu3Xb9rF2VVWHlp6xdtvWuT97pzYrxtrVOvfZNq9mxtqtG8Hn4Xm5D7dOyywSa7dt5L7LqqrmL5gea7dU7t5twcRpufaE3DjnjPm5P/eEKbl75Y4dcvcv0+YtjLV7dlk81q6qmj879w6nVavcu9JGS+79UeuFuc+X+R17xNqLTm3+fJ9/G7zGarH2a68+H2uvtsKasXZV1Refj4m1B/XK/ax3WjM3J+Ghh16MtRfMyT0X9uufe2c3e+K3sfbii+f+3BNnfRdrV1VNmZkbV196yCqxdrvuue/Sfh1zv+NdWuXGX55/7vVYu0e73Bhrp66dYu0elftcnb0w91xYVdUx+OrskL12jLUfeeqVWHudlXLzX5bc4MexdpurRsfar7w1NtbuOKdVrN1oPz/Wrqrq0zU3D2T+rNw7nPkdgmNelft8+Xb6xFh7Vkv3WPvBa/8Ra++9bO79UZ8h/WPtqqovvszdwMxdmPs+O+g3e8Taa66eG++b+EVubeV3jdx7s7ab94u1W0a/G2vP+OzzWLuqas7C3FjAjOC85YWtc/NA5s/NjLfNb/XD79ke6PR1Ndo0/zvplkm5z6aOQ2+ItS/YNfdzesZzN8baVVV/WfzYWHv63Nz4bIc5U2LtuVscHGt/c/ZLsfaAG76MtT/4bkCsPWa73LvlG8+9NdauqjpuTO9Y+7Wf5O7zH56Xm8cxo82RsfZ1j10Ra7fbPTefYMCcTWLtNQflxiifWyk4v76q/nHSUbH2vsNz69X2+3hurH1159ycxDd2zX22ffPc2Fh78Zm577K12ufmzozaLrcf2Gkr3BdrV1UdNiM3ZvbIvcNi7W2HHxBrX9/19Vj7pv6nxNrLjj4u1r5txGex9pBD74y1ew7Ivvf6quvpsfZDj+fW0Rzys9x8hvGr5/YbfLvXZbH2sWflvsvWeG1wrH3eY7n36kssmdtjoKrqksVze/b0/ST3PH7SnNw6mqcX5D5fbrozNw+1V7/cXKlRM3JzODodOTnWvvVXf4+1q6o2n/u7WHvl03Jjbscdv3ys3b9fbm7eC3dvG2s/+el2sfYmaw+PtVfskBsDafT6aaxdVTX/i9y+5JsMy903jp+5Q6z9+ORHYu35Y16Ltfu/u3as/f3bu8baK5yX2zN46JmDY+2qqunH3RZrL7V/bp+kHy3I/awP/VfuvdnvJ+eej+5eN/dc+PdnPoy1e/wht4fJcg+3i7Wrqh5fcplYe/r2uTmVg7rl7ttmHbVcrP3SlCNi7bdOPCvWHnRvt1i73XJjY+3nn8ztg7Zo5+B5UVV11czc/N09++V+1o/bLvc8/tZJubkYS52b27+229XvxdpfX5n7Hv22dW4OyIfT3oq1q6oW/TD37ursE3Lvpz9aOve52rFNbp7ZbcNy693XfD73bNbSOrf2eVSrp2Ltbuflzjitqupxa25P9Ac75+bJL3lS7julx3q7xdqDd7wm1h51YG7ucK/L1ou119/30lj7rDU2jrWrqt57cdVYe+2u+8facxd/MtYe1GHZSHfWvAV117gf9v/4vHNLVeCc85Fr586zm3dK7nuw9wO5ud5dt9k81q6q2nBUbg1P65G5+935i+f2iHxo6/Ni7Z9+mNvf+pvLX4i1x9yaGy9b8+TcvrtVVa9/lFvTsWXvu2Lt3++Vewfz23ty79XvvHnRWPvuBX1j7SeHrR9rX7ZTbv7r0LvujrWrqk4+8w+x9qvr5N7r/2Gn38baz9yR29th4SqDYu0thj0Qa2/2Se5c+/V/OTzWrqra88bc79nGb+b2sb/igH1j7ZcuzoxhVFWN/jq3Z86Ynrn7lwO//musvcSjuXunI3rsFGtXVS269kGxdv+Lc/tinbraMrH2dhdtFWvPH3xzrP3+7rn1Yks/kPs5f2D93NqCZ0Zk1z8/MSa3v8JuR70da59779ax9ur7B89dWix3xtdN1/wo1v7pX86PtQcckpubV1XV5q3cWtzPrn491l7l2n1i7QnX5M4iHrrPhrF2y+m5/QZXHJHbT2OlU3Nzntd9MbdvTVXVg2/n9rdcvN+1sfYzV4yMtd9YMff58uObc2sLtnwqd67bY3/ZINa+/erLY+2qqltOy80N/PGFuT1cDrtukVj71Z/n5mKMPub6WHtQl9xeRVOeWxBrTwvukd1mudzzcFXVL9/N7e0545ZtYu0XfvZmrL1tx9x72i8/zM07GnHixbH2tUNz/979Grl9saqq3tti+1j7scVyc80OeHFgrL32s8/E2ktcuGWs/fUvDo21jxqVO8vvqdVyYz99e5wba1dVfXnY4Fh79xVyexVte/kKsXaXB7vF2pvOuCjWXn7f3D6P/Y7J/Y5f8H7u/OeqqoGrHhNrD3nvN7H25Pm5dzjrDf1jrP3Spbmzm6blHgtrxOTc2usjP8/NQflJn9Ni7aqq3p/kvkt7Tloy1j5oz9w8/VZXtI61L38kt8fCBqMfjLVvWveEWPuiz3Lrrqqqpi+Z2+vx72++HGsf/JPcF9qV25za9OaMuQvriXt+2P/jtBG7VKu2zV+P+/HRufecpz2RG7f55/W5vREevfnpWLuqatdzc2dPH9Emt9b/731za0lmdvqBHxA/wAvn5P7coz89PNaeNuC5WLvjR7n5r3+8Ivfnrqp6uXdu7fWYYbnz5W+/es9Ye+ztuXnHW+6WWx/48pF/ibUb43LvWI+4MLfm/IiLc3stV1Ud+9yfYu3DNs3NGeowMbeP2bXbnRxrbzo2d8/46W25M+WqVe59/qt/GhVrd90/9+89c1TubLOqqkt/v1Ss/dJ3P4+1b1sst1btD3Nya0KX+XNuL49/rvpJrL3inbnnwi1ezY1//ObTabF2VdW3NzZ/fPTfbr48t7/lBTvk9tA/8NJjY+0Fd+TuX/bc48RYe+ffj4i1jzwht25pxRdz49pVVT0Xza0lOXVubv7I9JE3xdqzum8aa39xcm7vln1eyM3ROmxo7h7isrNycwIHzsv9jlVVdV0ht0fTOuNzZzBvP/+lWPvls3L7afSfekOsPWyP3Pmorw3IzR1ZtUduP9F9t86t/62qeuW4CbF2331y74+eXXZ4rL3zHbl5oLv/I/fZtvK1/4y177khd//ycaNXrL3XCrl9yKqqPnl6cKw94Jzc/rl7HJwbh5h3aO6edcNnfxFrnzL7lVj7jG3GxtpHv/MDDwD6AcbunFvrXlV1Ydvc3lSHzM3NQbnp/txn25AlLoi1t/9l7gzBhd1yZ7MedM39sfZ9fXJrpl4fmFvTMOudNWLtqqqdTsrtFbR8+9wc2na/z53h01jskFj7iZoUa/9ifm5/yYkrXxhrjxq/S6x96ym53++qqm9vyJ0FuPMvcu+Puh74fqy97pe5Mwg/viK3H/tpe+bmI+zyXO7P/cpRI2Ptra/PnXFaVXXRzrk9+B/fuVOs3X+z3FjjOq8eHGu/e+eMWLvL861i7d6/yK1179HIjXmtOzU79+a5P+XGXy5/NLevw9hLcuMQHb4cGenOmPfD/x8nfPN6tW5p/r7D45/KrR9ac6XcnpynPpCbB/ryCVNj7aqqf017KNae/Gju563X67m9SMddc3ys3fvA3HkJv/tNbs/fz+7MnZFx4b9ye8j/Y4cdYu2qqsPvvzrWPn7En2Pty6aMjLUnHtox1v507adi7Y8m5/a3PmGlvWLtIYfm9u4ftPURsXZVVfdV+sXa+w3JnQfz9Vu5cypu/UduHuoJd+XGpTdpn9tjYI1zcuOE952Zm5u38f7fxNqv37FjrF1V1Xt+7mz5Z47Jfbb9o1tun8JlB+bmwF68c26O/aUdX421rzspt8fAnV1ya5+vGHxjrF1VdWT33FytX9+ROxO3+ybPx9pvXpJb13DiuL/F2uPe+H2sfWGbB2LtN9vmPttu6pr7Lquq2meP3H6qn65/Xax9/ia59Yl37Zpb931Av9z+b5tMyc2B/dOd38XaS2+a29Oi93a5M0mqqtbr1j3WXndYbpzznCG5+8Yr+/ePtXe+OzdPrPO7Z8fa/Sbmzhb77Pnce7MPpuT2CqqqOmL6kFh72z/m3ic8vknue/yFgbln0mWm5dbwjH4ut4/rHh3OiLX36nF7rD34/eyeFqcdlDvvadg2ufXPly41K9Y+aY/cvOPRa5wYa3eYm/tcnTw6t26qe8u/Yu0PN83NP6mqOmPn3HmV78zcKdb+1eIHxNq/OHulWHvQ0bl55oufu36svdHh68barzybW3P+y0G5+U6Xvp/bA7+q6oTlc+/mJzyf+3zZ8JHcmoo1NszNCdjytNz9y6wRo2LtYa/eEmt/vsLOsfZPL8zNFa+qmnT8O7H27SvmPlvvP+vSWPuIS5aOtecdlFt7PeOq3N6W6x98Zay9w625Pckf75Lbj6uq6pjeufWwD4/N/Z79+cLgXofLHhprf/Fpbv7Lq7VbrP30t0fG2rcsl1vXeeKeu8faVVVnnz091u4+/O1Y+40NusXai26VOVt2zuz/t3/rxv/ydQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P8jjfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8H/Yu89oq+p779s/1qYKUgXBgr0goqBg7xprYtdo7Mbeu0nsJcausccSjTEajdijsfeOiooVRcVeQTps2Nxv7oxxvzljnDyes77Pi+t6zfAzkb3XmnP+GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPO0/0/+8HIrLFUdOnT437qW/1rbnOY3/69vJrfE2kt06xNrLzV4eKxdVdW7c6793IsvxtpDey0ca3fo8m2s/clnM2LtvosvGWsPHLhxrN2+x/hYe8iIjWLtqqqeHQPfY//XB2O/iLXvG3V3rD3hqdzveFvLzFj7x2nTYu0FFlgi1h77wbOx9jKLZe9f+g7YMdZu17JorP3kw5fF2jW5EUtPmzMr1l5w4MBYe+qEz2PtdjO6xNodW6fH2nNqbqxdVfXEmtfE2i8uenOs3bnLf/S65H9UWyN3/9KWu1Wu6R/8EGvPnvVdrD1P5wmx9oSvJsXaVVXtqjXWntGSe9/X0hZLV3WaGkt3mL5IrN1jntz3+Nx2wfuXmj/WbuuY+2yrqurcIfdyua0xO9eelXs+6tK7W6zdfmbuvq3m7ZRrz+gVS8/TtWus3Tord69cVdWpa+9Ye/IXn8banToFv8/mzf2Of/9Vbnx6nnn7xtrzdZ831p7Tfp5Yu6Vd8Pukqtpaf4y1eyyR+3mbMjn389auU+47pd203D3jawc/HGtP3ig3btZ/2e6x9vIDcvcPVVWtHXKfrRN/6Blrj3oqN+9nxSVyz+MvfzI61n7/m9zv2ZojBsXa459+I9ZecOHcz1pV1TKDl8nFX3k7lu7fsWes/WPb17H2cy+9E2t3b+kXa0+eOi7W/npi7n518SUXi7UnfZsdu2pry3229mqf+1xdoF9uLukbX38Vay/+zuRY+/tPpsTaXdpy46Q95sndM85slxtDqapq15Z7rz6z6wexdqfpuc/VOS09Yu2WbrnJN9Nn5+ZhTJjWLta+/uTrY+3dLzgq1q6qWnyZAbF2/7nLxdrfzM7NqXzzrdznavvOuc+2zh1j6WpMyd2/LHnoprH2SyfeH2tXVX01dUys3b1DbuyqU0vu/cuC3ReKdKfNaa36iY9mba2fVc1t/u/qJv1yY0/rPbZurL3S87k159uuflysXVU1t2durta3N+4Va8+6JLemonVE7t9825V2ibW/G5Zbh9vurp1i7XO2XifX3mXtWLuq6md/eS3Wfvm93LNVz4nXxtpjZuX2duix2Eex9mI/2yHW3rBzbj7kP37Mrec4uff7sXZV1TqrbRVrz+iaW+++1EOfxdpTl8vNzTtkRm4fkT9uuWesPV/P3O9Zl5n3xNo7r5L7Lvu+f26Mtarq4Ndya3H/dufZsfbv17g31l55mTVi7R265PaH2rBTbv5tz8tzv2fPnJx7Rphw8/exdlXVsEG5/jPTV4i1X30y9+7n5HVyawsGPpibJ3ZSa25M/4InR8fajTVPj7VfWiE3b6aqqt+nuWezsd/l1l5PG3harP3KiOdi7ZZpue/x19fNrcOdefUCsfYS7+XaV869ONauqpq4+Mqx9sUL/i3W/vYfq8baS2/wZaz9/pxhsfbeM3Pf46OC718eO/cXsfYPO+X2daiqWnzl+WLtG2/LvQvoduRvY+0Vl8rtYTtkcG4eyKRXc/vQvzxyy1j7oV7bxNr735r7PqmqOn3xm2Ltzx/6ONYev/lbsfZO8+fOHhj+zkOx9qkzBsfajY1za/TGHJ1bU9G24qhYu6rqZ2/kvksXeiv3XfrgMS/F2n0uyM2n7DPjj7F2h2U+ibUnbX5GrD190EWx9nJP3h5rjx4R3CC7qq69c/1Ye7vjcme6/PyU82LtMTNy+yssddfvY+3b3smNm622+tBYu8+duc/01iVfjrWrqi4bdGCs/cXf/hxrL3L3SbF2t9Vya5B7jTw51p6+Wm4dbtdvcu93H9v2mFh73Ytz46RVVQtsmlsIfMD1PWPtq94P7tX8/IOx9jOvLhVr//hsbg3wG796Jdb+8qvcv/cDfbLvlh8+a8FYe5cP74q1r1swN242PHTuQfvW1vqpi84HLblatbRv/ndSY7dvmt78t+1Oz815Pu7hvWPtt456PNauqrr1sT1i7WXPyK1dGrP/67H2ZVfk5pAssc0+sfZybbn51vP/PLfOf+onuXUsVVV9tsvtjXnBGj+PtV8emNsrcc6nubl5ly6de57t1T+3x8Gya/8u1l5pVm4O6tnDb4u1q6oWXCG3fmj3Drnz5ff4dvlYu/fGQ2LtGw/M7fu70Y2Pxdo/Xpg75/zQO/8Va1dVnXJe7szM49utF2s/flPuXNotVvlDrP3COrk9IifOm5ubd1Sno2PtzuPejLXX23P/WLuqavsfcz/r173/j1j7tp1y8zj2GZcb8ztz+f6x9jIdDo2166Fc+81jcs9m83fKnovSb5dnYu13brkj1h504hax9uj9cnN/nx6Wm2994de5z/TLTrs41v702dxataqqgYM6x9pTj8jtcXDi+bn3ELvtlTurc5u2E2Ptq7bLzTsettJfYu2Dv90u1n7mjM1i7aqqv+7zQ6y9wsG58yKmHpEbKx3/9Kux9tq9cuvV/nx0bmz8oDXvirW/7L1wrF1Vte5N/4y1H3n21lh7/l/kzra/99bc+qGpvdeLtefpnFuXefzk3H49J5z8fKy9e+/sPcQjfXLnH520aG6s9MYBv4m1B5z6VKzdee22WLulS+6d+nG/yn2Pjtrsuli7qmq3i3Jzf/relzvjo7V37rl0gXveiLVXX/CqWLvv8Nycyod/m9vncft5x8ba01fPPYtXVR3+am4+5x9vXi3W3nHN3Nj8Z+Ny70BWmJbbm2rzo3N7mj6ze26t3Mi+Z8baVVV7r5l777XWyNzewYM65fbB33xabp5+txdze4JNOvuwWLvzTo/E2mP3y92/vHVWbl/yqqrOm06MtafvdmSsvfCNV8Ta02fmvscHHZk7Q2jKPrnz0fZePzdX/eNPc2PEVVVPrJw7p+y5K46PtRdtd0Gsvd3FzX+3PXfylKr7ftpz2XvPnlbdW5o/BvSz3+XmBc53U24uw6yJuXXX7xz1ZKxdVfXWkNx+Yut3yu3LOXqPX8Xapz18Waz92eu5c86XXCS3r8SLxzwdax+xR26/wLY7cnNvq6rGfPZCrL3KyR/G2isf93GsvclWi8faQx49NtZe8MknYu35Z+XeXzS6nx9rb332JrF2VdWqB+Y+1yc0Po+1d9oiN/bzxUG5uVIX3nhKrD3t7XVi7evmnx5rP/BSr1j7kKWnxdojho+MtauqRk7YIdaeeH5u3Onyzrl1ci+sn9vbocec3PjuhOm5tbB3vZSbG7f9de/E2jPuz+3rXVVVB+TeuU354KhYu3XWAbH29ZfnzpQ7scNysfY9X+XORVnvidy5ASd993WsvfdOud/vqqo7Hrk61j5/rbti7RUXz91D3LjzDbH2lvflzl/e6+jcfsnj/pjby/3ju3J7uX+za24/rqqq4w/JPSfsukzurM5Xt8vNcd/0tnGx9udnbBVrr9on92y21Ce5NXpDP1gs1t58z56xdlXVdxP2jLV3CZ5huOUjE2Pt/l0PibUP+uzGWPuLU3P7M933Ze4c4nceyK2RW+3PufuHqqq3gvNAPz56pVh7kY1GxNrdb8qt0dvhqktj7VVG5u7bdlv7oFi76y9za4cePXzrWLuqaspT18Tap/2Y+z07ZpMfY+2zDxwaaw/ondv3bpfVc+9+tv1b7uzEnlfk9oZa6sPcZ9vIZbPrKbZ8Jjd3eMC1ubNNHnppvlj7w+dy6yI3HLVkrD3+491j7c1m5Mbsbrg3N0/95VVza5aqql7rtkqs3fHtzHmZVVV7zMqNJ4y4Jbf2+YMDcmsTThryaKzd8d5rY+1lLlgv1r7+N62xdlXV7v/M3bMeMjC3r+eOl5wba+/TIzeW8VXucbg6LpR737b/uO1j7dHv5M4Ie+bh3Fr3qqoeN+Z+4E4Mztne5LLcflzf353ZP2XS9KlVz/20sfETWv9aXduaf1bpjH/l9lm+5puzYu2eS+fOJdnhmp1i7aqqJXvn/s2v7Jwb4530zbex9tWb5r4Pvrv2nFi77cvc+ufndroy1m7ZOfcd/NwlPWPtqqprtxoda/deZ1isvf3yuX1MvpyR+3l7aVTufNRRnYbG2lvetG6s/cyzuXd1PSbl3olXVV106dax9uBvcvM4Xnto81h73Qdzz9Pnnph7Z3XScXvH2u9+mGsvPSy3f/3QSX+Ptfc/8r1Yu6rqhBm5uVpTLsudifLRsU/E2vf/NTe2vfyPubOHPr00NwZz7Zw1Y+27D8k9k/Y6MLc/U1XVqj1z735aNtwg1r7o3B1j7cePyT2T9jltTKx99TePx9qL7ZHbK2jF83Lz07qtmjsroapq3/N2y8Uvze0Htu3zx8XaT+16cay9+r65M68n9c7N09py4dz+9R3XviHW7jc6t+66qmrzbXP7mc/ZPndWww+N3D1E/yP2ibU//CF3RujXN+X2Df7DKbk5YkcdPiHWfv2L3PmkVVV/75t7t33za7n2Wn/IzYect8vFsfb+LevF2pcekFv3feHs0bH2a4t8HGuveMmpsXZV1Xc3PBBrd1g1995r7yG59WoLTF0q1v5xXO55+A9bHhNr3/5Rbu+5VfqNjrXH3Z7bC76q6oqpufNsrrk4tyf66avnxu16P790rL3J97mzvhc+MLe/wTV3537Pvjjo3lj76mNz51xs/k7u3OeqqituzK0DvunZ3LyfEVfm1uKuetXlsfYpC/0i1p5wYu4s3g1vyp1VOfB3q8fau/fL7YFfVXV368Wx9umH59ZG9j0wN7ev65gVY+1H78qNJVz84Q2x9nbz5s4g/rBrbt7PfWfcF2tXVX14Vu7sgRt+lzt38tj7BsTaUx7JzdHfb/vrYu2J++TWGN5409axduujuT1Fx+6e3ZNryM9yz0f/eio3Pn3ejG1j7QtWy5xlM2na5PrvrKRt/K9fCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/7/RSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdP+P/nD+6y7Sc3Tpcv/1rX8lz744aOmN//t6RfHx9qTurfE2lO/nxBrV1X17d851l5kQIdYe/TXo2Pt/rMXirUHLDR/rD1rbrdYe9GBs2LtuX02jbW7dcv9vauqqi3XHzRiUKy99tarxtrf/hhL11N33RhrX/Dn62Pt6VMmxtozpnSMtWcu2Pz71P/X0iP6x9q3XJ77eZv6/Tex9vA1Nou1333jpVh72ldfxdpTa0qs3Trl81j7nW3ujbXnqzmxdlVV1/7z5OIdc89mE7/7IdZuH2zPmTIz1p7bMiPWnjT161i7yzy5Z9IJU2bH2lVV7brlfse7TM+9c5vc+h+9jv0f1bv797F2l67LxdpzKnfv1LF13li7Q6fWWHt2S/bZrBq5fpeubbF2u4V6x9ptk3PPCR3m7RFrt7R1irVn98uNobTNyL1fnTOzEWtXVbXOyY2ddWzJ3b/MnJb7bJs9J/ec0KtX7nt85qzcs9mkGZNj7W49cp/ps9py/8+rqjoOyI2VTvwu97netXNuPGHWj7mf9alzc5+rC83J3b+8Pzs3lvDqgyNj7fmWzY1jVFV1aBsYa8+dMjbWXmTYUrH2+298GGu3Tch9prfv2zXWHv9u7j59xWUXibV7zJ/7TK+qeuet3Fhpn8659179+0yPtVs/zs1HeOXdN2PtoSsvEGv/8M2kWLtv+9zP+aR2uXvlL2bk/t5VVY9ceXasffTB+8TaHwTvX4Yut2Cs3dIutzbhy+9y7XnbpsXaHXvOF2u3TG0Xa1dVdZon92576vTcPWtbh9z8lw6N7rF2p9Zcu3uH3Pu2Ti25cflJ7XKfbfedclGsXVV1yK2Xx9rtO+Tu3do6TI21Byy9ZKw9aWru//k8nXLvfiZPzi1G6dCWG6Nd6aTcmq+qqtuO/iDW7jUt97O+0pK5d8vdKjNWOmX2Tx8nPejQQdW5a/PvQ9Y+LXf/cfv6z8bajw/NPd90Xij3jrKqatXg+PKrjxwWa09ZpFes3eO1obH2nC6fxNqrzt421l5/h9z64yuemRtrf7xQ7j67quq4tXP3Pttu2DPWXmHiQbH2aVOHxNo39M+to3mmzoq1z3w7N3/lkS9z4xB/vn2PWLuq6vDDN461T93z5lj74n/9K9b+Zst9Y+35PxwXaw//x19i7dW3zI0vt6yXW0Nzwga3x9qdHrsy1q6qWnnh3L41K83JvSvsu/zwWHvWq7l1DeNnjYm1n+r7eqy9Zbvcs/jnN+faw1ddPNauqpp5219j7a1G5vYZeGyt3D4Dlyz1aqx9+wO5Md5Fd9w/1u55ZG4c4ubOT8fa3T/ZIdauqnp2q9z4cqeP3ou13/7x4lh77Nzcc+Fx9wyLtT/+y/ux9tC9cmMoravm3msPmbxdrF1V9cSRX8Tax8+X27+l0wK5PeA63flMrF1r554LX+x5Wqw9eIfc/cukj3LPCP989b5Yu6rqmYH3xNqvdxgda/d5vW+sveLvcnty/WaRR2PtfvMNjbW7XrlFrP3DBg/F2lN/kXs+qaqaNfeUWHvq8MNj7bYnl4i1tx6VO9vkzklPxtp3LJt73/b6uDVj7cW3zc23Xv/N3NkiVVU/PPWHWPu0wVvG2jOeyu0d8/m6ufvlW69cN9aeMHjhWHvqx6vF2ke3vptrP5mbt7zHBrlno6qqrRd5LdZ++fKjY+1zWnPzzO5/5ohYe9Hj1ou1N1spN2727eRrY+0F2ufmkR7RtnusXVX1zuZvxNqPbpF737fEiNx+PfO8PCLWnr5w7ru0e7/cPeOdv8h9j39+Y26d/wudfxlrV1VdGjy/6Jx3boi133wz9255sZ6577OvZuW+Tw77TW7f4Dvuy+1b88IWV8faqz6TXdc59sPcfs2nXnFrrH3u2Nw+i1stmjmjrG3G7KqfOFR6y5zla952zT874YqtcvskbnvoP2LtLTfMfT784tgBsXZVVe+lc/N2hp+7Uqz9y9/m5vc/PiL3TDn95NwY78sXrRxrn39Rboz1qHG5/TSqqn6/x+9i7QHLXBdrn3vcbrH2u9v/Odb+54W5ecf9xufeI5x/cm4t7BN/yr2X3v/YC2PtqqpDb/801n51qdzzzV0P/DrWPuuXP4+1Bx3+Waw9eMXcOVvv3rl+rP3owNx7o6qqvjNy+0NNa3kr1h6xQe4dxpH37BdrjzzmgVj7wxtz+9bsPeLYWLt+m5ub9/rTuTkcVVW/nJ5bR7PTmSfG2v/ol/sdv26l3HfpE3s+H2sv0H2VWHvTeZ+KtZ95JLeH/WML5/bdq6oaNGHXWPvbnXPnXZ203d9i7VVeyd0vHzsutxb3saV2ibVvOu2aWHvzR7Nz7KeOy/X7n5EbQ9pyWm7fv9s2ze1N9dXY62Pt477IvXPbY9fcGTyr35s7X2zXS7J7wH37s1z72H65sfk3HsjdN849IPd9tt55g2Pt0z/OrZva7dPc3g4LLXJnrF1VtfS03Bj1hB1XjLV3vyp3Jsz2a+T2on9ucPtY+4FLc3MxXu+fO19+/ed/EWvfNCh79vRzx+XeuQ1//bhYe8t1c2cRH3pjbi+0yx7NrXlfcG7uLL+Wy3P7JX/8r9y+wVVVm720fKz90YO5tXr/WCB377TvjNze5AsvuE6sfcqdud+zCx7bK9Z+aN+dY+377z4z1q6q2nJGbm+sN7bJrVF84qmlY+3De34ca8/dIDd3+YEnjoq11+h3Rqy9UdsKsXZV1eCbcmcAHDEz96Lzz2+fHGvX4O1j6YvnPh5r7/l+89ea/dvuP98z1j69XW4N0MnBfdiqqr7qsHesvfY9i8XaX1yee7/8+6u+jLVvOSH3nLDFGbk5+vd/cnmsveqGufNdq6p6LJ4bH3+/fa79y9NyZ6RdO+bipjenzJ5Vq//E/8a3v7ivpnfq8j9yPf+JNYfk7vd6bZ7bF3O1Rm5/yE/3za1Vq6oafcZ5sfbkRV+ItZc8KveO8thuufvN1uMfibUHDsvt0ThsdO4ZfsCdubPNTv4uN75bVdV349zeUn8dmzvP7u0NX461D/psVKy99oMHx9qnrZdb19B6UG6s74u+p8fag2asF2tXVV3VM7fu+86vcmc3jr81t4fb4Hon1v7tW7n9KXd/ILefxvIb5L7HR161TKy9eY/c/kwnH5ObO1JVNfeO3DqWVe76qW8x/r+bb/UJsfa903NjjV3H5c7c7nxkbj/1A589J9Y+/+bc/cMHj2T3Clr0iQ1j7fn6t8bac3b+Tazd9mhuv+Pjh+fmuF8/OzfX+5/P5P6f//qY3F4e2/81e47fmdvk7p/OXS23h8nGDx0Ra7++6JGx9jWf5Z6P7n4ut2fxsNdy51Q8dXhuTL3T67l3nFVVQ6Z+G2uve31u3KzrUbnv8UfWys1H3Gze3Bnre12Z27d3lef+GWsf2iW37vq6z3L79lZVbfrSkrH2tn/Nfa7/4sOtY+0vfpNbd/3ewNyexXvtm9v7/6Yjc/fKI0flxq5uvfLhWLuq6sJ/5Oa4XxOc8tyxd24M5/otcnOtv2nNjaPcd/FVsfaxV+W+y9Za5v5Ye3zf3Hvtqqqjls3N9frk77n1YlNH5/ZBu3qNp2PtF+/oE2t/vfVpsfblF+Xmt699cu58jw1Xz60j+WpObi+NqqqWw3LzIY4776NY+7S+uf00Puqf2yf6kl8/GWtfsUxuHsaZlx8Ra59/SK597qKLxtpVVa+8nnseP+iy72PtHtvn1j4PPfPSWHv4nrn3u6Nuyo2TDlk+t6fn7ZNy/94bfJRdF9FxSO4cwuUvzO3/tuMBJ8Xa1/bcPNbe76XcvdO/Nvsu1n5yqa1i7Qv2WCvW3uTE3J6eVVV/n3purH3x+rnno791yZ3hc8ISO0W6M1t/+v7U3X55SnXr3Pz5O+O/OajpzX+79rL1Yu0Lx+ae4989aJFYu6pq3wG5d8OHrXdIrN1xxl2x9tv9c2cPvTl/7gyeo5afGWtP/iK31/GQV3LPNwv84cVYu6qq3VK5M+U+v/DiWHuvm3LzMV94Ozcv8Ik+ufOX20/J7cF6+djc//PVns8913V8ILdXUFXVjQvfF2v/sE/uLJrW8y+LtZ9fJbfv7j+n5SZLbXboDrH26O1y+4H97rTc+RjXvD401j50tdyZblVV+z2em5M49ag/xdoTD8yde3ThV7l5gft8NzDWnvGH3HPhVk/kPtuWvju4J+YNuXGnqqobv8+dC7vMnQ/E2oN2yZ0Z+daw3LuAX9+RGwfptVVun6JON9wSa99wW99Yu+ebufmvVVUnjsytA/7+kj/G2reOzv2bN17OfZ+98ekFsfbIk4bG2n2/zq19fvHC3Luf6eNy7aqqj+7PrcUdNSj3s3728WfF2pecnhvDGXjgerH2ll/k9tOY59zcnuhfrJ1717fjeyfE2lVVG7yQe++1dUtuP7DPXsitlZvnvdVi7Ql9J8faS1xzfqw94E+5dVMfn7h2rP3OmAGxdlXV9RNzZwg27s89E0/5c/PPU/m3Ub/LjR+9c8DQWHuvO3PvX75dL/d89Ol5ufdtXx64aKxdVdXyQe45oedTjVj7opHtYu2T78vNt5q0eW6O/fTBl8Tad5+X+1kb8Hbuefj9tXKf6cP36BFrV1Xt05abO7zIxtfF2je3jo61x+76l1j7Tx93jLWvqxGx9n6b7hZrP7547u994Y+5tUNVVZePzO3X/PDs3Hv14XtMibUfHHVErP3h5nNi7WO/OSzWnnjLg7H2j1vMjrWffyN3DmBV1a335Oa4fTvxmFj7wnuWjbWP3vepWHvC4Nx+yXMezp3tvlD33DzSwxZaJ9ZecsTNsXZV1Tnv5r7HBx+ZezZb8tUbYu35l8h8j8+d0uG/9edyb0kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGi6RvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ72/8kfbvRaoBrzzPO/dS3/pekTvmt689+mdvk+1p6vW/9Y++NP3421q6omtM0ba3869u1Yu1P37rH27AVy7Ukfjo+1e89txNpdu+d+zjt1+jrW7tAp9/euqurZs3es/ePUubF2x0avWHuRXrNj7XU22izWXmzRPrH2/kefHmtX+66x9Dc/DIi1q6rGXPNELt76Qyw9bPXc79n337wXa7efk7uHmNOYGmvfPuzMWHvtRZaLtefp1S7Wbm3fIdauqprxTe6ZeM6ESbF2zZkeS7fNbf57l3+b0Jp7Npvb9h+9ovofNWVm7j69raVTrD2zfbdYu6qqY8uPsXbnrp1j7d4tXWLtru1z7c6dZ8Tas2fkftbbdc19j7fvkPt8ad8ud+9UVdWo3HuIlnn6xdpzp+Z+z1q65947deyae9fXrtpi7UYj1549YWasPXd2rl1V1TpxYqw9tyX3fTZp9jexdvfg91lLp9wzSpfOuXesHTv3jbXnzM09m81t7RFrV1XNmpB7PmprnRZrz+qYewfSLjiW0X52bpx2Upfc90n7mbl2l7bWWHv0azfH2lVVQ1ddO9buMSv3nfL126/H2isMXjLWbtc+97O+6Py5f+8Zs6bE2rc9/Gisvf4WI2LtqqpF5s/9rA8ZskCsPfar3O/Z0svkfs9eHZ97LlxumRVj7VETH4i1h6+wXaz94KhnYu0V++Tu06uq1tj7lFh7+qzc333WfIvE2mM+nRxr/3LxtWLtsa25OfrtOnSMtVt/zM3D6DJv9vNl5szcz3qvTi2x9pwO88fasxu5/+ezOufGiNtm5eaR9p6bW/vUfW5u7nBra26Mtqrq1esejrVXPOhnsfaMb3PfKbODwwm9e+fmI0yYlhvDmTnxk1i7LbgGp/pn5w5vf9p+sfa0a56Nteedk5tX2K595r6t0e6nf5etMXjX6hq45z5r75Ob3vy3916YL9ae2/ZhrP3yK7l1LFVVY+fLvZ+dsOsrsfYX5+8fax+7Xu7ZarHjFo+1F9roylj7lF7XxtpLLb1vrL3yG7nn2aqqXgt9FGu3DBgXa38769NY++QXJsTat2x/fqz9Vp/cffZjq98Xa9/b/flYe/wPh8XaVVVDjv57rD34otzv2bLB+VL9zss9T7+0XO7eaaHGFrH2vt8cH2vvcljuGWGXJwfG2vfPu2asXVU131JDYu3vxueezcYNfzrWHvxEbo+mO78YFmsvN/T9WHuHJ3eOtbfbLjefoGfwZ62qquMWi8Xaf5+eG+vcd+pbsfa1ldsr6NOfbRJrtwx6PNZ+aPRTsfZLW+TWoy541ZGxdlXVzE93jLUvf3nbWPvKxXNj+tM+PS7Wfnjb3NqCGSNz36X9F87tFbT38RfG2g92uibWrqq6fJ3cPI5VrsutFxuz4u2x9ogZq8TanT/OjZV2/2iFWPv+iYNi7a1/lmtPHfBGrF1V1em53NjZyufnxq7aXZdbP/TZ2l/F2qtOXD/WHrbyrFh76tm5NecrrjM61j7p5S9i7aqq7kv8Mdae80nu+ahlwKhYe4ODN4+1dzr3g1j7+clLxNpv9Z8Ta684NffuZ+CgpWPtqqpXNn8o1t7h8X/G2vO/kTs7qeOGm8ban+x2W6y9zqIHx9ovnX52rH3mL3Nj47ttfGqsPfOt3FyIqqqz9z8h1r53dm7983VP7hJr/2rBR2LtlT/eNdZ+dvKvYu375lkj1l793dyz+OyLc+8/qqruuST37ueYJQbH2rcs9GSsPX3+1WLtRR/P7Zc8tutFsfYmP+TONem8zlKx9hp35/bVrKo6tlPu/mWzg1+OtZdcO3ffOHd8bi3sccuvF2vffmZuH5FDpuf2zv0s95qxPns5tw9aVdWgCbl3T12+zs0za8zMzUH59OXMfO1JrdNq/nruJ/03Pml5vbq2NH9dx5B3c58PVx5xTqy98aA9Yu1bZub2AamqGjAst1fiSfscFWtf9fUGsfbV6+fW4Z7bLffz1vj9urH2H9vn1mydvG5ubLmqasZuv461p/51mVj7scG5NWNXr5Lby33E4dvH2v33HBtr731lbt+aOTfkzn7e9fzs58t3/XLng7TbJreX+18Pzs3jGNj+pFj70EG5880W3z73sz7p6tVj7e0H9Iy1q6qOej+3J+kdu+bmBt60+iWx9tU9Po61pyyU2zNnzNO/jbVvOTi3puLiI3PPKAeNPz3Wrqp6bPHceRFT98+tvf7l0rnPl26P5sb8LtzuL7H2yL65valuODo3Z+jSnrvH2jvPDQ4AVVW/D3LjbvvdnXu3vfU2uXnHc7/K7eU65tTc3lTjZubW2v9l5dwa5HZ35vaYrqp6cGLuu3S1nXL7JF325SGx9uP3/ynWHrhLbr/BJ8ZuE2uPb9sp1j7xV7m1JLf8ep1Yu6pq/Xtz+4q+eWpuDsm5ux0eax+3a+6Z+PZjc+/7bp+SGyNe7MrcM8omh+f+3lVVdy2Re8/Zd6XcPNiNzsg9J9QD7WLpV4M/69cMyp3V+Y/vc+9ADt0/t6fFjoe/GmtXVa3yt1/E2i1r5s7d7vTaS7H2Lovlxkq33jW33v6x/XL7el7zylax9qp/CX6XVdXU7XI/b50Xye1T3X107uzI1RfPzTua75rc8/gZi+bW8Jy9dO699sS1Tou1Vz0ld8ZHVdWFi+TmuS0/7bxY+/H5f4y123daKdZ+aptDY+15rn0n1j7x+NyY3Um9cvdtVVV775JbA/3B5bl3bhtelxtPmLRrbq3cd6M3irX7TB8ea595SG7u8PPr5PamWml8bh+TqqotWnPnfJzX7YlYu2uf3OfLnBm5OU+v/LZ9rD3ynUtj7SV2zp3jM/q67Hjl32/M/Zuf+96Zsfbv71k11j76mDOa3pw7Y27VT3wk7XDyHtWxe/f/mQv6D6z459zZZnculZs38+RmubX2v33421i7qurFoQ/H2sfe1CvWfvucrWPtS6fl5tdPvi83V+rwNxaKtbdfLLevRL+Pcs9Vl63VN9auqtp54AKx9h82ys15fvbgU2Pt8zf4MtZ++rDlY+3Ol+XeCy/8UG7N+cjjcvuIvHd9brytqmr/xXJ7Dq+61t6x9nsv59YInn9+7ryG5e/K7Z/yj5E35tpn5M7geejA3O/4oufk9lrepSWWrqqqp8fn1k0dPzx3jt8S8+fmDD35UW7N1iVnLRdrvz4o9x7ipQtz59l9cG1urdh+H+f29a6q6rJvbi/W6avlzkx47PQnYu2dur0da39+a26Px8+G5L5Ml5+d+0w/psdjsfbdhx8ba1dVrXHWi7H2jHvnxtpPdf5NrD10+xdi7af3zv29tx05NNbe67Q7Y+2bt8ztl7Pkk7lzA6qqnjszd7b9Pn/LzUmc+ELu7Omjn83t8firP+bmUNzQI7cWdaOtc+f4PTYu94zQ6/B9Yu2qqpM73R5rr/7B57F2u8mXxdpXVm5+Wpf9cueL3Xx7bg/8x3bMfaZf2j/3s7bT6Ny8/qqq2V1yZ/n1fiO3/9zbi90ca1++SW6PgTnn5OaZnbt5br354fflnsXPDx7psvXLk3Lxqlrrnuti7Xu73x1rd/wut4Zm1X65931HnJ/bz2KpzXPf4yt+njsntM+Y3LmwL/bNzdd+8bCLY+2qql+Nyu3X88KZufuXi27P7Xv37nH/irWf/VtuL41fjzoy1r5+8W6x9nyzro+1v7q1+etf/l/9t8md23Tq0rnnwkvefTfWHv3a/bH2H+fkzkb7+7PNP1/0374bdUesvfGjue/ww4dsFmtXVQ0/Z0ysfc02v4+1f7wztzfUt+Ny8wrvvDW3H/qE7rnPl0fXyq3xW26vibH2GUMOiLWrqva/JzdH/6CRufcQv37h5Vj7+Lczv+OTZk6rC+unjZWO2fnN6jJv1/+hK/rve/TY3BlfT22R27fulTtyezL8YfLVsXZV1ZtPXBFrb3D6LbH2Szfm9j95dLfcuu8Hu+aeZ696Lrc/45t/2j/WHrNGbn/GVa7Lvaurqqp/5fb8fXjn3J5WV/+2R6x9z6kTY+1Jfzom1j646w+x9gu37RVrT90pNwbSNureWLuq6ujH+8Xak2buGWsPeeCmWPvzRm7//Is3zM0zb1nhrlh7xxNy70g/7XFPrH36ISfG2oO3zb6Xvmbt3HjjgkcsGGsvefP7sfYRZ98aa098e99Yu2PuSLfqccdVsfbUY3Lj6ns1RsfaVVUt1+XOTvzoiNx5mWefkTsb5Jmr1oy1e+2fe9f428sWibWvfC53ptu7K+V+x8Yvkztvu6rq5wvl3i0fNS631+GEU3P7Q537Vu5skLc+yb1j3ez53Fr7w+fLvQN589bcHI7neueexauqhjy0bKw9/vHcWVcXzv0+1l5ykdz5GNdMyr2HuGfNmbH2sGPPirVPmZx7Fr/rjtx5uFVVkx+7ONZ+/M3cPtWbnJnbG3zwvufG2hu8ntufe4W/XhtrD9+zU6w9Zs/cffohq+fW4VZVdbk9t1fRaefn3m0PuCw3H3PYZbl90M67fWqs/bu/5M7RO3hY7vds2/2eirVPGJo9K/OZtXLnTrctmduP/YkXc/Pcp5+aW0dz4SG5+XXXvLBnrD3gjI9i7XN75s4Bvv2kj2Pt0btnn83+tW5u7vCe496MtTfqltu/Zfe/5faJPrYt9/N2wA8dY+3fj8jtp/HipC1j7eUr9z1aVTXsydw7tz6f5Obe/Kr3obH2vQvlzhf58N0/xNo/fp47e+D+DXNj41/ltn+rDcfk9qGvqtpixeafh/tvJ26c+x3f9elZsXanKa/F2nvf14i195+ZO4vvxXVzaxNWOij3XnvFn58Qa1dVvXFt7nP9vem5NWcPn53bH2qFAzJn0k2ZPaNW/m/8udwnEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATddIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAA/4e9+wy3q6z/PPzLTs5JJQUSmkISepfeCU2QIp3QBQTpIF16R5pUAVHgDwhKUZAeWoBIEaSGJi0kQAghkIT0fnLmzfDyf804OvvrzHXfr7n4PPvknLXXWs+zngUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqdTegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAf7a7l1imWls7N73b8cKNmt78zlEfvBdr37zKlrH2iJvGxtpVVSvvMyjW3uO5U2LtlVZ9I9bebK2FYu3+t+d+19tn/znWvvr0r2PtJd7bM9auqup69fuxduvNV8Ta+z1/c6y9/KQHY+1nNlw/1j7gratj7cPHbBFrr7Dw/Fj7w+mvxdpVVUMnPRlrvzF6Sqy9Svc1Y+3vfblhrL3NmHNi7We/OjzWPv6sl2Pta8e9GWtXVfW7fLdYe5NDNoi15x33Vax95IW575TD1+sUa7/7xQOx9jEze8Tah26/RKw95tG9Yu2qqi++t22sPXuHi2LtU3v/OtZ+7YCesfaS3Q6Itd++7kex9vRT94+1Z/1hp1j76/Vz9xmrql4eMDvW/s3ac2Lt8Vt0jbXvXatXrP2jvV6MtfdYYYdY+5pJuWvSAS8/EGtXVf19hcGx9gs7PBZr7/dQbj5hiXty36W/vzB3fDns9Ndj7cNHTo+1XxrViLVX/N3qsXZV1RarHRprv3XMq7H2mNVz14Y9dpoWa4++aWKsffkif421l3xy01h72cVOjbWrqv4x7N5Ye+3zcucvN57XGmvPPufSWHuxY3aPte8ftmisPf3XL8Xav5j9Zaz9xsm5a/GqqgNm5ubt9lhguVj7+EP7x9qPHJybnz5rp+tj7Se+zN1rfPfah2PtzkPaY+2qqku7fhprbzLs/lj7/sW/F2v336BPrL3SGbnzl3vunBtr7zb03Vj7VydsFmsPf6hLrF1VtdADuTnDDR85Oda+t//Ksfbi86+KtYetsHSsvd3Kf4i1Hzgo97k/227XWLuqqsM2ubWs91w4KtYeN+L5WPv9W6+Ntd9df7NY+6Jlc/e1z7pk41h7tyNnxtqP9Dwu1q6qum+bc2Pt1pNy83a9Nlk81v5zW1usvVXf3Dr5gT/O3QtY8YwjY+0dzjs+1q6q+nzZ62Lt90bm5gx/+9onsfZt+zZ/ndvsefOq6pmmdwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/fJ3+mf949LiR1bVLl/9bY/lvjRj7adOb31motW+s3aVT91h7ZmvXWLuqavrkjrH2Qp1XjrVnzPs61h47bmKs/enM6bF2l0lfxdrtPQbG2kv3a8TaPVpyx7aqqnHTvo21v/5qaqzdoa1DrD3jq3Gxdp9ll4y129t7xNrH/vTAWPvyG++ItT8a/nysXVXVr+9isXb3nivF2p+//1as/c3Ub2LtQ/vvGGtftuG+sXZL99x1Qmtr869FvzN/wuRYe+bE0bF2VVXnjrlziEnjc3/j7W1tsfbcttz10bxO82Pt+XPmxtrtnXLnbVMr97vWtaUl1q6q6tjSHmu3zsr9rre0537XWzsGv0tzP/Jqbekda7e35n7PG225dscuuftOVVVtHXrF2h3m5H7Z53TvHGv36J2bR8n9plfNbJ8Xa3cYNyXWnjdzWqw9Z+qsWLuqqq0l9zc+c2bu923BRb8Xa7fNnBNrt3bPzWU05uWObu0dc3/j1d4vlp4/L3eeXlXVsXPu9617z39qyci/1dxJuXmztpaFYu2ZsxaMtbtW7j7ntAU/iLU7zs79e8//MPczr6r62+NvxtqrbZj7uS8yJjdnN3da7r727lusE2tPn5ubS3hnRO6e+oorLxprv/XyJ7F2VdX8H+TmDF977fNY+7RTTo21R47K/Zt/OzfXvuLXo2Lt/Q44INZ+d9zbsXb/7rnrwmkTc2s5q6q6LZP7PuvdeZVYu1Mjd/7Soa13rP3YbcNi7fkdZsTaXRq5+wAtXXPnD50a2bmrDp1yn72tQ+6+dvf23Pz0jMod07u15X7fZnXqFmu3tOQ+95RJueNqjy6tsXZV1eQXPo21Gz/NzWUstmDu3s+ob3Lnyx+O/UesveqS34+1Oy68Yqw9/evc2r55Uz+Mtauq2pfOzWXMWnjxWHvqyNw9/UbomdLpbf/6nPxrf7ixunRp/nrUrXvt2vTmd3aaeVes3f2w3PfgBR/n5n6qqtZ+PnfO2efmw2PtZ5a/O9Y+bt5asfYWF+TuS0/8U+5z/2jC0Fi7deDBsfaQ3rvH2lVVWz+Rm2/822r9Y+1pSywfa8+Y+kasvdjEZ2Pt4X+dEGu3rr9mrP3Eg0Ni7UGbzYy1q6pG/L5nrD3upgGxdqeh98Ta3yz1eKx9+iK7xdrrDjom1t57am5vqPnX5OZYp687NtYe355bi1lV9fGca2LtUQP7xNq9nh4ea7+72A6x9kvfHx5rb7dJ7rrw7ituiLXfn5y7H//Fwa/H2lVV29yY++wbteT28/jN2cfF2kcMPiPWXmad3DqxiYvOjrUPfuPyWPsvPd6PtXsPzT4TevOQ3DnEZgNy+7B9/mbuOb0lBy0Ta/ed8rdYe92tlo61bx0/INZeaYX9Yu3N3zk51q6qeu3F3P2+54Y/FWv/+rjcOcQfv7k21t79wwVi7TEDcnt57PJWbu+Wsbl0jVzx0Vy8qlru2jLWfmJ27lx9m7Vyx9VPv94r1r5k2i9i7T1zW3nUt0v+NNa+7PkNYu1Np+buf1RVXf9Abq60y1K5ZwsO6PZarH1H66Gx9k/Wye1h8l6nH8baf1ryr7H20Tfn9obqsvyXsXZVVdus3HPAUzfN/dz3GbhhrH3mx7m50tbOueujp/Y9IdZe5encGvcul+TmaF8+vnesve/7uWdJqqq2m5p7burkeUfH2quvnVuT8N6sNWLt/cfm3l105pIbxdpHPpRbXzdz9Xdi7fs+ya13qqra5ubcvsELLpm7TuhzS+5zd1p5tVh7at8xsfbkqbnnnzf7R+69SVNm5c5X7+t9c6xdVXXgrnvE2ku8+uNYu/uM3PfZtCdy9xq3X254rL34aivE2k8G99OY/mlu/qixcW6delVVj41ze+bs+/PcM6W/e+WsWLv/w6tGulOnVtWfI2kAAAAAAAAAAAAAAAAAAAD+P/DS5V9Vty7Nfz/sTz/Mvft5p/2ejrXX6pl7H0zvB3L7gFRVfblJ7l1be22Q21+779DbYu1bV8ttSnHjxF1i7Y1bpsXafx06KNbedIeTYu3Nb8rtp1VVtezOm8XaU2+6Jda+adlTY+0NV/xerP3uh+/F2t1e3CbWPmzijrH2q4vcFWtfdcKlsXZVVev2y8Xa+03InS+/3POXsfbrZ+fepXfFlbl9zK487b9i7c2uzJ0r7/7YlbH2mP1yP/NFls69i7eq6sANcu8O6Dkk9/7EP83bOta+cnjuPVtfrZTbf3bS93PvwenxyiGx9t/H5951deBNuXcgV1WteeKasfYBZxwTa1+1cu5dnfusnLs2u/213N677++yfax9wZu5vbV/tkbuHV87H/aXWLuqav8jfhZrX77KEbF267Tmz918Z8xuY2PtBafl3i2/8rjc+382P/BHsfa+c3MvIp707duxdlXVaQ/l5jJOeyn3TpZX1n4m1j7sk3Gx9pabZvaRr6oa/ecRufank2LtH2w9INYe8dXsWLuq6h9n5t759Iu7P4m1Px6ZO65OOiN3X3vA7rvH2h+cnztn/O31t8bar365Tqx9fsffxtpVVQtcNT7Wvv/WX8XaXY/OXReu8lBuvdWEF0+JtUfumHtn5bpLbRZrn3b/cbH2tYNyx7aqqld/kLsunXVB7jrh6rf7xtrLnvBsrP37F86NtT/cY+NY+4VNTo+1N2/dP9Ze/fPTYu2ZY/aOtauqzn763lh7u+H7xNojr50aa69/0b6x9kLH59ZaXX57bp500TWei7Uvv3DPWPv03nfG2lVVf1xj2Vj7ll/k3j194pWLxNqD9s/dh7jr7vNj7Z+cc0CsPfqGwbH2YhceGGuPn7RErF1V9diwF2Ptk9fKvV/+sGN+HmufvtbtsXa3vxwbaz9z1/Wx9j6z+8fap/c/OtY+a+lhsXZVVc+9j4u197ko1155UO551uP7XxHpzpk5par+tXvqWz5VtUDXf894/hm3LJ+bAxl5fm5Of/CpuWcTfzcw83v6nZsvnBBr79Z3Rqx998G59SvvDMp97rWuyj0vNvCzYbH2L59aI9Ze9L7NY+0rLsodV6uqBhyae57kl5scF2ufeW/3WPuOo3Lz6oOf6hNrL739A7H26oMfi7XfO2BorL3RmffE2lVVg9/5U6z9QeWe0+vZklu/MvPCWLp2P3ZIrP3HyT+JtZ9vXzvW3nlsbg3Hr/Y7J9Z+8IwnY+2qqqndc3s03XlHbq7z8D1zv293f35ZrH3qt1fF2nXjQ7H0SiNy69PW2ePzWPu2s7PHl4fWOS/WfueNDWPtObvk1vcvODS3B9wlHx0Xa0/eK/ccy9qfj4y199kld57e+debxNpVVd+2bBdrX9Uv116uU2797TcH5e6/rHXNkbH2xh+/Gmu/eU9uz+Ihp+X2Ohy9ee6atKrqxe47x9pfbp97nqN7x7mx9pdDc9ekF7zciLXnnZvbE/3px2+Ltf9wZVusvfWauT3Yqqrm98rtZzpti1Gx9qyf5faYnP/45Fj7+q9z95Z3OzS35vncEQNj7SUeyF2bjf3s/li7qmrYEovG2kP3vTjW/usjuWPbffvl1iP0Pze3f27ni0+OtRe8KrePyItTu8TaB++VuwdRVXXOiLNj7a1vuijWfmHX3Lz8vVvmJsfffSX3POprt+TWDjdac/tLPn9bbp/Fg888NNa+94TsfqYbT5gSa2/+TO5Z3MOXy32XrrfVb2Ltey7JPY96e59fxNpvPZrbT+OY53vE2qfNzc0lVFUdMyf3TMjfN8w9N7XlObln/Q9ZKbenxa0f597bdOmJ38Tav30/9/zxK3vm9r27ZpP7Yu2qqlEzesbaJ54VeLjwf1pyx9y7H/807LpYe8WNN4q19x6W2wdt4Vk3xNpP77pWrH3gI7l50qqqBx7KvVflm/Vy95ZvWTe3/uWpizP3vNpntVX9b2xhkps9BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6RrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqdTegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAf7aTOg+sHp27Nr27/9wBTW9+Z+DULWPt+0dfGmuvt/2tsXZV1ePrrh1rD/l4Rqy9xumXx9rv9Nsp1r7iyvVj7W+ffS7WvmHm/bH28GW3irWrql5a5qpYe/ttbo6127a7Jdb+4Qe7xtode64Ray89YOdY+6Z7c5/7h+259g6rPRFrV1UttMS8WPvDHrvH2idd8kasve9lfWLtrrucGWv3v3purP3mvNti7U1ntcXaVVXj3l8w1r5r9F6x9itn/yrW3muXa2PtH200Jda+84jcd+mfZg+OtTsN3zzW/qjParF2VdX7510Xa7c8MyjWPujM3O/bQTuOirUXPfToWHvsb3LfJ4MnbBdrr94td9523cmfx9pVVdM+vjLWXuG/Fo+1777usVi7td/VsfbbT74da6+/QrdYe+pda8baly87Kdauqur1RW4uY59f7RhrX79091h7+Ge5+5yX/PqGWLvPHb+LtY/67X6x9iKj+8baq368caxdVbX89kvF2kM6HBNrn/ebgbH2I+stG2vPe2CDWPuWPl/F2vcc3vy1J9/Zo8PoWLuqaqFjO8TaR1x2aqw9Zo1HYu2F7lku1t6scmsx5p+YO1+d9srYWHuzXXPXKAPWPifWrqqae8TCsfYXz+fWud21yLex9nH7/j7Wvurs/rH2fWfm1t68+GXuft/H5x8Ua1dVrX3JUbH2iVfl1oLs9sHIWHv1lhVi7aWHzIm1B987LtZe9tbDYu1Za+TWVA5b5eBYu6pqxoXnxtrTxz8Qa+9+bu46YfJri8TaL32QW/tz+k7nxtqjt8qdM96+WO4+QFXVqFHzY+3DTszdVx84Z+dY++J7Poy1NxqVu05YrvcqsfaQkbl7Xmct+EysfWjv3HlbVdV9p6waa//03ty520VPxdJV294WSz/y7vKx9pa7566Hh5w1IdY+42+3xdpVVQ+tkTu+rf76+bH24etfHWvPbF+96c22+bOrKvdvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzn6vTP/MeffP1tde7c+f/WWP5b7TMXb3rzO3M6fhprfztnaqzdp+eCsXZV1bddZsXaiy3YK9ae9vm0WLtDxw6x9oxuM2Pt7o0Bsfbc2bNj7VnfTIi1P/liXKxdVdWj14BYu2ff5n+HfmfyrG9j7WrN/Y1PfnN0rN2z0wqx9lrLzI+1W1vnxtrTp+WOq1VVk6e3xNozvvgo1h648BKx9mPb3xZrL9lroVi7W6/WWHtu7jS9Jo37ItaeN6kt1m4bPz7Wrqr6ulN7rN15du6zT2ssEGu3tga/T2bl/r17dMn9nfXtmfvcHWrRWHv+nOy1WYfK3X9p7Z77G+/Q6Bpr9+gRPL60547pLZX7954xd3qs3draJdZutOTaVVXt7bn7nNN7NGLtDtNy95bnzJ4Ua3dcOPc33jF47tTo/E9N7/1bderaLdbu0DF3z6uqqkPu8FJzW3rH2h0auZ97t+7B+cpe3WPp6ZNz507dW3Ln6Y1vc/d3Gx2y95bnTMudQ3Tpmfsube+a+z7rMDf4b94pd3z5dt3JsXbvDn1j7QWW6hFrTx6fm5evqnr/009i7SEPjYm1F+yXW2fWr3+fWLvPAkvF2uM+zc1VLrNM7h7r3Cm5i4QPPnsl1q6qeu6Fx2LtPXfbIda+9e5rY+2RH30Wa59/6tGx9gtvjI21e3eeF2u3zc6tCZjTllu3PHCj3WLtqqq2Drk5nKeffjDW3mnTE2PtN8c8EGuPGf56rL3I7Nx9gF4L5u63zZyam8dob8/eW26dn1s7XB1z91+qc24tae/W3L2AtjlzYu0ObR1j7ZbOuXU/XfstEmvPb+R+z6uq2ufkzl9eOerPsfYmdx0Ya6+8YO5cfbUOuTmcb+fljqvd2nLzGG+/8V6svcKyuXOnqqoFGgNj7Zaj14y1Xz7pkVj7i4nDI93Z8//1+x9jl16gOndr/vHxpf65Y/I+T30/1r77yfdj7WsXWjfWrqo67vu584+tF9go1v50QK793N9z9zB+8+CWsfb2G+c+d6c5W8Xay47PraO4957ceVdV1edb5M4515uV+xvf8JrXYu1X+6wRa3/w5eWx9uE3/yzWnrl3bq5xwjq5e5S3f9471q6q2nPp3LXdxVfvGGsPHpk7rr960sWx9pQlDo21z75yRKz93pm7xNqHjvljrD3iuQ1i7UmDl4u1q6qWPz533vjDrfaItW8b+FWsPfXyp2PtxQ47Mta+YeRbsfa+6+4eaz+3+LKx9pdfvhlrV1XNW+KdWPuQqbm1oPsOfSPWHnzZKbH27N2fi7U/2C53b3nrzpfG2lMezT1L8vmgQbF2VdXMWbl1HC2Dj421N+h0VKy96AWvxtrb7t8/1n71p7lj23NTX461v/eTM2PtLv/1QqxdVdVvUO4ZwYd/n3tO75Plh8bap7+8Xqw9fYdnYu0Zf98u1r5z0eNi7cGX5u71DX/wg1i7qurpfXLnbsvdmZs36/J6bo1aj91y+wZfN+FXsfaYH+b2Uh3xWW4eo8fg3HG1cee5sXZV1esbbhtr9+vUM9a+d5EVY+2XZuT2at6uY3DN89jhsfZft3wp1l5ljdz6ul/clvvcVVX9Pjon1t74o/1j7Ye+uT3WHnFvbh/ZXW7+Uay9wKFbxNrjVt471t72sxdj7dnDc/NHU9rOj7Wrqs67/9ZYe+q43HVp321z95Z3evGeWHvaPQ/H2n9ZNrefRutBO8Xaa744KdZebN3c9XBV1aj1cu/Z6DE5tyfXw5vmPvf4Sbl1ZsvNy70j7Ksf5P7GR3fIvczmodHPxtqjHr461q6q+v4Fj8bah/49t8fBs4fn9lD568DcPiK/3XPtWHvCc7l3D9y1Wm5frO5L5da/HHve57F2VVXXHrvG2nd2vCzW/sFCuecbLzjlkEh3ztzc+xYAAAAAAAAAAAAAAAAAAAD4f99pK61ZjW7Nfw/QnvMXa3rzO31OOjDWPrvXVbH2B3c+HmtXVW36t9yeoDdv+PtYe8pP1oy1px29Tqy98Ce5PUEfPmlSrP3Hx3PvrJx4Qm7flyV+NzLWrqparj23H+njez8Ra9+9XO7djZ+OPiHW3v3Rr2PtT3a8Lda+ZrXc/pAv/iy3p9UL/Z6MtauqBnXL7Zt35E4bxdr/eCv3Ppgtx/w81l770LNj7ddWzX3uw59+PdY+cNePY+3+83Pvith2g1/G2lVVw17IffaJm+f2iOy7YrdY+5K/nRZrb7V37v1i2865Mtb+Yd/NYu3Zt+XeubTpNh/F2lVVgyv33qXrHv1BrP3oP3LvRz111WVi7VvOyO2HOmjaybH2DvX3WHvXcefG2kOXfi3Wrqr6w2e59y7N+/lusfYr254Sax8+/IFY+5QhS8batWvuXPnIrdpi7RcO3C/WPmZm9vyl81O5dwG3X7FIrN3yi3Nj7RmPXR9rb9/vqVj7q11+F2tfUbk54t59No615yyam5evqhq8f+6c9fqLXoi1N3/x8lj7or0OjLVnDM597h4tud/14xbMXQ/f235TrP3jNz+LtauqWo/YJtbe85zbYu1tT5sQa3c6P3f/Zej7o2PtZ8efFGsv8d7cWLvDlzNj7U7v596HW1X16J3vxNpXj/8y1p7eLfdOuYfacut+lrwgt6bxgZfXi7WPf3v9WPs3v1s+1j6jPfee0KM+y32fVFUtfsqFsfYrR+TeQ/z+2jvH2ndvlntnZcugtWLtc1b5Say9aMsBsfZS7+beCzvw5NzcdFXV5JVza7annPe9WHuRDXL3WCfcnfs+G/xE7j3nHaZMjLW36577Hv/RD/rG2mfOHhFrV1V1mPDjWHu/x3Pzdgd/nbtGOfq+3N/4iF1yz3zt/fojsfbp28+JtR9uPzDWvu/uDWLtqqrr/5I7X3511dyzdj/9S25++o79M5976oz59cd/8f9x0fCbq7W15d8ynn/GPcPuanrzOw8ddXqs/c4+uTn9G2/I3ru5543cvZuJ1+4Ua6+74UGx9hG55XF18un3xdp37LNvrL3Zurl1gc8uvl2s/eQFh8XaVVXT5ubOvS57K3dsXej03Nz2fm3XxNoHHvuvnv38n+v9wfOx9tGbnhlrf/njg2Ptuftnn8u8/cncsXXFXXLzAZt2yT1H02jP7TPQeL1rrP31G3+ItZ8Y8lWsvfW03N/4gLNz3yfbDsitt66qWvzD3B5w7+2/bqzd5fnc/dlv789dJ1y418Ox9haf7JNrLz021v5k9T/H2tefc1SsXVX1y0cejbUXfnCzWPuz3DZodUbH3B5wI2/JreN4/b69Yu2rDso9S7LWF+Ni7cX/cEmsXVV1+qSHYu29js6tBZ3RP7fOfdP7xsfaFz+aW5v3zrm551h6LLl9rD16gX6x9qvDcnvuVVUtMDu3f+7b+4+Ktdef+GasvU/fobH2Nre/EWtvsm9uD7a3Rx0Saw9758hYe1RLbu+5qqpee+SOb6d1yz3X8Kchub2p9tjisVj7gp3PibWPGPpWrD37oNwa922WzN3z6rVL7mdeVbXb/rk90S/5de7+7qwJV8fah+yVW3zTWOPlWLv1hdxe8Mv8PjePMWfnF2Pt4a88GGtXVV17x6RYe/RKR8Taq1+QW+NW3e6Ppa/6Ze5zX3r5VrH27avmjm3Htuf2GLj8sDtj7WeG5vZgq6r64Li3Y+22Lc+LtRfYsxFr73Zabn+oHq/lnke98pHc/thfXf5KrP3R47k9g8dOzs6Nn3pCbg3tzxf6Yay9yjt7xtoLDAnuK/Fkbg3KxXvlnsF56Ybc+rqrg3NXHdd4L9auqjpuuyGx9rOL5s6dNt0ntw/awN77x9pPds49+7Tcern5oxt2zN3z2vug3F5ks+7LzU1XVR3849z+CjdumHvuasj43H6Day82PNJta59Sw6vP//K/y105AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRnoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkZ6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5GegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPIz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdMpPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgP9uYFYZU964tTe/e9PSqTW9+Z+Ihv4q1W8/cItZeatFrY+2qqjGfX/c/2LvLaL3Ke//Xv/UkK04ET5DgDsFdggeKa7FCsaLFtTjFXYtrKQ1OcXf34JAQpEASSIh7ss4rzhjnxR779LD38/2fMa7rNe1nrpW1njXnPW+JtY+67plY+6aNDom1735gy1j7nduuj7XvffmDWLtt4JBY+8Svz4i1q6ru2fLgWHv342ePtb/sf1WsPXPy4rH2hh26xdrd/tIh1l5rrd1j7S4L7hNrn7nOKbF2VdUDz1waa//j1VVj7dXXvizW/uXMvrH2NV2ejrV3u2+vWHvMfbl/76Uv/zbWrqp646qFY+0bF8vdv6za9/NY++ez34i1H+l7Xqy95qFTc+2N/xlrL3R4S6x9X/ttYu2qqtPuejDWnnzMYrn2ac/H2n/pPjPWvrBWibV7jM+1X/10Qqx94F+OjrVHj7gr1q6qWmipx2Pt+7+YEmsvft1RsfZx198Ta6+w/6Kx9j9vXD3WXmW1c2PtsV2XirWrqj5+7ONYu8ffvou1F//L+rH2V11GxNp735D7eRu966RYe8J618Ta6+2wTaxd087Ptavqxxefj7X3mn2zWPu5P74ea3992cWx9tpdcp/pk4YtEGvX17nPl9475OYjVFV1P/DLWHvCkNz8m6Uf2zDW7vx07m/p+EVz98vvXzEu1j5vUm5Owlyn/zXWnveJAbF2VdVac+4cay9zSsdYe/qAf8faHz78x1h72N653/FJ894Ua4+Ysl2sffa6ufvVqqov7lwt1t70mG1i7c4rvBZrn7HSCbH219cPj7UP/HyTWHuHG3K/Z68Nyb0rPXqn3DucqqrzD1o71l6v05qx9vmv5+ZN7zY5N09/s4kLxtq7v3JDrL3mZXPH2ucN6R5rV1W9tVduLGCHXXNzzc4cunKsPebl3Pvx1luvjbVnXXpwrN1nq1di7WG75dYAPdDyUaxdVTVt/9wY7+OT/xVrP/DxmFj7kX1zaxwHrHxarD29Foi19950o1j7s3tyn6tVVRdsm5vXOGiLlWLt928/KdZ+6su7m96cMGlabZn7UwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8H6z9f/Ifv/P659W+fev/1rX8l5ZabpGmN3+1cKdesfbICaNj7Z8mToq1q6qWXnC1WHvshMGxdrc+fWPt1tbm/27/aszgH2PtUY1RsfaPX30ea48c8UOs/fU3o2PtqqpG506x9oarbxxr9+j1H/3J/5/V2jOW/vz7j2LtWVoasXaP+XvH2iceum+s/Zezbo61q6o6tcwTa7fvPC3Wvn+jq2Ltvq2dY+0pHXP3yy0zpsfaY38YnWt/PyTW7tB5aqw9cVqXWLuqqt3UybH2xEZbrN2ufe7eqV3HWLp6tk6JtVvbzRZr18zcv3drh5mx9oyW4A9bVXXp1CHWntaW+2zrULnv+8RpuTGQDu17xNqNWVti7R4TZom1J0ybGGt3asvdr1ZVNTr0jLW7dsx9trWb3D3WntolNwYyY3rub2m77rnP9Ak/j4u1e/WYN9aeOG1krF1V1TJ+Qi4+Lnf/0jpr7v1Ro1NuzGvapF9i7W4dcs8ow7/6KtaeY87ce9J2nXL3jFVV1Zr7N5807utYu2PH3FyMmR1y904zFsjdL4+YmftbOn1y7p6xbVru3qldW7dYu6rq52EjYu0ZLbPH2u8N+TjWHjdjRqy9zqa5e8ZGW+5zdfDHufuXhbsvFmtfcsDesXZV1fMvfBJrd530c6w9cuzwWHuztdeIte+46oFYe/6V+8Tawyflxn5WWX+dWHvEkNxn2+hBz8XaVVWfT2gXa0+fkXtP27Nz7p5xvQWXiLX//Wjub1mnjsF341OD8zA6zBVrt9b4WLuqqtEuN87Z1hJ8Lp3RM5bu0m50rD155oKxdsdOY2Ltlva5+/R2k+eItds658adqqomN3JjbtUu9278q3/l/o7Pt8uSsfbUKbk5KG98kFv7NNe8uTm0T799f6y94LJbxdpVVeN+yr0b79Ux92y2+VUDYu13B2bGQCZOmVR11Wu/6f/jlSd+qvYdmj+v4KSdcuPxD26yR6zdZ9gLsfbuz54ea1dVXXjB6Fj7051njbUP/NNysfa9056MtQe1y81R2/r7Z2PtnVvvibVvGpxbF9kyz7KxdlXVhCdyP28/dv421v5ln6Vi7RGjc+/cfnk/d78537q5v+NXrrZhrH3/SmfE2hddnhs3qqpaY8p6sfY2Pf8Qa/9y7AOxdsdZP4y1B475fax9935XxtqDDzg/1v5ix/li7X4L3xprv93l5Vi7qurDAX+Pta8fm7tvW2aB5WPtxt/6xdo9F/4+1p63Q+7rfuK53LrMjQfl7pVfHbZ7rF1VNbHfmbH2ybV4rP3Lj7mxn49XuDrWXunx7WPtdb5/ONYeNiH3Tv+Gzrm/o4fsMnesXVX16Htvxdojer8Taw9f9uJYe5M/5+YrDW7JrU+c8ew2sfYaC94ba7/4c24+ZKdFc2NeVVUL3ZSbJ7Zmt3dj7e9n5uaQ/HOx3Hjf5+NzY317fp97NnvhobVj7Zf759aLrfVzbv5IVdW4f+fmS/X75r5Ye0zLqrH23C9fEGvPXHtsrH3l87n9wDaZL/e5+tHlC8Xa3dbaM9auqlq6JTf/tsuXuXv1Wx7NrSfZ9q3cHPsn7jg21q7GgbF0pydza+2fnjt3xsYe63waa1dVPT/H5bH2ws+8GGu/uN83sfbvL87N+7nustx+7LvNmftMf+iQBWLtk/bN7eWx9eiBsfabww+JtauqJq+SWz/U+dDcmq0bzs7tFXTTGivE2hNn5MYh1mvNjQMs/UJu371dJ/ePtQ9/JvvuqnFqbkx/6EILx9oT5/xta5d+i/m/yb1P6DUztxf8ZsE9Rc8f/H6sfefW28baHZbKjQNUVa262pyx9jXtc/Mhvpoz933fsX9urLH9qCNj7WM/OzfWXmdI7v7lpv1yz0cPnZF9N77f80/H2vN+nJtnNuWeZ2Ltzi+cFOlOnDi2bnxw/kgbAAAAAAAAAAAAAAAAAACA///ruskb1eje/PMqrnlsl6Y3fzXPsI9j7aUWzu3RuNw6v8TaVVWLjv8i1t7o97PE2l9cOzrWbt3td7H29zMnxNqvPpA7F3b4CpvF2l9OzJ0huM2ZuTOQq6pempk7E3fVGbk9+569eNdY+4Nn/hRr/3xT51h78+tzf0sPP+DJWPvYo3PnJbR/KrfvblXVF11eirUf/u6sWHvT+XLnLj314nmx9phXcj9v9wxdLNb+bqvbY+092+XO2Vrib1vF2h1Py+1vXVW14QZfx9q7DBkaax9726Gx9kUb5s4oXXK2O2LtS647Itbu/9Drsfb77+XOwVnjkKmxdlXVgMNPjLXP3i73XPjI0bnzYH5+dbVYe50Dfh9r7//FDbH2ix9cFmtvteAJsfb1X3wUa1dV/eH3ue/7JsfnzsF54uuXY+0eP60ea79+/rOx9jYbLBJr3/nTvLH2fcPbYu2j930l1q6q+v21F8ba/35lk1j75q2OirXvPmKbWHuB3vvF2neOyp2B/Nh7f421n70wdzbrqtdOj7Wrqu7b/p1Ye+mBe8Xak05YPtZ+84qusfakdYfE2js3Doi1B54/INZeZd7c7/j58x4da1dVHTlg3Vh7revOibVffy/3Xv7ydbfLtdfeONZ+94PlY+3W9ovH2te05b7nP76eG/upqtrj1Edi7bnXfivWXnLNXPuuZXPvDNfZ/t1Y+7S/Px9rP7z4DrH28R/lzig9/cbcHJDVx2bHfh6ca99Y+5PX/xxrb/Ne5iy9qqolnlk01n5j+dGx9vmr5M7qvPyvuWeUFc+/Pta+bbefYu2qqk1vzo33tTwya6x90MG583jX6vx4rH3EZQfH2s8/lGuf/uoLsfbe8+R+1r7eP/d3tKrq/Z5/jLVP3/ySWHvDU3PnnA+Z2j7W3nXJLWPt14/J3b/s2PeeWPudYblnlAf36RRrV1WNy32s12GtuffyF/a6Mta+YMalke6UGROr6rfN7Tv8yN41yywd/2cu6D9wwJl3Nb35q6fe2ijWXmjtnrH2T/1z70Cqqto+nBxr7/rCPLH2u3fcGGvf3Tgk1t5j4NKx9kPH5O4/Ftrh/Fj7tBXujLUvGfBErF1V1fXUTWPtFdfOjdcNv+bkWPuAfQ6PtU98LjdH7d45u8fafT7JjRNuNj33LH3KyGtj7aqqfY/I7d+y0kWzxdr7HdH854Nf/X2H3Dr/9hfn9kja6fPc2uubvlsi1p591kdj7YHbHx9rD1ggt8dAVVXNdm4s/cNWuZ+38+a+KNbe7NpLY+1r210Va18+eFysve+d/4q1/zz1sFj7w+vfjrWrqhY7P3evvsXN+8fa547Kfd0jds/9nh24SW6PpDUG5d7x9p5zzlj79OVycxKfmD8397aq6qg+N8faby+eW4v7zdcrxto/1F6x9lNPXBFrf7D1CrH2/Ivk1tCMnph7f/S35V+MtauqLn0ptwb5lfG5OSRnrjgs1t6h/zWx9u0XnBZrz9ExN845/125fbHe/Nd6sfbR/8jtUV1VtdlSuf2hdp2R+75ffWNur6CVO+fu287tl5snNrx77h5i3mU/jbUXeeugWPut+U6NtauqPn0mt6fFXPvm9kQftP6GsfYJF18Qay++XW5frGsvmi/WXmDJ3D3juD57xNoHrLRFrF1VNXKrm3Lt6y+NtU8e8UOsfdZ2uXfE81yQO/fgup8+iLUvmj+3Vm354LZYb43LrYtsvWeBWLuq6tGRz8Tao69bJdZ+/dPcHvy/+zg3vvvS/PvE2kcusmqsveCNa8baD9ySmyu++Kq555OqqinLrx9rb985N+412x6tsfarM4fH2sO/fS7WnvfanrH2urfl5lrNPWPhWPv5rRaItauq/jokt5/H0Hv/GWuvv/C3sXYNfTqWHj+8EWuv8MxDsfZSj/WPtd9/r3esff3OW8faVVUL7p1bb3/7PLk9Ji/aY3Ssff5WmTluE6dNrb3/Xyzdzn0CAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQdI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AXHqdjHAAE4VElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8LW1tbW3/3X80duzY6tGjR62x+trVvn37ZlzX/0Pvvgs0vfmrZZbsF2vPrKmx9i/Dv4+1q6p6L9g/115ywVj7spMOjLV79egda3fq0jPW7jX/3LH2xFHDY+2PP/8s1p4+dUKsXVX13fcjYu0lFl061t528+1j7fkXnCfWHvvjN7H2q4Oei7V/t+qOsXb7iV/H2geddUasXVU1d88+sfYdix0ea6+y2Eqx9vjpub8pU6fMiLXrp1Gx9IRxP8TaEyfkvufT2s+MtdtaO8XaVVUdGlNi7anTGrF2o2O7WLtlWvPHXX7VsWVyrJ38nnft1CXWntHI/Y53bW2Ntauq2ibnftYntEyLtRsdg//m3afH2o3K/Z41OneNtafNyI3vdpmWu3eaNHl8rF1V1dJrlli7tbVDrN2Ymrt3mt6a+563a5uUa7fL/XtPmZL7fKnZcl/39BETY+2qqrbgWEBrt//2de7/mhkjcr9nnXr3jLWnBz/TR/0wLNbu2TH4nNDItdvNbIm1q6rapubu1WfMyI0FtOvcI9auSbnP9Md7PxJrTxyWG1PvOEdunHHMtJGx9tAfs89HP43LvU+oyo2rjxk9Ntae0pYb+/mpfedYu99ii8XafWbLfc/HzhgXay/fb/VYu6pq+Ee5uTdjOuWeUWbrkBsDGT0z90z88MPPx9pbbLt2rD32l59i7W5jcvfKb3yRm1e4zLyzx9pVVT9+8V2sPefInrF27865dzgLdMnNterWpWOsXVNy98qztJ811m6ZJfdcODM39FJVVd1ac9/3yZNy7+U7dci1Z07L/Y636xB8d9WSm3szOTjO2NroGWt3aJd7f1NV1TYtNx9ifPDnbej4T2PtAQ/8Kdbu2CX3PZ9ZwXlewfG2QV/n1lbOH3xPWlX1zdsvx9rd5sr9He85rmes3blr5n3luAkTaukBW9aYMWOqe/fu/9H/9tc15303W6oarc3/jNpjvQFNb/6q78Jzxdqvv5IbPxnb485Yu6qq/c/zx9pb7rpnrP3GDZfE2kMXWzjWnvxRcA3ym7l3vC2rvBBrD56Z+/d++e53Yu2qqlWH58Yphx+Ze647Zfn9Yu3P38w9T0+/NrevRNer94m1N/8xt4fJ/cvm1h9fc17u/qGq6rV+W8TafZc4KdbefuQGsfaopXMvBC56Kze/f8B1D8faM5fLzVd6p+/QWPvDTXPv+2Y7fqtYu6pqUs/cfKk12p8Xa69aO8fad6+bmwO75jO5eYGLdnov1v5grdzz0bfP5fZIWnnOU2Ptqqoeh+b2Ybum459j7d3P3DLWHt5r41j7peW+jbVn7PxxrH3crWvG2o1F34y1Oz+9YqxdVfXRBrn7xjFz5J6JX17i6Vj7gDNz863nOzy3x+Mlp78Ua++88iKx9vsL556PRn33YaxdVbX9lNw+1UMXy+1v+f1nc8baLS25Z5SfgmuQWzsvHmuv9FpuPP/RNXPvj3b7LLsn1yMrbxRrz/Z6bn7cj7NeHWt3Wyh3z/jDxr+Ltbvvlvv3Xmi73NrEt/u9Gmt/e2fuvq2qavqHuflWH+z0dqzddufAWPv73ZeNtYfc2SvW3mtUbhzitbMWjbW7B+c7HbJ57lm8qmrsfYfH2ndtmPu+Lzcp9y6jsWXuXv3tTc6PtZc9a6lY+51nNou13747ty5zxz3eiLUHPZcb66uqmmfe3O/4oj/k1rsP77tNrD1jcG5vh7narxxrr9U3Nwby6LKrxNp9nvo81r5h0ex5Dyf+PEesPebm3L41++2QG1v+ZtpRsfaIBXNzhzv12ibWHnF37j3GmI3+EGsvvVp2bHnYtWNi7fv2ya3D6fLVL7H2RceuFWv/+Ol6sfaXB+f+nsz+bu69/Cdv5c60nW/O4NloVdVpmfti7bbvBsXaM568Ptae3nXzSHfcpGm1/BFP/qY159ef0a26dGr++/UFrsytAX74d7n5I7sukptHMfjLf8XaVVXXteTm/l42/fVYe9cum8Ta/Z++Ntb+qkfu2WrdvT+Ktf8+JDc3761Hcs9WVVU3Lf9BrH3RizfG2nvOk3u/fN3Y3HvWP/xp11j7kpZdYu39GkfG2ueds1esPXHvB2LtqqpVBhwca8/+VG6Pg3sG5957TVr18Fj7oRtza7ZGDTgr1t5gXOaZsqpq8StyZ/BUVX222l6x9v7n9Y61R76aG7vpcmdun4ETPsztp7HQ+j/G2m++eVWsPfz43PvlZ6/KfbZVVXVfYqFY+4Xjc7/jRx2fm9/ff2JuXea03rl3+idPzL1zO/PN3J7DF2+Zm8dx0gfZc1G2WSH3tT+1xmyx9tSWZ2Ltke+cGWsf9u/c+O6rH+fO8dv/sty7zn4/59ZsVVX9e3rus3X4oHdj7av3fCXWHt8z9z2/5c59Y+0PV86duT3HVbn3tIt9fHOsfc7WuX/vqqr3p+0Va5+9Tu7cpcOuz+3d2+2m3B5NR/fcI9Y++YPcWMCOu+bWox70Zm7Oc1VV53dOiLW73Zn72t+/aptYe9HcR1vN0i43J3Lqtl/F2ueslhvf3e2QQ2LtRZ86Itauqjq90xWx9hav5t5X7npObly995u5/bkf+/rxWHutV3Jrxu7tnjv3uv8/c3taVFU9OuddsfYlZ+TWvJ+3YW6/5kWG5M78/uDi3P1y33Fbx9o9vxwda9/zXG4OykEj1o21q6puWjK3T9PQd+eLtY/7Jnd248hVTom1J92ZO/vg5SEbxtpbd9wm1l4jOFe9qmqBb3Nzfx5ZKncmb/91cvvmbLXENrH2kkNye2ose+RpsfZiJ/4z1l7jlNzY8vt9d4y1q6rOuTS3t+cu43PnhD2z5V9i7XX+ldsba/Jaj8bae855WKz98dO5NSHbdl0m1q6q2uHU3Djr3ANzny/7dBkVa9/96pCmNydNn1xHvnnib1pz/udZ1quOLc2fyzFtzdwZgv/YaLVYe8u7c/MRl3oit56iqurx1txnw86b597vXvfevbH2hc99Gmsv3iu3Zmvf7uvE2tvvmrvvGbDy6rH23pfn7rmqqtbY56lYu8NhV8ba7541Kdae+9LcXIY1nt491j6yX279zlJP5fY3uHTu3P6Q7WceEGtXVd25cu7+Zc91cz/rG3z191j7y/a5d8urfHpxrP33C/ePtV+8cbtYe5sXc/PrX/0+9z1/aNvc2EVV1cNH5vbXvrFTbs3WHucfH2tv935uf6bvVsztATt0j9xcgqfbboq1b30ld2bBBsvm5p9WVa06LPfO7d6Fc+tw9++b2/Pv+C9y906Hvz5vrH3d5+fG2sNWHp5r954Wa58/PPdzXlV17L65c0Jv2jv3t/TP354Ray9/Sm5N6NM359ZMbXXhgbF2lym5cad1D/w21n7+2zti7aqqFfb/ItZevH/uufS2DrnzWQe/n5tff8HobWLtVRfZOdZ+4qDcHiaH3Xp4rL3wibm59VVVvd7LnZmw9Fe5Pfh3npR7LrxhzsNj7a6jP4m1990l915+zX5rxtoj5j421j72mfdj7aqqFw/I7R2z9tjcGOsfjsytP36ic+4ZZZaHF4+1l78l967ymBdyY6zXH/PvWPu813J7mVZVjTmuf6zdZ2DuXLdl78/tKbrbPLm1Yq+vk9vHdbnT9ou1/7hPbn5d50P2jrX3WrJbrH3Tx9nPtlEf5M7qWnxs7tzILm9fEmtf/XpufcAbj+T2YNvo37n9U659MndW55t3/GfrV/4nDVw5u7/kiXf8EGsvfmluP41hA3LnVU3cNXd+0NvL/BRrr7Jjbuzn6qNyz+Jnt2waa3/1c+7dUVXVnlf3ibXnn3tArN3vqIti7Yduy60BbmuX24+9z3XB9szcHNat51011v5m3y9j7aqqLU5+ONZ+clru/fSBQ3NzMR78MDPHbfyEcbXh9kv9pjXnax5/XLXv2PF/6Qr/a2uflztfbFrjr7H2NVNz8wluPuOYWLuq6pM5Hou1O339x1z77/fE2jeu/lCs3da2W6w9/bHce6+V1sjtTfnNVbl1mc8/mRu/qKra4fbcGp5Nvs/taTXh3vlj7fHdc/tiPtb+glj76DMfiLV33CA3b+ed3+f27p+13a2xdlXV0V/2jbXXmz/3tW/VJ7eH2fBLcmtxP/489yy90+q5MwvOfvKNWLvni7m/J+fsMSbWfu2l22Ltqqq2c8+Lta8Y8Eisfcx1P8faMyc0Yu39X8i9X950ydzv2dyvzBVrrzM+N2/npD8OjrWrqiZe+adY+4RVc2cuPbBQbq3cCQ/lno8mTLw01h4zMLfH89izc3upX7pKS6z92DI3xNpVVb12yH2+/fuF3Pd9oc1ya0k2fzi3lqT9oA9j7e0Oy+3lceb2l8fad1yXe29270K5f++qqvMf6xFrv7jTobH2Jz1y7xMO/CS3tuDgL3NrgHtcmHseHtbrb7H2OcNze6lOmZjbp6iqauYub8XaXY5q/vyPX121S26u+bCVc/vn7rZpbv7Ljtfmvufnj8vtW9P7l3li7W9vzM15rqq6tzU33/uLY5+Nta/YJjfnqXFC7qzMd7bMncX7u0dy+w0OGrNWrD374rnP1TlnyT2fVFUN6pc7b+Lq3rmft069c/vnjl10oVj7u4NzYwHLHbR+rH3yErmzvqfMnjvfY5seuX3oR/U6PNauquo+cINY+6BLcp9tj/a9MNbuPeaJWHuzxW6Ptcf8ObdP0fhes8TajSG5dyjHPZUbU6+q2uGO3Py6G+fLPRd+OiF3Ttesc+U+X36/4zex9uXv59bBDLx20Vh7xrjcWZ+3XZDb67Cq6pKjc++Ix289LtZ+6rjc3g6n/z63H/sfb8vNf+nfyI23dTpi1lj7ghu+jrU3eTw3X7uqas/vc3O2Tzwy997sw4G5OQkbjX8h0p0+fmq9vOo//9s157mZzQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANF0jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0T/v/5D+eMG1ktWtr9791Lf+lKZP6Nr35q1ln6Rprt+8ye6w9fWprrF1V9ennr8TaY9rmirVnn6dPrL3YUvPF2mNGTou1u3WaJdYePf3zWHvu2XOfLz/9kvv3rqpqbUyMtbt0myfWfu7VJ2LtZX/pGWtvssEfY+2RP30ba48ZPzjWXqJP7m9Za8uMWLuq6vK+A2LthXvPG2tPGD0+1p4245dYe/LESbH29EkTYu0Z05v/PPh/tzv8FGs32uV+x1rbZ++dpjdyP+s9O+Tu1af9Z8Ml/6O69si1W6fOGWtPa5sea7d2iKWrfcuUWLvzrLnPtqqqSVN/jrV7tcs9E0+YkXsm7di+V6zdNmVqrF0zG7F0+4m59rR2ufv0Rrvss9n0UbmvfWbH3PuEtqm5v6WzzNkp1p42sy3Wrl4dY+l2E3L3jNOn5H7WOnXKPZNWVc1szb07Gzfsx1i7a5fOsfbUibm/KY0uk2Ptnh1yv+PT2rrF2p1acn/D27pl342PG5Mb/5l91t6x9thfcs+FX48fEWsPGv5FrD1l1MxYe6m5cvfK3wzL/az16JF7Lqyq6tAz97m+7Xrrx9ptv+TGlrt07xFrT++Sezb77qfc79nPvwTH2+bOjTMOHpz7e1JVNSL4t3Tm1DGx9ohhsXT1W3LNWPviv14Yaw/+LvdN77NIbhziqSfvjLWX6pmb3/bTB0Nj7aqq+Sbk/o4vOdcCsXaHGbln4s6tuXGnjjNz4y9duuXGtTt0zD0jdJmR+1xtdMn9fldVtVVLrN0t96NeHVq6x9rTOubmYsyYnPu623fMjUN0asl9prd2zn2+TPslO/bTcbbc194yNfeutOPo3PvKu/c+O9be+YZjYu1xwfekE8ePirXXWmSOWPv9z3Jz5Kuq2vXIvT9qaRec6zVHcK7XpJGZbstvH1+d65Ufq31L8+95v19suaY3f7XGG7l1DdMXeCvWnnXNTWLtqqqB6+fGhufdOfc+4JLKzaU4buxCsfYTI7+LtcfNs0Cs/eNd42LtNfbqH2vvs8pasXZV1TetV8fap391YKw98fW7Y+0xu+0ba88/8OFYe7G3D4m1P9zp1Vh7kUG5v+Fz99wv1q6qOmvoZrH2dn2Cz7SDcmM33V59P9b+uesbsfbzty0fa3fYdPVY+93bbom1O76Ze0bYfcncz1pVVZ+Fr421X5/rvlh7yIPnxtp//nTDWHu3I3LjL8+O7h9rf/BVbq+gE1u/jrXP2ip3r1xVNc9xY2PtPa/K7RU013yfxdr7fJKbf/vkFefE2hOuvizW/nZQbuzn4x5vx9p7Bvdxrap68o73Yu3GKrn9er5/Lbc28rmuublaO99xb6y9wfUnx9rvP/7PWHvMIrl9opfsuWSsXVX13cAlYu3Xpj8Qa88x8spYe2avBWLtT/oeF2vfucxXsfbI+3PzIQe/uE+s/d7vbo61q6oueXSLWPu8E3N/U959+/xY+7kV1421v7t82Vj7lU2fj7UXXi83J3HWSz6NtfuuOGusXVU1aHDu7/jm4y+KtVfd+C+x9pB1to+1ex78faw98K53Y+3jHu0Zaz/xu9zYz3HPfR1rV1Wd1nZLrH3/HbkzF2abe6NYe/ub14i1Nzk3t+b82XdzZ03st3ZuLsTqb7wQaw9d7ZZYu+OonWPtqqpRL+XWAb8z4YRY+7JJuXeGb47dONaesm1uDGSZ2XLrvt+ckZvDulSnF2PtvzzdP9auqlpvhUNj7U932TLWfmpG7pn4ro0fi7V/fmeRWPvib3Jz3EYEzwHcc/BssfZdXz0ea1dV3bF67tzJK+7JtU8evk6s/dQ3ufG2Hx78JNYe8k7uUJfek3NrK7dteyrWfuz+3LqEqqp7Fs3tK3HDJ2vH2j9tkLtvO+eR8yLdyZN/+1kyN715W7Vvbf58sZdv2b3pzV/1G7lUrP3K17kxqz5XvhRrV1XtdlduTsFrv+TufR4dvVOsfdufXo+1z/50g1j76ukfxNod+uX2P+kw35exdlXV7kNy9/n3XZ+bO3PhdyfF2mO658ZIV+t2R6x9x325d0/vLX9ErD3wksNi7WPb9oq1q6renW+rWHv+gf1i7Z7r5d67rTV/bl7g2uvn5ua9+0ru37tDyz9i7Tl3vj3Wrqq65KPcHpGtt/8r1j64b24ty6k/7xJrL7DzKrH2ax1zGz0/O3tu3s5+a+4Wa++701GxdlXVrOvm5kQu3i+3R9NTJ+fOH5pxYW6N4LTxufG+Zw7Jzdv58KLcmPgSJ+bWbH21VW7uTFXVyO1zz6VzPnRbrL1kS26+1L0L5u5fHthlvVj71RdejrX7XP9OrL1vh+zv+MUzc+86t2/k3usv+MjwWHv0lyfG2vd2yu2fe+DRT8baJ6yf+zu+/z9yX/cjW+TOCa2q2nKLN2PtO3rn3pUee+7oWHvnzYNz7N/Ofa6ufvEBsfbd930Ta2990e9i7aqqz07J7Ud2ZGvuaz/58dxeaLudkDtze7u/5+5Zx8x6Wqx9/T63xNonzLNgrP3ErXvE2lVVN26dO/9o8+1fibWXPOrrWHvXr3LP45eOyo1zdtr21Fj7/jdy+1tuveYCsXZV1YV73RVr33NP7uymr1/N7dd8+525+7blGrnfs4F7Lh1rN97cPNZuP+z4WPvHM4IHEVfVmTfl5oxPvCL3LmPk0Hlj7bXPz+3lutOHub01D+r211h7x8kjYu0bLsjuBz/khtxZXYfO9WysPeKCuWPt09fKrXn/+KOrYu2F3p4Qaz8yPfd++pWLr4+1X3o2u9/hHy6bP9bu8FZuz8ErBs+Ita86ZfFYu2/vbWPtmS/k1qMscuvpsfahn+0Za1dVHfN97j3xxlfn3tUOn/XyWHue7Zp/1vnkqWOr3vxt8zBWWKO1urQ2/7n2gyG5PUEv/vmjWHu+U56PtS98fHSsXVXVty13vznr4rl130MvXD7W/rnRK9Z+488Pxtp/uCX3s3bugs/F2i90ze05s//HubMaqqr23DO3Z98mdz8aa5+4+Wux9pOP5MaMuq5xaazd6YDcXIazckvV6vajcu8Z+//4eaxdVdVvrtyZuPcvNCrW3q1fbvzignVye2Mu8V7u/e7KW+Xm/a70QO6d+lJf5PbT+OTg3rH2rcEzkKuqzhyya6z9/DG59aifnJibp3X69YvF2gcd/rdY+5STb4y1N14mtx/pHn/5Itbu/fRZsXZV1d7HDY21d713h1j7vIdzN+ufvJH7PasOR8fSsxyQu09f/drlY+1/dcqdBTzLuOw+IrVvbm7cZY+OjrW7Lzc41v7h/dw79V6DcuP5h588R6w9dL/c8/DnR+f2f+txVHbezGrtc3MZ7tp3k1j7+tN/+77m/1/1GPB2rH3J87l9Y66ePXe/OmFSbh+RgxbNrZH7cETub1lV1d0fDou1z9krd+7SG9vl9sh+8IBBsfZrM3O/4xM3/0OsvXEjd57dKcvmfs6XnZDbo6iq6vIeub1Ud1puoVi7xl0RS/986Kux9uwHnRlrX/lSbm+FI7bK7Snx0Q59Y+2OK2fHd4dumTvbZOJR28Xayw0/JdY+aPtYuoY8tU2sPeqH92LtcUvl5qC8vmzuGWHFQ9eNtZfeODcfoarqq3Vz927zrZV7X3ny+rn1Wi375Z4TPnw3t8fA3y7IzVs+763mr2H51ZYr5vZn2mjx3Bz5qqp3//10rL3MAbk52wvNlztjY+iMS2Lt9TYfGGsv9lhuDsp7fXL7p3x4+9hYe6mJuf1jq6qevyG3d8vGZ6waa+9/11qx9tsfPBBr7710bmz51PdujbUnt7SLtf+w1Tax9pvtc2dtVlXd+Lfc58s/n1w41j51UO4Mn3ETV4p0J0yc+Zv/Pzqsc02179ryP3A1/5l++6/Y9OavDtu1+ee6/+rw/jfH2kdfumOsXVV1+dK5sxvvvia3D8icm98fa7efnHu2+sffcmtJBu69TKzdc+NnYu1H7rsl1j6k66exdlXVAhvl7r0ePjR3Jsvnt14Ta29VuXX+u26Y21tpi/dz4wgt9+b2/D3+6NVi7W9mya2Tq6rqfcRFsfbyL+TODfjnngNi7aHLHBNrTzjwyFh71T9uHWvv9lbu3IA3/nxprN31ytwkjmX3ya2hqao65fgxsXa7g3PvQa6akRsLuHT23Jzn7x7OzSdY8aDLYu3ZJuf2Otzz5dz6wNVmuSHWrqpablxun+edD849F+41ODf394ZLcverJ+25Qaz9wsO5+Uq7njQ91l64U+6zbd89j421q6rOeevHWHvsG7mv/bzVc3tTrXx6/1i7xwW5cadnFs/Nee7XY6NYe1zP3P3qOblpWlVVdX3/LrH2PHvdE2v/9fDNYu179+kZax/Z2C3WXm7oCbH2v3fPrb1e9aLMPIqqqktvy+3rUFV1QOtBsfbFI3Nnm52yT2496klrrhxrH335G7H2mH+dHWvPMT33uTr3Wn+Ptb8YkPtZq6pa/ZvcO5zPzzw01v5su9zX/WDf3WPtTs/n5v3cMDX3HqX72fvH2pNOeD7WHv5Zbs1WVVW/N3LzAk65OLdP0rCX14i1L5yem+PW5ezlY+21pufWZf6920mx9sQFc3tUr3BFbvxjo9Vy+9dWVV35yQGx9rO75N5dbX1M7rnwgTN+F2vP8nZuHGLPA5+ItS+99f1Y+5UJufVifTdaM9auqjr697m9NTfbNDf+8sXpufZcHfrH2ott9UCs/Yflc3uDL/1dbt+7I67InY224Y1Lx9pVVZ0uyr086/9obk7C4M59Yu3bD8zNcVvuh9yZl2235M4/PG/B3Llsh9z+bqy9SI/cfKeqqu8eyO3tcNiaufHdDv2ej7Uf/CnzuTpx7OR6uf77Z9JGE64FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/QzTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP/F3n1F21XX/R7+7ZWy00ghIRCSYCCEjoReJTRBQBBemvQuUqSooapUAZWuIEpRmkAEpPdeBELvSOghQgjpfSfZ+1wxxjkX73C8x+P6novnuWbwmUn2XmvO//wXAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZp6ejo6PhX/9GMGTOqT58+te2221aXLl2acV3/hwHdlmp682trbbtOrD2g78qx9rvjvoi1q6oee+yqWHvxoZvH2iss1TvW7t5rsVi7c5e5sXZH27/8CPyPaVnY/M/Tr82q2bH2vCmLYu2qqne/eDbWHvfilFh742+PirUnTcr9na+3+vdi7XEv/iXWHrnS+rH24MEDYu3p170da1dV7bPqXrF2t05dY+3JE8bH2o0Fn8fas6bm7iGqc+7fe9a83J+7S69psXZbW/9Yu0eP4M9aVXUs/CrWbu02ONZuWbgg1u7Xa2CsXT0WxtLz57bF2t179om1W7r1iLUb2Uezqq7zY+lFsxux9rzOs2Ltnj2WjrU7dcl9ny3s3B5rt8/JfY92mp8bd5ozY2asXVXVZfHc5/rCtk6xdmsj97PeOffjVu2dc2PqXXq2xtqLOuW+y1oW5O4ZO+bn7hmrqmZ9NTHW7hy8d2vvmvse77wo93vWdfHc58v0T/8Za/db+hux9sLK3UPMm5p9QGrvkhuH6L4o94wyZ37uufC9hZNj7Qu/vDfWXnmpFWLt3u2fxNrdBua+y/bZZe9Yu6qqMWlYrN0+JffZ9vGTH8fa3ZftF2u3r9Q51u60eG7O0bwFufGXbkO6xdqfvDEn1q6qWtSRey5dNPedWHvGvNx8qz5dcnNoF+ue+z3raHSPtXv2zI2B3HrFu7H2tI9zc29WXWJErF1V1XVuS6y99OJLxNp9uiwZa3f510sY/mM6tee+yxbrl3uX0LUjN+bVbbHcu/G24PNJVVVbI3e/3Kv7vFh7wZzcC6Qui+U+0xfMz/2ON9py7wtnzss9o/QfkPt8Sf57V1UtXJTrz1mYG1ueNPv9WPuDybl79d1uOz/Wntk795k+uT33bNY2Kfd+ePDSuTUZVVWz5+X+3lt75T7b5n2Z+zefX30j3VmzZtV6m25S06dPr969/2fPC1+vOf/F99avbl2aPz799723aHrzaxu/ulGs/cSmuc+Hlwa9FWtXVQ1b+vpYu1vP/WPtiw/Kjd18sUGvWHvs1Adj7a9OyT3fTNk3t6fFWoPejLVn9M+N1VVVPTLh4Vh71oLcM23r+rm1189e9l6sffySPWPtcYdfHWtv+vGGsfb0ximx9jbP3xprV1Wd8uVHsfYfBq4ba4+7KNc+bZvXY+2XPsndQ8w/PLf++b3n7oq1j56wT6x93Ve5+4ddf/mTWLuq6vOrxsba40bl9qZ6fUZuXmD33+XuGUes/nSs/WXbqrF2j7Vz++71eTS3x8DY8cvH2lVVPU65JtZeOOPQWPuj53NjIPsvnls/tMYGuZ+3+7rn5nC8cUMsXaM3yL0DGT8kN7ZbVXXvjG1j7V4fDI21fzSxb6x96Va579IXV/w01l7zvNy7q00PXynWvu72ZWPtyUN+H2tXVa1z/TOx9sZ7D4m1P56/U6y94hO5/Qaf2XO1WHuzgRfF2i9Vboyzo7FJrP3e5OAGKlW13OxdY+0lXjsg1h58T27c64ZL/hZrX3Lvr2Pt760wPNb+/fSXY+2VxuTekz44dmSsXVX1l5c3jrU/fDU372i1pV6NtZf442Wx9qQbH4q13/nHi7H2+oOui7XHfXZWrN11eu6+rarqy/nfj7Xbux4Va8+am9snacuFO8faS876LNb+0YBlYu0frJ9ba3/H9H/E2htekltX8McxuT3Yqqo6er4aa++9XW6u1w6rHhxrL9U997l6y8NPxdqDW34UazdacnMaN3/rmFh7wrEXx9pVVX1m5r7HxwzIjXttOWtqrL1m5d7LP/Nk7j3KBxNza+07fyu3NmHxO0+OtRdcPC7Wrqpaa5dpsfZ1h+buG2tQbj1qx88Wj7X37tw31r7xsbVj7fU/2TrWnrjyJbH2pN1y55NVVf1zUO4eYtcVHou1H3429/f+7t2Z8fx5s2fWGTuM/LfWnB//q+WqtVvz1wpu+0FuHsVd7+bOpL1r+Udj7VUPPC/Wrqo6eYncvJ1d38utlRvxQm6vwhH181h76YG59n2X5/auu3+n3L6cx3bN7btbVfVK91dj7eP+lpu/suTVufm3mz59Rqx94JjcuPTVt+fe/3ReLrfW/sWOx2PttZ7JjYlXVd158+9i7c+/kZtDcusJJ8Taxy2du3faa4fcIp7P3svdQ3z6TG7/2QPOya4fOuaV3D5J247LzaW4cvgDsfaG03PzAhf8Mrf+ebM7j461n7ws933y1uzcmoqN9sjt+VdVtf+Pcu+YN2w5ItbeaJPtYu13VsytJ5lyZG7+yiljc2sEuy/K7cl1/1W5/XqWfevHsXZVVWOX3JrUVUfeF2vPXZTbX/vGObl79XU2HJ9rH7perH3P0a/G2u//+KZYu6rqgodzzwktv8qNwczd9eNY+1fDcuPqY+7O3TMOWfnsWPua63JnRTzc92ex9o1LZM8m6b/Tn2Ptm27LreGZ/FFuLuj8PXLjnO/PuSfWPubi3BrBCy/J/Xu/9XD2bPunJn0Zaw9aO3cm75ZPfxBrb/er3J97s8+ujLWX2S63H/w6uWGn2mib3L3T+MrNh6yq6rFKbo/LBUNz75BeG/tSrP2TPXKfLx/96fJY+5T23Nybv4/MraO5/6lRsXZV1fgTd4m1dz7toFi737f/FGuP6ZfbX2G/tlVi7W/fnPsu3eKW3HjbjHW/HWs/9OM1Yu2qqjvu7xtrX7b/87H2qFO3j7W7/uUXsfa3fnRprP3y9oNj7RGf/DTWvvqhU2PtqqpR97wWa694Ym7d1rr9fhtrD+6em7N9244nxdrffDV3pkznPW+JtRef9KtYe4327Jr3edd8GGvfMux/ti7y/6VfnJw753SDZ3Nz7NZ7Nzdne4VNcuds7HbIjrH2Gq98HGtXVf32u7nv8c8WOy3WvvV7ub1cn+zf/HvW2TMW1M5L3vtvrTlvOXOPaunW/J+X0/92W9ObX1s1uC/mXesMi7VnTsmdL1ZV1fnyMbH2ci/mft4OOTv3DuSX3z031j7wwdx7zpbuufvsZf+au++5/WenxdqHXPLnWLuq6rkzc2uX7ns0tx/pK/vmxozOHP9OrP1WIzdmdNY/cu/zz98kt3fM9jflzgIeetVOsXZV1b59cvtK/OJXuXcgyz+U27vur9sPirU/PDA3J3D7X+fmWy/1QG5MeqlH7o+1556TWxf54em5s4eqqu69Nbdm647bc+/77vtdbu7K6Gtz+/cv+c9jY+2FZy8da4++ea1Y+/F73o61l136hVi7quqwvrk/+wFDcuN9907JPaM8uH/uPJgNLnou1h49b3qs/dobubNZL/hnbg+2FW7JrZmqqjq+b269+8KBf421z1o994yyTr/c/tZXb7dmrP2dwbmz9B5bP3dO6HpjT4y1Px6VW29eVXX58qfF2r3ezo2BLLdFbg3NyLUuiLW/3KYt1t7u6dz5P53+Kzfn+Nd9cvvlnLvt/Fi7quqU2bm9VJcfmhv7GTb9gFj7uB65sZ9DnsrtmbPgztw+RaM+ya27rgW588XuXi23L1VV1RM7Hh9r9/hJbt+9O045LNZ++Lzcz9uogdNi7YM69Y21h+13Wqx90kFPxNqtQzePtauqLvlsdKzdfYvguuvv5tZTfLJv7s89pjV377RwUm7PvT5r94i1j1oxdw/x1x65dyiLfbc11q6qmrh47mf9ykuejLUv2DB3/vJv39kj1h7zYW5O4/Jjcmsyf90ptw72ydtze2k8s9qhsXZV1Qcb5c4e2OTmx2Pt8yf3i7WXmZY7w+foC3J71jz249z47uQeuTkBy70Y3Af+tdz7m6qqodvk9kvecn5ubt87e+bmHL13fe5c2+6zcvMRjt86d77HvGnbxNptv1031j7n0AGxdlXVnP1y6yLGj86trbzto9xZwhs8mTm7em5HRx0/o/6tNefH7nhutXZp/ryCFz7P7Yt5/nO5jXdf6Z87F3b1t5aPtauqLto2t3/bk6vn9kKdd+w5sfafTugfa1/yy76x9oh1cs9Ww0ZvFmufd19uT85hq+XGEKqqfv2D3DyOIUvmxjBuuSQ3ZnbWNcfF2teOys2VWv3U3PfJpCdyY8NfTfk01r7ud9mzzVYcnnu+eW/r3M/6nwf2ibVvuCi3lmSzF+6ItdcZeWSsfcW83J4Wn+6am2/90du5M912/nZu/XFV1TfH/lesfcfo3D1rx/eviLXv7vFsrL1iS26O/bmX5N49vbZUbi7DucNy4y9Pjdor1q6q+vmjuX13u/348Fj7no1yc0F3P65vrP389Nz+0n9fJ/dddtzGuT0G7tslNxdzuQd2j7Wrqo74LHdG6UPdc+/8/jg6t57jmlt2iLX/PH2DWPvZS8fG2uc+nDsX9sLBf4y1z9k5e57c0pvl2h+tlXu3vdIBuTmwh26a+x4/cGDujK2dTsnNsZ9wcO5s1lO2XjnWvmXf3OdqVdXeM3PjXmctyv3ZP/psyVh74iYLY+05L6wTa++1be7d+EkDcudVPrIwN+9nZGCO1f+u9wq5M74m7Z2bA/vu1t+LtZ+clHtfed5Gud/xG3p8HGvvP3mpWPu4iQfG2jctdkCsXVV19AnzYu0/HpFbGznsD0fE2qfttWes/d6Nr8barW25PfD3GT8r1r7jl0Ni7U8evDDWvub3Z8baVVX7b/1irH3oybm9yG4Y80asPWaLb8baNxy9fqw9YNXcvsHnjci9Q3lw6Fmx9moLc89GVVVPjMvtI7vk/bn1Yq+25s4gfP39ObH2hqf3irX3/E5u/ss5v8uNee3ySe68zUZ77gzCqqrbJ+feJ9y2WW6f6vN/mZsPccawg2LtH22a21N0xka5tW6v7pzbW+HFx3Jrn846NbeWtqrq0f65uV7jJ/8g1p7+Um6P7Bf/lJlXuGBeWz1w6nX/cs157rRhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACarpG+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqn8//kP260L6xGe8t/6lr+W4stubDpza9N/mRcrP3l+CVj7R5LLIi1q6ra2jrF2i88cU+svcFPz4u126Z8FWv37RpL15ezP421Z3w2KdYeOHxIrN29NffnrqpacfERsfbAzbvH2lMmfxlrL9GySqx9z/33xdrLDOwda0+b0xZrr3DnvFh7x0HfjrWrqmrejFj6i4lfxNqLZuf+zdtbmv9s8rW57bnP1XkLhsba3bvn7tNnt/eNtRfv8T96dP5/qn3RYrF2VVX3bt1i7a5dgg8KXRfF0h292mPtRvWLtbv2yt2/NLq1xtq1IPcs3qXbErF2VdXs+R2xdo/+fWLtluTvWZfc99mi9ty/d5cF82PtTl0GxdrVmhuDmDfz3Vi7qqp9bu45oWvn3M/bgknTYu2Wgbl3GZ275O7bWrrkno86dcvdK8+bODfW7hx4R/m/68j9uFVjYe67dPa03BhInyVXiLXnz829K+02IDcWsGBhbqxv9uRpsXbn1txnelVVteXGAmYu6hVrd2rPzQNZrqVvrH3VCj+ItTsPWT7Wbl2zf6w9dez4WLvtjtznalVVS8s/Y+35/8x9vvRc0DfWnvnW1Fj7o6dz81+Gr7NhrD32nSdi7QXTp8XaX06ZFWtXVXXrmxtXX3Gt9WLtrz7MvctYsHrufcKgbTePtWfPasTaL152W6y9cntuftsSy64Uay/ekhtfraqa1Sf389avS+5+uUdH7t1VdZocS3frmntfuLAjN87Z2rVHrN0efF/Y6Bycf1JVneflPt/ag2MgXbvmxrxaFubmU3ap3FyrLj17xtrtwbkQs4O/Y50bufuHqqpF83Pv7Wa2fx5rB1/L1ypL5d5ddZybW9/YOOybsXbX4bnP1W5d/hFrLwh+rlZVLVjQJdZeqnfuvnFO28BY+813Mu8yZs+Z/W//P347uK1aWps/oWKvcy5oevNr703Jtee8f2usfdDe34i1q6pGv5W7393uO9fE2kft+ONYe/hjL8fai1py66b6f/z3WLvnfz0Ua78y+NxYe/UTr4+1q6qW32b9WHvkc4/F2s//JpaurUbknm/e2vnfv//5v/X7p3NrC54dl5vD8b3fvxVrj3v5u7F2VdUbU9eJtZdsvTTW/nLj3JjZsW88H2tvteHIWHvlk66Ntd8bnJszdFLvj2PtjhVy7/smPDIl1q6qeqJ/bk+uYR/l3nW+PmGPWLv3drk1glv3Hh1rn/lCbi7m3oNzf+dPHpC7X20Z9FSsXVW13Q9PjbWvmn9nrL39Ft+Ltd+8I/cuom3ZG2PtZ1b7Vqy91pe556Mxd+bmzmzY7cBYu6pqUefcPeuE/Q+JtV9dIjeuvWmvnWPtb95xVax9zAq537MXP3oz1n75+x/G2usekl0T+szmuTGQd373Yqw9bfs5sfYrZ30Waz/RenGsPe/WZ2Ltj17O7ev51ezpsXbb7rn5I1VVK7/ynVh7+ve3jrXv3fSFWHtmn9w63MPbfxZrH3/96rH2LqPWjLVHn3l7rH3PgcfG2lVVq/5km1h7mxd2jbXvXzW3z8CCZXL36q8+sXGsvea002PtA44+INb+5gZXxNrzb83Nca+q2mHV3O/4Hw4/K9Y+/I2ZsfZTm+U+XzZemJv3s9S+J8ban+xxSay9c7/cORczPsjdK9+528GxdlXVs1vk9lNtfX/xWHvK9Nx72hPH595XHrTPgFh70Ju5vQ4f7JZ7V9lpuTGx9glDh8XaVVWv9Mq9u1pqzDGx9twfnB1rT38xdz7aKn/P7fnXaZ83Yu2Tpk6LtZdbO/dd1mPCX2PtqqpbfpY7h7DbuNz9y8fjh8Xay2yVW4M8cdTSsfa9R+feJfQ+J7e2sv8NT8baD7etGGtXVbU/kNtPtcvKo2LtDbfKrQGa8OBPIt3O8//9PRanLrtFde3R/Dk0U096venNrx38Rm7+6+Q7c/NHhp6Ze6dfVXXl6yfF2n85O7f+ecsHcnNnNh+Sexdw0pVHxNq375/5TK6qunFm7n5zyb5/iLWrqtY7/d5Ye6uW3Jr3o27JjZ/8clHuu/T23faKtX+488qx9m6b5N5zLj7z/Vj7iatyz3VVVes+lNtXfPJLufmYe96bO/voiSFXxto73ZVbC3vH67l5Wst++71Y+6NlcveMVVV9Ts6tzfzNtrm1/ofdkhubvvfk3FyKh5bN/azvvuXfYu2pY4+Ltc8fsFas/fQfc+/0q6pWePC0WPvw1x+Jtc/bf59Y+6T5O8TaQ/fNvffqOvHZWPvXG+TePV0/PHffNub3g2PtqqqNds+duzTgte1i7dZpub3Q9um/TKxdA3L7mHz3iNyz2TKdct/jGz2UG1uuqup2dO737O5BS8Xak97PnW2/93W5/aEuWeXxWPvup3N7uc9/NrfP4lU/2CLWPrJfdp7YB/vl9s/tcepOsfZP7/phrD3i9Fdj7Teuz+1j8v1huTMM39j7jlh79Sv+K9auqur849zv+PaX5p5Lu/1il1h7mcZfYu0jtsk9o/zqgFVi7YHrPh5r9+6XOxt25Lk/iLWrqnbdLLcZ/VG5W9baeOGMWHuL9x+ItXd6K7cv+dLX5c6snHhv7j1tl6Nz54tUVV1202ax9v3fzd03Hvj5n2LtPf6SG9s+6vYzYu1/PJMb5xzayO2RPfXa42Pt2Yt2irWrqjq98PNYe8gduXeGV9/4YKy93NsHxdqfPXlDrD13TO73bJvW3J5/J/4tt2arquqyV3J7XB7xdG6/5sG75/beG3Fl7v3RhQ99FWt/tu7dsfYFI6fF2q+NyM0r7Htxbn/Lqqovf5M7c/PCfXP3jXO+l1sj8MTLufUo99/3aaz9RqexsfaojxfG2luNzp73eUjn3D4qL7Q/HWsvOyg3d3ncp9c1vTlj5oyq+vf2MLnmsE2rR+/mjyUMufzypje/tsOpD8faN62WOzfgkEuzzzbvH5x7/7P3qhNj7bd3yu3lvvoFv4u15/98bqx9/bzcO9ZfHpb7Hb9kj5Nj7YuunRVrV1XNOzk3X+nRObn5K502yt3r9v0it5/Gz0/fPtZ+dtz3Y+2z97o61j7q2dwz3Svr3x9rV1VdPfyPsfYnH+X2Fd/v8dz73Q0eyo1fPH7ZCbH2btfk7hnvefyWWHuli1aNtU+66NFYe8Zn2Wez3R/MPScccfdOsfZH51wYa//xwtz9y6lL7xtrn92Se9/223Ny7wFOW5jbs+aDH+wWa1dVTdwht5f7je25sZ8/7JV7r/3MtzeJtY88IXfO+aI9c3NXxh6VOxPlrqOb/w7ia0NWyq7zHz4qNz/twDWDcxKPys2N269901j7h3/4aay9zsO5vXPfP3fdWPv8VXNnyz9xfm6vwaqqcbfnns96Ds/t7fDnY3L795/TLfe+8Bvjcs8J6z6X+x7/fd/cHgPfnZs7k3b41efG2lVVo0/6INaedE1uf4Wn1/9GrD373e/G2p2H557Hl51zQKw9dPH+sfbPjs+tkdtkwOexdlXVBaNzZ09fXrlzaX8+KXf2wP5rxtI18pRDY+1L/vF8rL3lw7l75YMvHRlrzzmrX6xdVbX5tItj7YlbdYq1Wx/Lnfcwc5/fx9qPdHop1r5i4aux9j3358a173r21Vj7mheOjbUHfvBJrF1Vtdqg3N53n22R299gs/ty766+2OEXsfaMR3Lj2o+vkltv3qtjYKw9bWpuL9PfNXJrIquqzlt0WKz9nR8Nj7V3HZRbb/6NH+f2GFi/R25PrA9G5Nabf/L8sbH2a9Nz5w7Mn5gbe6mqOuGm3By3r4ZdEWs/eVXuDOSztsmd6fLQU0vE2lsdmXsuXKFb51h7zedui7UvfC+77uqhT3Nz1TdeJ3fuZJ2dO1/+yXPOiXQXzJ9Xdd5p/9b/Y9Cb11f3Ts0fs3tgQm5t5D+73xlrL3dS7gy/5/6em8tQVfX8Tbln+S0+zJ2R8cAhR8bakzvn5s68se60WPv+c3PvOYf/4ppYu61r7oz1/fbLnb9cVfXmtrlnjCuPOjrWvmGVHrH2LavlnuXn3ppbI9hl6FGx9gcn3Btrr7bEVrH25zvm9qyrqjrhz11i7bHb5Saw/Lxfbox0fI/cnOftr8iNz15+RW6+9ZZTc/v19PnTAbH2WcssiLUH/jX37qeqaviJuXOPdr80t5/GyDG554R75y4Wa//9ulx7nS9yh+Dc/PPc+OyTG+TOOD9ghdVi7aqqrcfvGWtvM6ol1r7+W2Ni7VE/y50heO+NU2PtWfNze6nv83a3WPvRCY/H2h/PzK0lqaqa/sFesfbUy3Pr1U59+2+xdpeDn4q1j994eq49MTcXc6PDcnsdvvz33N5zV32V+x6tqhp+Xu6Mr+d+flGsvWBi7rPtts1z4xD3Hplbx7LKFzfH2odvunOsveFFuXW4e16Zm69UVfXY1rk/+yMvfhhrX77rxrH2MR9Mi7XvWOKYWLtnayxdPzkmt65h0ZEjY+2Xbnw51q6qGnr5fbH29CuXirX/9uWXsfZ+++TOX/7p8blxzt/++aJYe7mhuTnuo676Zaw9vTU3r7Cq6qB9c+uf1z8yt3ap3zO5c6cv32BRrH38vRvE2tu3bh1rf2dibr7Tiv1ye+f+Y43c+5u/vZ17RqiqmnZMbh/Z/U/Ntcees1Gs3f5pbt+a/n1y++6dfXxun+hNd3on1n5+7dxZvDse9FisXVU188C3Yu23Nr0r1u54LPdefvJ1uZ/1b62/a6z98pG579I79j8v1t7/xtxZuBvsmpvvVFV15lKvxdoP35v7Hb98Qe57vP997bH2afM3j7Uv+MYpsfbSH90ea7f2zK0pnf1Ubq54VdVZP83Na3xgQm6vov233z/WHn5rZhyibebMqlP/9TriRhOuBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/0800hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA87R0dHR0/Kv/aMaMGdWnT59ae7WNq3Onzs24rv/Delvt3vTm14YP7Blrv/fxe7H24ksPi7Wrqh56aEysPfGzL2Ltvn2Wj7U3/s5+sXb/3rNi7T6LLRFrf/X+P2LtxefPjbXnTZkea1dV9ViwKNYeXCNi7QH9BsbabYuaf+/wte71Vaw9vMfwWLv3gjmxdudF//LW8j9myhefxdpVVd1nt8Xa0+ZMibVntuQ+Vxe19I615y74PNbu1zo01m7vlPse71P9Yu3O3Vti7W5dc/erVVUd7TNi7W49+8TaCxY2Yu0eA3rE2o2Wbrn2wtzv2eyO3M9599b2WLu65j5Xq6o65i7MxdsXxNIdnbrG2tUj99nWaV7ud7za58XSjZbcv/f0eTNj7W49c98nVVUts3O/461DcvdubZ9OirUXNXLfZz0Wy90ztnXtHmvP+So35tVtsdx7s0bH/Fi7qmrurNy7jI45uc+2Lgtz430dfVtj7fb23JhXz665Ma/5jdzvWcuCLrF21+C/d1VV29zcPeuCttzY8qzZud/xLovl3l3VotzzeM8Bud+zuZM+irUb1T/WnrkgOP5RVXPm5u4h+g4I/tnbcs+lnbvlPl/mzp0da0+eNDHWbnTrFWsv7Mj9e0+fm/s7r6pa2Dn3znDR3NyYW2v3XHvmoEGxdtcvcj9vy47Mzb2Z+l7uc7XPosmxdlvw1VWPXtl3V12mB//wrbnn0oWVu2/r3SV3v9rokft565ibu3/p0pr7O29rz40zLta7b6xdVdU2PfedsqhT7p1hW0fuHXGXnrn7tk6Lgu+n23Jjy3Pm5p6POrfnvstmz58aa1dVtXfkxkDmz8qNLc/pnFsLs8Lg3Fhj1wG556PZCxeLtW+f+nCsve1F342124PzKauq3hyXGwtYddXlYu3WTrnP1ckTP4h0Z82aXetsul1Nnz69evf+n91LfL3mfIlTt6pGYGx81ye3bXrza0+O3TDWfmb7w2Ltqw+8K9auqrr/NxfH2hc//mWsvf3AVWLtn13/Tqz9/OOjY+11++Sepfu8fkGsffOUXWLt1ZbIzcurqrpl09z82zPeyI1hfLpxrj340tzzzRHfHR9rvzco95l+/21vxto/GbFUrP3Cm/+Mtauqln9ur1j70AHbxNp/6HNzrD1+rcdj7QfueyzWXjBvrVh71SO+GWuvdvyEWHuZ368Taz/YZWysXVU16dk3Yu3+2+wWa7ed/JdYe/C6y8bamz+yY6z9/KhzYu3evS6LtZdo2yfWnrjNUbF2VdW8Z3P7BfWdkPtOmTJ0o1i7dcSKsfYDq/821m555OBYe9/3Po21HxuQ+zufvfIesXZV1Xpv5X7Plvmv3P5QH1/441h7wX65Z5QpM3NzSPrPXDPW7v16bt7OyJG5v/MJ794aa1dVLbp6SKz95qnvxtqPzto71v7+6rmxxmGX3R9rX7drbu7vSvO3irXHXvFArL3T3rn9maqqejz3Yqx9T/91Y+0ffrR0rD3toOBakvbcu6svX8mt+35/bO4+faOZufekN25wZaxdVbXauNy8o7VXzc29efmrkbH2iA+fi7Wv3TX3fnrJ8ffE2oNuWzzW/vhbn8TaCz7PrT+uqnqle25tZGuPwbH2+p/knse/WiY3x21+R24+wrpDct+lT7+3cqzdp3JjIH0G5sb63pjwWqxdVXV+z9zz0Y/f6hRrb7FWbh7Iyn2fjbWfGrZ9rP3xjrk5+oedtF6s/XF77tnssy8y63e+tnD7nWPtZS66PtYe0pE7O+mew78da7f+MTefckJbcPyly6hYu9eQ22Ltp7Z9Ndauqnr3zdx+HocuNizWvuurt2Ltb34jNx/itw/n3h/9sEdunlfbZr+JtX/6SG5twkMf587yrap6/vjcuNeyw3O/Z8sduGqsfdnzl0S6c2fPrdG7HPZvrTn/5rGfVafW5u9988P5tze9+bVeB6wQaz/+fm7+yM53Z/fbWfHDzWLty8f8MNaeOzy3nuTcNY+PtX81KLdma4vBufnWp40+MtbeaI/cPK2qqv1acmNmozsfHWu3DLsh1t75kNx8qRUu2TrW/vuoV2LtK87cINb+zgW5z7ZRs3PjhFVVr612bKx989m5+f0H3/hIrL33M7m9RF6+OTeGcfBlI2Lth5/5ItYecfexsXZV1ckf5c7y23rx3HypI36R+ze/8PQ1Yu1BV+f2xlx9v11j7Z/Myc3b2Xh0bi3JllcGz36uqot/lfuzH3DG6rH2pRP3i7V37rdDrH3MObm1LL03yO1xcN8hufcgyzZyn+m/mJJbN1VVNW3v3JqOfTc6Ldae3pobC9hu97dj7ZfW3i7W7v1YcH/tLXL3q332uzPWrqp6/MzcvqJL/iU3B3aNy5+KtT/8NDfXvF/LsFh74qjcfdvdd+fOfOr1+L2x9pY9c2cmVFXtuVxurPGrEbk94DY58YVY+4vfTYu1f/SP42Ltbe/MPQ8/9kBu//8vbjgv1q6qenTp3JqOH9xxQqx9/DuZ+VJVVSedlBvT7z1+81h7yDG5tbgvrHpKrP3Th3L7PF6y42qxdlXVDmOfjLXnj8+NPd2/4RKx9uChP4+1R73RPdb+zdi/xdoHXpnbN/iFT3KfL1VV176eu1d/cpPLY+2JXXPrkPe7tU+s3f67a2Ptna/OvZf/zYkvxdqD99gi1j7ze7n1z1VVjUW5eQEbPfx6rP1G2zGx9lfr5+axntf5/Fj7g2G5vXsvuXZGrD1r0dmxdlXVXeNyZ/Lue0ZuXuNW5+aeSzt/skysPeH03O/ZZ0vk3pvd+XJuH7Zb/pb7WXtlk7Ni7aqqVw7I3bO2rpHb0/TJ83Nz5dc+OPc9/ul7p8faL405ItYe+EZuL/rXR+XOVamq2m9Kbt37kifdFGuP/fb7sfbQL29senPmzI4audbMf2vNeWv/3tXSaPkPXeF/7/1Pc2d8rfXO9Fh7h9YfxdpP35z7O6+qmv1G7nNx7QG5fa0Oeit3xtjw8RfF2ttdlvtz3/anXPvs13PvIVb7IjcH9aIJuXNwqqpOO/1nsfbrZ10Va2+zMPeucfcRuT0Gtu6TGyubvEduj6MhR+TeM666Rm4e6BKjc/unVFXd9nFuj4PXf5NbCzv98tyeFh/ud3Ks3XvycrH2GUvm5t723Ty3T2KnAVvG2l2vPDPWnnHDpbF2VVX/XXNrBHv/MHc+67KnN3/s42u9l8nty7nUJrl3fTf3fSfW7jMsd786YrEzYu3aKzfuVFX1121zc8R2e2uvWPugeb+ItbfaPfeur8cGufO+n2vN7SPf957ceZWP7pNbv9Ox2MRYu6rqmf65n7fHG7k/+6eTJsfaP9vz2Fj7xkW58xq2Pj93HsxNn+f2FF/3H7nx1eX3ys7L22nL3LnX222bW0Pz+MLc3JVvvPzLWPuLJQ+PtbtuflKs/fcVcvPrV7kzd+70y3vn9qWqqlr2syti7V6r5vapntb9iVh707G5fSUmvJg7o3Tj83L7WdwwLjcvr+XC3Fm82/8qe1bnXRflzrpoDf6sD3x4/Vj78YmbxdpDvsydv3zazbkzNta9NnfPuMPSP421R6+Ru1+tqrpu2dzemufvmht/ufjo3N4Kd83Mne8+bnJuDfDLL+bmsa508/di7R4zfxBrvzcqt45k8FK58fyqqmmH3h5r9+2xaay927ltsfawfW6NtY/ceP9Y+w/35s6yua9z7szr++7L/Zx3rJub31ZVNeTw52PtSwfkxl++80VubPmY3VeKtf98Y24vsOFTD421b/7TH2Lt/dcYEmsfsVR2XUTfJdaJtfffLfc8/ti7uXGI5956KNb+6M3cfKeHpuTOXrxp03Ni7Xt/d1isfcZSufHVqqo//HqzWHv3GbvH2gu75vaN2eGazHzxGbPaaum1rv231pxf++AR1aNn63/oCv97LxyU29f72vty+1u/8/QfY+3xBz0Ya1dVHXdWbj3J9tvm5uYNnJr7XFzvW7k1yK8ud0esfdhPcnM4tjgqd//xyZTcuPQ3d8l9B1dVbTLpkFh7jaPmx9qvTc297/v++uNj7ePGPh1rX/vLnWPtb6+XW/f92hcHx9oTbsntpV5V1eWW3LznZ28Zl2u/kvt7/+HzuXO2Ttgltya09e7c/kzrHZ/bB3XlF3aKtZ95YnSsvf7K2ffqW/4zt4an4/rcWv+Ntv9GrN1359we8ku+PjfWfn2N3DvePr/K/Z1/59Hcu+XHn8qtyayq+uduuTML9vxW7v3P3u/l3i9ftqBXrP3uDT1i7RNXzs2d6bju41i7/a+5uVIPrpHb966q6qSbcs/EFxyZm9/f5/k/xdpbHp47p/PdM3JzZ7r0zM2/3W5E7h3OKS/m9oY6fM5OsXZV1c4r5vaO2WKr3LNZr4dz59qP+0lu3+ClrsidUfrMBfNi7ZdeyD2bbT3s8Vj70F0/iLWrqvb6fJNY+9Gbc/uYrP/Rs7H2dUvnzm1886GLY+1XFsvNgV100jWxdveRk2Ltu57NPh91WSP3fTb0nNx6krcfy63huWPp3N4xKx6d2zf4gp57xNpPvHlgrL36+bl9JWYNy+0pUVW1zLTcvfrIGbnzZN766Qmx9p+vyL03W3yz3B5su/9ox1j7og93iLWP2//tWHv5Prn71Rsu3zPWrqq6uSW3l+u4k3Nzh9c/IDev8Ncn5tZNrfbXN2PtMXf8I9ae/HZubLllvbVi7ePf2SnWrqo6777cHvxrD8o9l06fmjt/+VvrTYu111gztwZ43al7x9pDLsqdM77JhBVi7b/NyI07VVU9uuC0WPuplXJ7xzz8vdwecM/+9aBYu+3Pt8Xaf9hqWqx9+J653/Eb3rog1n5qfm6eV1XVEUNz5y8e8Z1XY+0fH5k7e+C2szNnnM6bsaDOXPaWf7nmPLuLEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATdVIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwv9i7z2i7ynrv37+s7CQ7PYEQCL1X6SACEpBQBIlEIjV0kF5FRClKEUQRECkCorQgvUjvhAAiEDAElNB7D5Bkk7rb8+bhP/5vzhiPQ8/6njPGdb3OyGfuvdea5Z73vCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI70BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyO9AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPy7/yjzvmTK/unj3/u7blvzT3k2lNb35l+Hrrxtqff/phrN35xeuxdlXVwousEmt/9P4nsXbHnNxnfforD8bag/utGmsvu+ywWHu11sVi7cFftsbafWtmrF1VNbRHn1h74QUasfbcjn/pkP8f1atnr1i7vXNIrN32wZe59pzPY+1e87+ItTs7c5/zqqq3586Ptdvac+eN/QYvlGt3dMbaffvkjuMt8zpi7UH9loy1+wzIHUd79ugRa3d3dsfaVVX9Fsl9xzsrdw7RmJ87jvdpzf3cnV/mjmXzW3Pf8ZZeQ2LtXn1z+5e5M+bF2lVVLQMGxNpdzR/e/P80cqcv1RE8h+hqmRtrV3vvWLqrT+47Pig47tQ9Oze+WlVVfYLjL2/lxndbhuTG+9q7cp/19uCxtKsrdywduFC/WHtee3CfnjtNr6qqHh2571mP3GVCtQzKtbuC49otffrG2l09cies7V/kzp1aWnP7l9nBc+Wqqpkf58bV+y82ONbuW22x9oDllo61u1/5NNae1pE7oPSu3AGlb6/cGGufIbnxj6qqL6flrlEG9hsaa8/rmRvn7O7MHc+G9g2OqS+8VKzdY/acWLuzO/f3Hty5cKxdVdVzUO4coj13ql7V0T+Xzk0DqV69c3/vBeYOibUHN3LjTtUvdz3c2jN3/tIZPI5WVTUW6oq1583LjWtX46NYunXAgrF2d3Csr9eCufGXjtm5z1r/Xrl926xZwQNpVfUbmPu8tczPzfvpMS93rj7/89xc8Y7W3Phuj45ZsXZ358BYu/rlPmsDeubu2VVVdXbm9usDWnPH8YW7c+fqLYNy1+ON1iGxdu/Zs2PtgdNzk60+ez+3X+3skX0uYrFlh8fab7ybmxjwtcVyx/FFhy0S6c7s8+//vjd6ad/q1bv5x8SBb+buPT05aXKs/cTcLWPt176zZ6xdVbX4Srlzn803mBJrbzAnd0y49JYDY+2tHv5prD1tu1Nj7ZnvjIi1R2+am8Nx4O3ZeTvvT1021l5geO7c59lncr/31TZ4J9Ze/eqlY+0b5+X26Yssk3sm9P6u1WLtCwa/FWtXVU1cZrtYe/K6+8Tar552Qqz9xLePiLVXnvxQrL38Gb+LtQ87bo9Y+84VcuuB3fvW2bH23EFLx9pVVf1XuCbWfrlz01h73x1y40bjP98+1l5gw+mx9pdLbBBrd7Tn5kN+uOzPY+0592TnJC61WW7O85BBufsBhwdvNz7y/l2x9pfTcnMSL/w8N8/88/1za0P1aPlWrL3hw7m5UlVVVywxOdae9NpBsfYHI3K/9xUWnBRrD+38Zqy94INPx9pPfLBhrD3p8Nx8gt6zV4y1q6q+XOLFWLvrhZGx9pgNcs/Cfvlq7p7dc1/m7psNuTQ3nv9Irwmx9gJjc8+ELvTR2Fi7quqd+WvG2gN2fy7Wnn5X7tnrK57bJNYeO+PtWLtt8AGxdr9F/hFrr9ya+46tvUDu2cSqqtUHnxhr//PVY2PtrhF3xNq/Gbd/rL3t5Nx8696fvhdrv7pKbr86pHfumnSZ1ZeJtauqFp+0d6y9+lu7xtr3LrJ0rL3iAofG2nMH5eYjLNf/l7F2j4EPxNpXzMmNAxyySG6+9j2zc/Nuqqp2b8vNW5662/mx9ruPvhJrt/bbO9be4B8Px9rDZm0Wa6+zeu7e1XOvLR5rL7NTboyzquqbH58bay/UZ+NY+58H5N6Ht+DQ3N980j65exmrHHF/rL3Mdrm1mod8nlsz54xPcnOOqqouGpybU7nD1y+Ptfdr5Mb7Wh5aJ9Z+Z/t7Yu231two1r7jltyx7M/3/THWnnDHC7F2VdVuY3PPnI9fMTfH7fGnroi1L3g8M/7SOe/fv0e74EnPV8ug5t8POenW3PPP827/Uay97/oTYu3331gj1q6qOunYl2Pt1ZfLrVW41ou5sZupu/w91j7kO+vH2icuunWsvd3hN8Xa299/TKxdVbXhyjvF2u2Tjo61ewx4PNYeeNxlsfYmV+eeF5u3+qqx9ovDcuOzn12bm0/w8PKHxNpVVdu8s3msfcEFuXGEllPXi7Vbt8h91i/8PHc9vce3cp/1hR/OLd6/y9Tc37uqasN5d8fae23z11j7tP1XjrW3mpSbk9iydW6+1Aqv3hZrH7dTbu3d9+98PtZ+6rrcvYCqqus3yj0zNu643HyGHd4/KdauL56NpS849wex9tgfjYu1l734a7H2Sbc/EWu3bpGb81xVtdcxuTlyN651Z6y990G5e+uP35qb7/3GWWNi7dOufiPWvnni8rH2anccHmtXVQ14NDdf6rL3cmscHHFwrj2lNfeM4Dmf5dZQmXRgbn3LY+8+Jda+8bG3Yu0f3XVbrF1Vdd41/4y1H7knd7/y/TkXxdrPbPVkrL3B/rfF2pe9lnsP8SItt8Ta23+YPYfYb73cO4De7fdMrH1jbmpgzfhZbmx72uzcmuhDjs89N3XIC7l1gy8bm3suc9O2r8faVVW3X31zrD3vojGx9tJDcs+d3/tYbt7RP/fOvbtx1dNyY+qrfLJFrP1aV65dVXXNpUfG2uev/EisPePQ3Bq6V6x9b6x9wH0zY+3rfjk+1v76Ta/G2vufflasPXT8D2Ptqqo9r8y9B/nhhY+Kte/eNnevdP6Lq8Ta/a/LPSN42la5e4Y7r5ybU9m1YW7Nv6qqwbt8FGvfuGBuHdulr3oq1r58ydzP/dZSuTG3KWNz37NL7s6N7x6/ybuxduuL58XaVVW/eub3sfYeJ/0q1r5hydw81rm7HhdrX7Bi7jph5IK5efJH7pZb2+GYq3NruVZVDWj9INbe+u+5a8OL/5p758M3Lji+6c2u7rlVdfK/9X+sOHBu9Ww0/zxg26/n3vd9+3O5NSk+WDO3fv6Pj8o9H1hVNXrZ3FjdDlNy60x37DIs1v580pmx9qFv5p6hWWTn3Py0FUa2x9oT718i1t5hn9di7aqqgVutEGtf9viOsfa6f82d47897tFY+5qJI2Lt3/0k9/zxlestF2vvfP5Vsfb+G+buqVdVrXJ0btzonStzz9rvsGJunPCKQ3PvGl+qM/eOjLN/lnuf3UON3DPAB+yeWzPvw8tza7kv/1BnrF1Vdfqvcmsc7Dz2xlj71nGrx9pzTsy9l3a7jb4Ra9/+bO79hU//OLcO6yNn5tbW/u0rM2LtqqovHsr93i/7KLcO2qKTcmtrHnRB7nz1rOFvxtotS50da3/69uRY+/4BuXvqU0cvFmtXVY27OLfOwD+Cz6P2PjD33PfyU3NzlS6+PTfO2Xp47n0Nv2+ZEGsvceT2sfakn2Tn3s5eM3euPuvq3DNb677yeqx9+dInx9p9Dsodz14dlxvzuvyA3LOof949N9d62vjc97uqar1v5tYGf/CG3HyhM17fN9ZuHzQp1j544nWxdvfY3HyE0c9dHWv/cq/ceqK/ODv3PEVV1ZOv5553f+eYtWLtZf++W6x90YCXYu3x3bnz5XMuyM21GnHpkrH2Yc/m3v18xE/2j7Wrqka/mtu/vXVvbt/2wiu5MdbzX87NxTj7kF6x9rBf5d6J+1n/3WPtE74/JNY+7tncMw3HPZu7Pqmq2qd/bi7GcYfk1q894IjrY+1jWnLzdy+8JTdHv3vV3PjLNUP3iLVHjHsx1h55d+7Z46qqj6/Krcd+9QsXxNqbPJObg3Lnn3LPZF56w7dj7S0vGxVrb/at3FzxP35jZKw9+kcHx9pVVfvcnPusX7HRp7H20KFvxdo/POy7sfbW606Ptce8dGysvfKMK2Ltw0/OzT85clDu/KGq6sHJuWftD/t5LF2jl8793OsMWi3S7ewx99/+P85ZtqrnwP/AxvyLDv791OZH/6/rz1sx1v52R26O+2uXN39dhP+/5y7NvYNnyx65ccoJB+aeEXz8L7l3yh1yau5ZkmdmT4y1u2Y9EGu39s5dW929cm6srqrq1rmLxto9n/w41v7t5n+JtZe8c9tYe9Jfr421u/tuFmufc85jsfbFf8qtWff817L31futn9u37nZ07v7PYYPXiLWvfuzKWLtt+dzvfOtrc9+zJV84J9Y++sXc2vmzd8r9zt84Pvc5r6o6dPxhsfZ5++XWA93xuDGx9mZr5OavrPqHzJhVVdUJZ+Se0Vvn+twYyAJbLRJrn/1Idv9y63G5+QyrX3VrrH3MR7l1kkYetVmsfeNmufvq351xfqw9buvceqZ79L8k1l576dy7MquqVrgit771Sb/PrX13wwq5Zyp2nd0Va+/xWu47PqBPbj7kgH1y76vcZv8zYu3TXszNca+qOnjTMbH2gn3uirVfXOT5WPvDE3rG2n85Kfc8R2tn7hxinZbcedv7t+fuD3f1OzXWrqoasWe/WPuey3JrRR859/ZYe+idC8TaPxufW4/9rIty7z3adVZgstH/tcotuXfS/nXYL2Ltqqq95+bWNH134JxY+5oDcmtafHRQbq3mnx9wcqz98NzceoP73pKb5zV9kdx7dKZNPjnWrqp6/ZLcsfScS3JzvTY9+qJY+/KX9o61Xzzqm7H2Lz/IrVm8wJ9yz8kNfiI3r/CEeWvH2j/YbelYu6pqj98PibUXfSi3TvXFZ+SeR13z+dy7eJe8aEKsPfC63ByUZdc6Pda+5LTcvfFdJk6LtauqTjj3p7H27kvlxgKWmrRWrP29/XPPAW87Kjf3ZvW/5e6TntqWex/teccfHmv/7bjc8z9VVQ+9t3Osvcmj34m173k+d89w7JW58b4+2+TOGY/bKPc733B87h1hOw7NnTvNe2+vWLuqaq8zW2LtScvm3o920SrXxNqfnrRSpNs+///tmfPcLBUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqukd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5HeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqclvQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/2y7rdW/+jUGNL07/YN7mt78yo63/i7WPrH/nrH2yif+JtauqtrlwC1j7VNPWSfW3nXgsbH2PatsE2sv2vVKrL3j1J/G2pc3Loy1j1lyj1i7quq+D5p/LPnKd/Y6Mdbe57MFYu1n/nF8rN1n3iax9qJj/hFr3/po7nP+p6uWjrXHvPxhrF1VdcX3psba068bG2svOfrcWHvEcZ/H2kvd0ivW/s7nueuEd/a7JtaeOO7FWLuq6uoPno21L7rsg1j73L1+HWsfPvVPsfZBreNj7RN3fj/Wfm7kI7H2sFP6x9rDN1011q6quuXI3P5t3fnXx9oPPPqLWPvs8bvF2lfssnGsfe3EDWPtngs+EGvv075drN19xHdj7aqqZQZdFGv/dfRrsfYy434ea5/yzsGx9sNPnRVrjzt8dqz9ds/TYu13u3Pj+VVV6x55Vay90xubx9rrHpPbt/ZsvzfWPm75k2LtO9f8fqx97I+ejrXf7n9TrL3GEUfF2lVVf9ji4Vj7xO0Wi7XP/jB3PFvi+7nx3U2n3x5r//yhF2Ltx77xt1j7wbXmx9pVVW2Xzoq1F/pn7lx95OjcsfTl/d6JtbsXyY39/Hpqe6x9wznXxtov7pwb8/r18rnvWFXVHg/kxmC2ue7RWHvKa9+OtYfs82CsvUOdHGt/fsknsfbuu34n1r71tTGxdlXVr84fEmt/ssibsfaS3xkUa9eWO8bSUzpy81/uf2xMrN311B9i7VOWz10fbT7qgli7qurka1pi7aufzJ0vd835LNb+xeq5a5S9Xts/1r5gywmx9k93PSLWfr3tzli7qmqtybkx/T2G3RVrv3RA7lx91dVGxNqTDu+MtVdeYKlY+8QNz4y1hw9fOdYevcEfY+2qqjH3LxFrt+y+Xqx9xe++FmsP32tOrP3rn6wfa99/du4Zw68flZsHctkruftHVVXT310h1r6+fXCs/dl2V8Tao25q/rVhe9fsuvm9pmcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/wVa/pV/vFn7iOrT2eu/a1v+S/0/XLDpza8s2d0j1p7Z3vzf9Ve6Z/aNtauqVmwsEWuvOuyLWLujbVqsvcaM3O98me7c522ZDwbH2r0HD421+y7QJ9aeNWdGrF1V1bulZ6zd9vG8WLtHS/9Yu3N+7uee1z0z1u6c/X6sPW3GwFh7biN4HO3MfdaqqubP64y1F+q/TKzdPbs71l5g6MKxdq9eX8baLQvmziFaenTF2u2duc9ao09rrN2316BYu6qqvTv3N+9sb8TaPeYNibXnzJoda3f1HhZr95iTO45/OWd6rN27b+4Y3tXySaxdVTV39vRYu1djQKzd0j833tcxN7d/aXTMjbW7WnPjTj3n5Y5lHQu0xdpd7blr0qqqnl25Mf1Gd27cq7Ny16T9unPnyx2fzom1+yyY26c3BubO22a/9V6s3V6565OqqvbZuXPWga257/iMz3PtgUNy522d7bNi7Y6eHbF2S+U+5x2VO1/tHJC9Nz6gb+6zPndO7lja0sgdz9re/SjW7tEnd50wqFfuXL2zNXeu3N67d6zd3fV5rF1VNXjB3HyI9uA1cWv7kFh7TndwTkDP3D69b0vwXkK/WLr6DFw81m6dkbtXWVU1aPAisfb8ztz+pe3L3ByU/i25cYgvl1w21m68l5uD0mNgcLytMTzWbm/Mj7UHtgyJtauq2ubk5iT06tcea/cfkJs73Fm589WuebljaY8eubmcfQbk5g53d+d+5wO6c2MvVVXt83J/847O3JzpxqDcsbQ1eG+8Grl9es/W3Hn6FzNz96d79xqSa/fOnTtVVc1qz/3eB/VdPtbu7JO7h9MYuECsPW9+7nq4qy13j7grOARy5I67xdqX3ndnrF1VNWjgkFi7tWdw7Oe9ybH2giuvFek2/gPz89e4+bxq7fEvPab+H7HCmbs2vfmViVNXjbWnnZC7vllpw9y1TVVVY27u+ubFrqVj7V4L5p5PvPDU82LtxZbYLtZ+8t5Yuja4KXf+sfrERWPtD7tzz1RUVfX/y12x9rD5uWurjp65G60vfPxArL3QNkNi7b53nR9rL3rKkrH2xz9bN9bus9OGsXZVVc+hubGbNy/O/c0/mbJSrD1uiWdi7asO/nas3Wvl42Lt0za+Otbef8ZasfYxXblj2XIvbB5rV1V9+vHGsfbTa68Xa9+2au5+wDIj34q1T/hhbkx81oSPY+3Vt83N/Z3TY49Y+9HhB8faVVVd7+0da3dM3z3WvmVu7vzlwQVXiLXXfT/3DPDiz02PtU96eblYu2OJr8Xav+w+N9auqtp0yZdi7RnP/yDWfvvh3DzUCc++EWt/1JF7Xuwbx46LtVuevSbW3vSu3PjLjBcPj7WrqpaYc0msfe+Wr8TaM7/I3TP8xpzcnMS3f3BErL3YtDVj7dmLPxtrdz85JNaeet3UWLuqasZGD8XaP9lioVj79UM/jbVXHHNFrD079xWvET1z3/Epy+Tuk86c/Wqs/fKTG8XaVVULXbVvrP2tkbl1g3+5bu6LNuiB+2LtkY3VYu3X788917DEiSNi7VFf5L7jHf1y966qqt6asWesfcWvfxZrj7n7iVi7z8pPxdrX3pgbb2sbnfu5O5YJjnm9uH6s/fAVuX3b+6udGGtXVR2++G2x9hY9RsfaR2y8T6w95aPcs0vTHx8Za6+x0JOx9qC2b8Xab0y6MtYetUnuvnxVVb8lc89GvrlV7ns2d/ikWHvKvNw9nHVeyP29255fOtZ+cFxuPL+ra61Y++W3suuxT/wsd8666EI/jrVnb5J7HmSF9XJrqX42dNtY+8vZK8bai29xWKy949jcOiK/npYbb6uqunNI7mdf7unc+O7Ho26Ptd9e+cVIt7utreqslSNtAAAAAAAAAAAAAAAAAAAA/ve7Z9uhNahP899P3zYp957z2+45Idb+ycG5d7qdc9WPYu2qqqmN3Jo3fXbKrTm89ZxfxtoXXDsx1r7317n3i/3m0Ydj7cE/yb176JCXc+8af/rW3NpOVVVbDO8Ta//y7O5Ye8TrX8Ta222ce6/bz/+aezfs/f0/i7Xfm5177/TYZebG2hdc9PNYu6rq4zty72edv+4qsfZmz5wea28+Z69Y+1trnBZrrzUq91n/rPGrWPvoTXPvhV3//uNj7aeH5d7PUVW137u5Na4HTMy9g2fiyL/H2vtdnrsePuCs3LsDzr499/f+/Op7Y+3Zbbl9+kp9c+8lqaoaekTu3Wq7z+yItRdaZYtY+6jDcu/qvOOCy2LtH7yce+fSqLajY+2b9s69E+WNx/aOtauqVh3ydKw95OPcd3z/C0fF2i0rHxhrP3bRPbH2npfkxl/enpJ7H+8tne/G2mcscF6sXVW12/1Hxdr77HZhrD38jQNi7W9c8tNYe8MNc/uX/jvlzp1GnfONWPvnjWtj7W8v+/tYu6rq4mOOirWv2vDIWHuzjtw7gFa78p+x9qNduc/60YvtFmv//ns7x9prHNMr1v543+1i7aqqHR/fOtYedPqSsfaZP1s01h7VlnsfzPqjN4m1t93pzFh7x5/m3jv9p11zn7Wz++d+7qqqSQ9vFWuPWiF3/vJpe+4d66/8Ove+zDNHTou1r1+uf6y9xcxNY+32p3rH2sNXy71jvfcOH8TaVVWT7s2N7551eO68cde9fx1rz30j9zvfa7tbYu371sjNW56w6fOx9nLD1om1t5j+/Vi7qmra0wNi7Q3bcteFgyc+Emufcl3uPsqUP+X2Lx/vvHGsfWvw9ajXdOeOo/vOyp2vVlWN2T7zTtyqqn4n7xJrL/GT3PX4FVc8FGuP+fjPsfZ2O+eeMVxm2R1j7SlTD4+1V1ntyli7qmr8P66PtXd/JXfe+O5iPWPtZzbO3K+c2TW3lvg3/48dN/lntTZa/iPb869oWXdc05tf2WnChFj7hj22ibW/GJ979rmq6s4huXOf3z/ZL9Ye/73cfvGLKf+ItXeYkXsu87zj946153wzd971xp9zc/s/XyV3jl9V9beh02Ptra79bqx947sjY+2XVs193n7VtVCs/cMLumLt5/95W6w9pm9ujvuAB3LPo1ZVffKN3PHsmNWGxNobL5G797R5PRhrf3jkObH2fblbAbX6lhvF2qetlztP3/v64BoDp+aeY6mqmtLz/lh78/dyz4R+uPjJsfbWO10da9+w5tqx9sEv5+aZT3wkd+/p8V/m5oEOevGoWLuq6p0D5sTaU+fk5omNG3FBrD159bGx9q1n5+7/zPpJbj2NZb4+M9ZeZ7vcMXyrn+WeK6iqemVobsxtyju5exnD7jok1n7zvNz3bP+Dmn/P6iu3vJt7/vmod8+ItScckRtnHPbkGrF2VdWME3Lr5675zFGx9nUrXhNr33Fd7n7CoMsmx9ojH8nNgT1vxqWx9pXnfBRrL/nyTrF2VdVGU3L7lz7nzoi1z3s0twbcxINy8wInbZ17Xuz65XNzpe7+zWqx9sOPfhprvzTyxli7qurjCbl1Bo54/pVY+97D/hBrf+13ubXvvt6WG/PqseTSsfY1S+X26Y0HcmvILjTi8li7qurRm3Of9dWeyb3vYcWHp8fah/81N9f8rB8dG2vv/MntsfYmf14h1u5+Pzfe9pud3oq117oxe2129+Tc/mXYzNyY/h6/zD2fuMrxuXezzdg899z36f1y9zFu2uqtWHvzrTpj7Xc33D/Wrqoae2XuHs4NjQ1i7dMuOTXW3nTf3BjIoa/n5pFu05FbJ3rifrn3B3WMyL0b7ZYhuWvxqqrbnvsw1h4+ZvlY+46N34u1rxt7VKy963u5d0384PHceP4bc3Pvynrp7Ny7Jnq9uHesXVV1/kPtsfY6++XOX5b+8w9i7eMOOSvSbZvdXTf/PyyJ3vy3mAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3Tkt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4H+2u3rsWb16NJre3fqPeze9+ZUjJ90ba//9+ENi7WljL4u1q6puvGaXWHulLW+ItU845chY++XXdoq1J/edGWtfttkOsfaosVNj7YfW2TTWrqq69s8Pxtpnj3051u44fo9Ye/xBy8Xah59xV6x9/VEfxNrLvr1trL3LXy6Jtdf+03qxdlXVr8deFGufst/hsXbXHQfE2mt+f0ys/UDf0bH2sOtz54zLbnNqrH3FDt+OtauqnjjmpFj7jW3Oj7Xf/9rWsfbg7XP7tsNW/UOsfc1Ot8fay+/2Qqx98HffiLXn/fbOWLuqavKYRWPt10auFmv/bYMpsfZFbbkxtwNGLBVr77zfKrH2kZdeH2sPvOXKWHty/wVi7aqqta94JNYecn5LrL31iSfE2kOfOybWPnJGbgzkwtV7x9q7vXBUrH1p/+Nj7aqqBWauGmvPWj13rv734w+MtQet/utYe8MB68baz408Kta+YsofY+3Ft5wWa1/+zeGxdlXVhL1y94nHnb9vrP3w9rnr8e1/vE2sPfvsz2Ltp+/cINYeutoRsfYmf8t+x89cvj3WXvi13D2kOX97P9Ye0J67T/vKOrn7CRev2Pw5Xl/Ze4/jYu3HThsfa//4rG/F2lVVKx29RKx92gObx9r7/fi+WHvnYbkxt2W7c/MhNnrv1Vh74wNyf+/Tn7801q6qevaTo2Ltnb6+X6x9+n6jYu2/Lprbr08f+Xasfei7e8XaPzt4pVh74tTcnMZbl8q1q6p+Mic3DjHv/tw4xEELTYi1/zHxrVh78HO53/mI63PH0smPzIq1z73jrVi7qmr2uSvE2qe8n3s24tAHfxdrX3xRbg7K8+1nx9rTRjwfa1/4Wu5YtnKf9WPtwbvfHGtXVQ3qOTbWnnRXbmz7pum/irV3eWf/WPvA41+Ktfcenbs+anvr8lh7uXP/EmtXVfX93eRY+4Cd+sfaT3WsEWt/eeaPm97snt1Vldu1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+Dtfwr/3j7pTerAS2t/13b8l/qaF246c2vLPJmn1h74JeDcu1FV461q6rmvTA91t5s9R1i7fkz5sTaCyy0aKz95fzZsfasDz+Itbun9421O+a359rtS8XaVVXt7W/F2vNnfxZrz+l6N9aeP78Ra7d1z421h/b9l06z/qPmdH0eaw/plzt/Gdp3sVi7qmpeZ27f2r9P88/Rv9KzR+473jv4c3d294q1e/fKXR/17Ds/1q7Orli6T+/esfbs7tw1aVVVv165a5SWXj1j7e7+PWLteb0WiLX7zJ0Za3e0dMfafbty7e623HlbS6/csayqqrM79x3v2Zkbh+gxI7d/6T1oSKzd3cgdx6s191mrWbNi6c7Pc+dtrbnL4aqqau/qjLU7B+SuUXrMzX3WZ3fnziH6Dlgk1p4/qy3Wbmt7J9aeNzd3jdC7dUisXVXVu9+MWHt2Bffrg3PXKNURHAvokduvdgSHX+ZWboyzunNjyz3nBX/uquoRHP9ZeFi/WHv+J7mfe/a83Ll6nz4DYu2W/rn9atu03N+7Z6/cfYzOzty4U1XVjK7cvdI+A3Of9fZZuZ+7V5/cZ71zTvB41pEb82rtn/uOz535Zazda0D2/lGjf24MpFflztUHNXLXxMFbpTV8Vu47/mWfjli7b0vuerijPXe+2tIj9/ee3Z37e1dVdffI3Ttr7ZNrt3+WO3fqMXBerD13du6zPnBg7vxl3vzpufaXub/30GHBMc6qmhe8P923T+6zPn1abv8yeKEhsXb3vNxnfcacL2Lt1sG5E9bgjIDq7hk8Ua+q1oGLx9q9gvNAevYZmmv3zX3iZk3LPYvSNX3BWLvn/L/H2qvPXzLWHn/Q2bF2VdUON/8h1v78tX/G2tMffyPWXr9l1Ui3bda/f3N6rd/Nr/59mz9fa8wPPml68ytLHJm7xniqbc1Y++GVcu2qqjU+mBpr3zEz9zzJVZ+MirUH3ph7HvXHEx6LtX+zYG58dvrI3WLtlnm54+D7GzwXa1dVbTjt3lj7k39OirVv+zI34XvvAcfG2i8P/WusvdngLWPtD7bIXVOu88GVsfaSp38r1q6q6rh3k1h73LDcZ71lqdwk2FlvvRlrbz4694zgUvfnfufLrrRarD3+67ljePvjubm3V72X+6xVVS21dO5exO2Tc5+309/KPUty98zDYu2jp38aa8/53s2x9n1zH4+193o0dwyvwTvm2lU1fI8bYu03//CbWPup7ty40/rtH8favT/JrW954+653/n2r+Xm1w/vkTuW7bLqj2Ltqqq1n18u1h6xWG490yWO3TPWfufZzWPtxqzcOOdZK+ee+954am6s76y/5+aIzeu6Jtauqtr8uNy+dbODgvMCj8jNVxr6TO45vX+2PB1rvzxyQqy9/pm5+f3PbLFVrN3j2Cdi7aqqZd7Mrad61x3rx9o/XfRPsfad09eNtT9ouS7WntBYJdb+VvBa/JL9dom1e6wzPdauqppyQu6Z1I9Gj4+1H5qUG9Pvv9u3Y+1RvXPzER79/max9vrTc8fxp1ty834u2SB3L6GqatUTcsfSvW7IzXl+oe32WHvNEbn7Zr9ZdqFY+7tP5dpTlsvdl3916yGx9muD74+1d9oy+66JQResF2vvtXduTYthL+fuH7068O1Y+72Hl421Z874Zqz9yGWTY+2tLsyNMz70Uu47VlV19WqTY+2DN94o1r555Omx9vEX58Y53+zM3Rsfvt3AWHutle6MtZcIvmf0/i1yv/Oqqn903Rdrd7f8ONYedtbvYu3vrXNHrL3RUtvG2vXshbH0xQ/n5hUOHJsb63tzQG7ublXVR4c8EmtPOG1yrL3i2rm5XteukXnWfvaXsyo3ygkAAAAAAAAAAAAAAAAAAMD/el97uarvoKZnN5i7f9ObX7nlyXti7TVffTTWPnSD3Ps5qqre3+6cWPuqrumx9smXrxNr7/2L02LtuedsEGs/sH7uvWr7PfRCrH3eG8fE2kc+n3v/clXV95ceEWtfMiy3ptadf869f+iOTS6LtS/f8Fex9knfza0B+85fcu/qXPWNQ2Lt3299eaxdVTVq1oux9vGbXBJrXzp7j1h7wWNy68ftc8ersfbg63Lrz152Y+59U6/fuGCs3Xvd1lh7zXty60NWVb13bO4968fWd2Lt8w7oGWtfeHfuevzkPf8Wa9+12ZhY++G3b4q1n9o59z6WPdc6MdauqvruqNy6v/sfkTtXP/3S3DtKj1j4pFj7+GOmx9qDjvpjrP2nRxeOtddrWzXW/sY7b8XaVVVjZs2Ktb/2o9y7Onv87dxY+/uDc+/L3PX8CbH2MzMvjrUn9z0j1n7ypdy7QfY8LPf+n6qqF1dcKtbuMeHrsfZNTz4Qaw975oJYe4/BubGfm1btjLXPWDn3/uWrH9gm1r6m/zKxdlXV+N9MiLU37L9nrH3fOlfH2mtf9HCsfU137v2oH43ZNdZ+eeLQWHv3I9eItX94V+7arKrqwIN+FGs/dffJsfY+P7w71h4yKjcHZeyPc+cQ2/SZGmuPvv/DWPuww7eIte/aqivWrqp6/ZTcfv2lY3PnbsdenpvHeteq42Ltfzz6dKx9d/Dn3uio0bH2wKdyYz+7Pzom1l5x72ti7aqq4Sd9N9Z+4vJnY+3Ry28da592/kOx9pwZuXfiPnjdlFh759WeiLWnPDkx1h51Rvba7OBFcvM5d5pwaay9+AE/jLVfuHV6rL32U7l7lau15941ft0GuXs4h7SNjLVfmPL9WLuqavihE2Lty697OdaevdoBsfYhX8/dK13u2jVj7c7Z7bH2z7pzz//c3PhxrD3typNj7aqqw1rWi7VHL7p4rP2D6bfF2jOPzexX2+a0Vx397/0fW0z+bQ0YNPA/s0H/gueO+k3Tm1+Z9J3cfOsVfrdxrH3NxTfH2lVVF62Smx/3h8tz8/t/+N2zYu3tNv9FrH3EtUvH2m2bjo+1x5yRm2d+3HP7xtr37vP7WLuq6re/vSjWfnzdn8favU98MNb+bPWXYu3WLb8Xa/eclXu24I4Xc8/QvL7rvFh73M9z19JVVa1zcvN2fvFybq2irnH7xdobbZWbM3Tn+bm5mOOvuyvW3rNnS6y99pK566PHN9851t6mDou1q6oO/DR3PJt19gmx9qFdx8Xaf3ksd591/ID7Y+0Tb3gj1r5u5dz3bPtnc/OVXjn3B7F2VdWWgw6NtTfZdslYe6ejD4+1z34wt27NrZetEGs/MrtfrD151Gax9u9vOSjWPvnctWLtqqodds9dG6547euxdtdpr8Xau3ycuz667byDY+0P11o71v7lhFGx9rWH5dbkOqUt166qOnD/U2LtR2/KPT905J/fjLUbjdyc549+lVuv55YNNoy1L31peKz9RGtujer2q1aPtauqtnj31Fj7hu1y964uv/6nsfb4v+fa86fm5h3/dLcrYu1923LvHThiWm5e4Jv35L5jVVWjd+gVa7/c/n6sffMDuXWit207Ntbe7ercXIg/75S7Lz/tb7l7CRvcnRvr+96N2bl9Hbfn1hR9un1IrH1/j9zaMSvNza3Bf9eTm8TaC9+WW3+/5a7cfYxJz+Xm1014NbfO4imX5tahr6p6YkTunVH3vDY41j543QVi7Ynjdoq11z/l2lh78Rdz6+6deXHznwP5yu/aNo+1z+mfG8+vqtqs119j7c97nx5rv3Bk7nv2f9i7r3C9qnrf4/8110pvi9B7kK6EFnoNRSCRki0IqEgRRCxbkCKggEhvm6IICEiVFmnSa2jSWwApoYQWQEokEEhd5VxxnnOzn3180Pe3Lz6fax6+Y62Vd76zjDHm9eM/jLWfWnahWLu7b+76aPcPcnvBz/hG7t0iU16/N9auqhq+xS9j7UMW3T3WHrjZoFh7yh69sfbX98+9Z3TAjrk9/3b4eGasfeOyuf00um/IfZ9UVa3/09xeiwdun/u9L/qdPWLttzfP3M+f3TW7qv7ne8vNv38oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8b9GkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOs06QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA6TXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0TpMeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArdOkBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQOt0/DP/cZ+OvtWno9+/ayz/reG9H7a8+YUZz3bH2ossvFCs3fOPJtauqhq24IKx9pypn8Xa/dsGxdozJ38ca3fPaY+1B7RNi7V7Pp0Ra3/8We7f+Yx6Pdauquo/uPXfY1+YOXd2rN2vfyxdHf2GxNoDPu8Taw/sN1+s3dk/9xnv094Za7d15I6rVVU97UNj7f6DB8faXU1vrD131txYu6d9YKw9cFDu3KkZmDuudnTnrlE+mzUz1h4wNHfuUlXV1Z07iej5PHc93lSuPXho7nM2e2bu792vPXdM7+7O/c57+gR/7pm575OqqqY79znr6s393mf3zd376Tsn933WGzxnrI7csa23b99Yu2Nu7typd1DwJkRVdXySu/8yd86cWHvA8Nx1Yfesf+pR07/U3OC9gKa9Ldbu/bQr1u6aMT3W7p2VO3+oquruzn2XdnTME2v3H5y7v9vVlfudz6zcd2l7W67dd3buu6x96MKxdndv7p56VVXP57n2jI9y32dt/f4Raw/pGB5r9w7JHVdnTZ0Waw+aJ3id0J07X+2t7P3d3q7c772tK3fOOmRI7vc+d2bu/GX6zNy5+oB+uedmbZX7LusYnDtv+3xa8ASiqvr2z91f7unN3fvpGDQs1p7RJ/dzd0/NHV/69BkQa/cE7/UNCj4jbpuTu689uy3377yqqq27J9cO/t7b+ueelQ4YmLs+6q3csa1tYO7v3XySu6c+ZNHcc4zZn86Ktauqenpyc/S7ZuXO2zqH5tp9+uXuBUyb/l6s3afJrcEZNDB3bdbdkft7d8/MnT9UVQ0aEDxfDj4r7RiW+7lnf5q7Hm96c7/zz+ZOi7V7Pp8aa6867yKx9qwp2Xs/7TscE2uPWmRkrH3xkxNi7b/fkGnP7P7ycyn//uB3a0Df1h+bl99qzZY3v3DHjbn5kL1L/1es/auhq8baVVXX//XrsfbqC+aebX84681Yu+u5lWPt/TpXjbW3b/sg1v6gT+5Z4/FvLxBrj3rq+Fi7qurVlXPPfyZfmru+GXXoMrH2M9fk7ht9unxuHupSj60Qa/cu8Eqs/Zedn4q1pz/5dqxdVTW4z92x9tFLj4u1H+/NPQfpu3Tu2Nb5u9xn/JWxN8bai200Lta++YmXY+0Jo3J7Stzf81ysXVU17wq5a+K+k6fF2vf0eSHWvuGKY2Ptb2y0Q6z91Nt/jbV/eOvTsfYq2+fWPh/4+juxdlXV+F1y96WX+V7u99458IZY+9ULXou1HxiV+x6f/+kzY+13ds7NX3nhrCVi7SGDHo+1q6peW/DTWLv7krNj7VvX+CjWvm2V3Bz7jbtz12Y/3id3H+D8b+XmYi4wKneu/Pd7R8TaVVUPPprbY/Kig5aPtd9cJHdcbXYI7pP03BGxdPvNuTmoT4yeFmsvPz13r+/d6ztj7aqqrn3vibXnvyM3R21M33Vj7UU+3TDWnjD3q7H2qBcfirUfGPPDWLsufzWWXr3/2Fi7quqRrXLt5eZuE2tPWmS5WHuV6/4ea/9lSO68belrJ8fag9bIrQn962q/iLXffroz1q6qWurd3JyEy76ZW0cz3wlbxNpLvfxMrH3ckrn5/Xcs8bdYe+zU3Dyv928ZHWvfPzw3f/ark3Lfo1VVLy56Wqw94LrcXNJ717091l5u8QNi7RU3y/17O3Dj3Hnbcmvk7jM+sELuOcaZX/1KrF1VtcnJt8TaT5/wZKx9wnXLxtpdC+bmO507+ehY+5QZuT3w/+PVv8TaD0/K3Wd8daevxdpVVd+54KpYe843fxdrf+3Hu8baI056ItZ+YkhuLun8Te4e69kvPxJr7/PetbH2W787LtauqtphuZNi7fnW/las/UKTW+/2/PGZfVxn9nz5NVdH7rVuDenf+jUlO56Su74Zv/ZBsfbw7RaPtT9Z8vBYu6pqyqu5ec/vrvthrP3r53L3bnaeckmsvfR+I2LtVcblzrv+cHXuOeelSy8aa1dVHbv3z2Pt+685J9a+5t7cPvJ7rZm7R3rUGo/G2jc/+9tYu279QSz94fl7xtr9j/l9rF1Vdeg2ub2lTj0s9zl768jzYu3Df3pHrP3j8bm/9+yvfj/W3mnKprH2qW/m9reuqtprQu58+ao9dom1jx5xb6zdvmLuudcVj+b2Chq2U+7vPfj3E2Ptrtt/E2vv8afcPvJVVWf9Ibcu9KlLH4613/3Td2PtlX6Zuy6d1m+TWHvqn+aPtQdtd3KsffpJD8TaYx9+N9auqjri8O/E2ls2uef6t4zPzRPb8fLOWPsnG94Xa69xX+79ICd+O7d/7kEjc+eMVVWbvp7b13ztEbk9e648dUSsPfOu9WPtv933WKy9y3y5fWRXXOrOWHv8HRNj7ZXn5ObYV1WddOfNsfaNn+auEyatMirWXm9q7n0Ra7fn3g374mK5eTtdl+Se2S05YOFYu6rqsp12jrXv+lksXUeOGxNr39vk9o5Z9djcWv9L58k9Mzz45dz+UB/+9LJY+5J+z8baVVU7vZTbu2ZkcAvdV/d7P9be/aKrY+19puWe2239i9y7iI97dFysPe784ByUqnp5rdw82vvX+HWsfd6te8fax162Y6z93M25dxFvt2nuecKZE38Za6/8QW6Pybo2t89jVdWkjm/G2gMG7RRrd2ya25t8nkG7x9qTt7o81p70QG7987hV94u119kot99gVdXW43PrMtoG7RFrb3Rg7tjavVnuGc70vrn3ffY5/IxYe//rcu0l7szdY/30o9zfu6pqtYuWjLUPXez8WPvkK3LPkF7YNrcGepPPcnNQdjs0d69x5w+nxNqHzp+bV1hV9aeFR8fal667UKw9drfcuvN9vt36fR4//Xx6ddaX20PlF8M2rL4DW7+f/I9/lPsePOb0NWLtc/adGGv3Wyt3TKyqWvrw/4y1f1K564ttzt0v1n7sjdz7h07+wXax9oDp42LtZwfn1rH84+U3Y+0zls/N7a+q+kZHbi3Jynvl7sevOez6WPuhk3P7mPxxs9y6htPW3CjWPnVQ7n748IVzzwFempO9d7LSBrn9Cl8Zu1esfdJdp8fahx6WexfN5yc+FWv/8LXvxdpfmbpirH3huyfG2lu9vXqsXffn0lVVl5+R209j9R8cHGsfsnnu5z71o9xziA0ey523LXt06/c4/MJbH+XmYR6zVG4t6oBJuXfZVVVd+Gxu7spG43LzIZe6L7e3wxv35+agnnNA7vro5atz+xQtd+RZsfYak/eLtRdYcL1Yu6rq4un/EWuP3S33DsMTN8/tYb/eerl9sTqvzL0P5qsH/CrWXuDca2Lts556K9b+5lXTYu2qquM3ye3lPmhuZ6w95KzrY+2zdsudO30+Lvdi2Ok75e5r739sbj/2+6adHWtv+bO7Yu2qqu/9cFysvcN2ufkQ/edfKtZeoN/FsfbWI3N74P/+sNw7eH7zVO6e1ynfya0H3aYnN/elqmpO7pK4jt59n1h75+/k3il3wddej7VPX29orD3/uNz9/N/9PDffaYMTO2Pthx68MNauqtrkl7m97xb4c+65/Ft/yM372eCM3LqCp7bYINbuu2huT9GlNs69T+bWeSfH2pc/kDuu3rHoi7F2VdUCua0167SXto+1v/Wj4bH2yx/l1gde2fFMrP30Q1fG2rMPHhlrj187d69v665bY+2qqsnNzFh71/Vy74a95v3cnMZ75uTenfTgbgfG2scMXzXWnrDxtFh7v+/nnpttNfvBWLuq6v7NcpMLfzl6Wqw99q4fx9q/2jw33+n6m3PvuXj7k9waoMd2yr0j7O3jn4+1fzU+t+9cVdUFn+Wux9c+P7dfzujTc/N+jht5ZqQ7p+uzqvrzl/p/7HjaftX07/jXDOifsPfErVve/MIlO9wYa0+8MffegOceWTvWrqqa9mhu/dCoK3pi7YUOye2nfmCfibH2Hnvn3o96zeO5tdcjD83t8/OD7tx6jn2uzb0rs6pqvlX/FGvf+UBuvfuU83J7HL0zz02x9l7z5Pawv35m7rt0871z8+tP3DV3bBv9eOv3Rvp/rXTB3Fh705/l3g07ZEhub+19V86tLZgQfB3vLlcsG2u/N0/uPRGbP5k7vny26W2x9ldG7x5rV1Vdvv5rsfb8vbl1esc+e1qsfc+lp8TaXefm9pW46tncefqZW/8t1r7nzpdi7WMO3SHWrqq67eHcfkEn3PONWHvB63LzOHoez707ca1huTmJn32cO3eauGTuvY2XHXR6rN1/kybWrqqa+NCqsfZnvYfE2hO+e2msvVDPt2Pt1R9+I9Yes2juXt/+s3PnjCvVurH2yrfl5mlVVfW9JTc3b6UXvxJrTx76u1j7N5OD+yUfnJsnttvauffa37dr7nz1jiPPi7U7tsut0auq2viUVWLt3r/lnqO8N+rIWPudZptY+7Yz14m1z7y79e/H+MLWW+TuLQ89afdYu35wZK5dVTuuk5t/e8xtufUkz/wwd972jadya0Lvm57bZGDNNx+Ktc8am5v/ssgKK8faP7k1N8esqurY/1w01j73qn1j7VdPyx1f3lzpjVj7insuirXv3P2KWHupBYfE2ru8vHSs/djluc/YmqNzP3dVVfuI3H6qDxyUe1fW2c/l2hsOnRhrv7hYbi3JMvflnqNc9XbuvvZ7g3OTrd6r7LqInZvcOetefXNr5RbcOHcvYLHBK8Xapx9zRKzdPTl3r++w3+TW4HzUtVisvfL3b461q6o6X87Ncbv7R12x9tZb5dZej7r/nlj7zitz7046a05mLWxV1SnfzZ23bTEyt6fF5A2CG4pW1UXL5+ZzLntfbo3hqaduHmvve8OkSLf70+lVi/zP87Wzs8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGipJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap0kPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1mnSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHWa9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGidJj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABap+Of+Y8/ev/jmtk+8981lv/Wp82glje/sOQSg2PtD1+fG2vP/rh/rF1VNbhPV6zd3tUba38ys/Wfry90tM2OtT+vnlh79qzczz0kd2irtmH/1OH/X2p479BYu6pq2ODuWPvzfsNi7fZmoVy7K3dM7zM8913a3jYw1p7bpy3W7py/M9bumTtvrF1V1d1nWqzdtyN3bO3N/XOr3s8+i7U7hgyJtZvcV1nNzV0eVfsnfWPt/k0sXX1mBz9kVTW7K3eN0taRu05oBue+xz+Z8mGsPWDhzli7t2tArN3VJ3fO2Gfu57F2NdnjS29v7vgypzt3YO/qzh3bKnj/pb27PdZueubE2n26cvdf5g7PfZf1zMzdB6iq6mly93fbOvvE2t1v5s4hegf2i7Wbjtx1Qs+c4P38frnPWU937ndeg3PfJ1VVPXNmxdodfXN/8xmzPom123py/94G9Ms9xJnbkbvn1dY5f6w9d/rHsXbHvMGHdlXVf2buXH3WkFy7bciisfbcWbnr8bZZM2Ltjv6dsXbb7Nz5andPbk5An8pdI1RVDWlyn/GO3ty52+zpyfPlWLoGDs39e5sxI3evcWiT+7kHtOXuLQ8anpt/UlU1sz33OeuYmrtOaFsg9yHvPz13TO/uzd1vm9kd/IwHb0N0zc0dV5uu4DPa3uy5U0937jphVvunsXafjtw18cxZuZ97dvBZRltH7ufuCT4vnPlx7hltb5O7Lqyq6jdgvli7tyt3r3HG9Nw5REdH7m/e3rFwrN1nSO75dDMnOAelO/f8pv/888TaVVU9wcmk7V25v/ms93PHtuDttpo1Ozf/pa1f7u89eFDufDW5vnChYcEbjVXVOXxkrN3d5I6tA+fmztsW7MpcE8/o/vLHlp9PX7Pa+rR+kcE9E3IH5VO3mRBrr/vX22LtN+bsHmtXVS2yQG7+yuhhZ8TaT3/wo1j7nNdz8/vPnPxQrL3izuvG2vN0XRZrbx1cjzry41Vj7aqqd5tFYu17R+fuI9Qar8fSv185d31zdmfufPO93f4aa886eYVY+5jTt4u19xl+ZaxdVbV9s3isPf+rb8TaC3QuHWs/0Z2bo7bWgtfH2hPXmBZr7/pK7hrluq/9Kdbu++HXY+01X3su1q6qGnL+d2Pt5oWLY+23Pt4y1n6hmRprL9f+Wqx9yua5tWpP9i4Za/9i0dx32U4v3RNrV1XtuV5uv6BDelaOtRc67ZJYe9u9ro21D/pL7pjefOWdWHueS3PPOR//OLcv1elTlo21q6rm/Ufu9774V26KtY/vt0asvf3juXPWzt1GxNqDp2wQa6+11jOxdufR28Tazy1zYaxdVTX+3tzzyhdOzp2/LH1d7jrhhWsOirWfm/ZsrD137o2x9pOf5z7jZ7yYez58w+9Pi7Wrqi6599hYe8biN8faj6y3e6w9ZaEDYu0DTlgv1t7wG7F0LTgl933y7rYbxtof9Hs+1q6qmla5/cgGPfxurD3ik5dj7VtG5tY1/PjT7WPtG0/J7cm1wsAnYu1HXz801t6t/b9i7aqqw5YZE2uv9fz7sfaoI3LnrOfNc12s3f7AcbH2oI9zm6LfPeupWPv54X+LtUcv+lasfdTLW8faVVV/XSfX3n7ucrH2EnPOjLUXHHZyrL3Zo7lr8XU2yv1jW3W1r8Tasyfmztse739vrF1VtdkBv4i19+3NrcXdb8OJsfaH5+ae4Ry++q9j7WWm5D7jB+/+91j7ys1yezz+vf3VWLuq6qXuW2LtNT/I3Wz85eu5ez87fD/3fTZ+RO6adMsLc+tBtlz5kFj7yjl/jrVHLJ6dO9yx7bax9jwP5+41Th2WW4fTNntUptszs6omfqn/x+BLrq/B7a1fp3jzWaNb3vzCsO0OjrXP6Xw01r7g4wti7aqqu4bdGmuvW6/E2ufulbsff+7g3H3p04/LzY+b8J2jYu0x6+euMfb/+TmxdlXVLQffFWsveddhsfYnYybH2if1WzvWvu8vb8faV4zdN9a+9PyfxdofPZHbR2TmOSfF2lVV3zxpx1h7lXtzc5bWOyp3v+7AnZaItT9aea1Y+5zPxsXaHx6aO3caMTS3R1JV1SOb7xVrn919daz99WX/Emsff1Ru7fXw56fH2rdu+XSsvcXqubUk226RmzM05IUfx9pVVat9P7cv1+3v7BBr73raqbH2yBG7xtrv75Fbe9297O2x9o1v5PYReemU3PfJhK6LYu2qqjde2yrWbt85t59q+01jY+1nRuT2Wt72g8Nj7RlL5a4Tfrpmbp3/tT/NnkPM/sNvY+2l/vgfsfZib94Za79zdW7d1K1Xj461f3187t/abybdHWuft8kJsfYfTrkq1q6qOv/ru8Xa4/8jt1/QH/vlzp2ufTe3F9pLLw2JtR+ZN/cMZ+cpue+Tcx7N7mOy8NyfxNoThuSe0z7R5M6XJ226aay9zKTcnuiHTsztg//gZrk5iVd9O/cummWPzK3nqKr6ZMfLY+3Ju+bWAS+85J6x9jVH5t6z8d6Hud/5asfk5ppvcFTuHWODfjMt1q6qWnzn3J6DS782Itbu2Oinsfbt38utv37ut2/E2vdedn6s/e51ufVDDyw/LtY+5m+55yhVVbc+mFurt93buX2qd1w792z+ldNzewevuFzuGfESP8tdj8++Jne/7/IJK8XaVVVnvJHbR+Xlb30z1h5zRm7O9h+XPSbWPmV8bn+qz+7OzQOZs1purtflP8mt9d/y+6vH2lVVPztqwVj77ntz92BuOvGFWHuvd96MtQ99fcVY+6n3cnstznNgcN7P67m5w1VV33ssuG/OuNx54253joi1hw1o/Xlb75wvfz14wxErVVt733/BaP45pw38oOXNL/zgvkdi7Ycezs0DXW+Z/WLtqqpzX8nszVBVte01U2LtQ/Z/LNZ+6+e5tfaPHpj7Ltiv75qx9sHr5/YZmvfMB2PtNd45Otauqtpuo9w538y1c3ua/3ah3Ds6Jk3+R6z9zU1ze0vt/kl3rF2r5/a+/dpi68baBwTnYVZVTVg1t57j6D1z73jvWS235/DdgybF2q925s4hXvxabp+iGXu0x9ojL8ntYf9i6y+D/6/HX8quoXn+ptxeHte9nFuH271+bv+WzdbPvftoqbe+HmtvPya3Tm6V+XJ7cvU9KLf2eadrlo+1q6oWOz/3nvXFds6tm3rr+NGx9vr75+be3ndc7tqs7xO5uQTvXvJSrH3qDrnrow3uzH2PVlVd9Xbu/Ym7DMnN4fjPzh/E2iN7c+vk1nksd7/thL1z97V32S33Lr2tT7so1v5bW+6atKqq94TcuyLeOjy3l/vi5+bm9h/xYG4+YnPC67H2qgf/Jta+9LDcOrXbg/szfef03HPSqqq9t/parH3rFbk9TA7a+Fux9sXb5e41znPo6Fj7oM1y819O33/pWHu35zaKtc8JzoWsqnrkptxeqp2PrRZrv/5Ubv3OWdvn5hytsctBsfbvbtgj1v5kyqBY+7Qdc/d+9jzihli7qmrsBrk9/56dlJt3dPKtuXe6HPdG7l0Tz732ZKw937a54+qVx+T2yznv27nzl0kX5tYtjVwg9x1eVfXqn3Prj/f8bu4eyO0nxtJ10O+uibWHH3NWrD3v2bl3da735jyx9rF35d5lc83Fp8faVVUrjst9j//jsYVj7VtG5e4t37p/7t2P687JvStrlz3/EGs/tUzufbz7XJE7hzjv6dw99aqqob/6dqz9wW1nxNo7HJ6b9zN7n/Vj7UMG/DrW3mdYbh/6u/5yb6w9YofcHq5/eO2+WLuqqu/Kuc/4lh25faLf68mtfXrgtcy+d909n3/p/8fdL11YQ/q0/vt45Mm578H7Ts4dH65ZJLd3/5Wv5OZ6V1Wt1Tf3s++42wGx9pg3no21N/5Jbt5x51tfjbX77pLbF/PNY3NzMQfenrtX9+YW2TXnx1+d+04ZuULuXTSrLvVirP31sbl3IB9xWe64+uypueu6fp/l9jAbfETuO3zYS7m5mFVVzw3MrTm/fIncOeudM3PvGh+3bO5+3Y63rRBrX/rXd2LtO17Nvef89yfm9lneYoXc3i2fP5Gbc1xVNebp3D7P08bnji/7rJJ7z9Z2J64aa6/wZO7caaelc+uHrn3mglj7mfX+FGv3fTf3TL+qatjKuXWZZ19zSax92j65tUv3752bTzD1kv6x9vbb5r7HV5ma2yto6pidYu2Vbs7tKVFVdcL3t4i1n5yQ2zPnz1fm5thftl7umH73ke/G2j2LPRFrb3x/7pj+zNW5fYrGnJ57R2hV1ed35ebHrbDir2Ltb13ZJ9ZuG7thrP38+NwavV0eyO2L1TlmYqx9/vPrxNovDh0Xa1dVXXBw7p3Xm5+ce8/VFRvn7u+++nDuO2X9c3LzxI68N7fHwNaH9MTa6y2Wmwe61o/2i7Wrqj5a99hY+9EfjY61t5mU20vk0OVye9+NXyT3fvebxufe23jno7k5KCfsmZsDcs5TuXcvV1Wtv9fxsfZh1x0Vax8bXE9yzvu5fejnX/XsWHvCZrn3qnz44aWx9o6H3xZr7/Ld3D2voS9n9wM7775NY+3tdsi1xz5ya6y9x1vjYu1RmxwXa19x1OOx9oWL59aj3jg7t9596gq542pV1S/G5H72BzZeMtZeoSt3fNn3F7l5P9sfl9sf+8H+ubnDz9//81h75D25ZwmHLJ57B2FVVffCS8Xar559U6x93Dofx9qjfpZ7x8dSp02LtU+4eGqsfWZuqlVNuyj3zoU3Lj4/1q6q+uPg3D39w5bIfafMHZW71zhgwO8j3e65/3/vemj+zeMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB/kSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P+zdV7hdZb3379+aq2RlpYcEkG5owUKH0CK9dxARQelKFxQFpBh6VxBEiiAKCoggSJeSIEgvAaS30EsoIT1ZJe/B/+W63pN9/bcb9/ye3PcxF5+RZK05x3jGUwAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap+3f+Y+n9MypufP+ty7lv7bgoJnNj/5fk6f2j7V7e3pj7XmNAbF2VdX0j2bE2p1Dc3/vndUeazf6d8Taw9u6Y+3GgCGxdu/srli7o70Raw9p74u1q6pmzc19pwwalPs3b2ubG2s35g2OtbsH5L7PWmd+Gmt3DRkea8+b1y/W7hv8b93a/scN6BkZa8+q3O94z7Tc53q/IUNj7UZf7r5txrw5sXbb1EGxdqNlWqzd29sTa09tzf1+V1UN7sg9E8+eERiA+L/mTss9Fw4ePjTW7p6Z+3lrbQ0+D8+Opau9a2CsPasn99lWVTVvaksu3pr7fOnf1hprt7bn7tVbOnP/3t0zc+NOvR25n7XORu5ztacnN/ZSVdXSmns2bJ2b+2yd3pP7Qus3K/fnbgzO/Z619M89o7RNHRFrd3d9EGu39OX+zquq+ncOjbVnz8p9l3YNyo0F9E7Pfb7MnJV7V9k/+JwwZ/ZHsXbXkNw7u5qTG/+oqprTkXufUJ25dzgzJ38Waw8Zkvs9mxmcB9LWl/ts62vPfZ9UX+65sOez8P1L/9w4RHd7Z6zdMi33fdbalpt70xp8dzWgPff5Un3DYune9tzv2MxZ2fGXrn6559LGornnhJaZuXZHe+7zpa0lN89sdm9wXmFr7lm8rzf3md7bkbt/6ZmemwtRVdWvK/d8VN25z/W2ttzY8tSPc++nh8+fe0aZNy/3udrTL/fZ1jNjSqzd0Rp8Jq2qnuBzab+23LPZ3MGzcu05uc+XIQOC3yctue/SeR258d2Wvtyz2ew5ubG+qqq+4Fhje2/u772ncvOW+2blxvPnzXov1p4yLfcepdEvN9+pZn4YSy80ZHSsXVU1YGDu+6y3Nfdv3q89uM6vK/M93t37xT9TT1zo9ers1/y/u2W3Or/pzc/9cO6msfZ9668Sa1/42q9j7aqqp2buHGuPfOXaWPtX4/8ca6+89d9i7W9Myd37TP4g125/dJFYe9js3Pu+TzZ9Ntauqtrjl7nP1j+MzY0b7TQ9d8/3We62q7761rdi7e+/8K9Y+5JbH4m173nztFj7k5e2i7WrqtoX/0msfcDY42Ptn95yQ6zdss5fYu15/XPvf37WcW6s/dQ7uXcwj05aONbefsDHsfZNndl7pyX/fGqsve7oR2Ptey7cK9ZebWDu5mnSkwvG2tsu/kKs/eQ7S8baa23wp1h7ytxcu6pq30m7xtoLTsvN1Tr+xP1j7Z+25P7OT9ogN942ftjGsfaM/lNi7c4bc/dO16wf3Myjqo5c5qFYe4GnV461D+7Kveu8+YXcv/mt33oi1n6r885Ye/shB8Xar+xwdaz96LwdY+2qqu1XzP3Z3z/5tlj7W9Nz88QenvnVWPvbz+XGnSYfPl+s3e/+p3Lt7XJrgEd05N4dVVVd9XruOeHI71wVa/f99o1Y+7ARufco749cPNZua8uNBbw9K/dMOv8qK8baD/8xN+ZVVTXis9za60dHDY21X/vg/Vh79bG5eT+3XJZbU/HqX74Ua1+0Um4N8Mgxv4u1r740d+9UVbXI3x+ItTfv93qs3bLYQrF2v39sFWuvvVFw/9w3cnNvLpswMdb+3aTcGRv/XDf3DuX9j4L7cVXVztNz7zKenrF6rL3KM7l58hOfzt1DDB+Te48y681xsfZNd+SexVt+tk6s3fnI27F2VdWHo3Jz9F86O/ez3r5qbq3cao1XY+1T1xkba6/+cm5e4cfXHB5rrzwmtx7k7pu/FmtXVQ1cOfddev+A38Tab32Uez5a9O+59/KPvbR+rP3C13LjnB+/c1es3dnIzWE97sPs3Jt9unLf4/333C7Wvv+O78baH630j0i3tbu76gt+lX7n3c2rraX54wkf3Z6by9CzyzOx9hnP7RNrb7vN/LF2VdXut+4Qax847w+x9jkv585kGXbl07H28DVy62hWHpCbo7baiWvE2rdeuFGsXVV1+gkHxNqjr78i1u6777xY+2+vLB9rj9szN1a4yp25v/PNVvtRrP3YxNz8+jtf/STWrqraryO3T+NNJx4Sa09+b3ysfc82F8Ta37x0u1h7ua7c2YlPzPdarP3x49n1iYv8PTcu/vbYlWLt8eu8Ems/tObQWHvTWbm9lmedkBsrPGJ4bo+De9c6J9YeOTq77+8Pv5Sb3z+338ux9qQ1Fou1J544LtZe58PcO94X18j9jk88NrfH4+gJuf3AbrwteM5WVd116dRY+4CLd4m1p271/Vj7uvV/GWt//7qzYu2HN8h9vgz+aFSs3bjnhli7qmrM4xfG2vf0jYm1O3bIzUM94qSDY+3l9pkea6+5QG5/hfMvzLWfPurGWHv7KbfH2lVVe797eaw9bvdLYu0XFrk71u5c5rhYu2W53PrExb98VKx935NDY+0B/ZaItauqLrzk4Vh7nc9ye2R3bpb7XL/q4Nzny6QLc+MQzz4xLtZ+ZmRuztOPjz451r517tKxdlXVITd9O9a+9Z1zYu1pC+fmeo16Lnf29BbnbB9rt62Vez46bFhuH5N+F+TWc1RVbbJHbs5TvZxbq3fDhA9i7feOOj3W3nOH3J5gF11+cax96AW5+VaXfXpsrL3Xntm9RNbe/tBY+4k3cnuJfOfcy2LtNzfNnTd+y42577MlthgXa5+xwhmx9kHL584oq6raZszIWPukti/H2usF5zwtdu1zsfZGb+a+S7c8Knf/ssrmy8Xaf7hk7Vj766eeE2tXVb05Pbe/wztPrxprb/Zqbnx38Bu5uT+LXv9grL3Y/Ll9LYYvnDuj7LrRk2LtqqpBd+T2uHzzlmti7bN2/OLnfv9PTftWYC3OjNlVF32x/8VWRxxbHf2bf67dKZtu3fTm59beNrf3yg37Z/YnqKpa9re5MaOqqo5Vc+cPXf78arH2qL/kxkc3f/eeWHvXJXJn6R3yrdyzzQ9+lnvXuN6k3L7ed1yam8dQVbXz2Nx690GD+sfab3wp9126yMAfxNqvX5HbO+b3q3/BG68vYJHe3Dk4Oy90dqw9ZvKRsXZV1Q2H5dYnrnBfbm+Hk/+Qew9x+b7vxtqH7Jk7Z2u+TXPnqr30Xm5fhxXOeTHWHtk/932y8+O59z5VVYdvl9sjclJ37nl8sf3/Hmu3v5Xbe3eN03P7Ym06OjcX8vau3J6gGz10Sqx9+e9z/95VVa/Oyt2/7Nx6a6w9dVhuf4Pzd98y1h64yZOx9r6Djom1V2lbN9b++q0nxtoPHfnrWLuq6qxzc3stj2zk/t5P/t5JsfaGB+V+1rsm5ObNNM7JvVPfd43c/gb3Hjcx1m7ry501VVV17bm5fR6H7Z3b5/GeO3P7Br//0E9j7ZPac+dUbLXGsrH2yt/OrZm68iczY+0dj861q6rW6P5xrP3N9XJjbq+PXzLW/voOubUkvzopt2/MC1vn9nhc9JLcfhbPLJi7d3rirNzc+qqqJ4+8OdZeYtJ3Yu3JI56PtX+98YGx9piDcmvt9+vJzbU6+5bcHLM9lzg+1l6n67pYu6rqs1U/irUH75o7R/CZ83LvDBsrtMbaM2bk1kVuskBuXuFDh+f2jfnye7nvsinr5N7RHr9hbo5ZVVXbVmvG2rPf2jbWXuU3uefCm/bLzWlccoXcWZ1L3bdWrL3mnbnzUW/ZuCvWnrR0bn/sqqrXN8qdSffppNw+0RtdtHus/c0Dc+N9G2+ce1e61Ljc+rw/Pbh5rP3UL3Jr/Pf7W24+ZVXVrke/E2svdGhuTcYhLbk9a148LDe379FLcnO97jkjt0f1LuNya92+snzuLJmH1s39nFdVXX5Cbi3MvgdtEWtfuMHQWPudBzPjENNmT61lvuAW1Rs/tk81Gs0/z++1z3LzAoccnTsf9Z2rg/tB3L1XrF1V9bfrc++eBpyTO+PriLm582Amv5o7l+T1t3J/7uO2zJ3NOn7F3DuQP92Re6d/yeFPx9pVVbOG5NZt9X80N+f59z/JjQ0/PSy3BnnEZ6vE2v2Dc9zfX/rnsfbER34Xa3/6eu78wKqq8bfcGWu/uuT8sfYGi+X2b3v12DNj7Xm/3DfW/lVf7vPl+jm5cyI2+tm0WHuT/XLrIs98I3smymftuefxl7/1t1h75Tk/ibU3m/e9WPs7H+U+V0/b8PJY+8CFc+cA390/975v5v25OYFVVYvfkVuDvOWo22LtH12c2ztmp/Nz4/EXdOfOXPrxHp/F2pv8PTdX6tHOZWLtmx9s/juE/9cbE3K/Z5dv9lKsfdhquXlib5+2QKz9biM3T+z693PnJZywQG5/gwFn5Z6PuhfvjbWrqnY8Jzemf/81y8fae9/9x1h7rw1zz6QLvrVerP38TrnP1bVumRFrz3djbv+3Fds3i7Wrqj7bpD3Wfn6/3N4xL4zOzY8b960JsfZBe+XO+t7zttyarXtvyq213/RXubVDp+19X6xdVfX6o7n9mpe6Pfde/nsbxdJ16MLfiLVPGPVmrH372rn71d7Tt4m173gmN7d/v6/kxparqv4xOTfveeTbub0d9pyd2zPnwuC+wUfecUKsvcWtp8bad+54bqz9SO8GsfZ+w3N7NW/5SO55uKrq4kNyZ3ycsfXlsfY6y+U+X1b46axY+8Jp68Xah6359Vj7vdNyZ8Kevm7uz33gU7kz4aqqtm6ZHmufufd6sfaL0ybE2nuevl+s3b3KQbH2qZvlztFZ4YGVYu3t38/NU39+sdyZB1VV81YfHmv3/21uTciZk3P3ELXbwFj6w/e+GWsf1tr884s/d8mc3ByQs360VKy95p8PjrWrqr532Yax9hb75vYN3r6Rm2d228mZPVSmz+6u/85TQm7FCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATddIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0/bv/McdNbc6quV/61r+S/NaW5ve/FzvnOmxduX+2NWYMSMXr6phg+eLtVuqEWu3ts3LtVtyP3CdjYGxdke/WLpmteb+vbsG5P7OG63N/x75f/X05j5fWhuzYu1+Xe2xdnu/XHvetNz3WUvlftbm9eU+Xxo9ue/RnkZ3rF1V1Tco92dvm5P7Hm8Z2hFrz+zuibW7e+bG2p2dA2Lt6s39njUGDYq1WzvnxNoD+nLfo1VVfTNmx9od/fpi7ZaRw3Ltubnfs75Pcz/rs3s/irV7enPPR9WT+y5rG/hvDQv+x81ty32+dfbP/Zu39M2Mtbs/C/68tQ2OtVtae2Ptznm5Z4RPpk+NtQf1Cw64Vfa7dN7s3LPZwBHDY+2ZH30Qa3e1dcbajbYFY+2ejs9i7ba+3PjuzJnB5+Gq6mjLPR81unLfKf26c+PaM+bm7l9a2nPfJ3O7c+O7LV39Y+2pU3J/7v6tH8faVVUtncF34zOmxdptwTH9aTOnxNodnUNj7fok97naMzR3r9wIjmvP6pf7Hq2qagQnHrX3GxJrz2jL/bl7Zufmmc0Lzr1p78k9m7WNzP2d987NjXG2teXem1VV9RuUG1+e9nHuc71/e+7P3TIv99k2o3LjEDU7N75bweejRktu/KWvL/iM0LpIrF1VNa+Re1fa2Zq7d5pbuffyAxcKvq/szf2Oz5wzJdZua8m9w+lqzY2pzw7OMauq6uiXG/eaFrxnbenLfb5U5e4ZuzuTf+e5uZxVwXUwbbnPto7Wrli7qmp2Z+6ZuGfG0Fi7fe67sfbUWbl5Pz3B37Ops9+MtRtzcu9JB3TknsVHzJd9PmptD659asl9ly7U/0uxdvfstyLdeb1f/Od8nc7xNbBf8+9D/jD5tKY3Pzfk5bdj7ZFn/yHWXu0Hx8TaVVW37fpKrP2dobn27ivnxkhX337HWPuJDXL3+WMuzr2DWfLh3BjGjKufirUf+cMasXZV1e/Py/29bztvVKz99GN3xdqzJ46PtZ+8+vRYe+9xu8XaG+y3cKx93Zdy921vLLFyrF1VdfY//xprP7zWurH2xy+MjrUH7bpHrH3mMofE2rv96yex9rrdf4m1H9xvmVj73n/9Mdbe5uNvx9pVVVOvezLWHv7iHrH2xj/PjVPOevjoWPuGVXOfL5NH5e6VPxz95Vj7iUe2jLVbBt0Xa1dVXbrv0Fh77J9y8+P+8vg1sfZdo26ItWc9l/s9W3fjx2PtKZ/knsWvOTD3fHTjkLVi7aqqb3z4z1h74qe5cc7blv8k1l7zydy7xmHLLRRr37FlbpzzoTty49r9F/16rL3dFu/E2lVVv3pzbKy9Te+xsfYDdx0Za++x24RYe9Wv5tYgt8xeMtaeucoSsfZyt+d+x//519z74aqqJYfn5lwf9twlsfZCw3LrE1++K7eeY8qgK2PtZyZcFmsv9MzvY+1BT/0j1t7w5Q9j7aqq0cc+FGvf8OZSsfZaUyfE2k89skKs/eX7V421N9vgjlj7iotz4xCvn5b7Ptni7ddj7aqqrgG59wl3/ua1WHvEa7n5EG/fd3Cs/dZCB8TaP7hn11j7/OW/G2tPe/HpWHuBh3Nr1XZa/c+xdlXVlBtyP2/rfjU3rt2xyFdj7a4Bz8TaW52Te4ezzya5d+NrHJubK77SUrl1mdNeeSHWrqrqPiY39vP4AbnnwmkH5+4hJu99U6w9ZGJuHukTs6bE2sv25Pahf/nRT2Ptx76b/XzZ+O7cuszH/7JVrP21o5+Itec+9ECsvchCu8faEx+8PNb++hpjYu1XBuTmyJ/3am49SFXVpqNyZ7NNGHlLrD33/tzap38Ney/SnfMf2M7ixyctVV39mz9n6q6Xc+satl118Vh7+Vfmj7XH77RcrF1VNXxCbu11z+zc3Jnjlzgx1j7iyty6hl22yc1zX3S1SbH2ksttEmtPuHqBWLuqavgRub1fHjslN4YxcUzuzO35d9031v7LhOdi7Qmjc+vkDl8hd+7R6+fmzhfr2XnrWLuq6ku/+EGs3Xtobp7Ye60jY+2f7bhnrH39jNw7t5WuzK1H3f5fE2PtDdvPjLWrqva+IrdOb/fV74y1h3+6Q6y95ZaLxdoHP5v7917r3HNi7SM33j/W3mXhM2LtQ585Ktauqvrj87nx4as2zL1vPOyw3LjXl8fnxkB2mZUbk9/q6gdj7dUOzM2PGzgvN3/lSwseHmtXVV3WmlsjuOVFx8XafVvm1gH3tWwYa7+6cG6e2KItuXXfZ+95fKz9yInZc68fm5NbV/FeZ+4Z5d7nct8pf9tij1j7wm9OjLW/9szwWHv4Bblns3tevCLWHrfvz2PtqqoXJp8Xax+7/ORY+6d918bap2+e23Nw9KLbxtojF3w01t52kRtj7XeOuy7WrqradkruOWXB4/eIta9+O/e+cvVPc/MSXx/7t1h7/1/kPld/+Pz6sfY5O+fGGpd4/PZYu6rq7flzeyaf/kFuT/YrVs+dSzts/9w5XxftvWasff5xuffyx03L7de89dDsXmiDfnhKrP3LL02JtefccESs/buNFo21n1h6+Vh73hm5cw9+uXZun6TdJqwUaz8456RYu6rq5KVfjLW3/m5ujeJW43P7a746K3OGYVXVO6vk9mte/K7cvdNbc3JnhS77yOaxdlXV4dvn2vP3z7VvHph7Prr3idxn25lnfxRr73dfrt02/LFYe7uPcveMR/XPnbFaVXXLQ9fH2qcumnuPsuSd68TaT3y2RKy909dza+0mtub2z11nSm5f0eHt78faVVVfue4rsfbaC+TOfPjjtlfH2nuc0vx71unds2v1L/j/eOhfM6vRr/lrK3ZYMPd88fZvcnM4+m90YKz91DX3xtpVVYdsnlun9+EuufmQN66Z24N2j9n3x9qzW3JjdRf8Nfc+/zdduXG6+X6TW+f/xEcPx9pVVWvfltvH5Nv3PxJrL3lubi3sopfn9o/bY1RuL9RDPu6LtR//Z+7+/uojV4u1b56U3c9r2gYnxNo7f/P5WHuXfQ+KtT+8MrdWrXPmYbH2vtfnxqSndGb2UKuq+vknL8faCx14T6y9XnvuTJSqqoN3yfWvPGJSrH3ZxNy8wAP+vk2s3b3zbbH2NV/OvWj89U258clRc3JrvgfNyO2JVVX17kq5df7Xj8jNTxs/Lvdee+tzb421Fzn6h7H2ud/NrT9urJr7Ptlk9dzn6rRv/jjWrqpabP/c+qHvLvpqrL3DYblzKnrntcXaDx/+Waz99PG59TunLZ8bg7j1ydx7jLuG5PZ/q6p64ulfxtqXvZ47z27wxNyeOV0v5tbCPn5P7vzlXTb9bay9wMuTYu0Bh+b21TzuhxfF2lVVLaNye8Ctd8qvY+1x7bn9Ux46ILcH/24f5vYY+PY5uT1Fv7frzrH2OfPlzsM9fKPcHmxVVeN6c+8rV3tjv1j755vk3mWs93zuXv3q7tze4ON3PCbWPmCH3NjPiIVy4wA7zcrtC15Vtf2P1o61T7gkNw5x5Vu559Jpp+bOk1nyzG/F2r+/Ofd98tX1c+eqHX92bn77fT/dJ9Z+88iPY+2qqv4P5t4fnf9kcF/PdXJ7BR2x0H/gQL3/odFL58Z+Jvx2Wqz9jwG5fRannr1TrL3BuO5Yu6pqrdVz70of2HpCrN1Y9mux9mpv5e6dzl9lxVj7yZty32UHH5JbF9F7X26vwe+tMD3WrqpadUJuj8cJU0+PtR8ckZv/ctrd/4i1lz0+92y20fO5d1dPjMvNkX97ndx8hI3/sV2sXVX199unxto3dOTGd9suz32nbPnh+ZFub+8XX8O79+M/r87BA/8DV/Pvabvu1KY3P7fR6i/F2nvURrH2B6/n1lRUVd02Orcf6aSrhsba5+2Tm2v+g2Ny55JMOnizWPvX++f2Ol5qs+/H2l8fe3es/fC7uTlDVVW3/eLLsfZXH8udE3rOsJNj7Vd+lnumvPvUL7rjzv/cB7fl5qj9cNQ3Y+2Lhufmvy7459zvWFXVzD9/Emv/qn1ErN32r9xeRXucmRuPn3Bh7nP1gNbcePzAEbm9Hcae9+dY++zFLo61+36ZeyatqnrlvO/F2p8Nei7WXvaE3D5o379qXKz96S1zY+0fnp87e2jw0Nxcht+tsGSsPfUrue+Tqqpdt8itOd/z2h1i7e8s9lSs/fauuT1/J/Tm5sCucHFubHm9a7aLtWfutUGsveuA3M95VVXHG3+NtXf/fe7z5Rv/yK1Ve6g393t229Dcv/eI+Tti7eFr5saWBwzKjbf95IzcfVtV1Zhtcns07bvjlFj7smWGxdrDds+NBTyx25BYe1xHbhziT5vl7tPH3rxlrD10vQti7aqqD790QKz9zIu7x9rLTMnN9379tNx5LMvcltvL4xf7dMXa+52Xu4c4dunc8/Csl3NzEquqrn0qd27jgeNWjrXH3XBhrL3VHrlnlKOfPy7WPmZs7qzMZ7p+FGv/+PZzY+1rb7wi1q6q6t/IrVc7+cjc+e77Xzl/rP3Us62x9irjcmf4jVz+j7H2+Zfk1jVsefeCsfZ7z42KtT89Lfe5WlV1zIjc/fIt8+fO+Fhpidzc4eHjlo61e47OzaG9+NWxsfYVu+b2zNnwytwc+Uuv+lesXVV1wDq5fWvmvpKbo3/Hu7l9sXb7YLtYe/+3c3upLj98rVj71oty6/xb18+dXfTxhNzzSVXVKW/kvs/unpSb2zdw29z5ItNn5e6dfrVG7l3C+x13xdpbb5s7V3b7nXPju4f2Zs84X2aXzPrnqqpVlss9J8z8U24M5JS+zBjInL6pVXXD/+9/lz0hAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACApmqkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaft3/uN+Hd3V2dr437qW/1Lf3HlNb35ubvvkWLurZWSs3VmdsXZVVUdHd6w99bOZsfbgrkGxdv+O/rF2T82JtbsGzxdrd3R0xNrVaI2lW7pbYu2qquFDcn/29s7c71lLb1+sPbcl92/e0p77c9egGbF06+Dcz1qjpT3WHlhdsXZV1ZTJH8faQzr+rdv6/6jkz9v0tz+LtYcMGhhrV19PLt2Ru2/rmZP7Dm9098baM3OPw1VV1dre/DGAzzUGD4i1a27umbQveN/W2pH7Hm/pyf2etbfm7tvmzgz+uWtYrF1V1dqW+z5rrbmx9sze3L/5gJHDY+2entw9RFsj99nWNzD3XTbgzdy4ds8CueeTqqqe9z6KtXtbcs9HvTOD7zIWXSDW7u7LPSf078iNebW358aWZ3fPjrU7Grn79Kqq1rmDc+3O3Hu7vs7cg2lrV+5ztXVucPxlTr9Yu7Vy70lbeqfH2nPD78a7emfF2jODczHm9eX+3juD3+PzKjfe1hv8We/ql3senj0793c+cNBCsXZV1czZueejGVM+iLU7g+8rW/sPjbXb+nJjy41huXuInulDYu3O4BBr7+zc52pVVc/U3Hhfe3vu2bC1Izfe1zMnNxYwqCv3+dJdufu23tbcvXJLcPxl1tTc/ct8I3PP4lVVc2bkns26g2Mgc4PPhYPm5eZMT531aazd2ZL7TG8Pzh2e1fderN1ozY79dHfn3k93tubmVLYNyn2P90zP/bk7B+d+3ubMyM1/6WrLPYtPn5X7Lmur3P1DVVXHtNyz4bw5b8fa3Y3cv3mjkZsP0RacXzdvbu4eYl4jNwYxrHVUrD24a9FYu6qq0Rgaa3/8Tm5ce8GhubGfT1K/Z71f/B3KEtcMrcGN5r/jfmO3cU1vfm6nUcvG2rcemxu7GbpN7vugqmqBT3L9rwx5Mtb+55w9Y+3Xp42ItRd4+cBYe/Gljom1Bz2Xu98cfE1uzGrmXmNj7aqq0/7x21j7sh/k5iTOuGLjWPvTHd6Itfdf5qVY+6WWMbF2907/iLXv/vtXY+3X3s+toamqOuug3P1L14RXYu3On+fmai1w75Gx9s1b5caGNxz5aKz9+AJvxdqfTvlSrN3xwFdi7WfnuzPWrqp6ZeUNY+0VhufGCqcMzt2/zF7i7lh7vbm5cYiLDn881j704L/F2vcvmtvDZMgf7oi1q6p6rsvNQ71v+pdj7e06cvOlrntywVh78bbc9/ijNwT3GNghN7Y85ZmHY+23lnwg1q6qev7t3OfLTa9OirVHbJebHzdv8P6x9rQDno613+98KtYe9pUPY+0/dufmcLQ/nx372WPutbF29/xnx9r9dsiN/Xw09aZY+6F134y1F77imlh76kWTYu2/TsztYbLBV3NjP1VVVw/M7UXffWfufnnIlrm55tOezc3NGzV/bo7ahTtfHGtvfW/u+eice56JtedbKjsv8PULcmMgQ7e7Jdb+ZNfcvMC1/pH7He/ZMPeOeGpwfeJFf8zNvVnm6NwYxOWzlo61q6rOf/bBWHto/9xYwGkTNom1b/1mbq39D0csGWvPbN0r1p5v1p9i7b7lc2uXHg/uRTb5hdGxdlXVIV/Lfb4sn3ssrENacvPrxn4lN6fx+h/+K9beeO+VYu2uJ6+LtR94bJVYe2Tw3IGqqnN7D4i1d/j132PttRfaLdY+5Uu5D9ab+3LvcF5bJjcGMmXm2rn2I7n3pF+5KvddVlX1/N0TYu13R+TGIXoWWyTWfujE3HPCxtN+Hmt/eV7ue/zNNxaPtTd64sJY+4WVV4i1q6quWHerWLvxTG4Obb9+L8fad4/6JNKd3dtTNfWL/T/eu7qv+rc1f8/C356VG7M6a49psfalM/eLtX/2tSmxdlXVpbscGmsvVefH2u175N4H3PLt3Fr7Q5e7PdZe71s7x9orvpZ7DzFfvz/G2lVVZy2U25fzpd7cevsF2s+MtS/8MPcOZvdDH4q1l9jxsFi7ZdvLYu1bh/w+1j5ueG7OUFXVg9vknjHO/nNuT63frXFprH3a7uvH2ttOyT3XvXRUbszqkkdz9y9PfS+3zr+q6ul9fhNrD5wxMdY+/J3cZ+ub658ba59wzUmx9tZ3bRlrb3rzsbH2jKuWj7Vf+NXKsXZV1VHL5e5Zr1///lj7u8tfHmsvPz33O/78XcfF2hvckFv3vd9GK8baV+5yeKx9w1/3iLWrqn57xs2x9icn/DLW3v57m8Xavz9y91i797Dcc+HURSbG2qfctmKsPX7X3NhPVdWvdrog1n77otza72/0fTfWvu9Hubl5l08YH2uPfSy3f8vkk3Nnk5x7Re775LatFou1q6pGrXRorH38T3N7RQ+469RYe/WZ78fap9yb+z678Y+5PS0eXPnZWHv3abn51lVVLW/n9t5rvS33b37tIn+Ntf8ydodY++lrV4y1t9gnN+956F4/i7UXXC93n37PCeNi7aqqn++a2y9o2M+/GWuvcNcZsfaPX7kr1t7rkCtj7b+9kluXeeQuS8XaZ5359Vi7qmrE1O/H2u9cvF2s/f3nToi1116v+Wd0fe65LXPvabsPyj0fLbRvbi+RWybmznto6V0j1q6qeuilG2LthztzZ/Le/UFuHc+J1+fmD/94cu5c2l3PXiLW/vC+3Fr/By7OvSOuqmp7Orfm/p49cp/rT96Z2xNshZbcGMglW68ba495591Y+96dr461l1gkt4ftoovmPtOrqsasnVuTct6aL8baO7x6UKy9xR6/i7WX6X9vrL3q6LVi7T12uCLWvnXr3JqQqqr+m+fOZ/t4zD6x9mOLfCPWHrNM89uz5vRUfcEhzvm2XbxaBzT/jNZT18mNndTzuXWRL1+SO2frkhdzz1X/n9w71pcGXRRrjzjivFj7taG59UNXvpZbz/GTF3N7qH3ac3Ks/e7o52PtvgtyZ7NWVc2/aO69+qVdub3rbv9dbt7O66c8EWt/89HcuSijV/lnrP3mYbvE2hfvtV2svfOMFWPtqqodf5/bt+bedXN7NG02eeFY+94f595zfjQiN7f/motzf+4n3poSa99/2yWxdushubkrT7zxQqxdVfWV3XP9V+/IncHz1LO5+fV7nbxErH3z/rm5UvevlJvvvMxlubMiNvru6rH2+x98FmtXVS17XO6sis9ac3sO9zs6N39k79veirVfvuvVWPv2e3JzCR5aPzfPe+x9Y2Ltly7N7rW8bOPEWPs7jdwZzEM+OyXWfnan3NmwM5bJzZPqHZvb03zkz3Jjy3+54LVY+47hXbF2VdVJP86dPb3AX5+KtZe6Krde7JZDc/OFdr8wt7flWlNy+w3O6jw61j7067l9Hc6bdlOsXVW1z69yn61j38qNuf2hK7cm9KgPc/tE//Wd3B4Dl+36Qay98+q5Z7P7g/tEd++SO+Orqurxlb8aa791VO6c8wevzs376ffIprH2gT25s652e7f5Z9h87s0NcnOtLnrumFh7r5NyzwhVVau+9YtY+8W/5Z6Jl15n71j7T6NzZ8ufsEHus21Uz3di7dPHbBhrrz8s9+5q3y1ya59ffWBCrF1V9ckGuWfD625ojbWvXTl373T+Vbn3KA/Oya1bqm/lfs8eW6Qn1r7x4Ny5Jpfe8UCsXVX1bkfuzKjZwTHWg+7LzR1eYdHcz/ry++bat43KzXE7adNtY+0Pttw61l5ptedi7aqqD+/PzXGb2ZmbgzLm0oNj7WX3z52bdNajuX3Bx29xWqx9xKvbxdqLXP2jWPu7rbkzbauqbnk+d1bW6iNy53usfFXu8+WiHS+PdGf0TK2N6oudlbXLOevWoM6W/9AV/fetc9jEpjc/t+6IL3g4/BfwwcXfirUnrp87N6Cq6v2NcmsExw/MnVswac9vx9orXJo742u57+T+3Kv25N7pH//GX2Ltn20R3EN+/HuxdlXVsf/Mrcs847e5f/NRL+bOwTlmYm790F2Dc3vHnfHUk7H2Bg8MjbUvHrlQrP3Y1Nw+7lVVU06cP9beaevcepKhR/bG2oP2z32uHr/D5rH2xPaOWPvZC++ItV+7JXef/svtcnMZfr1Pbl+Hqqp/zc2Ni3/jzNzetxseem2sPf7I3L57C/8oNwayak9uDsd+c3NjIEdelbtnHNbx61i7qmrsY7l9JQ5cOzc379Qd34m1rzw1N2fo2MmTYu1fX5PbX+GpXR+KtX8za6NYe7+tc2tJqqp+0JZ717nuyrl1mUOezs31PvjO3P3LmKt/EmtvsfHQWPu1s3JrKvp98lGsvd5VuXW4VVXfH5Hb02LogRfH2q0v5NZez7wwN943/o7c+Msy4w6ItY9YI7cv1sb9cnM4ej7O7Y9dVXXSTjNj7TXac2sELxz1TKz9xse556PdHvhzrH3M3bk9ix/ZaUCs/dwhuX0151v101i7qmrO6Ny8xCvPyo2/bF+5cafp6+T25Drm5NweJocemju38WuXjI21T9ox9550xZ1/G2tXVX108v6x9rLjc+9pB381t25q/IZfbO7vF7HnG7fH2oe/lbtf7bfN7Fh7i41y66YmTzg+1j5ru9w80qqqQ5fP7Vm84LvNPw/uc0usmzuv8k9fy53NNvrK3NlJa/XPzUH5yxKLxtofr/dIrL3Di7kxr6qqD3+f21/hthmfxNpbL5l7n7DDXrk92D74yX2x9uZr/CDWXnNM7l3Cfgvmxtu+t3RuTUZV1ZPb555R9t7tqFh79fMuj7Xv68ydsbHLO7k1Xwvvl9tDtmXFy2PtzrMei7VP7xkYa1dV/WKNG2Ptuz9+OdZ+4u7cGYS/vGpSpDuvb/p/67/L3dECAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANB0jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHLOxKAAE4VElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/Ye++o/Qq63/vf+eekklPaKETSig/mnRQqihB6V0pgoh0EKUI0nsHKQIGQUQERQJIEaR3pIcuHUNvIT2ZyZTnj+e41vnnrOf44O/+nLPW6/U3i/eeyT373vva13VtAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB52v6d/3ho5wI1uK3zv+tY/td6ZzW/+T909syItWvO1Fi6f8CoWLuqavqUXHvYgHlj7Y5GI9ZutLbG2p0tfbF2z5zcz93T0hVr98/KfdZa2v6tr57/uOGDc98p/a0Lxdp9rXNi7ba+XLu1ryPWntmXO780JsfSVcNyP/es4PdJVdWIuQfF2v0tLbF2S39PrD106MBYu3N47t975peTY+22Ae2xdvX3x9KN3ty5bUBH7nu0qqq3L/dv3j8rd9027dPJsfaIReaLtXuDf2etrbnz6oxJk2PtAQsOi7Vbuntj7aqqRufIWLuvI/ezD5yeGwuo6bmxxt4Rg2Pt9uC1ctfM3CBnY2hu/KX3vQ9i7aqqGTNz32cdwTHW1sG579KO4Pd4y5Dc+aWvLXe9Oqc39zfe81nuHqVlwIhYu6qqLzj01N8ffJ7QmrtHaWvNjTv1tuXGndqCzwsreLna394da7f1D4i1q6r6g3MS2tty36W9fbNj7f4KXrf15s5ts3pzv/PuT3Of84HDcp/zmjot166qIe1DYu3umhlrtzVy9yhtbbnPel8Fz+k9uYvl/o7cBUxXd+6asac7931SVTV0xNBYu3dKbny3p5E7tzWS96Q9uTGQ7kZuDKTRkhtnnNGV+50P7Jwca8/qGh5rV1X1DcxdOzV6c8/lBwYHA7pnBe+HBwTWQ/wP/T25c1v3nOB32aDcs/HWRu6cXlXVPSs4l7Q1ONerN3cBM3CuEbF2/6Tc9WpbS26cs681N67d25n7nfd1hc8vjdy/eX9Hbtxr9tTPY+3+2blz25ezc98n/QNz122d3bn1IAsOza0vHJCbWldVVb3B7/HOztychBlduXlm/T2Zdn/vV+/estjAGtjW/O+kbzyzS9Ob/3Lh0I1j7VV7ct8Hr0w6Pdauqhr097Vj7ZEr5M5Nrx+SOzft+NjdsfabQ86Itc98L/c9+Pr8H8XanetvGmuPf+qqWLuq6org+OzB03PPtr848q1Ye62DFo21R676RKy92Oq558uPf5Cbm7fYFrn5Sg99PDHWrqr6YtIrsfb7Wy4Sa3/j/tw6mpXX2zLW3um4M2Ptj1bLDSQMGrltrP3em7m/sdVXnyfWHnhNrl1VdW/vjbH2w/stF2sP/ekysfbI7h1j7Qf6cvdmh64zJta++6YHY+1Fdlo41t7wy9GxdlXV068vFWsvM//bsfbTT6wVaz+/wcexdq2ce7684bG5MZBZXVvE2p8MeCHWnv3S+Fi7qmrpxXNjy7uskBsDmXDAu7H2ytedEmu/8eJcsfbfv8zNX7n1xflj7Ykjn461txqaG/Oqqlpz+Mmx9hndz8Xax9+Wm3e8ytdzf+OvbJ2bO9P709y18pQfTI61V73tglj74StWjrWrqv4yY89Ye57Jz8baE6YcGmv3LrtRrD3r3dxeHs/9KvddNniR3N5U637jkVh7alvuvrCq6qa/5q6fdmg/L9buGn9nrD33oqvG2nf97PFY+9nrL4215/rNdbH29MVuiLV/ePbXY+2qqos2fCfWXnDf3BjrUcvn1ie+/2Tufvwb910ca289Mvdc/rmhufmUCzVy80g7X/xZrP3yio/F2lVVj77361h72PTcuPqqC50Ua7/5+cOx9hpjcnPFF/so9+6id9/5Zqw979bvxtoDH8vtKVFVNWaH3BjI8s/nxnfvuSD3ffb5UufG2ps8v0ms/cDY3F5kGy+SG89/Z57c5/w3750Qa1dVHXdUbm7h9lfkno1f/1Du5355ydyz8Rs7cmuvvzf0k1j7hP7cOMAuM78Xa1+5U3buTWNwbqxx2I3TY+13B3w31v7Rm49GutP6u+qMeugr/T9umW/damtv/nXIZavm5t/et2ju2dOfzzgh1t5v/MGxdlXVyeM+i7WfWzG3j9qIc3Pz+0/cOLcedam7cz/3qP1y13wrnL5GrH39ydl9Ja487PhY+wdDc3NI7r/3+lj71n1WibW/M3fuecBHv/1JrL3tW7n5/eP2Gx1rr7bN/rF2VdXQp/eNte/6LPd52+DGr3ad/1WcOvGeWPvk1deNte9dJzcvcMwn34i1Hx71QKxdVbXLg3+JtX82/sex9qfn/i3WHnfKkrH2Jpfn1lRstN5psXZXS26e1uBnz46117r5jVi7qmr2DaNj7TeGHR1r/+nDg2LtZ8fm9lo8fq/cHnC7TV861t5yxr2x9iN/y81Ru+6Rd2PtqqpfXpjbl+vLZXPrtl7YJzeX4lfrjYq19/352Fj7oOB7C+YPzqVYd4UFY+2qqh8ckFsX2rl9bu+9Xd++I9Z+fv+vxdpzXfyPWPusE3P/3r13/CLWXn/ZnWLtMw9bNtauqpqwz7di7WW//odYe+fW3NjPiUN3jrXP+iK3B/+wU3LXLy0nXRZrL/h8bo5aVVXPA7l3H1zyiz/H2n+dnFt//fCh58Ta7/4h9zvfcvQDsXbnP3NjAYPOzs1H+PHquTmJVVX7r5cb01945Kux9qTzfxVrv7pQ7m98iTdyzxNu/+zFWPvxEbk9LUY/lduvp6pq7PJ7xdoT9sv97MuvnDu3fXdM7rN+/hXPxNrbr3tsrL34+7m1S9stlnuOsv52uedmVVX7XLZdrN3Sk7s/u+Xa3PXLwNtOjLU36c+NBez1XG6volNfOy7W/nKHp2LtqqpHFzkh1l7g77kxt45L9oi1txyZ28fkuu1yv/NvL52bb9UYd1usff4NuTm0W9//YaxdVfXyIblnpZvdf1WsffOSuXXI9262WKz98Km5dX4/PSP3WVvzwVti7a3m5MadqqqOfiD3sz9/Vm4u62p3Z9Z+V1U9uNDopjdn906rqq/2nq4/Pn1tDe1s/js7n1s1936x7pNz+3ktucTesfbzj0yOtauq5utri7XnPTU3Hv/DP06OtQdvmVtr/9d/5PaVeGfa57H29ybk3lF60ru59zXM93huL4+qqrk2nxlrv9b4Z6x94aO59xaM3jU3R2y3kz6NtTfbK7dnX206IZY+YPghsfZ803P3NVVVL0/si7Wf7sjtY3Ll+Ny679d2z621P3Cf3JzAnadPiLV/2HdzrL3mJbl9WP+07JWx9rzv5taDVlX9Y/nc+aXv4q/F2m0Tcs/0r3x5Wqzd+eapsfZzy74fax922nux9lzX5/YDW3iN78TaVVX/nJybM7TqRrl3bk88YUysfV9Hbq39npvn7o/GHZGbc3zmg+Ni7ftyr8qsSVflxhmrqn5wfW6PyZfXza2peH/a7rH2nsM3jLUvPCL3O19+UO4aYvJz68Ta65+VWx/Yu9BrsXZV1eAzcmNP896eW4969uglYu3GqvvF2mOW3zrWfu+qEbF26zmHxdpTL8+tdf989Y9j7aqq+346OtY+85ncPrIH/Do3FjDzk9zz6RFnXR1rH7Bv7h5l3L25uf3bd+fGWF+4tflzrP5nBx6T+x6/Ymjub/zTP+bWTH15202x9mcL3xhrNw7MvSf0yd1zc28/O/qsWPuoLXLrKaqqWnbNnV+u78mN970/OzfudOtmuc/bSj/O7Ym+3B5PxNqjJubeaz+l95BYe4H9c3sb/PHqDWPtqqoZby8fa5+16HWx9q5988fa37s49zzhrtfPjLV32DK3FvXz8bm94FcdtU+s/fgy2XmFp00flGvP9/VYe+sxufl18wzPPUe5dd/c+5enr9Mea1/8ee6dtL9fJrcO9oR5c+sSq6qWejg3MeDVyV+Lta/aLXde//46E2LtE49cPNY+Yt0vYu1XX8vtpfHisrk9ij6entvPoqpqzeUeiLVbL/plrD3PT+6KtVe7+/5Id+rUGVVfcXnjdbvcU51Dmz/Pf8w5uTkknUdsG2tfdEDu+2Dvsbk57lVVE5/MzTvedmrufQ0rPZJ7X8OT++aeBYzbLfc7bxnVG2tfeeIHsfa40WvH2rcdlpvDUVV1x7jcs+0pYy6OtRffJLd+aMXlX4q1D7gwt8fB6hvk3nv00KO5/aU/vX94rL3Cxbk9zKqqWja5PdZ+fJvce5c+33pCrD3PfLl9vdc7b4FY+5Rxuff43fJKbl7gjz47MNa+6Ft3xtqfXZh7X2VV1d/XyK0R/PnPct9nm34rN1fr9d/k3nn9u/dz59WTr94s1v7acbk9TG6atmGsvW/PhbF2VVXXaQ/G2iMPmRJr33lO7vzSflXunvSaR3LvqHhzldxzrwM+yo0tTzo1956IL9fLfdaqqvYYNyHWvvb03OftsgXejrVPvG+3WHvZ4DsLBkzM3aPMteU2sfbfz8nt3bJe682xdlXVl787P9Yetd+WsXbfikNi7Ylfz32f7XZ57p500Pq5NaEDrs3Nf91o6Pqx9uFjD4m1q6qOm+f1WPukwbnn02O2mxVrX3BSbu+Yuw/L3SecMmRUrP3hjblrpz0H5r5HN5uU22Ogquq0ZXPXjRdel/seX+Hc3Dtwrnt+11h7zWNy+w22dzwZa78+5PpYe9yiuWvl7wzOrQ+sqvrsV/2x9hG3LRdr/3Ha87H2O+vn3m3yi/G5dZmbXJ57r/18J+XW70wenpt/cvOcv8Xap26UO6dXVW1/bO679NGf5M4vB43M7ev5xeTc/Jc9xufWqp06+4hY+7vLbRBr/2zGc7H2c8ddE2tXVbW9eVKsfeZF58bat06aHGv/qiu3V/Nqt+f29fzo9xvF2sdW7uf+7P4tYu3NRuTWJlZVfePKrWLtX596R6w95ZzcXqpLL5dbHzDrpdx+g6csfEasvdbWk2PtE/6Q2+vwhqfGxtpVVTv+ITcXY8oa28faE9bOzQl4/tTMvdm0qXNqpf+NW7PcTBEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqukT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqft3/mPO/oH1ID+Af9dx/K/1D5watOb/9Jbi8baHdNj6eppHZ6LV9WQgbl2Z8uQWLutfU6s3WjNfeBaG4Ni7b7+GbF2e0t7rN06MPc7b7TkPudVVVOndcbagyv3eWtra/7397/0dDdi7Vkj+mPtQa2tsXb3jNmxdv/M3lh70NC+WLuqavInufPbiFG5z1tvx1yxdvvgabF2V2NKrD1wZO56dfbMWbF2NVpi6d4BueuHzvaOWLuqqq811++fmbt2Gjly7li7b3bu566u3L93d/eXsXbb8KGxdkdPT6w9bXp3rF1VNWBo8Ppldu7+qDE8N+g1sCPXbp3dFWv39ubuUfpzl6vV1T0z1u7ty/3O/1+5z9uMrtz9+Fxtg2Pt3v7cz93Slfs+ac991KqlLXfd1jc0d+3UMzn44KyqOkcMi7Xb2uePtXunB79T/q0n2f9ZrUNy4xDdlTuvzpn0Saw9YETuXrxjWO4eoaqqN/kMZ1Lu3NoTHNLvbcn9nQ3qzl0vtw/JPbMbPCT3LGH29OA8jHlGxNpVVf1duTH9vpm5sadZXbl/85bO3L1Z+8zcQESjNzf/pXdAboy1o5H7uduH5NpVVTOCn7fe4Hdpco5bz8zcc5Sentyz0oEDc/N+enpy85aHto2ItedUbtxp9pTPY+2qqp72kbH2gLbcOMTA1ly7Y3hu/kt7W27gaUZ3bk7ArCm5MfUBwedms7pz4wBVVS2dwbGn3Nd4NYJrMrrn5AaeOnKXjNXXkxv7CZ7aqqc/d4/QNjB3Xq2q6v0kOIe2b3Ku3f1hrD1g9kKx9qyu92Pt/uB5dciI3PXqPAsuEWt3z8mNM1ZVtfbnzm+zunL349WaG1PvD/3O/xPdrnkWqEZ78+cm/vXD3H38Lo9dGWsP2D13Tu6+f9NYu6pqr0UmxtrnvnJorL34tDtj7Xl7c9cfSy6UGxu+acAjsfbM878ea/ev+EqsffgHx8TaVVWts4+Otb9x24qx9ux334i1nzp0zVh7+NX3xtoLH5p7DrL447nv8U37c/NHFhj1eqxdVbXgnbnz+uz7lo61r114mVj7it7cc/Ur1ng41h6+8l2x9sxNc8/cpl2fe7Y997NjY+2uHbPj0mOufTLW7htxT6y93Uobxtr1UO6cvtJi68ba73dfF2v3LZN7vvzC9avE2qsNeDPWrqp6d5Xcc/W+BReItd8a/OtY+5MHcz/359ccEGu/eP4Vsfb252wUa8/puTvW3mDl7Jqtp1/PzTX/YpvcPfGnnywea7/69jOx9hdPbhVrX/jM5Fj7ye51Yu2F9pov1j7ykwdi7aqqR5d7O9a+t3LPK29syY2pTx99Uaz9zlW5sZ/L983NERt8cG5u3l1Lbx9rH9j73Vi7qurDlyfH2ms/lRvX3rs1N+70cVtuj4Nbl3w+1t51au554f3vPRVrv7TFkbF29wN/jrWrqg5d74tY++yZuUn2+3+Se57w1vwvxNqfXb5grD2i88BY+2dPXRpr3/vNI2LtX/76sli7qurrq+X25x5/826xdu/wSbH2q6+8FWt3jjo51n4huAZ52RG5uRAdr3871t617b5Y++a2ybF2VVXPJ7lxiLan9ou1H13muFi787BfxdqLX3tIrN232t9i7YkvrRprLzQz+D26Zm4/0aqqx5b5LNYe/HZuP9Olvrl7rN320oWx9qObPhZrLz3ox7H2957MndPfWS53P7z2O7nfeVXVkKuD+0NNXS/WHnJS7rnZxytuE2sv9tmxsfbOa+XG29a6ff1Ye+DAm2Ltlf92QqxdVfVIZ+7dJt8aeHOsfe/Pc8/NBtyc2a9nVm971YSv9v94Zc9x1Rjc/D0yr/tm7pnblsNyc2euGJebB/r9idfH2lVV56+dm5d4y0e5ueY3zt461j5xzw1i7Y07D4u19+v5Saw9/7Dc9cc2w3L7yFdV9bz5Uqy94ie5tUtrHPyNWHvFU34ba9+6xahYe5nfXhVrf3Pn38Xau66Z2x/yiLPHxdpVVVceeWusPfvkXWLt7++Ru25c73fbxdrr9ufWJy4+NjdXaq7Xc+Mn3R//Mdauqrrjjj/E2tfekduj6aIdc/MSxx54Say945tbxNp/vPAXsfbItXLP9D96aeFYe91xuT3Yqqo+nTkh1j7knty5bbdbcmverz83t0/SoW/n3uPX+9JfY+25d1s51l5okdzaghP7/h5rV1XdfPnpsfaY13PPl1/f/tFY+7Q/Lx9rT1jyoVh749duibWf/zi3H9jC38rdk1ZVzbr9jlh7j0tya6d6n7gt1r76oty57Ucr3xBrj7y3K9ZebNvcfhoff3ZSrP3wTdlnpUf/9eVYu+/Y52LtZzbJrVc7/LHc3MBdfnlVrH3kXKfG2j9bbbNY++lLZ8baVVUfzMrNDTxo/j/F2s9vldvfoW/a47H2oLVy72TpOy+3p+l76+fmBIyekntutsGZP4+1q6o+eyb3vPJHqz+dax+Xu25sOfOoWHvM986Jtc+fkrsf/vl9ufG2LU7K7QFXVfXKFbl74r9elnvfxC7znhdrPzbh4Fh74HNDY+355sqth53v8dy6721OyH3Wbtk/e37pGJ27Zj3njty94fqjcvtazHVObq76Y/84PNZeuzU3pn/irp/E2m/ekNt3r6pq0A9y73/sOCE3/+bJAbnP+qmH5vaAW+S882PtG2/JPT+6ruudWPv803Ln9Mv/mJtLWlXVeDf3vot/fHOfWPvsiz6Ote/fMDfG2jE6t3dw2xO5Pfjn+vaJsfYOl+0aa1dVjXgjt/5pSPdCsfY2B+bm/nz7G81/ftQ9Y0bVd77i/+PZJaq7Y/B/5oD+DdsdnXu+O++8r8bady2xQ6z9xAbZd+nds01uPsF3enPnpQP33jPWXv/I3HyCo1v2jrUvrNyaiseW+ijWPvjyRWPtBU69P9auqpr/67nvlKWWODfWfma5ibH2ca25Memz1j0l1n73x32x9p1r5cbDZ645IdaesFj2XXpLP5B7t9qkT3PPlj9985VYe9lPW2LtxnW5sdnP/prbM6fviNx4+EU7zom1b1kwd706e5kTYu2qqv+6KHe9/PZS/4i1v7dBbm/vZX+TewZy+n65sbLNr8mNxb/QmmtPWSJ3/bDL5o/E2lVVD63xl1x72dzzl8ZrueuXs3b5Z6y99j0/jLW/2GfrWHulf+TedXXM5bk5xyOH5PbSqKraZ2Ru/c6sLzaPtR9qyY0F7L5ebo+BNd76dax92TIbx9q9b30Ya/9ij9yeNQu2nxZrV1Ut+XTw/c9n5t5L+97Pc/dmR72VWzN1++u5vXv3asm9q/Nrr3wv1j73rW/F2iv/LbdPdFXV7351UKw99CcHxNq1bu65/HWn5Nax7HXo92PtD17PzcMcMCL3fbJSS+49W49tcXesXVV1xhVnx9oL7ptbO/Td3z8Taz8xMzemftx1O8bak3+Xe2/kEiePjrWvW2NGrL3zkLVi7aqqVS4+M9Y+75YVYu2D2/aItXfYfKNYe9Xv59Yf37NA7j2hN3Tm9tIYcVvuvvCZBXPvbVzhN7l9NauqPn/2gVh7jbG5cc7z5849P9p7pdx74eZ9dplYe+0Tc/t4vHrye7H2MdfvFGvPf3DunddVVaf/JPd3NuScB2Ptv3bkfu7nV3091v7sptxYwPcOzM2vG7NF7p70kgG5vf+P32q5WLuqauihuTXAc8+8MdY+YKvcM5w/HZx7Vtp/T27Pvcf2yr3f48Hg/ki7/yS35nutq7aNtauq3rxj31j7jD/dFWu/e9Xbsfb+W02IdLun9X/l/8df1+2ptpae/8DR/HvGDZ7S9Oa/7Dgkd05e+rHc2qEVf55bx1JVtd8TD8far96bW692wbm5NaFHLZnbZ+Cf45+PtX+75i9j7as3vSDW3qAlN+94zU9z+w1XVR1y4vBY+/Wbc++Duf3ssbH2q4fl3kP800PvjbUPueCrX3v9/7X2G7l3CE58a8NY+8Q1cmthq6ouODC3X+DM3y6Za8/MrcV9qC13n/D7SVfH2qssu3+sPayR2zPnwftz79/ZesFPY+1V/rZ2rF1Vtd5duf3zR3bsHmvvfO1/xdo7HXhFrL3nvdfG2rtMza0leX/p3LvNRj2a23vulKtWirWrqqaPzu1hf+dDuflxy4zO/Y0vs9lSsfZpA3Of9as+OS7WnmfX3DPWcV9uEGvv+VBujLOq6rt75cZ+Nv1N7v7ot/25sZ9nd5gQa180Jncv/sRzP4q1f39Gbjz/0YVHxdqXbpTbQ76qarWf5s6tYx7MPVd/5/bcewP2ePeEWPuVY3N7Nf/yyNy103IvtsfaD3wj9zc+z9A1Yu2qqoV3GRFrL/jNF2PtUQcsFmtPPzM3xjpjVu69R6++kFvPsf2jx8TaC3RNiLV/+Ubz51j9z95eN/eu8b0uy81JHHn5rbH2i4Nzc2AXWym3h8mUfbaMtR/cPzf35r7Nr4y1t1zsy1i7qupvi+b2sN1uw9xn/XeL5dZN3XbWErH25jccGWv/4b8uj7XHrpp718Sip34Wa+97SW5N6Bu5KdNVVXXMArl1ertcO3+sPezS3N6aPz/3g1h7k3/k9sVq+zQ39vPyIjfH2js/mpvbN+KJ7HvGT5+wfKz950dze6IPPzv3zqhdf/xsrH3c3EfF2r/8YlKs/djTuS/yx3+Y23vu14MWibWrqra444FYe48Dcu8eeGRObo+D0efl1iZsNj63992O++T2WVz80hti7ZuOXy/Wnjp+7li7qurs93LXLwetu1usfcRHuTGvw9oz837mtM+qqv/v+ZSN//5DAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg/xSN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPG3pAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+z/bxVetUS3tn07szN1y86c1/OebRT2PtV79zS6z95/3fjrWrqo7c6epc/KPXY+lnPtgp1r7wiuNj7QNeXjfW3rjtw1i798VfxdrXLrRbrF1Vtexu58TaHdO3i7XHbvbPWHvJnTaOtQ+5/clYe8BdO8Tae5/y21j7N+Mnxtov7pq7dqqqOvKxeWLtGZfn/s2fv+LSWPvQV4fF2jOuXzrWvq7r4lh7zYeWibWX6j0z1q6q+nhif6w9dIuLYu3pje/G2ovvtHasfeNPF4u1R446Mtb+1qeHx9p7rLxzrP3MGm/F2lVVV9SdsfZlY66ItX//0OBY+/Zdc5+34SM+iLUP3G9CrD3/fCfG2q++uHus/eGFv4m1q6ru2+eYWPu9A8+LtUcOGBNrz159tVh7Zs/YWHvPs3LXTodf+UKsvfPJz8TaVVWPPfX9WPuwv8yKtf/8QG7s6YI9No21/zLnkFj73V8vEWtP/Mk1sfZHj+8da99xyIaxdlXVXc8uG2tv0Hp6rD1+u9y5bezNL8ba+/zmiFj74HPei7WPvHXHWPsXvTfF2lVVs8aOj7XvfjA39rTovLnvlHUWODTW3mDciFh7qyVWj7UfeDY392bPtZ+PtX+/4tRYu6rq4Hd7Y+2Fvrw71t59sdy57a2jB8Xal16Uuyc9Zoe9Yu1Lb87NvRl4fG5cu6rq5gUfiLX7Nn8o1j5kpa/H2g/e95NYe99XcuPq41/LndM//9mEWPsHP8uNvyz+i0mxdlXVhlMPirX3WyP3sx8xa+5Ye/Qq88fas9fI3R+98GJ3rP2tZ1pj7VVWzF07VVUdes9xsfZ6O74fa//mi9x4395f5O5RJp767Vj7mh1yz4gXOS03d/mCX68aa/9l7hVj7aqqLz/bNtb+5sknxNoX7H55rH3RwX+Jtbf5UW7O9mN/viHWvvAnuXvSa0/dJdauqtpuhdxcs+MXz62vvP6XP4+1V7/vi6Y3p/bMrOuaXgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+b9D27/zHnY3+6mz0/3cdy//S4I6Fm978l2l9s2LtYSNnx9pdrTNi7aqqjtnzxNpd0yfF2nMvslCs3drbGWvP7OuKted0Nf+c9i/D5x4Qa7dMaY21uzt7Yu2qqqFdjVi7dVru9z69Jsfa1fZvXW78Rw2tQbF2T1vuu3ROV+7vbFD/nFi79/Ncu6pqxMjBsXb/tNy/eW/7R7F2Y8jcsXb/lPZYu7s99+/d3pb7Hm1p7421u6bk7gurZUiuXVUtLbnfe0937p64ffjIWPuL4PfZ4Pbc73zA0Nw4QP/Uz2PtvkG5z9qQtuy9WVfl7o8a/bmxgK7Zub/x/tbc77yjNXdf2DcnN+40e/qXsXZLX+6z1tOb+xurqhowOHdvNnzeRWLtxqzc91lLX25suXWu3D1Kd8uIWLujJ3eP0tHdl2uPGhprV1W19Obuj2b359pTZnwaa887d+652cw53bH24OC1U/vg4Jh6S+780tcRS1dVVfc/g9/jHbnP24jgdVvXrCmx9pyW3PmltW9ErF09LbF0b9e0WLu1cue2qqr2wcF5ILNzJ9cBAwfG2r1zctfqbR25f+/ps3M/99DO3HOU1t7ceNvMqVNj7aqqRkduztPgeeaNtXt7ct/jHbNyv/PqmhxLz2odEWs32nLnl/7e3NjywM7cs6v+ltx3eFVV58Dceb2nL3dv1jIwd37pnpF7Pj1zQO5ZxoD+3H1Ce25IveZU7pld51zZuTcDgtdOM2fmxpZ7O3Lz69r7Zsbacyr3eetozY2/zBkRPMFMDY6/TP4w166qjiG5eQGTPsidX4a1LxprT27k1gf0Vm4sYMiQ4bH2yI7c88K+xrBYe0DlnqFUVU2fk7svbZ2Tuzfs68m1G6H78UbPV78v+8Xan1RLZ/PHpydcl/s+WOXbufXHr9/7rVh7+jHbxtpVVTcfc32s3br/b2Pt9p7RsfZf3/1arL1i46pYe07/87H2tE8Wj7UXmjI91r7r8Xtj7aqq0avnrvtGvnNYrD1piVVi7cmPXh5r1+h/xNJPnJK7jx/X+WKsPWnYqFh73Y7NYu2qqplr3hhrD1vzgFi756nHYu25nv5VrD3fngfF2vee84NY+6E/fy3WXu9nuTHxd4flxqUHPZ2bc1xV9c52t8faA27J3RNvcPwHsfa1t20daw/8Zm7Pv/nnyX2Pb3Jbbg7Hgz/cI9Z+5/YHY+2qqvfvWiDWXme3pWPtC57bINY+b8xLsfahJzwca6/8Wu6Z/rZ75K5X//GH3Jj6SR/l5iRWVQ0Zm/sbnzbvNbH2hOAc2FnPrhRr77hCbvzl7eVzzxq3n+vWWPufHbm9FY5+5+5Yu6pqt8lLxNrHvXVOrH3XCrk1yO2vLRlrr3vB32LtkyftE2vv/bvc/Lg7Frs51r7+H9nxl63//masPWDf3BjIC8/lzi8PLptbW/D2O7n2pp/uHGvPXCE3vvv8i7nrtlXa9oi1q6qmfpwb/5nQnluz9Uxvbh7I9Adzexxss/Yesfbzix4Xa8/Xu3msvfbQO2Ltl0/Ijr88u+r8sfbjH+TmPG94W27d1Oaz/hxrv3XlNrH2s+etHWsvPjX3733l+7m9PH7Ym/suW3/p7H4as794PNZ+cKXfxdqP9Oe+U55/MjevcOsvP4u13/5nbn+mexfMXadPWmadWPvtzz+OtauqxiyTO7dOvSi3794nb+T+xvf6Vu5dNm+t+/1Y+46rbom1N9pwz1i7+6XrYu1JUy+JtauqPph3sVj78Z7c31l7e+5afb2Xb461N5y0cqy98zELxtpd38/t3XLFo9+NtddbMLvu6u67lou1r+zNzZPf9cq/x9oTh78R6U7vzb73EQAAAAAAAAAAAAAAAAAAgP+7nfe39aqjpfnvh/3on+Ob3vyXC476Y6w96/jc3pTdi+TeuVRVdc82uf1vt5gRS9dc28wXax976S6x9tGb7BBrL3fbpbH29ve8HmtfM/zZWHvu7tx5tarq+zeeFWsv8khuH7U3dhgda79wQ+7cNn7Ey7H21b/8Itb+5LSfxtpPNn4Ra5/zs9zvvKrq88dy+y233pDby/3Mk74Ra1/9ux/H2pdfcn+s/c7GuXdW3rVV7nt04OjcZ+2kFX8Ya988szfWrqp6sPXAWHuRT5+MtXecNjHWPnDu3LX6qwc9F2svvMvwWHvK8ovH2t9ZaNVY+6b19oq1q6oe+mHuHWNHr9j88c1/uen3C8Xah497LdZ+ffnc+MtB1+Xeg7Ptu/vF2k/sf16s/cmAnli7qmrXuXeMta/e7qhYe+NDcu+93m9w7h0Z/d95P9buWGmZWHvgdpvG2gsc/qtYe/M1c++Cqao6Yth2sfYuE3PPzS55+/RYe41NX4213z89997rV0/NndOn/zLXHnZmbqzvR395KNauqhoy5MhYe/xtued2l52ae9fV9Z/9PNZe9NHBsfZrO+b+vY++7ZFY+/jpuXHG9ba9Mdauqnp5fHesPXPp3LtR1t4+957zNU/IPcv41djtY+1JwXuzJd/Ite8+KPc+uXn6BsXaVVVXz5d7Pn3hoVfE2nc8l5uLcfzyubkYbU9+EGt/PubOWHv9xf8Za4/9QyPWfvjI3DzS2zuy7wkd80Xu3bC7LpCb49Z7WW7+yyfn5t7vfss6ucnitzzzXqx94UW5MZAf7pJ7PnzAphfH2lVVL43LnV+2HPDNWPulS5eMta9/dstc+9jc+5dHXp17F/B9y28Wa5/5wwtj7ecPyD2/qar6y71nx9oX35ibF/Dp6blnV/efnjuvHvrlVrH29PU3ibX/skJuzvTneywQa18y/JRYu6rq5keuj7Xv/Glu/m7f+Nz6xpdmHhzp9nR1VdVlX+n/scxqD1dHW+d/5oD+DZeNzl1/fPhWW6y98DwvxtptU3LjRlVVK195d6x96tvfi7Vb//DrWPvQd86NtQ/aaOlYe8Pfj421Zx/1h1j7m/fn1ovt2T4p1q6qemiHd2LtVW/I7SWy8konxNr3//z4WPvJ0bvH2qO3ze0r8fGBubkzN44+JNbe8uR9Yu2qqnsPuznWvuaEUbH2ShP/FmvP/fKQWHtQ63qx9oFH5dY/P31sbgzhT9fm5s589oPJsfbGB+TWRVZVLfPUzrH23HfuHWuPeC53f7TzGbk5Q30bbx1rj1ojd51+/Pq5uQyD9t4/1v585FKxdlXVF8/9V6zdffNLsfYjo3L7FJ3ytdzzvr93j4u1J+6UG2M97u7cs8ZTd1wk1r7rmdz3aFXV9x/YLdberO32WPvwhXLjTpecnrtPWOeLbWPtzh1z+4i82z0y1l7n1L/H2tcsm1sDXFV1xLVrxNq7Xpu7Zt1p5dxeqkvtc0SsfefYP8Xan+7bGmvftWBub6rGjNNi7efG5fZBq6q6rr0j1j78d7n9/68+botYe8aPct+ll7ywb6z91he3xdpX3r1WrP3taVvH2v1HrRJrV1VdfGhu3feOY3Pr9FbvvyfW3mzSIbH2UQfuGWsfsWjuWcZSX18z1r5s+6dj7c0XzK6bemrD3Pll190PiLWP3uXjWPvQybnr5buG3hFrb3tSbv7uwAVz+yzu8LXcnOnlVjw21l7qndzz4aqqYx/N7U213CtnxNoPfi833nf9+bk9cz5fLfd3NuyQ3LqpltOHxtqLPp37Lrv7u7lnR1VVq597Uqx909FvxtpzOnPzOb9/9smx9nMDc/vu7XnQ1bH2o3ccFmtvvVVuX4dr3s7tPVdVNWOzm2Ltfa9/ItZuffS+WPvwpw+PtZdaITfm1TL+R7F2zzm5eeqLzve1WPs7e2TWH//LXxbvirV/+uHjsfYqJ80dax/8Qn+k2z/9f6+b2x0PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICma6QPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/h/27jNKr7Lu+/5/zinpIYXQa2ihhxbpCCq9REGRIoiKCEhVQFCpIgJKV6nSBAQUQek19N5rCL2FEtLLTDKZeV7xrOfNtZ7bm+s6f/e91ufzmsV3z+Scfe59HMc+NgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0Dxt6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/s/20Pn71MDBg5ve/bzP35re/MKTx78Ua1/z8TKx9onXfhRrV1XdNfQfsfbu5+8Ya7ePWirWHvHAIbH2ngudEWtfcsvTsfZZ39451v71OzvE2lVVg/98Vqw9aYvHY+0Bqy4Zaz+z+MKx9u/n/jPWXu/QjWLtxbacGmsfOy93buv815GxdlXVYXs9F2v3/8Yjsfb5p7XG2vednvsbf/Cp6bH2dtvnrp3WuW7XWPvxTWbG2lVVEzZ6KtZe86nPYu3rvr5CrP39zZ+MtU899Bex9kkb/yzWPmP6/Fj7xTHfjbXHb75urF1VddwZC8Xad+yRu1af+urVsfZnK8+Jtc8ddn2svcND/WLt7Ttz4327/3TTWHvAXblzelXVQsu+FWv3fTY3rr7QK8fG2hNX6Iy1Hxy1aKy9w1/XjrUvb8mdXz7fffNYu6rqq4+Oj7Xv2uOuWPuXV7XF2kNvfT7W/u0+E2Lt7W9fNdZe+5ptYu0hZ90aa1/27BOxdlXVIY/sHWuPHr9YrD32hdwc8aunbhBr73P2FrH2XWvfE2v322GlWHvf4z6MtauqNt4q9zfe3v5mrL3oGrnxn5PuezbWPvec9lj7lDOuiLXHrr9+rP3jd++Ptftu/kysXVV10b7dsfZ2V+SuGycflPsef+umk2PtzefsE2uvc/rbsfa6z58da29x6b2xdlXV7/eaGGt3vZu7L91yswti7RtXeiDWfmuTabH2LZ/kxkBeGPHLWPucVXJj6os8NTLWrqo67LrTY+2zR/ePtR/+Ru4+4d4bfhVrf3v4obH2RqvtH2tP/eWAWPvmvXPntqqqx9bLrXPb9boFY+1+P38x1j55kW1j7W13GRtrLzFyUqz9nWE3xdrzF8jdk159f+56tarqziEjYu1Nr/g81v7t7bnvs+M/y90Tj7snN6494cxrY+3fb5j7uYf/MreWtKrqmjty18vfPjQ39nTxp7l5u7snNH+d/OzurqY3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP87tP1H//X8nqqWnv+hQ/mvzZ3znx3mf6c+bSNi7XntnbH24EafWLuqqvr0i6UHDMm153TOibVb2zpi7Y6OYbF2v4HzY+3Z01tj7Zbe3L93+/xcu6qqZXD/WHvOrOmxdsvc3HdpvwWGxNpzJ02NtVsWXyDWbp8zO9ae3zUv1u5ty51Xq6o6P/041h7Qtkys3duRu2btnTsp1m4bmLtP6JmXu36Zl/sTr9bZ3bH2gP6DYu2u+bm/saqqmpW7R2lpxNLVPTt33Takf/AHD94nzO6cEmu39MndI1RPSyzdHhwHqKpqtOU+6z0fz4q1OwYPjLUbc3LfpY1+ueuXzjmfxdpdM3Pf463BP/H2Rt9cvKraB+Su3WZ89Hqs3dqd+7n7LxlLV8v84FjArOD5pSU31tcTvEdpreC1clX1duWu3Vr7zo21hw5bKNbubY+lq38jF++alrsXn9ueO6+2tfTG2nM+z92TVlV1t+bm5vv2zX2nzJ6Zm8uYm/u4VUdH8H64NzfmNXV27pfe0T/3HT554kexdlXVAgvk1r802gbE2m19ct9n82fk7s3mt+Su1fstkFv30xWcx+gzKPdZ6zN0SKxdVTV/Xu733jM991mfV12xdm9w/mj6h7mx5QU7gmPLXbnPeXdP7h6hbe7EWLtjwOKxdlVVV3fuerlPa+47Ze6M4JrGjqGxdr/gv3dv5ean+7Xnxrx6OnJjnPMb2bHlnuDvPbksIDjsVL19c39nbf1zv/R5n8+Mtbum5L7L2hu5c3pX8B6hqmpecGh7QN/gczidufNqd0vub7xf8Lmrnvbgsyh9cvdH84NfZvP75e7Fq6paZuV+9smzPo21+/TLXTe2h56Faasv373huc1rQHvz5wS6Jo1revML45ZeNdbeaKVRsfa9v70+1q6qenKza2PtCYtvEmu/8u67sfZ7P1g01n7r9m1j7ds/Pj3W3vCbd8bam56du85+de/cZ62q6tSXXom1h6y3R6y97EUfxtqfjd0w1n69O/dzT99/6Vj7T7flrnWXH51rv/RB9rmpge/n9hmYecYxsXbfAbn5xsuePDzWXuvBvWPty9/bIdb+wda5MdL3HvhurD1g6i2x9kef5K6Vq6rG/DC39ndwn9z90f1HrB5rv/i9R2LtlV77JNa+vPvMWHvYjNx59cWJubHZEWOvirWrqhacmlvv3feFU2PtsSvtFGsfvV1ufdzsf+Xmf1q3yo2/XPJSbn+Diyfmxn5u+DA3p19VdeHXNo611z7lp7F2737rxtqvTPhRrD1py3ti7a4rc9erRwzNjYH87IS1Yu2N1no+1q6q6vPY/bn2YivF2q+sdn6svUl77vzy0GurxNrTRzwaa48c+WCsPbhjhVh76irZ/dgX61ok1l6/J3fd+MFbm8Xa4xd8IdZeZcvcXmTvnJy7fnl5+9x6yE2nHBRrf3b3lbF2VdXMD3NzVyvuldtnYKGe3PPub76YmyOeutbkWPvdcTfE2mNm5e5Rrt4s92zkAl33xtpVVV+ZdmOs/f6092LtKev8O9b+wd/GxtpLnnd0rH3fq+fF2q0bPhxr/3jZ3LrlF5fPXTMecvZqsXZV1Uf75OZRRn+WO7e99O7FsfYqt+SunX60Zm6voAnv5p4JvfOAXHvpj+6ItWcMCD78XFW9py4fa7/43dyz/oNvuD3WvuDD3B5wP1kit2dxn0X2jbWn/DW33mmPFXLz0w98Kze2W1U145w3Y+1n9sqNLW837Cux9v2tV8TaF26Vu09Yb/DIWHvKpw/F2icO3CbWfnGB3PVDVdXnE8fH2mO/lRsLeOCpqbH2wq+tGel29nRW1Y2RNgAAAAAAAAAAAAAAAAAAAP/3az1hXLX2a/5esH3G5vbu79phu1j7uhW7Y+23bng51q6quvuA3N51Y247Jdbu3PztWPuuU38Ra28z+7lY+77OdWLtjQ/O7cu5xpG59/idtP7HsXZV1fb75/YyG/PK/Fj7wL9fF2svvE3unZVn33pfrP3Rn3J79r1w2uux9tu3rhhrXzIhu1/gyCVz74bd4fUfxNqLzNk+1l7tLy/F2rd25PZCfebU3HfpYU/m7lGO/OCdWHvOgd+Lte8fkHufXFXVh0fsFWv3H/hArP3znp1j7emr3hZr7z10Qqy9/rTcOzIuOP3GWPvpB3P7Df/ypOtj7aqqX181KdY+dvLlsfbpx18Sax/+Tu475S+35t4budWIC2PtTZe9INZe9bjcO69feDu3n3lV1WXTcmPbe16VG3f69LKdYu3zL3kr1v75gd+OtT8flRtj3ePE9WPtg8bnfu6e/jfF2lVVjYnvx9objD8h1h59eu59DYOOyo337bLDp7H2mb86LNae+mDus3bMYmNj7V3u+V2sXVU15sXcPO3lp68Xa/f71cRY+6o9/hRrP7nNlrH2m7259+AsOjHX7vuz0bH2Nddn39V54TK5OeJ/zp8Raz94/OGx9mN/eirW3nDP3DtKX/48d1799PHhsfaGN74Ya3+2wrRYu6rq9sG5a9avf5p7z9enjamx9m/X7oi1W689MtY+caM/x9o/fvfKWHu/vofE2pM7c9cvB2wwLtauqupozY1t//Wp3P3RIvu+Fmuf/9r+sfYbo56Ltf/QfkCsven37o21b7sm9102/NXcnF1V1Qrr5+ZpP9p5bKw9+Obc/NG8K3Pj+Vf+YYlYe8yeuXXLV6z29Vh7u11/GWv3rP1MrF1V9f2FcmtQJvXtjLVXHH9UrH1z5dbo7zk0Nzfe9777Y+1/Xb5crL17nRNrn7zC92PtqqqO7c+Otfde96JY+7lv5Z6L2HHX/pHu7Nlz6vtf8v9xw++WqpaB/f47Duc/0u+ztZve/MJ2G78aa59xS+5zuukKubW3VVUDn8rNbe/Uc1ms/fQjvbH2Qvfk7mdX7zsq1v7rS7k1z42zp8baT9z8fKzdPmeNWLuq6sANcve0B58wONZ+ftfcebWxZG5vh1/fu3WsvejeuZ/74Pbc3/iU4bnxi73m5+Yaq6r+2pubb1xk/Oex9p9bdom19x+SW8fx1s17xNob/+3RWPutHy0Vax+0xEmxduuSj8faX7/snli7qmrp6blr9RPfyM3//HzGPrH2xJNz/+Ybr7RgrL3tT46LtXt+u0ys/eN33om1T7wyt+deVdX4xzaJtU9bZGSs/fisXWPtTyfkxho3uWFYrH3lqmNj7b8ePTrWvuDY3HNyh696c6xdVbXPZhvH2i9s9bVYe4Pjpsbad56X+xt/sOXYWPvk7tx12wkL5NaBdpy2eax96/17x9pVVd996l+x9glvDI21bz8ntz6u/625n/v7P14g1j7vh3Ni7Q8OWjPWHn5dbm3/LT+ZEmtXVd3z4W9i7c3PyT0HPPq1d2Ltv9//nVh7zKoPxdorrXpWrL3QqufF2odul/suW23xJWPtqqp543N7Wgx787lYe/xtuX1r/vn2oFj72Q9ycxnXHftYrD3qzdz6/gMf2DDWvvqZMbF2VdWYox+MtR+/9aux9m6H5vaRffXc3L7B796au1a/4Ue5v/El1vtZrH3F8rlriB9tvEysfcny58baVVXL7pDbM+eRS3Jjbtv+KvdOlyvOzI39XLjFP2PtO98+I9Y+ZufcvjWXvpWbv7nllty/d1XVm4+fGmtf9nTu3LrMa3Nj7RnvT461L18q9xzurnNyz109d8husfazJ58Va5+/xsKxdlXVBZuPj7VvfTo3rj78ytwzyKMvvj3WXv293Ps9/vXN3Br9Kw4aGGvvdv0rsfbiJ5wca1dV/WL13NzV3MG5ce0Rlbt+WenezL4S8zun1+v1/7+XR6MJxwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP8hGukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHna/qP/eMCgamvr9z91LP+led2Npje/0DavK9ZubW+JtWd3Nv/f+f9r4MCOWLvR2htrd/QbEmt3deU+6+2B88r/2+7XN9aeP2NmrN1nSHus3VO5c3pVVfX2xNItc3Lnl54BrbH23Gm5z3rrgv/Rpc5/q/aJU2Ltnp75sXZX8Lw6aOjAWLuqqmVq7u9sVsvUWLstdwlRPf36x9rzgn/jfUb0ibV7eubF2o3huWvG2bM6Y+2aOyfXrqpGe+73Pnfu3Fi7cl+lNWf6jFi7z8DgvVnf3Lmt0ZO7ZuyTG/qp2bNy32VVVS01ONZuXSD4eeuX+7zNmZ68Rwnek06eFWu31IBYu7elO9bu+c+mHf77zc/97MOGLxdrz5v+Uazd2i/3Nz4veH7pnZ9rdwzJXbe1duXOq925W9Kqqmq05eau2ufkfu/Te3LXTgP75y6Ye3qD32dtubGAls7cDXFb5T5r87pyc0dVVe3BedpZcybF2v1HDIu127pycxkdvblzeg1eOJbuPz83P905//NYe+jQ3O+8qqq7a3Ks3Vu56+UaEFyT0J6bT2gbkBtv65qbO7f1ac1dp7f15q7bevsOibWrqhqduRu07uCaytae5LzdkFh5xJK59szPc/NmvR259Qitwa/RGrJYLD17am5st6qqoyM3pt/ZnTu/NFpy59UBbbl/8zmzctcQLQOCk8TBz1prI3dy64meWKvmzZkda7f0yY2BdHcH10z3JtdM59Y7zZ6bG9funpcbg+iakxt36u7J/Y1VVbVW7n68a+a0WLu1f3Dh8tzc2M+83tz16oKN3Br9BYYuGGtXIzd/1N6a+/euqppVueuXoUNy9+NzuoLrlntDP3fvlx9P7zz17God1Pzv4xkduWuAN9fZKNZ+fNrUWHvuU/+ItauqapexsfSRQ3L3Ny+8l7vmG/zyErH2+2/n5nh/dsBfYu1d/7FmrP2Hzldi7cMXyK0fqaraKTj3tEG/3N/Z+oc9Gmv/9fXceqVt+u0caz/7zjWx9pknbxBrX7bf3bH2syvk5r2qqpZoHRRr9x4xNtZ+dcGbY+133rg81n6rz9uxdmPri2Lt6UvvGGvf0vtYrL303CGx9uSZ42Ltqqq3P9ou1j7/q7nz6vBFcp+3+x4+ONZ+6a3LYu13WkfG2msOejbWXuD8F2Lta/fK/c6rqkbNeyvWfv7j3HXjiCm5sZ+XF1kg1v7qcs/E2u+dtW6s3bbHJ7H2K3sF9xT9MPc7r6pae+3cWONyd+T+xre7KHc//sTWufanXdvH2vt98nis/YcNV461X/hm7jt86IzceFtV1QF/y60bmnvPhFh76HlrxNrfWeH6WHvhNRaPtXd6Z8lY+/zh78Xa07v3iLU3OPO5WLuq6h+frBZrrzvn6Vj73e/k1vc/MvufsfbAi0+Jtc/fcUisfcGkD2Ptq2eeH2sfs1Z2T4szd34o1j502ohY+5Nlz421e9bPrUH5w1JPxtorPpFrT7lnhVh7xX/8O9Ze7HvHx9pVVROmPhhrN44ZHmsPvim31mv3zXNzGSOW+G2sfea9X4m1extfi7UPfzF3bzaqe3ys3bHy0Fi7qur9+78VazfWzN0Xdm95T6y9x+a5ObuH98ytd5q0Rm6f6FEzcs+Lvb79x7H2jIVz9+JVVX1vzV07rdX/pVj70iV2jbXHvJ+bT7j02tNj7c/G/iHW7vfOB7H2P3Y+OtY+5Y5LY+2qqi2Dc+MLfZS7R3lqaO668Zkrcs8mbDp2oVh7xXemxtrXrJhbT/lujYu1H1w3t5dHVdWEObl9JX76TO65qxMXyl2/fP2izLMJ02fMrlrpy/0/lv7NTjW4T/P3/HnitdwajrvOys17/fOA3P3N7Z/k9qOoqhq3+AWx9jknTo21fzx1vVj7yRVy+1r94ne5ec5Lx+XePfTR+blxwvVG5tbtVFXd0Lgk1j5gj09j7Ymb5u4xvrHn8bH2zrvlxqyO3frlWPuh7+8da6+56k2xdr/dcmsxq6pGjpwea//92ty41d//ODbW3uf13HXbt3Z+LdY+545RsfYnr+X2b3k3eK1cVXXWc9+ItX/XP3deH3bnqbH2YTsPibX3nZXbD6x7nTti7Ykb5p5PHP9sbp+ikZcdHmtXVa2+xRuxdufi42Lte57OrSG54aXcfqQjnl861n700dx+xzNPWCvWfmL0H2PtzQ/JrY+rqlr+lNwzqdtM/06s/cZdubmvZ8fn9q0ZuXlub4dVBuXenzjpgjNi7VGf3BZrV1X1e3SdWHvEXT+ItW+bMS7W/vbCO8Xa5393mVj780Wfi7W3uGezWPuKJ3Pj+ZeukLt+qarqHpsb412sroi19zlwt1h7u8dyYwETtt0k1n7pttz89Dd6cs+LHbnqVrF2VdUiL60aa2/9i9zf2ZQf/DXWfuGMb8faty+1eqy91rdy18ttv83td7joubnf+fU9uT2aqqoOHpp75n3GS4vE2pOH5t7X+cqH28baSz+Su4Zo+/mXXIj6JSw95tpYe621c3MJVVVvbrR+rD3v92fH2ndsnxvbXmv4obH2fQ/knl+64A+5PZpe+WruvLr13rlz2/g3cs8PVVUd8K/fx9oPH5JbB3LHhNw+Aw+Oys1lzNou927YyW/kxhq3eOR7sfZNR+b23auqeu6Ru2Ltp8d1x9qjfpp71n/a1/4Vax+6fCxd394992zEicfdG2vfuHjuHmX89tlxiEdPyX2PL/e9X8badXbumfevzL0s1r5jdm49xFHfPjLWXmbF3Gdt6vPZNZVnXXNmrH37qbn9ipZtmxprL3dC89+70Ns5o+rp332p/8fyP3+6+rU0//nvY4798u9o/9/19LjcO1km3HBMrH3unrn1r1VV27dfFms/0JEbj3+j35BY+yd/y60nePoba8fa22zfJ9Y+9dSjYu03770q1r5ihZ/G2lVV2520S6y9xdW5ZyOPGv6nWPsHy74aa/c0cvsrnH/pU7H2src8Emv/4bHcON3Sv1o21q6qWuq262Lt+Tvm1oF+/YzcswXvbZNbG3fWGbl1v5s9mHsOd4v1cs8mThqU2zPvV6fm9p996he5Z1iqqrZ8LPdZ//ETW8TaRx5+Uqz98pO5daCnPZt7d+LIvXN7327ZmXtv4zF//FmsPX7fpWLtqqo5p90ea3/w7pux9ugpN8Tap4zKrfsdt3Jubf+003L7DV61ZW59/R4/y/3cd34r927WqqrDX3491t5tk9zf2UOX597XsNVNY2LtLc/IXTvdOy73Ppivn3RErH3yZrn1zuc+nBvjrKpq3Hp3rD3q1dxaqXtXPDTWXveTubH2o48fEmuP+/boWPuMU0+Mte9e//ux9s07Z/cwWfuFbWLtxXbO7a/QZ8o+sfZLj+buUX68Z24u4/Vnn4u1P300976Hy8bknqc49bZjY+2qqofG/y3WvvL03DMNd3/1wFj7hF/mvktvuyX3brPT+02KtTddfJVY+8qewbH2U43zYu2qqr2OyK31fvyB3DjEvafeF2uf+ZeLY+2V7z8u1j539NhY+62/XBZrr/Pz3JqAjWdcFmu3vJbb26Cq6v3Lcu/R6X11/1j7rOdz3+Ob/DH3jN5V7blnExaflFvT+PEdA2LtP6+f28+i7wF3xtpVVX02XTDWfmD182PtJY85Ptae0JW7Xl7jqNyzidPOyb3rc7WZufGX/ef8O9a+bJ3DYu2qqidH5/brmb1Gbk+sqyePiLV3OSK39/+983Lj2osufXKs/d6Ru8fab5+9Zqx96dX9Yu2qqjUuyI3vLnJcbk3lup/8JNbe9ejM/ky9s2ZU1ZebG99261Wro9H8NTQPD7+y6c0vHHz+b2LtE3bNrdt56YRxsXZV1cyDcvPLnXvnnpXbvk9uXHryqy/G2pPGvRtrn3TbObH2ZkP3jbX/edMPY+0LGvfH2lVVm66ee+77guNy+/wcfnbub/zXj4yOtbeel3vH+rtjn4+1V3sitzfkSis/FGv/5q+7xtpVVQNG5NY9f/PvuXeiLHnvz2Pt/q25fWs2f26DWPvhJz+LtXcfkZvbfmJ07rrt18c9F2vv3Df3rH1V1Qv9cntynnRWbp+kV0/JPT90yN5fj7XHDXsm1h7Uf/FYe5+VTom171ko926Onc4YFmtXVW30ldy4+A6tufW39x26X6y96+jcXh5PLJ+b59zihdzed31PCu5nuv7bsfbN5z8Ra1dVNSbNiLVHXJvbz3S563NjjaeeemGs/e9XF421P/s0dy/+9p9yazievDG3b8xa++X2lKiq6v/292PtE+/Jvadilz/m9izueiO3D9qO43Jj6s9su3CsvfhbuX01d9xix1h70I+y1y9jr9481l73+NyaoaMXnxhrb33e0rH2wdf/INb+9NGNY+0XNp0ea0+8OPfOyL0+eT/Wrqq69+bcs9cjjs7tM7D/Zbk5u3+clVtrPnFYbo+kr9yd23fviXUnx9oDp42PtTfe8pNYu6rq5mtza823vOfmWHvQ+rl3CN20XW5d4Vd+klt78+iqf4+1f/Xm9bH24xNHxdoP/XKJWHvpi3PrhquqJlduv+bh5z4Qay/zg9xeZMd35u6HRz6Suyf945jcuPbZP9w71h5y+JO59j2595NVVbUP+n2s/dbpufvCrgtzezQNPfpXsXbL2blnnza+PrdGf7mHL4q1Lx3w61h74DMdsXZV1X5r5PaV2HJWbg7nO8Nz7+l6+G+5vWMu+nzLWHvi4rnnj3oPzs1d9S75cKz9xmm5NdNVVYu+k3v2utFydaw9a8fcv/leJ2TOq50z59QJ/wvbDeZ27QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgeRrpAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoHka6QMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB5GukDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgedr+k/+4t2dq9fZ0/k8dy39pYNuwpje/0Hdod6w9b8qgWLv/sP/oo/Hfbt7c3li70acl1u6ckfu8tfRtjbVbB7TH2snfec+Q3Oe8tzE/1p7b6Im1q6papk6NtdsWXzzWbsyeFGvPn587v8ydk/s+6xg2JNZua+TObW3dufaMiZNj7aqqwUsskIvPnB1Lz+/OfY835jX/3uQL3cHrl9b5jVi7pTd3rTx30oxYu3daLF1z++f+vauq2lty5/X2lo5Ye27P3Fi7b0fu+6RrypRYu21w31x7QO6zNqfRFWu3LpK7P6mqmvdp7rzePjz3eeueMj3Wrq7c9cucObNi7dYBueuXvlNz7e4BA2PtvvNz59WqqvbgeX3GtNz4y6Ahi8TawdvC6DhEoyc4/vJZ7iZl/sDc9+j8qbkx9aqq+b3zYu15wVvDRk/umrV6c2PLNSv3eeuakfusNYLXjLN7c/ekjbbgZ62q5jdy4xC9Pf1j7c7gZ71vW+4eZUYj911a03LXEP365/7OGsHPeduQObF2VdXc7mVj7bZpubmrKZ/l1kMsvGBujVt3b27erH9r7l68qyc3/tLb2y/Wnt+dPb/0XWBorD33s9y6gL5twbHlltzf+Iy5uWuntv6Dc+35uWun1pbc+G5b7mu0Ovrk2lVVLfNyP3y/tgGxdkdH7nt8XvAD15u7Tai24DhAT2vu3qzvwNznfG5n8ORWVS3BtT8tPbnxvrktuc9b98zcuFOf4L1ZBdc7tbfm7o+6enL3R/PmZp+7ajRy98TzO3LPu82enVtfN7f7k1h7weDQ8qBBwXmU4BqQjr6565cZn+XWn1RVtbfn/s0/7AyuJZ2XO682Wt7OdHu//HqA1c8cWIP6NP9vdVD3Zk1vfuG9TRaKtWfc/k6svebYXWLtqqrWrW6JtecP+0msvfvzE2Lt3334Qaz9xO7Px9qtD+8Ta284ZmKs/ffhuXuri556KNauqtpi4VGx9vsfLBprvzB/rVj7851z112XjHsz1l596ldj7b/PeiPW3qFrjVh70W/m5jmrqp7uWCrWfuHyq2PtJd9dJdb+Yb/cOMJFt+TmeA8+PTeG8eIZub1jNuwZHWu/tfxzsfactUbG2lVVM65/PdZeeuR7sfYz264aa3d/9Fas3fXmgbH2wL1PjbWfWeulWHvczd+MtQ8ZvHysXVX18vDcPfHy00bE2i8+f1msfVDlxrw++nThWHvSiFdj7bsn5PZ2GLpG7m/8sYdz6+urqjbr/lOsfeb+r8Xa5wX33duiK3d/tO4VubGfwybn/r3fX+nIWPuux3L3KCvd/I9Yu6rqjAty5/WlZubmcIY0cmM/z26ae46l448vxNq/mZfbp2ijCblrxgf6PRFrv9I5NtauqprZ+X6sPWjjr8baHzw8PtbeqPHLWLvz2Gdj7VO+9WGsvfB234i1Ryz8aaz96jYfx9pVVWe8cGisPfuzF2PtBxY5Ltb+zk65MZBDXsk9qLfUD3LrMB674ZpYe9ot68XaZ76Q2wetqur10eNi7bVPHhJr3zd791i7/8d3xtoXdm4ca4/e9OFY+6pJuZ97nY1y+6B9vzO3xmyjTbP7sT9+z29i7W9ec3GsvdEuufuEty99J9e+MfccS2Pzv8faf1oqt4Z1RCM3d7XK3Nz3SVXVvzs+j7UPeuO7sfYCy10Qa69+yndi7ac23iTWXuHN38XawyY+F2tvdt6JsfYDQ3PjAFVVI187OtbuO/eiWPuMy3Pzlet+975Yu//s3PjL4mu/E2uv9PqTsfZqB2wea1/4j21j7aqqby6Tu0dZ7qqZsfZey30Ua2/yWGYuY9b8L79fzrij1q7+g5v/XMc52/2w6c0vvLLyHrH2cj9/JdZuHJjdz2uPG/4aa4959Xux9g7L557FXfqC3JrEDY7+Q6x94mm59Up9vvPrWPu8S7L3N7+5LbcP7OA5ubGjFe7fPtY+bGZmz5uqqklzc+vjXvlr7t2JC3+4Wqx94VPPxNqHL7tzrF1V9Yd9c+9M2O/cw2LtpT7MjZ8c8PvcuPSAjW+Mtbf/fm6def+Hvh5rv7Hi/bF2VdUilbs3PGnovrH2Hz9ZItae88KlsfbwibnnST7szI3Hf+93uTVqyz+Wuz86481/x9pVVftv9a1Y+6eb3hBrT7xt6Vj7wBU3iLWH/fGOWHu97U6PtX+65Y9j7V32+EWsvcig3LMFVVXfWSN3flv/mZVj7U3+PC7W7h2TW2N/6OTc+eW+LXP71vx8WO53/u1l/xxrV1WNvTh3f/aVjY6PtR+bkju/LDnt5Vh7wdW2i7VHPnltrP21E++Jtff8fm5/y/cuXS7Wrqpa8OR/xtrXH5x7b8E/Rq8ba2/7cO55+48vyM0RX7z2rbH2DVvm5nCG16GxdlXVUVfl9qLvc3ru2e/1D8rNJ+xywLux9kq/zq2/mfD+grH2IzflxrX32um6WHvR4Htpq6q+d905sfawqbln/Y9/L7fe+/JdcteN+x2T2ze468ncu8ZP/ODeWLt73dyeXFVVr008Ntbed6F3Yu09ls7twf/aTsHz6j65NfZ7nPG1WPuwM26PtSd/851Ye+Wzjo+1q6omXZl7N9zEJ46PtZ/dObcv+pvP5dqn75l7PuHGtjNi7VFfza2bnr7Sb2Ptqqr97sztJzLmodxeA6fsn3tf1ph7c39nw5/Pjasf05J778JuS+TGd0++M/e+qrXOnxJrV1Vt8dG5sfYj618Za7+3cG798OGf5va1WHdI7nv8mPNy7yh75sZYup4en11Tud+Y52LtK14eE2tPmPDzWHvAYjc1vdkzY3ZNPf7L/T+uf/3CahvU/H3kul7NfQ/+9sRLYu1H/pibf9lih9wealVVR4/Mvfd6i/e3iLWP+Hvu/e6HVG6d1nXHHBNrb7V27vxyyW7tsfYCc3LvdFu+X+6ZhqqqIUNzc24dd+XGCQ9be9NYe/Saj8faj/0i91nf6pzPcu1TNoy17zx7zVj7xyvn3gVTVdVn39z7ptbfJbcu8LsDcs81DHvl6Vj7pUMOjbV3WDO3hmOz9q5Ye+eTc3PLry7yRqzd75HcXoFVVbPe2C3WnnLbOrH2coP+FmsP6MidVw9deUCsfcwbuX1jPjvyy+/T+L/rt+vnnj9+5eEjYu2qqkVH5cbEjxyV2/vulRWuiLV/P2yHWHvbZdaPtXe5dlasfeB3c9dOL/5lv1j7g1+8FGtXVb06/9FY+2vfzD0n9+OBe8baSw3IzWsftH3ufXaLXpK7T3hmy9z36DHX5vZTv2+X3HtJqqoOOupXsfYW/8o9m9jZmXt3wAKvHxxrnzwlt7fmd99eKda+8g+5edId558ca198Ym6v5Kqq+wddHms//8PcHk1rLJN73/caT+SuGUd91Pz1Ql+YdMjgWHv013LvHThwiVx78z/n1rdXVQ3eLfdcw8jlc880vPdpbj/Tu4/I3RPfuWZu3uzJC3PPJo4L7p075I7cHMqim/XE2lVVP/xb7lmSTa7MrWuc0Fgg1l7p9dzeLT+5LTdvNvSRM2Ptc4/N7cF21K655yIPfjr3WfvLobn3NlZVtXz397H25P65dYW/2/7jWPviJXLvjZy+xD6x9qjg3tx9T8nNy//yodz7l9d+Obeesqpqk/PfjLVn9smtt3r6rtwzmfsf0h1rH7nTzbH2vNMWi7WX/H1uTUD/Xw2Ptd/82YGxdlXVvh25e8Ml98x91n97dyxdL22zTKx9/pu5PaqvWSW3jvWoE3LrvG78Xm4t56ZzD4m1q6peOzP33NXTK+fuibt/cGSsfe5Cu0e6M2Z01Ypf8v8xbceLq72j+XtDLPiVrZre/MLrm+bW3270WO5Zkr7Xfx5rV1WtclTufTCXHpB7d+LJm+XGZz98Jrce8vpv555HPeqs3JrEjRuPxNoLr5b7Hlw/uLa/qurdTR6Lte+6Jre/0lJH5Na5r/7IBbH2a09dFWv3vfnhWPu11ybG2i/ukWv/aXJujXtV1SFzcs/prfH13BzMvybnnvU/7eSNYu2/LJN7Zmv7a3PvavjLQmfH2tu9lXs3yIMLfBhrNzpz/95VVcf8M/euiM2fyq0LvHRKbt3xkYvl1qGet9Oqufavb4y1T90lt+ffmFdPibUv2j97b3bvXbl9sQZMyK0p+PNZ42LtW17MfZ/ttXTuPqHvErn5n4V+kRtjvWfrw2LtP22QG1+tqrpv5OGx9i6n5NZEbv2NV2PtYxdbLdY+/JzcZ/1HG+eeAT7o3zvG2q+snFv/+s9Hc2sSq6puWm7rWHtse27N0jLX5NYrndWe20/j3Lu/GmsfesBRsfaBX8ldK++21bxYe8ANuXexVFWdfVjuu/QXq+fmMv625qKx9vI35H7nz72ZW/s744HcOtB7b3ov1t5gr9y649unZt/3sOP5ue/SNffKzU+/W7m9gmY+sn2s/dhJub+zkTevF2vPu+jOWPuo7VaItSdOyI31VVWdOSF3b/jrK/eKtd87J/dgwzoX5fa06HtTbo+mEQvl5jKuPio3tvzDn/4r1l7mH1+PtU8Z+GCsXVW18Xa58b6JH+XGd7eYn3v++fNVcmvFT+xcOdZ+6tncZ22RC/eNtY949J+x9sM35d55UFX1x/Ny+zyuNi/3zutxn20Za6/3+9wa/Rve+Wqsvf+43PxRyy0/jbWXO218rH35Vrm94KuqHv5z7v7oLzcdG2v/9ODceyd3WD737NPYRTaOtVcfklsjf9NZN8TaL4x+JtZee69VYu2qquPm5Pbgn3HpebH2IdNz59XTTn0i0u2d97/2zqbmv8UcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4e9+4rTq6z7PfyfNZn0Tkko0kVAQpUiYIAgglIC0gSRItKSF+SlSW8CgoIUQRCNFBERKXmlGUQCiECUJgihhCbF0CSEJDPJlOwj99n+7O0H9/M7ua5j5XtP5pn1rHWve90LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCmSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDW6ffv/I+7upvqt7j5/zWW/6O2EQtb3vyXnvfbYu0BoxfH2n3tsXRVVS1aPDDW7uhdEGv3NbnP26BBS8ba7UNyH7j27tYf0/53e37u5160RO740tHdF2tXVS0esWys3f7R3Fi7Z8TwWLtf/+5Yu7pzf2c9i3M/d9uQIbF257sfxdq9Q7MnMD3zB8XaHcvkfufds+fF2r2Lcudt/dtz/+a9g3tj7Y7u3Pnq4n65v7F+A4LXpJU7X62qGjiwI9bua/+3piz+o/r15D7rnXNzn7dBY3PnjG29uX/z7vmLYu3qHBBLty3bFWtXVfW0545vixf2xNq1MPd56wr+3O2DPoy1Fy7IzUP0DOiMtZfsPzTW7m6C8wBV1duV+9kHN7nPW/fA3Hdpv8XBc8bu3N9Z9c9dm3XOzd1Daf4xJ9Zub8seX3o6g3Pb/XPpfsF7V4u7c8f0j+fNjrX7L8zdw+kdPCLWrgW59sKu92Ltqqq+3twfefuAD2LtAT1jYu2+jtwcyOB+uWuzQUsOjrVnz87dPxo1Mne+ujj4911V1df5TqzdVrn7KEPbcufqi4L3iLsWvB1rDx/+qVh7wMDceXpfX/IaJXt86V6UW//SEbwe7w0uSVjckzuujhiSWxNQfbm5nwWLcudO/XO3j+rjj3N/3wMH5M7Tq6q6enL3cAYMzK2HmNuZu2fYvze3JqCtL/f77j84d0xf3C8339bXkzt36jcofO60IPezDxiem2tcXLm/s37Ja7PgmoBFc3PzTk1f7jz9o49y56sDm+CJW1X1DsydLw8emFv303T8PdZu6xwday9szx3blhr16Vi7/+LgcxFdH8fabR3ZtX3z3s0dW5cclPvZ5zTB68LFS0S63W2f/N97/Ucuq7b21l/T/3znP7S8+S/zZr0Qa5814fOx9muP5e5DVFVNfXpCrL1c1+Ox9jsLc/MnW64yKtaev8znYu2hr+bmTx773Uqx9sMb5J7R23vkprF2VdWjz64daz84+6ux9m4rHxBrX/L2rFh7zFYzYu1b/5S7r37CXbnrmwPf3yTWHn/LWrF2VVX35L/F2oftsHWs/fbbV8baj940LNY++4GlYu2Rrz8da+/wtdz6tCcn3BZr33t57rN2/JCnYu2qqj8ddVSsPXfi+7H2+if8I9b+aK2xsfbTs8+Jte/vn/se3+gvufaBA56NtS+ftnqsXVX1REfu2Lr8xNy806trPxprb/KZ3FzjvAdvj7XX+0xmPr6q6u/TcmvERnZeG2sPOfDNWLuqatAzZ8faG9bOsfbojndj7c4XcwuuTz7/yFh72Sc2jrW3OOsbsfaMtdeNtW/accVYu6pqlSfPjbX75n4m1l5nxdw9nDtfyN2n3XKb3H2UZ17Mre/f5sXcsW25z+SuxV+4P/csbFXV8DVyz7xfNm33WPv7X8/t7fDc7bk1sHN+m5vnfHnSBrH2PxbsEGsv1//UWPu5aW/F2lVV+/3tpVh7ysLc/cozX86tQ73tF7l743Mu2CzW/vnjuTXPi4bl1v28MuiOWHvctqfF2lVVt+6Vm9/tvui+WPurn3si1v5oau56fPXxub3I1rk9d3x5fMXcPMBBfxoXa1+4Rm5/7FE3Z+d+xm17Uqx9666/ibVf+lvu+miTjXJzXrdvsGusvdbyX4+1PxyW+5wvf9Itsfb0E3L7uFZVvdudm3+5fVLuOZz1D18+1r56xKux9ufHHRdr//XcVWLtodflnk2cOTo3/7LOXbm9Dquqzl8ut55zvY1yc/ovn71CrL3ssNVi7Wa13LqfJ/vn1ql/MDp3L2H1tXJ7KzzwwcuxdlXVe08/F2sP2ej1WPugnVaNtV+Z91ik29m9sOrFT/bfmDB+RA0P7MNyaWduTeL5Y56Mtd+emTvvmvuZv8baVVXXPPajWHvrGhlrX7ldLF3r/X2LWPs7fTvF2vW5kbF0x2W5Z2iWnXZ+rF1VteXJufW3587M7bG0+gO5NbBHn31BrL3z7rnzrt07b4q1H3nzF7H2V6buEmvPeid3T7+q6pQrfx9rD6rcXOGiZ3L/7t+a9FCsfcgXcmuej74wtwfs7u/n7rP2tufePVRV1XV67nn7C7fNrRO7fUZuzmz6tblnlyb0Oy/WnvvDf8baT1+Texfwml9ZLta+/A+7xdpVVW8vnXtvwoYzc3vA3b9p7rg+6bGfxdqX7J37rH/pktxcwJjp02Pt3+/0u1j78VXeiLWrqh7Z4dBY+9U3cvPL8wfmzlm/9VDueZILt8/9vr/07tdi7QemPR9r37xnbt6pqmrN9q/E2tednHsvy87n5Z5Xe/yl3HMNN76b+z579Kz1Y+3pfblzxkUP5tZD3nltdo+msQfn9pb44YP7xdoHXpabh3jjskNi7X2m5P7GX3w4txZj1k25tRjNarfG2lVVH56U24v+yyveGWs/t/CsWPs3+38Qa19z/l2x9oAdc2t/tj0s9yzLM2/8PNZufzR3fVRVNWLz3JqEY9e4OdY+attLY+01u3LH1bvWya396Zqa21fiw8dyx5efXfTjWLuqavYKuXulx22au3+1+o3LxNoTzrw81l44Offs9wsdueefN70id0y/YLPc39gDv+iLtauqRrfl3td56S6550nefnh8rP3EPiNi7VcG5fYZeLM39z2+z4TcufrIMbn9kquqXtktty/XMzN+FWufuXfu2cwd+uWe/d50iQNj7WNWeyTWXmHl62PtiaM2irXP+Fl2vdVXn8sdW4ffmVunv+TJx8fahy/KvSfsHwfn9jioMc/E0oseys3vHjL7gVi7qurVqXvE2gO3zu3TNOT93D3qFe5u/VxjT8/c+qRvrr5j1G41fHjrnzkfPCK3r/eQg74Za39rYG6f5+UH5ebDq6ounJJ7fuhrp+XeNzVmxpKx9gE77x9rf2/+lFh7xRdy53uj98/teXP4MmfE2nt++EqsXVW11o+OjbXfmPT9WHul6SfG2i/Nyq2beXnkr2Pt8/+U+xufdsHFsfYS83PzB+f8LPcev6qq03eaFGvvNyj3nNzYXXLn6gvG5/YpWu9HubW3e4/vjLXX/zj3/M7k9XLz4Z/vyq2hGLjOsrF2VdXR6+b20J83NXf+MmNI7n7byDdy95YP2yL3Lr2LBt0da498cL1Y+9lDL461z7souPFdVb17e24+/sp5uffB/GLsjbH2BUstFWtPf+jZWHuP03P7Gxw57IxY+7wLcu/nWOXuvWPtqqojVs6dN651Qm6e89WfDI61N3t0nVj77nNz89qHfGr7WPujb+TW/b5yybdj7TP23jPWrqq6b0pu7mnCb3P3rja/L7cP2qwmd2222ZqnxNr3f3RYrF0zt42l39z0olj7f36V22uwqmrH4bl7Ge8t8dtY+9i5uWdC99su967xnbv+FGv/8M4dY+1VD8+tCex6Ldfu3CS7h8nLf74u1r71n7m9wV+94MJYe/11cu/SW/7xybH24PNz56vX/zx3r3K/E3Jrjm56cWasXVX10Yzcew8mzX8w1l560n/H2gsXTIy1j10x90zDNS/tEmt/euncXN8K5/091p62S+699qOuz75H5+5p34q11x2c2zfm2X9+IdbuezW3p+exTy0Raz9+Q27dz6H/nbs+Wqkzd/9oxNTc2rqqqrWH5/ZWWOPq3H3aTftye+du8+XcusKTjsi99/rFm3J71kw8KbcGZPAHuT33dpmS2x+pqmrB2NxxfevVvhtrr7pMbj3nOj25vblv+/CMWHvCr38Qa6/QZN79XFX182Nz71e97tWHY+2qqiMuPCHW7pqV2xNr0pYHxNq3jp0T6XYP/uTnDx3j3qqOQa0/Bzp8fO59LGN2XyPW/tQvc89lrtG3VaxdVXX9WmfG2qednVuPeeTvc+ulHt82t/72j9/JraPYYE5unnLRLw+PtR84P7fv7gkP5e41VlUduHpu3dAj49eLtY8bntsf8shzc8e2p7rOjbW3b98q1l73V1+Nta/ZKDc/e96duX0Kq6qOnPHnWPvhD3L3/J45KHdNe8G03DuQNx+fm8N47tu5z/oXh1wda290Tm6d+aSzL4u1ey7N3Vuuqvr9Vbl17m8vndvL46hZueuj2Wv+MNa+ssk9W3DPrjfE2pP3y61x3+LS3PrXWzZaLdauqlrzwINj7e6zN4y1Dxmce4/fFz/I7SOyy4259xD/bf/cu58P/0nu2edTZ+fWuJ81JvdzV1XtcMIBsfboybn7CRt8Lbdfz0WTc88uHfeV3DnEPZNy1+L3nJjb63CTm3LP2q/00MBYu6pq/sTcfbuDJ78Va293XG6P7HcG5fbO3/SAa2LtWUv/Ldb+wtH/iLVXPze3P9OPlzkt1q6qemLuXrH2jmd3x9rnr5Ob9xpzyXOx9jonDYq1T7sgd3962mPLx9pPDlwQa/9jr9xaiKqqAXNy72Y9YOrWsfZOG+SejeybkXv3854zVoi1Fx18Tqx93Ij1Y+3tT/1LrP3B/VfF2lVVH152Taz9xydy+7d0XJmb99rp5mmx9odrtMfaL07P3RsfOiX3DM3Yzpdi7c2/k9vrcOpRuXfJVFX9ecXcO0pPfOPWWPvKfXPP6e112Fax9mmPbx5rH/fd3Pf4OlcvHWsPvTr33uf7j7km1q6qOu75jWPt7Y7Jvffg0nvWjrX3OyT37PWAEblnkA+aMDTWXmHl3L2ELWbmzlcXHpCb262qGnXbqFj7Z925ucZj78itHd5m7dy9jH32yq3fffB/cu9eHH3BZ2PtHe6bE2vvf352v+QtT8ytHR6/Su777IbmtVj7T8tl9nict6CvNr75//6/y61SAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg5Zr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ1+/87/uL1fv2rv92/9X/4j2ua0vvkvfe0DY+22nr5Yu7tyP3dV1YjBbbF2MyiWrgFDhsfai+YvjLV75y6OtWvksFi6r3J/420f537fTUd7rF1V1SxcFGu3DRsca9fw+bH0ojf7x9ptPd259qjgOcQ/F8Ta/Rbnjm39amisXVXVXrlja/drud9530e57/GBw3Mnbs2I3LGtO/dVVj2d/4i12wfnztvmdeSObUMHZ49t3e1dsXazIPdhX9yRO28bslTuuNo7L/dd1rbkgFi7Y1DuvG1xEzx/+Gfu2FZVNWBA7rPeM/fjWPvduXNi7Y7Fue+Unp4RsfaopXLzbZ0fvhdrdwXm8f+l6c7O/fTOnxtrdyyR+7x1deauC9vacsf0pjt3L6GjOmLt7u7cd1n1zx1f2hZljy/9Rud+523zg/N9o3PzL73zYulq7+mMtQeNDp6/zM39o/e29cbaTZP7Pqmqam//KNZe1JWb+1m8RO4cYmFPT6zdGzxX/+jt92Pt3kGjY+2+jtxnbfGiJtauqhrSsUys3dmX+07pGJH7Lm365+5PD21WjLUX9OW+S/sHpzl7e3P3C5vgvauqqu6PcvcMe/pyc429vbl7Vx0Dc39nC+bnrseb3txxtX9HcI61ybWHjRgSay9elDtPr6oaFFyTUN25a+LBQ3PnTouTa2grd3+6J/frrrYmN+fV25b7G2/PHl6qhuTWoCzILUmofoNyP3d3d+6adHFX8PxlWO4+aXvwvtnIxf+MtatGBdtVvcF18h9+HHzerT33PT60PXfPbtgSS8bavYtz9xIq+PzR4L7cvPbCJrfmqKpqUW9uHqK7M/c7b+vLfdZ7QrcT/hOPL/9x9nE1rGn9XOnvZ0xuefNf9l126Vh7k/duiLWfXPMbsXZV1dhDn421l70lt/52y1HLx9ozl7861t70jHNj7XtXmhVrXz8gd56977O567ob97o21q6qGjV/41h7vc22irWnj1su1p55a+559zHr5dbOzGo7NdZ+8oevxtpTvnd7rD2rJzlvVDXy4j/H2v2e/2asfdfOufUrnRP2ibXnPPJ0rP3TH+TmxF/YK5auOcd/JtbeeIuvxdr3rp27Lqyq6rjjklj76RNy1+M7nJJ7pmL1F3PfZ2vtOTPW/v2s3O/79hErx9pD+s6OtXcdsmesXVW1wUe5c4gbzsx91r985pqx9mlP/Ves3b5bbvFM53dz93jf2iL37NCCcVfE2vOvuzvWrqrq/8Xc+rjDVsmtt+6avl6s/dvV34y1P3POyFj78EW5+bbBw3IL5O4fv02sveOVL8XaVVX9u3aPtdtH5/7OVuzK3T86ZbWtY+2b5+aeEVxmqRdj7andub+z7cYsEWt/ds07Yu2qqo5PPx9rf6//1Fh72uibY+339l8j1u7/1rKx9k69R8XaY556ItZ+foXc/em3Vs3NeVVVnf3cF2Lt5zZ+JNZ+ZckVYu1NFm8Say/V751Y+5wFuWvxr/8199zUHf+VW+t91UvZ+0ezFuaey/xy50Ox9k135+4nvDsjd+/qtsNy8xCPbv+pWPuVYbk1rNftlJt3+uDG3HNL707MXQ9XVQ196g+x9k//sEusfdsxr8faM3fJfdaXuyi3xu3eZZ6Mtec+mnsA+Z5tvh1rb7n8B7F2VdULSz0eaz/5w21j7a375e4Z3v/Y27H2XR/nrsWXOO13sfbjD70Wa79/4Eqx9gdnfTbWrqpa+du5Obe5twbfpfN6bi7g0z/+aqx92bSpsfaYcTvF2lsNyt0nfeH+42LtmS/kztOrqnZfbmysff++q8XalzyZez7gjs02iHTndy2ouu2T/Td+dNO2NXBo6/ew++5/5+7xdg7O7fWzUt+kWPvx+b+NtauqHr0tt57h28/n5kj3PDp3r/PwP+auMZ5+5/hYe4cfT4u1J57/k1j7oCmnxNpVVdOPPz/W3uKgT/hl+AmsO267WPuwttxzDbusnZs/+ez7ufVKnftOjLWPfPWWWPvH++We36mqOmTvP8Xa4975dKw9b+ncfhqnX57bO+bDNTaPtU+4Kvf73m+ZQ2Lto3+S3ZdzqYE3xtq7Lfow1p53cm4f+1MvfS7W3vxLuTWJ4z6/b6z9wfwjYu06MPfeo65R98TaVVX3X/a3WPuevxwUa7dfv0esvf/6ueefzx+c23/ukT1y+0P94Bu5dWIvNDvE2qs/v1KsXVV1yz+/GGtf9NeXY+0N387NgZw6NvddOvv1pWLtbb+RO287/icjY+0jLs+tJ6iqOu6hA2PtBxbmzlmfuTe3/rf7iN/H2uOv/1Ws3eya+z557ZrcPot3H5ib85p9dm5eu6pqxeW+EmtPfjE3xzp7yuWx9rDHTo+1r9n5F7H2uqfm9szp/NIFsfZvTs+9o7Sq6pEv5s6XtwueN94+Jbcf2Q/2vCjWfm5Obo+D06fn1oJe+URuzfXb/UbG2r87PbePSFXVE5Ny524Pjbk01j5rZO78ZZ+nNoq1n183d99srVf+GGtPfyQ3t/yra++LtauqZu34Wqx9/leeibUP2DL3rP/eh+fmXx5d5dZY+8YXp8Ta10/NPes/+b61Yu1D78vuVXTLk7l94B7p+k6svdmo3PHl6MnHxNqvP5/bN2fnd3LXwzdfndsr+qJZ2TXbS844Mda+eWHuPYhPXPVxrD1jZm4eov+Eg2PtHbefEGtf+qvcPMQXPs7tW7PuegfE2lVVqy56LdZeuHdu/7trds/tH7P+qrk1btdtk9vHZOOVc9cobZfl1lQu96MRsXZV1ewJuef9V743dz+hY+MfxNqTN2j9s/4LFi2uP8/4ZP+NQ97+QnV8PPg/M6B/w76b5H5Xa92WOx4fu3xwz5nb7oq1q6rO++W7sfaY/X4ea2/6wC6x9tX7rxNrj919i1i7Y25ujvKL38qtZRjycu559x233C3Wrqp6a5tdYu1bJ+beATR9XO5ZtYNO2z/WHvCp6bH2o/1z60euODr3zqXLT8i9b/u7K90ba1dVrflKbg+VSXusFGt/ZcSusfaJB+beBTztnNx+xydfnNsr6JJtc+tA93w/d1246sX7xNoLdsnt11dV9Y13csf1A/c8M9auLc+Kpc94Ovd39tHpb8Taz927INY+8vXcPYif/y73/PEeV+S+y6qqvtyRO4e46Z3c/v3ffyv37951XVesfc23c9dHX1prfKw9f9qdsfb2a/4l1n5oYG5Pz6qqLU7KzW2fcUquve1Nj8ba8/tfGGv3XNf6e1b/Mve1c2LtA8/Jvb9wva/l3kXz9DL7xdpVVd/7fu5cfczsr8faU2dm9lOvqvrRxf1j7Wuvze2Zc/kTuXnOHWflzpUnn51bfzrxC0fG2lVV962V209j3O+OirWPvCy33+DZ++fepTf0r7F0vTOpPdZ+9/rcPMB3H8wdVz+3bm5fh6qqNdp2jLUn7D0y1r72s6vE2htdlrs3fuS5uTUBY1dYO9b+/tanxdpj983tU3T9kbn1zlVVR0zMHV/ePP3iWPs3b+SeWzpgUO5Z2CVG5ta4rfrni2PtGy7L7Yl15CW59XXbfDX3XOLUD3PvjKyqGjrp8Fj7d1c0sfaKg3PHtg2eze2zeEDutK0WjM99j4+69IRYe/wNT8Xa+xyWWxNQVXXNr3LvjDp5pdz+/zsentvXYem3fhlrX9i9eqy968RTY+1pV+b2aX7v+qdi7fu3zr6H+PAzc3MBzaUnxdq3P7hprP3rKw6Ntf86O7dnzcYzD4u1p/ziplj7jeNz63dvOGJkrF1V9czDubntHfrn7o0fvOWWsXbvk5n9TOctXlC31pWf6L/x4ezHq9+A1l/XjtowNzf8+iO5PYbOuurBWPvJ94fG2lVVH/8xt9b8tC1ya2cueDB3X33CxNw9txO7cs/hntzk5k+uePH9WPvuwXNj7f/KvX65qqqWeSK35/BJy+T2FF9un9wa+z/fkVsLuu3M3DXGoXv8JtbeabVLYu1tj869e+i0V+bE2lVVvbOvjrU33ji3/+yyPbnzlz0H5p7T2+H6l2LtWVstH2tvfHbuHszzN+fWJP7otdy+2lsclF3zvNO668fa9w/NPT9068zcXqQPbpi753bv+ENi7VnH/E+svdthub08Njw3dy9g4SE7x9pVVQ9NzL1/edbmn461Zzw7Ota+/amfxtpDlsx9n3zzL7l3bL05+qhYe/Dde8Ta917cF2tXVfX78rRY+8Rf596zdchqP4y1l7zqu7H2HUsPibX3WT73nqs3t8mtA91ubO4dFb+ck3vmu6rqnitWirUnbdEZa195VO6a+PpRe8XaG//mvFh7VHvu3WY/3Sr3zPlVG+bec9Xv+Jtj7aqqnmMPiLVPGTYx1n7ulMdj7WPWvCrW7j9lUKx9yKW56+FPPZFbp7Vh+ydbK/VJnHfwZrF2VdWEebnP+tdOzr1r4q7Ncu+aOGBC7jph7RnjYu2+C3Lv0Xt1hdy+wbdNeSzW/tSLue+Tqqpdv5n7Tvnyw6/F2t/fKrfGfonpn4+1N/9p7jncccsdF2uv+UxubnmDecn3Ph8ba98wNnts++LncntTDT8rN/ez0lK5PZpufSi359+gO3N7HPx239w+rl+/IbdnzpgnJ8faB5+3VaxdVXXaTrk1KB9c8utYe9rfc++TeXnDqbH2+v1ze3J9dVpuXnvR/Ny12Y9PejjWvuHXuXXqVVXnHLJUrH1Nb26Ppje2zH2XXnzcZbH2gsm59buv3587b/tLx6hYe9D3X4u1Dx2Qe6a0quqY83LH1lt2yz3fuP0euecDhr0X2o994P/bOq/cTmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRckx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP9i777i7Czrvm//s2bSJpUaSgy9hw7SexfxBpTeQgdBiBQFlRYUUUE6AgrSpCpFEJQO0ouEIoROEIQQSCakTaa+Ow+bz/u8vtz3+j0bx7GdD99rmFlrXeu8zgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA87T+J/+4p+ZWT/X9T13L/1bvgEFNb36p0dIVa8/pav7/6y8N6e6ItauqOqtfrD14YP9Yuyf351aNQcF42/BYunVOZ6w9p6c31h7cm/s7b2nLvadXVc2a8VGsPaRzRKzdMn1ArF3Dcu/p/YcOy7WDr/Guxn90i/ffqrdy7y/92ubF2lVVXYNy72+z2ufG2gNH5N5fGq3dsfasGbnX2cARPbl2W1us3dkyJNaeL3e7Wr3z2nPxquqYNzLW7j8w91naMzv3/ai7Jfcdpf+QgbH2gPbc77tvaO59tZG7darZ7bNy8arqa22JtVuDAzC9nbnX+JDhg2PtthGNWLu7OzfGOmipJWLtwZ3Be+VG7j29qmpAS+7zrNEafJ0NyH03a+nKvca7gt8LO1tzP/eA3pGxdufsGbF2b7/c+EdVVUsj9xofNGbxWLtr1mexdmdv8HfelxuHmDFlTqzdPXBqrD18xNdi7bm5H7uqqnpact+PFh61aKw9rzX3/GhYV248v6vji1i7bdFFYu3e9tzP3dMxNNbu1y/3+q6q6mvNzf0ZOmD+WLurNzf2068j991sbm97rN0234Kxdmf7zFh7QGvuvq13VvbZeF/nQrF2Y8i0WLs6coP6fcHvR/16cmOsbcNGxtp93blxzu7e3L3yF//OPcdomz/44Kyqunty762DBubGGvv6cs9Ke3NTb6q7Ize2PDi4LqKC6yIaLblfeF+/3Gusqqq7I/dZ2tqb+1vvmT091m70z73Oevvl3le7PsvNU+/snRJrDxmWe2/r6M69xqqqOmbm3l9aGrl71raW3DzWIUNznymD+ude4339c9+P+g0O3jTOzY1rd+fSVVU1qDX3/ai3/+xYu2NW7ntpoyUzztno/uq/65d6x1ZbNX8+xd7P596Tr13lV7H2blsuFWsv8mn23ufcH+XuOXc/MDd35uWh68farZNz9x9tf30o1v7Hk2Nj7d3e2z7Wnrz+67H2Wp25NcBVVcsNfzLWvuvRrWLtQS/dF2uvtsG2sXb3obnP0rkr5V7jB651eazdcvfHsfbYA1aLtauqVv9kjVj70rUWi7VX+iQ3F3TylBVj7Wn9c/OO+231l1i7/e5dYu3VFl0+1t5++Bux9gm/fyTWrqraYMx2sfZCi/4h1v7NI8vG2qM3zN2/fPzn42Lte0/IjQOMPuW9WPvh+a6MtTcak/sMr6qab5nPY+1d58s9b3zr+NyY+PI/OiHWXvX0u2Ptt8fm9p77WWOnWLv9xdya0FtX/nOsXVXV9l5uHOLg5XLrOR7eLPe++tFvcs8TNj3zZ7F22992jbUXbss9xzjvmttj7Q3nrBNrV1WNHLlFrN2+06Ox9iu3fhBrd52Z+252+Y8nxtojb4il66Z/5xZfj13g37H2187Nji33X+absfbI/Z+NtWctvVys/fzi+8ba5448PdYetuD3Y+0nhp8Raw994zex9g13bBZrV1VdudZrsfYZz4+Lta8alVvvfvDMl2PtCTe+GWs/+53ce/pbb70ba382MfescteR2YnHH12/cax9aNvfY+3r9syttR/54/ZY+9HX/xFrf33mJ7H26DW+F2v/+4Hc+p0Ddrgx1r71w1Vi7aqqBWfnxtyWGZBbN/XLu3Nzju4bkpu3vOXcHWLtDwblnk+/Py33cw9eLfeMdtqFd8baVVWbbZD7bjZ909zYz+tvLBxrn7tUbm+qBx7P7ZE0svuFWPuPO+bWhM7pn7tfPejs3DzSqqoNB60Za1+1yoax9kIr3hprX3tGbh3ORjvl5no9/3Zun8WBr+WeES8y9d5Ye5U5l8baVVUfB8eePp+0dKy94J/fjrU/n5y5f5nT89X3njv2pQVqeFvz9/+9d+ofm9780hbTcmuAbz01973u2umTYu2qqkWWuyjWXnfuD2Ptw47Pzdt5f77c+Rwbjdoy1t7pvtzYzSutP4m1L+3LzXmuqrr/rd1i7cfWyu238+KSh8barXt9GmsPuuvAWHuPIbnPs86Tz4q1Lxufm9//RPfJsXZV1VKvrhBrX7B87tnXCztfE2vveW/ud77fvivH2met82qsfc45X4+151/jyFi7qurQv+Seb6/3fO41Pnb2D2LtYf+8JdaePDo3djOgZ9NYe8gduXUsp87K7ZE0YbfTYu2qqlOvzZ0bedfOf421P2ucHmt/8PVVY+0vTvpGrN22zgax9oiTn4i1H/lmbv+Wv/86t86/qmrrV3PP9d8Zn3tv23iH3D6yi71ySKx98uK5Mwy7L8/tr3DXXr+NtZdfLjcfsqrqzhNzY09LP50bc5s7/ohY+7Q97om1L/0o993som9/GGvffeUpsfbpB58aa//75Oti7aqqUdfm9hK5c/Q2sfaft1wj1j5jo9z5Q4/NeCrWPvrp3HPadx+fEGt/9tMXY+2qqr7L9o+1255eK9bufCL33tr/pty+fz/d9uZY+5Thd8Xaz3zUHmt//OfzYu2V78o9u6qqmnFI7pnhgHNze5pe+Nfcs/nxj54Za9+zwgGx9ktb5PbI7jzjR7H2Ep0DY+2qqkv2y839eefm3HeUVzfdK9a+9src/jGHv5c7s3KHR3PrE/e9P7eu4ceTcnMxFlw7t09SVdXACZfE2uO+l9ufaq+v5cZ3T9k/N+9o8jEnxtqX7ZNbO/XqT9aOtQ///KZYu6rqtOXPjbU/veTiWHvBi3JjbrsfmFsrd2DwDOYjV8vt7Xnkc7n9W84+OLf//1Ub3xZrV1WtMH9unts37svN/Xl8RHus/dS9D8bat5z7Vqy9WudJsfYlH+XmHbXPzM3nrKr64wc7xtrd878Sa0997JxY+9W7m9+eV3Or6qvtWfytjmurrbX5Z8QvMuHgpje/tMHc3Bz3jf+RGzt5ZsULYu2qqonXPRBrv332nFj7jdlXxNp3bjc31v5gYm7vl+u+eVWsvfhDuT21xn6a+1tbcV52rdqYX+TmBY45KXe/efrPRsba31glNx+ya6MxsfaErtzYye3H5b5Xbf3H3B72222UO1+sqmrbG3P3L0ftkftuc//puWdu/xyau1ffYFLu7OfVd8qNGa2yTO51dv2huT2Hj9krd05F69Dc8/yqqi2Xyq2NfPcXuTMrD3kpN3/kb1N3j7VvOXKRWPv0vX8cay+wwvmx9o7TcvtxPdD27Vi7quoffbk1giO32CTWHvVRbv7IseevEWtf/Gnu3ulrT+XWJh54TO68hudXzs21nnjGS7F2VdURK6wba/9lcu78599skRvffWtu7j39+Hmnx9qvj8k9w7ngiNyZBe89nNvvb7GPj4m1q6pWH5hbn3jMY4Ni7cVG5/ZLPuas3DPiwTvmzk486Oe5c1Fm3Jf7HG3Z5clY+2+zs2fR1D65tbAXb9j8Mwe+tGvL8rH29O//Itbed8XcmZXTb8mdwXN+R+456U5X5fbO/cWjW8faVVUbH5r7Pn706rm9qR46Zkasve/aB8XaO/8sd/bAPtfn5pldOWxirH1eIzf+8ve/LxNrV1X9YNn9Yu1nV8rtwX/b7Nwa4CHdP4+13/1d7iybt8fnzkB+a3zu2fge/5Ubd9rl3Nzellt8/nisXVW1/18XjbXfvCD3HWW7886PtT9eKPd9uLH/ArH2BVfcEWtveNvGsfZPjs7dpx99Xm7NdVXV+mNzZ2xcvV7udbbvCQ/F2ssdnhvPf3LyYbH2gOdy+6ANeGjvWPvtRm6u1T7Dc3t6VlV99Hnuff2Hhx0Va9/1SPPXNX7piim7xNr9xufO++75OPe++vpFO8faJ7yWG9fedHDu+U1V1azzc+u+DvpTbj+L+4bk5mJsM229SLfxRXfVVzzWZPbVq1dro/W/54L+A0/snbvvuubcZ2Ltcxf5Zqw938DcfhBVVQv/MDdvaLm9cvvudm14dKx9w8a5fev635DbO67tlvti7S/WuiPWnrP4vrH2jLuza87HrpI7N+CCH+4Qa99yWG4N8tG35V7jO199dqx9xoK5vbVf+FHuWWP/ZXPzAi95NTdXqqpqk9wUktr7rM5Y+7sHnR9rT1wxd+703DG57wlTz87dv1yzwd9i7TUuzO2rfcmb82LtiS8/FmtXVb2+ZW4vkXvOnBlrH/Jybo3gnw44NNb+2YW5cYi7h+T2hjpksddi7SU3zc3T2vbG3B5JVVX7nZnb1/vJi5eKtZfZNzdH7djRuXnm/a7InXt081q9sfZKdVGsvf5hufMDO/tn14Q++FZuLGCTN3NzIj/4MLcn15PzvRtrb7ZJ7oytLffJzdvZ9Hs7x9rH95sca5+/5a2xdlXV0Aty+0ps18h9T7jyuA1j7SfacvM4rn4899522hHHxtr3/OKTWHv303JnL798QW5P8qqqr6+aG+8b+KPcHnBn75n7TvziA+/H2vfPyZ3T2XvY9rH2K0/m9vXc6ZkFY+0HPs3dp1dVHbf107H2Aud8FmuPH5nbt2bGmNx928G/zZ1/PGbB+2PtKW/nxneP3e+GWPtnv87tGVxVdd4huXnPy30rd8+66Tu59aijVuyItS9uz30/2u2x3LmNe35yZqw9crU/xdrf7D4v1p7+7dweslVVvz8+93z69vbc+ahbPDgl1l5rtdzZAyutkft+tNTE3LzC5y7N7bO41925dd9HHfndWLuq6rDgmq0hE+ePtd9/P7df8rub59bar35b7oyNngVzcxpnr5v7bvbo6bk1wAuunJ3b97c1m7++70v7LpB7na38YW4u6UcXT4+1j1sld//y6lK5s9HG7vx+rH15W+41vsAyp8faVVU95+TmYpz4+SGx9mZLfyPWfmh8Zr+ernndVfV/Pme08T9/KQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/N+ikb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkb4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5G+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqf1P/nHXR3Dq6t18P/UtfxvtY3oaXrzS63zhsfaff3ac+2W7li7qqrR9x/9af636uwdEmsP6RsZa8+Z/nmsPaTRF2v3tM6LtQf3DIq153bNibUHTu2Mtauq+qZ3xdqdi+f+3vrmDIi1G/Nyr/G5HV/E2v1aGrH2vHm5z/GBA1pi7ZbWBWLtqqqezvZYu21Y8N6pO/f3NqdnYKw9ZOneWLs+yX2Wzpube28bMLQ91p4X/HW3tOa+n1RVdc2cGWu3DO0fa/cfmLtX75s/d9/W96/cH3t7a+7nHjrzvVh7Xi0Wa/cE7xmrqvp6c9/N+g/M3bMuutjCsfagkW2x9hdzct8LB88/NNbu7smNv/T1y/2+hw6LpauqqrNrbqzd0TEr1u6Zk/temHxPb+3L3b909eS+mw1ry30fbp+VG28b1pb7jlBV1ejqiLW7OnI/+6zpufvGzrm576SD++WeTw8YlBt/Gb7g2Fh77ozc50ljWHDwp6pq3pRYesbM3PejthG5G8fertznWWv/3Hhf+wczYu224cExr97cZ1nP4H6xdlVVS1/u+3jvrGmx9ozu4DjE4Nz7ar85uXuIzsG511l3X+79ZcbU3PvqsJG5n7uqqjs4/jKk38hYe15H7p61hubGfnr62mPtLzpz722Nrtx7+qDgZ/iAxXNjEIPmZcd+OvpyYwHd3bnvpf0bub/1AZVrtw4J/r57c+OM1btgLN2/cs9QOmfn2lVVAwbmntvN68zdQ7Q0ct+Jp0yeHWv3b8n93K3BecsD+4+KtWdMa4+1e7tzf2tVVb29wc/xRu7ebciw3PvqkGHzxdr92nK/796u4NybObnv4v26g+O7bbnnpFVV3TNz9xDdXc1fu/ylnuAz4p7OzN96d89XH9u9Z/UlakDg+deQofc3vfmlw1tXjbXf/Wvu+82UBX4aa1dVbbDsbrH2umu/HGu/vlfuufrSG20Ua/fPvcTrmjG5ORxvfHJzrL33t/4Vaw849q+xdlXV8B9/P9Ze7Zw/x9qznz041l5rXm4O7EXbLh9rb7b1u7H2Mh1nxtqb3npIrD3iwx/E2lVV986/V6zd0np9rL3aOsvG2pdfskisvfI2D8bas5/NzeHo3vH1WHvi07n7l5bncjesC918fKxdVXXFH96JtQ/413KxdvuCa8baBz69Sazdt1NubeQ75/wt1v7axrkx8XU2XyXWvu/PuZ+7quqygRvH2isMuCzW7v1Obs35vPdzc2Db98jNXxkxK/f858LBq8faF/9zfKz9RffVsXZV1T37bBlrX3R77ne+/GK597ZlF/hTrP3Eyw/F2rO2vzTW/t7vc2MgV62fW2v/3ku57+JVVZOC04Y++jS3n+miS68Va781I7f+ue8Xd8faU5a4PdZu2yD3Odq+eXCvw4dz7aqq9879d6x96fa5Zxl7b5x7Y338Z0fF2usvnnt/eeqVX8Taj9bbsfZns34da3++TO67eFXVMmPGx9rXjVo61j5k+o9j7aU/3yPWXn3d3L36ZtNujbVfuSE3z3yvLV6Jtf85NjcHpKpq2ErfjrW3WfmgWLvrws1i7bVXvTPWPnnF3JyAbfrn9ol+6bMPY+0x510Za89+NTdn+ui7c2vtq6o+3To352l0W+7+ZedHcuOcj271aqy91Lg9Y+2n5hwaa08ccGysPfa3ue9mzyzz91i7quqaFVeLtUdd98NY++K17ou1J1x7V6zdv3NqrP3+Orm1sK8slpuvffrlue9HV5/8z1i7qmrf23LPSnd/6opY+/j3/hFr73ts8PnRkkvF2v+ek/te2Dnh0Vi75ezcWTYdz30Qa1dV1bzc3L5bN8w9T5j86Xdi7Z5GZg1QT/dXX+t+5vXb1sDW5s/Raxl6SdObX9pwv9zz3eNueTLWPucfubkMVVU/3ejhWHul9rVj7Q/vXSPWPniThWLt1ucfj7V/sFnued+Li94Waz845PRYu6rqlOdfirWXOe9bsfYf+l0Yay/yWm4M47Qr1om1B7yUW7t08H25ccKVdps/1r6x+55Yu6pq5Xuei7VPW2d8rH3d+bl7p8uWyz3j/d4jP4+1H5h2QKx9/B0jY+1Jl+TGKKuqfrT9x7H2OXvl5g3dNvXiWPuqztwz3r0vvi7WvvI3O8Xafzv5/Vj73stzz7b3fie31r6qav5Dc+uvO36Q24/sZ0ueEGtf8tTIWHun23Pfx7+1Vm4ftD/+/Y1Y+9Xtd46195uQW6NXVTXjW1vF2hP2XS/WvvHu3F5Fxx52bqy92Kh9Yu3vbLtCrL3DpXfE2nXwC7l2Vd14wHmx9txzfxlrj1s+93z7/oG5dQ0v/DA3BnLV8Bti7RW/tl+sffS928XaOy+encdx6we580Fu22bfWHvdSbn9W9at3PjLR3uNiLX7lhkZa//k5dw+9DtN3iLWrqoav2tuLe6MzXP3L2vvkjsf5Ke77Bxrf/FAbl+L76+U279li0Vz+1seeW5uHc03L/9mrF1V9fKw4PmN03LfiQ8fnztP7/ktc/dOey5/eaz9/Tv3j7V/tOOEWPsfS+XG1KuqJq2Vm9N5x4W5NUSnjszN9x5zTm5fro7tX4u1J389twb5ne/nnld2PP9fsfaYq3P36VVVM2bl5h3de9kDsfarux4Ta49d9+pY+6YFcnMxfvmL3Fr/fuOWiLVv7sjtmVNVNWzrX8Xai++aW+//vfVy89y618jtJfJ5X27d+QMnLhZrv7Zw7hyfG9bOnTdxzEe5fcmrqvrGNf9M2y/95Sfrx9rrjc89M1xlau5++YzLcucXfXHYurH2/QsfFmuP2zd7pszNU0+KtTc9efFY+8VBuflWM++6senNzi++qBrxFec0vtpR1fbVz0v/T00Ym3t93r95br3YSTf+Mdbe4q3ceveqqqmNXWLtbafn1lRcGTynYqWtc8/cZh+ZO5vk1Yty8/I+Wu+7sfaz15wVa2/13Rdj7aqqNd/L9Q+6KDdm9fkGv4u1L78yd+7Sn0bl9io85orcPNBfPpDbx2zhTXPn2l95ZXat2rsjPou1+292Tay9/49yY1bz35hbWzDm+Jti7Q12GR5rX3hkbv7IZWdn9m+rqho9pzXWXrArd59eVXX7t3LPtj98MLdH5BMH59Y1nH32GbH2P7ddKdY+tCe3598503Lz09baZ3Csvf2/cnuKV1Ut8Mq4WPuUHz8da0/aNjfWeMUVufGX7x6T2+/4J0d+EmvvPGqHWHvh7XP3bb99eHSsXVW12qu5Z159728Ua690U24d7vYL59ZUDJo8Jtb+1ea5vfvP3CO3r/fpXR2x9se9vbF2VdW2l+b2pvpRe27fmteuzq19HnLC/bH2wTt8I9Y+8AdXx9q3v5lb8/3EiYfH2pccmFvLUVW138q5eXkvPDgp1t5m7dyY+m075vZj//VnuTMXjp5vx1j7+XVyY1739Mvtl3xJX24v06qq0z5/JNa+vi93D7HqHrmx5esXyc31mjghd875Z/vm1uH+8u5lYu3Fb/56rL1eI3fGV1XVxBG5uf0Pbp0b2/5szdwzw1MuGBlrP/jt38faF/2lLdbuuj43pv7rJY6Pta8/O7cWdY3bcmMvVVXL9a4Za2+y5sqx9vwHD4i1T3kzd7884vzNYu2V7z011n7q1OafPfil0/py667n+2Vur56qqt4Nc+uu21c7J9a+si231n3iXkfH2keMz829ueSj3Pq82Rfm5rAOu6H5a9y+dNaT2bM+r/3Dv2LtVSctEmt/t/3lWPs7Lbm1zy+vnNsv+Ru758652Gb33Gu8sf7BsfZDP8idt1BV9fmmp8Tal26ZO5Nu2IG5n/uCyzJ7mPR2zKmqr3a/2nPSclWDm//dcpXf5vZIXPKV3D4cm/1671j7z78YF2tXVR26xsmx9rJPdcXal5+aGz/56IbcXMyDh+TOGh+9fW6v49lP5saGX3rr+lh7seWvjbWrql5a54lY+5U/5p5FvLb9H2Ltv3yYG8P4+xW5fVBnHJObo/beCT+Ntb99aPP3VvrSQ6Ny8/Kqqp7Y68pY+2tH5/b1vv7bj8XaS06YEWtv+KfnYu1XenLP1Yfcn9sH9dwnc2fL7zIpd5/edXLuHJqqqhOfzq3pGHHmR7H273c/O9Z++6JbYu0pE++Itc8d3xdrn7B/7vvRRfceGWu/+cn0WLuqat7hM2PtR25dJ9be4LC7Y+2rz83trf3G0rk1FV0P5M7bfuGi38TaG7+1daz99ge59TtVVdevltszZ+yxuWe8d66be42/3JXbx3W1bXOvs0fOz+1h8tBTuc/xe3fN7a3QMzS3B1tVVf/7c+vVNn5irVj7qVePiLW/sWVufeJPR+f2V3hwt9w8renb5vZS3WSbj2PtM8/InbddVXXEiT+MtbcbnXtv65qdm3+7wkG55ygDH/ww1v7DD0+MtQ/9Xm4vsrtWz+3r+fDWufNQqqou68utXZr+y9z8/m03y81D3f+5q2Lt8w6ZGmtP/1Hu/WWJC3N7Fn828Nex9umTLo61q6o6vpXbC+2m63Nj+rddnRvTn3Rebq39zINze/eO/iK3NvI73bnX+KKf5/aVWGKx3ByQxhm5ccaqqh16cmdGPnZA7syF9mVzn+M7XJ4bUz/60Nwc/Q+fyZ2V9c7vcnMal27L7Stx4aW5vXOrqm7p2zfWPrjfUbH2DZ/lxho/+WFuXcR5H+XG+tbeOrf2adiiuXmFO/8td7968qO5+4eqqt2GjIu135iZ26voqC1firWPXzQ33rfyRrmzZV/bNPdZtvec92PtFTZeNdaeN3bBWLuqaonaKtY+YI/cmrN9Fs6tR5m4RGZPi56586rqmf/jv2v8z18KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/t2ikLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppC8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaf3P/vnU6usb+D9zJf8vZk4f2vTmlwa1TYu1W7oXjbWrX3euXVUtvc3/O/vSoO7ZsfaUf38Ra49cYP5Yu6XaY+3uuQNi7d7hjVi70Zd7jffr3xJrV1UNXHaRWHvOp9Nj7db5Yuka0pp7nbV09ou153Tk2i0Dc+/ps6bl7p2GdX8ea1dVtQwZnou35f7eeufG0jU4eM/a+1buB5/XyP2++1q6Yu3e1iGxduvcObF2v8G570ZVVYNG5u5Zqyv3Gu+cmbtva5k1Mtbu7s39rY8YMi/W/vzfufvVRs/bsfag+UbH2lVVs9o/ibX7ty4ca89pyY39tATvIQYPzb3Ountz7y/9g2Oc/Ybn2r1ds2LtqqpG9Y+1e+fMjLXndA+OtTtbe2LtgTNnxNp9HYNi7X6L576bDR6Ye2bX1Zsbd6qqGjw4N8ja8UXuZ2/L/alXz5zeWLu7ct+He/pi6eqanhtjHTQ891nW0pW7X62q6uxdINbumZ27d5vXkXuNDxgc/Bzvy73I+4JzIeZV7nU2pH+uPbc99x2hqmpIS+511jk097xyZEfu/3t37384Fe+/USM4nt/Tnvs86T8o93MPH5H7POmc2x5rV1W1fzE11m4dkZtT2Riee44yY0buHmLI4NzzhJZ5uff0oYNyc9w6B+Q+T1qCw7s9g3I/d1VVd19ubHlw/9x9W1+/3PtLR8dnsXb/vtw80taW3OdJTyPX7pgdnHPUm5233DEzd8/a2pv7LG205eb9LLpYbp7ZF+25OQHzOibF2q2NEbF2DR4WS/f1ZNdd9czJ3b+0BtfCdAXHGj9v74i1R43Ijbd1deV+7t55uXvlfj25e4i+3uC6hKrq7J0ca7c0cs/G+/UEx9R7M/MRunq/+uv7pNnv17DWwLPe595rfvN/eX+nTWLt/kvlnum/s/iGsXZV1YYL3B5rv/nGgbH2gK2fjbVfeWDFWPu4Ld+JtRc89KpYe9jWe8fab590b6zd/6GtYu2qqhfG/CXWfvzNg2LtxaaPj7U3G7Z0rP397XNreF588vBY+/EFcs9YH/v6cbH2I/etEGtXVU2auWCsveMW68fazz4e3NRixMqx9PDrX4217135yVj7sJbcmq0Bu9wZa/f0fTfW/vD+J2LtqqojJy0Ta4/eOvd5dvyE3JjVmAXPj7Xv7tw41n7uO4/H2t1f5J6BPH3NY7H22KHjYu2qqqvfOSTW/qTztlj73WEHxNqrTs19pqywbO45xEVL7Bdrv/Pi07H20pssFWvv/qctYu2qqj+9nBvTnzV4TKx99/QzYu0Fvn5prD3fpOVi7cGTcs9RHvnkvlh75Ni1Y+3RPbk5Q1VVk6/Kzds56+INYu3pS98Saw9+8cJY+5M1Poi1V9k09/zozYVy404z29eMtfd854exdlXVhx+vFWvP69or1r7zp1fE2tM2z90zbvvUbrH2JzOXjLW/GP9arP3aMbnPsq1HBTcSqaqXJp8Ya7+xRW7B2sCndoy17xuXez595Gu5dVPL/XXVWHv7ye2x9taf5fbyGLHT3bF2VdXjD+aeT4+q3H49j038Zqw9adjVsfbmo3J7/k1dJLcedcCUF2Lt9w47LdY+b7vc//Pphy8Ua1dVDXs0d//y0Ndyz4/aVjkp1v5b34RY++mhe8TaD56aG9c+c51Rsfalnbn71RHzbx1rV1WNvC137/TWvBdj7UvO+jDW3nXct2PtjxbKrYuYfUdub6jTunNzOc/6MDfPa5/O7NhPb3B/hckL7xlrTxh5Zqw9a0ruufxhjT/H2j+YlntP/3Ct3GfZMnvmviPMfTY3xllVNbc1tyfYzVM+jrU/GXhWrD31qeMj3Vl9s6vqq60xXG/KH6qtJfCZtN3DzW/+L//Y6uVY+/XgHiRP3vX3WLuq6oERuWcwv1huYqz9nRmrx9ozT86to+laJbeW5LZLc8+95k3LnQdz6h65ud5VVUf9PXf/8/6aufVqX7sgt1/gmzfl5nEcMS63nuPTw3Lf6/YYkjvja4M9c2sL7v84tx9pVdXJ++f2kt9iRO671eVjb4i1t1okt1/PjNNyzxtnP5/bT+PVE4+NtXs2yc1Brap694rc2NGlG+fW6W301l9j7eOOzn0vHfVRbt/fw393V6y9wkq51/iC2+X25Zx27OWxdlXV9SN2jrW/vWRubcFrs66PtWfOzD3/Wf2DdWLtwx66LNb+aNn1Yu3/WiB3ZuW9O50ca1dVLfxk7rP0rf655yAt1+f2O7z8g9zf+oqX5/7Wd/pmbi5F91K/jLXnPvZgrF1V9Y8Tc3OWfrD9xbH2sb/N/a33bpH7HF/x3U9i7UfW/F6sveKKv461X70rNxf0svNza0mqqo7dJbdGcMP9no+1X3w4txb3tK1zcxLeejq3/nmRR3JjXr86Kff77jfja7F2VdVRS+0Ta794QG7u8dSlpsfaC567Rqz9u+C8xGe7fxprv/bJObH2dq//INZuGfpcrF1V9cPe3JjbrcfmnuFsv/m/Yu1tt8itq5jx2c9j7aXG5M4w3LmRW28/8JLcHPuqqsvuzq23f2fj3BlCZ62fu3c74vXcHnB//cvmsfZh++de42s2cufZHN36t1j7rvVz6xOrqo7Z5fRY+8grc+f4jD0vNydhyg5bxto96+f25Vpgdm5fzwm758YhptwwOtauqjrwjoti7ev3z51FPGvD3D3EdqvmzgK8YPwlsfYL/XM/935rXxtr/1fj97H2fA/nxkCqqiaumjv7+p3OH8fag362Tay93o259q9n5OY8zW7PnX2wxXWnxNpnv51bE1JVtdxNuXWG+7yQ+zwb9/FGsfZRo5t/xmpHz5yv/N9Yev1dauiw5s8jOWLd9qY3vzRncm4v960/yN17HDh3YqxdVbXGLblnbpv0yz2HWOrN3NlHm3+aO5Nlq6ceiLX3n7NKrD17ynWxduvfXoq1F3g09/+8quqhG3JrkD98KXdew66//DTWXm3H3HOnN084MtZ+I7flcK1zU25N6F/+lFsnd9Iz2TkcD5z7eqy9+NjcPiYHX5abf3vs0bnnL2c8mFu7dP51p8bav/pa7rypBzf/Rqz93CW5Z17fvCl7ztaSn94fa58/7aNY++1bj4q1Pznu67H243d8J9bueCL3Ofry8Nzc/p88kNvrsC7K7UtVVXXrFbnzGh5a9Y+x9pX/zK3DnXNc7v5ltS8ejbVPPDx3Bk/Ldbl9Y25bNXcO8aBLs8+81ns+tyfXC9NPj7UP3ib3Gr9t4dxn6chjc/eMb/zzsFh7hVtz69Tee2G1WHu5PXLP7Kqqzp+yQqw9eo/HY+2bxzX/ufaXjrr2uFi7LpgSS49bL7dH9bcOyO3r0P293PjLOe/kniVUVW21We653dON3FqSB5Y/Itb+yZW5dQW7vrZurL3m5d+Ktfu/ndsj6fYRv4q1W/+8f6xdVTV3Qu78xHF/eSvWvvei3B74Ez/PzX/ZbZ/cvjG/mprbE+vyv+fmWk/+Xm7u6+iLs+O7ux9/bqw93zG5tfZr/SS3f+4iv86cdVVV9fB6f4i1X+66OdZ+/uu5Z3Yf7ZRbr/X2W6/E2oc8+ttYu6rqV6vuEmvPu6oz1r7xktzPfc2sn8XaJ/8xN2f6nOAa/71XzX1HOHTfr76W5f+vSWflzk2qqnr44dz4y+OP5tajPLNh7l59n62HxdpXzJ/7nnD2pNzYzxp9I2PtoRM2jrUH/eyQWLuq6qxtcnv+7bLS3rH2khN2jrWvnPhUrN36THusvdfNuXNGD90495z04mG5te4rLt8da1dVvXzhZ7H2ds/3i7V/NS23NuHu+S+IdOfM7apxX/U/ctKcqn7N/5s96O1dm9780riv58Ywpn6e+7mvGZHbh6Oq6un5cvNv19s2Nw/1zvNyc+zP2D63HvWENXPzOP56TW4O6u0r5dbo3bJubk/OPd9+N9auqrr++Ny6qQnjc/cf97Tn1umN/0Vujv0zv8/dbw74ZOFY+5Vrzo61f7pq7vc97t3tY+2qqjEn5d7XL94mN0Z6yWu5vUQOvCM3ZnXpo1fF2pfcv2esPe2z3HqOcXvkfu6DR+fuGbdaJzfHvarq0D89EmtfsXPu/eWaQXfE2oe05f7ervv3QrH2jblH2/WH/XL3L8/uek+s/cjvcmfSVlWN/GfuGcxF2+TOinh7n9ze2q2P5faeffyy3HkJv/+vZ2Ltx/uPi7XnrPzPWPvTU7Njy9duv2SsveMauX33fj4ld0bFe62Hx9p3vpV7tn1l6/qx9qZHbRZrP3lCbs+csWtn9zMd17dGrL3EBbk94PZ7aXis/fulc8/s3n8496xyvv1ynydbHp0bYx316R2xdvspe8TaVVV/ePSaWPuNO9aItWf/M3eW3aT174i1r/z9qFj7pAVye/cOHXtCrL3I+E9i7fduiqWrqmrqUYvF2iN2XCLWvql/bm+HiS/nxkBeOyb3POH63zVi7ZMH/SPW3mqfbWPt9sVz65aqqibfnBuHeOT93L4SJ3yYG2v8eMnpsfZbT8yNtfd/pivXPjm31v7ov+f+zl89KLdvzKxblom1q6qOnZab6/Xir74fa79wYu7cgwEb5eY03nbvzFj7pf6519kjbywZa0945zex9oA5ubkQVVUL7fBIrD1godw543/80aGx9nF9H8TajaVWjrVPGZFrd4/K3Tt1nzM51n5+h55Yu6pq3hcjY+05310y1n56Um5/7vV6cnMxprXk9p8bs+/SsfZdP78z1v54/dwz2raTn421q6qm/Th31vc9110da896Ibe+ceFdM99JZ/Z11Nj/D/8uNwIMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDTNdIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA/8PefUbpVdZ/3/7NNZlJT0hC7xB6kRopkd470hSpUhQRVEQQATFKkw4CUkR6E1F6712JQkCkCgnFEEogPZOp94tn8az1vLiXy1v/1/e51zqO1yw+OzPX7Gvvc5/nuQEAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap1/6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/f5t/uV/U4Lbmvxr96r/1NL35hW8s/H6sPf3BDWPtY89cIdauqlr06Zdi7VVPPjHWvrlujLUvfnKxWHvwMg/H2psM+SzW3qp3q1j7k91fjLWrqg7b+Oux9oPXXRtrv3DSKrH2Ot9/Ltb+8U/ejrXH//L5WPsHh+V+35vMd3+s/Vrwuq2qatEn/xxrH39xa6y97jXLxdrvn/lErr3Cy7H2EX1HxdpzFnoj1t5m6LxYu6pqpUv6x9qnXvPHWHu7878ca6/4m/1i7Tk75z5vrcs8FWtP+OcJsfZRHRNi7bcm7hFrV1VdNXp8rP2bz+6ItV87fIlY+93O3LV6+y5vxdrLjrou1r7mm5fH2qPG/ibWfnX3WLqqqiZukPtO+daJubHGtgs2iLWvP2PtWHvz4yfG2uesMC7WPm/U2Fj7Ty/E0lVVdfAbc2PtH75zUaz99bd+H2vPujk3zjn5tdyXyvtfmhRrb/jZ3rH2kFU/iLUXPzB37VRV9cFHB8ba9x3yeKz98Y2XxNo3tN0Wa08Zv0asfcJqE2LtnRdZMdZ+cptFYu2qqv7LT4i121ZZK9be95MPY+1Dj8zNh1j73ndi7UfrR7H2gMUOjLWf3Ct33bb7frlxp6qqY4cPjbWfXHB0rH1ov/Ni7WG1TKx9a293rH30j4+LtbfZ5vFYe9T0pWPtqqq/HDJ/rL3CSrF0HbVCbsztlmGXxdqjn8zN4V2ie06sfearufuEH+81OdZe8+ncmHpV1ann7hlrj52yeKw95JqTYu0llngw1t6y38hY+91Vc/OmN7p8x1j7oRsHxdpVVVcPHxVr33Jv7pr1yG3Xi7Xn3/vKWHvnY3LjLxc+s26sPeucr8bau+18fqz9gxWOjrWrqm46M/e88qcb3BtrPzzkJ7H2n8e2x9pLnJebx/r5Lc/G2p0zbo+1Rz+9a6xdVbXPJVvG2i8enFvP23/Th2LtH3c1fy7GjJauOrnpVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/Bv3+nf+4p3VE9fQb8D91LP9bgwd0NL35hY45i8faI9o7Y+22AbNj7aqqau0fS7f1NmLtEaMGxdpdfcG/s47WWHted+7vrOXTz2Pt9rZ/6/T/3zVf7vddVdXoyH3W5xs5Mtbube2NtefNmxlrt3b1xdoD++W+T6ov9z0+cMkhsXbPrNzvu6qqunI/977O4PdZtcXaczp7Yu0Bo3LfpW3Tcp+1rvaBsXZP8PfdMTt3nT50UPbc1jevKxcPXrIOCH7WWxszYu2OzuaP+Xzhs7m5c1tP/9z5pW1Q7h5h3scfx9pVVSMXWSTWbmnLXau3tQ6Ntft6ctdtXX1zY+3W/rlzW2//3M+8p7M71q7u9ly7qlqC1xCtNV+s3ajc+Etjbu6etL03d73aukTunN7onRdrt7Tlzi/92xaItauq+gbkTjCtlfu8zfrgo1i70S/3WQ8+NqtB8y8Ua3e15c6rLb2558Nz5rbE2lVV7S25cfVqz90T9wYfGfbryJ3Te9tzz+xqSG6cs7sjd73aPV/weWFH7txWVdXXyP2hDZ0bHNMfnPus15w5sXTP7NxnvX147mc+b3Zu3KmtJ/cz7xd8RltVNWKBRWPtlo7cz72rLzemP3hgbvylX+u0WLv/sPli7c7K3R/1tuQ+5y2Dcs9JG8FH01VVg/rlrp26u3P3Cd1tufGXRr/hsXZf8Lza1xcch5iX+30PagSvGVtz/+6qqpbe3D1xS+U+61OnzIq125Jzbxq5+8K+vvli7dlzct+jsztz94WjFsiO/QwMDrIOHzgs1m605P7drcMGx9otvbn7hP7Bi/WeucG5N8F7s665ue/R/6cfXAvTOiKWHjRoeqzd25X5Tvlv3I/+ffatNai1+c/efnjoCU1vfuGx834Va7+34Eqx9lqLrhhrV1X9c5EdY+1VW3Pzpbr7vRlrL7nYu7H2WePfiLV32vmUWHv835+LtTebs2ysfdtpG8XaVVVLfZCbl9i2x99z7aG579J3Lrsm1p52/F6x9mrrfhJr/2P/xWLtliu+Gmv/ZLXcWF1V1YPb3hBrD78o92//uG+3WHvqLo/F2q8+dHOsvdjY3Lqp7Z/KrR9ast9OsfYbw3PtEeecH2tXVX2y+o2x9jZPbhhrnzv57Vh7+W/k5mLe0pq7J93i+c1i7caU3PfJ5Uu9EGs/Oiw39lJVNXGx+WPtJ57/faw9atk1Y+3JuR95XTcjNwd1z67ctfKyG+buC5f9+99i7YeOyM55br0+93mbPvLrsfaQKWNj7Z+t/2Gs/Ye/58aWF9osd2J9qZF7vvzR27n5I19aIDeHo6pqwqFTY+1fbTsq1l64e+1Ye+zn68Tazw08INe+7qRY+4NvLhNrr/H0a7H2iwvsHGtXVa2x27mx9ps35uZ7n7rhCrH2/o2DYu0rFvxOrP3su7nrl1XeeijW3uyQ3B4DJ16Qu0eoqqrjcuO7y78zJtduzz3LeOni3HzI2Tvn1tHsckjunH75B1fH2lvukPseXeGV4LzfqhoyevVY+4aXno21j37/6lh7+xeej7Vbx/0z1n5uq8Ni7TVffz/W3n6v3L7Bn3z811j7ibbsvOWXNts41p5xSO7v7NY/PBVrn/HQ+Fi7cU5uLKBrXm5897SRn8baPXv/JNZefuB7sXZV1SKTc9cvfa/k3o/2u45psfaM6bm9HdZ8JndvNmPwurH2ffNNirX/ccBbsfZVx/8w1q6q2uqPE2LtZ36b209jlWW+HGtfs8VdsfbrH+b2EXm+97xY+6Btcvu/PfZB7h5hm9y05aqq+uyD3DhE20K5ucOPTMmtKf3KDzNrE2bM66zK/YkDAAAAAAAAAAAAAAAAAADwf7mDj/latbY1//0F600d3vTm/+v03PumPrhgkVh7q+Vz78GpqvrRgfvG2uv+fmCs/fJ9uffBdH9+Rqzdd1Hu373KmFVj7WXuzb13+u/3HxNrt2z6TKxdVXXdkbnvlK/OyL2z8rTGibH2yjfl9nLffdjEWHunXTti7WfH7R1rn9KZO7cdF3xnQVXVka25d1VsttfRsfZJP1oq1h76vdw7Mo7ZuyvWXnvQD2Ltm8ZcH2tPWTy3p/mbf8+9T+759/8Qa1dV7T96q1h71ku5901t/ULud/6NbW+JtWc8dWSsPfp7u8faV43+Tay9wyHnx9p/u2RorF1VNe303D3KxhN3i7UHfeXNWHvDBe6LtZ+duFKsvf3bp8baXaOmxNqnn7BgrL1qv1tj7aqqjUbn3sF8x5u5dzBv++Xfx9rzhubewbPuk7lx7Qvbjo21zx2bu0846do9Yu0r2v8Ra1dV/e6T62Lt1/6Uewfyi3fnxvS3u+2UWHtkz3qx9rwhA2Lt5w65OtY+rXONWHuBrh1i7aqqKWNy74a947Pcd0rjr7nxvltXeTDWnrFt5j0VVVVTvvn9WHvCI2vG2tt+lvsbH/nyo7F2VdVbi2wea581IPfuxr+cdlqs/dY602PtLc4+P9a+4aOPYu2N7si99KllrQ1i7eM3y439VFVd/dXcmP4N43Lv2VrmvXdj7RNPyc1H2OG43Hjbzlvk5v0MHZZ7r9pLn+fev/zTR3PfZUeMPSvWrqpqvz73jtSvbn1FrL3IO7nr5fZbD4y1F98pN7/umc7c+5d/NbYRa9/6tyNi7QPuPSDWrqr6+WJ3xtqbr/frWPvl5XLrQd6fmHu3/MM3bRtrf+WE3lj743tXj7VXejb37OrExy6Ntauq1pz6u1h708m5OdtHr51bm/DY8Dmx9leOPCzWXm+Lh2Ptb3/8aqw98b7zY+3v/fzlWLuq6pvjc2vOvtzRF2v/bPHcnKdn3v95pNvdMbOq/rM5R5+sfmY1Wps/frTFGS81vfmFX835c6x9wsNrxdrjJ70Ya1dV9c7MzUM9Y8iPY+2TDts/1m65ZOVYe9HDcs+29z6hNdbe7sq5sfZbux8aa19xyrRYu6rq7FM2jrWfWOtXsfacsyfE2j9aNXe9u+0Lj8Ta232Yu6+7Y9gCsfaQ/XNrtt5a96ZYu6pqleAz3h/cu1Cs/dRVuTHS74zO7RX0tSVy55dtLxkdaz874Xux9tyJuWvlFfZ5PdZe5/HcM5Cqqi8v90Ssffv7ueu2u69fJtZ+7ozc3/jbJxwYa98xNTeHo/uI3NyZjybMi7WH/Tj3XVZVteglD8Xa397+k1j7xeePirWP32qJWHvx4HXb3pPfj7Xv/vVxsfbMB56KtU87Prvf4PWH586t80bn1g891Ts11r76vB1j7Y9/tnas/eAnuX2KPnjz+Fh7/vXPi7X79eX2T6mqGrfaA7H2Wdvkxn4GnJGbA7v+hXfH2uMP+DTWXmhS7vrl7dG5PR5Pfiw3znjbjKti7aqquQfn7lHuXHm5WHvGOxvF2mstl3t2deFur8Xady+YWwP86P659ajfXTU3/+Tp8y+MtauqTr0jN6Y/5gfnx9rt/Q6Jtfd75Wux9qF3XRRrr3ve7bH2pH1y47u/WzO3D9piB4+NtauqXr3jT7H2u9fk5kNstVXu7+yYpXP3xM8tklun98ixm8XaY266PdZ+5N3c/gZH/zB3L37fT78Ra1dVnXRtbi+RrmnbxNo37PBKrP3Sb3N79y4y46RY+/PTz461L9o4tw991/65caeX/zk51q6qGr7Yk7H2ARfk5rEu89nhsfZ546bF2qN2za3R22av3P7YS76We2427vbcuqu+D3Jr7auqJq+5Xay9+Xu5vcie3vqSWHv0V3PjbcdvNjPWbrk4N+/n0bNya74+vS23J/pWb+fGvKqqPvxFbh7rjnt9EGtvMSZ3fvn5fJn5nO293VWf/+v/Lrd7FQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATddIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00gfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSB8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0+/f+Y9bWwZWa8vA/6lj+d+aPmtm05tfGNw6Pdbu7Dck1m7Mao21q6paBn4Wa8/uHB5rtzc6cu3+zf/b/kLrvPZce0BbrN2vqyvWrp7ceXXOpI9j7aqqxsD5Yu3B8+U+69XIpdvbhsbaHZ25z/qg/rnzy7yO3C+8d05nrN3a9m9d2v7XddegXLw192/vmpm7Xh7Q3hdrt07vjbVbhueu27pnx9LV0TE31h4xInePMLMrd16tqmrvy32fVU/wvrQneU+au3ZqDM/9nfWfk7t+GTpkRKxdg3L/7sag4L+7qnrm5u6Je7py3+Ntvbn7wp6eObF2v57+sXZ78JqxrzP3Pd7Tmfse7Tc0O7bcM3NWrN1dud/5oJm5MZD+bblz27yWlli7MWterD29O/f7Hj4sdw3RPbgn1q6qakybEWsPGjw41m4Zmnte2dkRfG620Pyxdk/u8qWGVXAcYEDu/qhrXvCHXlUzp78fa/fNyP3ORwzPjbnN683dH1Xw+qWlI3c/PHhU7vfd9XHuGqKrkbtmrKpq65e7P5s2L/c93tqZG4eoAcn5L7nP+typubHltn7B56SNabF2z6zss/F+C+Sun3oq+fwo9106oD33jLivpTvWnj49d93Wvz33XdYW/D5p6c1dt81t5Ma8qqp6go/m2xq5e+JBw3Kft7kf5X7o7Y3cPK/e4Iettyd3busemHt+09OdfXbV3ZW7duoIrsPp/veWKv13Bcd++vXm5kJ09eauGYcMzz1DGdG+YKzd2ZG7Vq6qGjgq9z0+bXbuO2XE8FGxdksjN/7S0Zm7J+3XGBBr9w3IXTvNmZb7nHd1BtebVVW/tlx/dm9usnprI3jd2Bpaa9f3nz/HGL7Kt2pwe/PvsS678Y6mN78w/tCbY+254/8Zay+w2I9j7aqq5aZvG2tv/NpDsfYJs38ea+++3bRYe/7uxWPtkW8sH2t/etj9sfYFj7wVa/e75uFYu6rq8I+Hxdr3DXgn1v7ngF1j7Q/X/2msPWVobr3YNYssFWu/8eJ1sfYOCz8Va09e+8lYu6pq0JW3xNrTFsmNFb7bNTHW/qx91Vh73oFbxNobfLJGrH3d0rk9Bvr/7p5Y+/MTvxJrD9ry+7F2VdWjf7471r6tc7NYe+Ef5c7pf74vd5+w3S7B9RytH8TabcvlnjXu1rZyrD3pb8/H2lVVHe0fxdpbtB4baz91be45yKIHfBprb9N/l1j7zsdz9wkzpubmKz2wYK69TefYWLuqauUXroi13xy1bKzdf1zus37eY6vE2o8+Oy7WXnborbH2xi03xdpjpv0p1r61Do21q6qWWOKFWHulx1eKtV8a9Uas/cCMFWPtwe25sYDbWv8Ya+82c+dYe8JHf4m1Vx65e6xdVfXIna/H2i89tXSsfeyy68faiz6Ve5YxZMftY+2/TcmNa793a26e1gPfmhZrj3sle3+0/4a588u6G+TW29+w1tux9pi7c2sqLu7NXTut+Zfc/fASOz0Say81+eVY+527Dom1q6q2Cc4LeHbR82PtxzfJndff+ewfsfYd3899jx970+9j7Uu/vkysveQlU2PtIaN3jLVnJ9/hU1U7rJhbD/uX23Lr1VbcLjfeN+mJSbH2yie/Fmvvuv3nsfY9s3PzvD7ozF2vvj15w1i7qmrOkbk9RX/z2ydi7YHLrBNrL/HR2bH2H7py62D6+n891h796Wmx9ow3Foq1Bx9+aaxdVXXeA7k5tDu+cHSs/d6eue/x5x6/N9ZedVjuvDqvX25+3ZWzcuvNBsz3TKw9aencfhpVVV0D/hxrX7NSbm7fai1nxdr3Pp7ZK2jOf+HdaF+f8dVq6df8vSmeXjH3HGLUJq/G2p+NzX0H/+jz3F7qVVUDVs+NyT9/++2x9tydc3Psz/v6KbH2I9fn5iQ+/NJ3Yu3hS+Sec867JLfuuqrqtLG5vUR23ye3hufUF3LzOJZc5qJY+/N1j4q1txuRm5u3TvuVsfY9m+8Waw8+O3dvVVW17M65tf7LDs6tHzrqzdx7UcY9/masvfGSuevl46/KPYt4+a7VYu0rV/1mrF1V1TIgN5/ho2Nz1+qvPpcbw9hsxcti7daTc2t4GgNy3+MnT87t17NIT+69BZNm5+bOVFW9dnNufcFZH+beFbrIaV+Otc+6a69Ye+cZj8faaw/I7Wlx2piNY+1vjf1DrL37Qrnvk6qqKy8/NdZ+d4EHY+2Pth8aa7fNn9tP9ZRPc2MgM4Nr/S/4442x9rfe3TLWrqpa9fDbY+2Lt8zdn/3u6iVj7Vu+t0Osff+X94m1L3hi3Vh7yi0TYu3b78z9jV/3zw1i7aqqSasE13Ssc0Ss/bNdc2sbfrF0bo798FNy70XZcVRu7dJSex0Ua5+1+ruxdlXVQcFtVMY+nJt/s8oGf421j10q9/zqjlFPx9pfuXiFWPvife+KtSdumbte/d2vc98nVVUt28wXa2/2Ue7cevqUX8XaW76bG9997uHcc9qZC+XGd3++cW6e2Zo3Zq8hvjd1Wqx98d9zz8fXvPDCWPus3hti7cW/kZvPOa1nbqy93m9yF8sXjMzt/3/2Z7l2VdWka3PPrxbd5Fux9ph9jou1R528Vqz9q0G/jbV3mJvbW/PxC5aLtbcZMjLWrqqaf3RuDkxdkduf6tXLcvdn9y2Sm3+z5qW59z/vO68t1n54vkVj7R3XyL0zao2Nc+e2qqprn/91rH366efH2j+fk5sPcf7s38Xa1+2aWwd82NDcXiJHd42Jtdc7qxFrV1VdvWVubek188bH2gcOyT2n/e2O32h6c+7cOVUv3Pcf/T+2PPrwah/S/OuAfe/IjV8M/GpuXt5To3JrSV74PHd9X1W169dye7H2rXpJrP3eN3Ln41OevDzWXnZMbu116yq5uStnbpJ7V8Twf+TWsdw4Prfmu6pq+1tHx9oHv7l3rH3tzc/G2n87Nvd+1Mcfyu1h8sbY3F5is3+du79o+eHVsfaP570Ya1dV9az+o1j7qPbcerENpz4Qa990zFux9moL5/a3Xum+3LPGS2/PvW9qn4Pni7XPOvu6WHvilmfG2lVV379+j1j7x09vE2s/c94msfaFA3JrIzf6du6+8Mxtc/fiG8zIzZM655YFYu23d7k91q6qevGHuXkU926fGwt45bu5PewfeTz3eXvyk9y10wuv554t33PBZ7H2RdefGGsv+XH2mVe/PX4Ra793cO5Z43fP3jzW/v1mX4q1D+zOrQF+4I3cc4wDxrbH2iM3uT3WnrzjT2Ltqqqjv5sbh9j0G7nvs6cmrx5rjz40t4Zm0lu59rRfHB5rn7J4bh/XixfKzd/o7cu8N+ALu/wmd37Z+sAjY+2Xl8jdH3XulXtn5Xem5+Y7Dz4195x0v29/P9YevsKuufaaueekVVW3fencWPuYlT6JtT+fmpvvfPKR3461Tx2XG/vpt97sWHuVqbm9WxbYJjf28+zFn8baVVWDlsvtMXnOfrl5AefeOyjWPuHQ3H492x/xTqx99iu598n0rZtbH7jlSbmf+cEb5MbbtjrvyVi7qmpyz99j7SVWy81xa6yee+f26Yfm3p24+Aknx9qrv55bkznwio5Ye+3rL461r90otzd3VdWJm+bG+x7Z//VYe77/wjsz/08d8knumd13jsmNv7yyXW4c4qp3c++jm3hNbi3qaTfk9kCrqrrmttz18lM7NX9d5Bde3j63b0z/R3P7RH97/9z7g7a65+ZY+7HVc/MpR+z5s1h7z4MPjLWrqiYfnDu/rf3RV2Ptm775Xqy9w9jMGsOO2bPr+f/w//HgeS/W0CHNf+638FaHNb35hcY+ub1IF2/JvYd4wHpDYu2qqkP/mFu7NOAvub3cF/ttbl/MJ8fk5vffenfu+c8tL+XmwF52Y+757vRVc/u/XrbvLrF2VdVRw7pj7f5L5u5vulZeO9a+4aPc3pQnLp+b8zzu6f/0yuv/3IODcnOeR++Z+y6b+fKAWLuqapMfbBprL7n1/LH2PruNi7XP2PmRWHtQX+6905cd/3isXT+8NpYecGVu7dDQebm19it8dEKsXVU1o/8LsfaGC+fW21/2vYdj7ZMXyr1L79CLcs9/bt8wd/2y+WHrx9qXTcjt//rxArk5HFVVn573Qay9/CW5OUs/v3+3WPuk8/ePtVs3yu2t3fV6bt+9xj4XxdoDDjow1n5+9dx8paqq++5/NNYeNzm33+BZf8vtb3ni1Odi7W23y42xjjyyJda+ZlDufnibn+fWu783O7efRlXVxe1HxdobXZL7Pntx1/6x9vK/+ijWPveo3LOMn7Xm9qie9qXbYu3jHr061l75oAmxdlXVnYNz72q4aOBCsfaYl46ItZ/Z+pxY+6gzvxtrf2eP3H6DJw/Jzb3Z/KBXYu2eB3PjH1VVE76fO6+v/3TumeE1l24Va0+akhtT/8bs3DrcC1/P/b4bV+Xm/t7/59ya86VeyK0/rqr6cFru2fwuF+X2rfnObbn1Q/e15fZ22Pe23Llts4dyYyCXf+eXsfap1y4Sa1/+du69Jkfc+WGsXVX14EePx9pnf5q7P9r697mxn8sm5vYwmdmReyfd3zpzzxKGfvPeWHvM+bm9PM7/ILfuuqrqtaPuirX3vDA35+mBc38Qa9eNufcA/3WnVWLtV7fPrUedfWDu3mz6XlfF2vftdXysXVV182+Wj7XH35v7rC9zQm7/lt5zc8/GV3409+8+6fHcGpxbt/o41t72N7n1hQs+kZtPWVW126q58b47bsqtAXrq+tx690NWvyDS7erurXr6X/932TeQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQVI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuycYbAAEYhUlEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8jfQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQPI30AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DyN9AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA8LX19fX3/6j+aMWNGDR8+vO5e82c1uHVAM47r/2Pw4FlNb35hWO+oWLura1CsPXBILF1VVS1dA2Pt+UctFmv3tcyJtTsr9zNv9Iula9iIxXPxlmmxdHdn7ofeM2durF1V1X/wv/za+x/T3a8r1u6c0xFrN9py59XBw3K/79nTumPtgUNy1xCzp0+NtQf0a4u1q6p6akau3Zv7tw9oy53buloGx9ptwQuYub2579LWvty5rf/s3Oe8e+T8sXbb5zNj7aqqngG583rH7Nzf+MDhub/xrq6WWHtAWyPWnlu5c1vHnNw148ghzR9n+8K8vtZYu6qq0eiJtfvmxdLVNiB4fhmYG/tpnZ27Vp7bl/s76ze4f6w9YFgsXXPe+yQXr6rOmdNi7a7O3PVyo3Jjy5/NbI+1BwXHlocsMjTW7v08d380cLGRsXZPv9z1alVVoyc49jM9d73cUsHrtq6FYu3WluA5fWDus9bdm7tPmBV8fjR4ZHZsuXtObixg2NBce3Zv7hqidUZuXLuvf+4Cpq83lq7W7tmxdld37n64Jfj7rqpqNILfZz3BcYiBuQ97x8zcHLeBQ3Nj6h3dwQG3Wbnfd29X7hnOwGG5v7Gqqq6O3Lh655zOWLv/oNx9aU9wbt/gfrnvsxldufPLgP7B69X+uXvx3p7cfWFLa/berF//XH/O7NzvfNDw4NzhRq7d1ZGbC9HbG7xW7szNI+3szT2za23LjbdVVc2blbtunDcv9zuvjtxYQGdb7llGa++0WLsaub+z3uD5ZfjgRWPtjt7ss/FqyV2/DBmWW4fTPTX3bLx7UG5sedDQ4bF2Y15uHGBWV268rac7d380d172+qWn4/NYe/qs3LOrlrbcv7u1kRl3mtXdUes989OaPn16DRv27004+2LN+RX7rF+D2ps/fjRqo9Wb3vzCc6euGWvPmp6bR7HAdpvH2lVV2330cKw9YW7uWcT6674ba08ZvUqsPeyTXHup53PXH8Pbnoy11xu1fKz99DW5Zz9VVd1jPo21l1ri7Vh7oVfGxNpzTsuNYfxzxO6x9jIfHhhr33ncFbH2tLUejbWX+tIysXZV1YR+l8bax83YLda+76A7Y+3BZ2wSa+/80Xyx9pQFP461Lx/0z1j7gOe2iLVf7/sg1n6gd0SsXVW13dq5z9ujM46Itd8/8pxY+5bjc8+Xr1k493lbZMkpsfb1revF2t8akRv/uPvy3HV6VdWctXLP3TZdMve88akp78Xa/9h73Vj7jJty45wvLflUrP3WgV+PtdsPPDXW7pia+31XVR2yTO7nvuD46bH2RatOi7W/NuD7sfY2a/0y1j7h1fdj7c9WzM1xHzo094x1i9m5+5OqqufmWznWXuqd3Phuy8jcd+nHL+TmSu2++hKx9tULTYy1X5mS25i8tyV3rXx4+89i7aqqD0eMi7U/X3DTWHvUqx/G2q91LxlrP7Hwm7H2Ml/K/cx/tvRnsfap38nNxTzhmOz90aNX5Z6NT5+emxP53hq5eWYLvj8+1n5i2dxczJVacuNOU5d9K9Ye+cqkWPuw13J7DFRV/W733PltxB25eY0tA4+JtV8esE6sveSi+8bay575i1j7yTN2ibXXfj+3nuOirXPrxXreyd0XVlUdct2fY+2nJ24ba08/JjfnaKdPloq1O/d8JNa+YerLsfZtN+Q2Lb7sK4/H2jMfGBtrV1Vt9J27c/HLFomlF/5Sbg7KPfN9FGtPnJSbj7DscpvG2mvcOi7Wvn+3b8faq12eG4Ooqnp/7SNj7TUHfCvWfmxUcJ+Bce/E2h+eslKsfde5v4+1T1nvS7H28ovlxj/ufu2xWLuqao8d14y1+7XdEGv/+sXcOOcR8zL7FPV1d9TMZ07/j9acN9ovrZaW5s99Xv+K3PXmpEdy93XnPPvzWPvSr2XnHe/x3B9i7f7r5fauu3/Z3FjhAuNz62iu69w71p5wRu774OOrLou1D+jLvg+mbYvcerW28RfF2oe1/DDW7pmxU6y99aTcfMi/XpH7fe+7ee6duH994apY++59t4+1q6r2uXCNWHuT/W+Ltdcdt3Ss/dopub1Ebl7ib7H2Hkfn1oT+ZXZuz5zRz60Va1dV/W5Cbsxs9qcbxNqdD+fmUvSv3J5cfRssGGvfv86LsfYiu64Zaz99znKx9p+ey/3Mq6ru3Dw3P2+LA3L3hrd/nnv2tcC6p8faz8y/Qqx991MXxNrrfvxarH39UifG2tvu/JNYu6pq9b1firVH7LRfrD31/tz48laDc+u+D9p2sVj7Gw/n1i5teXRuHe6Fv7w+1q6qGt59Xaz9jzsmxNo7Ts89T3gjuJ9H7wnnx9pP/HnTWPuWhXPn9PvfujLWPnDV3LVTVdUR43NjMLsvm9u7ZsWBufHdHV+/JtZ+8NbcuPpO9+b2b1nn/H/E2juclZuTWFV1YmNSrD11sb/G2h0P5eaBTLxns1h71Ljc/pbHbr9ArP3qVrnz6rdXeCHWXvOY3P4KVVXbtubmJJx1yqux9ogzj4u1rzsyN+/oB5vn1gG/sG9uvdqYO++Jtbet3Dm9quqgltz+d1NOyc33/sVba8faB6+wf6y9/NTVYu339sj9uzvbc//uQ6YfHmtPXjb3nvOqqitOnxBrL3Bfbq+Bc7qOirUv/OT+WPuWh3PvlLnrO7mxn18tvmesPX2nY2PtqqqtJmwca+91Ru475ZLVc3/jJ2/+bKw9ZcXcHgcbjr8r1u632dOx9lL9Xo+13//tV2Ltqqp3Juf29nxyTu7vbKkxuXekbX9ebk3IL4/Jrf2euMVfYu239rgj1t5skQtj7aqq7qtzz+bXm9geay/db3asffxxzd+bvKNnXp084YL/aM35o8O3qyEtzd9PftpmuWvNN5c/P9bebcVBsXbfZrnx8Kqq3Y7NvRflvidy+5GO2yu3l9gFO06LtWfunvu8fTo5t9/Ok9Ny+8ife1/uPaE9j+WeQVRVjflrbm+pRZfbLtb+5Pxfx9rXP31IrD1jte/F2pccfnKsvd/03DrcTycvHGv/Yq/7Yu2qqi3ueSDW3nnX3PXLIZfm5uY9/K0rYu1h6+be+XTr5rl3g1x7Qu667dLlg/sUjZ0ba2+9dW7eb1XVxufkzi8jh+fGxCdvnDu3TXz1hFj7+J1ze9+d+Mvc+zLPe+GgWPvQ1XPv2ZqyxTOxdlXV88c8FGvPujO3fuiuA3PrUfc+LTfudMT7i8fa3V25/VM6Fs+9F3b97+ee+3z5odw4QFXVrJ/mvsc3enb3WPs3w26MtdfZKzfO+cK+ub2h3jo1N49h4Ym5n/kvtszNTbt6odzaxKqqJZfJzZU66NitYu3xs3N7xxx4SW7s59Obc/Oknjo1N+709o3LxtrfPiz3M393v49j7aqqxZfOzRHb/5+55wmbzPpprP2HjXPv8Tv9B+Ni7Q0XWDHWfmTp3L69J32eG/uZf8X5Yu2qqlt3y32Pv31U7uf+zndzY6wzpp6Wa6+Y27f3wyVy75Q77p+5dz7d3557r8l+F6wXa1dVnf+NHWPtvy/x41j7yvVye8+1bpB7l83YO3P3ZmNOyL1Tbo8Dc/t4bLhabv7L1778eKx9y7u5tTtVVVM3uj3WPuGQ3D3KGZvnrtuW/CS3b/Bvhuae007tWj/WHnlj7l18V34p9wzloptvj7Wrqtbb4IlY+5en5sb73urMzQk4595Yuk445E+x9ivduf3QVzgit1/x+w/lPueP7Rv8sFVVx3vB98k8nHsH4fVjro61O8fk9k9Z/w+575M/DMq9U+Vr2+waa9+34D6x9jIb5PZRrar69vTxsfafrsitIx44Kfe+h+0vPT7SnTdzZl2w7LL/0Zrzr7/6rWof2vx9AjbeIrhu6me5a74dRu8Qa/c9kJsPWVX1x4cPiLU7V8m962qbvXNjhe3P5uYrrTwjN4Zxz46TY+2XpuTeo7fl0L1i7TtOfj7WrqrapffJWPuYxW6Ntdf69Lex9td2zj2DGbVU7lp76/1z+4Euc07u+2SjEaNi7UVfye3rUFV1/8q5Odc77ZDbV+KhS9+KtT+5MLeOZvlDcu+dPnPGmFj7iGm58ZNv7nh5rP2P/XLv4p153oGxdlXV8/cdGmuPOi23nqP74LNj7T2fvDrW/vLVf4y11x2Zu2bc7NQzYu2Jx+bGvM4/Ifeeq6qq7SZPi7WvXSi3P1T3WxNi7d++mbuGuPviX8Xajw+ZFGtvkRt+qV+8m3umv+SNufn1VVWfnrpmrL3Pp7k1yC+em5vPsOi242LtGSNz719eYOvDYu3Bl+TezfGT83LzCX61dPZ9T8tO2TLWvuvW3N4x9x2XG1Of0zUh1p7/jFVj7Ylf3STWnvq33L3ZWwvlxl+6vpnbI6mq6oE3cv1/9Obeef3s2pvG2msckBvnvDW3pWhteFJuHcs6m+b2Ovzm7bl1DRu+nZsHWlV108cXxNqXPZ8bY228dlOsfep+C8ba3bV0rD3n4tyeOeP/lHs+/fjKt8Tat+z3dqxdVTXoL7m97x68MjfPrHVO7l28Mz74Uaw9fWJuLkTL0Cmx9vtPfxpr/2Hls2LtGUvNibUPWurmWLuq6tSDnou1z7vh4Fh7hS1ycxqXXOPSWPvCJ46OtU+9O/dc/vDHc3sMXPn4ErH2a+fnrtOrqr406tVY+9M7d4m1J12TG1M/bU7u+uWX9+TGX6Yu8EisvdzquT2STr1631j74u9dHWtXVX3r4q5Y+4Cr94y1r1k7N+fpL0vm3nl9wb7TY+1J/1gr1p68z8BY+wf3HhlrL/lCdr/kh97cMNbe+4rcNeuLt24Ua4+98rNId+7M3jpqmXf+5ZrzRhOPCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsEb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ5G+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGieRvoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonkb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/xd5dhdtV3v3+/q2ZlRU3JEDwYkWLFkqCBC0e3AulUCgUa7FCWwKlWIvT4i/uLqFYcHd3C+4JIbr0f8T/2ifvtXc3fed3H9z3MRefkWTOOcZ4xvM8AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqeRPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqnkT4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACap5E+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqf13/mPu3q6q6un+3/qWP777rdNT/7/prZNj7WHDGqPtRvdc8faVVUD+/aOtdt6psTa0/69r+R/1CxD+8Xa09qb/7vyvY6Zn8TavTsHxtqtw3rF2o1eHbF2VVVHDYi1p3+X+6z3a2uJtXu15k7kU76aEWs3WvrH2h1TpsXabd1dsXZ3S+47VlXV2if3+9K3K3dOmTrzs1h7UO9GrD29K/c9a23krpVnfjMp1u7un/tdrYlfxNLtuVN4VVW1zcx93nqmfxNrt/cdEmv3Gzo01p72ae7vvDGwT6zdvzV3DTGjI/clb+mdvXZqn5rrNwbnxl9698tdt7VMzI1z1uBZY+l+rZ2xdmd77p6068OZsXbvyo07VVW1tw7NtWfk7o8G9rTF2v0aud/0gYNy9wmd3+W+473ry1x7YPD50TdTc+2q6pW7hKhJH30eaw+YMzfm1dOT+3O3DR8Ra0/+Lpaulpm556SzzJr7fempibF2VVVPR+6c0tExONbuHXw23mvW3DjEd599Gmv3bcn9uTsm5z7nbSNycyF69w9eQFRVy7TcvKP2nuC8gJk9sXRb5b5n3V25+/GeGbnveEtwHKKnZVCsXR25Ma+qqp7WeWPtRtvLsXavgbPH2r2DczF6enLPC/t35c5lM1py37N+Xbmxvo6e3LOEfjU01q6qaqncv/mAgbnvWXdL7lza0pP7O58+IzfnqE9Lbs7R9OCco5qSG9fuDl6nV1VN78w9t2vtm7svnTk99/vSNTE33tcyIPfsqq0t9+89vXLjjNN7cr8vLZ3B39Wq6t8vN8etvSM39tNn2NBYu7V37jzeMTM3z6xzRu7hVcfk4Lh2n9x8ytbu4Dyvqvq6M3if0PeDWLtfn3li7ZmdmTGQ/8Ro+qDuvap/d/OvgSZ+fUHTm987pJEbJzz5s9xa2PV+lJsbV1X15da5c8Iudw6NtR+fPibWnuWWd2Ltme/lrn0W+fPkWPul996NtbvOWTrWHjByfKxdVfWvoRvE2vd++VWsPehvc8Xasz9xWaz97t3n5dpDloy1l1r14Fj7waVya2jmujv3XLuqatKQR2LtG5fPPWdd7poNY+2nN8qNkX72z9y9/NWz/SXWHnLeXrH25TufFmuvNe+fYu0zbpsUa1dVvXHZuFh7zHbnx9rTzs2NkS7z/vyx9o+Oui/WHnZU7trpwIWviLW/nGOpWHvoAu/F2lVVMz79Ota+Y6ncmNvOX6wQa5//au569cGvc8/0z9rhhFj7oLduiLUXWiX3/OXaj+eItauqJkxdINa+d4GjYu1reufWCF60+dqx9gK3nBpr915yj1h72FOvx9pfrpbbk+v+Kbl5oFVVT62SG3t6oeWiWHvei1eMtefa5qex9v2PPR1rd45fONb+7U/GxtqvTTk61r7y8Ldi7aqqUw64PNaeZc3nY+0/B/eAW2Le3PfsngEvxNrLvpUb137oytx9wqCfLxRrn/evlWLtqqr3lng+1l722uti7QHduWfj54zKted5f/tY+/Tndo21d90wNw+0z5O5f+8t5ss9H66qOvXb3J5gz0w9I9a+q0/u7/3UA3L7gY3c8o1Y+/HPcufS+ZfPXbedtH/uum2Zi3PrlnYfslusXVW12E9Hx9qr7Zfbm2q2W3P79XSunlufePbwBWLtNd/I7Yu1xcjhsfYrE3Lrlq6bntsjqaqq5/Pc86OW/V6MtR/cPff7Mvcuufujf7Xn5v2sc8FvY+25fvPHWHuTaybE2mv1ejTWrqq6Zv4tY+0nrlsg1p6j7R+x9uTXVo61B86fGwPZ9W/rxdrTF89dv7zQP7fmq/3T3Lh2VdUDBx4Wa088Zmis/cVSub2C2h/PjP30/AfWuu87++fVp9H3P3A0/571Nt+v6c3vzdl+Yaz92D2rxtrbvXtArF1VteIGufvK8c/8KNZ++cDcXPNeP8l91s9bP7ce9Yyf5/a+PfmOw2Pt3Tb7ZaxdVXXJBbn1JCdenbu32/qodWLtTf6+Y6z9r2Vz5/H7//BhrL3uiFtj7Sm75eaB7tt6ZKxdVfXt1vfH2s+dkZsDe9FnQ2Ptw1fO7Q81ac3ceHzv7uVj7f3fzc2jeOPa7Eu331sut/b7qwNzc48X/HVun4FVjs6NUx58Yu6duKs8m1sL+9Fta8Xa56+9Wqz9wtj3Y+2qqlXvzj0PeOaeQ2PtnsNy62F3bM/N1Rp3552x9uKb/CzW3nd4bp+BZ7sPibXXuGr1WLuqarkPctes++6U249swZNy98Tdm+T2dvj9zc/F2ouePjTWPnir3H3h+KNy6xOrqhY9a2SsPc8C+8bas32YW6c36KTcuobnG7m9e4/tPjHWXm3H3N/5qMWfibVfnnBbrF1V9dNVfh9r73BSbh3N6t/k3kczamTut+3hq06KtWeb/79i7SH9Fou1l3lnmVi7quqyG3Lvxf3ghNw6mrXeHRtrD/vw7lj7puuCe0xOeirWnnZrbi7oT/fM3ZNOnv7jWLuq6u2Dcr8vY3bI7cE/sB6PtTf4x6Wxdvdte8baqy2Ve3Y1Y//cPrJ/uSb3566qWmSh3DPqGx5fNtbe4Zvc+MvJJ/8k1t58j9z84Zat74m15zj3N7H20ePmi7XXeef0WLuqau7X2mLtzUY+GGtfu0vuern18dzenq+25fYE+2T+RWPtzT/IrYf9497ZNWNT783dI801ITdv+t7bcs/mT10v9068vd7O7Y110e0Px9pr/Do3d/mJlXaNtQ894flYu6rqu/ty90i7zfa3WHu1/XKft2f+nNsPftY/5dajjBj+Uqy91IYLxNpLnnBNrF1V9fR9f461jz588Vi7Zs+9E2/0okOb3pzaMaPq+R/2/xh785XVOrD5e4qdtFfuPVtXfJj7jH7Vktvb6cLWg2Ltqqp9NxoTa5/2j0mx9k+HHhhrr907N/912sZXxto/fWiBWPv1B2+OtfuvlXsPzoK7PxRrV1Wd/vS9sfa4s3Lv6lxv0dw7ePa4alqsPfaaz2PtW07MrXefY7/ceo4jjhwVa68xOvv85bk1z421l943t3fMem/knmuffsTZsfab7+faV32ce+/R8K7cPPORtz4ba0/cNvdce+xqx8TaVVVnj8y973vy6DGx9vQrc8+Wj+7O7Ql65jW5dQXbL5+7bpv689y7Iua89OJY+65n/xlrV1Utu2PuXVdnj9o21h735hGx9oCFcnu533Fr7nf10JePj7XHzcyt5dh+79y7aPa5NTv2892euX2mhy2f+7yd+XXunvTaJ3PPMrbYMfd3PuXi2WLt23rl3rH++SOfxNpnXbZhrF1VVX/KPVvets8msfbQHTpi7W1/lXsny6I33h9rL3z+RbH2agcNi7WnLZLbr/jbh3J7SlRVXX1h7l00D3yYuzeba+Hc+4e2niM33vfJ7Ll5vys9+masvf2luXVLox78NtY+/NtxsXZV1Z4nnRprn/3kprH28o/nrht/PXdu7fNGh+XOZ3f9IreOZPkFX4m1n34vt27pF7v3ibWrqh59P3etvtPluTkJJ++UGwP5ZL33Y+31ls3tS37nPZvF2r/4e24vjb1mOyDWPmOl42Lta0fnrh+qqk55Yt1Ye7v+uTlPbZ/mrlk3OD+3J/rMl3P7xnzY3Rlr//3hm2LtX+2Q2yv5pZVPi7Wrql64MDcG8vM9cmNufc7JfdZXHTU+1r55bG6u1x8u6B9rn9G6f6z91bTcO2nXPvisWLuq6uA+uWfjBy2cW+f36PTc3twPTsiNQ6z85F2x9t1Dro+1F/t07lh7yym5z9q8D+wTa1dVLXDMsrH2Utvm3hm18IATYu0TFwrNJe354fNnxw17oFoGN//909v3e7Hpze89u2DunvK7v+auPxr1aqxdVbXhuB1i7Y1PzM073uTz3Jj4Uxflnrn1/y73fveHjpol1p5+Q25N6DVLHRBrr3pWbk5iVdXxNwfXq50xNtYeuMiusfbyC+Xm/t57ce5cuuoRC8Tav34j9z0bd/YisfaIj9eItauqDpsnt3fcsKumxNoH/DL3b/7YjX1j7deX/ijW/vD+3Gdt7Fpbxdp/eOjtWHuxTcbE2mv8NLcvVVXVVUfl3nX1h+nPx9oPXLx5rP3ydSvG2kcMyz2HmHWj3Lns40Zu370zl8y9H+OOTbLzdiZ/cXisvcuiD8Tab07N7XEwbsszY+0L59wm1r5g50dj7ZcWy71r6uM9cvtq37plbp/Fqqqf/H6eWPuG5S+LtX+9be79qCdc/0Gsffzok2PtQZ/n3ju95vjcPelOJ+auIdrbc+9bqqr68x9ye/bMd21uj6YrDsntTXXnTbk1PF9d80SsPejj3P61H76bW3+89+qzxtqHTLo21q6q+tf1ufvS4cNy+1vuMmZErD16jl/F2m/vekasvWZwTeg9c30aa19+bG5/7CO3zK3JrKqa/YXcuorPz9si1n5iaG7M7dRrcveFF/R/Ptbe+/rcvhI/WvSSWPv++XPrUf/2yZhYu6pqyd1z94br986ty1z3pEdi7ekb5NYPvd9YLtZe7MFfxtpzzLw61t7k4dyexbu8m5vntdSOe8XaVVU3HZebZ7bVpvvF2pMWzK1duuTt3Pzdxf/5TKy94SK5cYD3JuTmea3+6QWx9hbnZOfeHDbX0Fj7tWtz+7C9/tjwWPsPw3J7/h03eUysffO5N8baP3rrvVh70L8uirVPaMuNr1ZV7fPxxFj72U1z7zh/a57tYu2pU3LzWEdPye2R1PLJC7H2i8/l3vV9z4jfxdoDx90fa1dVPfXQ+7H2L27IvVN3/MZfxNpPDs9cs3b1zKiqQ/+3/13jf/5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f0UjfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0TyN9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANE8jfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRPI30AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0T+u/8x/37ZlcfXtm/k8dy39rRteIpje/1+jqHWtXd59YetjgobF2VVXl/ug1ZVqu3ejfHWtPnT4l1q4Z7bH01J5Yuno3psfarTMGxNrd/YJf8Koa3Jb7XZ8y7ZtYu6sxMNZu6fi3Ljf+o/oEf1dnTs39rvYOnkg7O3K/6TM6e8XaVVW9ZuQuIgb3zf229ZqW+7x915gYa8+cmvt9GTJ77rPeGDR7rN3SErxwaw+eT4bMiLWrqrqmtMXabbPOFmtPm5n7TZ82sfnjLt8bMLhfrN0zM3cN0To4eH/U8WWsPXPa4Fi7qqpv39x9Qkt3R6w98fn3Y+0+8+R+0/vkvuI1c3LuXNqnLXf90t4ZbHflvmNVVdMnT4q1c79sVZM7ctesg2bNXUP07sr9uVv75b5n077JXSv3m5Ib8+rVqyXWrqqa0d4/1h4819yxdnfv3D1Ko7tvrN05KfcMp39PI9buVUNi7c6u3L14z8zc+aSqqk//YbF2Z+Wu3Vpac9/x9uldsXbf/sNj7V6duXNp97Dg1XLv3O9q8hltVVVnx9RYu9E/eO02Lfcdn9aae4bT2vFdrN0xPXc+6dfIfcdb2nLXyl9Myl6/DG37INZuC85rnPbtpFi7f+/cOaXX8M5Yu7sjNxeirZGbC9HTEjyPduR+03vNkv1tmzol91nv1ZJrdwaf0w7snRtv698/99ysY0pubLl3T+6acVJwmnpLa26sr6qqOnPXrFOm5P7sLVNz55QBw3LzIaYF/9ztLbnf9GFDc2M/HY3c+GrvQbkxiKqqrhm5v/d+fXP3KDO6gnMqJ+d+07u7cufx4C1pTf42N7+ub+/cfWFHcmFlVQ3qlbtmbWnMEWv37hoUa0/vzjwr7f4P3Iq/8cyPqm+v5v9Q7PJY7lp3XPcysfbITSbH2r37/zzWrqoaMUduTP7Jztdj7aEtt8TaH/0it35o4Kv7x9onvHVJrP3WxM1i7VfW+iLWHtbYIdauqpptrqdj7fYnzo61nz0zd8237drLxdpXPJcbP1lpRG4Ox8DNno+113g792y5a8xvY+2qqmeey93LL/Zlbvzkzbbcs87R3+Taj0zOnUuXmrhQrP3m6JNj7RVX+U2s/c13x8XaS827SaxdVXXF6JVj7VWXzc07vvOG22PtObfKXbctdGBuHcvDY+6ItT8asWusvcJLT8Tas/58kVi7qurTN5eOtb9d9JxYe8Lv1oy1u7ZdI9b+IrgX2Y53/jrWXnr2i2Ltttog1l53/odj7aqq+989M9a+4avc2PJGS4yOtZfOPeKt21bNjfWt/PVdsfa7E1aPtXc/acVYe8JRD8TaVVX9c5es9ez1P421P/hr7pr1utefibXnbs+ta5h/7SVj7QEf/iTWnn+Fi2Lttx/Mji0f1pkb71vtq9w+bB0r5s6lDzy0d6zd1XpUrN36o9x6juWWyV2/LHTiy7H2PXecHmtXVW113Vaxdudsu8Tan86b28dkyG8vj7WP/O2zsfYZ290Xa39+Xu45ysI/WzzWbv3y+Fi7quqBFXLzb9d/PjfvaOfZ3oy1J16V239uxBHXx9qz/Cw3tjzLBbnfl0/3HRprTx39Xqw94K+597lUVY065tZY+9WXc+tJ+q4+X6w9cZG/xNrnXhlL16ihufWo93yY2wdt9vs/irW3G52bn19V1f7ePLH22lfkfltfnSc3xjrx6dy+Eq8vdGCsffnGublWv6vnYu2HBswaaz+5YPCFl1V1THduH9mO03Lr3SaO+yrW3m90bl3EhPG7x9qfTDg61n611/Ox9qK9c/dHj0y5Ltauqnp95bNi7cO2+yTW/vjZ3Hjf+nPdH+l+1zG9Fq6rftD/Y7Ux46t/n+aP4Zxy75+a3vzeKy/kxo1WuTa3dujaoybE2lVVf338xlj7oMrdV56y9eaxdr8Bq8Tao/75WKx9/PW5Oe6P9M1t2rfq0Nx8gqqqhc95N9Y+7de5Ofbvb5Dbi3Xpg/eIte/eInc+a/sqNya+WSO3NvKdV3LPOZe+ITv3d8IGuWuIycceFmu/PdvvYu1j31og1v79aqfF2h+NzM3TOuyk3HzrFdtz8wKrqsads1Ksff2duWvW027Pfccf+WXuPH70jNx6tddPnCvW3uOY3GftjcXfibXb98nufXf1a+vG2md9k1uod2Gf3DhE1z65tQXrX7F2rH3kObm1kX85JDcG0uvH28Xa5zy4VqxdVbXADefF2tPvGxtrb/ds7vfl1LP2ibU3vmTOWHvbg0+MtU+/KLev5yEda8baVVUrHfhGrH3WBrn25C1y4167LZx7rj/q+odi7eN7fRtrzz9fbj7kaS//I9Ze6OXcOtyqqlF1Q6x93Bb9Yu21T8nNE9vwktdi7Sf2yl2//PGD3FyM29fOzVfauTN3j1JVdczk3HyMy174MNbe/u+rxtpjh20Ya690yMGx9tUHPRVrX/xqbh3NZ5vm9ol+Z1xu/m1V1cub5eZitM7MvX/o21OGxtrb7LxOrN0xb25M/+Pvto+19+waGmvfeVluf+6qqkEDr4i1330tt8fldr1yeyxMeWOFWPvc1W6Ktd/aed9Y+75Vcs9pz9jvZ7H2/nd/FmtXVW25+ymx9qQ/nxFrL3RR7rnd8Z/l5rGuvnrufPbdmrnnRy+sfHesff+u2fkQl04fEWuve9e2sfZW08bH2lMm567VL/w6+B7C8Y/E2uM//X2svfjluTlHX+yee35UVbXYYbn3lN0xS27P5Advye29N/Da3HjfdSfm5snvc1PuWn3ShNy77VdfIrgpelVtOiq3V/Xab+wUa2/6Se7Z2SHLNf89Qp0zf/i7wl/c6bfV0mj+nj+9/5Lb42jhpXNz3Ffa9dVY+4Bh2f28Lrg89/zn0GNmibX/Vrn3Zf5zmdy/+eBZdou1z30st1ZtrTNz75S78dodY+3rrs29K7Oqat6lx8XaV0zIjVF+s0tubPa1vj/8GuT/1ssjcvfS6/ReM9Y+ZlpuX6vLLz0/1l76/M1i7aqqb3e6Jtbe8PJce/fgs58NnsztpzH+/P1j7Re+XTTWPnLczFj72dfPjrXv/NdBsfafnsu9E6Wq6rfH5d5Fc9txuflKY9/IvSNj0VVz8+uvPvJXsfbcB+XW2n+4UG7P39UvzT1T3+zQ3HyhqqpZ1svNcV9vUG6PyctXfzvW/v0dG8faI3vn5jvvtXNuHcuth+fGvE7YOze2PGZ87rqtqur1qbm1kavfeW+svfMJuevGYUvl5kPetn3u2fJ8z+c+ay3z5N651DUl957z25bMvQenqmq3u3J75vxo/V/H2uPXyK2h2WzMcbH2n/bNXS8f/1Vurf2NK+TmmL86y86x9uiPcmvkqqoW3yY3rv762bnz2Rub5/a3fOnQPWPtwy57NNa+7Fe5vVtuXma1WPvIFY+NtS/7W26sr6rqlU0OjbWv2yA35nZu1/qx9lnH5sa8Njx4+Vh71V1ye+4d+frXsfag4NrEbeb8PNauqhrw4f2x9rQ9e8Xau27z11j75mtz63APeXlkrL3A1rnr1THP5O7NJlXuXnydK8bE2ve893qsXVV167xjY+05lloy1l7gxtz8lz9+lntGfMGZuTUsRzyfGweYdH1uHWzvl3L716615jKxdlXVMSOej7XfPS73fo+rt8ytydj/1tyajGtW3TLWPnBG7v3u+22X+119YLncPIy+qz4Ya1dVvfXuP2Ptr0fmxndPeis33vfX1XPPK2+aJbcP2R3H5/as+dlnuXd9Dj3sylh79Cy5ectVVZucvmmsffYtuTWl01uPibXXn5x5v3tntdcP3amndZU9q9Fo/r7mBxyTW3P+/jezxdqbPHB7rD3zgG1i7aqqZX+eOx/d9XDuuddRV+XeWbDGorkxjI/ezM07fm7PMbH2Mrfk5gWuMWWjWHvG9tk158svmbunnW/z3F6B3Z/m9hG776RRsfaCZ+fOpZc+PSnWfm7n22LtbV7MPQPpPUdLrF1V9dl3uXWZF5w4PNb++yXPxdqjco8iqn9wmtiO8+Z+2/65am4u5mpX5fbOb+v1X7H2h3Pn9lmuqlpu7M2x9paP5uZqzRj4r1h7qUXOjbUXuik3TrnhfrlnAU9f1D/W3vO8vWPt29fMzSeoqhr0+eOx9luNybH2Csfl7km3Xj63f/5li14da7947ayx9qMv5t6He/qrl8XaHV/n9vurqpqxxLKx9tGX5N5R+svLxsbaf7kgt4/7JsNz78e4a97cc5S7lsytofn75rm5eRtNuj7WrqpaaEpuL5E5PsrtN3jw3WNi7SnH5O6Pvlx72Vj7ql/3ibVPeSX3LGGnHXLtfhOzY8tjj8/9th5wzzOx9g5rLRdrTx2c25vqxy9dEGsv8fjgWHuFJU+MtR+fK7f//llbdcXaVVVfzpXbw7a9OzfXa6WncvfEh634QKx96LK593u9uFBuDuqTz+b2qB695Tex9h5j/xxrV1V1tb4Ra//joTdj7QMmzIi1j2t9MdYevHxuTP2ebXPnspn7rRJrj3lkv1h71/Vya9Wm7JtbF1lV1XdQbk/0ETfl3mWz+D6Hx9qfnJr7bbvlxMVi7Y4794q153w0987GL7bJPTe7ZcJSsXZV1Vm/z000W+SR3N4xG998cay97OgbY+2Ri+eeXe3asUKsPWZ87j3Agy7Ovfd5o08PjLWrqr7+LPfbetIBuc/b2ncfFWsfNyP33uex654Za6++b24Pts/PvCrWXmPF3LuLbj0ttyajqmr+WwfG2is8enysPW7ASbF2y26Zce2p7R210f/BmozcmR4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKZrpA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mmkDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOZppA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDmaaQPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA5mn9d/7jjpYZ1dHS8z91LP+t4bO1Nb35vdbGrLF2S/eMWLujp/n/zv+rlvbesXbj3/pW/Gd1dvePtb+dGEvX4OHtsfb0iY1Yu98cQ2LtrpkdsXafwHnkfzV5yoex9qAhs8TaM2d+F2u39BoUa8+cnjuXtnTmTijdnb1i7Y6ulli7d99cu6pq+udfx9pTBveJtVu7c+eU6pdLt7fkPm/tHV2xdseMzli7tW/uN727Lffv3fNd7u+8qqq9J3dOmf7Rx7H2oEEDY+3ebbn7o64ZU2LtGjo4lp42Off70qtX7jvWlht6qaqq9uDPW1vwImLgUsF74mm5z1tnx/RYu3dwnLOlK/d33tIzM9bulb18qdYBuc/bgI55Y+2pne/E2u2TY+lq6Zsbb2trzZ1M+w3Mfcfbv54aa/e0dcfaVVU1Pff70tGSe1ZavfrG0v0G5sa8KjjG2j0191nv6QmOqXcNiLV79c21q6o6ZkyLtXsPGRFrV2fu2VXrzNz37Lv23Hm8Z8YXsfag4NhP58zcebRnZu7aqaqqpzX3vLKrI3c/3l6573hrcLyvNTi82xl8ltDdCD4w7MlNtmrrlZvvVFXVU7n78c723HP5fn3mjrWTX/JpX+baPcHfl5b23O9Lcny3z6DcnMYZ32WvnSo4pt+rLXfd1tGVu27raOTmHLUEn111Ts+dx3u3Bed5teUeIHW258a8qqpaunLzQGbOzH3eBg7JjS13ded+0/v0y/2+VHdu7VN7e+5zXpUb3+1JTn6pquobnC/ek7t2a3TkntO2dOc+6y19gv/e03LP7PoMyM2ZnjE59/ymqzV3X1hV1dma+3sf2Jgz1v5k8lex9hx9h0a6vRo//Hqx7xLbVL/ezb/uHHLXX5ve/N7w51+OtVfYInd/M3CR7NjN1Ndy47NfDB4Wa3e8/+Ncu+XeWPvHU/8Va8+x5p2x9u1Prxhrd25/cKw98aFfx9pVVXNtmXvu9Ytn9om1L138rVh7XP0s1t7pVzfG2l3Pzh5rj59r5Vh7xNvvxdpvTcruabH8+G9j7Zf3my/WbnyUW9fwzmcjY+0N5rwy1v58xq9i7S/mzc0D/eblCbH2HJ+tFmu/3/l+rF1V9cnjc8Tatz+cO6d8t/oRsfYqrz8Ra//xn7lz2Zr/lRsTv/3t3Njw3cvm/s6fmJlbF1lVdfTyz8Ta2/xjx1h7nXtz405Pj/g01h79YW4vsmcufjrWXnTttWLtW+bL3YuvM9f9sXZV1XyjcmP6n6/7bqzd5+HcPPdb3h0Vax/67mmx9iHbXB1r/27veWLtcT85KtaesNLvYu2qqm27cs8TBs17V6w9+cbcOMQygy+Kta8Zvlys/enCufGXrc/eNdYet2juz73/gu/H2lVV01dYJNa+79HcvICtZt8w1v7RSrk9JgfcvXms/cnHD8TaVyyeG/u5/+9bx9rLPvf7WLuq6o935s7jow7dKdb+2eTc/fhqm+buj+6a58FYu9cZufWJbx+Um2c+cb7fxNqN+9aMtauqFtsjOB9izN9j7d0X2DbW/uqL3HqxDQ/O/a6O/NmTsfbkn1wUa7+73Omx9rBvcxtMfrbQgbF2VdX4z38bay/dkXuW8fCEl2Ltt4L7DQ55IzcXYr6Bf4u1R7YeFmv33fjcWPuJx3LzT6qqzn4/99zuydluibUnDs/NCTi6deFYe/uZuXcQLvD5+rH2tx/m5vZ1Dcs9N/vJN9l3ZS3bJ7fm7NZzc8+uDno3tx7kk/ty61GvmZr7batlcvuILDJHbu+5dxZcJtZedangBpNVdcdsubmFd3yUm1P51ZSHYu2XX9gr0p3aM7mqDvlB/4+nnz+g+rQ2fw+YCeM2anrze+cskxuX/t0Vw2PtC1fP7TFdVbXnR7l72vnnyc0ZOnet3DVAR9/cmvN7d8vtMbBRW+4aYKO+58fan+3yi1i7quroh2+Lte97ePdY+7IdcvsM/HL73JyhP36Q20f+ukNzz0GO3GLPWHvsipvE2iu3Z9cuHX5gbt7z3zbMXUNcue8bsfYb/5UbEx/zYW4/jW82y40N73dk7t1Dnx+2VKxdVfXcztfG2j+++rNY+6md9o21//ztBbH2Tn/8MtY+9ou1Y+1XNt0u1r5z1tx9wkZfLR5rV1V1rJ9739Xok3Lzb9u3WjXWPuuw/WPt61fKzVF7+sHg3N+dL461l7slt2Zr4aWz45xTc8uHasSRufUkdwX3n1vjktxeyye+vUSsff81H8TaJ++5WKy98um55yhVVXP0yY3/nDsot0/SqFXOi7U33mT+WPuAnXJjy787Kreu4c7Bp8Taw5Y4Nta++YLMM/3vfT409z6a9c/bO9Z+ZuGHY+21zsrtD/XKry6KtUf0LBRrPzM9N/5yylPZZ6W37JN7P8mUs3LrQmceuG6s/dTzO8faCx+aW08y7NPcZ/3PI3Nrr989Mzf/ZdXPc+OMVVVbX5L7jj82abZY+9BDL4q191wt906728d/Emvv8Myjsfa15+X+3Hf3nxRrV1UN3OLnsfaIUbn1S5sMfy7WHv/7S2PtIcNy1xBvH5t7P+sSl58Ta++4dW4dzSY35tpVVWu0PB9rHz/3x7H2Ca/lxtV/eVdu770+P86tj9z59Nz4yyIjcnsWz7h6zVi7qurKS3LzULZpy43xrrFb7v7ossVyz482vig332rZBSbF2i/sn3tmeG3HN7F254x/xtpVVTedmHt2dsqtud/1MVfm1sO2LpGbd3RSe+457UoH596z8dnjt8fao5a/I9auqnp2XO79smtOye2bM3Jy7l2A21/T/HWG06d31eM/8P+x3w4zqm+f5s/XemBQ7n28W/zuzFh7pXtya4dmv+yxWLuqaouVc9f4v7wh92++zEGvxtqfjcy9b2q963N7DHzy+Mmx9iEv7RprT9o7d/5dpy33ntCqqpM3y+1jsu++f4q153w1tw54bOvnsfZXf8/todbVcXmsfekRuTWZl26zQqw9avPc/gZVVbtelptHcffu/4i1n9ty01j77aNzv237ffnTWHubQ3Pv/9nv+R/F2sfeldu7f/wGuT0Glj/ho1i7qmrPbXPnlJt/k7tuO2R4bjx841veibXv3ym3T9G4F3Ljwq+sf0ys/c3quT/3YoNz7+Cpqnr0vNy7gN9p3yPW/uKj3WLtX0x4Ktb+yX65PaYf/3Fu7OeST7aItefZNfc+mNWezb0Lpqrqis9y/Ve3y829XWfO3H4aww+IpWv+eXJr1XZ9PvecccKGueuXL9dvjbUPPejQWLuqasvDcmvVtjp2fKy9+XK5NcCnvbhsrL3Babk13zN/1fw94L+36Ru5uf3TthgXax+89+9i7aqqF3e+ItY+ZOoLsfa6jx8Qa5+3Ue6zftOfc+ezGw5/JdZ+aL7cPmgz18+9W/6rQ3N7kldVXbbkn2Ptm1/OvWfrhv2/iLWvv22rWPvrKffH2pc+dmqs3actt0bv6wVz+0R3vZSb315VdeEOuXlmK56zZqz94Kevxdr/enPJWHu/eXJ7W64yNLemYZsdcvuITL0z967Ou67NbaR60YCtY+2qqsMH5/YU/fuGub2CTlslN6dxoUdz96Q/Pi23z+LT514Za69w5NKx9jWXnBprj9wutydWVdWw35wQa3/yeixdfS/YJ9bu33JurH3uno/E2p0Lnhhr/2XYWrH2yZ+uGWufcsibsXZV1aLr5fa2bH9jTKy91225+bv7/zy3H/saC+XG2ybPm3uOceHbG8Tam+yxTax94365fTWrqlbaKve+7z0vye3/9pfdcvM5f/HYRZHutKnTavw6l/yg/8dp/ear/r2aP9d+yN86mt783puPXxVrX3hPbn+jj689Kdauqnqm9etYe8ctcnuh/uHV3O/iDhvl/twzpubG6h5sy93XnX1o7n72qC9XirU3uzK3f31V1RnvXBhrPzh541j7qT/8V6z9yPDc+1HXv2z5WHvwpNw6uUFr9Yu1H3op9+zp/dG5+UpVVXdvl5uzNH6b92PtPhfk9u5/+ancusxTB+fGrF7dolesPfsRufdcPbJG7j7+uPGTYu09f5G7fqiqeny+3LqpZffLzb897ZDcvJ0VVnom1l6jJzdG+sH43FrYg17MXb/sMuYPsfaq7bm9zKuqDjnv8Fh7yJBlY+25d8vti3XUC0fG2jc/lHvOesqVub/zoa2TY+3Fzz4u1v766mVi7aqqt3tyayOP/+mWsfaz542NtRd8Nvdc/Y3D54y1v7x411h78U8WjbX/tuOUWHv3pe+MtauqXpqRu0/448O5+6O5LsrtkT3yra9i7fZrc+9EWW3pg2LtuzZcM9beasEDYu2frZh9T8QSQ06NtT98661Ye+erc89RNrw/d8363nW5Zzidb+T21ux1592x9tqduev002bNjedXVb2yVe7Z/I0/yZ3Pjr7i1lj7iDfHxNoz9sytjdxxYO55YcuQ3H3hJ8cdEWs/MTE3n7Kqao2xR8Xa2/9ywVh7wKzrxdqNV4+PtY+9atVY+9Krc9/x0+7J7Te4/9W5fYOPWCw3nr/6u7m5nFVV/bZdLtZe8PrcuNcG5//QN9r937thaG48f8KtufceXDX0l7H2nT25NcB3bj4y1j5/rty4dlXVPWNz+1tetGJunLNj5phYe7fPc/u3rP12bo7+gffl9oa6pk/uXTb3Lpr7jq2+eG7dU1XVucvk3rkwbnhuvtViJ54aa3/xxOKx9sujc/figzfI7c09dcu/xtpLrr5TrL3punPH2lVVRwcfnY16PLfWbukncu+TWeSgNSPdnqkzqi657X/73+XuoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaLpG+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/4+9+4rSrKrXPfyvVbEzTdNNzllylrBJQoOCDSpBlCQiCCIKSA5NUEABsREUBMmKIgISJEhGgoAESRKbnGk6V6eqOhdnMMbZF2c4HO79vTfPc92jf7OqvrDWmnPNBQAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt06QHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA6zTpAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DpNegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALROkx4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt0/Hv/OP5e9aroR2D/7fG8v/1yZSpLW9+asyQebH26IXHxNrtHW2xdlXVwKxcf2ozJNYe1jMz1h7a2RVrd7TPH2s3wd95/+x/6yP4f9SsKe/E2n1dI2Ltqqqujvli7blzYulqb9pj7bb26bF2/6zuWLtjvtxnW01/P5Zu5s6OtTu7h8baVVWDFl0+1u4byB2zDjRNrN3VPzfWXnB07thpxtxpsXZbR3+s3dHTGWvP/GhyrN01YsFYu6pqyKDeWLu/L3fc2B88J26rWbF2Z1vufHjelNxnW8/8uesvvZNzv/PuwbnjtqqqrqG5Y7dmUO7YqW/ayFh7ZsdHsXYzkDt2GmjPHa/OeH9SrN3TnrsIMavJHTNWVc2ZnPse7xuRuwYyathCsXbwMmdNnZGbPxqYm/seH2jribWbWbnfedus3Husqqp98dy1n/ZpueOXQUNz15b7ZuSu/TRDcteWP3o/dy4+rD133NY1NNeuttx7rKqqd1bufTasM3jcOC93vW+gJ3j9ZcaMWPv93GlhdTW591nPqNxrrSP3UquqqoFFh8faMydOibU7unOvt7kzB2Lt3uC1gDnTc9caBw/JXWfs7x8Wa48YnTsvrKpqBnLv8elTgucJlTsnnteRO0fp7uuLtSdV7nN15PDca629M3eNs3927jN9Tm927qq7I3fsVINy19UHJude63OHB9c7zcwdO3X3566BfDwtN2/W0527/jFnbm6teFVVBafOOofmzonnNbm1GLPmvhFrd3WOjrXnH5J7n80IThg2Xbn3eEeTOy+sqho0OHeeMDP4XTqkybVnBOfG++YE7/MbmJxL9+Ve57Obj2Ptuf3Z+yKGN62/f/hTH83MrQsY0ZP7uWeHDhr/J7pHnD+uanjrz3NWm++xljc/NbBR7nrZut/6Vqz92OL3xdpVVc3Vuc/GvWbl1gydv9y7sfbBX9wz1r7snNwx39gHV4y1H571Yqz9yqHHxtpTTtko1q6qGnlH7j1+1uZ/jrXXeOLrsfayHc/F2hP/unqsfdKEJWPtoW9NjLXfeC53jP/aG6fF2lVV847N/exrHXd7rP3Wil+OtUcM3BZr97bn5jqX3Hi5WPuDja6KtRf805qx9t2DHo21e17bNNauqjpmaO7Ybamlcz/7oNc+F2tfMCw32bj6uSvE2osvMijW7lgrd51wjVm7xtp/uSN7z9bmX8t9lz4+/oZY+74Pd461l/jVdrH2L7d+NdbuGpNrd7yfW6f17Ef3x9o3TFo01q6q6jo4d1PHgafk1lv/8ce5edYdN8ut2xm8e+6+zJm/WCfWnrThArH2lw47OtZ+cc6FsXZV1TNfz32Xzhy9Qaz91Sdy66VOazsv1t51kdwx4+sL7BVrn/T73PHLW2vlrr+M2iS3V3NV1R//mZuvXOL03HWIaec9EWt3LzdfrL1xV+549Z+L5NZ67/Bebo37tjdcFGu/uPC4WLuqatTBz8fab5x9a6w9adslYu17lv9CrD23965Y+47Vc2sCNnv04Vh75ku7x9q3PPpJrF1Vdf7Mq2Ptp+5cNdbecbfc+2zFP6wZay/8mYdi7U+WyX2mLzlzrVj7oxWuj7XfeDg3f3TqYufH2lVVO8y6N9Z+d8yGsXb7Cn+PtRd++LhYe/l7fxpr335hbn76kfM2j7UnbvRWrP3O8wfG2lVV622ZO4Z4Zb0dYu3RF+auNf59ldz+Cn98Obdee98v5faoPme+92Lt2Z/kzgufeCS4yWNVvbDwD2LtpXpz6+Rf+nZuHcjaD/011t5i9WVj7eGXLhJrn9CTm8PZZNncvUc3z1gs1q6qWv/V3DMQP1gn99m643LLxNr7X5t5rc/sm1Y1+T/7P6YNu6fmdLZ+3dLvn89dRzhvi9z3wRV77BRrLzp461i7qmqfMSfF2jO6c8f5nx17WKz9sy/mrg3v+s7XYu2X3szNwTTn5p5ZecHk38TaVVW7LZm7L3SZm78da6/8wOOx9q4/+GGsffYFuXXuzQ1vx9rnjc1tZHb5frlzq4Xeyd03VVU16bSTY+2u9gmx9lZb517rR/0z177pqtweTc/Myx2v7v5ebn3/2NM3j7Wrqm48NHfdas4huWcw9y6fOz8b//bNsfYWD+wTay+01+Gx9tQhv4u11z32L7H2Wsvm/t5VVbd0rxxrX7l67rv0gjVz5wl373pwrD3y41/E2vvdn9tzePjY3N4Ou6x+U6z9wPW5+wOrqnael1vPcMbRk2PtQ3c9J9a+9+HcZ9uUjXNz279d75FYe/NxufWQ3xt7SaxdVfXzl3PrUH//Qm6/oIkrTY61T7jwR7H20+fk7tP705TcXOmz678cax/3em4uY86HuX33qqp+cvkesfa4q3LrEo865Mex9qDT1421Zy9xRqy99Zm599nR++Ze5zfcPCLWrqq6vnezWPuhK34ea6/Qnlt/88QpufUQxx90SKx96H99NdZ+YI/cfQ3XTs6dk+5wcW4dSFXVqWfl1sDc/9ncHPXhR+fWuV98a24vkZ9ePSnWvnr7P8Ta1//8S7H2mgO5/aGqqkacmbsvdM9xubVeW47Mfbb+6b7c80WOas894/3WK3LPHnhu71Vi7dPXyc0nfPb47DnK2PapsfZXnlgp1u4ZyB2/DLotNzf/4aa5+ekH1sntObjBE7n3+DP3ZOcr918ot3/vrR+8EGvPf09ujd3TP8/tFT3qpYtj7R+/MH+sPefYvWPt3VbIfa6uPG+3WLuq6uiLcses63yYu/a061W5vdCWuXa9WPuIJf8Wa295aG5vrGv6z461m71ze/5VVe3W3frnVn+q/5bcZ2vzxnWx9tCNWv83b58+rar+s2d9rnvrr2pI+/D/mQH9G8Y8c2nLm5+6aPvcGo6Hzhsda5/4Wu7coqpqi7vPjLV7Z8yItUf/PTe3vNarR8Xa156d+53v95fc7/yw++fF2qsefnmsveQhJ8TaVVXvLpRbA/txb+4+ltuXvzbWPmFY7jmhz6+X23N419tye8d1P//5WHv709tj7afuzu4XuNGwx2Ltx2/cMtZ+49HcXh4vvJB7Pshre+bu2dpj9p2x9hLH5u6F3e3K3NzyzmPvjrX/sFv2PtwTHs7dN3XD8KVi7RcP64m1x43K7VM08r3cPXo9B+TW3p68Ym7PnCnjc9/hRxywY6xdVbXrmifG2p+c8mKsfcZzubmfRf42MdZ+7Bu/j7XH7Ja7j+XVl3LX2+45KffZ9q1nx8faVVVtK14Wa39779w682uOzs1rT/3hd2Ltw5dYLdb+sHL3oz728Pdj7T9sckqsfcSxX4m1q6qGrJzbS/79P/wq1p75y9wz5c7YcE6svfq5uXW/Xz54i1h7i0+OibUP3iR3bbnvwNy13aqqndd4MtZeenZuTcKpP/pirH3IiWNj7XnduXVSBy+cu4/lF/fl9pS4+cGzYu1bThgWa1dV7b338bH2kcNz52Yz+2+JtYdNzh07vbn60rH2+PNz6+v6T8qtOT7u9yNj7dcenB1rV1WNPm3tWPuWtty6o1W+n9sf+503c3skPXH2qFj74wNy9yZOePXcWHuvEbnnhB56Su7nvne57L4OM7fI7QX/6A9y171+eF/uXrFx2+TmcNb/6JlY+/Htc2v7vnBJ7hxh+D5DYu0lNlku1q6qGrt3bv3uc+vnnvG+7xbfjLUn7J17j2/3Su45F+905p7HO23T+WLtky7dPtaedF32OYDtR+T2x+6enFsn//JFL8XaCy6Ruxd1qZ3/GWtPOTi3/9ubu+aeA/jbD66PtSe++JNYu6rqoEnHxdrDZxwbaz/2j/+Ktcc89ECkO3vOzP/4/5jbO77mNq2f6936xtzzCx94cOdY+/De3FrM+0Zm97uZ+tMLYu2znvx1rP3383PPZDl0vdti7c8cmtsj8aDXc3MwDx6ZWzO06Tdzzxc7667cM92qqkaulNtn6KL1c/cn3v/aPbH2hwdvE2tvOX/uOsIL+x0aa799z5qx9sIP5J6XsMMTufP4qqp3fvazWHvSurk9VHoPOSLW3ueW02Ptv7yQuy592XZLxdr3z+iPte8O3u9+4MjcfN/9J+fOSauqBvU/GWuf/GBu7umESxeNtR/f+sJY+8DFc8+CueKE3HOuztgu98zrvmdy56S/WenSWLuq6vxtcs9+3uz5TWPtVZfL3cOzxTdy5yhndz4Yax/3z41j7TOvyD1Hb/dXcu2VXsgevyx6/U6x9nr35Nb333zVK7H227/MrZW6/+G+WLsWuz2WXqc3M9dYVTVkmdwzrx++4dRYu6pq+43XibX3+27uPr3BR+f2gLv4vWVi7b22uivWHn9ybt/gjSY/G2v/Y2puD5Nzv5t7TkNV1abD3o+1JzyR24t+r5enxNonv57b++7gTd6NtW9eN3ef3NiO3PHqtqfk5uWPvDZ3/3FV1Qbjcuvj7r82Ny//x+Vyr7dj73wy1n7x6tw+0TeslfsuXXZ47jh93RNzz/fquCv3vIWqqrsG5+5Jfery3DlxzwH7x9qP7XlfrP34d3L7Stz3q9zny3aL5H7nJz2Ru952zLAzYu3lPj8t1q6q2vHkt2Lt7r/mzgtPOGDfWHv1zXJzGZu+mtt/7uVFc/dsPfl27lj58sVzx05fuT37rKzF1sjNEV+6VG6O+JBRuWusF62We8bGhlcsFGuft0Pu/oBTe3PzR10/yD0H+KJrcuvbqqquGp5b63XoM7k90d/Z8alY+/Kj9oy1t1ghtx/YXp/k7vna4MDc3gp3n3xlrD39zNxzk6qqLngvt6/nDZW7/2iX/XLrCkesnXleVf/UqTW5jvyX/y632hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJZr0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB1mvQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonSY9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqdJDwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNZp0gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB12gYGBgb+1T+aOnVqjRgxol4ae3kN6xzcinH9N3ObIS1vfmpUT0es3T8893P3z+uLtauq2nt6Yu2B/mmxdm9fe6zd3Zd7rQ80bbF2W1cTaw/p74y1p/X3xtptPXNi7aqq2VMGxdpdHbnP1vZmbqzdDMm9z7o7cu058/7lIdb/mr5pue+TmVNz36NDh4+OtauqunpmxtozpuT+5v39n8TaTTMl1m7rWirW7hycO3aa8uY7sXbP0OGxdnt77jO9d9q8WLuqaqAnd/zS0eSOG2f05j5XOztyx20jh+W+S2fPyb3W5zWzY+3Oyp2Ld3a1/hrf/6s/+Nk60JZ7vQ3qzl3zmtU3K9bu7O+Otad/8m6s3dU+Itbu6Mm9zvtmzYi1q6r65uWu/fQ3uWOIubNzxxADnbljxq6u3N97oHK/847ZufOjaR//M9auQcNy7aoaPXL+WHtmb+6ztacnN1/ZDM7No8ybkbvu1D8n9/kyeLFFYu1pH+auA7Q3ubmEqqr2vtx7vHO+hWPtue25n7uvNzh/ND13TX3O9MmxdmdX7vyoe1CuPTd4blZV1T8tty5g2MILxNp906fH2lM+ybV7Bueuc7bNyB2rz24mxdodXbnX+ZBB2bU3NTv3N+9vz13nnDc797ne1ZmbT5jZnztH6WrPnRcm5xI6OnI/d1tbrj2zrz/WrqoaGjw3nFu5dSA1O3cMMa8/d6w+I3jtp6Mv9z5r2nPnpLP7ct8ns2bmzo2qqtq7cnOlnb3B+aPurli7a1Buzq6tya0J6O7OzdnN6s/9vXsq9/duH5z7uauqqi/XH5iT+73PGsh9n3V35H7uyZ/k1ui3Dx0aaw+emzsf/nBmbs3R9Fm57/Cqqu5BubUYUz5+JdZecP61Yu3+gcx1zmnzemvNe/avKVOm1PDh/95alE/vOX9ms8tqWEfr16MOWm2Dljc/NTt439THH/w11u7ZLrdupqpqmScXjbWnLPBcrD3pydw5xje2zZ1PT7grd8w3+rUDY+3VRwTnfzr+FksvtdaasXZV1R+ffzDWvmadt2LtLd48LNberDu3Xql78qGx9gLbrR1rP/Hjy2LtT8YeE2tf805uPWRV1Q7tH8banV25ewQX2fTZWHvbS0fG2juvnztuO21W7rU25/3cOcrdoz4Xa/9uZO7YafdXtoi1q6rmH3FRrP3R+4vF2vNd8nasPW+f5WLtbT44NtYeusiOsfY/Vl0p1n7rutz1j/k6R8XaVVVTtp0Ya3f2fjfWXnTMB7H2S9veFmtvcMeOsfZ9D+8Xay+72Xdi7aNvy60nuHjdx2PtqqrOefPF2lcvu2SsvcPNuTX2jy50b6w98rFdYu2Z7WfE2oMm/zbWHtX8ItZ++s3cvfZVVe+dmPt822Pz3L1Lj5y+f6w94uXc58urn+TWes/dN7fueKXLNo61a6PcsfLcF3Lzw1VVNS23xv6NRfaJtRd6+/xY+/Gjc/uwffz4F2PtFR9aPdZebtJpsfawRXL3RX60eW4eo6qq+7n1Y+0rL86tA1lt3F9i7QU+zF1bfnXH1WLtnpkfx9q7vLBVrP3YNVNj7dk7Za/vbrzoTbH2+zNyx059d+fmE644Indv5G7n5d5niw++J9be8MuPxtoPnvdRrP3YdxaPtee15+7fqaraeO3c9b6t/3ZurL3HyjvE2itMeirWXvbG3Hu855M3Yu2Ji24Ya3dMzF1/+WB47p6pqqoVpubuV7tk/tyahO6/Ph9rH73McbH27vNNiLUv+vArsfbQ1XLX1K9pctcZV/v4C7F2VdXQm3P3RXQculesPbQjNzd+bm+uvf+o3PM9pk96JNae15a7v/HGnXLrtW89dsFYu6rqx7fkrvf9cqvcPvjjXzs11h6z8DWRbn9fb73+7CH/0T3n973zoxo6vPX3Vhy0aW4/jLXGPR1rPz3f5Fj7zcuzzwm99+u569IH3bZZrL3imG/E2t97Nze3feROuf3b+m/IHfMdcegdsfa93bn1r1VVT3zunlh7yUm5fY5Gjs+t47h83W/G2kf9aKFYe7vtT4y1T5ySa99xZ27d8U4n5K7VVVX9Y5UxsfYFS+bWFEwcl7s/sevzubUzEy96ONY+aevc3/vwhbaNta/fJPc7r6r63ITcnhqDn/xMrH3Qq7nrVuPWeDHWPme/3LP0Vn4ld066yqTc/v33LrhOrH32dffF2lVV4346Ptb+1teCzzd77w+x9tuL5a49Pfi13FqKPW76Qaw9+Pe5Y+UHtv58rD19ua/H2lVV42ddF2uvc91Jsfa5D+fm9X+9Ue5ZV+evt3Ksvc4+uTUkb36yW6z9j2f2jLWrqh6a9Xqs/ejk3Lz+dgtcEWtfvv1Gsfb43O2JteAtR8Tat3zmhVh7haVzzxe75pWvxtpVVV/szM0nnNye29/h1Ldy+yscP39unvbSu3L34q53zMxY+59P5fbF2nuV7LOnn+7KrVm6Y8ujYu1RE3PXtj+7cu7+oaXezK0N/OEquesvG96ae8bHAr1/j7VXffVLsXZV1ajXnoy17//e8rH2dZtuHmv/5qzcvn/Xf2epWPvu7tzx6sD+W8baJz0afA5xVR38SG5viQP+fGes/frXc/tyPX7an2LtMavl5hNG/S23H9mPJuXuXep94Pux9jduzu2fW1U18sTc/Pg3J94aa98z5YRYu97O3cPzw5PPjrXHXbdJrP3rw9eItQd99Z1Yu6pq9ue+H2sf9kzu2tNNy+b283h45Lqx9iEP537uj/py5+Onv5n7Lpvwsx/G2hdM3jTWrqqatVVuX65tf5tbu/zQ73KThmcsOi7WHjwoN49y1cm59RC7XnJjrD37u7m1N1VVw4fvHGu/8UTwWP2W3Gt9gS+s2PLmjBnTa5svrP0f3XN+49Blakhb6+f2nz/nypY3P3Xl4bnrF4M3yK0DffrO7BzroF1uibVv/U1uT9CdlvuvWPvuY3LnNuO/n3ved8fg3HMjp1+3dKz9waq56+FvTfh1rF1V9fQBXbH2tutfHGu37ZTb12rSIrn1r39aO3f/znNX5vaH3OuBGbH2kcvl5pZXbH4ea1dVbbXlrrH2WkvOjrW36jsr1v7tYrl57ZPOyB0vf3WvJWLtZpfc/gbfejd3vLr7tNxcX8+E3Hd4VdVnh06OtS/+aSxdryyf24vsqSG7x9qPd+Se+XTa1Ny1n+a4DWLtsas9Fmv/7Ze551xVVa22TG+sve6v/hFrPzsyd8w4bKvcvnsDq70fa1+4++mx9nZPHB9rn7lB7vvkpdG5fe+qqnZfOTe/e9MZ28fao3tye4oevsLkWHvz9a+Ote9b8+5Ye8KLr8XaRy6ce9b3nybn5vOrqs4Y9GSsffN6ufnKD9YZG2t/9IvctYDRc3L3g168YW7vubvfzs3h7DY6tw/94VdfG2tXVa19VW5N4uQzvx9rb3rzybH2ytPvjbX7lzoo1r77gNw6qW3+cGysffNNf461l/5q7ni1qur4jZ6ItXuOyt0f+Kf7c/dsrf3iXbH2KU/mnqV3/G65fUTOXCh3DLHT65lnD1VVvXd1bu//qqqPF8sdNx670C6x9tgTc9dYvx18FvAzV38t1t799dzny88H5/avvfmhA2PtZ9fIzV1NvTq3f21V1X0/WiDW3mZMbv/at476Way9+Dm5PWQf+yi3596BQ3P7uD71XG699oxrcmumVxiVm6Otqtryhtx9uF/uza3FWGlU7thpyl6PxtpnLZSbn372hNzPPXHfw2Ptdy9bIdb+3TXZPSW2mr1srP2TW0+Jtb/8yMRY+77bc3vITn0geF64RO7z5cZHH4i13zw7t95p1JW/j7Wrqg68LbenxYNjc/d83XDlObH2EW8MinT7Z8+qt8459j+657z72heqbUjr1x/f/sulWt781Jrfz62d+d4GP4u1n7kp8zr91JNXLhNrD1kid93ovcueibV3vvxHsfbLq+4TazdP5eb7Xt3no1j70fdy87t3vf5GrF1VteTs3HHf1VceGWvvtcNSsfazs26ItX9wUG6N/dn7vxlrf2/h3FqpRd7Lndf95Cu5PeSrqr5wV3esfd6Qi2LtB255MNY+5JLc/Rzr/nDJWHuDfXLrKM5ZI3dteNflj4u1L/1dbn193Rl8kF5VfbJe7n77qyfk9t0dd0huHcdRi+TWwD7d9nCsPf68h2LtVSfk7t/58/jc/O7A+FVj7aqqTfbMbSyxwG9y137eOj733OmLl26PtX+92i9i7cPuzJ2j/GXP3HqCx5dcONYe+/ncOq2qqiXOvSPWXqUj96yrV47K3csy6/O5+zKHX5h73tMC1+fu2Xr0e7l9+xdYa/5Ye/vF54u1q6rGjM797Ke+uHmsPfiRQ2Pt6b/L7Q81/sLcs+VfP2LvWPuFmWfG2rd95aVYu+fGtWLtqqod5uaev7z6mNyzzf5r99x6qV32vSDWfvyV3Hrr0cNz60DPGL5mrL1ntf7ZGp8aOCi3BrWq6si/rB1rf+7t3PzRbTNyzxpf+psfxNojhk+PtRd/JLfuZ/VXcnvB33jVYrH2uO1yz+msqmpeWzPWXuSY3Pn4lzfIfa7vsnVHrL3dIbk9src/NLdvzbeH5NYjjHw0d6y80e25Z2Xdsm/uu6yqam5fbq70a22Hxdrj9svtfbf9nF/F2mse9F6svelLuWe6vL157tmolxyU26/nNxudF2tXVZ1+zFGx9o7fyj0fde/L1om1f7D9a7H2Ugt/Ntb+7Mp7xNp7nXRzrP3dhS+Jtbuuzq3drar6+S65e2Hm/fnHsfbEHXPf4188YmSsPf6op2Pttc/8aqw9YeUXYu0L9spdd/r8w7n7zaqqJkzMvccf6jkm1t7myktj7dHXXx/pzp46oy5YcJt/ec95bqYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICWa9IDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgdZr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaJ0mPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqnSQ8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDWadIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgddoGBgYG/tU/mjp1ao0YMaLe2uuWGt41pBXj+m/aBga1vPmpIfN1x9pT358ca3cNGxxrV1XNmzs71u4ZOTzWbm//l2/H/zV9U+bF2jMq1+6fNi3W7hg6LNbu7Gli7bY5sfT/NdAXS7dVe6zdP6831u7LfbRVd+XeZ+1j+mPt6R9Nj7UHZubeY8OGjoi1q6qmfPR+rD1s/txrfebUubH27L4psfagzuDvfM7MWLvpyL3H+2e0xdqdPblz0rbK/c6rqqZNnhRrDxs1OtZu78wdL8/6cHKsPXTBhWLt6s69x/tm5I6VO7o6Yu05fbnj1aqqQYOD36WzctcC+tty10CGdOSu982amjt+ae/PXYho70y+x3OfbW0dQ2Ptqqp5/4e9u4y2q7z3v/3bKy4kpAS3AEESILgEDxKKFHeKFLfitEVKcdeihWKFUlyCluLu7kEDhBAk7lueV5zxvPmP/9PRc9b3jGdc1+uM8ZlJ9l5rznveMjX3e9YaHPvp0y/3fz5jSu5+uW1m7rmwpXvu3ql10qexdnvw53zm5Ozgcq8+uZ/1rrMHf96m5e6duvbIjfe1tOfGWKdPCd4z/mKOWLu1I/ddNn1c7n61qqpb99wYa9e554u122bk7penTZgSa3ftyD2Pj5/wfazds0vz5xr9rOvcue/wjlnZ8d1Gl+6xdtv43LyfGVOD78ZzQ8s1W/df5OJ9cvcvM77Lfaa3tufuIbr17BdrV1V179Ml1p7Wlnuf0JgafJfRkfse79Ktf6w9Y2pwbl+XrrF2teR+1lo7cl9mXfvk7l2qqqolN8mtU3AObceU3DNKS0tuvnZb+7exduuU4Bhrp+D/9/TcZ1t7Y2KsXVXVOj337951ztx9Y9t3ufvlLn1zny+zWnPfpT1ny40zNmbkvsuqU+4eor1b8J6xqhrtuWfi9hm58b7W4DyQmbNyn23tnXPjnN2Ca1F+mp4bZ+xoybW7BNfgVFV1zMp9rk9vz32ud3SaHmv37ZaZbzVp1tQa9OieNWHChOrT59+7h/p5zfmj+1xUvbo2/zNq2UVy77Z/mrpgrL38D7mx2d6jct9FVVVnXPFjrD3s5Ndj7a+XWT/WXna2d2Lt9z8dFmt/M+vNWHvSG7nPl+ELfRRrz9N94Vi7qmrQHLk59l9s+kmsvfFD88ba5/fMvdvuMSl3n9/yyoOx9rqVm99//9zbxdon9h0ba1dV7bzQ7bH2pLFLxtr7TF8+1l52VO73bHSvgbH2eQNy+xv8aelxsfbXf819n8w+ZqtYe+y++8baVVV3nrJhrD2jf27O80PLrhlr77Zq7tns4HneirU/bqwca/9w7wOxdv/Vdom1pwzLfaZXVX33j9z9y5TX7461N9s6N+bVGLlrrP3IoNx925Rbc+Oc83XLvYeYsuiQWLvWfTnXrqrX/nZArL1mpytj7btacs8ox/bOzZV69/vc79k6e+TmK/3z2vGx9rgXc89mO34W/Gyrqjf2Oz3WfnL1LWLtrR+OpeuuLXKfbbuc/VysPXLz3Dytr+bPvbsa3DU3rt11rltj7aqqqXfl5j2vuuLlsfbTN4+Pte8enLtvO32f3GfbZ6vn9q2Z8GTu2Wzp62LpWv277LzjR5c4Mtaec8iFsfZ9H+TmW3Udm5t3vOqUxWPt3oNzY+qPz5Zbj/rE/EfE2pvc+1isXVXVscfZsfbc3y0Va6969YexdteBi8Ta9676Sqy9XqfcevfTPh0Uay+99Nex9soL555PRr8yf6xdVdXz3fdj7cfmyp2P1vqLXHutQbn7l09uyY0tb7VY7t/8iRm5cwf2mJprP9Mp+2z24ru5tQlD5s89F47tl5ur3mf+obH2bRNy3yfbrvtDrN3n+tw9xOR7c8+kXde9KdauqnrlzNyi1PVP2SjWXmX7NWLth8Y8G2vf1Zp7NruuW26t26vd3o21T7tq9Vh78+X/GWtXVd0yIDcvYL2ON2Ptie/lPl8+eTvzHmV6x5Q6Y+aG/9Ga84fHzle9+jR/352J293Z9ObP5r/0sFh72xlPx9rvjzwr1q6q6vziMbH2R5u8FGtv0LZXrH3B0efE2l8vmRs/2f7G3HuIU5/8e6x97027x9pVVT+clDvP7o2vcvM4br46d9913Je5/by++NfHsfboVU6NtftssWes/eELufGT4ZOPirWrqvrfk/sef+L0V2PtYSfk1vAsssAKsfbLh94ca5925B2x9umn/C7WnnXbE7F2VdVzcw+OtYcM2TrWXvjQ3Nrrc5a5NNZe5N6rYu1NGrn1HPOccH+sfedsuXXfT6ye3ftu1hEDYu1TV3s71j509ZGx9shHcu8b/7Rgbs7zn2bP7VM04Yx7Y+2rJv4l1p795tw9Y1XVgQttFmtf9avcvnubb/JCrH3kQn+NtYdflpu3s/1nub083hz5ZKz9zsG7xdpVVQv8PrcmdeXLcs8oN6+fe4e0wo9zxtpnXZXbt2bzt3aMtbs8nFuz9dGyubmgv9o3t19PVdWNx7wYa/91u9z+Dguutlisfce5uXlDd+yVm6PWY+nc3r2/vCr3fvqNf+beH1VVbTb7Orn4bbl5amefnbt/2fX8+2Ltz997Jtae0D8356nrv3JreBZ7Nrd26ZSNcvdOVVV/n5X7Pfvz+rn2L4ZeHGu3dsmdPX3AkONj7Q23vyHWHrH457H2uD0virWrqn5cIzfP7bkhuefSpZbOfadsv0zuXLcjzv9HrL1Yj9x36dsP5fbz2HiFS2LtH3dbJtauqvpD39y/+5mX585daLss9552oRUeirWXWnxyrD3srdy70v4P5NZGTr3iwFi7quqpUbm5IG+9nxuDGTA8t2fyM5vkzgNe85SlY+2/7b1BrL3LR7fE2uuOzu2vsF179ryJKcvlxp4uPCg3B+bhHXJj+i335jbYvOfV3LvS907IvT/6aWBub6wrBswTa1dV9W/NzV3+ZmjuO2Xm+qfF2i3Ln9j05uS29hr62mf/0Zrz/Zd9p7p1av46wf4r/q3pzZ/tvsyxsfaaF+fue848N/csW1X1h8e+iLVvuTK3/8qtm24ca//65Nx6sda9cmu2Vj4kN4aw3Ke5cyr2GJI7x29ar+Z/B/6/df5sVqz9/pTcGML5k3PfpS8NzI3brHjUI7H2w8MWiLX/fsHjsfbdxwc/X7Y8M9auqvr1Y7mxm50OXy/WvnlIS669QG7sZNQ2ubkrm/U4I9a+9rPcmPTAvq/F2rfVprH27mNz++5WVd3x/jWx9p035M5duuBX18bahz79q1h7rTf+HGuf8WJuX+8vrs+dbbbhJbl1al//NXsO8Ylr5caeTtwot4d+S/v+sfbzh+f2jnlufG4uwbtzbxlrL/nCn2LtEd/uEGtvuMU9sXZV1Vdv5e6fFt9r3Vj7qydy7zKOn/TbWHuumzrF2n+cL7e/ZOvM3J57n43OvUtoO2GbWLuq6o4v3ou1F1po+Vi77ZTcGRlnrZg7ZH3Qs7kx1q2Xzb03W/CpnWPth89aMdb+buPcWtSqqu865dYA9702NwbyyAW5/SVHfvhFrN2lV+75aMYyuT0e33o1N//l9l/l9sS6dM/cO9qqqkFr5dYHThmVm2/90aK5/f8X+Do35nbxaavF2ruvkTtL77hHcuO7T4/KfY/OueQ3sXZV1TUP5+Y83fJo7tzrM3bKrU0cMOLHWPu2K3NjrGfenNuP69FLcmv8j/k+tzfUh7fuE2t/tFNurlVV1cDVc/MKr9wntxf8lMG575Tr383dQzTmvjzWnn90bnz35vsejbXPPSm37nn7W+eNtauqztz0lFh7xHK5MdZrdlwk1l7jm9zv+IQhubHG5fvn1gZe8mju3fj7T/0h1u6+fu4dSlXVH7f5Ntb+YO/c9/gam+XWm690yAex9lM/zhFrfzwsd+bBgeccHWv/+Gnus633WovG2lVVn2+dm+M28cXc89GoI7aPtU/bNPM83to2uZ5/d9X/aM35fWtvWL06N38/1p02yu0pvki/K2Lt5wcHz4mYL/e5WFV19N25s0lmXp/7u2+62Sux9mnn5M58+mnPDWPt+cbl1lQ8e1juOX7sU7nzUbsNz61Hraqa4/KLYu0d/5I7332xTVaJtX/6bW6u1NV7nxBrb7T/ErH2ck9sHmv/46+7xNpP7Zfbu6Wq6srBjVh7+AG5eajftOfmBc4z7JNYe+XhuT0t5u67UKx96Ke5/cxHDc39jm84NDc2u/kruf3yqqq+nJUbG15os9weB3PtkDuPZefTcs9muyx1dax998O5s+VX/bRfrL3Hw7k9Bjr/I3cWTFXV7Nfkzr3u/68esfY3z+TGnQb2zo2xbn7zu7H29QfE0jXbGm259u37xtrrrJo7C6aq6v2DcvuBzXXBXLH2Fufl9vI4u+87sfYKZ+bOuVrxvPVi7ccXOybW3mjRYbH2GYvn5ltXVa09R24f+bk6fxhrr75Qbt3UyHG5fSU2H5Ob+/vEkNx5T2Mqd47e5ydOjLV/8/1xsXZV1QbH5/qzTjwq1m65P7ePSfu7o2PtddYeGWsfvU7uOaH7bl/H2suun9uXaqfFV421q6p27siNe3W5bq9Yu/fjufeVG+2WW9fw0iK58d3D+zwTa3cMza1d+rRvt1j7unG5NaFVVcuv83ys3W94bj7Eaz91jbVf2OyyWPvOCWNj7XW+7RtrD999VKw9aeGvYu29LsrtWTP77E/H2lVVs1+QG4e46LTcv/tZt+X2ldi9kZsTsNgeuc/0vrcvGGvPOiv3udrnT7ln0sWXOS/Wrqp64OLc2fLbv3xrrL3Q5Nzn+uYX5v7PF773nlj7taG9Y+3D7v9XrH3Xgrl1uMMX/CzWrqp6ZMfcWMBDQ46MtQ/cJbfW/+C/5J7H+1VuD5Xrhrwfa2/zXm5OwPwrNn8N7c+WnLl3rF1VddNV+8XaB+yWeybu9vhasXaPkZm9Nae3zaqzPhjxf11znlspAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA0zXSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzdE5fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/2/KHHF19uvZoenfZ/bZtevNnkx7aPNa+evcpsfbAcd/E2lVVN60xMtZ+9JZ7Yu3N52qLtc+8+t1Y++XXh8Xap370Q6y99MiBsfacs96KtauqJr03Ndb+eNP9Y+3Z1ngg1h7/zv2x9hLz9o21H97ykVh7h292j7Vb9z8s1l6xx56xdlXV1MZlsfbIRW+LtVs37hprv/P52bn2k5Nj7e2HvB1rH3/PM7H2vG1PxNpVVR9evmisvcB7fWLtI+7eJ9Z+bK/bY+2/3LRIrP3aQrm/953Hzx1r/32HtWPt1XveGWtXVY3aZaFY+5Y/HxRrX3fp6Fj7pF+uHmsv/0prrL3fcVvE2sfc/rdYe/tTJsbabyx/XaxdVXXYH16LtYc+u2usfWLrzbH2wU8uFWu/vHdurHHbS+eNtZe+9/lY++5lP421q6reuP2lWHv/S66JtVdf+o5Ye9Yng2Pt80ctEGsvstTdsfbaL+8Sa7+19KhY+4WFn4u1q6r6vbBErD1g/stj7bcvfjnWnmupZWLt7Q/cONZuXeGTWLvzhsvF2vMfkv0dv/bxfWPtqZdeEWv/cMv5sXbPOf4Vaz/40zax9mYPnBJr3zQmd6888IGhsfb79xwba1dVXT/fkFh73tt+H2tvcuyRsfZ9sz6PtbecZ0Ssvc4Fi8Xaz3yYez568MDcO+Kqqkevyc0L2PadY2Lt12bk3hE/uu8msfbwR7aKtQds9nSsPWKzjlj7pJNfibV3e3VsrF1Vtcnrt8Ta5y4zX6x92TnjYu05fro11v5m/F9i7esq95721K65ce15tjsq1q6q2ubvuXn6ozqujLVXHvNGrL3aWTvF2r95s3+s/cIbn8Xac9+ce1/5WpftY+0nz83N0a+qGn1Yr1h7w19uF2vfMfmxWLttyd/E2n0/z32XLnRYbv3RXOu9E2t/8o+WWLuq6qDuue/S2/ecI9Y+4Le5tX63Xnle05sdHVOrKjcnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjfq/O/84cbfXpXo1vv/6lr+T9qaena9ObPOjq1xdqNXl1i7ZbO/9aPxn+77i25/vTpk2PtHt1+EWu3dW+JtXu35f6/G3Pkfs/au3eLtTtmxNLV3mlaLl5VnapTrN02rT3W7uiU+3mrSbm/97i2XLtH20+xdrfu3WPtlt659tSpuf/vqqr29tx3Sltr7t99ZmtrrN3S3jPW7ujWEWt3rdzPWvees8Xa0xqTYu0ugefgn81snR5rV1V17zVHrN2pW+4ZJXnr1Hux3Gdbo9Ej1q4puWfx6RNyzyid+uc+Vzv3zH2XVVVVe+5zvVdL7rt0ysxYuiaMzT2j9Jo9d884bXru/7tbcIy1dUZuTL171+znS/ceuWfDaVNy406zJuT+3Rs9cr9ns1pzH6xdJuXuX7r2zd2wzpiW+3xpdA5+kVbV1Fm557OW6VNy7ZbgWOOs3P95W0cj1u6xfN9Yu/OYWLpmTch9j3ZuyY6/TJ0YvGedJ9durdxzQtfKjTtNHv91rN27kft8mdUSfE8afC7s1JEbW66qammfFWtPyt2+VEeX3Pd479ly7Zo5NZZunRace9Mz92/euXOvWLujLXv/MiX4ar5HI/fzNrPrxFi7WnP3y63tuTm0nYPtmZNz7eqVG+vrN0fu3dXkCRNi7aqq1lm5Mf0efXLvaWe25H7eerSOj7VbuuR+1ifV6Fi7c3turG9WcC5nlx65ce2qqo7co1lNHpv7bO3ZJzcO0TU4DtHekXt/VLNyzygts8fS1TEzOMY5I3v/0t6R+z5rtOTmW7V1Ghdr16zgGMiU3H3brJ65f/Pu3eaMtSePz8216twjO7Y8vT33nrZfv9x4X+uM3P3ylJbMTePU/4Zuv09/X707N//dW/f+/2p682ejx74Wa4/otlqsPWPYg7F2VdUiRy4Ua49vrJprt+deuo2/cYtYe4Ut34u1Z3t8QKy9ybrzxNq7ts8ba497MDePoqpqtZ1y/+4LXPBWrP1C59yYWc9PY+lauHdunVzP2XM/69MnHBNrf/hlbrxsj7k+ibWrqpYavWisPWiL38TarRecFWt/NXtuXHrUSqNi7cU/3TbW/myuG2PtuTdaM9Ze4W9fxdrfzFgv1q6qmrDzYrH24L8PiLU36ZX7Ht/yy6Vi7XGv5OaorbLY27H28s8uF2u/PDD3//3lcyNj7aqqHR97J9Z+ZKM+sXbPFwfE2o+PzT0PD/0xN+f5rx/k1mUesfqCsfaYL0bE2s88/UOsXVV12MAvYu1p/XeJte/652ex9mwn557HP7o/N/f3xR8+iLU72nPvUOqa3BjnjiM2irWrqj6enhtX3/6NN2PtbXcbFmv/8srcO+L1z1k21v5sRm5ce+33cvcv/f5wdax9/ykLx9pVVTu+PzTWfnulo2LtjRd/ONa+dkjuGWXfvz4Ta3/7Rv9Y+8svcmtoBi01JNY+bKvcXO+qqm/aL421vxz9eqy9xvW59ygfn/pYrP38W2vH2t/u8UCsXS/n9rZc8pHDYu3Z51ox1q6qmv2+W2LtkUO2irXvHJQ7T2Zm7xdi7S3mPTDW/mDMDbH2exNeirVbVjo01l70qtz9Q7/5ggfpVNVtG6wSax/7wSax9qcT74u1e01+OtbutOgasfbYvrm5nKNX+DzWPv6p3MLrj97YLNauqvphxqBYe8h8ubl9N3+6eaw99PrcWtj3ft8v1v7lE7l9ihZdOjfH7Nxrcmu+3pln8Vi7qmrgi3PF2t8MyK3FHTH41Fh78gW5OSjrb7tArP23ZXJrzp/rPjDWnvPAY2Pt3m9fFWtXVa17yyWx9pTf5t4nrD89t2/N+n0y85YntU6tM56KpAEAAAAAAAAAAAAAAAAAAPj/gcWfubx69Gn+nhzfL/Hrpjd/Nvz6HWLteW7P7Ukx7s0/x9pVVRsf/0as/fGXY2PtZ+beP9budEru/KGHds7thXrztA1i7b0e+ijWXnXvXWPtW+7O/X9XVT22S+4MoDu2yn22jTk1d2bClffm9tS6buxKsfaE04+MtT+Z+7JYe955c/skfv1abp/Eqqq3n2yNtTe+++NYu8cVe8fax5zQPdbeZ81HY+0ddnsl1r5/jdwzyulX5z5fLtnsj7H28Uflzjarquq693qx9vA9cmfR3PrD4bH2c+vk9gR9c89PY+3Rh3bE2j9evl+sfddXuXvlazfNnRtQVbXDnLkzWYbfsFOsvcCmuc/14aPPiLV/WOOYWPu4Hrn79I7Dcmeb7b/fgFh7k9bcXupVVdsvdlCs3Wfzf8TaCx+T22v5uL5nx9rPrXROrD360dw5Fev/cH6svcy0EbF22/B7Y+2qqt+OWyTW7nv2nbH2Ym2fxdr3Dbg11v50hdz5hfVd7vfsxc1OjLWfaNki1u4zbJ1Yu6rq8F/vHGv/fvSVsXa/ibmzaPbfP3fG14Bvb4+1b3oldx7v77/KnS0/f//c2c9zXHldrF1Vde5Ouc+XTfq/GGsfNE9uzO3WGblnlHOXyo33Hfl87j1KHZWbE3DOuNx7+bWfPynWrqo65+HcOMTAS3P3bi9ckjsvc94XcuMvL/8pN9/prKtOirUH9Mqd933B7mvF2n97okus/YuTxsfaVVVT7rg21t5mndwZgtfPlvt8eXjKgrH2dWP+FGv/4571Yu1xKz0Yax85dZtY++hnv4i1q6r2OmGPWLvHNbl5hec/fEus3fPy3JjXokN7x9o3rph7T3ry06vG2m/ss12sPWPj3DNpVdWILXPrMq6697hY+49dc/PMVv8094740Fe2jrUHjBoSaw97PPddtvDXy8Tay54/Jdauqppju0mx9n4r/RhrH/r71WLt0R9l5g63d/znP2urDr65+nTt899wNf+e7X68oenNn1193PBYe/3Tb4y1t/sutw63qqqx9Hyx9r4f/D3WXrHX72LtO3ddONb+fqVZsfbsL60Ra19x+smx9gd3nhlr335tbs5QVdXnFx8da5/4x9zffadGbv3zpWscEGuPuST3s/7tArk5Q2/esX6sfdMhw2LtrUe9H2tXVc3655Ox9ouL5f7PT3ztmlj77D57xto9vx8fa2+/3EOx9k1nHB9rb3zXRbH2AR8sF2t3erBXrF1V9ejIe2LtY3fOrQO+8OALYu0t78/tAXfDDhfH2oOG5sZnj1p3UKx9xtjce87Jf78n1q6qmu+x3O/Z9xsOiLVfPjz3Xn1Uj9dj7Xmfyj2Ld94nt4fJ4rvn3rntf9zgWHuT15+Ntauqlhx6eKx955q5eRyTJwyNtV96Lrc28tgvZ8bat1+T+z07/tnc2qFTzsnNZdhn69we1VVVSxzyXqx97buLxton3rxirH3xoXfF2kuOzz2bjXsoNw4xdeQjsfamT5wUa3944BOxdlXVyiNz72m7vZF7Njt0o9z98vUX5v7Pd/5H7t7pgH5bxtr37pbbP+XJo3Nz436/c25/g6qqte/KrVc78Y3cvjWPffJUrP2bYbn30ztemztj48Pdcu8Lf/VFcFx79o1z7d1zY31VVddflXsm7jY1tw74rd12j7V3fzN373TaSufG2k9fmNvfYN1tc9/jA1f4a6z98IK5PWRHD3011q6quuztPWPtx0/P7afxyPAVYu0DpoyJtZ9e5G+x9lZ3Ph9rr7tgbl/wbx/8bazd6Y53Y+2qqrXv2CvW3uv5m2Lthae+E2ufvfibsfYhl+f2prpu1dxeHj+05M65ePvA3D3jIz1z7aqqHyfkzuJ7YP8nY+1HN9o31l5ujtznavtWuXO6Riyf20N28zO3irVXOTZ3Ltu3x60ba1dVLXX0a7F2xwmHxtrD7+kba6/zYuZstonT2uusg//vf67xP38pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8b9FIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN00hfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzdNIXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3TSF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADN0/nf+sONLtW50eV/6lr+jzp1+rcu879VS7XG2n3mmTPWnjJhcqxdVdXS0hJrz5o8LdZumzYx1u7cNfd7Nmtm7uetS0unWLule/M/T/+r3TEz1q72qbl2VU2e1DXWbuQ+2qpbRy7ec/bcz1vLzPZYe/K3fWLtlr4/xNqde8wda7e1TYq1q6p6zpP7fJk+MffZ2qlP7h6i68yesfak1imxdq9+3WLtjo5GrN0+K/c7Vt3Hx9K9e+e+T6qq2nrn7iHaJs2Ktbu1zRdrT+v4LtZua4yJtbt2mivW7jm4d6w97ZOvYu3us80Ra1dVzRiX+y5t75J7TggMrf6XnnPk7p1aWnLf45375Z5JW8cHx7y6d8Ta7Z2CP+hV1drI/Y53bs09m3X0zd2rd8xoi7VbKvfZ1hG8V57xY49Yu0uP4Lh2j+AAa1VNHR/8eQu+K50aHHNr75n7TG+d2SvW7vxe7l1lp7ly47vtLbn3pNNax8XaVVW9es2fi0/PvSvt1Mjds06amXuP0tI592/e6N491u46Mzf3pj34brylc+7vXVXVOnNGLt6e+z7r3in3PT51QnDMq3LjnH3nmB5rt0/OjTu1dM+9x6iW3M95VVW3LrlxiFnTc88J3Xvnft6m/pj7TJ/8zRexdr8FFoq1Z7bnnoe7Ve5nrWN6bvyla+fcnOmqqq4tuTH9mTNy3yndu+fGGif+mPs37xl8ldGte+65sGNWcE1G59w/eufW7LzCKS253/Ee3XI/b/3n+EWsPXHy17F2j06zxdotwXcJbdOD7+Vn5t7RdmnvG2tXVbUG57G2dc49m3UKfp/N6JS7X27vkvs+mTw1N87Zq1du3KlLp9yYepcuwTnTVdXWnvtcn/Bj7r18z9ly7656dGTG1Fs7/vPf70l9X66OLs2/B3pt4pdNb/6s6wK5eeaHfZyb6/272U+Jtauqjtptr1j74IOHxdrjOn8aa694Qm4uw2UXrBVrrzXpnVh7jhGbx9oPb3dGrD0kOEesqmrCU6/G2je1nxtrT+58Taz9ZttnsfaANXNzGW5eLPd79sPTJ8TaS320S6w9cNTIWLuqqrH+DrH2wBOeiLWfOO+nWHvjq/eOtZf/+qlYe9zSufm3i92XW5/4jy9HxNpH3LFirN1+8QGxdlXVlivmxk/GrPBQrL3d17k59nPtcXOsPeORrWLt257tF2v/tOX7sfbESVfE2o23l4u1q6qe+ktuTcdlN+aeUcYu9m6s/dkNub/3B/sfHWsvtGHuHcy4R26Ptdt7LBlrb7zWerF2VdWrX+TeJxw99pNYe+Dg3FyKOX9YJtbea7u3Yu0REzeKtVu+Gh1rz35n7nN1wPL7xtpVVQ9/kptT8P16G8Ta4y76c6z9+cq7x9p7/2veWLvHyNwzykfDbom117t11Vi72+DcWF9V1YRnl4q1e842PtZ+sn3TWHvCHR/H2r/9TW5M/dc/bRFrT52Umxd406K5+/SJXQ6NtauqDn/1qlh73rcXjLVPXTI4x/6N3D6yg555Kdb+oiM3v27WkNxn2+crXBZrnzrt2Fi7qur1Rf8ea1/02Dyx9j4r58b7vvoqN59yxJTrY+0+o3Jz3GfO/0is3X+r3Hf4w7/bOtZu/yK7n8YF9zwdaz988G6x9h2dc+/G//XulrH2Rt/n5rEO+DI3p3Hs3SvE2uv2yt2vtnyWW/tcVfXperm96Dd5bUCsveEG98fab2+dm0s6eVJur8O/LJH7bNtkkSGx9gqPrxJr/7Dd87F2VVX3W66Ntb/fZsdYe+LBufdmgxb9PtbuMT3X/uKh3PzdSSusE2uv+0pu7vBslVv/U1X1z81ze8At/nzue/ylJXLPRyv+kHmXMavtP38+6dZ1z+rWtflj4y/8eHzTm//Vvia378xPjdwcsTXfzY2PVlUNP35ArL3WwdvE2leMWzfWPnvwDbH2X4blzvGb49PcnMRxL/wx1j7s1Nx8yKqq6btsFmvPP/dKsfYJ2zwYa699ce77bPNT9oi1vzr5rli70x8uirU3Prx/rD1hz9xa2KqqC5/+NtYeusO2sfbrn38Ta99+7Wqx9qujcuOUF//hd7H2Nv/I/ax9Nzw3N6+q6tkvc2NmH26Qmye2e+vSsXb3mbn2pUfkxute+Om0WPuhltw88yk7DI61r/rDGrF2VdWhi/4l1j79V2fF2ms9lzsXZdONHo21lzsoN1frqV1z+6A9ccAHsfYST+fmoA594OpYu6rqvA9zc673Pjy39nrucb+PtT85eM1Ye8+9cs+kW+8/NtZuf3uBWHvCAbm5DFVVx12fu4d4ZMxzsfZ+nX+MtXvsmtu/pcequbWRY57Jjem/2PZFrH3ps7nzzeZ6OXfOVlXVxBVy+4O/cvypsfaJR+f2O5z14o2x9uEjc2tZfv36+bH2it1z674fujw3B6Wq6tFBF8XaB56Q+x3/oHu3WHu/13NrWd45JvdsttuM3LNZ3X9ILL3ywNw+JneflH2P8ts5c/NQ1vzDy7H2kO1y+/+/OCA3znnx/Lm5x6uve1SsffxSub/3ZvPk9g2uqrr+iGVj7S375M62H/Fcbk+woxfIrY+cPi7Xrt/fHUuvcveFsXbvRXNjP2v1XT/Wrqraqy23nmTs8bmzr7uunFvrf8VnuZ/1XV8bH2s/fsiEWPuN7i/G2l982yPWrqrqNX29WHvA+bk5dtOOvjfWHnxTbp5Zj+tyZyBOuC83DtE4KzemftLVA2Lt3hvdF2tXVU3pvXqsPf6E3JlVm7x6Qaw9Yo7cPiaL7Z/bi37jDb6Otbe8OHfW6P6LXhlrV1WdvP7ZsfZJ43JzWU/ruD7W3urxV5renDq5rXb/D7fyOHqeg6qlpfnnnB/5dW4u5le7D4+13z/2tVh7+WVyc/urqnocck6sPb4tN19pmUNy6/T2+fjIWPuwd8+LtW89Ore3w0F/z+2vNGLd3rH2wJbcu+WqqgM/yb172v+238Ta+5xwYKz92w1yf+/Rs10aa380JLcO98lbj4m1t78hd5beAZ/+Ntauqtpoidxez4/e+FGs/fb9i8Ta932TO2dr6PDc2bAPrJ9bx9J62OKx9vLDp8TaK+zzdqz96xk3xdpVVeussk+sPWN0bt7MuH/mzuCZNiqWrklXXx5rn3Zsblz44idzn+l391001l7prdyahqqqnVfJ7a993Iu5876X+2du3vFqq28Sa2+8Y+6c83WXzc0fuW6e3JksLx2Q21Pi+ScejrWrqna6Knd+4p6N3Pu+r0/IrT9e64o/xdrbL5rbz/SJ43PrCi59MreXx01X5Z6PPjo2NwZRVTWlU+7s6cFjcntrLnbSoFh7w5/+FmsvfURuPerkJ3Lvaad0ze1neslFuT2S5n8pN0+qqurbbZ6Ntd/eMbcH3CEjc2sTt9kit57jszlnj7Xvu2GJWLvvmblxgCUPy7032/yx3F7sVVX3/+udWPuCwwfE2pMH5M6aOOGx3JlPO82d2xvqrZVyeyv0HJxbt7Tk67n71faPcvs0V1V1XJ1be/3468Ni7Vu65faX7PfYFrH2gtfuEmvfO29ujvk827bF2netlXsuPPPd3N7/3w36Itauqrrw3Nz5RbuclptT2Xvl7rH217Plxhqfn5Cb4/bnrtfH2o+Pz70/uqN37ryo9s+firWrqp5eJ7e/5V1v5s6aeOSA3JjXIifdEWs/9WJun8VaLXd20Vxf5/7en+38eay95DrZc87fv+anWHvDXkNj7ZMH7x9rP7RSbq56z/16xtrrjsnNY/3l6bl3xLstlNsfaclVsmf4XBk8r+ro83LjTt/8cflY+4obM/NApkydXlv9h8eMLnfNUdVo6frfc0H/huOG5dY1zL1S7j3noLVzewz1fzc3RllVte1uB8XaCw7OzZ25Y1Bw/5M1D461Nzg593t2wNm5dd9DT87NMz+y/+Gx9n4/XBZrV1Xt9cQ8sfaIj3PjRkvsvXusPXHzi2PtPw3KndWwxs65z7Yjdr0t1r5hi4ti7b6r7hlrV1W9/kPuZ33DK9eJtcdvkTvT7fBuuT2m37kwt8fzjffm9sVqXe7xWHvjMbn79H1OzM2j2PSh/WLtqqrp2x4Qa7925R9i7bdny41T3rHgmbH2nr/InY+62uYbxton3nxnrD3wnoVj7XV3uyXWrqr68eTcvfqxU3PzrZ96Lvfea8cnB8Tag3fNrTn/zY6PxdrTZuXegdy8TW7vloVfz322VVVN/ENuDGToFrn9WzY+OneO35BLt4q1r33zhVh7zGu554QHD8q9Q7ll65Nj7dE35v7eVVUtI3LraKYNyp39PGynWLo6nszNcz/tzdy6zHsWyp2Psf/VubHlOzu1xNrv/y631r6q6tvlT4i1F1okt6bimdbc2fK7zpYb8+ryzCqx9vojcmu2djw1d87VAn/MnTvw+oHZ56MFF38y1j5v2aVi7eWWPy7W/utOuf3/r/jjA7H2/BNyv+PduufGGfe6N3fu83l9c3tiVVXd0D/3fDT2yuaf9/SzRT7Mnely99Tc2fJbLZDbZ/GP63WOtfc++9BY+8IzfhlrbzwpN7b8QVvud6yqqt+Zv4i1594+d+b1mQfl9m9ZYPXcnjk7PnV4rL3Zcrl1uAP3yY2BPHtA7v30zos9GGtXVa07LHcO4Xwr5J6JL/xV7pzxV2blngu/+kVu7vDQxXJnD5x0Qe4dTpcDc3MCFjjwuli7qurJQ3PzOfddJ/d9dss2ufvlj/86MNZ+bExuztGEL3MvDC9dfMtY+9Veuf1MH3v27li7qur1e3L3T9v2+mesfcCJl8Ta3fp2inTbZv5/2zM4NxIKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDTNdIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQPM00hcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDzNNIXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA8zTSFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/097dx6u61j3j/+z7rXWXnuwBxlim3YkKXkohSRU5rEJpZGkVFLpq1LRrOGJiHiS4ZFEg01CpChRhhIiY0KGTHuv6b7XWvfw++P7OI7fP8/x1KPu9/H79Xr9zX6f676v+7rO6xw+JwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA/jXQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADon0a6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9E8j3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPqnkW4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD900g3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/mmkGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP800g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB/GukGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQP410AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6J+hv+c/7jQGq9MY/Ge15b830v/Ip/TG/66P6B9qojsVy67uTC67qobnzstlT68Uyx7odmPZrSeXx7IXrZr7zMdauc984C9PxLKH5gXu5f9l7vw5seyqquWPPpgLn78oFj04kPvO281OLHu4ZsWyGwtbsexmb24se6j1WCx7cKgRy66qGn18OJY9Z3au79bpzI5lT89eFsteNJW73obnPCOWPXF/rs84b5XgvW1erv8y9tiyWHZV1UAFr/WB3H21Bh+NRXcnB2LZjVm531l3aDyW3XksN/Yzf/FqseypydxnXlU1e978WHZzOvc7q8ncs3RgYe79aGYq93403M31V7sLFsayk+MAQ3Ny2VVVM6O5vlur93gu+4lmLPsZueHdGm7n5hImx3J9xlnBe/q8FXK/8Ylli2LZVVUjI0/Gsqe7k7HsWSOrxLI747kxr1nDuezBWbl7W7c5EcueaeWu84HgGGdVVasXHH+Zyl3rjeHc3z0wlHuedcZy2WOdv8ayV1i4ciy72wve25bnxp2qqtqNXix77rx2LLsxmPu7h7q5caeh2bkx9amp3DvpyKLc+1G7FsSyJx7OjTNWVc2Zl+s/jQytEMvuzOSut6GR3JjXykty7yijY7mx5VmVW1fY6QT7L7k/uyr3OKmqqu683FqMWZ3cO3FrWa7/0pwYjWUPBNcjzLRz7wmNbq4P0ZleNZY9OZC71qqqRgZy7yhj47n+S++RW2PZKwyvHctuzM69D7drOpbd6+XGvBqN3IazqYncfGFVdl1AdzA4DhFc9zMynPudTfRyf/dAcGPnYDP3ktIL3l9mern9ZlVVY+O5623+7Fz2Q4/l+surrJRZZ/aP6Lns88FdqrFC/+f9vvrWxX3PfMqRD+wSyz57z9z7xePdr8Syq6pGb3tFLHudNe6IZc9f/YFY9rfWOimW/a4tT41lT3wjNw/xmdP+M5a99kW539hBL/pNLLuq6q/fXjGWPXuT3P3l5L/m+j7f2yG3JvGaW18Qyx6tq2LZWz0jN15255Lcvqlj7nt+LLuqauu1c7+zDdf+bSy7dd7OsexlHzwqln3D0tw+vV1PWxLLPnWfe2PZ41vlJph/uP/qseyVNs+9I1RVrbLwilj29S/MzbPuvFZurPC0374wlr384T1j2Ru87E+x7F8deVAs+7V75Pqrl01n6w2OLs1d60fd9bFY9lXNI2PZU9vn5rbvmHNoLHto7pmx7C3m5+ZYH3nPerHsO1dcN5ZdVbX27b+KZU9N577zM7+bWw+5+vCyWPboJbk5/S22vTOWfdvz14llr7HW9bHsr5y0dSy7quroF/8llr3k1/fHsi9/T+59fLdL74tl/2q73LP03S/Oje+ecttLY9m/v+6MWPYFv/tALLuq6ok9Ho5lLzlxw1j2nR+4IJY9Z26uDtoRH90glj30vB/Fsh9e/bZY9p2XvTuWveGc3D7/qqqt1zw7lt1buEMs+45rcusxG49uEcvubp671l++yv+JZTfOvDqWvexNuWf42x+9NJZdVTX0xA2x7N23zY2BtO47PJb9rRu/H8t+706/j2XPvTi3P3F40y/Fsp+/1ydj2Z9Zfm0s+xs3LYplV1Wd/dVnxrJvXnpMLHvDzb8ayz7h7iWx7JPHcu8oH3jd+rHsRT/N7U28Zt1cHZED18uNO1VVDQ+8KJbdG8nttz/hP7aKZT+0fq6/OvKSPWLZm8zN/c6+OXFLLPtjG9wcy7761wfEsquq9rr/9lj22y6+JJa9ZM5zY9kPzs2ttxp6dW7v9W2nPy+WPX7OrrHsO1fOjf3M//UpseyqqnmP5OYMZw6/Lpa99QWXxbKPOCxzvmqrNVX10af3b1yw00DNndv/WgEbvvONfc98yjtP2CiWfdozc8//DxyUG7+oqrrw2p/Hsvc/OLfG/qpLLoxlf+TB3J7zo3bO1UJ93+dyNYeP2/19sew5o7+MZVdVrXfKZ2PZazRz1/rk0iNi2acdnJtze+zJXP2WeXdtGst+85dzewRf2crthf3jY9m57VVuWhrLbq6WW3971ufuimVf8drPxLKv+kxuvdIZe/0hlv371XJ7aHb80qGx7KqqHbe7O5a9wztOiGXvvij3XnrgwtwY6ann5PZzfH+Pj8SyX39rbu/12qvm5mCWvy23XqmqauuB3Dqx978rt47jZbfn9vDcsVOuxuQhn839zl6+Yq7G5OjD28ayz7k2t/b3fetn9z9PbTMVy772/bnPffE3cjW55l2Vq6/w5euOjmV/aIudYtnN1feKZd/y8i1j2VVVs4/IvRs+3Dgklv2LLX4dyx5dJze2vVcjt2frg6/PjS2fvTRXu3eT098Vy75qu9Nj2VVVF7y6E8u+qnFRLHvOVrm6FrV+bl/FvD1z63YuXfOnseyVP5WrHfONXXK1gqqqDvx97n38mP1z/eU918ydz/rpebns62/7RCz7DUfvHsve5G25PuNXN8/9xi78cW5PRVXV/m/K1eh+32dPjGWve9XnYtnHT+X2w17wku/Fsj//xwNj2S8+Nbe277MX5Oanq6rWXS231mzWpfvEsk+6MrdP8GNn5s6ePmbj78Syd9kiV2vxlx/PjbFu9Zlczb8P/nz/WHZV1Unt3HrONz/0ylj27zbKran8/DNzZyddF1yjf/fm+8ayW9vn6rB1bt0kll1Vte1Abox3t1/m3onHVzk2ln3siefFsvf80Zqx7Ic/9mQs+8KP5+bNbl4t9360zvm589GqqhpHHRbLHtosN66++aJjY9kzd+b2Ie/7+Eqx7G2enTtv4icf3y+WvdkvvhzLrqo69nunxbJf/4abYtlLzs+t03/FO07ue2Z7YLyqXv60/o0jb727Zs/v/97QH//lWX3PfMryTe6NZe9/VK6u983P/lQsu6pqh4WPxbKPXZDrb77tna+JZT/vNbn9YnvelBuP/0D3mlj2y3bMnXl9eSu3h+bK2V+LZVdVnX9sLv/Gm94ay/7ywKOx7J9tkavv9N49Xx/LXvStpbHssw7LnTu95Q5rxLI/vjAWXVVVV1+Ze79Y+fW5+pTHLbo4ln3jYO7Mp2d/aW4su/2JU2PZK+24fSx7rStztTzW+lRubPasyf6PH/y/bTi1Wix7s4dy97b7/iN31tWOG+b24d664xti2Zs878ex7ImZ02PZxx+W26d2+HOuiGVXVZ2yxS9i2VfclRsLOPDtuRqTk7vm3hO+dueSWPYmr86difuD1+TO+Drkw7l6FjuemqurWVV14+ONWPb2u/4wln35drkx9VcflZvnfPj9p8eyN5+VG1Nf8M33xrLf8oVbY9m/venQWHZV1X7Tl8eyN94gN+705jtya71fFKxNteMuuXXm51z09Vj21y77eCz7F4fm5hIGP/XhWHZV1cDbc/U0FizZO5b9pnP+PZb91/Nzn/kqwXPtz9l8JJa97ljuvnrRfWOx7EvOzNXAr6paPvHnWPaar8vNZZzyrm/Gso+5OjdhOb5hri75zLq5Z+nDF54ey+5u8vTWYj4dv3lZbgyiquq61+Tq1pyzw6JY9tVX5/oQzde8Ipa9wlG55/gT5+bqFK01mduv1bxyaSx7rbNzNR4XzM7VR6qq2vTB3Nz4mp9/JJb90dm52r0Pn5Srs3jKntvEsrffIbce4aXHHxvLfuNVuXeEF709931XVa26/bdj2e05uRomWx/8u1j2ATvn6mPfcs+7Y9nz78mNqb97Tu7MpmdulVtjttPB58eyq6qah+TOdGl94KhY9klTu8WyHzvk8Vj243vkfmdnXJNbg7L6TK5O0IeGvhLLvvi1uTVmVVW/vWmDWPb1q+X2+f/4S7n7S2fWuZncqfGqenrrXzb7wQo1PK//c1APbZ87/+f2ne6NZW/TzJ0v9uV9c2vcq6qO+3hubvvD220cy27ft0cs+wdX5sYwPrtubl/DCQfnatjfvWtuXeDctXI1f79y/Ati2VVVO612ZCz7ku/maky37svNex2w0Udj2Wdfv0Usu7nXc2LZ+87OrZ25+w+573vO73aNZVdVvWJhN5Y9PjYay76mvX4se8OFuXn1q16ZGz85/hW3xbKfnJ2bY/3cD3Nnc5w2Kzd2stIPzoplV1Xd8J7cd37OdZfEsl/yndz57pe+IlfL46Ttc/uH7vlrsPbsHpfGss94Ua7O4ue+mzsPparqgi/l1hR0X31sLHuzJ3N1Bpb+PFffsvPN3LX+b3/K1Xjc/ic3xrL3fMdJseyzL8ruOV/0jlydgZMaubPl571701j2Ae/MncV74rm5s+z2viZXU/S4G3eMZZ9z5oOx7LO/nDtvqarqneflzm3c/6Z7YtkDS3Pj2leumqtZPPcvufNRT/rWx2LZ7x45NJZ962BufPWyVXJjP1VVC47PzU/Pu3DlWPaDR+T2P9+3Uq4+96tvyN1f3rjNH2PZm+2SW4+w6MTcmoDTf5Y7B6aq6uzd7o5lf/HenWLZu9yXOytzYHHuPNztTvpCLHvBcblrffFLc2vc5myc67fdv3/u3lZV9cNjBmPZz9757bHsB7fJ1c/d+j25a/3OlXLPkxPOXS+Wvf2tuXnSdZa8Npb9sn1z1/lpn8ztJamq+s8DL4tlrziY2VtQVbXm4twZxCPPzc1Pf3/7XI3Hjfd4VSz7/PZFsezD1s3tu179Xdm58Xcd9J5Y9rnX5MZ311v90Fj2m1b5dSz79l1ye592X/OcWPbkfrnzrm/ZOreOtLdCbi1nVdWHnperG7x45tBY9vaH5NaSbjY311ffef0DYtndbXJnLuy49nWx7NZWP4plzz88l11V9ccHcmP6N+2xUix7lXpRLPsVB2fOV51qt+tveZrlTgABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDvGukGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQP410AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6J9GugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRPI90AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6p5FuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/dNINwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP5ppBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED/NNINAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgfxrpBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0D+NdAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOifRroBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0TyPdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+qeRbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP3TSDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID+aaQbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA/zTSDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoH8a6QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA/jXQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADon0a6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9E8j3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPqnkW4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD900g3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/mmkGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP800g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB/GukGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQP410AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6J9GugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRPI90AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6p5FuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/TP09/zHw7MGanjWwD+rLf+t7sR03zOf0gv8vU+ZO7xCLHtiee4zr6rqjOSyh2b1Ytm9mZlY9uDswVh2r5P7u4eWd2LZc1aaH8ueWDYVy67O3/Xo+YdbcYWFsez2VO7+0h4bi2W3Orm/e/4qw7HsFWa3YtkTYyvGsgfn5fpO7YFGLLuqavZIM5Y9PR6Lrlnzcs/SoVbuO+/Oy/XVp5bnrrXBZ+Tu6QMDwXeU9qxY9JyVVo5lV1V1li+PZY+sMC+W/fjjf41lL1g5952PTHZj2b3KZU92cu9HrW7uvjo4nX03Wz6Ze56NLJody54za24s+4ngeN+c3KO0Bhu5+0tr2UQse+Gqq8ayJyYeiWVXVXV7ud/Z0ILc/WWknRtUnx7PPc+azdz1NjSc+8xXaCyKZS9bnhvPnzM3d61VVXV6uTH9mfHHY9kDs5fFshtzcp/54GDufXignhHL7rZz49qdqdxYX7uTm0uoqprTbseyBxYG12JM5L7zWc1cv22080Qse8Gs3LhTbzB3f+lO58bzB+dm7y/LH3solh1dDxF8R5k1mMseGgqOsY7nJisbg7nfWaNyc+Oz5mfnxsfGcu+Gs4eWxbKHZ+eeKZ2h3P2l82RunHNkTm5NYzs43jY0Lzd3Nf1o7p4+MntRLLuqqtucjGW327nn+ODIw7HsxWusEcseezI3tjw8kuu/TI7n3oeH5ubGOOcOrBLLrqp6/Mnc375ghdz9ZWjWarHsmXZuTePkRO45vmCFXH91eiY3zjg0lFv/0urlrrWqqslu7nrrPJrrL3eDQ26Nyq1H6HRy+0FmB9+Hk3tRhio3f7P8yezc+CrPyK076gXnzZ4xGByH6Dwaye10n/46zv/49KE1b2jOP6A1f58tP/Tivmc+5ZO/fUsse4fvXhLL/vWSy2LZVVUXvD03z3rzztvHslf75eqx7DWPztybqqru2/jBWPYtu389lv3Wk78Uyz7u4dy81xefnbvOq6oG1js3lr3xVrl723mnPxnLHrzirFj24e/+fSz73luvjmXf+KvNY9n3D18Zy1689y6x7KqqQ9b4USz7E896LJZ90PyLY9m/+vxasezvrZZ7lz76xNw6rRf/LvcuffBV+8ayP7zxBbHsR7Z8diy7quqX1+auty3//NJY9oPdn8eyn3vz1rHs3zwzNwez2Zq5/Rz37HhkLHvZ+3M1sW69dP1YdlXVRcsuj2Wv9LsbY9m3LMnNPe2y5BOx7Itnvz+WfesLc3VE1un8Npb9hQu3imWvPXpRLLuq6s2r5+ae/nDLA7HsJS/o/9zNU2atuVEse40dN4hl39e8Kpa9SuOZsewzf/TcWPZaZ70gll1VNXnJz2LZj/wytyZxYl6uv/zj2c+KZd//w9/Fsu/YKDeHc8urfxzLbn48tzZvtxu+F8uuqjptl9w78Q/WyM2jbD6YW+/9/U/n9umt9+83xbJHJ7eMZW9wx6ti2fesntvvfskvc/2Hqqpj1snNXW08/zex7D8Mnh7Lbj94cix7g5tz76Q/P29BLHv01j/Fsndu/59Y9ka978Syq6oO2WnbWHbzrtx3Xg/m1kMcVJvFstc+JTcWsM36t8aybz/+NbHs3+x8RSx7jc0+Gcv+1cLceqeqqh3Oyc1Pb/nK3PqXu35xdyz7bbt8JpbdvmOlWPZPLs/VAztk4S9i2a9cJ7c+f8NH1o1lV1VdP/nrWPbqC0Zj2dvuc2gs+9GNvhvLntr6J7HsRT/PzZNO3Ji7r+65X66+wfBfcnUdqqqWL1gvln3P0Ctj2e15p8Syf7Bybu3wm7/29lj2AytfGMt+4wvOiWVf/tfc2r4/zSyJZVdV7XBkbi3pPZfnsn++f26d2Rp/zMxdjU436iNP89/41DW/qMZI/88Ze/6JH+t75lNuOCJXb+fUL5wfy774T7lax1VVt22dG0f4zyt+GMve/ta3xbLn3J1by7D1+3L35PnBunntF+fqQ360tSSWXVX10HG5NQVXPiNX3+nGtc6LZT90432x7A8fdGkse8U9bo5lX33Pa2PZPz3v5bHsswZ2j2VXVa3y09zz7E0nvjWW/fB2B8ayd91y21j24YecEMs+ZmluHeola9wZy77wnOyZuHft95dY9j53584YO/O5ufot138013fa7NL3xbJ/eHiupvn9b/laLHvj7+8ay37JDfvEsquq3v/tN8eyz3tOrjbVfkfkxtye+5u9Y9krbJ17N9vmCy+MZT//5txc56vu+EEs+4Jdc/VMq6pG7sy9G97/m9yzdKMHcnWxFo/n7m3jm+TWr/x5tzNi2YeulNuzdefeuZqiVVVn/eLfY9kvfyhXn+on++fmcG7c8dRY9s8+cEUs+6rbcmsit75i01j2v73nulj2za/K/d1VVbcvzI0FPGvzXO2aL+6VG98dvT53Rsdf7rs3lr307EWx7LuuPySW/egfc7XBq6o2am4Syx7cLLfXf/cjjohl33xGbv/QJqvk+suDx+Xu6Z9YmKutufFk7ozSJ47J1cypqtpn7dwa3N9emVsXsODB3B6evT99fyz7sBfl6pHd/oaTYtkHPbBJLHu372Zrof38dbnzgH+9ZM9Y9s335vaT7PxErjbWyxfk1vBe8sjzYtm3fSI3Z/j8idwenisnvxDLrqpaevTTP9fuf+vNI8+PZb9jaW6c89EdD4pln/qu3Lj6/kfnxgL+cOzZsezzD87VsK2q+vEeubqiZ74ntxd4z8tz4+rbzM3VHNxqvdzY9stO/89Y9sMfzdXBv+C83Dk+1/T2j2VXVc3bPVen6ZYPvTGWfeXe47HsDRavHcv+wbq/imVv/JL9Ytl3tXLz8kcsztWmqqr6whm5GnQrfDV37sKmr3xnLPsLW/V//9N4b7qebhWRm77y4Roe6f/z8IyNj+l75lPOPfhFsewdjsidz7Ht4kNj2VVVB112eiz72lVz/c3F1+fq/r7xOf2vJ/GUP1y3cSx74edy/eyfHf6yWPZdX9sulr3Pgbm1t1VVzzt+p1h281vLYtlfPyU3Ln32dbk6zxf/W+6crZfdmxtD+O0bfhrLvnvT3H734/bNngW85TNzZ0VstepXYtlnXPKSWPYpJwzHsu/p5Gp5vO2buZrDFx+X24+66Y1fjGVvdG7uN3Zc88lYdlXVWwdXj2X/5Du5PcBLv7A0lv0fRzwYy7748FfHsh/dNPd9P/SqWbHsg9e5Npa90fxcPfOqqp+dlTurYuvWobHsX73p6Fh2++olsewNrsv9zhZfcFkse/fGXbHsN309V0f+pLdl6xTt/ePPxrKvm8idDXvOi3M1TE5rvi6WvfHOuTVil74yV8N+rW3viGXvdEVufdj25/8yll1Vteu1uRoD592X2wt78Qtz1/rKS3Ln2e30hlztlusHc3vFPvrZ3Dlb935kUSz7qFm5Z3hV1RobnRjLvnanT8Wyb9gkt/Z2l8/m6mPf/9zcnu+dbv1ALPt3U7n95rvtkhsDee1bcuMAVVXPeX5u/cufH8/VBl/xpUtj2T9Z9rtY9tj5349lf2PZ/Fj2S9bP9Z0WH5Cbs9t0j4lYdlXVyd/OrWu88OW583ifu2+uZvFHb8vNGR5wRm7P90F/zJ17cM+dufN4Ozfm9nx/7uTc82TuG3O1eqqqzrgoVztmv2fl9uh1N87VKdr6ntx4/rnXfTiWvWzT3B6W4//021j2c7bL7Q1cetp7Y9lVVVsf0Itl//hHO8ayP33zN2PZV3RWjGV3FubWqd/35tyZKkuuWRrL/uoJufVOu13/x1h2VdW1j+fq/3/m87ln6XVr5Wr/X9odiGWfsyx3VtYG83LnDuy9b+69cN835mru/fHPH4xlV1W95e2fi2W//sHvxLJX+2Kunulv3puZr+z0Wk/737j0D8trYHb/1wf+4bDcmqErD87VH9no6Nwc6z4//HQsu6rqou3OjWXvek9uvdTOL87dFyd3mB3LXndxbh3FT9bJ1ZX4UfCMr7unc3tCtz5tJpZdVXX/sbn3m4NWOziWve7x345lP+PIo2LZjQ/l6ivcvc3hsey97sidX/jKf8v1s985J7dnq6rqgiNz9UAffiA3H3D+T3P1hi889qhY9lE/y62jWOvdt8eym/vk9pI8+8O5e/r7XpFb437bAQfEsquqmud8Mpb9w7fl7i9/mJOrYf/wStfHspdtmBsLeHz902PZaz97zVj2hTfk1q6ccGp2z/mcZm7f1Fm35+rPveA1H49lv/mw3Hd+0Fm5fd+PHLhLLHu/ubn60i/YIXc2x/PueVcsu6rqTc/7fCx76upcHfepmdzc9m0vydUU/dZXcmuepzbNnbd901cXx7KXrfueWPabts3W5Dpq91wt9daVC2PZP/3To7Hs+Q/k9pJc+6wLYtn37ph7T1i4/bdi2Ru2c+sCb1ktd/5xVdU7bsjd39Y86vxY9kXf/XMse3LqvFj266Zz89OfWGXvWPYFp+TqsV+7V+6ci9X2y9X0rKp6cuNcn/XdJ86NZV/2ya/Gsq85OTfW+NKTj4plH7/Vl2LZn98iV9vyqGCf8bTLcr+xqqoV98l95+PPuieWve1F28ay77wot+5npy9dGsv+9FUjsey37/LMWPZPPrRXLPuYP+fqp2y68q9j2VVVO19+SSz7W8/N/c6OemmunsbK78nV7n3B0bm6Es8+Kzfe9rHDnv5+kv+tO+7Mrad8wZm5uYSqqtrzDbHo2y7IjbEumD8Wyx57Xa6/ut4FuXGI17/qsFj2Dn/JrXE7/1VnxbKPf9bXY9lVVR9//19i2T+/Y7NY9ms2yj3PLn395bHsgVVz47vbP5E7R+e4DXLZl876Uyz7mFa23uCxl64fy974VR+KZX/6I7l9fgce83Aktz3eqb/loPNslTgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPqqkW4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD900g3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/mmkGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP800g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB/GukGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQP410AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6J9GugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPRPI90AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6p5FuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/dNINwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP5ppBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED/NNINAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgfxrpBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0D+NdAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOifRroBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0TyPdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+qeRbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP3TSDcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID+aaQbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA/zTSDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoH8a6QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANA/jXQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADon0a6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9E8j3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPqnkW4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD900g3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/mmkGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP800g0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKB/hv6W/6jX61VV1djU+D+1Mf+d7tRMJLeqaqA7EMue1e3FsiemM9/1U2YFv/P21HQsu9fOZU9N57K7w7lrvTXTiWXPTP9Nt+B/iong990bbMeyq6o63YlYdvAnXu2ZZix7qpP7jfemG7nsgclY9uTMcCx7eDp3rbUHct93VdVgJ/i357pONTydCx/qBp8pw7n3hAo+T3rdqVj2UDd3rQ32ct93ezD4A6+qznSu7zQyletDjM3knuMVGnupqhqZDvbbGt1Y9uR07t42MDwYyx6czn3mVVWTndxzfGo6OBbQzWWPzeQ6ETOVu78MV+5ZOhF8ngwEx3cnpoPP0arqtnPXWyP4ctYO/t1DuehqBce8hip3T+/OzIplj83knuEz4bHl6ZlWLHumnbvWh2dyfdaBbi57uJv7zAcGc+/ig4O56zzZd0r+xqqqZoZyY9udqZFYdnIOpxW83saS11tyzCv4Lt6ZyY3vNio3Z1eVHeecNZ17jk8F+y/JPsR0cA3KWPDdrDude5Y1gu+FUzPZ+aNeI3dvnQ7O2w0H/+5mcK402YcYGMrd06PjbcG5q15w7GdkMNt3mvnbltT/U3TbuXm7RiP4Pj6QGwNJ9pUbFXyezATnxgeCcygDwXVelR0L6LRzf/tgsg/Rzo07tSv3O6vgGMh08B1lsBfcd5Ucb6uq6V6u79ZpB+dKg7f1zkCuzzoZHHdKDkN0gntROu3cPX08PHc1K3h/6yXXFQb3g1Qvkz3e/r/zw73/xfP0qf9nsp2ZYx5t5tbHdaaCz8HuWCx7LPkbqex3PtEajWWPtXN/93BwL8loM3e9jQfHZzszyb5PLLomg/tYqqpm2rm+z2jw/tLr5J4pvVD/oaqqPRmc2w7WMBkNvmNMBvfat5u531hV9nqbmM79zrrBOgNjwXt6cyZ3X52YmBPL7rVy19rUTK6vPBb8jY1PZselx4PTIL3g72x0Kve5d9vBsYBgTa7kc3wyODbcC/7GJ6dz11pVVWsw2Ffv5q63Zjv3Qj4WXEPSbATv6a3cmFcvuN66GRxnnAiPLXeDayLHgjWaRoNrhnrBOgPdmdmx7OSY12hwfrcZrP/Wnsj2Xyancve30W5wH3Bwzm58Jtdvm2jn+hDd6dw9fWIyd621OsH6TGO5Wh5VVc1OcOwp2HfrtHLPs/Hg2rzRZrDP2Mx95iPBWqrjveD7cCddUzSXPxOsfTcaXJPQ6Qbfj3q5vWpjwXHO5LOsN5XrrybPHaiqmgy+J4wF53DawXvbcCf3mU8G349Gg+sRxkdz7yjN4HzhZCtYvza4BqSqajQ4P91t5Z7jo8nxl1aur94O1pdsB++r7eB8YXcq+HcH76tVVRPB+9tYcj3ETPLelrveppq5+0svuO5nNDjG2W0Fa89NZe8v1UneX3J/eyd4vTWD7+Oj7eD6uuD89OhAcH1+O1djoBnaf/yU1LnVVVUTnVz/Zc5Ubj3EaOgMobH/2lf5dPacd0PrhmYmk3uvc+MnreCcfnssuLGgqsaC++1bwXGE8W5wPD54VkQzWM9rvJfrd820ct/39Hh23/docG57MtgHaAX3nDd7ueutO5W7r3Z6wXv6aO4zbzWD6ygGgouGqmomOC4+GZzjbQXvbUNDuc98IljneWY8Nz7bGsv9xkeb2TNxx4N7UrvBM7cngmtBW8n1ccE+a3JfQ00G12I2c3NunfD+52Yvt79gJNiH6E0G1z0n6zwGa3LNjObubVPB++pocN1xczS8hmQ811fvBvc2TE4G52CGc8+z8bFkvcHcfONUN/eZDwTX7VRVjQXXgnanc7+z8WB9hcnQPGtV1XRwvG8iWBBsbDS4fyi4X2w4eO5SVVWrlesvT/aC64aCNbLHgmvzJoJzGVNjuTniscngvobg3FVV1WhwHGS6GRx7Cs5XtiZzz5TJ4PU2GDwDaCZYd68V/MynprNzpWPBubNe8Dc+MJ57J27P5M7EnQjWok/WI+sG13NOjWf3wzaD4z/JmsmdieC6gKlgPY/g+1GzG/yddYLju93c9z3RzY5DTDVz+ePB77wdvL/0kuMvwfOypoNnukwGa/dOB9eBVFVNBOdLp4PnfEx1k/uvk+8ouTG3TiPYXw2O/UwE76utZvAgwqoaGw3u/Z7O/cYngn2IbnANSnJvxGiwbvH4VK6v3Gpl9311esGxgOBa1l5w/mq81/+/e+K/Mp/OnvOZ0D15LHidTI7l7kvRs0GC98SqqlYnWH8luFZqZiqYPR7cjxo8dHs8uC5vLLhGbCI4z9kL9nOrqjrBOvajwfX9rWCd52jNvuAZGe3gb7wzkXuO94Lf9+hYdn53rJe7tybP6pwI9iFmmrk1HNF5zpHc/aUV3Lc0Hey/tIJ1ikYrW6twJjjP2QnOuY11guPCk8Hx8GCNgclgjemB4FrrVnDsZyK457uqaqpy74YTwb0kjeC5KKMTwf2BwT2Z48kxr0bwvhqcXx2fyH3mVVWd4Nj2THAtw2iw1mEruJdkInjudfN/Md/2jzI5nvu7RztzY9nd8XCNgWbw3hocV29NB9+Jg/vFpkdz/ZdmcG58NDj2k6wnmjwftapqdDL3nU/0cveXdnK/WPBclOng2PJk5Z5lU6PBuavgvsjk2vqqqrHg3qFmsH5KKzi+2wzO2XWCYz/TE8l9kblxiE6wv9oL731OnvfQDvbVp4O1NceDZ3y1e7nPfCpYz6LTnR3Lnh7LfeaN4DnEg+O5NSBVVb2p3HtCch1rLzim3wyuR5huB+fsgmfStYLzZpPBedLp4Jm0VVXNbrAe2ERyL2xw33Wwlkcn2X8ZC455BedJWzPB8Y/gvoSqqsHg3FW3cmMgYxPBGibBscaZ4DrWqWD9kvHgeoTmdLCvPJzddzWRrGcarBszHTybLXXe5lO5T2fPea+VeRZ3grUC28FzSaaD96aZ4LnTVVU1GVyHGpz36o0l674E1ysF62K2g++zk8GxurHge103OHZSVdUL3l/awXMqpoPnwvaCe68nZ3LvN62x3BzMdHA/Ryf4fTeDz7Kqql5wr1yrnbu/dIJ7/ZO142Y6wRqswfppM8E1qK3uv+a5JO3gWVNVVVPBOokz48F9wFPBsYDQ2EtVVStYU3wquIemEzy3cTr4Xjga3DtUVTXRDNbPD95f2sHaDt3gUopWcG57tJ2s8Zi7p08Ex9S7E9k9FdNTwfUME8HamsFaImPBdRyt4L6pZvCsqc5YsJ5psJb5yEy2psV0cN1Qezx3X0+eO90Lnscy3s7123rBfVNTwTHO6XbwHJpgXfCqqk6wFlqnkjUOcr+zZi/Xf2mPB2sMBNeITQffjzrdXP+lG6wLXlXVDK47HgzujZwJPlN6wZqi7ZngnN1YcC1EcC/JWHDN81SwDn1V1Viwz9qbCJ49kJw/6gXXuAWf4+3gWu9mcO5qIriXZCy4lrMbrINWVTU9GuxDdINrjkZzZz+PTufubb1gzb9OcNypHVxz1G0Fx1fD54yPjuaut6nJ4PkiwWdpO7i2rz0WHOcM/t2TwZqiMzO5PuNY8KyJqqrp4EKQZD2waC2P4Lz8VLJ+7XiwvkHg3OentJLnXTazc+Ot4BjrTLC25ng7eF8N/c46E/8393/acz7Q+xt2pT/wwAO11lpr/WNaBgAAAAAAAAAAAAAAAAAAQMz9999fa6655t/1/9hzDgAAAAAAAAAAAAAAAAAA8P8P9pwDAAAAAAAAAAAAAAAAAAD867LnHAAAAAAAAAAAAAAAAAAA4F+XPecAAAAAAAAAAAAAAAAAAAD/uv6nPecDvV6v9z/9I91utx588MGaP39+DQwM/EMbCAAAAAAAAAAAAAAAAAAAwD9fr9ersbGxWrx4cTUajb/r/7XnHAAAAAAAAAAAAAAAAAAA4P/b7DkHAAAAAAAAAAAAAAAAAAD412XPOQAAAAAAAAAAAAAAAAAAwL8ue84BAAAAAAAAAAAAAAAAAAD+df2te84Her1er4/tAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgqJFuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/dNINwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP5ppBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAED/NNINAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgfxrpBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0D+NdAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOifRroBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0z/8DTbR3cU1TivcAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"plot([get_noisy_image(x_start, Tensor([t])) for t in [0, 50, 100, 150, 199]])"
]
@@ -1263,7 +1156,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1313,25 +1206,13 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip (29.4 MB)\n",
- "\n",
- "file_sizes: 100%|██████████████████████████| 30.9M/30.9M [00:03<00:00, 9.62MB/s]\n",
- "Extracting zip file...\n",
- "Successfully downloaded / unzipped to ./\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# 下载MNIST数据集\n",
"url = 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/dataset.zip'\n",
@@ -1340,7 +1221,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1371,7 +1252,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1394,21 +1275,13 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dict_keys(['image'])\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"x = next(dataset.create_dict_iterator())\n",
"print(x.keys())"
@@ -1438,7 +1311,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1510,7 +1383,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
@@ -1557,293 +1430,13 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(2087:281473523666960,MainProcess):2024-11-22-08:09:24.234.888 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(2087:281473523666960,MainProcess):2024-11-22-08:09:24.237.027 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " epoch: 0 step: 0 Loss: 0.48542005\n",
- " epoch: 0 step: 500 Loss: 0.11173138\n",
- " epoch: 0 step: 1000 Loss: 0.13944255\n",
- " epoch: 0 step: 1500 Loss: 0.10376401\n",
- " epoch: 0 step: 2000 Loss: 0.089299366\n",
- " epoch: 0 step: 2500 Loss: 0.07341044\n",
- " epoch: 0 step: 3000 Loss: 0.09959525\n",
- " epoch: 0 step: 3500 Loss: 0.07543949\n",
- "training time: 3413.4763474464417 s\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 7%|▋ | 14/200 [00:06<01:12, 2.57it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 20%|██ | 40/200 [00:16<01:01, 2.59it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 33%|███▎ | 66/200 [00:25<00:50, 2.68it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 46%|████▋ | 93/200 [00:36<00:40, 2.66it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 60%|██████ | 120/200 [00:46<00:30, 2.66it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 73%|███████▎ | 146/200 [00:55<00:19, 2.71it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 85%|████████▌ | 170/200 [01:06<00:13, 2.24it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 96%|█████████▌| 192/200 [01:16<00:03, 2.30it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 100%|██████████| 200/200 [01:19<00:00, 2.53it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " epoch: 1 step: 0 Loss: 0.055218957\n",
- " epoch: 1 step: 500 Loss: 0.06055673\n",
- " epoch: 1 step: 1000 Loss: 0.04366886\n",
- " epoch: 1 step: 1500 Loss: 0.07368293\n",
- " epoch: 1 step: 2000 Loss: 0.046694543\n",
- " epoch: 1 step: 2500 Loss: 0.0933092\n",
- " epoch: 1 step: 3000 Loss: 0.07171022\n",
- " epoch: 1 step: 3500 Loss: 0.046739772\n",
- "training time: 3252.585412979126 s\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 6%|▌ | 12/200 [00:04<01:06, 2.85it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 20%|██ | 41/200 [00:14<00:54, 2.94it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 35%|███▌ | 70/200 [00:24<00:44, 2.93it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 50%|████▉ | 99/200 [00:34<00:35, 2.85it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 62%|██████▎ | 125/200 [00:43<00:36, 2.04it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 74%|███████▎ | 147/200 [00:54<00:19, 2.66it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 88%|████████▊ | 175/200 [01:04<00:08, 2.88it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 100%|██████████| 200/200 [01:12<00:00, 2.76it/s]\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Training Success!\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAloklEQVR4nO3de2zV9f3H8ddpaU9LaU9bSm9aGBcFJ1A3hpXpEEfHxcSIksXbH2hUohYzYU7D4n0m3TTxZ3QMt2SDmYi3RCC6iVOUEl1xs+oY6iogQpFeANeettDT2/f3B6Gzcuv7Q9tPW56P5CS0Pa9+P+d7vue8OD3nvE8oCIJAAAD0szjfCwAAnJkoIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeDPO9gG/r7OzUvn37lJqaqlAo5Hs5AACjIAjU2Nio/Px8xcWd+HHOgCugffv2qaCgwPcyAACnqaqqSmefffYJfz7gCig1NVWSlJKSYnoEFA6H+2pJx+jo6DBnXB7NDRtmv3qi0ag5M3r0aHNGkqZOnWrOTJo0yZzZuHGjOdPY2GjOSNLu3bvNmaamJnMmMzPTnKmvrzdnkpKSzBlJJ/1f64m4XLdjxowxZ1xuS7W1teaMJNXU1JgzBw4cMGdc9ndnZ6c5czo5iyAIFI1Gu+7PT6TPCmjFihV6/PHHVVNTo8LCQj399NO68MILT5k7enCFQiHTgeZyBbpyuQJdbjQul8llO/Hx8eaMJCUkJJgzLneILkXsepn668++/XXdul6e/voPk8sx1F9rk9yOI5fr1iXjOsazP5/aONW2+uRe+8UXX9SyZcv04IMP6sMPP1RhYaHmzp2rurq6vtgcAGAQ6pMCeuKJJ3Trrbfqpptu0ne/+10988wzGj58uP70pz/1xeYAAINQrxdQa2urKioqVFxc/L+NxMWpuLhY5eXlx5w/FospGo12OwEAhr5eL6ADBw6oo6NDOTk53b6fk5Nz3Cf0SktLFYlEuk68Ag4Azgze34i6fPlyNTQ0dJ2qqqp8LwkA0A96/VVwWVlZio+PP+Zlj7W1tcrNzT3m/OFwuF9fQg0AGBh6/RFQYmKipk2b1u29G52dndq4caNmzJjR25sDAAxSffI+oGXLlmnRokX6wQ9+oAsvvFBPPvmkmpubddNNN/XF5gAAg1CfFNA111yj/fv364EHHlBNTY0uuOACbdiw4ZgXJgAAzlyhwPXttH0kGo0qEokoIyPD9I5dl+kEriMpkpOTzZlYLGbOtLe3mzO///3vzZkpU6aYM5Lb2JqUlBRzxuWd2y7jkiS3kU6ffPKJOdPa2mrOFBYWmjORSMSckaSKigpzxmUkkct4ocTERHPG9XnmrKwsc+bRRx81Z/bv32/OuE77cLlfsQqCoOuFZWlpaSc8n/dXwQEAzkwUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8KJPpmH74DKY7/Dhw07biouz97bLQM0FCxaYM6NGjTJnXKeUDx8+3Jz573//a86Ul5ebMzt27DBnJCkpKcmcqaurM2f6awaw61BWl2N837595kxCQoI5U11dbc5kZGSYM5Lb4OHLLrvMnPnLX/5izhw6dMiccWU9Hnp6fPMICADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF4M2GnYoVDINIG1paXFvI3s7GxzRpKam5vNmTvuuMOcOXDggDnzxhtvmDONjY3mjCS1t7ebM6+//ro589lnn5kzrpdp2DD7TWL27NnmjMsxVFFRYc5kZWWZM5LbddvU1GTOJCYmmjMu+87lepWkr776ypxx2XfTp083Z9577z1zRpI6OzvNGes0/55ug0dAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAODFgB1G2tHRYRqaFw6Hzdu4+uqrzRlJ+uEPf2jODB8+3Jypq6szZ959911z5t///rc5I0mjR482Z/bu3WvOuAxlveiii8wZSYrFYuZMRkaGOVNTU2POJCUlmTMNDQ3mjCTV19ebMy7rS05ONmeCIDBnLIONv8llWOqIESPMGZfjzuU+RXIbGttXeAQEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF4M2GGk7e3tCoVCPT5/enq6eRsuwz5dcy4DNa+88kpzZunSpeaMy1BRSZo9e7Y5M336dHOmpaXFnHEZjClJ2dnZ5ozLwM/c3FxzxmVAqMtgTOnIMGCrxsZGc8ZloOb+/fvNmfj4eHPGNdfc3GzOZGVlmTMux5Akff755+aM6/47FR4BAQC8oIAAAF70egE99NBDCoVC3U6TJk3q7c0AAAa5PnkO6Pzzz9dbb731v40MG7BPNQEAPOmTZhg2bJjzE2QAgDNDnzwHtH37duXn52vcuHG64YYbtGfPnhOeNxaLKRqNdjsBAIa+Xi+goqIirV69Whs2bNDKlSu1a9cu/ehHPzrhSzRLS0sViUS6TgUFBb29JADAANTrBTR//nz99Kc/1dSpUzV37lz99a9/VX19vV566aXjnn/58uVqaGjoOlVVVfX2kgAAA1CfvzogPT1d5557rnbs2HHcn4fDYYXD4b5eBgBggOnz9wE1NTVp586dysvL6+tNAQAGkV4voLvvvltlZWX68ssv9fe//11XXXWV4uPjdd111/X2pgAAg1iv/wlu7969uu6663Tw4EGNGjVKl1xyibZs2aJRo0b19qYAAINYrxfQCy+80Cu/Jy0tTXFxPX+A5vK+o0svvdSckaQnnnjCnOns7DRnamtrzZn29nZz5pxzzjFnJGnkyJHmzIQJE8yZ1tZWc8Zlf0tyej4yJSXFnHEZqOkycDcIAnNGUr/9hzE5OdmcaWpqMmcOHjxozkhyelVuW1ubOWMZvHxUamqqOSO53Tas6+vpNpgFBwDwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABe9PkH0rmyDsw7cOCAeRsLFy40ZySprKzMnCkvLzdn1q5da864DFh1/Rj0zz77zJxxGbroMnzSZcilJA0bZr9JdHR0mDPx8fHmTH19vTnjymXQpUumubnZnKmpqTFnXAbGSm6DO2OxmDnjMnD3rLPOMmckaevWreaMy4DVnuAREADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALwYsNOwMzMzTRODb7nlFvM2PvnkE3NGki6//HJzJhwOmzOff/65ORMXZ/8/hetUXZcJwy5TyzMyMsyZIAjMGcltn7vsh5EjR5ozLpOjXadAt7S0mDNJSUnmTCQSMWdcjgfXac4u+3zPnj1O27KaMmWKU+711183Z6xT7Ht6++MREADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4MWCHkVZWVpoG4LkMNezs7DRnJOnLL780Z1wGKI4ZM8acaWxsNGe++OILc0Zyu0wuXAZJugzGlNyGcCYkJJgzLpfJ5brNyckxZyQpOTnZnGloaDBnKisrzZm6ujpzZuLEieaMZB/CKbndF1VVVZkz5557rjkjuV0m630lw0gBAAMaBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALwYsMNI09PTFRfX8350Ge7oMgBQkj7//HNzJisry5xxWd/5559vzrgMJ3TlMrjTZTBmWlqaOSO5D++0CofD5sywYfabq8twVUmKj483Z1wGwMZiMXNm0qRJ5kw0GjVnJJnug4664IILzJk9e/aYM83NzeaM5HbdWjM9HV7KIyAAgBcUEADAC3MBbd68WVdccYXy8/MVCoW0bt26bj8PgkAPPPCA8vLylJycrOLiYm3fvr231gsAGCLMBdTc3KzCwkKtWLHiuD9/7LHH9NRTT+mZZ57R+++/r5SUFM2dO9f5b9EAgKHJ/Kzm/PnzNX/+/OP+LAgCPfnkk7rvvvt05ZVXSpKeffZZ5eTkaN26dbr22mtPb7UAgCGjV58D2rVrl2pqalRcXNz1vUgkoqKiIpWXlx83E4vFFI1Gu50AAENfrxZQTU2NpGNfypqTk9P1s28rLS1VJBLpOhUUFPTmkgAAA5T3V8EtX75cDQ0NXSfX9+YAAAaXXi2g3NxcSVJtbW2379fW1nb97NvC4bDS0tK6nQAAQ1+vFtDYsWOVm5urjRs3dn0vGo3q/fff14wZM3pzUwCAQc78Krimpibt2LGj6+tdu3bp448/VmZmpkaPHq277rpLjz76qM455xyNHTtW999/v/Lz87VgwYLeXDcAYJAzF9AHH3ygyy67rOvrZcuWSZIWLVqk1atX65577lFzc7MWL16s+vp6XXLJJdqwYYPTnCgAwNBlLqBZs2YpCIIT/jwUCumRRx7RI488cloLGzNmjGkA3qhRo8zb+Nvf/mbOSFJFRYU585Of/MSccRnc2dDQYM64DHKVjrzE3qqjo8NpW1Y9HYb4bS77wuVN1i6DRV2GSLruh+rqanMmNTXVnGlsbDRnMjMzzRnXFze5DEttb283Z1wGAqekpJgzkpSRkWHO1NXVOW3rVLy/Cg4AcGaigAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADAC/tI3n4yYsQI08Tg/Px88zZcPyIiMTHRnImLs3f9iBEjzBmXqboua5Ok5ORkc8Z1OnN/bcfluq2vrzdnXKaCu+xv1+njLlOgXY6jr7/+2pxx+dRk14nvLhPIXfZ5f01UH2h4BAQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXgzYaXbJyclKSEjo8fldBvNlZGSYM5J0/vnnmzMug0VduAyEPPvss5225TLg8cCBA+ZMQUGBOeMy5FJyGz7pMiTU5Xqy3B6Oam9vN2ckt4GaQRCYMy5DYw8fPmzONDY2mjOSlJ2dbc64DEt1OR5cBue6bst1YPEpf2+f/FYAAE6BAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF4M2GGk0WjUNGC0oaHBvI3c3FxzRpJ2795tzrgMXczMzDRnhg8fbs64DHKVpFAoZM4cPHjQnHG5nlwGpUpuQzhdhkK6DBZNSkoyZ2KxmDkjuR2vLttyuUwux53rMe6yPpeBti7HayQSMWckt/sI6+2ip8cPj4AAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwIsBO4y0s7PTNBDxsssuM2/jzTffNGck6Z///Kc5c8stt5gzNTU15owL14GVI0aMMGfC4bDTtqxcL5PLkFCXyxQEgTnjwuXySG4DK10GmKamppozLS0t5ozLsSq5DTFtbW01Z1yG4Obl5ZkzktuAVetl6unxzSMgAIAXFBAAwAtzAW3evFlXXHGF8vPzFQqFtG7dum4/v/HGGxUKhbqd5s2b11vrBQAMEeYCam5uVmFhoVasWHHC88ybN0/V1dVdp+eff/60FgkAGHrMz7DNnz9f8+fPP+l5wuGw86eNAgDODH3yHNCmTZuUnZ2tiRMn6vbbbz/pxzDHYjFFo9FuJwDA0NfrBTRv3jw9++yz2rhxo37zm9+orKxM8+fPP+HLDEtLSxWJRLpOBQUFvb0kAMAA1OvvA7r22mu7/j1lyhRNnTpV48eP16ZNmzR79uxjzr98+XItW7as6+toNEoJAcAZoM9fhj1u3DhlZWVpx44dx/15OBxWWlpatxMAYOjr8wLau3evDh486PyuXQDA0GT+E1xTU1O3RzO7du3Sxx9/rMzMTGVmZurhhx/WwoULlZubq507d+qee+7RhAkTNHfu3F5dOABgcDMX0AcffNBt7trR528WLVqklStXauvWrfrzn/+s+vp65efna86cOfrVr37VbzPAAACDg7mAZs2addJBc2+88cZpLeiojo4OhUKhHp//t7/9rXkbH374oTkjSQ0NDeZMRUWFOXPo0CFzxmXQYCQSMWckt+GTI0eOdNqWVXx8vFPOZShkYmKiOdPe3m7OuFwml8sjSXFx/TOly+U/pi63P5fhqtKRv/hYZWRkmDMux4PLUFZJGjVqlFOuLzALDgDgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF70+kdy95ba2lrTRN4VK1aYt1FXV2fOSDrpNPATcZ1KbLV9+3ZzZsKECU7bam5uNmeysrLMGZepv4cPHzZnJPXbJ/LGYrF+2Y5lovw3JSQkmDMux7hLxmVydHJysjkjuU3Rbmtr65eMy7R8ScrPzzdnrFP2ezopn0dAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAODFgB1GGovFTMNIXcTHxzvlWltbzZnc3Fxz5l//+pc5M3LkSHMmEomYM5Lb4FOXbQ0bZj9MExMTzRmp/4bGugy0dblMTU1N5ozkNsQ0JSXFnHEZypqammrOuOxvqedDNb/J5X6lv4bgSm73RaNGjTKdv6OjQ/v37z/l+XgEBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeDNhhpPHx8aZhpG1tbX24mu5chg26DOF0GXqak5NjzrgMMJWkqqoqc8ZloGZCQoI509zcbM5IUnJysjnjMujS5Xjt6+G835SUlNQv23G5TC4DQl2OIcltEK7LsVdXV2fOuF6m9vZ2c8Y6LLWn2+AREADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4MWCHkba2tpoGFboMkezo6DBnJCkzM9Oc+frrr82ZTz75xJyZOHGiOROLxcwZ19z+/fvNmfT0dHPGdXCny6DL/hpG6sJl+KvkNoSzP4eEWoXDYaecy36IRqPmzPDhw80Zl7VJbgOLrcOUe3p88wgIAOAFBQQA8MJUQKWlpZo+fbpSU1OVnZ2tBQsWqLKystt5WlpaVFJSopEjR2rEiBFauHChamtre3XRAIDBz1RAZWVlKikp0ZYtW/Tmm2+qra1Nc+bM6fYBTEuXLtWrr76ql19+WWVlZdq3b5+uvvrqXl84AGBwMz2LtWHDhm5fr169WtnZ2aqoqNDMmTPV0NCgP/7xj1qzZo1+/OMfS5JWrVql8847T1u2bNFFF13UeysHAAxqp/UcUENDg6T/vSqsoqJCbW1tKi4u7jrPpEmTNHr0aJWXlx/3d8RiMUWj0W4nAMDQ51xAnZ2duuuuu3TxxRdr8uTJkqSamholJiYe87LZnJwc1dTUHPf3lJaWKhKJdJ0KCgpclwQAGEScC6ikpETbtm3TCy+8cFoLWL58uRoaGrpOVVVVp/X7AACDg9M7mZYsWaLXXntNmzdv1tlnn931/dzcXLW2tqq+vr7bo6Da2lrl5uYe93eFw2HnN4kBAAYv0yOgIAi0ZMkSrV27Vm+//bbGjh3b7efTpk1TQkKCNm7c2PW9yspK7dmzRzNmzOidFQMAhgTTI6CSkhKtWbNG69evV2pqatfzOpFIRMnJyYpEIrr55pu1bNkyZWZmKi0tTXfeeadmzJjBK+AAAN2YCmjlypWSpFmzZnX7/qpVq3TjjTdKkv7v//5PcXFxWrhwoWKxmObOnavf/e53vbJYAMDQYSqgngxdTEpK0ooVK7RixQrnRUlSSkqKaaBkSkqKeRuNjY3mjCRNmTLFnDl48KA509raas6EQiFzJiMjw5yR3IYhjhgxwpxxGXLpOmi2vb3dnHHZD/01hNNlSK/ktv9c9p1LJj4+3pxxfZ7Z5dg7cOCAOeNyu3AZ7Cu5DSO1vjisp8cPs+AAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADghdMnovaHIAh6NH37qAkTJpi34TKBVpIKCgrMmZ07d5oz2dnZ5ozLdGHXycxZWVnmzKFDh8wZl/VZjp1vcpls7TIx2YXLfnCZHC25TcN2mUhfX19vzlim5B+VmJhozkhSS0uLOeMyXd5larnrZXLJHT582HT+nt4meAQEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF4M2GGkZ511lmkwZCQSMW+jsbHRnJGkvLw8c8Zl6KLLsM/W1lZzxmXgouS2z61DDV25DHeU3AZduuxzl2GfLoNmXQaESm6DT12H2vaHtrY2p5zLUNtQKGTOuBxDrtftF1984ZTrCzwCAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvBuww0iAITIMAXQZ3NjU1mTOS9NVXX5kzLkMuv/e97/XLdlyHkbpwuZ5cBneGw2FzRnIbJOkyaDY+Pt6c6a/BmJLb+izDg4/q7Ow0Z/pzUKrLwM/a2lpzZvTo0ebMhAkTzBlJ+vTTT82ZhoYG0/l7er3yCAgA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvBiww0g7OztNgwrz8/PN22hvbzdnJLehkImJieZMWlqaOeMy3NFl8KQkJScnmzNtbW3mTHNzsznjOmB1+PDh5szhw4fNmVgsZs5kZmaaM62treaM5Ha8ugwjdeFyHbmuzWWYq8vt1mUYaSQSMWckKT093Zyx3m57eh/JIyAAgBcUEADAC1MBlZaWavr06UpNTVV2drYWLFigysrKbueZNWuWQqFQt9Ntt93Wq4sGAAx+pgIqKytTSUmJtmzZojfffFNtbW2aM2fOMX+jv/XWW1VdXd11euyxx3p10QCAwc/0zNyGDRu6fb169WplZ2eroqJCM2fO7Pr+8OHDlZub2zsrBAAMSaf1HNDRj2n99qtznnvuOWVlZWny5Mlavny5Dh06dMLfEYvFFI1Gu50AAEOf8+smOzs7ddddd+niiy/W5MmTu75//fXXa8yYMcrPz9fWrVt17733qrKyUq+88spxf09paakefvhh12UAAAYp5wIqKSnRtm3b9O6773b7/uLFi7v+PWXKFOXl5Wn27NnauXOnxo8ff8zvWb58uZYtW9b1dTQaVUFBgeuyAACDhFMBLVmyRK+99po2b96ss88++6TnLSoqkiTt2LHjuAUUDocVDoddlgEAGMRMBRQEge68806tXbtWmzZt0tixY0+Z+fjjjyVJeXl5TgsEAAxNpgIqKSnRmjVrtH79eqWmpqqmpkbSkZEQycnJ2rlzp9asWaPLL79cI0eO1NatW7V06VLNnDlTU6dO7ZMLAAAYnEwFtHLlSklH3mz6TatWrdKNN96oxMREvfXWW3ryySfV3NysgoICLVy4UPfdd1+vLRgAMDSY/wR3MgUFBSorKzutBQEAzgwDdhr27t27FRfX87cpNTY2mrdx7rnnmjOS2/To3bt3mzMuE76PvjfLwvVFIKmpqeaMy75zmUjsymXCt8vzmy6XyeV6cp107jLhu6mpyZxx2Q8uk7pd31/ocplSUlLMGZfJ1t8eg9ZTe/bsMWesxxHTsAEAAxoFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvBiww0hjsZhpUOEf/vAH8zZO9WmuJ7J//35zxmVIaHp6ujlz3nnnmTOTJk0yZyS3YaT19fXmTG5urjkzcuRIc0aSqqurzZnPPvvMnInFYubMwYMHzZmkpCRzRpJpEPBRnZ2d5sy+ffvMmUOHDpkzLsNVJWnYMPtdpMuw1KqqKnPmrLPOMmck6fXXXzdnrNctw0gBAAMaBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4MeBmwR2dIdTTWUJHucyh6ujoMGdct2W9PK7baWtrM2dc5pJJbjOvXLbV0tJizrjO/nLZlss+d8m0t7f3S0bqv1lwLrdBl+24ZPpzWy7HQ2trqzkj9c/9V0/vx0OByz1jH9q7d68KCgp8LwMAcJqqqqpOOvR5wBVQZ2en9u3bp9TU1GOmYUejURUUFKiqqkppaWmeVugf++EI9sMR7Icj2A9HDIT9EASBGhsblZ+ff9JH0wPuT3BxcXGn/JiEtLS0M/oAO4r9cAT74Qj2wxHshyN874dIJHLK8/AiBACAFxQQAMCLQVVA4XBYDz74oMLhsO+leMV+OIL9cAT74Qj2wxGDaT8MuBchAADODIPqERAAYOiggAAAXlBAAAAvKCAAgBeDpoBWrFih73znO0pKSlJRUZH+8Y9/+F5Sv3vooYcUCoW6nSZNmuR7WX1u8+bNuuKKK5Sfn69QKKR169Z1+3kQBHrggQeUl5en5ORkFRcXa/v27X4W24dOtR9uvPHGY46PefPm+VlsHyktLdX06dOVmpqq7OxsLViwQJWVld3O09LSopKSEo0cOVIjRozQwoULVVtb62nFfaMn+2HWrFnHHA+33XabpxUf36AooBdffFHLli3Tgw8+qA8//FCFhYWaO3eu6urqfC+t351//vmqrq7uOr377ru+l9TnmpubVVhYqBUrVhz354899pieeuopPfPMM3r//feVkpKiuXPnOg0WHchOtR8kad68ed2Oj+eff74fV9j3ysrKVFJSoi1btujNN99UW1ub5syZo+bm5q7zLF26VK+++qpefvlllZWVad++fbr66qs9rrr39WQ/SNKtt97a7Xh47LHHPK34BIJB4MILLwxKSkq6vu7o6Ajy8/OD0tJSj6vqfw8++GBQWFjoexleSQrWrl3b9XVnZ2eQm5sbPP74413fq6+vD8LhcPD88897WGH/+PZ+CIIgWLRoUXDllVd6WY8vdXV1gaSgrKwsCIIj131CQkLw8ssvd53ns88+CyQF5eXlvpbZ5769H4IgCC699NLgZz/7mb9F9cCAfwTU2tqqiooKFRcXd30vLi5OxcXFKi8v97gyP7Zv3678/HyNGzdON9xwg/bs2eN7SV7t2rVLNTU13Y6PSCSioqKiM/L42LRpk7KzszVx4kTdfvvtOnjwoO8l9amGhgZJUmZmpiSpoqJCbW1t3Y6HSZMmafTo0UP6ePj2fjjqueeeU1ZWliZPnqzly5fr0KFDPpZ3QgNuGOm3HThwQB0dHcrJyen2/ZycHP3nP//xtCo/ioqKtHr1ak2cOFHV1dV6+OGH9aMf/Ujbtm1Tamqq7+V5UVNTI0nHPT6O/uxMMW/ePF199dUaO3asdu7cqV/+8peaP3++ysvLFR8f73t5va6zs1N33XWXLr74Yk2ePFnSkeMhMTFR6enp3c47lI+H4+0HSbr++us1ZswY5efna+vWrbr33ntVWVmpV155xeNquxvwBYT/mT9/fte/p06dqqKiIo0ZM0YvvfSSbr75Zo8rw0Bw7bXXdv17ypQpmjp1qsaPH69NmzZp9uzZHlfWN0pKSrRt27Yz4nnQkznRfli8eHHXv6dMmaK8vDzNnj1bO3fu1Pjx4/t7mcc14P8El5WVpfj4+GNexVJbW6vc3FxPqxoY0tPTde6552rHjh2+l+LN0WOA4+NY48aNU1ZW1pA8PpYsWaLXXntN77zzTrePb8nNzVVra6vq6+u7nX+oHg8n2g/HU1RUJEkD6ngY8AWUmJioadOmaePGjV3f6+zs1MaNGzVjxgyPK/OvqalJO3fuVF5enu+leDN27Fjl5uZ2Oz6i0ajef//9M/742Lt3rw4ePDikjo8gCLRkyRKtXbtWb7/9tsaOHdvt59OmTVNCQkK346GyslJ79uwZUsfDqfbD8Xz88ceSNLCOB9+vguiJF154IQiHw8Hq1auDTz/9NFi8eHGQnp4e1NTU+F5av/r5z38ebNq0Kdi1a1fw3nvvBcXFxUFWVlZQV1fne2l9qrGxMfjoo4+Cjz76KJAUPPHEE8FHH30U7N69OwiCIPj1r38dpKenB+vXrw+2bt0aXHnllcHYsWODw4cPe1557zrZfmhsbAzuvvvuoLy8PNi1a1fw1ltvBd///veDc845J2hpafG99F5z++23B5FIJNi0aVNQXV3ddTp06FDXeW677bZg9OjRwdtvvx188MEHwYwZM4IZM2Z4XHXvO9V+2LFjR/DII48EH3zwQbBr165g/fr1wbhx44KZM2d6Xnl3g6KAgiAInn766WD06NFBYmJicOGFFwZbtmzxvaR+d8011wR5eXlBYmJicNZZZwXXXHNNsGPHDt/L6nPvvPNOIOmY06JFi4IgOPJS7Pvvvz/IyckJwuFwMHv27KCystLvovvAyfbDoUOHgjlz5gSjRo0KEhISgjFjxgS33nrrkPtP2vEuv6Rg1apVXec5fPhwcMcddwQZGRnB8OHDg6uuuiqorq72t+g+cKr9sGfPnmDmzJlBZmZmEA6HgwkTJgS/+MUvgoaGBr8L/xY+jgEA4MWAfw4IADA0UUAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMCL/weej2Pr0yPaNAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"import time\n",
@@ -1889,126 +1482,13 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 12%|█▎ | 25/200 [00:09<01:04, 2.72it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 25%|██▌ | 50/200 [00:19<00:58, 2.56it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 38%|███▊ | 76/200 [00:29<00:47, 2.62it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 52%|█████▏ | 103/200 [00:39<00:32, 2.94it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 66%|██████▋ | 133/200 [00:49<00:22, 2.93it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 80%|████████ | 160/200 [00:59<00:15, 2.55it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 92%|█████████▏| 184/200 [01:09<00:06, 2.37it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "sampling loop time step: 100%|██████████| 200/200 [01:15<00:00, 2.64it/s]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# 采样64个图片\n",
"unet_model.set_train(False)\n",
@@ -2017,34 +1497,13 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 30,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAk3ElEQVR4nO3de2zV9f3H8Vcp7WmL7YFSepOCgBecXLYxQebG2GiAmjhQsnnZH7gsGl0xU+a2sHjfsu6niTNbmP6zyUzmdfMSzYZTlDIVXGA6xi6NdEUg0AKF9tDbaWm/vz8I3Sq3vt+259OW5yM5CZyeV7+ffs739MWh57ybFkVRJAAAUmxU6AUAAM5NFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEFQQACAIEaHXsDH9fT0aN++fcrNzVVaWlro5QAAjKIo0tGjR1VaWqpRo07/PGfIFdC+fftUVlYWehkAgE9oz549mjhx4mk/PuQKKDc3V5KUnp5uegY0erT9S/E+w4rFYubMsWPHzJkz/cvhdHp6elKSkY7/K8fKs+ee+zY9Pd2ckXx7nkwmzZmSkhJz5tChQ+aM57yTpI6ODnPGcz95Mh5D/RxP5UQ0z15Y1xdFkTo7O3u/n5/OoN37a9eu1cMPP6z6+nrNnj1bv/jFLzR37tyz5k7ceWlpaaY70nOnewsoVccayhmvVK3PUyTenGd9noLkHPcb6ud4Kg2lvRiUFyE8++yzWr16te677z799a9/1ezZs7VkyRIdOHBgMA4HABiGBqWAHnnkEd1888365je/qU996lN6/PHHlZOTo1//+teDcTgAwDA04AXU2dmpbdu2qby8/L8HGTVK5eXl2rx580m3TyaTSiQSfS4AgJFvwAvo0KFD6u7uVlFRUZ/ri4qKVF9ff9Ltq6qqFI/Hey+8Ag4Azg3B34i6Zs0aNTc391727NkTekkAgBQY8FfBFRQUKD09XQ0NDX2ub2hoUHFx8Um3j8Virpc1AwCGtwF/BpSZmak5c+Zow4YNvdf19PRow4YNmj9//kAfDgAwTA3K+4BWr16tlStX6nOf+5zmzp2rRx99VK2trfrmN785GIcDAAxDg1JA1113nQ4ePKh7771X9fX1+vSnP63169ef9MIEAMC5Ky1K5QyIfkgkEorH48rKyhr0d+x6v3TPz6y6u7vNGc+75T3H8WS8PHvu2Yfx48ebM5KUl5dnznjeYL18+XJzprq62pzxvvnbM8LHcx55J1ZYeb+XeMbWjMRRPFZRFKmjo0PNzc1nfEwFfxUcAODcRAEBAIKggAAAQVBAAIAgKCAAQBAUEAAgCAoIABAEBQQACIICAgAEQQEBAIKggAAAQVBAAIAgBmUa9kBIT083DfXr6upyHcOjpKTEnDnVryM/m4yMDHPGM0TSOwjRc6zRo+2nnGcfvF/TDTfcYM788Y9/NGeWLVtmzuzatcuc8f6yx4MHD5ozhw8fNmc8961nmGYqh32mahhpqga5SoM3wJRnQACAICggAEAQFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAhiyE7D7unpMU2V9UxZ9k6TveCCC8yZI0eOmDPFxcXmjGdC9d69e80ZyTf113M/TZw40ZxpaWkxZyRpwoQJ5syTTz5pzrzxxhvmzGc+8xlzZtu2beaMJB06dMic8UyX7+7uNmc851AqJ76nivdr8uQ8j/X+4BkQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAAQxZIeRWgfmDdawvFNJJpPmjGfIZUFBgTnT09Njzhw+fNickXz7EIvFzJmFCxeaM42NjeaMJP3lL38xZyoqKsyZSZMmmTOe+6m0tNSckaRNmzaZM+PGjTNnPI9bzznkHU7rGZaaKt5hpJ4hzJ7vK/3BMyAAQBAUEAAgCAoIABAEBQQACIICAgAEQQEBAIKggAAAQVBAAIAgKCAAQBAUEAAgCAoIABAEBQQACGLEDCP1DOZLT083ZyTfYL6cnBxzxjOo0bMPnuGOktTa2mrOzJkzx5ypra01Zzo6OswZSVq2bJk589Zbb5kzH330kTnz7rvvmjPe+9bjuuuuM2caGhrMmTfffNOc8T7WPY8n75DQVB3H8/1rsIY98wwIABAEBQQACGLAC+j+++9XWlpan8v06dMH+jAAgGFuUH4GdNlll+mNN97470FGD9kfNQEAAhmUZhg9erSKi4sH41MDAEaIQfkZ0IcffqjS0lJNnTpV3/jGN7R79+7T3jaZTCqRSPS5AABGvgEvoHnz5mndunVav369HnvsMdXV1emLX/yijh49esrbV1VVKR6P917KysoGekkAgCFowAuooqJCX/va1zRr1iwtWbJEf/jDH9TU1KTnnnvulLdfs2aNmpubey979uwZ6CUBAIagQX91wNixY3XxxRdr586dp/x4LBZL6ZvlAABDw6C/D6ilpUW1tbUqKSkZ7EMBAIaRAS+gu+66S9XV1dq1a5feffddXXPNNUpPT9cNN9ww0IcCAAxjA/5fcHv37tUNN9ygxsZGTZgwQV/4whe0ZcsWTZgwYaAPBQAYxga8gJ555pkB+TzWQXueAXteyWTSnBk1yv5k83SvHDwTz9DTeDxuznhzF1xwgTnT3t5uzhw4cMCckaR//OMf5swVV1xhzvzkJz8xZzwDVnNzc80ZyTfEtLu725zZunWrOdPW1mbOePfBw/NY9+zdYA0ITSVmwQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEGmRdernIEskEorH48rKyjIN2/N8GTNmzDBnJKmgoMCcmTZtmjnjGVA4erR9vmxjY6M543XhhReaM4lEwpzxDGWVfENtS0tLzRnPwErPEFzvfbtlyxZzZvz48ebM3//+d3Pm85//vDlTV1dnzkjS+++/b854vj+0tLSYM56hrJLve+WxY8fMx0gmk2publZeXt5pb8czIABAEBQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAARhH52cIj09PaZp2B6eCdWS1NHRYc5MmjTJnNmzZ48545lI7N3nrKwscyY/P9+cSdUkcW/uq1/9qjkzbtw4cyYzM9Ocefvtt80ZSZo5c6Y5c+mll5ozu3btMmc8E989jyVJWr58uTnjmXS+evVqcyYjI8OckXyPd+vX1N+J2zwDAgAEQQEBAIKggAAAQVBAAIAgKCAAQBAUEAAgCAoIABAEBQQACIICAgAEQQEBAIKggAAAQVBAAIAghuww0vT0dNPQvGQyaT7G9OnTzRnJN0AxJyfHnJk8ebI54+HZO0k6cuSIOeMZ1Pif//zHnJkwYYI5I0nnn3++OfPuu++aM4lEwpz529/+Zs6UlJSYM5LU0tJizuzdu9ecyc7ONmdmzJhhzsyZM8eckaR33nnHnPEMBPbsQ1dXlzkj9X9Q6P9KT093HetseAYEAAiCAgIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEEM2WGkXV1dpmGk3d3d5mMUFxebM5Jv6GJeXp45c/jwYXMmFouZM9598AxD9OyDZ4Bpbm6uOSP5Bqw2NDSYMwcPHjRnPLxDWcvKysyZQ4cOmTOXXHKJOZOfn2/OeO4jSaqpqTFnLrvsMnPm61//ujnz+9//3pyRpM7OTnPG8r3YgmdAAIAgKCAAQBDmAtq0aZOuvvpqlZaWKi0tTS+99FKfj0dRpHvvvVclJSXKzs5WeXm5Pvzww4FaLwBghDAXUGtrq2bPnq21a9ee8uMPPfSQfv7zn+vxxx/Xe++9pzFjxmjJkiXq6Oj4xIsFAIwc5hchVFRUqKKi4pQfi6JIjz76qO6++24tW7ZMkvTkk0+qqKhIL730kq6//vpPtloAwIgxoD8DqqurU319vcrLy3uvi8fjmjdvnjZv3nzKTDKZVCKR6HMBAIx8A1pA9fX1kqSioqI+1xcVFfV+7OOqqqoUj8d7L56XfwIAhp/gr4Jbs2aNmpubey979uwJvSQAQAoMaAGdeEPjx9/01dDQcNo3O8ZiMeXl5fW5AABGvgEtoClTpqi4uFgbNmzovS6RSOi9997T/PnzB/JQAIBhzvwquJaWFu3cubP373V1dfrggw+Un5+vSZMm6Y477tCPf/xjXXTRRZoyZYruuecelZaWavny5QO5bgDAMGcuoK1bt+rLX/5y799Xr14tSVq5cqXWrVun73//+2ptbdUtt9yipqYmfeELX9D69euVlZU1cKsGAAx75gJauHChoig67cfT0tL04IMP6sEHH/xECxs1apRpAF56err5GMeOHTNnpOPPAq3i8bg5M2bMGHNm9Gj7fNnx48ebM5JvwGNmZqY54xk029TUZM5Icv1DyXPueUyfPt2c8Qy0laTCwkJzJicnx5zZsWOHOePhfSO8Z3Cn560kyWTSnPH+vNxzTlgHAp+pI/p8XvNKAAAYABQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAARhH52cItZp2JbbnuCdmNzfSa//q7W11ZzxTOueMGGCOeP9VRnWCbmSb+/y8/PNmZ6eHnNG8u15UVGROeM59zx755k+LvmmR2/fvt2c8Zx7F154oTnjnYbtedx6ZGRkmDOeCdqS73ul9fHENGwAwJBGAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCCG7DBSq9Gj7V9KQ0OD61iewYZjxowxZ9rb282Zrq4uc8Y7uNOju7vbnPHs3dGjR80ZyTeM1HPupaenmzNtbW3mjGfwpORbn+c88gwjraurM2cuvfRSc0byDdzt7Ow0Zzz3rec4ku8x6NmHfn3eQfmsAACcBQUEAAiCAgIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCGLLDSKMoMt0+MzPTfIwDBw6YM5JvMJ9nsKhnMKZnQKF3YKWHZ3BnS0vLIKzk1KznnSQdPnx4EFZyskQiYc54ziHJd054hpE2NTWZM57z4corrzRnJCk7O9uc8Qz79HxNnuNIvvt2sL5H8AwIABAEBQQACIICAgAEQQEBAIKggAAAQVBAAIAgKCAAQBAUEAAgCAoIABAEBQQACIICAgAEQQEBAIIYssNI09LSTAPwPIP5amtrzRlJmjNnjjmTkZFhzuTl5Zkznn1IJpPmjCTFYjFzxrMPbW1t5oxnqKjk2z/PoNlUDbkcM2aMOSNJ48aNM2eysrLMmQkTJpgz+/fvN2c8Q08lKScnx5zxPJ48A449w18l32PDeqz+HoNnQACAICggAEAQ5gLatGmTrr76apWWliotLU0vvfRSn4/fdNNNvf99duKydOnSgVovAGCEMBdQa2urZs+erbVr1572NkuXLtX+/ft7L08//fQnWiQAYOQxvwihoqJCFRUVZ7xNLBZTcXGxe1EAgJFvUH4GtHHjRhUWFuqSSy7RbbfdpsbGxtPeNplMKpFI9LkAAEa+AS+gpUuX6sknn9SGDRv0f//3f6qurlZFRcVpX0JaVVWleDzeeykrKxvoJQEAhqABfx/Q9ddf3/vnmTNnatasWZo2bZo2btyoRYsWnXT7NWvWaPXq1b1/TyQSlBAAnAMG/WXYU6dOVUFBgXbu3HnKj8diMeXl5fW5AABGvkEvoL1796qxsVElJSWDfSgAwDBi/i+4lpaWPs9m6urq9MEHHyg/P1/5+fl64IEHtGLFChUXF6u2tlbf//73deGFF2rJkiUDunAAwPBmLqCtW7fqy1/+cu/fT/z8ZuXKlXrssce0fft2/eY3v1FTU5NKS0u1ePFi/ehHP3LNDQMAjFzmAlq4cOEZB8299tprn2hBXpbBpSd0dXW5jpWbm2vOtLS0mDNHjx41ZzwDKzMzM80ZSRo92v4aFs+eewY1etbmPVZ6ero541mfZ/ikdxip5+0Qnq/J8w9Tz9BTz+NP8t23noznvvWcq5JvGKnn+2t/MAsOABAEBQQACIICAgAEQQEBAIKggAAAQVBAAIAgKCAAQBAUEAAgCAoIABAEBQQACIICAgAEQQEBAIKggAAAQQz4r+QOxTNN1jsFuqCgwJxJ1ZRlzzRsT0aSsrOzzRnPJF7P9PH29nZzxsvzNXkyHseOHUvJcaTUTfj2fE2ec0jyPQY9E74LCwvNGe/jNhXnXn+PwTMgAEAQFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAjinB5Gmp+f7zpWWlqaOdPZ2WnOZGVlmTNNTU3mjHdQY1tbmznjGcrq2e+cnBxzRpISiYQ54x1qmwqex4Xk2z/P4E7P3nkety0tLeaM5DvHPY/14uJic8bzWJJ8Q0w9j8H+4BkQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAAQxZIeRdnd3mwbgeQbzTZgwwZyRpK6uLlfOyjtI0qqjo8OV8ww1TNUwUs/avI4dO2bOnHfeeeaM537ynkOeYyWTSXPGM+yzsLDQnImiyJyRfENZPcfKzs42Z7wDQj05hpECAEYUCggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAAQxZIeRjh492jQAL1UDACWps7PTnMnNzTVnjhw5Ys54hn3m5eWZM5JvH9LT01OSycrKMmek4+edlXeYq5VnHzzngyRlZGSYM54Bq2PGjDFnmpubzRnvOT516lRzJlXfHzxDcCXfYFHr99f+3p5nQACAICggAEAQpgKqqqrS5ZdfrtzcXBUWFmr58uWqqanpc5uOjg5VVlZq/PjxOu+887RixQo1NDQM6KIBAMOfqYCqq6tVWVmpLVu26PXXX1dXV5cWL16s1tbW3tvceeedeuWVV/T888+rurpa+/bt07XXXjvgCwcADG+mn7iuX7++z9/XrVunwsJCbdu2TQsWLFBzc7N+9atf6amnntJXvvIVSdITTzyhSy+9VFu2bNEVV1wxcCsHAAxrn+hnQCdejZKfny9J2rZtm7q6ulReXt57m+nTp2vSpEnavHnzKT9HMplUIpHocwEAjHzuAurp6dEdd9yhK6+8UjNmzJAk1dfXKzMzU2PHju1z26KiItXX15/y81RVVSkej/deysrKvEsCAAwj7gKqrKzUjh079Mwzz3yiBaxZs0bNzc29lz179nyizwcAGB5cb0RdtWqVXn31VW3atEkTJ07svb64uFidnZ1qamrq8yyooaFBxcXFp/xcsVhMsVjMswwAwDBmegYURZFWrVqlF198UW+++aamTJnS5+Nz5sxRRkaGNmzY0HtdTU2Ndu/erfnz5w/MigEAI4LpGVBlZaWeeuopvfzyy8rNze39uU48Hld2drbi8bi+9a1vafXq1crPz1deXp5uv/12zZ8/n1fAAQD6MBXQY489JklauHBhn+ufeOIJ3XTTTZKkn/3sZxo1apRWrFihZDKpJUuW6Je//OWALBYAMHKYCqg/A+aysrK0du1arV271r2o/h7rf/X09JiP0djYaM5IOulVfv3h+TmXZ7hjV1eXOeMdWJlMJs2ZnJwcc8YzaNazD16ewZ2ewaKec8izNsm356nKeB7rRUVF5owk7d+/35zxvJXkggsuMGc8g3Mlqbu725zxDDDtD2bBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAjfONUUsE7J9Ux0PnjwoDkjSZ/61KfMGc8U6OzsbHOmo6PDnGlvbzdnJN/XdOzYMXPGM/XXcxwpdZOtPcfxfE2eydGS7/GUmZlpzmRlZZkznnP8yJEj5ozku28PHTpkzngm7Hun2Hd2drpyFv39/s0zIABAEBQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIYsgOI01PT1daWlq/b59MJs3H2LVrlzkjSeXl5eZMbm6uOeMZUHjgwAFzxjPsU5JaW1vNGc8AU89ASOsw2xM8Ax49AzU967M8Hk7w7J0kdXV1mTOeAauxWMyc8ZxD3gGcU6dONWcOHz5szuTl5ZkznvNB8g2o9Z5HZ8MzIABAEBQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIYsgOI7XyDJFsbGx0Hau7u9ucaW9vN2c8wwY9Q089wx0l3zBSz/BJz7BPzzBNSTp27Jg547mfPOerZyCkd4ikZ0CtZ8hldna2OeN53Hr2W/IN9/UMES4sLDRnPN+HJN85Yd2//g7b5RkQACAICggAEAQFBAAIggICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAAQxZIeRdnZ2moY8ZmRkmI/hGTwp+QYbetZXUlJizvzpT38yZxKJhDkjSZ/+9KfNmY6ODnOmubnZnPEO4fQYN26cOdPW1mbOHDp0yJzxDMaUfOfreeedZ84UFRWZM57huXl5eeaMJB05ciQlmdLSUnPm0ksvNWck6YMPPjBnPAN3+4NnQACAICggAEAQpgKqqqrS5ZdfrtzcXBUWFmr58uWqqanpc5uFCxcqLS2tz+XWW28d0EUDAIY/UwFVV1ersrJSW7Zs0euvv66uri4tXrz4pF9MdvPNN2v//v29l4ceemhAFw0AGP5ML0JYv359n7+vW7dOhYWF2rZtmxYsWNB7fU5OjoqLiwdmhQCAEekT/QzoxKuT8vPz+1z/29/+VgUFBZoxY4bWrFlzxlf8JJNJJRKJPhcAwMjnfhl2T0+P7rjjDl155ZWaMWNG7/U33nijJk+erNLSUm3fvl0/+MEPVFNToxdeeOGUn6eqqkoPPPCAdxkAgGHKXUCVlZXasWOH3n777T7X33LLLb1/njlzpkpKSrRo0SLV1tZq2rRpJ32eNWvWaPXq1b1/TyQSKisr8y4LADBMuApo1apVevXVV7Vp0yZNnDjxjLedN2+eJGnnzp2nLKBYLKZYLOZZBgBgGDMVUBRFuv322/Xiiy9q48aNmjJlylkzJ95163lXPwBg5DIVUGVlpZ566im9/PLLys3NVX19vSQpHo8rOztbtbW1euqpp3TVVVdp/Pjx2r59u+68804tWLBAs2bNGpQvAAAwPJkK6LHHHpN0/M2m/+uJJ57QTTfdpMzMTL3xxht69NFH1draqrKyMq1YsUJ33333gC0YADAymP8L7kzKyspUXV39iRYEADg3DNlp2LFYzDSBtaury3yMnp4ec0byTVo+24s1TuXf//63OfPaa6+ZM1lZWeaMJF122WXmjHc6s5VnmrPkm/obj8fNmYKCAnOmu7vbnPn4e/T6y/PCoI8++sic+d3vfmfOXHXVVebM3LlzzRnJN4Hcc99mZ2ebMx+fQNNfnnP8bE8+vLdnGCkAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAiCAgIABJEWWafMDbJEIqF4PK5x48Zp1Kj+92NbW5v5WJ6hfJJUWFhozlx00UXmTHt7uzmzbds2c8Z7CowZM8ac8QyA9QxqHDdunDkj+X5xYlFRkTnj2btEImHOdHR0mDOS7/G0e/duc2bXrl3mTE5OjjkzadIkc0aSDh48aM54Bu6ef/755syf//xnc0aSOjs7zRnrcNooitTe3q7m5mbl5eWd9nY8AwIABEEBAQCCoIAAAEFQQACAICggAEAQFBAAIAgKCAAQBAUEAAiCAgIABEEBAQCCoIAAAEGMDr2AjzsxlyyKItPcsFSOtPPMMzt27FhKMp598O6dZx88x/Icp7u725yRfHve1dVlznjmcXmO48lIvn3w7Hmqzlfv+ZCqcy9Vj3Vvzpr53+/jZzLkhpHu3btXZWVloZcBAPiE9uzZo4kTJ57240OugHp6erRv3z7l5uaeNK06kUiorKxMe/bsOeOE1ZGOfTiOfTiOfTiOfThuKOxDFEU6evSoSktLz/hbDYbcf8GNGjXqjI0pSXl5eef0CXYC+3Ac+3Ac+3Ac+3Bc6H2Ix+NnvQ0vQgAABEEBAQCCGFYFFIvFdN9995l/O99Iwz4cxz4cxz4cxz4cN5z2Yci9CAEAcG4YVs+AAAAjBwUEAAiCAgIABEEBAQCCGDYFtHbtWl1wwQXKysrSvHnz9Je//CX0klLu/vvvV1paWp/L9OnTQy9r0G3atElXX321SktLlZaWppdeeqnPx6Mo0r333quSkhJlZ2ervLxcH374YZjFDqKz7cNNN9100vmxdOnSMIsdJFVVVbr88suVm5urwsJCLV++XDU1NX1u09HRocrKSo0fP17nnXeeVqxYoYaGhkArHhz92YeFCxeedD7ceuutgVZ8asOigJ599lmtXr1a9913n/76179q9uzZWrJkiQ4cOBB6aSl32WWXaf/+/b2Xt99+O/SSBl1ra6tmz56ttWvXnvLjDz30kH7+85/r8ccf13vvvacxY8ZoyZIl6ujoSPFKB9fZ9kGSli5d2uf8ePrpp1O4wsFXXV2tyspKbdmyRa+//rq6urq0ePFitba29t7mzjvv1CuvvKLnn39e1dXV2rdvn6699tqAqx54/dkHSbr55pv7nA8PPfRQoBWfRjQMzJ07N6qsrOz9e3d3d1RaWhpVVVUFXFXq3XfffdHs2bNDLyMoSdGLL77Y+/eenp6ouLg4evjhh3uva2pqimKxWPT0008HWGFqfHwfoiiKVq5cGS1btizIekI5cOBAJCmqrq6Oouj4fZ+RkRE9//zzvbf517/+FUmKNm/eHGqZg+7j+xBFUfSlL30p+s53vhNuUf0w5J8BdXZ2atu2bSovL++9btSoUSovL9fmzZsDriyMDz/8UKWlpZo6daq+8Y1vaPfu3aGXFFRdXZ3q6+v7nB/xeFzz5s07J8+PjRs3qrCwUJdccoluu+02NTY2hl7SoGpubpYk5efnS5K2bdumrq6uPufD9OnTNWnSpBF9Pnx8H0747W9/q4KCAs2YMUNr1qxRW1tbiOWd1pAbRvpxhw4dUnd3t4qKivpcX1RUpH//+9+BVhXGvHnztG7dOl1yySXav3+/HnjgAX3xi1/Ujh07lJubG3p5QdTX10vSKc+PEx87VyxdulTXXnutpkyZotraWv3whz9URUWFNm/erPT09NDLG3A9PT264447dOWVV2rGjBmSjp8PmZmZGjt2bJ/bjuTz4VT7IEk33nijJk+erNLSUm3fvl0/+MEPVFNToxdeeCHgavsa8gWE/6qoqOj986xZszRv3jxNnjxZzz33nL71rW8FXBmGguuvv773zzNnztSsWbM0bdo0bdy4UYsWLQq4ssFRWVmpHTt2nBM/Bz2T0+3DLbfc0vvnmTNnqqSkRIsWLVJtba2mTZuW6mWe0pD/L7iCggKlp6ef9CqWhoYGFRcXB1rV0DB27FhdfPHF2rlzZ+ilBHPiHOD8ONnUqVNVUFAwIs+PVatW6dVXX9Vbb73V59e3FBcXq7OzU01NTX1uP1LPh9Ptw6nMmzdPkobU+TDkCygzM1Nz5szRhg0beq/r6enRhg0bNH/+/IArC6+lpUW1tbUqKSkJvZRgpkyZouLi4j7nRyKR0HvvvXfOnx979+5VY2PjiDo/oijSqlWr9OKLL+rNN9/UlClT+nx8zpw5ysjI6HM+1NTUaPfu3SPqfDjbPpzKBx98IElD63wI/SqI/njmmWeiWCwWrVu3LvrnP/8Z3XLLLdHYsWOj+vr60EtLqe9+97vRxo0bo7q6uuidd96JysvLo4KCgujAgQOhlzaojh49Gr3//vvR+++/H0mKHnnkkej999+PPvrooyiKouinP/1pNHbs2Ojll1+Otm/fHi1btiyaMmVK1N7eHnjlA+tM+3D06NHorrvuijZv3hzV1dVFb7zxRvTZz342uuiii6KOjo7QSx8wt912WxSPx6ONGzdG+/fv7720tbX13ubWW2+NJk2aFL355pvR1q1bo/nz50fz588PuOqBd7Z92LlzZ/Tggw9GW7dujerq6qKXX345mjp1arRgwYLAK+9rWBRQFEXRL37xi2jSpElRZmZmNHfu3GjLli2hl5Ry1113XVRSUhJlZmZG559/fnTddddFO3fuDL2sQffWW29Fkk66rFy5Moqi4y/Fvueee6KioqIoFotFixYtimpqasIuehCcaR/a2tqixYsXRxMmTIgyMjKiyZMnRzfffPOI+0faqb5+SdETTzzRe5v29vbo29/+djRu3LgoJycnuuaaa6L9+/eHW/QgONs+7N69O1qwYEGUn58fxWKx6MILL4y+973vRc3NzWEX/jH8OgYAQBBD/mdAAICRiQICAARBAQEAgqCAAABBUEAAgCAoIABAEBQQACAICggAEAQFBAAIggICAARBAQEAgqCAAABB/D8v6nBF9o5BbwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# 展示一个随机效果\n",
"random_index = 5\n",
@@ -2068,31 +1527,13 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "MovieWriter ffmpeg unavailable; using Pillow instead.\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkxElEQVR4nO3de2zV9f3H8Vdb2tMWyqml9CalAiqoXJxOsFMZSgN0icFJNm9ZcHMaXTFD5iUY71vS/TRxToOaLJvMxHsyJXMLTnGUTIvOKiLb7KB0UKQtgraHtvR6vr8/CN0qILw/nHM+p+X5SE5Czzmvfj/n2+85L07POe+mBEEQCACABEv1vQAAwMmJAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgxSjfC/iqaDSq3bt3KycnRykpKb6XAwAwCoJA+/fvV0lJiVJTj/48J+kKaPfu3SotLfW9DADACWpqatKECROOennSFVBOTo4kKRQKmZ4BuTxbGhgYMGckKS0tzZz5uv8FxDLjoqioyCl36623mjN1dXXmzJ///Gdz5tBxZNXV1WXO5ObmmjMux+vevXvNme7ubnNGcrtNP/7xj82Zf//73+bM2rVrzZm2tjZzRpLS09PNGZf7bV9fX0K2I7kde1ZBEKinp+eY98O4FdCqVav0yCOPqKWlRbNmzdITTzyh2bNnHzN3aOekpKTEvYBcfxCJ2laifgXpUqiSlJWVZc5kZGSYM4ksb5ecy/5z+dm6rM31GHLZVmZmpjmTqONhJN7XE3mbXB1rW3H5L/ZLL72kFStW6P7779eHH36oWbNmaeHChdqzZ088NgcAGIbiUkCPPvqobrzxRv3whz/U2WefraefflrZ2dn63e9+F4/NAQCGoZgXUG9vr+rq6lRRUfHfjaSmqqKiQrW1tYddv6enR5FIZMgJADDyxbyA9u7dq4GBARUWFg45v7CwUC0tLYddv7q6WuFwePDEO+AA4OTg/YOoK1euVHt7++CpqanJ95IAAAkQ83fB5efnKy0tTa2trUPOb21tPeLbfUOhkEKhUKyXAQBIcjF/BpSRkaHzzz9f69atGzwvGo1q3bp1Ki8vj/XmAADDVFw+B7RixQotXbpU3/zmNzV79mw99thj6uzs1A9/+MN4bA4AMAzFpYCuuuoqff7557rvvvvU0tKic889V2vXrj3sjQkAgJNXShAEge9F/K9IJKJwOKzMzEzTJ3aj0WgcVzWUyy5z+fS2y21y+ZTzjBkzzBlJuvvuu82Z8ePHmzOffvqpOTNlyhRzRnJb3yeffGLOvPHGG+bMj370I3Nm8uTJ5owk5eXlmTP/+te/zJmvmxN2NH/5y1/MmSeffNKckdxuk8vjQ39/f0IykvvkE4sgCNTd3a329naNHTv2qNfz/i44AMDJiQICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABexGUatg8uA/YGBgactuUyWNRlSKjLdkaNsv9IXTKuuZ6eHnMmMzPTnGlubjZnJKm7u9uccdkPs2fPNmd2795tzrjq6+szZxobG82Zffv2mTM/+MEPzJmGhgZzRpK2b99uzrgcQy5c77cuw1Ktg5GPdxs8AwIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXSTsNOxqNmiZIu0ybduUyTTZR07Dz8/PNmXnz5pkzktTV1eWUs8rOzjZnXNfW0dFhzoRCIXOms7PTnMnKykrIdiRpx44dCdlWf3+/OfPxxx+bM19++aU5I7lNb7dOjh4O4vX4yjMgAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPAiaYeRJoLLsE/JbRipy7Z6e3vNmcrKSnOmvb3dnJHcblN9fb05k56ebs7s37/fnHHdVmFhoTnjMrgzNzfXnElLSzNnJLchoS6ZsrIyc6apqcmccd0P3d3d5syoUfaHVZfHFFeJ3Nax8AwIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALxI2mGkqampSklJOe7ruwzYS+RQvmg0as5Ybv8hRUVF5kxbW5s5I0n/+Mc/zJl33nnHnLn66qvNGZfBnZLbANiuri6nbVnt2LHDnHE5HiQpOzvbnKmtrTVnXIbTTp8+3ZwpLS01ZyTplFNOMWc6OjrMGZf7uuvjV6KGKR/X943LdwUA4BgoIACAFzEvoAceeEApKSlDTtOmTYv1ZgAAw1xcXgM655xz9NZbb/13Iw5/oAkAMLLFpRlGjRrl/OInAODkEJfXgLZu3aqSkhJNnjxZ1113nXbu3HnU6/b09CgSiQw5AQBGvpgX0Jw5c7R69WqtXbtWTz31lBobG3XJJZdo//79R7x+dXW1wuHw4Mn17ZIAgOEl5gVUWVmp733ve5o5c6YWLlyoP//5z2pra9PLL798xOuvXLlS7e3tg6empqZYLwkAkITi/u6A3NxcnXnmmdq2bdsRLw+FQgqFQvFeBgAgycT9c0AdHR1qaGhQcXFxvDcFABhGYl5At99+u2pqavSf//xH7777rr773e8qLS1N11xzTaw3BQAYxmL+K7hdu3bpmmuu0b59+zR+/HhdfPHF2rhxo8aPHx/rTQEAhrGYF9CLL74Yk+8TjUZNA/pchvm5chnm57I+l9fG8vPzzZldu3aZM5LbgMf09HRzJhwOmzPjxo0zZyRp+/bt5syZZ55pzowePdqccRkI6bof3nzzTXNm7dq15syvf/1rc6anp8ecycnJMWckt/tge3u7OZPIYaSJ2NbxXp9ZcAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgRdz/IJ2rlJSUuA8YTeQwv4GBAXPGZQhnNBo1ZwoLC80ZSSorKzNnJkyYYM64DNTs7+83Z6SDf7/Kqru725zJzMw0ZyKRiDlz4MABc0aS8vLyzBmXifdffvmlOeNyvO7du9eckdxu0759+8yZRA5TdnkschmEe1zfNy7fFQCAY6CAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMCLpJ2GnQiJnEDroqioyJw57bTTzJni4mJzRpI6OzvNmZ6eHnPm448/NmcyMjLMGcltkrHLtG6XadMu+85l8rEkfeMb3zBnXI4jl/3gMrF81Ci3h7rTTz/dnPn000/NGdfJ/C7iNdnaRfKsBABwUqGAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAF0k7jDSRw/kSIRqNmjMFBQXmzIEDB8yZ/v5+c0ZyG47pMnxy8uTJ5kxvb68545orKyszZ9ra2swZl5/T9u3bzRlJSk9PN2e+9a1vmTPl5eXmTH19vTlzyimnmDOS9Je//MWccbmvu3B9jHRZn3Vw8/GujWdAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOBF0g4jTU1NNQ3AcxnM5zrMzyXnMtzx3HPPNWfS0tLMmVGj3A6D3Nxcc+ZPf/qTOdPV1WXOnHfeeeaMJG3bts2cKSkpMWdOPfVUc8ZlUOq7775rzkhuQ2M///xzc6a9vd2c2bVrlzkzbtw4c0aSWltbzRmXYZ+pqYl7LmAdLOqaOR48AwIAeEEBAQC8MBfQhg0bdPnll6ukpEQpKSl67bXXhlweBIHuu+8+FRcXKysrSxUVFdq6dWus1gsAGCHMBdTZ2alZs2Zp1apVR7z84Ycf1uOPP66nn35a7733nkaPHq2FCxequ7v7hBcLABg5zK8+V1ZWqrKy8oiXBUGgxx57TPfcc48WL14sSXr22WdVWFio1157TVdfffWJrRYAMGLE9DWgxsZGtbS0qKKiYvC8cDisOXPmqLa29oiZnp4eRSKRIScAwMgX0wJqaWmRJBUWFg45v7CwcPCyr6qurlY4HB48lZaWxnJJAIAk5f1dcCtXrlR7e/vgqampyfeSAAAJENMCKioqknT4h7daW1sHL/uqUCiksWPHDjkBAEa+mBbQpEmTVFRUpHXr1g2eF4lE9N5776m8vDyWmwIADHPmd8F1dHQMGVfS2NioTZs2KS8vTxMnTtTy5cv1i1/8QmeccYYmTZqke++9VyUlJbriiitiuW4AwDBnLqAPPvhAl1566eDXK1askCQtXbpUq1ev1p133qnOzk7ddNNNamtr08UXX6y1a9cqMzMzdqsGAAx75gKaN2/e1w7jTElJ0UMPPaSHHnrohBaWzFyGkbq8tuUyANBlEKLrfw4GBgbMmVAoZM6UlZWZM64ffA6Hw+aMyxDOs88+25xxGRq7e/duc0Zy2w8ug1xdhn26DMF1Oe4kt/tGvAZ3xorrEOZ4bMP7u+AAACcnCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvLCP102QgYEB01TZ1NTEdanLtNupU6eaMy4TfPv6+syZtLQ0c0Zy2w8uf5hwzJgx5swnn3xizkhuE7737t1rzrS0tJgz27dvN2fy8/PNGUkqKSkxZ1wmb2dnZ5szbW1t5szmzZvNGUkaPXq0OeMybTqRE7RdtmW9TUzDBgAkNQoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4kbTDSFNSUkxD85J9AOD48ePNmdzcXHPGZSir68DKnJwcc6axsdGcqampMWfeffddc0aSpkyZ4pSzuvDCC82ZPXv2mDObNm0yZyTps88+M2dGjbI/nLjcLz766CNzxvW+np6e7pSzSsSA0BPJxeuxkmdAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOBF0g4jjUajpgF4LkM4EznMr7e315zZv3+/ObN9+3ZzpqSkxJyR3NYXCoXMmaKiInNm8eLF5owkZWdnmzMuAzUjkYg54zL81WVAqCS1traaM9///vfNGZf1udz/XAb7Sm7DSF0ei1y4DghN5BDmY+EZEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4kbTDSK0DB10HiyZKWlqaOeMyqLGurs6cycvLM2ck6eyzzzZnCgoKnLZl9fnnnzvlXIZWTpgwwZxxOR5mzZplzuzcudOckaTf/OY35ozLcTRt2jRzxmUIrstAW0nq7+83ZxI5GDlR4jXAlGdAAAAvKCAAgBfmAtqwYYMuv/xylZSUKCUlRa+99tqQy6+//nqlpKQMOS1atChW6wUAjBDmAurs7NSsWbO0atWqo15n0aJFam5uHjy98MILJ7RIAMDIY36Vu7KyUpWVlV97nVAo5PyiHwDg5BCX14DWr1+vgoICTZ06Vbfccov27dt31Ov29PQoEokMOQEARr6YF9CiRYv07LPPat26dfq///s/1dTUqLKyUgMDA0e8fnV1tcLh8OCptLQ01ksCACShmH8O6Oqrrx7894wZMzRz5kxNmTJF69ev1/z58w+7/sqVK7VixYrBryORCCUEACeBuL8Ne/LkycrPz9e2bduOeHkoFNLYsWOHnAAAI1/cC2jXrl3at2+fiouL470pAMAwYv4VXEdHx5BnM42Njdq0aZPy8vKUl5enBx98UEuWLFFRUZEaGhp055136vTTT9fChQtjunAAwPBmLqAPPvhAl1566eDXh16/Wbp0qZ566ilt3rxZv//979XW1qaSkhItWLBAP//5zxUKhWK3agDAsGcuoHnz5n3t4Lw33njjhBZ0SGpqqmkAnssAwGg0as5IboP5enp6zJnCwkJzZuLEieZMVlaWOSNJH3/8sTmzadMmc+ayyy4zZ1zt2bPHnHH52W7dutWcyc/PN2emTJlizkhSe3u7ObN8+XJz5o477jBnWlpazJnx48ebM5LU3d1tzrg8Fh3tXcLJIl7DoZkFBwDwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC9i/ie5YyVe01f/l8tUa9dcf3+/OVNWVpaQ7ZSXl5szkvSnP/3JnOno6DBnent7zZmuri5zRpIyMzPNmdGjR5sz48aNM2fa2trMmS1btpgzkpSWlmbONDc3mzMNDQ3mTElJiTmzY8cOc8bVqFH2h1WXyfwuj3nJhmdAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOBF0g4jtXIZEOoyANA198UXXyQk4zIQ8tlnnzVnJKmpqcmccfk5udym/Px8c0ZyG/j5xhtvmDNFRUXmTHp6ujnT2tpqzkhSaWmpOeMyyDU3N9ecGTNmjDnjMtBWctsPf//7380Z18HIwx3PgAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADAi6QdRpqammoa0BcEQRxXM5TLMNKsrCxzJi0tzZwpLi42Zw4cOGDOSNKOHTvMmZaWFnMmJyfHnOnr6zNnJCkSiZgz77//vjmzePFic8ZloObevXvNGUn6z3/+Y85kZ2ebM+PGjTNnXAbGdnV1mTOS2wBYl/uti0QOME1NtT1XOd7HY54BAQC8oIAAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXSTuM1Dpc1GUwXyKH+Z1xxhnmjMsA08LCQnOmp6fHnJGkcDhszuzcudOcycjIMGdcBsZKUllZmTlzwQUXmDNjx441Z1wGi4ZCIXNGkj777DNzxuXn1NzcbM5MmTLFnHG5PZLU2dlpzrgMMB0YGDBnXAcwuzzuWbfFMFIAQFKjgAAAXpgKqLq6WhdccIFycnJUUFCgK664QvX19UOu093draqqKo0bN05jxozRkiVL1NraGtNFAwCGP1MB1dTUqKqqShs3btSbb76pvr4+LViwYMjvSW+77Tb98Y9/1CuvvKKamhrt3r1bV155ZcwXDgAY3kxvQli7du2Qr1evXq2CggLV1dVp7ty5am9v129/+1s9//zzuuyyyyRJzzzzjM466yxt3LhRF154YexWDgAY1k7oNaD29nZJUl5eniSprq5OfX19qqioGLzOtGnTNHHiRNXW1h7xe/T09CgSiQw5AQBGPucCikajWr58uS666CJNnz5dktTS0qKMjAzl5uYOuW5hYaFaWlqO+H2qq6sVDocHT6Wlpa5LAgAMI84FVFVVpS1btujFF188oQWsXLlS7e3tg6empqYT+n4AgOHB6YOoy5Yt0+uvv64NGzZowoQJg+cXFRWpt7dXbW1tQ54Ftba2qqio6IjfKxQKOX9YDgAwfJmeAQVBoGXLlunVV1/V22+/rUmTJg25/Pzzz1d6errWrVs3eF59fb127typ8vLy2KwYADAimJ4BVVVV6fnnn9eaNWuUk5Mz+LpOOBxWVlaWwuGwbrjhBq1YsUJ5eXkaO3asbr31VpWXl/MOOADAEKYCeuqppyRJ8+bNG3L+M888o+uvv16S9Ktf/UqpqalasmSJenp6tHDhQj355JMxWSwAYOQwFdDxDJjLzMzUqlWrtGrVKudFJTuXYX6ZmZkJ2Y7LANMDBw6YM5I0ZswYc2b8+PHmjMtg0X379pkzktTb22vOHPoYgoXLkEsXrgN3CwoKzJnUVPt7mlyGhB56161Fdna2OSP996MmFi5DQl2OcZf97bothpECAEYUCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhBAQEAvHD6i6gnO5cptF988YU54zKZORwOJ2Q7ktTR0WHOuEzrjkQi5kxpaak5I7lPTbZymdadkZFhzrS1tZkzktTd3W3OuPyc+vv7zZlDf/rFwuX+J0mjRtkfItPT080Zl6nlLlO3kw3PgAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADAi5N6GGk0GnXKuQwBdBlymZaWZs64DPt02Y4kDQwMmDMuwx1dBmO6DLmUpJ6eHnPG5Ta57DuX4a+ug2Zd7hsug3BdTJ061ZwJhUJO29q5c6c58/e//92ccRlw7DqM1GXwqfX+dLxr4xkQAMALCggA4AUFBADwggICAHhBAQEAvKCAAABeUEAAAC8oIACAFxQQAMALCggA4AUFBADwggICAHhxUg8jdRnK55obP368OTNu3DhzxmVtLgM4JSkSiZgzfX195ozL0EWX7Uhug0VdBl26DIB12U5hYaE5I0n79+83Z3bv3m3ObN++3Zz58MMPzZlTTjnFnJGkM88805zp7Ox02lYys94vgiA4rvsgz4AAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXFBAAwIukHUaakpJiGqzpMoTTZcilq6KiInNmYGAgIZmuri5zRpLq6urMmdNPP92cKS0tNWeysrLMGUnKzs42Z1yGcLoM++zv7zdnNm7caM5IiVtfd3e3OeMyPHfChAnmjCS9//775ozLfohGo+aMK5fHSuvjyvE+tvIMCADgBQUEAPDCVEDV1dW64IILlJOTo4KCAl1xxRWqr68fcp158+YN/vrs0Onmm2+O6aIBAMOfqYBqampUVVWljRs36s0331RfX58WLFhw2B9guvHGG9Xc3Dx4evjhh2O6aADA8Gd6E8LatWuHfL169WoVFBSorq5Oc+fOHTw/Ozvb6UV3AMDJ44ReA2pvb5ck5eXlDTn/ueeeU35+vqZPn66VK1d+7busenp6FIlEhpwAACOf89uwo9Goli9frosuukjTp08fPP/aa69VWVmZSkpKtHnzZt11112qr6/XH/7whyN+n+rqaj344IOuywAADFPOBVRVVaUtW7bob3/725Dzb7rppsF/z5gxQ8XFxZo/f74aGho0ZcqUw77PypUrtWLFisGvI5GI0+c+AADDi1MBLVu2TK+//ro2bNhwzA94zZkzR5K0bdu2IxZQKBRSKBRyWQYAYBgzFVAQBLr11lv16quvav369Zo0adIxM5s2bZIkFRcXOy0QADAymQqoqqpKzz//vNasWaOcnBy1tLRIksLhsLKystTQ0KDnn39e3/nOdzRu3Dht3rxZt912m+bOnauZM2fG5QYAAIYnUwE99dRTkg5+2PR/PfPMM7r++uuVkZGht956S4899pg6OztVWlqqJUuW6J577onZggEAI4P5V3Bfp7S0VDU1NSe0IADAySFpp2FbuUyBdpkKK0lpaWnmzMSJE82Zzz77zJw566yzzJnRo0ebM5L0+eefmzOHPjtm8dVJG8fD9Z2ULpPBXSYmNzc3mzOJfLOOy3Rml4zLfWnHjh3mzJVXXmnOSNIZZ5xhzowZM8accTnuXB+/XP4KgPXnxDRsAEBSo4AAAF5QQAAALyggAIAXFBAAwAsKCADgBQUEAPCCAgIAeEEBAQC8oIAAAF5QQAAALyggAIAXSTuMtLe313T9UaPsN8VlKJ/kNgRwzZo15sx5551nzkyePNmceeWVV8wZSero6DBnXPZ5bW2tObN582ZzRpJSU+3/J3MZluoyPPfAgQPmjMvtkdzuT319feaMy/HgMqTX9b7u8oc0XYb7JnKYckZGhjljPfYYRgoASGoUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOBF0s2Cc53Z5JpL1Lass+0kqbu725xxmc/W399vzkhu+yFRmWg0as64StRtcpHI+1OiMj09PeZMJBIxZyS3+5PLXLdkf/yyZg5d/1i5lCCRt/w47Nq1S6Wlpb6XAQA4QU1NTZowYcJRL0+6AopGo9q9e7dycnIOm/YaiURUWlqqpqYmjR071tMK/WM/HMR+OIj9cBD74aBk2A9BEGj//v0qKSn52onsSfcruNTU1K9tTEkaO3bsSX2AHcJ+OIj9cBD74SD2w0G+90M4HD7mdXgTAgDACwoIAODFsCqgUCik+++/X6FQyPdSvGI/HMR+OIj9cBD74aDhtB+S7k0IAICTw7B6BgQAGDkoIACAFxQQAMALCggA4MWwKaBVq1bptNNOU2ZmpubMmaP333/f95IS7oEHHlBKSsqQ07Rp03wvK+42bNigyy+/XCUlJUpJSdFrr7025PIgCHTfffepuLhYWVlZqqio0NatW/0sNo6OtR+uv/76w46PRYsW+VlsnFRXV+uCCy5QTk6OCgoKdMUVV6i+vn7Idbq7u1VVVaVx48ZpzJgxWrJkiVpbWz2tOD6OZz/MmzfvsOPh5ptv9rTiIxsWBfTSSy9pxYoVuv/++/Xhhx9q1qxZWrhwofbs2eN7aQl3zjnnqLm5efD0t7/9zfeS4q6zs1OzZs3SqlWrjnj5ww8/rMcff1xPP/203nvvPY0ePVoLFy50GuaazI61HyRp0aJFQ46PF154IYErjL+amhpVVVVp48aNevPNN9XX16cFCxaos7Nz8Dq33Xab/vjHP+qVV15RTU2Ndu/erSuvvNLjqmPvePaDJN14441DjoeHH37Y04qPIhgGZs+eHVRVVQ1+PTAwEJSUlATV1dUeV5V4999/fzBr1izfy/BKUvDqq68Ofh2NRoOioqLgkUceGTyvra0tCIVCwQsvvOBhhYnx1f0QBEGwdOnSYPHixV7W48uePXsCSUFNTU0QBAd/9unp6cErr7wyeJ1//etfgaSgtrbW1zLj7qv7IQiC4Nvf/nbw05/+1N+ijkPSPwPq7e1VXV2dKioqBs9LTU1VRUWFamtrPa7Mj61bt6qkpESTJ0/Wddddp507d/pekleNjY1qaWkZcnyEw2HNmTPnpDw+1q9fr4KCAk2dOlW33HKL9u3b53tJcdXe3i5JysvLkyTV1dWpr69vyPEwbdo0TZw4cUQfD1/dD4c899xzys/P1/Tp07Vy5Up1dXX5WN5RJd0w0q/au3evBgYGVFhYOOT8wsJCffrpp55W5cecOXO0evVqTZ06Vc3NzXrwwQd1ySWXaMuWLcrJyfG9PC9aWlok6YjHx6HLThaLFi3SlVdeqUmTJqmhoUF33323KisrVVtbq7S0NN/Li7loNKrly5froosu0vTp0yUdPB4yMjKUm5s75Loj+Xg40n6QpGuvvVZlZWUqKSnR5s2bddddd6m+vl5/+MMfPK52qKQvIPxXZWXl4L9nzpypOXPmqKysTC+//LJuuOEGjytDMrj66qsH/z1jxgzNnDlTU6ZM0fr16zV//nyPK4uPqqoqbdmy5aR4HfTrHG0/3HTTTYP/njFjhoqLizV//nw1NDRoypQpiV7mESX9r+Dy8/OVlpZ22LtYWltbVVRU5GlVySE3N1dnnnmmtm3b5nsp3hw6Bjg+Djd58mTl5+ePyONj2bJlev311/XXv/51yJ9vKSoqUm9vr9ra2oZcf6QeD0fbD0cyZ84cSUqq4yHpCygjI0Pnn3++1q1bN3heNBrVunXrVF5e7nFl/nV0dKihoUHFxcW+l+LNpEmTVFRUNOT4iEQieu+9907642PXrl3at2/fiDo+giDQsmXL9Oqrr+rtt9/WpEmThlx+/vnnKz09fcjxUF9fr507d46o4+FY++FINm3aJEnJdTz4fhfE8XjxxReDUCgUrF69OvjnP/8Z3HTTTUFubm7Q0tLie2kJ9bOf/SxYv3590NjYGLzzzjtBRUVFkJ+fH+zZs8f30uJq//79wUcffRR89NFHgaTg0UcfDT766KNgx44dQRAEwS9/+csgNzc3WLNmTbB58+Zg8eLFwaRJk4IDBw54Xnlsfd1+2L9/f3D77bcHtbW1QWNjY/DWW28F5513XnDGGWcE3d3dvpceM7fccksQDoeD9evXB83NzYOnrq6uwevcfPPNwcSJE4O33347+OCDD4Ly8vKgvLzc46pj71j7Ydu2bcFDDz0UfPDBB0FjY2OwZs2aYPLkycHcuXM9r3yoYVFAQRAETzzxRDBx4sQgIyMjmD17drBx40bfS0q4q666KiguLg4yMjKCU089NbjqqquCbdu2+V5W3P31r38NJB12Wrp0aRAEB9+Kfe+99waFhYVBKBQK5s+fH9TX1/tddBx83X7o6uoKFixYEIwfPz5IT08PysrKghtvvHHE/SftSLdfUvDMM88MXufAgQPBT37yk+CUU04JsrOzg+9+97tBc3Ozv0XHwbH2w86dO4O5c+cGeXl5QSgUCk4//fTgjjvuCNrb2/0u/Cv4cwwAAC+S/jUgAMDIRAEBALyggAAAXlBAAAAvKCAAgBcUEADACwoIAOAFBQQA8IICAgB4QQEBALyggAAAXlBAAAAv/h+tizJHZdCFdwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"import matplotlib.animation as animation\n",
"\n",
diff --git a/Season2.step_into_llm/16.Practical-cases/gan/mindspore_gan.ipynb b/Season2.step_into_llm/16.Practical-cases/gan/mindspore_gan.ipynb
index b4d1563..5faafc3 100644
--- a/Season2.step_into_llm/16.Practical-cases/gan/mindspore_gan.ipynb
+++ b/Season2.step_into_llm/16.Practical-cases/gan/mindspore_gan.ipynb
@@ -78,36 +78,9 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:06.383718Z",
- "start_time": "2023-02-09T09:44:40.500860Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)\n",
- "\n",
- "file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:00<00:00, 14.3MB/s]\n",
- "Extracting zip file...\n",
- "Successfully downloaded / unzipped to .\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'.'"
- ]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"# 数据下载\n",
"from download import download\n",
@@ -127,34 +100,9 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:20.017779Z",
- "start_time": "2023-02-09T09:45:06.385713Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(89941,ffff9151c010,python):2024-11-21-11:25:34.848.224 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(89941,ffff9151c010,python):2024-11-21-11:25:34.848.282 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(89941,ffff9151c010,python):2024-11-21-11:25:34.848.301 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] ME(89941:281473119797264,MainProcess):2024-11-21-11:25:34.978.156 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(89941:281473119797264,MainProcess):2024-11-21-11:25:39.614.403 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(89941:281473119797264,MainProcess):2024-11-21-11:25:39.616.933 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Iter size: 468\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import numpy as np\n",
"import mindspore.dataset as ds\n",
@@ -197,25 +145,9 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:21.094899Z",
- "start_time": "2023-02-09T09:45:20.018778Z"
- }
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAD7CAYAAABOrvnfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2CklEQVR4nO29d3hcZ5mwf09vGmlGGo16L1Z3kdxkW+52ipM4JMEEQpaQAJuFDbAfbeHbX6gBll0uymYX9gMSCIH0OMW9K7bjKqtYsnrvdaSRRqNp5/eHmYMVy44ca2aUeO7rmuuyj86ceU55zvu+T5UIgiAQJEiQWwJpoAUIEiSI/wgqfJAgtxBBhQ8S5BYiqPBBgtxCBBU+SJBbiKDCBwlyCxFU+CBBbiGCCh8kyC1EUOGDBLmFkM92R4lE4ks5bpr3CxgMyu9bgvIHltkGzAZH+CBBbiGCCh8kyC1EUOGDBLmFCCp8kCC3ELM22gX5cKBUKtFqtWi1WkwmE1qtFrVajUqlAmB8fByLxcLExARWqxWbzcbk5GSApQ4CEBISQmpqKpGRkdjtdoaGhqivr8fj8czZbwQV/iOERCLBYDCQnp5ORkYGmzZtIisri+joaOLi4gC4dOkSJ0+epLa2lurqahobG2lqagJmb+kN4htSU1P5+te/zj333ENrayuHDh3iW9/6FlNTU3P2G0GF/wghk8koKSlhx44drF69GrlcjlarRS6X43A4UCqVpKenExcXh9PpxGq1Mjo6SlNTE+fOnePixYscO3aM8fHxoPL7mZiYGHJzc9m8eTMajcZnv+MzhVcqlaSmplJYWIhGo6Gvr098mK41RVGpVERGRrJ+/XpCQkIAOH/+PC0tLQwMDPhK1I8MgiAwNDREQ0MDCoWCsbEx8TqOj48TFhZGQkIC6enpKJVKoqKiiIyMxGg0YjQayczMJDU1ldLSUrq6uubdNVcoFGRmZpKfn8+hQ4cYGxub09EvkGzdupWNGzdiMBiQSqUMDw9z6dKlOZ3Ogw8VXqvVsn79ep544gkiIyMpKyujurqaycnJa56EXq8nPz+f7373u8THxyMIAj/+8Y9566235t3DdyPIZDKkUikSiQSZTAZcVs6pqak5HUk9Hg91dXXYbDaOHDlCT08PkZGRAAwMDBATE8O6deu4++67ATCZTISFhREbG0t8fDwul4t77rmHn/zkJ5w8eXLeKVRoaCglJSX84z/+I52dndTX19Pf33/N/SUSybyfqUgkEhQKBQ899BAbNmxAEAQEQaCrq4uTJ0/idrvn9Pd8ovA6nY709HS++93vYjAYUCgUrF27Fr1ej1Q6s2NALpeTlZXFk08+SWxsLEqlErvdjtvtnvO3nD8JCQkhLy+PtLQ0TCYTixcvRq1W093dzVNPPcXg4OCc/ZYgCPT09NDb2ys+7N4IMUEQuHTpEu+++y6//OUvAcjNzSUnJ4cNGzaQnJyM2WwmLi6O7373u5SVlbF7925+8YtfYLfbA644EomEL37xi2zYsIHs7Gz+/Oc/88Mf/pC//vWvTExMXLV/SEgIBoMBi8WC3W7H5XIFQOr3x2Aw8Oijj5KQkCAqe1tbGw0NDbS0tHw4Rni9Xk9kZCRhYWHI5Zd/Qi6XI5FIrhmiKJfL0ev1pKWloVQqcTqdjI6OcuLECXp6enwh5pwgl8uJjo5GLpcjl8tRq9UsWLAApVKJXC6nqKiI2NhYwsPDUavVhIeHMz4+jtVqvebL72bwPjTXwmazYbfbAaipqaGnp4eGhgb0ej3R0dEUFBRwzz33kJyczB133MGbb75JR0cHY2Njcy7rbAkPD6egoIB169aRkZGBTCYjIiJCXJJcqfBSqZTMzEyWLl3KmjVr6Ovr45133qGyspLe3t6AncNMeJdRH/vYxzCbzeJL+uTJk9TU1Ij3aS7xicIrlUrUajUKhUI8CYfDgcfjuebDGBoaislkIiIiAolEgtVqpaenh5qaGoaHh30h5g0hkUiIjIwUz6m7uxu9Xo/RaKSgoACVSoVSqUSn07Fy5Uo0Gg1yuZz169ejVCoBmJqaYnR0FJvNxsDAwJxP12aDx+MRR42+vj76+vqora1FKpViNpvp7OykpKSExMREDAYDCQkJjIyMBEzh1Wo1sbGxbNy4kby8PCIiIhAEAYvFgsfjQa1Wi/uqVCpMJhPLly9ny5Yt3H333fT396NQKHA6nQwODuJ2uwM+W/ESERFBRkYGy5YtQyqV4vF4cDgcnD9/nqamJp88Hz5R+LGxMYaGhsT/22w22tvbsdlsM56EXC6npKSE1atXi9vq6urYuXMnIyMjOJ1OX4g5a6RSKWq1mieffJK0tDTkcjkPPPAADzzwAHfddRcbN25EqVReNYPxGtGam5vp7u7mwoULHDlyhIaGBlpbWwN3QjMQGhqKWq1maGgIq9XK1NQUarWapKQkWlpaAiZXQUEBW7Zs4dvf/ra4bWpqiqeeeoojR45QW1sLXL5HWVlZfO1rX+Ouu+5Cr9cDkJyczD/90z+xYcMGtm/fzuDgIA6HIyDn8l6ys7MpLi4GLj8rNpuNtrY2jhw5QmNjo09+0ycKn5WVRXFxsfjwT05O0tzczOTk5FUKr1QqycrK4uMf/zgrV64Ut4+MjMx50MEHQaPRkJuby+c//3k2btxIX18fZ8+eZdGiRaxatYoVK1agVCoZHx9neHiY1tZWKioqGBsbY2JigvLycsbHx7HZbOI+NpstoOcEl+0sSUlJJCUlUVhYSEZGBpGRkZhMJuLj42lvb6eqqoqDBw/6fSqsVCoJCwtj/fr1PPDAAxQUFIh/q62t5dixYxw4cIDe3l6kUikGg4GtW7dSXFzMhg0b0Gq1CIKA0+nkwoULtLa2UltbO+dG0g+KVColOzubLVu2sG3bNnGg6O3t5YUXXqCnp8cn03nwkcKHhYWJ1mEAl8uFxWLB5XJddcHlcjlms5mkpCSio6MBcLvdjI+P09fXF7AbJJFIUKvV5Obmig/SxMQE9fX1nDt3DqfTSWdnJ2VlZcDlWc3w8DAtLS3TFP7SpUs4nc6Av7jg76O4RqOhoKCApKQkEhISKCwsJCQkBJVKhVqtpry8nKamJqqqqujs7PS7pV6v15OUlMTmzZtZtmwZsbGxwOVZ36lTpzhy5AgdHR04nU40Gg2LFy9m/fr1FBYWis+Q0+lkfHycQ4cO0draSkdHB1NTU/PiPkilUmJjY0lOTha9US6Xi6GhIcrKyhgfH/fZcs8nCv9eJXW73Ve9Xb2jv1wuJzIyEo/Hg91uR6fTMTk5yfDwMN3d3QG7QXK5nNjYWB577DFWrVpFSkoKX/va13jnnXdEJT9z5oxoeBMEAY/HE/Dlx0x4R5DMzEzi4uJISkri3/7t38RRUKlUsnfvXlpaWhgZGeG1115jYmICqVQakOlvQkICK1eu5LOf/ay4zePx8L//+78cP36cyspKHA4HMpkMk8nEl770JYqLizGZTOL+NpuNzs5OfvKTn8xoxQ8kEomE+Ph4QkJCRJ3wDnAXL1706TX3icIbjUbxTQuXR3ir1YrH4yE6Opr09HTWrFlDVFQUZrOZ3NxckpOT0Wq1AJSWlnL69Gk6OjoCMsLLZDKio6P5v//3/7Ju3ToMBgPNzc0cOnSIhoYG8SXkcDiuWrPPJ2QyGevXr2fp0qXccccdREdH09zczIULFzh58iTV1dXU1tZSXl7O4OAgdrsdj8cjBkf5248tkUhITExkx44dbN++Hbj87HR2dnLgwAHefPNNenp6RIUoKSlh06ZNbNy4cZrxrry8nN27d/P888/PuzwBuVxOWFgYn/rUp8jKyhKv8cGDBzlw4AA9PT0+dSH6ROG1Wi2hoaHi//V6PXl5eWzfvl300efk5GAwGNDr9ZjNZlHZnU6nGOsdqNEyNDSUuLg4ioqKMJlM4ig+k1txvim5F4lEgkqlYtWqVaxdu5a8vDyqqqq4ePEip06dora2lo6ODrq6umhtbRW9KIFELpezbNkycnJyxGm8y+Wiu7ubXbt20d/fz+TkpPhiWL58OatXr0an0wFgt9vp7e1l586dHD9+3Cd+7JvFbDZTUFBAamqqGAUJUFZWxvnz530eL+AThVepVOJNgMsj/tq1a4mOjkav14vrFmBa9Jk3vvvIkSPU1NT4QrRZYTQaSUxMJD4+HqlUitvtRq1WEx8fj8VimTbKzFckEgkajYbi4mKKi4uRy+UcO3aMY8eOcfLkSdFFKgiCuF4MdGSaXC5n8+bNLFiwQFQGp9NJf38/R44cAS4H1MjlcpYsWUJJSYlo5QawWq1UVlby7LPP0tXVNe+UHSAxMZHNmzcTExODUqkUXdanT58Wl4q+xCcKPzQ0RGdnp/h/iUSCXC4nOztbfKgqKipwu91oNBry8/MB6O3t5e2336axsRGLxeIL0WZFS0sLPT091NbWUlxczLJly/jYxz7GH//4R06fPs3OnTt59tln5+V63YsgCExMTPA///M/VFZWct999/GVr3yFT37yk9TX19PS0sLQ0BCDg4OcPn0ai8XC6OhowIKcFAoFYWFhFBYWYjabxe06nY5169Zx7NgxcZtUKiUuLo6QkBBkMpn4krJYLJw6dQqPx4NCoZhXYcFejEYjaWlpYqj12NgYr776Kn19fX75fZ8ovMVimXYCHo+Hqakpenp6aG5uFqeVKSkp5OTkkJeXh0Qiwel0MjIyEpCAlCvxxrl7p7pNTU3U19fzhS98gQULFnD//fdz/vx5Wltb50VQ0Ex4DXJlZWX09/fT1NREVlYWRqNRVCzv6FJSUoLVaqWvr4/KykqOHDnC8PCwz1xDM+F2u5mcnKSjo0OM8YfLyq3T6UhJSRH3lUgkaLVacWboxWw2s23bNsxmM21tbbS0tLBnz555E1ZbUlJCSUkJBQUFSKVSpqamGBgY4OjRo357jnw2wre2ttLW1gZcXoeNj49TW1vL+fPnKS0tpb6+npKSEtG4531ALRZLwBUeLr+kxsbGGBsbo7W1lbq6OoqLi8nLy2Pp0qUUFxeL5zVfp/dut5v29nZxtpKVlUVGRoYYsWYwGDCbzeTk5OB0OhkeHiYlJYXBwUEaGxv96pLzDgq1tbVERUURFhY2TaEVCgVwedqvUCimhSV7nxe9Xk9xcTFxcXG0trZy8eJFSktLfermmi0SiYRly5ZRWFhIcnKyGGgzMDBAWVkZVqvVP3IIs1y03UiZXqlUikajYcGCBcBla7bNZhN9p3K5nDvuuINPfOITrFu3TlT68vJyfvSjH7F3794bdqX4o8xwWFgYn/zkJ/n2t79NTEwMTz31FH/605/mJCrK32WSJRIJSUlJpKSksH79elJSUkhLS2PFihW0tbXx9ttv88wzz1BeXj6rtfBcyC+VSklNTeX2229n6dKlxMbGXvU9s9lMamoqGo0GiUSC2+0WM+ZUKhVGo5G2tjZkMhkSiYSHH36Ympqa950y+/r6SyQSXn31VQoLC0lISAAQk5k+97nP3bTtZLbf98kI7/F4mJycpKGhQRTG5XKJUyuZTMbChQtJSUkhPDxcnM6PjY3R2Ng4b9fG4+PjnD59mqeffponn3yShIQEcnJyfBYG6UsEQaC3t5fR0VHa29vRaDQkJydz5513sn37dtatW0dISAhf/epXsVqtfhkhPR4P3d3d7Ny5k8OHD4tlueDvLrs777yTjIwMBEGgsrKS8vJyXn75ZQCx4Mfw8DBSqRSpVEpFRQXj4+M+l/16GAwG8vLySE1NxWg0Apev/9mzZ3n77bf9aij1WT68x+O55jRFKpWSmJhIeHi4eFNdLhcTExP09fUFfPp1LdxuN52dnZw8eZLBwUG0Wu20eIMPG3a7HbvdzsjICHB5KWYwGNi2bRvx8fHA5VFzYmLCb/fEZrNdM/RYp9MxNTUlTvXr6+s5evQopaWlCIKATCZDoVBgs9lE708gs/y8mEwmtm7ditlsRqVSiS+2mpoaLl686FdZAlLiSiqVkpSUhF6vF99uU1NTWK3WgKcwvp9ramBgALvdTnV1NS6Xa5pF+cPO2NgYZ8+exWKxEBERQWJiIiqVyidpvB+ExYsXk5KSIspz9uxZ3njjDb+tfz8oaWlpfOc73xH/73Q62b9/P6dOnfL77NDvCq/RaIiOjmbhwoXi9Abg+PHjnDhxwt/iiCxatIiNGzcSHx9PaWmpmHTxXiQSCVKpFIVCwejoKF1dXf4X1gfEx8ezdOlSvvKVr5CcnIxEImF0dHTG/IdAIJFIKCkpIScnB7fbTXl5OS0tLYyOjgZatOsSExNDTEwM8Pd1dkBjHfz9g2FhYWIYrbcoBlxeHwdyrZWUlMTWrVsJDw9naGiInp6eqxTeW9gjJSWFmJgYqqqqrltiab4ilUpRKpUYjUYiIiLIy8sjKSmJ7OxssrOzUavVtLa2curUqWumNAeCyMhIQkND8Xg81NTUMDg4OC+Da+Dv7sRNmzaxbt06cbvNZmNoaIgzZ874zfd+JX5X+PDwcLKysqYpu9fIF8i459jYWEpKSlAoFNTX19PU1MTFixenvY2TkpLIyclh+fLlxMTEiAka8xnvNfbWTvO6tQwGA5mZmeTm5vLII48QFxeHTqdDqVQyNTVFdXU1L7300rxwaXkxGAxotVpxhJ/PdQ5lMhmRkZF8/OMfZ82aNeJ9sFqtNDY2snv37oDI73eF12q109wtU1NTtLS08OKLLwZ0Sn/27Fl+9rOf8YUvfIG77rqL2267jccee0wMP5VIJBQUFIhGoW9+85ucOHGC+vr6gMk8G7z5Ckajkfvvv5/k5GRiY2MpLCwU/dnv9Wv/5S9/Yffu3fMqaOVKPB5PwKMx3w+1Ws2yZctISEgQs+IEQaC2tpYXX3yR/v7+gMRv+F3hIyIiyMrKEi2tHo+HgYEBRkdHAzrCt7a28sYbb2Cz2YiOjiYkJASbzUZycrIY171v3z56enpoaWnh2LFj9Pb2BlQh1Go10dHRbN26lcjISEJCQq4ysGk0GtRqNVqtluzsbEJDQwkJCUGv14svXZfLRWtrKw0NDRw6dEgsDT7flN1isWCz2VAoFPNm1nEtlEolCxYsQKfTiWG0Xi9UXV1dwOT3q8JLJBKxNvqVD1t3d3fAp46Dg4MMDw9jsViIjo7GZDJhMBhwOBwYjUYEQeDw4cPU1tZSV1cXcN8uXPY7h4aGitlXUVFR6PV65HK5OHJrtVqxXtqVjI2NMTk5icPhwOFwUFZWxqlTp3j22WcDfi+uRXd3N7GxsURFRQValPfFG/7rDQ6SSCS0trbS3NxMe3t74Oo8+PPHdDodYWFhGAwG0f01MTHBvn37ptXACxTeqeJ7XSVXlnqeT4yPj1NZWckXv/hFoqOjSUtLY+vWrRiNRnGNvmDBArFefV1dnTiNnJqa4uzZs9TW1uJwOGhsbJwXPutrIQgCL774Ik6nU8yVn89YrVZeeuklFi5cKLqfv/3tb1NeXk5HR0fA5PKrwhuNRqKiooiLi5uWY+5NeZyvzDdFn4nh4WEmJyfp6elBoVCIo7u3zoDNZmNiYkI8F4/HI1bQ9Xg886LO3vtx5swZ0tLSpqXEzlecTif19fV861vfEmtD1NTUBDxmwK9aplQqUalU4kMIlyO5srKyiImJYXR0dF6PMvMZ79R8vvulb4b+/n66urro6urCYDBMq3Iz3/BGmpaXlwdalGn4NYTKa6n01kb3eDyEhITw0EMPUVJSQkZGhj/FCfIhw+l00tXVRVlZGfn5+dNq2AWZHT7JlrsWXiNTeHi4uM37EvBOST9oOqa/s83mmqD8s0OtVoturvHx8TlL3/2oX38vflV4X/JRv2FB+X3LR11+L/MjKyJIkCB+YdYjfJAgQT78BEf4IEFuIYIKHyTILURQ4YMEuYUIKnyQILcQQYUPEuQWIqjwQYLcQgQVPkiQW4hZJ8982CONgvL7lqD8gSUYaRckSJCrCCp8kCC3EEGFDxLkFmJelplZsWIFJSUlrF27lj/96U+cPn16xqYQQYIEuTHmjcLLZDJ0Oh3R0dGsX7+eDRs2UFJSQmdnJ11dXfNS4RUKBSqVitDQUCQSCRqNhoSEBBQKBe3t7dTW1gZaxFsCiUQiNqkwGAxYrVYsFgtDQ0PzrvJuoJk3Ch8SEkJGRgb3338/jz32mNiG6oEHHuDUqVMcP348wBJejdFoJDo6msLCQgAWLFjAo48+isFg4H/+53944oknAizhRxtvh1i5XM6qVasoKipi1apVnD9/npMnT3Lw4MGPdMmvD0LAFV6r1bJy5UruueceFi5cSH5+vthOaHx8nG984xsBbVDxXqRSKVqtln/4h39gyZIlZGZmkpqaClyu2ectWFhQUMDjjz/Oc889JxaKDHJzSKVSQkNDiYqK4o477iAyMhKz2czatWvR6XSoVCo0Gg0FBQUkJyfj8Xh46623gqP8FQRU4SMiIkhISGDDhg0sW7aM5ORkDAYDcLl+2eTkJOfOnQt4/zaJRIJSqSQrK0sss71lyxaxFvyVTTG9JCYmsmXLFg4dOiTW3Q8UZrOZlStXEhsbS2dnJ1VVVbS1tX0oqvHC5Z5+iYmJxMTEkJCQQGZmJosXLyY0NJSwsDDS0tKm7a9Wq4mJiSE1NXXedL69EolEgtFoJCEhgfDwcNxut9gVt7u7m76+Pvr7++np6ZnzexQwhVcoFKSkpLB06VLuvvtukpOT0el04t/dbjd2u52GhgYmJiYCJSYymQy1Wo3RaOS2224jPj6eyMhItmzZglKpBJhx9E5MTCQyMpLs7GwmJycDpvBSqZTU1FS+/OUvs2LFCt555x1+97vf0dXVhdPpDIhMs0UikaBWq4mNjWXTpk0UFhaSl5fHokWL3ve7ISEh01qazRfkcjlqtZr09HTWrVtHTk4Odrud2267DYVCwcmTJ6moqOD06dMMDQ3NWc0+EWGWAHP2USgUwsMPPyzs2rVLGB0dFVwul+DxeKZ9bDab0NzcLOh0ulkd01fyFxcXC9/4xjeES5cuCaOjo4LNZhMmJycFp9MpuN1uwe12C06n86qPy+USHA6HcOLECWH79u0Bk3/hwoXCV7/6VWFoaEhwOp1Ca2ur8Prrrwtms1lQKBRzdk/nWn6pVCqEh4cL3/zmN4Xdu3cLk5OTgsPhmPFZee9ncnJS2Llzp3D33XcLcrk8oM/Pez9bt24VXn75ZWFwcFCw2WyCw+EQHA6HKLvT6RTsdruwc+dOYdu2bXMmvxe/j/BGo5GkpCQ2bdpEenq62HvrvXhbJUVFRdHT0xOwvnNLlixhxYoVxMbGotFobmjEkEqlJCQkkJWVxYIFC6irq/OhpDOzaNEilixZIl7n8PBw8vPz2bFjB4cOHaKmpsbvMs0GqVSKWq0W7ToqleqqfTweDy6X66rZ065duygtLaWioiLgLbO8dof09HQ2b95MYWEhRUVFGAwGsb8iXO5tODk5iUajIT4+nkWLFvHYY4+h1+vp7e2lv7+f6urqm5bHrwqvVquJi4ujqKiIwsJCoqKixL5nwt/WKt6L4O1hHhsbi9Vq9avCKxQKNBqNaIHPzc2dttx4LzO9BLzbjEYjOTk5dHR00NPTw8TEhF8eQq/dIScnh+zsbBQKBXC53VdCQgK33347g4ODDA4OMjAwMO/W81KpFKPRSHJyMnFxcVf93el0MjIywsjICD09PeJ2QRDYtWsXFRUVtLW1+VPkq5BKpZhMJhITE1mzZg3/8A//QFxcnFhme2xsjImJCaampjh//jw2mw2z2YzZbCYhIYHIyEgmJydpbGykqamJ9vZ2bDbbzT0/s50KMAfTmeLiYuEHP/iBUF9fL07NXC6XYLFYhO7ubqG/v/+qaf3Xv/51IS8vz69TsvT0dOGhhx4SnE6n4PF4BEEQxOn7lR8vM/3N+z2PxyO43W6ho6ND+NSnPiVER0f7ZUqpUqmEJUuWCEePHhUmJyevks/lcgnnzp0TfvWrXwk6nU6QSqXzakpvMBiEJ554Qqitrb1qyu5yuYT6+nrh+9//vlBcXCxIJJJpn/kgv1QqFYxGo/Dkk08KR48evep4drtd+MMf/iB8/OMfF7KysoTw8HAhNTVVeOSRR4S+vr5p+3qXYjt27BCioqLm/5Rer9eTlpbGN77xDbKzs8Xecg6Hg97eXn77299is9lIT0/ni1/8ovg975TY6+ryBzqdjuLiYu644w4AsVGG8LcRcHJyEovFwuHDh3G5XISGhnLnnXeiUChmHOm9Bj2dTsfWrVspLy+nt7fX5+eh1WpZv349ZrNZHN2vRCKRkJ6ejkaj4bHHHuO1114LaJPD9+Jyuejq6sJut1/1N28/woULFyKXy8nMzOTUqVP09PTMC7+7d+n06U9/mttvv50FCxaIfxsbG6Orq4unn35abMtttVqRyWSYzWZuv/32aa3Y4LKhT6lUip2AbwafK3xISAhxcXEsX76cwsJCoqOjkclkjI+P09TUxMWLFzly5AgejweHw8HIyAhhYWFiUEVKSgphYWG+FlOcAi9evJiioiJyc3On/V0QBEZHR2ltbeXixYscOHAAl8tFeHg4aWlppKSkiH3kh4aG8Hg84o2XSCTI5XLi4uJmXIv6ArlcTlRU1HXtDnq9ntjYWBYuXMiBAwf8Itds8Sp8a2sr4eHhGI1Gsf2ytxVzamoqOp1O9PA0NjZSV1dHZ2dnQH3voaGhJCYmsmHDBtLS0kRXc29vLw0NDZw/f56DBw/S09PD2NgYcrmcgoICioqKyMvLu+oZsdvtjI2NYbFYbvq8fK7wqampLF++nIcffpiIiAhkMhkej4eWlhb+8Ic/sGvXLpqbm4mMjCQiIoLKykqWLVuGRqNBLpdTUlLCzp07fS0mSqWSiIgI/vVf/5X8/HxiYmLEv3lH+EuXLvHaa6/x+9//Xmx6aTAYUCgUfOELXyAjIwNBECgrK2NiYgKFQsGWLVumjbD+dBPN5rfkcjmxsbGii3G+4HA4qK2t5a233qKvr4/Vq1eTnp4uXsvQ0FByc3PFF/OWLVuor6/n1Vdf5fe//z0WiyVgsqemprJmzRq2bdsmbhMEgWPHjrFz505eeOEFcbtUKkWv1/Poo4+yfv16srOzrzpeb28vly5d4vz58zfdfdZnCi+TyTAajXzpS19izZo1JCUloVKpcDgcWCwW/ud//od33nmH9vZ24HK749OnT/Ov//qvvPTSS8THx+N0OnnttddoamrylZgiJpOJgoICli5dOm0JMTo6ysWLF/nd735HRUUFvb2906zCY2NjPP/889hsNgwGA/X19dTX1+NwOJBKpSxcuJDHHnuMDRs2sGjRItavXw/A+fPnfXYuXh/0qlWrxNHlw4RMJsNkMvHYY49x3333kZqaikajmXFp4sVgMJCTk4Ner6eqqoqLFy/S3d3tR6n/TlxcHFlZWeL/e3t7OXbsGD/4wQ+mGRLVajXx8fH8+Mc/ZsWKFURFRU07jsfjoaGhgd///vfs2rWL7u7umzb4+kThw8PDiY6OpqSkhEWLFhEfH49arcbpdNLc3My5c+c4e/YsPT094hTF7XaLN9prqXe5XDQ2NvrlbR0TE8PKlSvR6XTT3CU9PT3U1tZy+vRpuru7mZycnBZo4/F4GBkZ4cyZMyiVSnp7exkeHsblcolBOxaLRQzJLSgooK+vz6cK73K5mJycZHBwEIfDcd19ZTIZkZGRxMTE0NHRwdDQkM/kmi0KhQKj0cj69etJSkqalQ3He33j4+MpLi7G4XDQ19cXELdcXFwcmZmZwOWZSkdHBzt37qStrW3aYJGXl0dxcTGFhYWYTKarXmgej4eqqipqa2tpa2ubk2XKnCu8RCIhMTGRpUuX8uUvf5n4+Hh0Oh2CIGCxWDh//jx//vOfKS8vv+pmhIWFsXLlStRqNR6PR3xB+FrhVSoVaWlpbNy4EblcjkQiQRAE3G43DQ0NVFRUXNeH7vF4qKysvGq7RCJhfHwcp9OJRCJBoVCwePFiBgYGeO6553x2Pna7nZGREWpra8nPz7/uvgqFgqSkJDIyMuaNwntdouvXr7/ussTrzpVIJGISTVhYGFu2bMFisXDmzBlsNpsfJb9MbGysqPCTk5O0trby6quvipGNEokElUrF+vXr2bFjBykpKVedl9vtZnx8nJMnT9LS0jJn0aZzqvASiYTw8HBuv/12tm/fTkZGBlKpVAyO+P73v8+77757zYAItVpNYmIicrlc9LPu2bPHp5ZXiUTCN7/5TdavX8/SpUvF0X1qaory8nL+/d//nbNnz36gY8vlcoqKioiKihIf3KysrHmV6uv1d0dERPjFODoblixZwubNm6+r7GNjY7S3tzMyMoLBYJhmNF26dCmdnZ2cOnWKs2fP+n2UP3PmDCaTiccff5zQ0FBSU1O5/fbbOXToEE6nk/DwcL7zne+wbt26aVN/L01NTbz77rvs2bOHffv2zWlY9pwqvEKh4LOf/SwbNmwQExccDgdtbW3s3r2bEydO0N7ePuMNCAkJITo6mszMTJRKJVNTU4yNjeF0On0eFLJixQoWLFiAVCoVZyJtbW389re/paWl5QPFnEdFRZGRkcHHP/5x0tPTxXMoKyujvLx8js9g9pw7d45Dhw5x5513Eh8fL67xvdbv+YBeryciIuKaf3e73VRUVHDgwAEuXrxIWFgYjz32GLm5uWIEW0FBAY8++ij19fWMjY351WpfX1+PTqdj+fLlZGRkkJCQwKOPPsrq1asRBAGtVsuGDRuIjY1FLv+7CjqdTkZHR3n55Zc5d+4cFy5cwGq1zukLa84U3jtNufPOO8nOzhZvWH9/PxcvXuTNN9+krq7umhFzISEhmEwmkpKSkMvlDA4O0tXV5Ze00rS0NKKiosTfGhgYoKamht27d9/Q7EIikSCTydDr9WRkZLB27VpKSkoIDQ1FEARcLhcVFRVUVVX56lRE3G43Y2Nj2O128aU5MjLCqVOn+Mtf/kJOTo6Y+eeVfb5klqlUKtEX7Xa7cbvdOJ1OcZvT6eTChQscPHiQM2fOEBISwvLlyzGZTOL5xMbGUlxcjEajYWJiwq8K393djUQi4eTJk2g0GmJiYli3bh1Lly5FKpWiUqmuMqZOTU0xPDxMbW0tBw4coK6ubloE4VwxZwqvVCoxGo2kpaVNmxo+88wzHDhw4H0LWJhMJmJiYjCbzbjdbqqqqvjDH/4QkIyuiooK9u/fz+Dg4A19T6VSER0dzb333suGDRu44447xJeI1698/Phxzp075wuxpzE+Ps5rr73G4sWLkcvl2O12/vM//5MLFy7Q2dnJ1NTUtJepRqNBrVb7XK4bZXh4mKGhITo7O1m1ahVSqZShoSFeeOEFGhoa8Hg8jI2NsXfvXtxutxjk0t/fT3l5uThL9Cfj4+M0Njby3e9+l/r6elasWMHq1asJDw9HpVLN6G2oqanh0KFD/OAHP2B8fNxnA92cKfyKFSv41Kc+RXh4OAqFArvdTkVFBefOnaOhoeGa3wsJCWHr1q1s3bqVhQsXAnDo0CH27NlDaWmpX9dfgiAwMDBARUUFZ86cmdV3FAoFCQkJFBUVkZmZSVFREWlpaZjNZgDRAOhyuejr66O1tdUnb+734nQ6aWtr43vf+x56vR63201bWxtWqxWXy8W5c+dITEwkKSkJgDvuuAO5XM7+/ft9LtuNIJPJ6O3t5bnnnuPChQtYLBYaGhqora2dZsgaGxubttZ1OBziVD4QxUe8M6ydO3dy5MgRwsPD+frXv05eXh7JycnA34O5Xn/9dfbu3UtNTQ0TExM+lXdOFN5oNLJgwQJWr14tRgmNj49TWlpKS0vLjFZ2b66z2WympKSE5cuXk5iYiCAI1NfX09jY6PfCFx6Ph+bm5lkrZWxsLLGxseTn57NixQoyMzPJz89Hr9dPc+3BZQVsbGxkaGjIL4lAgiAwMTExo/dALpdTW1vLyMiIuC0+Pn7GJJVAo1QqkclkjI2NUVpaSl9fHx0dHYyOjk6z7SgUimkjp9vtxuFwBLTSkNPppKOjg76+PoxGI263W1w2OZ1Oent7aW5uZv/+/Zw6dYre3l6fD3BzovAFBQUsXLhQtMp7faBPP/00/f39MybxK5VK4uLiyM/PZ/v27ZjNZpRKpeh798co+F7cbjelpaU0NDSIkXTv5UrD1qZNm9i2bRsrV64kPDx8xmg1b5Se1Wpl7969N7xM8AVut5vTp09z7733BlqUa+JVVG9odlFREb/85S8ZGhqa0YgbExNzVeDKfCEsLIwVK1awbNkyYmJixJF9//797Nu3j5dfftlvssyJwqekpIgx8nA5Om1wcFCs8abRaMR9Q0JCiIqK4uGHH2bx4sWkpaVhMpmQSCR0dHSwd+9e3nzzTb8qvFQqFY2OX/jCFzCbzeTm5s6o9EVFRWzevJmwsDDCwsLEWmreY3jx/ru3t5ef//znvP766wwODgYsr//DxOnTp/F4PHzyk59EIpEQHx/P5z73ORYtWsTFixc5c+YMp0+fJjIyksjISMLDw7n//vspKCgItOhXodVqWbRoET/84Q9FQ7bL5eKNN97g5Zdf9nu9xjlReO+0y4u3ptjDDz/M5OTktDeyWq0mLCyMVatWkZSURHh4OHDZlXHhwgV2797NwMDA3Jf2uQ5e+by1xgoLCzEYDExOToqK690nJSWFrKysaZlL7x1x7HY7bW1t1NTUMDAwwPnz5+eV732+Mzw8TEtLC/X19WLgVkREBIsWLcJkMhEfH09mZiZGoxGDwUBoaChZWVniswQwODhIVVVVwIuHLlq0iBUrVpCcnCwuOTweD01NTVeFafuDOVF4p9M57cLq9Xr0ej3/9//+3+t+zxvNZrfbeffddzl06BBvvvnmXIh0Q3in3d5zyM/PFyPUvEr93gfnypRZ798EQcDpdDIwMEBpaSnPPfccdrtdzBcIMjusVivd3d2cPHmSLVu2oNPpkMvlxMfHEx8fz/LlyxkdHUWpVKJQKKb5suHyCNrW1sbRo0cDWvFGKpWyceNGNm/eLAYFweUlVWtra0BSeedE4S9cuEBWVpZYome2jIyM0NbWxu9+9zv27NlDZ2fnXIgTMDo7O3nrrbd4++23aWhooKOjY9qLIcjsEASBoaEhfvnLX4r1E7whtF6uFxV46NAhjh8/Tmtra8BGeJVKRXZ2Nps3b2b58uXidm/y2PHjxwNSjXlOFL6jo4ODBw8ilUr5x3/8RzQazTWDOHp6emhsbKS9vZ3q6moaGxu5ePEi/f39Acthfv311ykuLmbx4sU35Ivu7++nu7ub48ePMzIyQl9fH1VVVTQ1NTE2NhbwemofZrwW7rfeeouhoSGKioqmJVbNRF9fH8ePH+fVV1+lqqoqYNffWwfhM5/5DImJidO8By0tLRw7dgyLxRKQGJM5UfihoSHKysoYGxtjzZo1M7qlvDQ0NHDu3DkuXrw4L9a2giCwb98+4HI4bEpKynVDTO12uxjuWFdXR3V1NS+99BK9vb1YLBYsFsuHQtG9y4+pqSlUKpVYpEOtVjM1NRXwWYnH48FisXDkyBGsVisqlYrc3FzR7avX63E4HLjdblwuFxMTE9TV1bFr1y4OHDiAxWIJ2DlotVpiYmK47bbbiIyMnGYH6uzs5Pjx41dlXfqLOQu8GRoaYmhoiJUrV77vvoF+mN7LkSNH6O7upqmpiZ///OfXHeXLysrYuXOnGKb6YewfJwgCdrud1tZW6urqKCgoQC6XYzQaWbJkCWVlZTOWlgqEnKdOneLChQu89tprfPKTnyQsLAyFQsG9995LW1sb7e3t9PT0iIVU5kNBzqysLNatW0dmZua0wcPhcNDT0xNQY+Kcp8cG+mJ/UDo6Oti9ezeNjY3TliPvtdKPjo7S398vJjp8WLHZbDQ1NVFZWUlBQQEKhYLIyEhWrlxJTU3NvFB4Lw6Hg8HBQV5++WUxffnNN9/Ebrdjt9uZmppicHAQm802L54/rzFxcnKS0dFRsV7dc889x/79+2lqavroKPyHFZvNhs1mo6urK9Ci+AW32013dzeNjY04nU6xXHig3VgzIQiCmHXppbGxMYASXR+LxUJLSwv79u1jYmKCsLAwFi5cSGlpKVVVVTddpuqmmG15W26ihLE/PkH5b/wTHx8vbNu2Tejr6xMsFotw+PBhoaioSFCpVB8K+T8M199gMAjFxcXC008/LURGRgZMfi+Sv53M+zJfcqWvxfudRlD+q/GWPzabzUilUnFq7HA4bnhqHLz+M+NtqKLX6xkeHvaZQXe29yuo8POEoPyB5aMuv5f5UfEgSJAgfmHWI3yQIEE+/ARH+CBBbiGCCh8kyC1EUOGDBLmFCCp8kCC3EEGFDxLkFiKo8EGC3EIEFT5IkFuIWSfPfNgjjYLy+5ag/IElGGkXJEiQqwgqfJAgtxDBfPggQfyMXC5n06ZNbNq0iczMTOrr69m/fz/19fU+L/kWVPggQfyISqUiPDyctWvXsnHjRrKyskhKSmJsbAxBEG49hX+vcSSY2xME3t9o9mF5TiIjI1m0aBEPPfQQERERKJVK8vLycDgcKBQKDhw44NPfn1cKn5mZyaOPPsqWLVvEHvFf/epXaWtrm9b4MMhHC5PJJLbuei9arZb8/Hy+8pWvTNsulUqn1fz/53/+Z06cODGto+x8Izk5mU2bNrFjxw5MJhMKhULsLLxr1y4OHjzocxkCrvASiQSFQsHixYtZsmSJ2HZZJpMRERFBWloaw8PDQYX/CJOenk52djZ5eXlX/U2pVJKcnEx6evq07d4afF7y8/Ox2WyMj4/T09PD+Pj4vFF+qVSKSqXi7rvvpri4mAULFojdciYnJ6murqaiooKWlhafyxJwhZdKpRgMBu655x5WrlzJggULUCgUeDwesb3Qh7EUtD/xVnK9ctor/K3u/I0ik8mQyWTTjudyuXC73T6ZNstkMhYvXsxtt93GHXfccc39rlRuiUSCx+OZNsJ7+wFOTU1x/PhxWlpa5k0VW5lMhk6n4zOf+QwZGRnTujNNTk6yb98+Kioq/FJANeAKHxYWxqOPPso999xDWloaUqkUmUxGdXU1Bw4c4Pe//z02my3QYs5r7rrrLkwm07R21RaLheeff/6GjmMwGMjLyyM7O5uYmBiio6OxWq0cP36cioqKOe+Rp9VqSUxM5K677iI3N/emjnXvvfeKVXfvuecedu7cye9+9zv6+/sDrvTeWaxer7+qFdvIyAi//OUvr9mefK4JqMIbDAZiY2OJjo5Gq9XidrsZGBigtraWd999l3379gWsQ4dMJhM7lcbHx7Nw4cJpHWNnwuVyMTk5yTvvvENLS8u0ssq+QiKRsGnTJlJTU6c1LLTZbOTk5NzQtdPpdMTExBATE4NOp0Or1eJwOLBarfT398+5wsvlckJCQoiNjcVoNN70sbwkJycTHR0tdqkJJHK5nNTUVB588EEMBoM4O+nu7qatrY2Kigqxk5Ff5PHLr1wDg8FAfHw8cXFxqFQqHA4HQ0NDHDt2jBMnTnD27NmAtG0KCQnBaDSSnZ1NTk4OOTk5bNy4kbCwsOsqvNPpxGq1olQqKSsrQyaT4fF4GBoa8mkt8qysLPLz86e1S3a73RQUFMzYzPK9U38vcrkcjUaDVqtFIpGIfzt79iwGg2HO5ZZKpajVagwGwzWbkE5OTuJyua46B4VCcVWbci8GgwG9Xj+tp1ugCAsLIzMzk3vvvVd8IQuCQE9PD6dPn+bUqVN+7TEXUIU3mUzk5uZy9913I5FIxN5szz77bEA7yd52223cfvvtbN++nZCQkKvaEV8Pk8nEN7/5TWw2G2NjY4yOjvLDH/6QF1980Wfy9vX1kZiYOE3h5XI5ZrMZmNll9d6OOjP9bT5w/vx5Ojs7mZycFLdJJBIiIyPJz88nMTExgNK9P+vXr2fLli3ikkX4W4v0pqYm9u7dy6FDh/wqT0AUXiKREB0dzfr167nzzjvFt/TQ0JDYrSNQcsXFxbFs2TLWrl1LSEjIdbuVXguZTIZWq0WpVBIWFsbjjz9OYWEhTz/9NH19fXPaxkkQBH7zm9/wzjvvUFRUxH333YdGoxFfUg6HA4fDIdpBent7aWpq4tKlS4SHhxMdHU1xcTGA2ExSo9GIU0/vvk1NTXMm8/vR3d1Ne3s77777LsePH6e7u5vx8XHx73K5nLy8PDQazbxVeKVSSWpqKqtWrWLhwoXT/uZyuTh58mRAuhz5XeG9hfkTExNZsGABaWlpOJ1OJiYm6OzspLy8nKmpKX+LhVwuR6fTsWbNGvLy8oiNjRWVxuPx4HA46OvrY3R0dEYDS1JSEmFhYeh0OkZHR1GpVOh0OpRKJfn5+YSGhlJTU0NtbS1dXV10dHTMmexVVVWMjo5isVgoLi4mJiYGvV4PXDYKdXd3U11dDfxd4Wtra0WFt1qtos2ioKAAlUqFTCbD7XZz7tw5GhsbGRoamjN5vbhcLsbGxmhtbUWhUIhW9urqas6fP09paSnV1dUMDQ0xNTWFVCrFZDKRkJBAaGjoNCOlF4/HI3aUDaSxTqPRsHLlSnJzc4mNjRW3OxwORkZGqK2txWKx+F+w2baoYY5a4qjVaiEmJkb48pe/LLzzzjvC1NSUMDAwIJSWlgo//vGPBbPZLMhkMr+3CjIajUJhYaFQV1cnjI2NCW63W/xMTEwILS0twn/+538KDz74oJCenn7V59e//rVw5swZYXh4WDhw4IBQWVk57RgOh0Po7+8XXnnlFeGLX/yiT1odaTQa4dlnnxXq6+sFt9steDwe4fDhw8K3vvWt9/1uSEiIsHnzZuHcuXOCzWYT3G63MDo6Kqxfv14wm80+uf5SqVTQaDTCE088Ibz88stCR0eHcPr0aeEzn/mMEBERcdX+Wq1WuOeee4TXXntNaG5uFiwWi+B0OsXP1NSUYLVahd7eXuFXv/qVkJycLEgkEr88P+/9JCUlCWVlZYLFYpn2HHR0dAj79u0TTCaToFAoBIlEMmsZb0Z+L34f4c1mM0uWLOH//J//g9FoZGxsjOeee46XXnqJhoaGgPVXz83NZceOHcTGxk4zIO3du5czZ86wb98+WlpamJiYmHEG8vTTT/P888+j0Whob28nLy+PLVu2cPvtt2MymdDpdBiNRrZs2YIgCDz99NNzfg5ut5sLFy6QkZFBeno6EokEqVQ6qzX5woULKS4uJicnB7VazdjYGO3t7fT39/usk6zH48Fut/PHP/6Rl156CbVajcvlYnR0dMZl3ac+9Sk2b97Mhg0b0Gg0VxlQ+/v7KS0t5ec//znt7e2MjIwEZJQ3GAzExMQQHh5+leHQZDJRVFTErl27cLvd2O12KisreeONN6irq6O7u9unsvlV4U0mE8nJyWRnZ2MymXA6nfT399PR0UF3d7dPpo2zQa/Xk5KSwtKlS1Gr1UgkEpxOJ52dnZSWlnLq1Cnq6uoYHR29ppurq6uL/v5+ZDIZo6OjuN1u3G43DoeDDRs2kJeXh1QqRafTodPpfHIebreb8+fPk5mZiclkIiMjY9YPfHJyMqmpqaIra2Jigp6eHkZGRny6xBIEgdHR0eu23lYoFISGhpKdnU1SUhIhISGiF8F7ft6W0uXl5TQ1NQVmuvw3wsLCiImJITQ0VFwWeuX1uiKzsrLE4CiDwYBaraa5uZn6+noOHTrE+Pi4T15WflX4pKQkcnNzKSwsRCaT0dfXR2dnJ729vTgcDn+KMo2oqCgyMzNZsmSJOGo4HA4qKys5ePAgFRUVuFyu6x7jvW631tZW2tvbaWxsxGw2k5OTc12X3lzgdrs5efIkCQkJhIeHk56ePqNb7r1IpVLS09NJTU0V97VarXR0dDA8PBwQm8qVaLVaUlJSyMjIED0P72V4eJj29nbOnTsXUHm9HoTk5GQxN+DKqEWpVIpUKkWr1YrfiYiIYNGiRYyMjFBVVUVNTQ1tbW0+OQ+/KnxRURGbN2/m9ttvRy6X09/fT2VlJa+88sr7KpSvkEgkfPrTn2bdunXTLPJut5uRkRHRD/xB8Hg8dHR0cPHiRXJzc8nPz58rsa/7m3a7fZob63oolUrS09MpKioiJydH3D4+Pk53d3fA+8XrdDqWLl3KT37yEzIzM1Gr1TPu91//9V8cPHiQ8vLygCwJ4fKzFBsby4MPPsgDDzyAIAjT4hm8I/rk5CQdHR0IgoBUKsVsNhMaGkpYWBgrVqzgS1/6Evv27WPfvn1zrhd+U3iJRMLSpUvJyMhAqVSK2U4ej8evgQczsXz58mnJGXa7nYGBAd55552bStqRSCSYTCZiY2NFS+34+Pg0F5OvmO10UKvVsnbtWhISEsRRx+Fw0NLSwpEjRwKmPF68y6CUlBTUarX4UvYmz3hHzrVr1yKVShkZGWF4eJjJyUm/j/QSiUS01XgjB733we12U11dTX19PdXV1dTV1Yn5IgkJCWzZsoWMjAzi4uJYv349ERERpKSk8PLLL2OxWObsXPyi8N444uzsbOLi4oDLoZ8jIyMBW7dfSVpaGtHR0eJoZrVa6erqoqys7ANHyHmj1nJyckhOTiYiIgK4HCTT19c3Z7K/F29m1rVGwvfKGBoayooVK4iIiBANTJ2dndTW1lJZWRnwEV4ikaBUKmeM9Lty9CwqKkKpVNLc3ExjYyM9PT309vb6XX6lUolGo5lm+PV4PExNTXHmzBlOnTrFu+++S319/bQEMY1Gg8vlQq/Xs2DBAiIiIoiLi+PSpUvU1dXR29s7J6O9zxVeKpWSkJDA3XffLZ6Y0+nk+PHj/OEPf2Dfvn2+FuGGqaur4+jRo1RVVX0gw4lCoSAuLo7s7Gx+/vOfi6O7IAi8+eabPi1yoNfrycjIoKCg4H33jY6OJj8/XxxRvDJ+97vf5fTp0/PiZezl/bLljEYja9eupaSkhL1797Jr1y5efPHFgBrvvHjjDX784x9fVdHG5XLR2trKf//3f1NaWsonP/lJ7r//fsxmMyaTid/85jf8+te/5rXXXpuT6FOfK3xYWBi5ubl8/vOfx2QyiQEdFovlmu4XfzM6OorNZhNHRW/QjEwmu6G3qlarJT4+ngceeIDc3FwWLFhAfHw8LpeLjo4O3n33Xd5++22qqqp8dSpMTExw8uRJXC4XS5Ys4ZVXXqGiomLGfb3JS95iDN4R89KlSwGJApuJqakpWlpaeOGFF9i2bdu0BKGZkEgkLFu2DI1Gg8lk4mc/+1lADcKzxWKxUFtby8svv8yqVavEGWJ0dDTbt28nIiKCJ5988qZ/x+cK752OZWRkiNtcLhfV1dX09/cHfI0I0NjYiNFoJDk5Gbg8WiQmJpKenk5vby8TExMz2hnkcjlyuRyZTEZ4eDgxMTEsXLiQjRs3kp6eTlxcHHa7ncbGRi5dusSRI0eor6/36cjpcrloamrC5XIxODjIuXPnrjkyxMbGsmDBApRKJRKJBJfLxcTEBBaLZdZGP1/jcrno6+vj0KFD4jUNCwsTr/1Mno+IiAgyMzOx2+2EhoaK2Wi+NgwLgsD4+DidnZ20traSlJQkxkJ4p+5Wq5Xh4eGrZo5Op5Ph4WFqamqorKxEJpORlpaGTqcjPT0dq9VKaGgoExMTN6UzPlf49xZmgMtGoWeffdana9nZIggCb7zxBoB4g9LT0wkPD6e+vp5du3bR1NQ0o5KGhYWh1+tRq9Vs3LiRwsJCNm/eTFRUlJgp19vby/PPP8/rr7/ul3RZuOwSbG1t5dixY9fdb+nSpdx1113A5etgs9lobGycVyOi2+2ms7OTv/zlL2g0GlasWMGSJUvQarWEh4dfc8QPDw8Xk2v6+voYHx+/rq9/LhD+VoRy7969uFwuvvrVr4oDglar5a677iIkJIQjR47MaISbmpqis7OTZ599lvHxcdLS0pBIJGJWaXp6Og0NDTeVeekzhVepVOTl5XH77bezfPlyADo6OigvL+fo0aP09/fPmwfrrbfewul0otfr2bx5MzKZDIPBwD/90z9x55130tXVRX19/VXfS09PF33eGo0GtVqNVqvFarXS1NTE+fPneeWVV6ivr6enpycAZzYz3jLJS5YsEe0LLpeLlpYWfv/73/utGMNsEQQBh8PBX/7yF06fPs3ChQspKChg/fr11yycoVKpiIqK4tVXX2Xv3r0cOXKEl156yS/ynjx5kpaWFiQSCffddx9JSUloNBoeffRR1q9fT0VFBc899xyjo6NYrVaam5tRKBRiqvDJkydJSUnhnnvuEZ+t5ORkvvrVr/LTn/6UixcvfmDZfKbwWq2WDRs2UFxcTEZGBhKJRFSEEydO4HA4Al6JxIu3DlpjYyNr1qwRwzaNRiNyuZzIyEiio6Ov+p7ZbBZviMPhwOl0MjIywp49e7h06RI1NTVUV1djsVgCFmcwEzKZjFWrVpGUlCRG1o2Pj9PV1cXp06cDHmhzLQwGA0lJSSxcuJDMzMzr5uhLJBJxGh0ZGemz6MaZmJycpLe3lwMHDmA2mxkeHiY2Nhaz2Uxqaqr4vNhsNqxWKxUVFaLdyGw209TURHZ29jQXpFKpJCEhAZ1Oh1wu/8DPk08UXiaTYTQaufvuu8nNzSU0NBSXy8Xw8LA48s03RkZGqK+vZ2BggMjISNEnHRISIlZluRKn0ynmNo+PjzM8PCxOG3/zm9/Q0NAwr6zcV+Id4ZOSksQ18MDAAM3NzZSXlwdWuBnwpu0uWbKErVu3sn37dkwmEzD7eAN/Y7PZOHToECEhIbS3t1NYWMiyZcvQarVkZGSQlZWFRCJhcnKSM2fOoFar0ev1xMTEiJmMV7r2vMVC1Go1CoVifil8UVERxcXFhIeHI5PJ6O7u5vDhwzz//PMzTo3nA7W1tTQ3N3P69Gm+8IUvcNttt13Tl+10OnnxxRcZHBxkdHSUkZERTpw4wcDAAIIgMDU1FXD/9fWQyWQsWLCA0NBQcdvrr7/u85roHwSdTsfKlSv5yU9+gslkQq/XExoaOs0HP5/ZtWsX+/btQ6lUsnTpUgoKClixYgXr168nJCQEjUbDmjVrxP2lUinLli0TjX1epqamuHjxopin8UHxicK7XC48Hg9RUVFi6ar+/n5aWloYHBz0xU/eNN7giObmZp577jlKS0uvWenG7XZTX1+P3W7HbreLufLzxbJ9PcLCwkhJSUGhUIjRjnD5JRboiMeZ8EbaJScno1KpxAq9HxZcLhculwuHw0F1dTV9fX1UVVVRWlqKUqkUS3Xl5+cTGRmJXq8nJycHlUqF2+3m+PHjTExMMDAwwF//+lc6Oztvank4pwrvrRhjNpsxGAwYjUaGhobo6uqivb2dgYGBeeF3vxaCIDA8PExpaWmgRfEZXhfpeyv5zFcl8kbazdSk4np48wncbjdjY2M+S/GdLV6PTW9vLxcvXuTs2bNihWa1Ws26devEiEyJRIJWq8XpdHLw4EEsFguDg4OUlpbedGGPOVV4jUbD7373OzIyMoiMjATgt7/9LYcPH76pMNUgc0d8fDxr1qy5qnPLh2F6fCNcunSJgwcPirYZf5bomg3vdRH++c9/Fv99rSKjc8GcKXxMTAy5ubmkp6cTERGBzWbjN7/5DYcPH6axsZGJiYl5va4NMj/Zvn07mzdvnrbNm4V4+PBhKisrZ/xeZ2cndXV1TExMYLPZPhTLLS++fPnOmcILf+uRdfbsWbRaLWNjYxw4cICmpiaGh4fnlVsqyHS8WYvz8YXsdDrp7e1l//794jaPx0NnZydHjhy5psKPjY0xODg4b2I95gtzpvDe9cnRo0fn6pBB/IA3qMVrfJxv/PWvf+Wvf/1roMX4yODbEixB5h3esl1ei7zFYuG//uu/2LVrl0+TeoLMDwLeWy6If7FYLNTU1PDb3/4WhULB+Pg4R44cobu7e95G2AWZOyTCLC0E89Vt4+X9TiMov28Jyh9YZmvom7XCBwkS5MNPcA0fJMgtRFDhgwS5hQgqfJAgtxBBhQ8S5BYiqPBBgtxCBBU+SJBbiKDCBwlyCzHrSLsPe+BBUH7fEpQ/sMw2nCY4wgcJcgsRVPggQW4hggofJMgtRFDhgwS5hfB7eqy3aF9ycjISiUSsYe+tonolgiAwOjoqttI9deoUbrd7XtRfUygUaDQalEqluE2r1RIbGyv2Q+vo6AighNdGIpFgNpvRaDTodDpMJhNTU1OMjY3R3NzM1NTUvLjGN4K3pZnXuOat4hNkOn5XeJ1OR2xsLF/5yldQKpVotVpWrFhBZGSk2AXFi9vt5syZMyQnJzMxMcGyZcuwWq0BL5fl7feVlJQkFusEyMjI4KGHHmJ4eJidO3fym9/8JoBSXhuFQsHq1atJT08nPT2drVu3Mjg4yOnTp/nxj39Md3d3wK/xjaJUKsU+boBYGvrDdh6+xq8KHxERwbZt23jsscfIzc1FKpWKHTVkMtm0UcXj8eB2u8nJyUGhUADw+c9/nhdeeMFvTRmvhUql4t/+7d9YvHgxSUlJ4naFQkFISAj/3//3/3Hu3LkASjgzOTk5bN68mfvvv5/U1FRUKhUKhQKtVovZbCY+Pp6CggJ27NgxJ73IfY23WYNarebxxx9n5cqVLFy4EICWlhbKy8spKyujoqKC1tZWbDZbgCWG5ORk8vLyxNns5OQkFy5cYHR01C99Afyq8N6WTVlZWYSFheF2u5mcnKSyspLJyclpU7DJyUmsViuTk5PI5XKmpqYCXgwzNTWV+Ph4MjIyWLlyJUlJSRiNxmn7CIJAe3v7vGq4oVQqiYiIYOvWrRQXF5OYmMjAwIDYxSQ7O5vw8HCMRiNZWVlkZGQwNTXFwMBAoEWfEalUSmZmJiaTCaPRSEREBGvXriUvL098Aev1esLCwkhISCAzM5O6ujqOHz/OwMCA3yr7ePvbeZU7IyODoqIiSkpKxG0jIyP09fXhdDqxWq0+X4b4VeHDwsIIDw8nPDwcQRCwWq309vaye/duhoaGphVRHBkZoaenh6GhIdRqtdhAL5C17RcuXMiGDRu44447xAdrprXu6OgoNpsNqVQa8HWkQqEgPDycvLw8PvGJTxAREcHY2Bj79u2jubkZh8PBJz/5SfLz84mIiMBoNFJUVMTExASDg4Pzai3vtflotVrWr19PTk4OSUlJpKSkkJiYiE6nE6+3yWQiMjKSoqIi+vv7qa2tpaenh/HxcZ8rvFdOlUpFaGgoCoUCiUTCpk2b2LhxI7fffrtoa+ju7ub06dNMTEzgcrl836hFmCXATX8+//nPC2+88YbgcrmEpqYm4Stf+YqQnJwsqFQqQalUCgqFQlAoFIJerxd0Op2gVCoFqVQqSKVSQSaTCVKp9JrH9of8n/70p4UXX3xRcDgcgtvtFlwul+B0Oq/6VFZWCj/+8Y+FnJyc68rsD/kfeeQR4fnnnxcmJiaEPXv2CF/72teE9PR0Qa1Wi9dbq9UKTzzxhPDGG28IgiAIra2twk9/+lMhNjZWkEgkAZX/yo/RaBTuvvtu4U9/+pNgtVqFqakpweFwCC6XS+jp6REaGxuFiooKobGxURgcHBQ8Ho/g8XgEt9st1NbWCmFhYYJMJvO5/AkJCUJJSYnw3e9+V6iqqhJGR0eFsbExwWazic+O9+NyuYSJiQnhT3/6k/Dwww9/4GszW/w2wkskErGXuiAIWCwW+vr66OvrE9+4crkcnU7HXXfdhU6nY3Jyktdffx2bzXZTDfRuFrlcjl6vZ9myZaSlpV3lTXgvCQkJrF69GoCf//znjI6O+rUEtEajISYmhkceeYS8vDx0Oh179uzhxRdf5NKlS/T09ExrveRtaeRwOMjPzyc8PJyEhARSUlLo6+sL6LXXaDQYjUYyMzNZtWoVBQUFLFmyBJ1OhyAIjI2NcfToUcrKyujp6WF0dBSDwUBxcTF33XUXRqNRnFqHhoZit9vn/HwkEglqtZrQ0FA2bNhAVlYWycnJ5ObmkpCQQEhIiLiv3W4Xu87odDpUKhVqtZr8/HyGhobYu3cvQ0NDPrvmfp3Sh4eHo9fr8Xg8DA0NMTY2JnYEUalUGAwG0tPTufPOOzEYDIyPj7N//36mpqYC9tDJ5XIMBgOZmZksWrSI+Ph4gGnuH7vdjkqlEl8EYWFh5ObmotPp+P3vf4/NZvOrwkdFRVFQUMDDDz/M4OAgjY2N7Nmzh717915zSVRTU0NISAidnZ3ExMRgNBoxm80BjSGXyWTExsaSlpbGmjVr2LZtG3FxcZhMJpxOJ8PDw7S3t7N7925OnDhBZ2cnY2NjhIWF4XQ6yc/PJzQ0FLlcjkKhICkpCavVOudTer1eT3R0NKmpqdx7771kZGQQExNDZGQkU1NTjI+Pi/d/cHCQ7u5uAJKSkoiKikKr1ZKYmEhqaipGo5GRkZGPhsJ78Xg8XLhwYZpRKC8vjw0bNvCtb32L0NBQpFIpVqsVnU53VR8ufxIbG8u6dev40Y9+RFRUFDKZbJq/1+l0cunSJTIyMsT2yxKJBKPRKK4339u40dfcd9997NixA4lEwlNPPUVpaemsDHBTU1P09fXNC1eWNz7jiSeeYN26deTn54t/83g8NDU18ac//Yk9e/ZQUVEx7bujo6O8++67yOVyfvrTn6LX6zEYDHzpS1/ihz/8IRaLZU5l3bx5M9u3b+fBBx+86gVZU1NDc3MztbW1AJw5c4Z9+/YhkUj43Oc+x3333cfatWsxGAyEh4ejVqt9+pINiMJLpVJycnI4cuSI+OZ99NFHKS4uJiQkBLvdTk9PDzU1NYyNjQX0AVy+fDmrVq0iPDxc7Enudrvp6emhoqKCmpoajh8/zgMPPMCiRYvIzc0VmzQKATJ4xcTEEBcXx+HDh2lpaZnzB9zXaDQaYmNjeeKJJ9i0aRMJCQkA9Pf3c+rUKfbt20d7ezuNjY10dXXNeIyOjg6OHDnCwMCAGO+xdu1a/vu//3vO5DSbzRQXF/OFL3yBBQsWIJFIcLlcDA0N0dnZycsvv0xtbS39/f3iC/fK57mxsZGysjLWrl07ZzK9H35V+P7+fnG6Eh4eLq5zcnNzKSwsJCMjA7lcTnNzM5WVlZw4cSJg63eZTEZkZCQFBQVkZWWJEXXC33rolZaWcu7cOaqrq6moqBBdWzk5OQHtyBoWFobBYECtVtPR0cHY2Nis/LsKhQK9Xk9UVBQ2m43BwUH6+vr8eg5XBjRlZ2ezbt06EhISUCqV9PX1ceLECY4dO8aBAwcYGhpiYmLimkslm81GX1+fuGb39pmfy9mWyWRi69atFBQUYDQa8Xg8tLS0UFNTQ3V1NQcOHKC7u1t0L78Xq9XK0NDQnMkzG/ym8IIgcOLECUwmEwUFBajVatavX8/ixYvJy8sjIyMDtVqNx+Ph2LFj7Nq1i7feestf4l2F1/WzYcMG8vLypv1tamqK733ve3R3d4vBHPX19SQnJwdA0r8jk8nIyMjAaDTidrvFuAXvzOR6GI1GUlJSWLNmDRcuXKCsrIyTJ0/6SfLLyGQyFi5cyF133UVJSYk4je/r66O0tJTvfe97tLe3Mz4+fsPHdjgcNDc3z2kX2YSEBP7xH/9RnM1NTU3x+uuv8+qrr8468Or9DMBzjV9H+BMnThAREUF+fj6FhYWkp6fj8XhQKpX09/dz/vx59u/fz1tvvUVvb68/RbuKyMhI/uM//oPQ0NCrQn4FQWBwcHDetSB2u91UVVXR1NREcXEx3/zmN7ntttuor6/n7NmzvPLKK9c02j3++ONs2bIFQRD4zW9+43dlT0pKYsmSJfzoRz/CbDaj0+mAv0/j//3f/52WlpZp3oXrER8fz+LFi0X/vNVq5ejRowwPD/vsHARBYGRkBJ1OR3R09HWfYaVSye23387DDz/sM3lmwu+BNwaDgdDQUNRqNVKpFKfTSVtbG4cOHaKqqorz58/T1dUV0DDI5ORkCgsLiYqKAqZPzXt7e6mpqZm3CSZTU1NcuHCBhIQEtm3bxoIFC4iMjCQ6OhqtVsvAwAAWi4XW1lb6+vpwOBwUFhZSVFREZGQkFy5coLKyUrQk+wO1Wk12djb33nsvycnJqFQq0eV26NAh3nnnHVpaWm7omsfHx7NmzRo0Gg0ymYzJyUmOHz8+p/aM8fFxLl68SHp6OkqlEplMxqJFi+jq6rpu4pTXhpWamorZbAYuv9i8gUG+fK786ofPysoiKyuLxMTEabHEp06d4g9/+AMXL16c9RvclxQUFLBhwwZxKuy1mjocDhoaGnj77benGRKlUikqlQqlUjkvSiGdPHmSiYkJCgoKiIqKIiMjg6ysLFasWEF3dzfNzc3s27eP8+fPMzY2xo4dO8jPz8fpdLJv3z4aGhp8OhK+l8jISJYtW8aDDz6ITCbD5XIxOTlJS0sLf/3rXzl16tQNyaNUKklPT2fLli0oFArcbjcWi4VDhw7NaaTm0NAQhw8fJiwsjNDQUARBYMWKFVRUVEzLonwvcrmc1atXk5iYKO7X0tJCXV0dw8PDvrVZzTZCh5uIkJLJZEJISIjw3HPPCbW1tWKUkdVqFcrLy4WFCxcKer3+pn5jLuV//PHHhSNHjgiCIIiRWm63W3juueeET3ziE4JCoRD3VSgUQlpamnDo0CHBbrcLbrdb/M3R0VGhoKBACA0N9av8EolEkMvlgk6nE4qKioQHH3xQ+PWvfy1cunRJGBoaEpxOpzA5OSlYrVbBarUKDodDqKmpEf73f/9XSE1NFeRyuV+uv0wmE/R6vfDiiy8KTU1N4r779+8XvvGNbwg6nU6Qy+WzjvbzHvOrX/2qsHfvXvFeHDx4UPjWt74lqFSqax7rg8gvlUoFrVYrhIeHCxEREUJERIRgNBoFtVp93QhLjUYjPPvss0J9fb3gcrkEm80m/Pu//7uwdetWnz3/Xnw+woeEhJCens727dspKioiOjr6qn2cTmfAY87h8kjtjcs2m82iMcblcmGz2SgvL6e5ufkqq7dEIkGhUCCXy6e55IQATfm9MrtcLpqamhgcHKStrY2TJ0+Sn59PcXExq1evRq1Wi9/p6emhpaXFr5F1ZrOZjRs3kpeXJ17vgYEBysvLxVnKjRASEkJycjJbt24lNzcXgLa2No4fP87BgwdxOp1zek88Hg+Tk5NXzUqvd+9DQ0NJSEggLS2NsLAwPB4PVquViooKqqur50y2a+EzhZdIJCiVSuLi4li8eDE7duwgNjYWuJwY4w1M8Qan+NtaORMSiYTExERiY2MxGo3TFH58fJz6+np6enqu+o5cLp9mCRf+VnzB5XIF/EU2MjLCyMgIra2tNDY2YrfbSUhIEG0kgiAQGhqKy+XC6XT61QXqzeCLj49Hp9PhcrlobGykurqa+vr6GzqWQqHAZDKxdOlSFi1ahNlsxu1209bWxsWLF6mqqvLJvbjRF7s3mjQ+Ph6tVovT6RSn8/5ISfaZwiuVSrKzs9mxYwcrVqwgMzOTiooKGhoaaG1t5YknnkClUhEeHk5ubi5dXV0BzYSDy26hzMxMkpKSRGMKIGbpVVRUXGWMkclkmM3mq9ZsdrudkZGReaH0cPnF9J3vfIc1a9ZQUFDA+fPnaWxsxOFw8JnPfIYtW7YQGhrK8ePHKS8v94stJS4ujoceegi47GGw2Wz8x3/8B+fPn6e/v/+GjpWYmEhJSQnf//73iYiIEI9ZUVFBd3e331Ji34/k5GRuv/12YmJiUCgUdHZ28p3vfIempia//L5PFD4uLo7s7Gy+8Y1vkJycLMbFP/fcc+JbzOVyiRFQJSUlnD179qrR0594A09yc3PFB+b9iIuLIysri2984xukpKRM+1t9fT179+6lu7s74O671NRUPvWpT3HbbbehUqmorKzkJz/5CR0dHSiVSkJCQigpKSEkJITs7Gxqamr8bjxtamri5MmTnDlzZtbBKN7iF5mZmXzmM59h2bJlmEwmpFKpGKn55z//2W/K9H5otVoyMzPZsmULcvll1ZNKpYSEhIh1FbxTfF8NEnOu8AaDgYKCAoqLi1m+fDkajYaJiQlqamo4e/YsFotFdHfBtUdIfyOXywkJCSEzMxODwfC++4eGhpKTk0NxcTGFhYXTMqLgcghla2srk5OTAc02KygoYNmyZWzevBmXyyVWgvEqlkqlYv/+/WRkZKDX61mxYgVvv/22X2X0eDz09/dTUVHBwMDArBONNBoNUVFRbN26VSzZpVKpGBoa4tKlSxw+fJja2lrf55jPkoyMDDIzM4mLixO9OWq1WnSJjo2NMTU1RW1trZhw1d/fP6d2hzlVeLlcTl5eHp/+9Ke58847RSXo7OzkmWeeobKyEq1WO03h5wsqlYqIiAhWrlyJVqudcR9v0ox36n/fffdxxx13EBYWNm0fuPG1nS+QSCR861vfYtOmTURERPCTn/yEgwcPcuTIEXEfu93O//t//49169axefNmPve5z/Gzn/3Mr9VuXC4X/f39VFdX39DLMTIyksLCQp566qlp1/3cuXO88cYbPP/88wFfJnqRSCTs2LGD1atXi6M7XM4g/fa3vw1cdvuOjIzwzDPP0NnZyeDgIDt37pzT0ldzpvDebLdHH32UuLg4MVKqrKyMo0eP8uabbzIxMSGWuPJ3Btn7sX79ev7lX/4FjUaDVCoVlVsQBHQ6HSkpKfzwhz/E7XZjMBhYtGgRBoNhRoPjuXPn2LNnDy+99JJf6pTNRExMDL/4xS9YvXo1fX19/OAHP2Dnzp3XLL3V1NREWloaJpOJtWvXolQqqamp8YusdrudgYEBGhoa3ncqGxMTQ2ZmJkVFRSxbtoycnBwkEomYcHXq1Cl+9atf0dzc/IFCcH2Bd+mh1+uneUbei1KpxGQy8YUvfEEs8WYwGHjnnXeor6+fk2n+nCm8VqslOjqapKQktFqtWJzv0KFDXLhwAZvNRn5+PsuWLWPt2rXzTuG9RrYrLe1XBt4oFAoKCwuBy4ULvHnx70UQBCoqKqirq2NsbMxv8r8XlUpFUVER4eHh9PT00NjYyNDQ0DXtCV6PCVw+P38usRQKBSkpKWzatInjx49flR0plUqRy+VoNBqys7NZuXIlGRkZJCcnExkZSX9/PxcvXuTSpUu88847NDY2Mjo6GvAZlhej0cjSpUvJysqaVuV4Jrxpwd6o1DvuuEM0/N6o52Im5kzhlUql+AaTyWTYbDb27NnDnj176O3tJTw8nNtvv521a9eydu1a5HI5Ho8Hp9PJ1NRUwC3ZHR0dHDt2jFWrVk3Lqrpyap6RkQFcPW33uu7cbjdOp5OTJ0/Oyc25GZRKJUlJSWLk2ujo6DWvsbcajF6vF8/BX/fD4/GgVqtZsmSJmII8U5yDWq3GYDCwcuVKbrvtNrFeoM1m49KlS7z66qucP3+eM2fO+EXuGyE6Opr777+fpUuXotfrxe1e9+1MSCQStFotd999Nw6HQ0zJvtns0TlReLlcTn5+Pg8//LBYUjo8PJyvfe1r/NM//ZM4SoaHh6NQKERlqqqq4ty5czz99NM0NzfPhSgfmNraWjo7O/F4PNx9990UFRVdcy1/JS6Xi56eHk6cOEFFRQV79+6lqakp4G4gr1zeev+xsbFUVlZetV9ISAibN29m1apVmM1mzp8/z549e2hvb/e5jOPj49TU1JCRkSFWzf3lL3951X4Wi4VLly7R1NREWFgYEomE6upqmpqaqK6u5umnn2Z0dDTg1/xaeNNor3yeBEGgtbX1mu7HyMhI4uPjUSqV3HHHHaxbt46vf/3rfO5zn+PUqVMfWJY5UXjvlFej0YjbvO4G70l693E4HIyOjlJeXs6JEycoKyujvb094DH03uCaAwcOAJeTZLKyskhJSRHtEe9lYGCAlpYW/vjHP9Lc3ExPTw/t7e3zYsbidDppamoiJCSEhIQEHnvsMQRBoKqqSpx9REREkJKSwsc//nFiY2Pp7+/n5ZdfxmKx+EX+vr4+3nzzTe69915iYmIICwubcY2r1WpFRX/33XfZs2cPXV1dDA4OMjAwwPDw8JxH0c0l3uAsL263m1OnTnHw4EGqqqpm/M66det48MEHxSo4CoUCtVo9Tcc+CHM2pfdOz69cm0ulUrEAgUwmo6+vj9HRUQYGBjh48CCnT5/m0qVLjIyMzJUYN4XL5eLixYuoVCosFos4Dfb6diMjI3E6nWLhhcbGRsrLy3nppZfmRUecK5mamqKqqork5GTi4+PZunUrra2t4svL5XKRlJREbm4ua9euxePx0NDQwKFDh/yWqTg8PMzBgwfFgpnX8t5MTEzQ19dHb28vZWVlvPvuu2Jtuvl0za+Ft/y092U2Pj7OsWPH2L179zXz5mUyGcuWLUOpVOLxeHA4HKLb7maQCLN8LV4vC0wmk3HffffxL//yLxQWForrq/HxcQ4dOsTw8DBGo5Gnn36axsZGent75/xGvd9p3GgWm0wmIzw8nIyMDCIjIzGZTPzgBz+gpaWFt956i6qqKrq6uujv75+TVNK5ll8ul4uW+pKSEkwmk/g7Ho+Hnp4ewsLCxDXlD3/4Qw4cOEBpaanf5fcWAL2WIVf4W1kxX6Ykz/X1v5KCggK+/vWvExoayuDgIA0NDfz617++qvnKlZjNZjIyMviXf/kXBgYGqKur45lnnmF8fHxG3ZntdZkThYfLlVITEhLEqZf3Jg0PD+NwOFAqlXR0dIgBBXN943xxw7xtmJRKJQqFgvT0dLH80/j4OHa7HYfDMScVaedafm8uw4IFCzAajdOs7sLfKu16E34AmpubGRoa+sD54jcj/5VFQa93fF9O2X2p8N6kHplMhtPpxGaz0dHRcV3jm/fZS0pKwuFwYLPZ6O7uvmYzVb8rfKDx5Q3zB0H5A8tHXX4vgU9RCxIkiN8IKnyQILcQQYUPEuQWIqjwQYLcQszaaBckSJAPP8ERPkiQW4igwgcJcgsRVPggQW4hggofJMgtRFDhgwS5hQgqfJAgtxBBhQ8S5BZi1vnwH/bkgaD8viUof2AJJs8ECRLkKoIKHyTILURQ4YMEuYXwebvoIEFuFSQSCXFxcdx1112sXLlyWo0+bxWo8fFxBgcHee2117h48SJdXV1+lTFgCh8aGipW4oyOjmZkZAS73Y7L5cJiscybrqtBAo9KpcJkMpGZmQmAzWbj7Nmz8+r58PZl2LRpE5s3b2b58uWEhISIZay8tfXtdjvDw8OMj4+j1Wqprq6mpaUFl8vll6q7ASlxJZfLWbhwIREREcTFxfGJT3yCo0ePii2j3333XSwWyw2VrvaXlfXK48zlDfKF/Nf7zoehpqCXuLg4brvtNp566imkUim1tbVs3bp1Tqvr3qz8ZrOZ7Oxs3n77bTQaDVNTU9TX109rJpqcnExoaKhYOfj06dMcP36cn/3sZ4yOjt5UW7LZ3k+/jvByuZwVK1awfft2li9fjtlsxmAwEBISQmFhoTiqv/rqq+zfv5+33nrLn+K9LytWrGD9+vVs27YNiUTCH//4R781bbhRkpOT2b9//4wP6vj4OKtXr543XVWvR1paGiUlJTz55JMYjUba2tpobW1939FdKpWi1Wr5xCc+gdvtFgtB9vT00N/fP6eNTxYtWsTdd9/Nww8/DMBrr73G4cOHOXr06FUKv2LFCrZu3UpJSQmLFi0iKiqKjo4O3njjDTo6OuZMpmvhF4WXyWSo1WrWrVvHqlWrWLt2LcnJyej1elQqFcC0rhzFxcU4HA6sViunT58OeGMHhUJBaGgoy5cvZ+nSpeTm5iKRSNiyZQvh4eF0d3fT3t7OwMAAnZ2djI2NBURepVLJI488glKpFMscz4Tdbufxxx9namqKkZER/vznP/tZ0tmTkJBAeno60dHRyGQy9Ho9qampfO5zn7vuiOit2rt48WI8Hg8ul4upqSmGh4e5dOnSnCp8SkoKaWlpxMXF0d7eTllZGSdPnqSlpWVa2y6bzSbKER8fT0xMDGazmU2bNjE2NkZ5efmM3YHmEr8ovEqlIiYmhs9+9rMsWrSI1NTU6+6/ePFidDodBoOBuro6hoeHA9ZGSCKRoNPpSE9PZ+3ateTn5xMaGgrAbbfdxtq1a8XGAuXl5Rw5coS6ujrsdrvfOqGEhIQglUrR6/X8x3/8x1W96t+LWq3mZz/7GQD19fU8//zz87Jri0wmIz09nfT0dLFHnsFgYMmSJSxatGjavh6PZ1qvNu+o3tvbO+3l6+3++8ILL8yJjFKplAULFog93ysrKzl//vyMijs8PMy5c+eor6+nsLCQFStWkJKSwtatW5HJZERERHDp0iXfdhwWZgnwgT5arVZYvXq1sGvXLmFsbEzweDyz+j232y1YLBZh06ZNQnR09Pv+jq/kj46OFh544AGhvr5esNlsgsvlEjwej+DxeAS73S5YrVbBarUKNptNsFqtQk9Pj7Bp0yYhKirqhn7ng8ovkUiE8vJyUY4bpa6uTpBIJB/4+vjq+qtUKqGwsFB46623hP7+fsFutwv79u0TDh06JFRVVQlOp1Nwu93ip6+vT6iqqhJee+014bXXXhOeeuop4a677hJCQ0MFnU4nfrRaraBSqeZEfrVaLSQlJQknTpwQhoaGhNHRUSEvL0/Q6/Xve35qtVr48pe/LJSWlgput1twOBxCWVmZ8Mgjj8zq+zcqvxefj/De/mUFBQVotdprGj+8vby9o5NUKhUbTwYyrDEkJITw8HCioqJQKpViy589e/aIzQA9Hg8ZGRksWLCAkpISPv/5z7N7925eeeUVv/Qo1+l07zuqX4uoqCiefvppfvWrX1FbWzvHkn1wVCoVBQUFxMXFMT4+zp49e3jzzTdxuVzo9XqioqKQSv8eRjI+Po7VahWbMw4PD9Pb24vVavXZ7MXbAur8+fMMDg6iUCgwGAz09/djtVqv+1273c7Ro0ex2WzExMQQHR1NQkICDz30EPv373/f739QfKLw3uZ5er2e9PR0MjMzr9tPfWJigpaWFiQSCenp6ahUqnkVu+xyuRgZGcFisTA2NkZPTw+vv/461dXVdHZ24nK5KCwsZMOGDZSUlLB161YGBwc5cOAAExMT83K67CUsLIzHH3+c119/fV4pvEKhEK3aVquVgwcPsn//fmw2m+jOvfIZcTqdYutxf+HxeJicnOT06dM0NzeLTR+vbBx5PaqrqxkdHeWOO+5Ap9MRGRlJSUkJMTExjIyM+KTHn08UXqfTER0dzY4dO7jrrrtIT0+/5r4TExMcP36c3/72tygUCr7yla+wZMmSGbuIBoLGxkZGR0fp7e3F4XDQ09NDa2vrVYp88eJFoqKi8Hg8aDQaIiIiSEhIoLe396b6eQeByclJ0QDmdrtxu90B7zYMiDEjzz///Af+fl9fH7/4xS/4t3/7N4qKiggJCeFTn/oU+/btY+/evXMssY8UXqvVkpCQwGc+8xnMZvM1W9y+8sorHDp0iLq6OmprazGbzZw6dYqsrCzRej8fsFgsnD59Go/Hw9TU1FUGOZlMxrZt29i0aRNarRar1UpnZyeXLl0KKvsHwGuA3LRpEwaDgY6Ojo/si3NqaoqKigpeeuklBgYGeOCBB9i6dSvj4+NUVlbS09MzpzNEnyi8wWAgISGBtLS0adOukZERFAoFOp2OkZER0ard19fH+Pg4giBw5swZ7r77bnG9Hx4eHnDldzqdDA4OXrVdKpWiUqlISEhg5cqVLFq0CLlcTktLC+3t7YyOjgZA2g9GUVERw8PDnD9/PtCiEBoaSmxsLKmpqeK1t1gsH0mF93g8WCwWGhoaRO9VQkICiYmJmM1ment751ThfZI8k5KSwsKFC6+KSquoqKC1tRWXy0VZWRkXL16kqalJDKXt7e3lpZdeorGxEYvFgkwmo7Cw8Jp9wwON19/9iU98gm3btlFYWIggCOzevZsLFy4ERKYP+nA89dRT/OhHPxI7uV7r4w+Sk5MpLCzEbDbT3t7OpUuXGBwcnFehtHONzWZjfHwcj8cjrueTk5OnGSbngjkb4b2BDvfeey/3338/q1evFv82NDTEuXPn+MlPfoJMJiMuLo7Kyko6Ojqu2ydeoVDwwAMPUF5ezunTp+dK1DkhJCSET37yk9xxxx2sWrWK0NBQLBYLVVVV7Nq1i8bGRr/L5I2g+9rXvsZDDz10w99fs2YN9fX1193nM5/5DCdOnPigIs6a+Wzo9AXl5eVotVpqampEv/7q1avZs2fPdXXkRpkzhfca6u68807y8/OJiIgALrsfWltbefHFF6mrq0MQBDo6Oujr63tfK6REIiE0NNTvU3pvooM3eiokJGSaHcIbjLNx40YWLlxIeHg4DQ0NXLp0if3799Pe3u4Xd5yXP/3pT0RGRmK326mtrWVsbOwDHUer1V7XwArwiU98goiICN58880P9BuzYWBggLa2Nmw2G1KpFKVSiVQq/UiP8FNTUwwMDFBVVUVKSgqhoaGkpKSg1WpxuVxztpyZM4UPDQ0lIyOD++67b5pyTExMUFdXxzPPPCNu6+3tnauf9QlqtRqz2czmzZspLi4mPj5efIHB318IYWFhaLVa7HY7J0+e5NChQ/z1r3/164MpCAI/+MEPpm2z2+2Mj49/YN/89fjSl75ERkaGTxW+q6sLlUrFyMiI6N41GAw4HI6rRn7hb9F1Xgv+fMH7ohIEQfy8XwSd1WqlrKyMrVu3EhYWJir+lfH4N0swH34GHn74Ye6//35WrVqFTCZDKpVetX6VSCRMTU3R0dHBM888wwsvvEBzc/O8GIW+/e1v89xzz1FWVjav4hluhJGREX7961/z2c9+lh07drBkyZIZFd5ut1NeXs4rr7wi2n4CTWhoKPHx8Tz22GOMjIxgtVoZGRnhtddem3VATWhoKKmpqaSkpDA5OTlnbsg5U3i9Xk98fPxVD9iePXvYt2/frI6hVCoxGo1oNJpZBy/4gqioKFJTU68bCyCRSLDb7fT29vL222/T09Mzp2utm2FqasonQRv+ZHJykiNHjhAZGUl2djbR0dFXBduEhISgUCiIjo4mNTWVmpoa3n77baqqqgKWeyGVSlm2bBklJSVs2rSJqakpnE4ndrudhQsXUlNTQ3l5OWVlZVcNDsPDwxw5coSvfOUrSKVScaCZ09T0uTqQ0WgkMzPzKqvi2bNnOXfu3KyOoVarSUhIICQkRJwOjY6O+v3mabVaMUEGLk8bXS4X4+Pj2O127HY7Go0Gp9PJ5OQkzc3NTE5O+lXGjzpTU1PU1NRw8OBBenp6WLFixbSMSricg240GomIiOC2224jOzub0dFROjo6GBoaCsgLWKFQkJ+fz5YtW8jNzWViYgKPx4NKpSIvL4+zZ8+iVqtFt+2Vz7bVaqWiosKnz/ucKXxBQQGf//znUSqV07a73e5ZX3iz2cy9995LamoqoaGhOBwOXn75ZRoaGuZKzFkxOjrKwMAA4eHhwGWXSVdXF2+99RanT5/m3LlzLF26lEceeYT8/Hzuu+8+9uzZQ3d3t1/l/CgjCAI2m439+/dfM68/ISGBmJgYYmJi+PKXv0x+fj7f//73aW1tpaysjLa2Nr/KLJFIMJlMFBQUUFRUhCAIHDt2DKvVSmZmJtnZ2axatYqMjAwMBgNvv/025eXlVx3nynX/XOPzebPJZMJkMr2vmyovL481a9bwsY99TDQ2ud1uysrK6Ovr87WY03j55Zc5f/48CxYsAGBsbIzGxkb6+voYGxtjYmKCkZERnE4nISEhrF27llOnTs0rhe/s7GTLli389Kc/ZcmSJXN23G9961uzXqLNJTM9/H19fVgsFpqbm3G73axevZpHH32UrVu34vF4/K7wXq58OR0+fJizZ88C8Nhjj1FQUEBGRgYPP/wwJpOJw4cPiwbQ8PBwFi5ceNVMZi7xucIvWLCA7u5umpqaGB4evqa1cdGiRSxfvpyUlBTkcjlTU1MMDQ3R0dHh98osra2t9Pb2ipVsJiYm6OzsFB86uVwurrG8RRkCaXOYCZvNxsGDB9m3bx+CIFBYWDgnxy0rK5txVAoEU1NT4vT33LlzyOVyNm/eTEZGBtXV1cjl8oDbVXp6eqirq8NisZCamorH48FkMpGSksLy5cuRSqViRKZWqyUxMRGFQuEzeXz+lN57770kJSXR29vL4cOHZ1ReiUTCXXfdxebNm0Wf+9DQEDU1NfT29vp9fexdr18re0wikRAREYFGo8HlctHd3R0wI9H78e1vf5tjx47NSSKGr6aZc0FPTw/V1dXs37+fj33sYyQlJaHX6xkZGfG7LFdeI+9o73Q6eeGFF+jp6QHgwQcfpKioiEWLFrF9+3bxHEpLSz8cCj85Ocng4CB6vX7alMblcmG32xkbG0OpVKJSqdDr9QCidfXTn/40ixcvFrfX1taya9cu/vSnP9He3u7bCiAfALlczqZNm0hISGBqaoqLFy/6NdAmELS0tLBlyxaflFX+9Kc/zcDAAGVlZQwMDNz0S8VgMJCSksKiRYsoLS31m39eEAQxcaq1tZWUlBSeeOIJ8vPz+cUvfsHw8DDHjx8XB5JVq1aJ5bsEQcBkMpGenk5YWBi9vb1UVlZSXl7+gQOpZmLOFL6jo4MjR46QkJAw7Q2lUCiIj49n+/btmEwmMYIILt+YqKgoFi9ejMFgQCaTAXD06FFOnDhBS0sLDodjrkScE8LCwkhISCAvL4/Q0FAmJiZoamr60LvB3g+n00lTU9Ocj/ASiYTY2FhMJhNyuZzjx48zMTFxwy/5uLg40tLSRHfqXMegzxZvtdozZ85gNBqJj49nzZo1jI6OilGQDoeDsrIyMjIyyMjIEJ97uVyOSqVCEAQ6Ozt59913mZiYmNMX1pwpfH19Pa+++ioPPvjgNIVXqVRkZmaSmZlJSkoKcXFxFBUVzXgMbwWRnTt3Ul5e7rOqHx8UqVRKTEwMK1euJD8/H5fLRWdnJ7W1tR+KCrAfBG/FGF/OYDQaDSkpKaSnp9PZ2Ul3dzcWiwWn03nNF4xEIhGDomQyGQUFBRQXF7No0SIkEgk2m82n1W6uxdTUFBcuXEAul5OVlUVycjJLly5l0aJFnDhxgu7ubnp7ezl27BhDQ0NXLZM8Hg/j4+PU1dVx8ODBOZ+dzJnCe33VDofjmm/YO++885pvXpvNRkdHB4cPHxaNHPONrKws7rvvPj7/+c+jUqlobW2lqqqKzs7OeRFhN9dYrVYWLFggKo4vlEcQBH73u9/xwAMP8KUvfYk777yTs2fPcvr0af7whz/gcDimXVvvvyMjI1m4cCE5OTksXLiQpUuXEhUVhUaj4bnnnmPPnj1UVlYG5L7U1NTQ1tZGS0sLjz/+OIWFhaSkpLB+/Xqx2OY///M/X+XC9rp/v/3tb1NZWUlra+v8VfjR0VHq6+v585//zIIFC0hISCArK2v6j73Hkj05OYnVaqWpqYkjR45QX19PU1MTg4OD82rdHhoaSmZmJg899BCFhYWEh4czMDDAgQMH2LNnz7xX9pqaGr70pS/x5JNPEhkZed19BUHge9/7Hv39/WIuuq/vxdDQECdOnECpVPLxj3+c5ORkIiMjycrKEhXEizeNNCEhAbPZTHh4uLhUHBoaorq6mldeecX31V+vg8fjwWazcenSJXbv3k1XV5c4yl+ZZzIwMMDg4CA9PT2Mjo7S09PDhQsXKCsrY3Bw0Ce2hzlTeO/b6e2336azs5Pc3FyxfLIXiUSCSqVCrVYzOjrKyMgIAwMDnDx5khdffJGGhoZ5EbF2ZVij0WgkMTGRNWvWsG3bNqKiopDJZDQ0NHDy5ElKS0sDLe770tHRwX//939zzz33kJSUdN19PR4PzzzzjF+ba0xOTlJTU8Pw8DAZGRmkpKRgNpvJyspCp9OhUqnE++GNS4+NjcXhcIiJQt7SYwcPHuTkyZMBLz7idrvp6+vj1KlTDA4OMjExgUqlmpbQ1NbWRmdnJw0NDfT399PW1sbZs2d9WgfRJ62m1Go1BoOB5cuXT9uuVCopKChg5cqV/Pa3v2V4eJihoSEqKipu+gTf7/s3In9YWJjYJOPLX/4yy5cvJyMjA71ej8fjYWRkhEceeYSKioo5C7aZS/lv9hgf5F7MpfyRkZHExMSwbt067r//ftLS0tDr9WIVJEEQGB4epqysjLKyMl566SXGx8cZGxsTq9YGUv4bOcZcKfZsj+MThZdKpcjlcsLCwq46hl6vJywsjM7OTpxOJy6Xa06Mc3Nxw6RSKenp6Tz44IOsXbsWhUJBYmIiYWFhaDQa2traOHXqFPv27WP//v2MjY3Nmf/dHw+cL5lL+RUKBSqVCqPRSFRUlFgN1mvNhsteg9HRUcbHx+nr68PlcuFyuT7wNP6jfv29+CTwxmttHxgYuOpvH/QN7E8cDgcTExPIZDKqq6vF7U1NTZw9e5ajR48yODg4b4NQPux4S06Pj4/7pd/arURAusf6go/6Gzoov2/5qMvvJTDRCUGCBAkIQYUPEuQWIqjwQYLcQsx6DR8kSJAPP8ERPkiQW4igwgcJcgsRVPggQW4hggofJMgtRFDhgwS5hQgqfJAgtxBBhQ8S5BYiqPBBgtxCBBU+SJBbiP8fHnKt4vaS+3UAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
@@ -241,22 +173,9 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:21.152791Z",
- "start_time": "2023-02-09T09:45:21.096895Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] CORE(89941,ffff9151c010,python):2024-11-21-11:25:45.211.882 [mindspore/core/utils/ms_context.cc:530] GetJitLevel] Set jit level to O2 for rank table startup method.\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import random\n",
"import numpy as np\n",
@@ -288,13 +207,8 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:21.190676Z",
- "start_time": "2023-02-09T09:45:21.153742Z"
- }
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"from mindspore import nn\n",
@@ -347,13 +261,8 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:21.207645Z",
- "start_time": "2023-02-09T09:45:21.191642Z"
- }
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
" # 判别器\n",
@@ -390,13 +299,8 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:21.267439Z",
- "start_time": "2023-02-09T09:45:21.208597Z"
- }
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"lr = 0.0002 # 学习率\n",
@@ -428,13 +332,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T09:45:21.273427Z",
- "start_time": "2023-02-09T09:45:21.268436Z"
- }
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"import os\n",
@@ -457,1239 +356,9 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T13:36:50.742960Z",
- "start_time": "2023-02-09T09:45:21.274421Z"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(89941:281473119797264,MainProcess):2024-11-21-11:25:57.508.263 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(89941:281473119797264,MainProcess):2024-11-21-11:25:57.510.581 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch:[ 0/200], step:[ 0/ 468], loss_d:1.320055 , loss_g:0.719802 , time:19.905008s, lr:0.000200\n",
- "Epoch:[ 0/200], step:[ 100/ 468], loss_d:1.163385 , loss_g:1.108864 , time:0.041823s, lr:0.000200\n",
- "Epoch:[ 0/200], step:[ 200/ 468], loss_d:1.350701 , loss_g:0.743335 , time:0.042872s, lr:0.000200\n",
- "Epoch:[ 0/200], step:[ 300/ 468], loss_d:1.167697 , loss_g:0.798472 , time:0.039293s, lr:0.000200\n",
- "Epoch:[ 0/200], step:[ 400/ 468], loss_d:1.238361 , loss_g:0.894295 , time:0.043511s, lr:0.000200\n",
- "time of epoch 1 is 49.98s\n",
- "Epoch:[ 1/200], step:[ 0/ 468], loss_d:1.078835 , loss_g:1.547477 , time:0.040593s, lr:0.000200\n",
- "Epoch:[ 1/200], step:[ 100/ 468], loss_d:1.147045 , loss_g:1.294871 , time:0.039692s, lr:0.000200\n",
- "Epoch:[ 1/200], step:[ 200/ 468], loss_d:0.900437 , loss_g:1.353014 , time:0.040931s, lr:0.000200\n",
- "Epoch:[ 1/200], step:[ 300/ 468], loss_d:1.205142 , loss_g:1.071688 , time:0.051307s, lr:0.000200\n",
- "Epoch:[ 1/200], step:[ 400/ 468], loss_d:1.007885 , loss_g:1.318245 , time:0.042542s, lr:0.000200\n",
- "time of epoch 2 is 33.42s\n",
- "Epoch:[ 2/200], step:[ 0/ 468], loss_d:1.242887 , loss_g:1.014036 , time:0.043069s, lr:0.000200\n",
- "Epoch:[ 2/200], step:[ 100/ 468], loss_d:1.413479 , loss_g:1.971671 , time:0.041541s, lr:0.000200\n",
- "Epoch:[ 2/200], step:[ 200/ 468], loss_d:1.120526 , loss_g:1.033336 , time:0.036249s, lr:0.000200\n",
- "Epoch:[ 2/200], step:[ 300/ 468], loss_d:1.235674 , loss_g:1.074993 , time:0.039372s, lr:0.000200\n",
- "Epoch:[ 2/200], step:[ 400/ 468], loss_d:1.221805 , loss_g:0.840315 , time:0.039893s, lr:0.000200\n",
- "time of epoch 3 is 31.02s\n",
- "Epoch:[ 3/200], step:[ 0/ 468], loss_d:1.117647 , loss_g:1.612250 , time:0.046237s, lr:0.000200\n",
- "Epoch:[ 3/200], step:[ 100/ 468], loss_d:1.265316 , loss_g:0.903599 , time:0.036853s, lr:0.000200\n",
- "Epoch:[ 3/200], step:[ 200/ 468], loss_d:1.226729 , loss_g:0.980157 , time:0.038633s, lr:0.000200\n",
- "Epoch:[ 3/200], step:[ 300/ 468], loss_d:1.200382 , loss_g:1.071837 , time:0.036601s, lr:0.000200\n",
- "Epoch:[ 3/200], step:[ 400/ 468], loss_d:1.513936 , loss_g:1.807340 , time:0.040931s, lr:0.000200\n",
- "time of epoch 4 is 31.60s\n",
- "Epoch:[ 4/200], step:[ 0/ 468], loss_d:1.126245 , loss_g:1.145799 , time:0.040272s, lr:0.000200\n",
- "Epoch:[ 4/200], step:[ 100/ 468], loss_d:1.167360 , loss_g:0.821916 , time:0.041112s, lr:0.000200\n",
- "Epoch:[ 4/200], step:[ 200/ 468], loss_d:1.376115 , loss_g:1.165061 , time:0.039760s, lr:0.000200\n",
- "Epoch:[ 4/200], step:[ 300/ 468], loss_d:1.219422 , loss_g:1.012858 , time:0.036109s, lr:0.000200\n",
- "Epoch:[ 4/200], step:[ 400/ 468], loss_d:1.218934 , loss_g:0.849428 , time:0.041807s, lr:0.000200\n",
- "time of epoch 5 is 32.15s\n",
- "Epoch:[ 5/200], step:[ 0/ 468], loss_d:1.050424 , loss_g:1.264432 , time:0.042454s, lr:0.000200\n",
- "Epoch:[ 5/200], step:[ 100/ 468], loss_d:1.178966 , loss_g:1.074042 , time:0.048522s, lr:0.000200\n",
- "Epoch:[ 5/200], step:[ 200/ 468], loss_d:1.221158 , loss_g:1.131485 , time:0.045912s, lr:0.000200\n",
- "Epoch:[ 5/200], step:[ 300/ 468], loss_d:1.155866 , loss_g:0.830786 , time:0.040529s, lr:0.000200\n",
- "Epoch:[ 5/200], step:[ 400/ 468], loss_d:1.127836 , loss_g:0.964429 , time:0.043036s, lr:0.000200\n",
- "time of epoch 6 is 36.01s\n",
- "Epoch:[ 6/200], step:[ 0/ 468], loss_d:1.285615 , loss_g:0.762968 , time:0.048970s, lr:0.000200\n",
- "Epoch:[ 6/200], step:[ 100/ 468], loss_d:1.235404 , loss_g:0.955353 , time:0.054592s, lr:0.000200\n",
- "Epoch:[ 6/200], step:[ 200/ 468], loss_d:1.069780 , loss_g:1.035738 , time:0.046011s, lr:0.000200\n",
- "Epoch:[ 6/200], step:[ 300/ 468], loss_d:1.252335 , loss_g:1.127682 , time:0.048059s, lr:0.000200\n",
- "Epoch:[ 6/200], step:[ 400/ 468], loss_d:1.130203 , loss_g:0.855021 , time:0.046108s, lr:0.000200\n",
- "time of epoch 7 is 35.53s\n",
- "Epoch:[ 7/200], step:[ 0/ 468], loss_d:1.193702 , loss_g:0.957167 , time:0.045807s, lr:0.000200\n",
- "Epoch:[ 7/200], step:[ 100/ 468], loss_d:1.342039 , loss_g:0.788124 , time:0.046072s, lr:0.000200\n",
- "Epoch:[ 7/200], step:[ 200/ 468], loss_d:1.210948 , loss_g:0.975252 , time:0.045730s, lr:0.000200\n",
- "Epoch:[ 7/200], step:[ 300/ 468], loss_d:1.169287 , loss_g:1.272509 , time:0.046294s, lr:0.000200\n",
- "Epoch:[ 7/200], step:[ 400/ 468], loss_d:1.419244 , loss_g:1.419567 , time:0.049928s, lr:0.000200\n",
- "time of epoch 8 is 35.55s\n",
- "Epoch:[ 8/200], step:[ 0/ 468], loss_d:1.169651 , loss_g:0.964933 , time:0.044559s, lr:0.000200\n",
- "Epoch:[ 8/200], step:[ 100/ 468], loss_d:1.184227 , loss_g:0.818912 , time:0.042548s, lr:0.000200\n",
- "Epoch:[ 8/200], step:[ 200/ 468], loss_d:1.213391 , loss_g:0.982263 , time:0.043411s, lr:0.000200\n",
- "Epoch:[ 8/200], step:[ 300/ 468], loss_d:1.315528 , loss_g:0.855187 , time:0.045020s, lr:0.000200\n",
- "Epoch:[ 8/200], step:[ 400/ 468], loss_d:1.512848 , loss_g:2.308600 , time:0.041002s, lr:0.000200\n",
- "time of epoch 9 is 32.37s\n",
- "Epoch:[ 9/200], step:[ 0/ 468], loss_d:1.265780 , loss_g:1.055720 , time:0.053221s, lr:0.000200\n",
- "Epoch:[ 9/200], step:[ 100/ 468], loss_d:1.251823 , loss_g:0.990450 , time:0.049277s, lr:0.000200\n",
- "Epoch:[ 9/200], step:[ 200/ 468], loss_d:1.296410 , loss_g:0.843512 , time:0.050128s, lr:0.000200\n",
- "Epoch:[ 9/200], step:[ 300/ 468], loss_d:1.161609 , loss_g:1.045182 , time:0.042616s, lr:0.000200\n",
- "Epoch:[ 9/200], step:[ 400/ 468], loss_d:1.479120 , loss_g:1.678396 , time:0.047976s, lr:0.000200\n",
- "time of epoch 10 is 35.10s\n",
- "Epoch:[ 10/200], step:[ 0/ 468], loss_d:1.189949 , loss_g:0.991716 , time:0.048863s, lr:0.000200\n",
- "Epoch:[ 10/200], step:[ 100/ 468], loss_d:1.175365 , loss_g:0.987654 , time:0.045419s, lr:0.000200\n",
- "Epoch:[ 10/200], step:[ 200/ 468], loss_d:1.191629 , loss_g:1.138480 , time:0.047600s, lr:0.000200\n",
- "Epoch:[ 10/200], step:[ 300/ 468], loss_d:1.199500 , loss_g:0.890635 , time:0.042973s, lr:0.000200\n",
- "Epoch:[ 10/200], step:[ 400/ 468], loss_d:1.197489 , loss_g:1.243246 , time:0.041783s, lr:0.000200\n",
- "time of epoch 11 is 34.87s\n",
- "Epoch:[ 11/200], step:[ 0/ 468], loss_d:1.220011 , loss_g:0.887339 , time:0.049956s, lr:0.000200\n",
- "Epoch:[ 11/200], step:[ 100/ 468], loss_d:1.292171 , loss_g:1.429485 , time:0.046158s, lr:0.000200\n",
- "Epoch:[ 11/200], step:[ 200/ 468], loss_d:1.266596 , loss_g:1.168179 , time:0.042513s, lr:0.000200\n",
- "Epoch:[ 11/200], step:[ 300/ 468], loss_d:1.211829 , loss_g:0.902453 , time:0.044381s, lr:0.000200\n",
- "Epoch:[ 11/200], step:[ 400/ 468], loss_d:1.225353 , loss_g:1.143901 , time:0.046554s, lr:0.000200\n",
- "time of epoch 12 is 36.42s\n",
- "Epoch:[ 12/200], step:[ 0/ 468], loss_d:1.251894 , loss_g:0.852054 , time:0.051266s, lr:0.000200\n",
- "Epoch:[ 12/200], step:[ 100/ 468], loss_d:1.463628 , loss_g:1.512013 , time:0.045766s, lr:0.000200\n",
- "Epoch:[ 12/200], step:[ 200/ 468], loss_d:1.232771 , loss_g:0.834363 , time:0.049550s, lr:0.000200\n",
- "Epoch:[ 12/200], step:[ 300/ 468], loss_d:1.232190 , loss_g:0.870226 , time:0.045891s, lr:0.000200\n",
- "Epoch:[ 12/200], step:[ 400/ 468], loss_d:1.340999 , loss_g:1.031653 , time:0.045531s, lr:0.000200\n",
- "time of epoch 13 is 35.49s\n",
- "Epoch:[ 13/200], step:[ 0/ 468], loss_d:1.268104 , loss_g:0.748836 , time:0.052089s, lr:0.000200\n",
- "Epoch:[ 13/200], step:[ 100/ 468], loss_d:1.159301 , loss_g:0.993767 , time:0.039213s, lr:0.000200\n",
- "Epoch:[ 13/200], step:[ 200/ 468], loss_d:1.278076 , loss_g:1.458778 , time:0.043160s, lr:0.000200\n",
- "Epoch:[ 13/200], step:[ 300/ 468], loss_d:1.215638 , loss_g:0.828333 , time:0.052066s, lr:0.000200\n",
- "Epoch:[ 13/200], step:[ 400/ 468], loss_d:1.183518 , loss_g:0.977532 , time:0.044924s, lr:0.000200\n",
- "time of epoch 14 is 35.07s\n",
- "Epoch:[ 14/200], step:[ 0/ 468], loss_d:1.290870 , loss_g:1.256727 , time:0.046731s, lr:0.000200\n",
- "Epoch:[ 14/200], step:[ 100/ 468], loss_d:1.252140 , loss_g:1.025967 , time:0.051552s, lr:0.000200\n",
- "Epoch:[ 14/200], step:[ 200/ 468], loss_d:1.221723 , loss_g:0.829824 , time:0.049074s, lr:0.000200\n",
- "Epoch:[ 14/200], step:[ 300/ 468], loss_d:1.319794 , loss_g:0.717890 , time:0.050208s, lr:0.000200\n",
- "Epoch:[ 14/200], step:[ 400/ 468], loss_d:1.243484 , loss_g:0.951304 , time:0.044178s, lr:0.000200\n",
- "time of epoch 15 is 36.31s\n",
- "Epoch:[ 15/200], step:[ 0/ 468], loss_d:1.242785 , loss_g:0.920318 , time:0.050593s, lr:0.000200\n",
- "Epoch:[ 15/200], step:[ 100/ 468], loss_d:1.327693 , loss_g:0.678757 , time:0.051874s, lr:0.000200\n",
- "Epoch:[ 15/200], step:[ 200/ 468], loss_d:1.243325 , loss_g:1.076648 , time:0.048385s, lr:0.000200\n",
- "Epoch:[ 15/200], step:[ 300/ 468], loss_d:1.348646 , loss_g:0.664726 , time:0.053389s, lr:0.000200\n",
- "Epoch:[ 15/200], step:[ 400/ 468], loss_d:1.203607 , loss_g:0.997613 , time:0.046669s, lr:0.000200\n",
- "time of epoch 16 is 37.13s\n",
- "Epoch:[ 16/200], step:[ 0/ 468], loss_d:1.383142 , loss_g:1.444427 , time:0.050258s, lr:0.000200\n",
- "Epoch:[ 16/200], step:[ 100/ 468], loss_d:1.298983 , loss_g:0.897634 , time:0.044567s, lr:0.000200\n",
- "Epoch:[ 16/200], step:[ 200/ 468], loss_d:1.300359 , loss_g:0.790605 , time:0.050700s, lr:0.000200\n",
- "Epoch:[ 16/200], step:[ 300/ 468], loss_d:1.251686 , loss_g:0.923806 , time:0.042916s, lr:0.000200\n",
- "Epoch:[ 16/200], step:[ 400/ 468], loss_d:1.231390 , loss_g:1.050423 , time:0.050157s, lr:0.000200\n",
- "time of epoch 17 is 35.96s\n",
- "Epoch:[ 17/200], step:[ 0/ 468], loss_d:1.445552 , loss_g:1.408975 , time:0.044960s, lr:0.000200\n",
- "Epoch:[ 17/200], step:[ 100/ 468], loss_d:1.225799 , loss_g:0.813605 , time:0.045700s, lr:0.000200\n",
- "Epoch:[ 17/200], step:[ 200/ 468], loss_d:1.261435 , loss_g:1.052767 , time:0.044289s, lr:0.000200\n",
- "Epoch:[ 17/200], step:[ 300/ 468], loss_d:1.345048 , loss_g:0.727858 , time:0.046592s, lr:0.000200\n",
- "Epoch:[ 17/200], step:[ 400/ 468], loss_d:1.332736 , loss_g:0.774781 , time:0.047509s, lr:0.000200\n",
- "time of epoch 18 is 34.87s\n",
- "Epoch:[ 18/200], step:[ 0/ 468], loss_d:1.280479 , loss_g:0.849144 , time:0.048033s, lr:0.000200\n",
- "Epoch:[ 18/200], step:[ 100/ 468], loss_d:1.314199 , loss_g:0.715470 , time:0.046265s, lr:0.000200\n",
- "Epoch:[ 18/200], step:[ 200/ 468], loss_d:1.287218 , loss_g:0.827181 , time:0.056520s, lr:0.000200\n",
- "Epoch:[ 18/200], step:[ 300/ 468], loss_d:1.284780 , loss_g:0.911753 , time:0.051426s, lr:0.000200\n",
- "Epoch:[ 18/200], step:[ 400/ 468], loss_d:1.277134 , loss_g:1.080672 , time:0.053081s, lr:0.000200\n",
- "time of epoch 19 is 35.96s\n",
- "Epoch:[ 19/200], step:[ 0/ 468], loss_d:1.280129 , loss_g:0.966483 , time:0.049744s, lr:0.000200\n",
- "Epoch:[ 19/200], step:[ 100/ 468], loss_d:1.289833 , loss_g:0.954576 , time:0.047417s, lr:0.000200\n",
- "Epoch:[ 19/200], step:[ 200/ 468], loss_d:1.300976 , loss_g:0.766563 , time:0.048097s, lr:0.000200\n",
- "Epoch:[ 19/200], step:[ 300/ 468], loss_d:1.331150 , loss_g:0.678930 , time:0.044687s, lr:0.000200\n",
- "Epoch:[ 19/200], step:[ 400/ 468], loss_d:1.301981 , loss_g:1.000206 , time:0.044564s, lr:0.000200\n",
- "time of epoch 20 is 34.50s\n",
- "Epoch:[ 20/200], step:[ 0/ 468], loss_d:1.279692 , loss_g:0.822624 , time:0.052456s, lr:0.000200\n",
- "Epoch:[ 20/200], step:[ 100/ 468], loss_d:1.257872 , loss_g:0.904037 , time:0.046702s, lr:0.000200\n",
- "Epoch:[ 20/200], step:[ 200/ 468], loss_d:1.353937 , loss_g:0.690819 , time:0.046989s, lr:0.000200\n",
- "Epoch:[ 20/200], step:[ 300/ 468], loss_d:1.334056 , loss_g:0.850024 , time:0.042930s, lr:0.000200\n",
- "Epoch:[ 20/200], step:[ 400/ 468], loss_d:1.279646 , loss_g:0.982189 , time:0.048367s, lr:0.000200\n",
- "time of epoch 21 is 36.19s\n",
- "Epoch:[ 21/200], step:[ 0/ 468], loss_d:1.297226 , loss_g:0.781633 , time:0.055503s, lr:0.000200\n",
- "Epoch:[ 21/200], step:[ 100/ 468], loss_d:1.298951 , loss_g:0.683510 , time:0.043011s, lr:0.000200\n",
- "Epoch:[ 21/200], step:[ 200/ 468], loss_d:1.386955 , loss_g:1.018742 , time:0.042411s, lr:0.000200\n",
- "Epoch:[ 21/200], step:[ 300/ 468], loss_d:1.211753 , loss_g:1.122474 , time:0.045273s, lr:0.000200\n",
- "Epoch:[ 21/200], step:[ 400/ 468], loss_d:1.276753 , loss_g:0.905103 , time:0.042710s, lr:0.000200\n",
- "time of epoch 22 is 37.28s\n",
- "Epoch:[ 22/200], step:[ 0/ 468], loss_d:1.229076 , loss_g:0.929315 , time:0.050070s, lr:0.000200\n",
- "Epoch:[ 22/200], step:[ 100/ 468], loss_d:1.202423 , loss_g:0.868061 , time:0.041032s, lr:0.000200\n",
- "Epoch:[ 22/200], step:[ 200/ 468], loss_d:1.320514 , loss_g:0.770018 , time:0.041260s, lr:0.000200\n",
- "Epoch:[ 22/200], step:[ 300/ 468], loss_d:1.279201 , loss_g:0.929916 , time:0.043524s, lr:0.000200\n",
- "Epoch:[ 22/200], step:[ 400/ 468], loss_d:1.241618 , loss_g:0.857822 , time:0.039553s, lr:0.000200\n",
- "time of epoch 23 is 33.17s\n",
- "Epoch:[ 23/200], step:[ 0/ 468], loss_d:1.320108 , loss_g:0.766503 , time:0.052546s, lr:0.000200\n",
- "Epoch:[ 23/200], step:[ 100/ 468], loss_d:1.256048 , loss_g:0.833245 , time:0.052305s, lr:0.000200\n",
- "Epoch:[ 23/200], step:[ 200/ 468], loss_d:1.267036 , loss_g:0.895304 , time:0.048953s, lr:0.000200\n",
- "Epoch:[ 23/200], step:[ 300/ 468], loss_d:1.267351 , loss_g:0.981992 , time:0.045972s, lr:0.000200\n",
- "Epoch:[ 23/200], step:[ 400/ 468], loss_d:1.315502 , loss_g:0.875669 , time:0.048048s, lr:0.000200\n",
- "time of epoch 24 is 36.83s\n",
- "Epoch:[ 24/200], step:[ 0/ 468], loss_d:1.264999 , loss_g:0.887498 , time:0.049255s, lr:0.000200\n",
- "Epoch:[ 24/200], step:[ 100/ 468], loss_d:1.246589 , loss_g:0.848617 , time:0.041775s, lr:0.000200\n",
- "Epoch:[ 24/200], step:[ 200/ 468], loss_d:1.282457 , loss_g:0.865989 , time:0.049172s, lr:0.000200\n",
- "Epoch:[ 24/200], step:[ 300/ 468], loss_d:1.280339 , loss_g:0.966150 , time:0.051222s, lr:0.000200\n",
- "Epoch:[ 24/200], step:[ 400/ 468], loss_d:1.246938 , loss_g:1.136630 , time:0.041883s, lr:0.000200\n",
- "time of epoch 25 is 35.77s\n",
- "Epoch:[ 25/200], step:[ 0/ 468], loss_d:1.262290 , loss_g:0.937077 , time:0.051020s, lr:0.000200\n",
- "Epoch:[ 25/200], step:[ 100/ 468], loss_d:1.342394 , loss_g:0.832883 , time:0.045452s, lr:0.000200\n",
- "Epoch:[ 25/200], step:[ 200/ 468], loss_d:1.320593 , loss_g:0.776873 , time:0.044877s, lr:0.000200\n",
- "Epoch:[ 25/200], step:[ 300/ 468], loss_d:1.248505 , loss_g:0.845244 , time:0.050501s, lr:0.000200\n",
- "Epoch:[ 25/200], step:[ 400/ 468], loss_d:1.285810 , loss_g:0.814478 , time:0.044672s, lr:0.000200\n",
- "time of epoch 26 is 35.27s\n",
- "Epoch:[ 26/200], step:[ 0/ 468], loss_d:1.303516 , loss_g:0.854692 , time:0.051517s, lr:0.000200\n",
- "Epoch:[ 26/200], step:[ 100/ 468], loss_d:1.308690 , loss_g:0.954799 , time:0.047952s, lr:0.000200\n",
- "Epoch:[ 26/200], step:[ 200/ 468], loss_d:1.334051 , loss_g:0.871949 , time:0.045283s, lr:0.000200\n",
- "Epoch:[ 26/200], step:[ 300/ 468], loss_d:1.292772 , loss_g:0.960908 , time:0.048186s, lr:0.000200\n",
- "Epoch:[ 26/200], step:[ 400/ 468], loss_d:1.302948 , loss_g:0.911412 , time:0.047252s, lr:0.000200\n",
- "time of epoch 27 is 36.79s\n",
- "Epoch:[ 27/200], step:[ 0/ 468], loss_d:1.339568 , loss_g:0.687065 , time:0.050902s, lr:0.000200\n",
- "Epoch:[ 27/200], step:[ 100/ 468], loss_d:1.323819 , loss_g:0.694374 , time:0.044282s, lr:0.000200\n",
- "Epoch:[ 27/200], step:[ 200/ 468], loss_d:1.294970 , loss_g:0.952515 , time:0.045241s, lr:0.000200\n",
- "Epoch:[ 27/200], step:[ 300/ 468], loss_d:1.274956 , loss_g:1.008439 , time:0.043347s, lr:0.000200\n",
- "Epoch:[ 27/200], step:[ 400/ 468], loss_d:1.315406 , loss_g:0.854019 , time:0.046216s, lr:0.000200\n",
- "time of epoch 28 is 36.43s\n",
- "Epoch:[ 28/200], step:[ 0/ 468], loss_d:1.307089 , loss_g:0.788577 , time:0.047084s, lr:0.000200\n",
- "Epoch:[ 28/200], step:[ 100/ 468], loss_d:1.281474 , loss_g:0.872102 , time:0.049869s, lr:0.000200\n",
- "Epoch:[ 28/200], step:[ 200/ 468], loss_d:1.305486 , loss_g:0.732561 , time:0.052928s, lr:0.000200\n",
- "Epoch:[ 28/200], step:[ 300/ 468], loss_d:1.301066 , loss_g:0.899581 , time:0.046291s, lr:0.000200\n",
- "Epoch:[ 28/200], step:[ 400/ 468], loss_d:1.352162 , loss_g:1.095462 , time:0.045346s, lr:0.000200\n",
- "time of epoch 29 is 34.94s\n",
- "Epoch:[ 29/200], step:[ 0/ 468], loss_d:1.312884 , loss_g:0.911392 , time:0.049603s, lr:0.000200\n",
- "Epoch:[ 29/200], step:[ 100/ 468], loss_d:1.359673 , loss_g:0.787973 , time:0.048052s, lr:0.000200\n",
- "Epoch:[ 29/200], step:[ 200/ 468], loss_d:1.268647 , loss_g:0.724316 , time:0.050181s, lr:0.000200\n",
- "Epoch:[ 29/200], step:[ 300/ 468], loss_d:1.345999 , loss_g:0.772939 , time:0.048231s, lr:0.000200\n",
- "Epoch:[ 29/200], step:[ 400/ 468], loss_d:1.319518 , loss_g:0.864878 , time:0.051538s, lr:0.000200\n",
- "time of epoch 30 is 35.46s\n",
- "Epoch:[ 30/200], step:[ 0/ 468], loss_d:1.280796 , loss_g:1.165704 , time:0.051660s, lr:0.000200\n",
- "Epoch:[ 30/200], step:[ 100/ 468], loss_d:1.297693 , loss_g:0.886735 , time:0.045506s, lr:0.000200\n",
- "Epoch:[ 30/200], step:[ 200/ 468], loss_d:1.319736 , loss_g:0.950605 , time:0.045071s, lr:0.000200\n",
- "Epoch:[ 30/200], step:[ 300/ 468], loss_d:1.305269 , loss_g:0.844066 , time:0.042378s, lr:0.000200\n",
- "Epoch:[ 30/200], step:[ 400/ 468], loss_d:1.361835 , loss_g:0.951016 , time:0.041587s, lr:0.000200\n",
- "time of epoch 31 is 32.28s\n",
- "Epoch:[ 31/200], step:[ 0/ 468], loss_d:1.369297 , loss_g:0.613835 , time:0.051512s, lr:0.000200\n",
- "Epoch:[ 31/200], step:[ 100/ 468], loss_d:1.351585 , loss_g:0.751359 , time:0.046028s, lr:0.000200\n",
- "Epoch:[ 31/200], step:[ 200/ 468], loss_d:1.309000 , loss_g:0.693362 , time:0.048977s, lr:0.000200\n",
- "Epoch:[ 31/200], step:[ 300/ 468], loss_d:1.288536 , loss_g:0.805936 , time:0.041386s, lr:0.000200\n",
- "Epoch:[ 31/200], step:[ 400/ 468], loss_d:1.348979 , loss_g:0.866533 , time:0.045714s, lr:0.000200\n",
- "time of epoch 32 is 36.20s\n",
- "Epoch:[ 32/200], step:[ 0/ 468], loss_d:1.365918 , loss_g:1.034280 , time:0.047943s, lr:0.000200\n",
- "Epoch:[ 32/200], step:[ 100/ 468], loss_d:1.304678 , loss_g:0.696834 , time:0.041659s, lr:0.000200\n",
- "Epoch:[ 32/200], step:[ 200/ 468], loss_d:1.260548 , loss_g:0.977799 , time:0.042688s, lr:0.000200\n",
- "Epoch:[ 32/200], step:[ 300/ 468], loss_d:1.348652 , loss_g:0.722059 , time:0.043951s, lr:0.000200\n",
- "Epoch:[ 32/200], step:[ 400/ 468], loss_d:1.266247 , loss_g:0.784706 , time:0.043008s, lr:0.000200\n",
- "time of epoch 33 is 32.44s\n",
- "Epoch:[ 33/200], step:[ 0/ 468], loss_d:1.269314 , loss_g:0.882053 , time:0.049339s, lr:0.000200\n",
- "Epoch:[ 33/200], step:[ 100/ 468], loss_d:1.290730 , loss_g:0.853020 , time:0.045531s, lr:0.000200\n",
- "Epoch:[ 33/200], step:[ 200/ 468], loss_d:1.281943 , loss_g:0.942438 , time:0.044451s, lr:0.000200\n",
- "Epoch:[ 33/200], step:[ 300/ 468], loss_d:1.284876 , loss_g:0.919751 , time:0.045468s, lr:0.000200\n",
- "Epoch:[ 33/200], step:[ 400/ 468], loss_d:1.262706 , loss_g:1.000260 , time:0.044615s, lr:0.000200\n",
- "time of epoch 34 is 36.71s\n",
- "Epoch:[ 34/200], step:[ 0/ 468], loss_d:1.227641 , loss_g:0.965049 , time:0.045004s, lr:0.000200\n",
- "Epoch:[ 34/200], step:[ 100/ 468], loss_d:1.291415 , loss_g:0.879837 , time:0.044621s, lr:0.000200\n",
- "Epoch:[ 34/200], step:[ 200/ 468], loss_d:1.332647 , loss_g:0.777545 , time:0.043519s, lr:0.000200\n",
- "Epoch:[ 34/200], step:[ 300/ 468], loss_d:1.329867 , loss_g:0.719222 , time:0.045459s, lr:0.000200\n",
- "Epoch:[ 34/200], step:[ 400/ 468], loss_d:1.312113 , loss_g:0.690303 , time:0.045122s, lr:0.000200\n",
- "time of epoch 35 is 34.18s\n",
- "Epoch:[ 35/200], step:[ 0/ 468], loss_d:1.287444 , loss_g:0.821160 , time:0.053471s, lr:0.000200\n",
- "Epoch:[ 35/200], step:[ 100/ 468], loss_d:1.337309 , loss_g:0.676506 , time:0.048249s, lr:0.000200\n",
- "Epoch:[ 35/200], step:[ 200/ 468], loss_d:1.356080 , loss_g:0.799282 , time:0.047357s, lr:0.000200\n",
- "Epoch:[ 35/200], step:[ 300/ 468], loss_d:1.296711 , loss_g:0.983517 , time:0.041711s, lr:0.000200\n",
- "Epoch:[ 35/200], step:[ 400/ 468], loss_d:1.301166 , loss_g:0.874214 , time:0.051219s, lr:0.000200\n",
- "time of epoch 36 is 36.05s\n",
- "Epoch:[ 36/200], step:[ 0/ 468], loss_d:1.327729 , loss_g:0.861126 , time:0.048495s, lr:0.000200\n",
- "Epoch:[ 36/200], step:[ 100/ 468], loss_d:1.227875 , loss_g:0.866475 , time:0.039400s, lr:0.000200\n",
- "Epoch:[ 36/200], step:[ 200/ 468], loss_d:1.365551 , loss_g:0.775811 , time:0.049545s, lr:0.000200\n",
- "Epoch:[ 36/200], step:[ 300/ 468], loss_d:1.313647 , loss_g:0.858610 , time:0.049676s, lr:0.000200\n",
- "Epoch:[ 36/200], step:[ 400/ 468], loss_d:1.316855 , loss_g:0.801388 , time:0.046284s, lr:0.000200\n",
- "time of epoch 37 is 35.66s\n",
- "Epoch:[ 37/200], step:[ 0/ 468], loss_d:1.261399 , loss_g:0.832099 , time:0.046235s, lr:0.000200\n",
- "Epoch:[ 37/200], step:[ 100/ 468], loss_d:1.237418 , loss_g:0.872276 , time:0.044756s, lr:0.000200\n",
- "Epoch:[ 37/200], step:[ 200/ 468], loss_d:1.369729 , loss_g:0.720704 , time:0.044346s, lr:0.000200\n",
- "Epoch:[ 37/200], step:[ 300/ 468], loss_d:1.417087 , loss_g:0.652918 , time:0.044417s, lr:0.000200\n",
- "Epoch:[ 37/200], step:[ 400/ 468], loss_d:1.348940 , loss_g:0.737759 , time:0.045472s, lr:0.000200\n",
- "time of epoch 38 is 35.36s\n",
- "Epoch:[ 38/200], step:[ 0/ 468], loss_d:1.287829 , loss_g:0.849732 , time:0.043812s, lr:0.000200\n",
- "Epoch:[ 38/200], step:[ 100/ 468], loss_d:1.283490 , loss_g:0.982167 , time:0.044198s, lr:0.000200\n",
- "Epoch:[ 38/200], step:[ 200/ 468], loss_d:1.327147 , loss_g:0.944892 , time:0.041505s, lr:0.000200\n",
- "Epoch:[ 38/200], step:[ 300/ 468], loss_d:1.304804 , loss_g:0.893149 , time:0.039486s, lr:0.000200\n",
- "Epoch:[ 38/200], step:[ 400/ 468], loss_d:1.345741 , loss_g:0.745120 , time:0.043633s, lr:0.000200\n",
- "time of epoch 39 is 31.42s\n",
- "Epoch:[ 39/200], step:[ 0/ 468], loss_d:1.288782 , loss_g:0.964864 , time:0.047678s, lr:0.000200\n",
- "Epoch:[ 39/200], step:[ 100/ 468], loss_d:1.375822 , loss_g:0.827069 , time:0.043002s, lr:0.000200\n",
- "Epoch:[ 39/200], step:[ 200/ 468], loss_d:1.287768 , loss_g:0.920949 , time:0.047505s, lr:0.000200\n",
- "Epoch:[ 39/200], step:[ 300/ 468], loss_d:1.334036 , loss_g:0.895171 , time:0.048463s, lr:0.000200\n",
- "Epoch:[ 39/200], step:[ 400/ 468], loss_d:1.302328 , loss_g:0.926613 , time:0.049276s, lr:0.000200\n",
- "time of epoch 40 is 36.63s\n",
- "Epoch:[ 40/200], step:[ 0/ 468], loss_d:1.380958 , loss_g:0.599270 , time:0.047673s, lr:0.000200\n",
- "Epoch:[ 40/200], step:[ 100/ 468], loss_d:1.307715 , loss_g:0.816424 , time:0.045313s, lr:0.000200\n",
- "Epoch:[ 40/200], step:[ 200/ 468], loss_d:1.321781 , loss_g:0.989347 , time:0.044734s, lr:0.000200\n",
- "Epoch:[ 40/200], step:[ 300/ 468], loss_d:1.250957 , loss_g:1.019878 , time:0.040730s, lr:0.000200\n",
- "Epoch:[ 40/200], step:[ 400/ 468], loss_d:1.290118 , loss_g:0.961664 , time:0.046052s, lr:0.000200\n",
- "time of epoch 41 is 35.40s\n",
- "Epoch:[ 41/200], step:[ 0/ 468], loss_d:1.367668 , loss_g:0.810686 , time:0.050680s, lr:0.000200\n",
- "Epoch:[ 41/200], step:[ 100/ 468], loss_d:1.315075 , loss_g:1.090730 , time:0.042978s, lr:0.000200\n",
- "Epoch:[ 41/200], step:[ 200/ 468], loss_d:1.248324 , loss_g:0.828350 , time:0.044426s, lr:0.000200\n",
- "Epoch:[ 41/200], step:[ 300/ 468], loss_d:1.346446 , loss_g:0.688865 , time:0.042962s, lr:0.000200\n",
- "Epoch:[ 41/200], step:[ 400/ 468], loss_d:1.288957 , loss_g:0.926077 , time:0.041530s, lr:0.000200\n",
- "time of epoch 42 is 33.80s\n",
- "Epoch:[ 42/200], step:[ 0/ 468], loss_d:1.310691 , loss_g:0.795922 , time:0.047856s, lr:0.000200\n",
- "Epoch:[ 42/200], step:[ 100/ 468], loss_d:1.244992 , loss_g:0.954601 , time:0.044255s, lr:0.000200\n",
- "Epoch:[ 42/200], step:[ 200/ 468], loss_d:1.272303 , loss_g:0.819405 , time:0.046012s, lr:0.000200\n",
- "Epoch:[ 42/200], step:[ 300/ 468], loss_d:1.286385 , loss_g:0.807411 , time:0.041375s, lr:0.000200\n",
- "Epoch:[ 42/200], step:[ 400/ 468], loss_d:1.266324 , loss_g:0.903966 , time:0.038501s, lr:0.000200\n",
- "time of epoch 43 is 33.83s\n",
- "Epoch:[ 43/200], step:[ 0/ 468], loss_d:1.288128 , loss_g:0.778919 , time:0.049178s, lr:0.000200\n",
- "Epoch:[ 43/200], step:[ 100/ 468], loss_d:1.347371 , loss_g:0.902382 , time:0.044103s, lr:0.000200\n",
- "Epoch:[ 43/200], step:[ 200/ 468], loss_d:1.257854 , loss_g:0.908624 , time:0.045427s, lr:0.000200\n",
- "Epoch:[ 43/200], step:[ 300/ 468], loss_d:1.337106 , loss_g:0.802611 , time:0.048371s, lr:0.000200\n",
- "Epoch:[ 43/200], step:[ 400/ 468], loss_d:1.232496 , loss_g:0.991593 , time:0.046462s, lr:0.000200\n",
- "time of epoch 44 is 33.09s\n",
- "Epoch:[ 44/200], step:[ 0/ 468], loss_d:1.312129 , loss_g:0.638454 , time:0.046639s, lr:0.000200\n",
- "Epoch:[ 44/200], step:[ 100/ 468], loss_d:1.292330 , loss_g:0.922597 , time:0.045461s, lr:0.000200\n",
- "Epoch:[ 44/200], step:[ 200/ 468], loss_d:1.394777 , loss_g:0.824005 , time:0.046561s, lr:0.000200\n",
- "Epoch:[ 44/200], step:[ 300/ 468], loss_d:1.245670 , loss_g:0.809577 , time:0.038827s, lr:0.000200\n",
- "Epoch:[ 44/200], step:[ 400/ 468], loss_d:1.293214 , loss_g:0.867745 , time:0.047072s, lr:0.000200\n",
- "time of epoch 45 is 35.05s\n",
- "Epoch:[ 45/200], step:[ 0/ 468], loss_d:1.279787 , loss_g:0.962956 , time:0.050580s, lr:0.000200\n",
- "Epoch:[ 45/200], step:[ 100/ 468], loss_d:1.317848 , loss_g:0.918102 , time:0.046428s, lr:0.000200\n",
- "Epoch:[ 45/200], step:[ 200/ 468], loss_d:1.260370 , loss_g:0.781658 , time:0.045924s, lr:0.000200\n",
- "Epoch:[ 45/200], step:[ 300/ 468], loss_d:1.311301 , loss_g:0.899292 , time:0.040322s, lr:0.000200\n",
- "Epoch:[ 45/200], step:[ 400/ 468], loss_d:1.357540 , loss_g:1.075780 , time:0.054156s, lr:0.000200\n",
- "time of epoch 46 is 35.65s\n",
- "Epoch:[ 46/200], step:[ 0/ 468], loss_d:1.325554 , loss_g:0.820363 , time:0.045199s, lr:0.000200\n",
- "Epoch:[ 46/200], step:[ 100/ 468], loss_d:1.318613 , loss_g:0.880800 , time:0.047017s, lr:0.000200\n",
- "Epoch:[ 46/200], step:[ 200/ 468], loss_d:1.294578 , loss_g:0.823434 , time:0.042264s, lr:0.000200\n",
- "Epoch:[ 46/200], step:[ 300/ 468], loss_d:1.300950 , loss_g:0.817897 , time:0.042405s, lr:0.000200\n",
- "Epoch:[ 46/200], step:[ 400/ 468], loss_d:1.272316 , loss_g:1.051758 , time:0.046407s, lr:0.000200\n",
- "time of epoch 47 is 33.12s\n",
- "Epoch:[ 47/200], step:[ 0/ 468], loss_d:1.315550 , loss_g:0.802643 , time:0.052024s, lr:0.000200\n",
- "Epoch:[ 47/200], step:[ 100/ 468], loss_d:1.262430 , loss_g:0.985606 , time:0.052467s, lr:0.000200\n",
- "Epoch:[ 47/200], step:[ 200/ 468], loss_d:1.302797 , loss_g:0.768079 , time:0.045465s, lr:0.000200\n",
- "Epoch:[ 47/200], step:[ 300/ 468], loss_d:1.303171 , loss_g:0.803109 , time:0.048615s, lr:0.000200\n",
- "Epoch:[ 47/200], step:[ 400/ 468], loss_d:1.310919 , loss_g:0.912796 , time:0.045622s, lr:0.000200\n",
- "time of epoch 48 is 37.42s\n",
- "Epoch:[ 48/200], step:[ 0/ 468], loss_d:1.218272 , loss_g:0.818076 , time:0.046897s, lr:0.000200\n",
- "Epoch:[ 48/200], step:[ 100/ 468], loss_d:1.316115 , loss_g:0.756210 , time:0.044725s, lr:0.000200\n",
- "Epoch:[ 48/200], step:[ 200/ 468], loss_d:1.270249 , loss_g:0.903219 , time:0.045236s, lr:0.000200\n",
- "Epoch:[ 48/200], step:[ 300/ 468], loss_d:1.289837 , loss_g:0.797583 , time:0.041352s, lr:0.000200\n",
- "Epoch:[ 48/200], step:[ 400/ 468], loss_d:1.303824 , loss_g:0.925728 , time:0.041929s, lr:0.000200\n",
- "time of epoch 49 is 34.82s\n",
- "Epoch:[ 49/200], step:[ 0/ 468], loss_d:1.292621 , loss_g:1.012322 , time:0.053586s, lr:0.000200\n",
- "Epoch:[ 49/200], step:[ 100/ 468], loss_d:1.263226 , loss_g:0.931532 , time:0.049332s, lr:0.000200\n",
- "Epoch:[ 49/200], step:[ 200/ 468], loss_d:1.287496 , loss_g:0.872472 , time:0.040813s, lr:0.000200\n",
- "Epoch:[ 49/200], step:[ 300/ 468], loss_d:1.295976 , loss_g:0.868473 , time:0.047594s, lr:0.000200\n",
- "Epoch:[ 49/200], step:[ 400/ 468], loss_d:1.320219 , loss_g:0.866667 , time:0.040644s, lr:0.000200\n",
- "time of epoch 50 is 37.00s\n",
- "Epoch:[ 50/200], step:[ 0/ 468], loss_d:1.318443 , loss_g:0.721376 , time:0.044799s, lr:0.000200\n",
- "Epoch:[ 50/200], step:[ 100/ 468], loss_d:1.285122 , loss_g:0.957997 , time:0.043847s, lr:0.000200\n",
- "Epoch:[ 50/200], step:[ 200/ 468], loss_d:1.240816 , loss_g:0.899173 , time:0.038968s, lr:0.000200\n",
- "Epoch:[ 50/200], step:[ 300/ 468], loss_d:1.304349 , loss_g:0.765403 , time:0.043167s, lr:0.000200\n",
- "Epoch:[ 50/200], step:[ 400/ 468], loss_d:1.309040 , loss_g:0.988446 , time:0.040379s, lr:0.000200\n",
- "time of epoch 51 is 35.06s\n",
- "Epoch:[ 51/200], step:[ 0/ 468], loss_d:1.308657 , loss_g:0.793816 , time:0.045506s, lr:0.000200\n",
- "Epoch:[ 51/200], step:[ 100/ 468], loss_d:1.238881 , loss_g:0.987974 , time:0.044426s, lr:0.000200\n",
- "Epoch:[ 51/200], step:[ 200/ 468], loss_d:1.315138 , loss_g:0.843769 , time:0.042363s, lr:0.000200\n",
- "Epoch:[ 51/200], step:[ 300/ 468], loss_d:1.287251 , loss_g:0.984575 , time:0.045839s, lr:0.000200\n",
- "Epoch:[ 51/200], step:[ 400/ 468], loss_d:1.295429 , loss_g:0.723810 , time:0.045896s, lr:0.000200\n",
- "time of epoch 52 is 32.82s\n",
- "Epoch:[ 52/200], step:[ 0/ 468], loss_d:1.300465 , loss_g:0.876405 , time:0.051698s, lr:0.000200\n",
- "Epoch:[ 52/200], step:[ 100/ 468], loss_d:1.326642 , loss_g:1.024687 , time:0.046578s, lr:0.000200\n",
- "Epoch:[ 52/200], step:[ 200/ 468], loss_d:1.357387 , loss_g:0.874437 , time:0.049810s, lr:0.000200\n",
- "Epoch:[ 52/200], step:[ 300/ 468], loss_d:1.330598 , loss_g:0.878415 , time:0.047935s, lr:0.000200\n",
- "Epoch:[ 52/200], step:[ 400/ 468], loss_d:1.277013 , loss_g:0.807051 , time:0.051237s, lr:0.000200\n",
- "time of epoch 53 is 37.07s\n",
- "Epoch:[ 53/200], step:[ 0/ 468], loss_d:1.255883 , loss_g:0.910230 , time:0.049790s, lr:0.000200\n",
- "Epoch:[ 53/200], step:[ 100/ 468], loss_d:1.252091 , loss_g:0.901952 , time:0.040147s, lr:0.000200\n",
- "Epoch:[ 53/200], step:[ 200/ 468], loss_d:1.292533 , loss_g:0.860166 , time:0.048048s, lr:0.000200\n",
- "Epoch:[ 53/200], step:[ 300/ 468], loss_d:1.287165 , loss_g:0.948555 , time:0.047112s, lr:0.000200\n",
- "Epoch:[ 53/200], step:[ 400/ 468], loss_d:1.259679 , loss_g:0.778806 , time:0.045686s, lr:0.000200\n",
- "time of epoch 54 is 35.52s\n",
- "Epoch:[ 54/200], step:[ 0/ 468], loss_d:1.364654 , loss_g:0.995422 , time:0.051511s, lr:0.000200\n",
- "Epoch:[ 54/200], step:[ 100/ 468], loss_d:1.291315 , loss_g:0.943074 , time:0.043797s, lr:0.000200\n",
- "Epoch:[ 54/200], step:[ 200/ 468], loss_d:1.271781 , loss_g:0.816772 , time:0.044844s, lr:0.000200\n",
- "Epoch:[ 54/200], step:[ 300/ 468], loss_d:1.301126 , loss_g:0.994051 , time:0.044531s, lr:0.000200\n",
- "Epoch:[ 54/200], step:[ 400/ 468], loss_d:1.231170 , loss_g:1.125083 , time:0.043720s, lr:0.000200\n",
- "time of epoch 55 is 32.21s\n",
- "Epoch:[ 55/200], step:[ 0/ 468], loss_d:1.300256 , loss_g:0.862063 , time:0.052109s, lr:0.000200\n",
- "Epoch:[ 55/200], step:[ 100/ 468], loss_d:1.291621 , loss_g:0.766734 , time:0.046120s, lr:0.000200\n",
- "Epoch:[ 55/200], step:[ 200/ 468], loss_d:1.316266 , loss_g:0.954601 , time:0.040339s, lr:0.000200\n",
- "Epoch:[ 55/200], step:[ 300/ 468], loss_d:1.312849 , loss_g:0.913029 , time:0.046576s, lr:0.000200\n",
- "Epoch:[ 55/200], step:[ 400/ 468], loss_d:1.274158 , loss_g:0.842703 , time:0.047056s, lr:0.000200\n",
- "time of epoch 56 is 34.05s\n",
- "Epoch:[ 56/200], step:[ 0/ 468], loss_d:1.260212 , loss_g:1.015531 , time:0.048740s, lr:0.000200\n",
- "Epoch:[ 56/200], step:[ 100/ 468], loss_d:1.252423 , loss_g:0.882333 , time:0.046604s, lr:0.000200\n",
- "Epoch:[ 56/200], step:[ 200/ 468], loss_d:1.218026 , loss_g:1.092749 , time:0.045265s, lr:0.000200\n",
- "Epoch:[ 56/200], step:[ 300/ 468], loss_d:1.354401 , loss_g:0.711898 , time:0.044151s, lr:0.000200\n",
- "Epoch:[ 56/200], step:[ 400/ 468], loss_d:1.273095 , loss_g:0.790462 , time:0.041293s, lr:0.000200\n",
- "time of epoch 57 is 33.36s\n",
- "Epoch:[ 57/200], step:[ 0/ 468], loss_d:1.259933 , loss_g:0.885635 , time:0.046207s, lr:0.000200\n",
- "Epoch:[ 57/200], step:[ 100/ 468], loss_d:1.305125 , loss_g:0.837233 , time:0.042881s, lr:0.000200\n",
- "Epoch:[ 57/200], step:[ 200/ 468], loss_d:1.277225 , loss_g:0.849327 , time:0.044298s, lr:0.000200\n",
- "Epoch:[ 57/200], step:[ 300/ 468], loss_d:1.372616 , loss_g:0.731302 , time:0.044944s, lr:0.000200\n",
- "Epoch:[ 57/200], step:[ 400/ 468], loss_d:1.345253 , loss_g:0.900683 , time:0.051527s, lr:0.000200\n",
- "time of epoch 58 is 33.53s\n",
- "Epoch:[ 58/200], step:[ 0/ 468], loss_d:1.229842 , loss_g:1.125973 , time:0.048882s, lr:0.000200\n",
- "Epoch:[ 58/200], step:[ 100/ 468], loss_d:1.293970 , loss_g:0.938224 , time:0.048591s, lr:0.000200\n",
- "Epoch:[ 58/200], step:[ 200/ 468], loss_d:1.294961 , loss_g:0.931782 , time:0.041631s, lr:0.000200\n",
- "Epoch:[ 58/200], step:[ 300/ 468], loss_d:1.272239 , loss_g:0.878815 , time:0.042164s, lr:0.000200\n",
- "Epoch:[ 58/200], step:[ 400/ 468], loss_d:1.347243 , loss_g:0.815062 , time:0.042747s, lr:0.000200\n",
- "time of epoch 59 is 35.48s\n",
- "Epoch:[ 59/200], step:[ 0/ 468], loss_d:1.286474 , loss_g:1.023923 , time:0.047378s, lr:0.000200\n",
- "Epoch:[ 59/200], step:[ 100/ 468], loss_d:1.244428 , loss_g:0.825548 , time:0.045329s, lr:0.000200\n",
- "Epoch:[ 59/200], step:[ 200/ 468], loss_d:1.290440 , loss_g:0.880932 , time:0.048620s, lr:0.000200\n",
- "Epoch:[ 59/200], step:[ 300/ 468], loss_d:1.289803 , loss_g:1.063917 , time:0.044954s, lr:0.000200\n",
- "Epoch:[ 59/200], step:[ 400/ 468], loss_d:1.280102 , loss_g:0.882475 , time:0.046160s, lr:0.000200\n",
- "time of epoch 60 is 34.21s\n",
- "Epoch:[ 60/200], step:[ 0/ 468], loss_d:1.255521 , loss_g:0.853849 , time:0.045967s, lr:0.000200\n",
- "Epoch:[ 60/200], step:[ 100/ 468], loss_d:1.318899 , loss_g:0.614634 , time:0.042422s, lr:0.000200\n",
- "Epoch:[ 60/200], step:[ 200/ 468], loss_d:1.281980 , loss_g:0.890118 , time:0.043733s, lr:0.000200\n",
- "Epoch:[ 60/200], step:[ 300/ 468], loss_d:1.345798 , loss_g:0.827052 , time:0.045998s, lr:0.000200\n",
- "Epoch:[ 60/200], step:[ 400/ 468], loss_d:1.331466 , loss_g:0.800259 , time:0.042480s, lr:0.000200\n",
- "time of epoch 61 is 31.84s\n",
- "Epoch:[ 61/200], step:[ 0/ 468], loss_d:1.302438 , loss_g:0.785887 , time:0.050745s, lr:0.000200\n",
- "Epoch:[ 61/200], step:[ 100/ 468], loss_d:1.287652 , loss_g:0.954560 , time:0.047067s, lr:0.000200\n",
- "Epoch:[ 61/200], step:[ 200/ 468], loss_d:1.289292 , loss_g:0.669971 , time:0.049213s, lr:0.000200\n",
- "Epoch:[ 61/200], step:[ 300/ 468], loss_d:1.288193 , loss_g:0.740092 , time:0.048287s, lr:0.000200\n",
- "Epoch:[ 61/200], step:[ 400/ 468], loss_d:1.285052 , loss_g:0.855835 , time:0.050388s, lr:0.000200\n",
- "time of epoch 62 is 34.51s\n",
- "Epoch:[ 62/200], step:[ 0/ 468], loss_d:1.292556 , loss_g:1.079693 , time:0.052391s, lr:0.000200\n",
- "Epoch:[ 62/200], step:[ 100/ 468], loss_d:1.265508 , loss_g:0.928496 , time:0.042626s, lr:0.000200\n",
- "Epoch:[ 62/200], step:[ 200/ 468], loss_d:1.334546 , loss_g:0.702883 , time:0.048831s, lr:0.000200\n",
- "Epoch:[ 62/200], step:[ 300/ 468], loss_d:1.358715 , loss_g:0.631464 , time:0.039810s, lr:0.000200\n",
- "Epoch:[ 62/200], step:[ 400/ 468], loss_d:1.262371 , loss_g:0.928034 , time:0.046339s, lr:0.000200\n",
- "time of epoch 63 is 35.50s\n",
- "Epoch:[ 63/200], step:[ 0/ 468], loss_d:1.309542 , loss_g:0.804688 , time:0.050791s, lr:0.000200\n",
- "Epoch:[ 63/200], step:[ 100/ 468], loss_d:1.214239 , loss_g:0.957408 , time:0.043333s, lr:0.000200\n",
- "Epoch:[ 63/200], step:[ 200/ 468], loss_d:1.251779 , loss_g:1.007886 , time:0.043063s, lr:0.000200\n",
- "Epoch:[ 63/200], step:[ 300/ 468], loss_d:1.284945 , loss_g:0.883139 , time:0.042834s, lr:0.000200\n",
- "Epoch:[ 63/200], step:[ 400/ 468], loss_d:1.265973 , loss_g:0.959387 , time:0.042672s, lr:0.000200\n",
- "time of epoch 64 is 32.52s\n",
- "Epoch:[ 64/200], step:[ 0/ 468], loss_d:1.277903 , loss_g:0.884865 , time:0.048743s, lr:0.000200\n",
- "Epoch:[ 64/200], step:[ 100/ 468], loss_d:1.286232 , loss_g:0.835865 , time:0.046963s, lr:0.000200\n",
- "Epoch:[ 64/200], step:[ 200/ 468], loss_d:1.245985 , loss_g:0.907815 , time:0.044935s, lr:0.000200\n",
- "Epoch:[ 64/200], step:[ 300/ 468], loss_d:1.253784 , loss_g:0.788492 , time:0.042575s, lr:0.000200\n",
- "Epoch:[ 64/200], step:[ 400/ 468], loss_d:1.268703 , loss_g:0.990364 , time:0.044148s, lr:0.000200\n",
- "time of epoch 65 is 32.35s\n",
- "Epoch:[ 65/200], step:[ 0/ 468], loss_d:1.296594 , loss_g:0.913499 , time:0.047911s, lr:0.000200\n",
- "Epoch:[ 65/200], step:[ 100/ 468], loss_d:1.309034 , loss_g:0.872568 , time:0.050152s, lr:0.000200\n",
- "Epoch:[ 65/200], step:[ 200/ 468], loss_d:1.247439 , loss_g:1.056649 , time:0.044123s, lr:0.000200\n",
- "Epoch:[ 65/200], step:[ 300/ 468], loss_d:1.278377 , loss_g:1.034659 , time:0.053725s, lr:0.000200\n",
- "Epoch:[ 65/200], step:[ 400/ 468], loss_d:1.297263 , loss_g:0.915143 , time:0.047854s, lr:0.000200\n",
- "time of epoch 66 is 36.04s\n",
- "Epoch:[ 66/200], step:[ 0/ 468], loss_d:1.369360 , loss_g:0.765675 , time:0.050224s, lr:0.000200\n",
- "Epoch:[ 66/200], step:[ 100/ 468], loss_d:1.327502 , loss_g:0.717607 , time:0.042028s, lr:0.000200\n",
- "Epoch:[ 66/200], step:[ 200/ 468], loss_d:1.241568 , loss_g:0.933459 , time:0.046437s, lr:0.000200\n",
- "Epoch:[ 66/200], step:[ 300/ 468], loss_d:1.304989 , loss_g:0.916806 , time:0.042258s, lr:0.000200\n",
- "Epoch:[ 66/200], step:[ 400/ 468], loss_d:1.276990 , loss_g:0.747656 , time:0.045870s, lr:0.000200\n",
- "time of epoch 67 is 36.07s\n",
- "Epoch:[ 67/200], step:[ 0/ 468], loss_d:1.283766 , loss_g:0.867362 , time:0.051041s, lr:0.000200\n",
- "Epoch:[ 67/200], step:[ 100/ 468], loss_d:1.235177 , loss_g:1.072618 , time:0.044535s, lr:0.000200\n",
- "Epoch:[ 67/200], step:[ 200/ 468], loss_d:1.307476 , loss_g:0.916048 , time:0.041543s, lr:0.000200\n",
- "Epoch:[ 67/200], step:[ 300/ 468], loss_d:1.271056 , loss_g:0.798044 , time:0.043018s, lr:0.000200\n",
- "Epoch:[ 67/200], step:[ 400/ 468], loss_d:1.257254 , loss_g:0.779152 , time:0.041918s, lr:0.000200\n",
- "time of epoch 68 is 34.94s\n",
- "Epoch:[ 68/200], step:[ 0/ 468], loss_d:1.296121 , loss_g:0.800338 , time:0.047953s, lr:0.000200\n",
- "Epoch:[ 68/200], step:[ 100/ 468], loss_d:1.291616 , loss_g:0.780140 , time:0.049308s, lr:0.000200\n",
- "Epoch:[ 68/200], step:[ 200/ 468], loss_d:1.340003 , loss_g:0.802455 , time:0.046625s, lr:0.000200\n",
- "Epoch:[ 68/200], step:[ 300/ 468], loss_d:1.242630 , loss_g:0.926233 , time:0.045050s, lr:0.000200\n",
- "Epoch:[ 68/200], step:[ 400/ 468], loss_d:1.314312 , loss_g:0.861805 , time:0.038497s, lr:0.000200\n",
- "time of epoch 69 is 35.27s\n",
- "Epoch:[ 69/200], step:[ 0/ 468], loss_d:1.324181 , loss_g:1.164202 , time:0.048760s, lr:0.000200\n",
- "Epoch:[ 69/200], step:[ 100/ 468], loss_d:1.243429 , loss_g:0.919210 , time:0.047086s, lr:0.000200\n",
- "Epoch:[ 69/200], step:[ 200/ 468], loss_d:1.286552 , loss_g:0.829626 , time:0.049871s, lr:0.000200\n",
- "Epoch:[ 69/200], step:[ 300/ 468], loss_d:1.307333 , loss_g:0.892695 , time:0.049534s, lr:0.000200\n",
- "Epoch:[ 69/200], step:[ 400/ 468], loss_d:1.322739 , loss_g:0.872402 , time:0.046559s, lr:0.000200\n",
- "time of epoch 70 is 38.50s\n",
- "Epoch:[ 70/200], step:[ 0/ 468], loss_d:1.368777 , loss_g:0.708430 , time:0.047241s, lr:0.000200\n",
- "Epoch:[ 70/200], step:[ 100/ 468], loss_d:1.225775 , loss_g:0.873233 , time:0.046533s, lr:0.000200\n",
- "Epoch:[ 70/200], step:[ 200/ 468], loss_d:1.270439 , loss_g:0.965898 , time:0.051210s, lr:0.000200\n",
- "Epoch:[ 70/200], step:[ 300/ 468], loss_d:1.238077 , loss_g:0.899558 , time:0.041717s, lr:0.000200\n",
- "Epoch:[ 70/200], step:[ 400/ 468], loss_d:1.247410 , loss_g:0.835551 , time:0.044206s, lr:0.000200\n",
- "time of epoch 71 is 37.44s\n",
- "Epoch:[ 71/200], step:[ 0/ 468], loss_d:1.342798 , loss_g:0.672657 , time:0.054056s, lr:0.000200\n",
- "Epoch:[ 71/200], step:[ 100/ 468], loss_d:1.274170 , loss_g:0.745518 , time:0.047717s, lr:0.000200\n",
- "Epoch:[ 71/200], step:[ 200/ 468], loss_d:1.282508 , loss_g:0.873342 , time:0.045828s, lr:0.000200\n",
- "Epoch:[ 71/200], step:[ 300/ 468], loss_d:1.335411 , loss_g:1.079905 , time:0.045776s, lr:0.000200\n",
- "Epoch:[ 71/200], step:[ 400/ 468], loss_d:1.261366 , loss_g:0.911983 , time:0.045209s, lr:0.000200\n",
- "time of epoch 72 is 36.27s\n",
- "Epoch:[ 72/200], step:[ 0/ 468], loss_d:1.315783 , loss_g:0.764974 , time:0.050861s, lr:0.000200\n",
- "Epoch:[ 72/200], step:[ 100/ 468], loss_d:1.273635 , loss_g:1.171997 , time:0.046914s, lr:0.000200\n",
- "Epoch:[ 72/200], step:[ 200/ 468], loss_d:1.268991 , loss_g:0.939548 , time:0.047256s, lr:0.000200\n",
- "Epoch:[ 72/200], step:[ 300/ 468], loss_d:1.327120 , loss_g:1.111541 , time:0.048827s, lr:0.000200\n",
- "Epoch:[ 72/200], step:[ 400/ 468], loss_d:1.275147 , loss_g:1.082589 , time:0.046197s, lr:0.000200\n",
- "time of epoch 73 is 36.95s\n",
- "Epoch:[ 73/200], step:[ 0/ 468], loss_d:1.275911 , loss_g:1.046679 , time:0.054416s, lr:0.000200\n",
- "Epoch:[ 73/200], step:[ 100/ 468], loss_d:1.272111 , loss_g:0.853113 , time:0.043983s, lr:0.000200\n",
- "Epoch:[ 73/200], step:[ 200/ 468], loss_d:1.263924 , loss_g:0.852001 , time:0.045799s, lr:0.000200\n",
- "Epoch:[ 73/200], step:[ 300/ 468], loss_d:1.319084 , loss_g:0.855385 , time:0.047494s, lr:0.000200\n",
- "Epoch:[ 73/200], step:[ 400/ 468], loss_d:1.268350 , loss_g:0.885188 , time:0.048661s, lr:0.000200\n",
- "time of epoch 74 is 37.11s\n",
- "Epoch:[ 74/200], step:[ 0/ 468], loss_d:1.293881 , loss_g:0.754639 , time:0.049930s, lr:0.000200\n",
- "Epoch:[ 74/200], step:[ 100/ 468], loss_d:1.264755 , loss_g:0.938970 , time:0.043838s, lr:0.000200\n",
- "Epoch:[ 74/200], step:[ 200/ 468], loss_d:1.333288 , loss_g:0.853924 , time:0.045347s, lr:0.000200\n",
- "Epoch:[ 74/200], step:[ 300/ 468], loss_d:1.245891 , loss_g:1.094631 , time:0.049545s, lr:0.000200\n",
- "Epoch:[ 74/200], step:[ 400/ 468], loss_d:1.226994 , loss_g:0.995898 , time:0.043600s, lr:0.000200\n",
- "time of epoch 75 is 37.10s\n",
- "Epoch:[ 75/200], step:[ 0/ 468], loss_d:1.258013 , loss_g:0.854201 , time:0.051806s, lr:0.000200\n",
- "Epoch:[ 75/200], step:[ 100/ 468], loss_d:1.232367 , loss_g:1.068004 , time:0.043721s, lr:0.000200\n",
- "Epoch:[ 75/200], step:[ 200/ 468], loss_d:1.214932 , loss_g:0.988707 , time:0.044482s, lr:0.000200\n",
- "Epoch:[ 75/200], step:[ 300/ 468], loss_d:1.257394 , loss_g:0.798832 , time:0.044866s, lr:0.000200\n",
- "Epoch:[ 75/200], step:[ 400/ 468], loss_d:1.266918 , loss_g:0.972293 , time:0.046030s, lr:0.000200\n",
- "time of epoch 76 is 34.09s\n",
- "Epoch:[ 76/200], step:[ 0/ 468], loss_d:1.265741 , loss_g:0.851110 , time:0.047946s, lr:0.000200\n",
- "Epoch:[ 76/200], step:[ 100/ 468], loss_d:1.325474 , loss_g:0.923661 , time:0.047422s, lr:0.000200\n",
- "Epoch:[ 76/200], step:[ 200/ 468], loss_d:1.246524 , loss_g:1.174241 , time:0.044890s, lr:0.000200\n",
- "Epoch:[ 76/200], step:[ 300/ 468], loss_d:1.278205 , loss_g:0.878475 , time:0.045019s, lr:0.000200\n",
- "Epoch:[ 76/200], step:[ 400/ 468], loss_d:1.289550 , loss_g:0.792831 , time:0.042174s, lr:0.000200\n",
- "time of epoch 77 is 34.52s\n",
- "Epoch:[ 77/200], step:[ 0/ 468], loss_d:1.301568 , loss_g:1.052245 , time:0.049309s, lr:0.000200\n",
- "Epoch:[ 77/200], step:[ 100/ 468], loss_d:1.238838 , loss_g:0.964254 , time:0.044177s, lr:0.000200\n",
- "Epoch:[ 77/200], step:[ 200/ 468], loss_d:1.231171 , loss_g:0.900018 , time:0.043667s, lr:0.000200\n",
- "Epoch:[ 77/200], step:[ 300/ 468], loss_d:1.324486 , loss_g:1.060407 , time:0.038931s, lr:0.000200\n",
- "Epoch:[ 77/200], step:[ 400/ 468], loss_d:1.247087 , loss_g:1.089732 , time:0.041284s, lr:0.000200\n",
- "time of epoch 78 is 33.08s\n",
- "Epoch:[ 78/200], step:[ 0/ 468], loss_d:1.237552 , loss_g:0.895267 , time:0.049780s, lr:0.000200\n",
- "Epoch:[ 78/200], step:[ 100/ 468], loss_d:1.246083 , loss_g:1.006943 , time:0.042779s, lr:0.000200\n",
- "Epoch:[ 78/200], step:[ 200/ 468], loss_d:1.260101 , loss_g:0.838199 , time:0.044947s, lr:0.000200\n",
- "Epoch:[ 78/200], step:[ 300/ 468], loss_d:1.251656 , loss_g:0.881454 , time:0.049420s, lr:0.000200\n",
- "Epoch:[ 78/200], step:[ 400/ 468], loss_d:1.314604 , loss_g:0.898436 , time:0.046385s, lr:0.000200\n",
- "time of epoch 79 is 34.12s\n",
- "Epoch:[ 79/200], step:[ 0/ 468], loss_d:1.328437 , loss_g:0.616518 , time:0.047537s, lr:0.000200\n",
- "Epoch:[ 79/200], step:[ 100/ 468], loss_d:1.283821 , loss_g:0.894089 , time:0.043893s, lr:0.000200\n",
- "Epoch:[ 79/200], step:[ 200/ 468], loss_d:1.304629 , loss_g:0.759582 , time:0.046498s, lr:0.000200\n",
- "Epoch:[ 79/200], step:[ 300/ 468], loss_d:1.228148 , loss_g:0.812896 , time:0.045336s, lr:0.000200\n",
- "Epoch:[ 79/200], step:[ 400/ 468], loss_d:1.275430 , loss_g:0.910555 , time:0.048991s, lr:0.000200\n",
- "time of epoch 80 is 37.10s\n",
- "Epoch:[ 80/200], step:[ 0/ 468], loss_d:1.239350 , loss_g:0.873942 , time:0.047822s, lr:0.000200\n",
- "Epoch:[ 80/200], step:[ 100/ 468], loss_d:1.259196 , loss_g:0.805264 , time:0.042970s, lr:0.000200\n",
- "Epoch:[ 80/200], step:[ 200/ 468], loss_d:1.257325 , loss_g:0.998146 , time:0.042103s, lr:0.000200\n",
- "Epoch:[ 80/200], step:[ 300/ 468], loss_d:1.249333 , loss_g:0.925574 , time:0.041429s, lr:0.000200\n",
- "Epoch:[ 80/200], step:[ 400/ 468], loss_d:1.286314 , loss_g:0.786037 , time:0.043013s, lr:0.000200\n",
- "time of epoch 81 is 35.81s\n",
- "Epoch:[ 81/200], step:[ 0/ 468], loss_d:1.223749 , loss_g:1.089445 , time:0.048441s, lr:0.000200\n",
- "Epoch:[ 81/200], step:[ 100/ 468], loss_d:1.262170 , loss_g:0.779977 , time:0.042042s, lr:0.000200\n",
- "Epoch:[ 81/200], step:[ 200/ 468], loss_d:1.240216 , loss_g:1.296717 , time:0.046043s, lr:0.000200\n",
- "Epoch:[ 81/200], step:[ 300/ 468], loss_d:1.286365 , loss_g:0.926722 , time:0.046888s, lr:0.000200\n",
- "Epoch:[ 81/200], step:[ 400/ 468], loss_d:1.286471 , loss_g:0.785367 , time:0.041220s, lr:0.000200\n",
- "time of epoch 82 is 31.51s\n",
- "Epoch:[ 82/200], step:[ 0/ 468], loss_d:1.286746 , loss_g:0.874846 , time:0.048254s, lr:0.000200\n",
- "Epoch:[ 82/200], step:[ 100/ 468], loss_d:1.255161 , loss_g:1.081918 , time:0.046894s, lr:0.000200\n",
- "Epoch:[ 82/200], step:[ 200/ 468], loss_d:1.234870 , loss_g:0.839434 , time:0.043743s, lr:0.000200\n",
- "Epoch:[ 82/200], step:[ 300/ 468], loss_d:1.252229 , loss_g:0.926773 , time:0.043304s, lr:0.000200\n",
- "Epoch:[ 82/200], step:[ 400/ 468], loss_d:1.274880 , loss_g:0.833000 , time:0.038898s, lr:0.000200\n",
- "time of epoch 83 is 33.15s\n",
- "Epoch:[ 83/200], step:[ 0/ 468], loss_d:1.264673 , loss_g:1.038509 , time:0.051706s, lr:0.000200\n",
- "Epoch:[ 83/200], step:[ 100/ 468], loss_d:1.345782 , loss_g:1.087709 , time:0.049118s, lr:0.000200\n",
- "Epoch:[ 83/200], step:[ 200/ 468], loss_d:1.226377 , loss_g:0.878318 , time:0.048773s, lr:0.000200\n",
- "Epoch:[ 83/200], step:[ 300/ 468], loss_d:1.305567 , loss_g:0.957153 , time:0.043780s, lr:0.000200\n",
- "Epoch:[ 83/200], step:[ 400/ 468], loss_d:1.215334 , loss_g:0.924216 , time:0.043612s, lr:0.000200\n",
- "time of epoch 84 is 35.28s\n",
- "Epoch:[ 84/200], step:[ 0/ 468], loss_d:1.269334 , loss_g:1.009192 , time:0.049968s, lr:0.000200\n",
- "Epoch:[ 84/200], step:[ 100/ 468], loss_d:1.231154 , loss_g:0.925275 , time:0.049879s, lr:0.000200\n",
- "Epoch:[ 84/200], step:[ 200/ 468], loss_d:1.243465 , loss_g:0.766953 , time:0.045686s, lr:0.000200\n",
- "Epoch:[ 84/200], step:[ 300/ 468], loss_d:1.232594 , loss_g:1.027395 , time:0.047827s, lr:0.000200\n",
- "Epoch:[ 84/200], step:[ 400/ 468], loss_d:1.323746 , loss_g:0.785085 , time:0.047624s, lr:0.000200\n",
- "time of epoch 85 is 36.25s\n",
- "Epoch:[ 85/200], step:[ 0/ 468], loss_d:1.318126 , loss_g:0.844004 , time:0.051803s, lr:0.000200\n",
- "Epoch:[ 85/200], step:[ 100/ 468], loss_d:1.311495 , loss_g:0.666721 , time:0.040497s, lr:0.000200\n",
- "Epoch:[ 85/200], step:[ 200/ 468], loss_d:1.388227 , loss_g:1.277321 , time:0.038909s, lr:0.000200\n",
- "Epoch:[ 85/200], step:[ 300/ 468], loss_d:1.275890 , loss_g:0.752525 , time:0.040990s, lr:0.000200\n",
- "Epoch:[ 85/200], step:[ 400/ 468], loss_d:1.235005 , loss_g:1.103637 , time:0.039921s, lr:0.000200\n",
- "time of epoch 86 is 33.69s\n",
- "Epoch:[ 86/200], step:[ 0/ 468], loss_d:1.260627 , loss_g:0.981582 , time:0.048254s, lr:0.000200\n",
- "Epoch:[ 86/200], step:[ 100/ 468], loss_d:1.321540 , loss_g:0.812446 , time:0.048524s, lr:0.000200\n",
- "Epoch:[ 86/200], step:[ 200/ 468], loss_d:1.332921 , loss_g:0.592381 , time:0.045508s, lr:0.000200\n",
- "Epoch:[ 86/200], step:[ 300/ 468], loss_d:1.210480 , loss_g:0.950624 , time:0.045275s, lr:0.000200\n",
- "Epoch:[ 86/200], step:[ 400/ 468], loss_d:1.245843 , loss_g:1.062170 , time:0.051763s, lr:0.000200\n",
- "time of epoch 87 is 34.86s\n",
- "Epoch:[ 87/200], step:[ 0/ 468], loss_d:1.177821 , loss_g:0.966781 , time:0.046404s, lr:0.000200\n",
- "Epoch:[ 87/200], step:[ 100/ 468], loss_d:1.218120 , loss_g:1.019230 , time:0.045331s, lr:0.000200\n",
- "Epoch:[ 87/200], step:[ 200/ 468], loss_d:1.331244 , loss_g:0.876511 , time:0.048616s, lr:0.000200\n",
- "Epoch:[ 87/200], step:[ 300/ 468], loss_d:1.292220 , loss_g:0.946034 , time:0.051211s, lr:0.000200\n",
- "Epoch:[ 87/200], step:[ 400/ 468], loss_d:1.234660 , loss_g:1.019270 , time:0.045827s, lr:0.000200\n",
- "time of epoch 88 is 36.76s\n",
- "Epoch:[ 88/200], step:[ 0/ 468], loss_d:1.277607 , loss_g:0.857668 , time:0.044126s, lr:0.000200\n",
- "Epoch:[ 88/200], step:[ 100/ 468], loss_d:1.263812 , loss_g:0.791105 , time:0.044314s, lr:0.000200\n",
- "Epoch:[ 88/200], step:[ 200/ 468], loss_d:1.256955 , loss_g:0.856700 , time:0.051137s, lr:0.000200\n",
- "Epoch:[ 88/200], step:[ 300/ 468], loss_d:1.279761 , loss_g:0.956007 , time:0.049695s, lr:0.000200\n",
- "Epoch:[ 88/200], step:[ 400/ 468], loss_d:1.280383 , loss_g:1.067522 , time:0.046208s, lr:0.000200\n",
- "time of epoch 89 is 34.59s\n",
- "Epoch:[ 89/200], step:[ 0/ 468], loss_d:1.261170 , loss_g:0.952920 , time:0.050930s, lr:0.000200\n",
- "Epoch:[ 89/200], step:[ 100/ 468], loss_d:1.310192 , loss_g:0.947633 , time:0.047690s, lr:0.000200\n",
- "Epoch:[ 89/200], step:[ 200/ 468], loss_d:1.229793 , loss_g:0.857427 , time:0.051690s, lr:0.000200\n",
- "Epoch:[ 89/200], step:[ 300/ 468], loss_d:1.231180 , loss_g:1.018060 , time:0.045959s, lr:0.000200\n",
- "Epoch:[ 89/200], step:[ 400/ 468], loss_d:1.289767 , loss_g:0.893649 , time:0.045805s, lr:0.000200\n",
- "time of epoch 90 is 37.15s\n",
- "Epoch:[ 90/200], step:[ 0/ 468], loss_d:1.266213 , loss_g:0.824098 , time:0.041780s, lr:0.000200\n",
- "Epoch:[ 90/200], step:[ 100/ 468], loss_d:1.265238 , loss_g:0.941994 , time:0.046977s, lr:0.000200\n",
- "Epoch:[ 90/200], step:[ 200/ 468], loss_d:1.343167 , loss_g:0.738443 , time:0.044112s, lr:0.000200\n",
- "Epoch:[ 90/200], step:[ 300/ 468], loss_d:1.244670 , loss_g:0.962614 , time:0.044930s, lr:0.000200\n",
- "Epoch:[ 90/200], step:[ 400/ 468], loss_d:1.246223 , loss_g:0.898849 , time:0.043061s, lr:0.000200\n",
- "time of epoch 91 is 34.73s\n",
- "Epoch:[ 91/200], step:[ 0/ 468], loss_d:1.177226 , loss_g:1.023588 , time:0.044062s, lr:0.000200\n",
- "Epoch:[ 91/200], step:[ 100/ 468], loss_d:1.280674 , loss_g:0.722278 , time:0.039358s, lr:0.000200\n",
- "Epoch:[ 91/200], step:[ 200/ 468], loss_d:1.301066 , loss_g:0.952798 , time:0.041793s, lr:0.000200\n",
- "Epoch:[ 91/200], step:[ 300/ 468], loss_d:1.241785 , loss_g:0.855447 , time:0.047965s, lr:0.000200\n",
- "Epoch:[ 91/200], step:[ 400/ 468], loss_d:1.284462 , loss_g:0.905266 , time:0.041410s, lr:0.000200\n",
- "time of epoch 92 is 34.28s\n",
- "Epoch:[ 92/200], step:[ 0/ 468], loss_d:1.274682 , loss_g:1.157544 , time:0.052458s, lr:0.000200\n",
- "Epoch:[ 92/200], step:[ 100/ 468], loss_d:1.208257 , loss_g:1.005727 , time:0.039868s, lr:0.000200\n",
- "Epoch:[ 92/200], step:[ 200/ 468], loss_d:1.262125 , loss_g:0.836799 , time:0.041194s, lr:0.000200\n",
- "Epoch:[ 92/200], step:[ 300/ 468], loss_d:1.274592 , loss_g:0.932075 , time:0.041309s, lr:0.000200\n",
- "Epoch:[ 92/200], step:[ 400/ 468], loss_d:1.286282 , loss_g:0.731010 , time:0.040235s, lr:0.000200\n",
- "time of epoch 93 is 32.12s\n",
- "Epoch:[ 93/200], step:[ 0/ 468], loss_d:1.285608 , loss_g:0.937456 , time:0.045049s, lr:0.000200\n",
- "Epoch:[ 93/200], step:[ 100/ 468], loss_d:1.194318 , loss_g:0.829386 , time:0.047853s, lr:0.000200\n",
- "Epoch:[ 93/200], step:[ 200/ 468], loss_d:1.198999 , loss_g:0.976121 , time:0.046536s, lr:0.000200\n",
- "Epoch:[ 93/200], step:[ 300/ 468], loss_d:1.215620 , loss_g:0.983590 , time:0.050829s, lr:0.000200\n",
- "Epoch:[ 93/200], step:[ 400/ 468], loss_d:1.232252 , loss_g:0.860814 , time:0.038771s, lr:0.000200\n",
- "time of epoch 94 is 33.80s\n",
- "Epoch:[ 94/200], step:[ 0/ 468], loss_d:1.222739 , loss_g:1.027187 , time:0.047755s, lr:0.000200\n",
- "Epoch:[ 94/200], step:[ 100/ 468], loss_d:1.243713 , loss_g:0.990652 , time:0.044362s, lr:0.000200\n",
- "Epoch:[ 94/200], step:[ 200/ 468], loss_d:1.265000 , loss_g:0.901564 , time:0.045394s, lr:0.000200\n",
- "Epoch:[ 94/200], step:[ 300/ 468], loss_d:1.253571 , loss_g:0.734750 , time:0.041754s, lr:0.000200\n",
- "Epoch:[ 94/200], step:[ 400/ 468], loss_d:1.269130 , loss_g:0.960593 , time:0.039069s, lr:0.000200\n",
- "time of epoch 95 is 33.98s\n",
- "Epoch:[ 95/200], step:[ 0/ 468], loss_d:1.272148 , loss_g:0.842761 , time:0.049536s, lr:0.000200\n",
- "Epoch:[ 95/200], step:[ 100/ 468], loss_d:1.255142 , loss_g:0.959849 , time:0.041048s, lr:0.000200\n",
- "Epoch:[ 95/200], step:[ 200/ 468], loss_d:1.203595 , loss_g:0.905932 , time:0.054551s, lr:0.000200\n",
- "Epoch:[ 95/200], step:[ 300/ 468], loss_d:1.240350 , loss_g:0.987186 , time:0.048185s, lr:0.000200\n",
- "Epoch:[ 95/200], step:[ 400/ 468], loss_d:1.218228 , loss_g:0.794264 , time:0.039880s, lr:0.000200\n",
- "time of epoch 96 is 36.20s\n",
- "Epoch:[ 96/200], step:[ 0/ 468], loss_d:1.251075 , loss_g:1.063750 , time:0.050336s, lr:0.000200\n",
- "Epoch:[ 96/200], step:[ 100/ 468], loss_d:1.302071 , loss_g:0.925102 , time:0.044689s, lr:0.000200\n",
- "Epoch:[ 96/200], step:[ 200/ 468], loss_d:1.252329 , loss_g:1.020200 , time:0.052826s, lr:0.000200\n",
- "Epoch:[ 96/200], step:[ 300/ 468], loss_d:1.203419 , loss_g:0.876964 , time:0.048047s, lr:0.000200\n",
- "Epoch:[ 96/200], step:[ 400/ 468], loss_d:1.268883 , loss_g:0.825612 , time:0.044607s, lr:0.000200\n",
- "time of epoch 97 is 34.58s\n",
- "Epoch:[ 97/200], step:[ 0/ 468], loss_d:1.266016 , loss_g:0.912950 , time:0.048479s, lr:0.000200\n",
- "Epoch:[ 97/200], step:[ 100/ 468], loss_d:1.239652 , loss_g:1.135652 , time:0.044792s, lr:0.000200\n",
- "Epoch:[ 97/200], step:[ 200/ 468], loss_d:1.306474 , loss_g:0.930136 , time:0.045076s, lr:0.000200\n",
- "Epoch:[ 97/200], step:[ 300/ 468], loss_d:1.265135 , loss_g:0.839461 , time:0.051776s, lr:0.000200\n",
- "Epoch:[ 97/200], step:[ 400/ 468], loss_d:1.268726 , loss_g:0.893282 , time:0.046870s, lr:0.000200\n",
- "time of epoch 98 is 35.25s\n",
- "Epoch:[ 98/200], step:[ 0/ 468], loss_d:1.262786 , loss_g:1.122138 , time:0.051108s, lr:0.000200\n",
- "Epoch:[ 98/200], step:[ 100/ 468], loss_d:1.264205 , loss_g:1.072651 , time:0.045852s, lr:0.000200\n",
- "Epoch:[ 98/200], step:[ 200/ 468], loss_d:1.287501 , loss_g:0.959713 , time:0.047680s, lr:0.000200\n",
- "Epoch:[ 98/200], step:[ 300/ 468], loss_d:1.263124 , loss_g:1.040372 , time:0.051059s, lr:0.000200\n",
- "Epoch:[ 98/200], step:[ 400/ 468], loss_d:1.271025 , loss_g:0.951961 , time:0.041565s, lr:0.000200\n",
- "time of epoch 99 is 35.92s\n",
- "Epoch:[ 99/200], step:[ 0/ 468], loss_d:1.263868 , loss_g:0.863676 , time:0.051904s, lr:0.000200\n",
- "Epoch:[ 99/200], step:[ 100/ 468], loss_d:1.240167 , loss_g:0.968805 , time:0.044200s, lr:0.000200\n",
- "Epoch:[ 99/200], step:[ 200/ 468], loss_d:1.230386 , loss_g:0.856215 , time:0.047688s, lr:0.000200\n",
- "Epoch:[ 99/200], step:[ 300/ 468], loss_d:1.276353 , loss_g:0.886626 , time:0.050296s, lr:0.000200\n",
- "Epoch:[ 99/200], step:[ 400/ 468], loss_d:1.311608 , loss_g:1.052250 , time:0.047153s, lr:0.000200\n",
- "time of epoch 100 is 36.35s\n",
- "Epoch:[100/200], step:[ 0/ 468], loss_d:1.195933 , loss_g:1.159281 , time:0.045802s, lr:0.000200\n",
- "Epoch:[100/200], step:[ 100/ 468], loss_d:1.322469 , loss_g:0.918175 , time:0.043946s, lr:0.000200\n",
- "Epoch:[100/200], step:[ 200/ 468], loss_d:1.315774 , loss_g:1.067750 , time:0.045911s, lr:0.000200\n",
- "Epoch:[100/200], step:[ 300/ 468], loss_d:1.220087 , loss_g:0.760998 , time:0.048778s, lr:0.000200\n",
- "Epoch:[100/200], step:[ 400/ 468], loss_d:1.262182 , loss_g:0.922417 , time:0.047162s, lr:0.000200\n",
- "time of epoch 101 is 33.53s\n",
- "Epoch:[101/200], step:[ 0/ 468], loss_d:1.229516 , loss_g:0.991987 , time:0.046079s, lr:0.000200\n",
- "Epoch:[101/200], step:[ 100/ 468], loss_d:1.223289 , loss_g:0.995996 , time:0.048062s, lr:0.000200\n",
- "Epoch:[101/200], step:[ 200/ 468], loss_d:1.308380 , loss_g:0.973232 , time:0.042402s, lr:0.000200\n",
- "Epoch:[101/200], step:[ 300/ 468], loss_d:1.332341 , loss_g:1.187854 , time:0.043210s, lr:0.000200\n",
- "Epoch:[101/200], step:[ 400/ 468], loss_d:1.263397 , loss_g:1.013150 , time:0.047899s, lr:0.000200\n",
- "time of epoch 102 is 35.28s\n",
- "Epoch:[102/200], step:[ 0/ 468], loss_d:1.268744 , loss_g:1.035616 , time:0.046276s, lr:0.000200\n",
- "Epoch:[102/200], step:[ 100/ 468], loss_d:1.174612 , loss_g:1.105113 , time:0.053629s, lr:0.000200\n",
- "Epoch:[102/200], step:[ 200/ 468], loss_d:1.268577 , loss_g:0.820688 , time:0.048571s, lr:0.000200\n",
- "Epoch:[102/200], step:[ 300/ 468], loss_d:1.291828 , loss_g:0.884673 , time:0.040891s, lr:0.000200\n",
- "Epoch:[102/200], step:[ 400/ 468], loss_d:1.186356 , loss_g:1.160244 , time:0.039562s, lr:0.000200\n",
- "time of epoch 103 is 35.42s\n",
- "Epoch:[103/200], step:[ 0/ 468], loss_d:1.202083 , loss_g:0.936231 , time:0.045745s, lr:0.000200\n",
- "Epoch:[103/200], step:[ 100/ 468], loss_d:1.216438 , loss_g:0.908985 , time:0.048187s, lr:0.000200\n",
- "Epoch:[103/200], step:[ 200/ 468], loss_d:1.215895 , loss_g:1.025792 , time:0.042521s, lr:0.000200\n",
- "Epoch:[103/200], step:[ 300/ 468], loss_d:1.210754 , loss_g:0.895619 , time:0.043612s, lr:0.000200\n",
- "Epoch:[103/200], step:[ 400/ 468], loss_d:1.236582 , loss_g:1.168654 , time:0.041896s, lr:0.000200\n",
- "time of epoch 104 is 35.07s\n",
- "Epoch:[104/200], step:[ 0/ 468], loss_d:1.204531 , loss_g:1.008565 , time:0.051636s, lr:0.000200\n",
- "Epoch:[104/200], step:[ 100/ 468], loss_d:1.238383 , loss_g:0.973770 , time:0.044151s, lr:0.000200\n",
- "Epoch:[104/200], step:[ 200/ 468], loss_d:1.317574 , loss_g:1.126151 , time:0.043505s, lr:0.000200\n",
- "Epoch:[104/200], step:[ 300/ 468], loss_d:1.260759 , loss_g:0.824432 , time:0.042852s, lr:0.000200\n",
- "Epoch:[104/200], step:[ 400/ 468], loss_d:1.311132 , loss_g:0.922607 , time:0.043626s, lr:0.000200\n",
- "time of epoch 105 is 34.50s\n",
- "Epoch:[105/200], step:[ 0/ 468], loss_d:1.278582 , loss_g:1.162642 , time:0.049615s, lr:0.000200\n",
- "Epoch:[105/200], step:[ 100/ 468], loss_d:1.276598 , loss_g:0.807140 , time:0.040067s, lr:0.000200\n",
- "Epoch:[105/200], step:[ 200/ 468], loss_d:1.300205 , loss_g:0.863271 , time:0.045648s, lr:0.000200\n",
- "Epoch:[105/200], step:[ 300/ 468], loss_d:1.210071 , loss_g:0.872550 , time:0.040214s, lr:0.000200\n",
- "Epoch:[105/200], step:[ 400/ 468], loss_d:1.216179 , loss_g:1.026746 , time:0.044720s, lr:0.000200\n",
- "time of epoch 106 is 35.20s\n",
- "Epoch:[106/200], step:[ 0/ 468], loss_d:1.264625 , loss_g:1.014118 , time:0.042536s, lr:0.000200\n",
- "Epoch:[106/200], step:[ 100/ 468], loss_d:1.320001 , loss_g:0.981012 , time:0.042151s, lr:0.000200\n",
- "Epoch:[106/200], step:[ 200/ 468], loss_d:1.337474 , loss_g:1.028437 , time:0.048315s, lr:0.000200\n",
- "Epoch:[106/200], step:[ 300/ 468], loss_d:1.255221 , loss_g:0.765179 , time:0.046887s, lr:0.000200\n",
- "Epoch:[106/200], step:[ 400/ 468], loss_d:1.302818 , loss_g:0.784797 , time:0.046842s, lr:0.000200\n",
- "time of epoch 107 is 36.22s\n",
- "Epoch:[107/200], step:[ 0/ 468], loss_d:1.204974 , loss_g:0.981459 , time:0.047930s, lr:0.000200\n",
- "Epoch:[107/200], step:[ 100/ 468], loss_d:1.271407 , loss_g:0.854389 , time:0.049189s, lr:0.000200\n",
- "Epoch:[107/200], step:[ 200/ 468], loss_d:1.358407 , loss_g:1.301154 , time:0.041494s, lr:0.000200\n",
- "Epoch:[107/200], step:[ 300/ 468], loss_d:1.237980 , loss_g:0.869114 , time:0.041105s, lr:0.000200\n",
- "Epoch:[107/200], step:[ 400/ 468], loss_d:1.251710 , loss_g:0.961053 , time:0.043255s, lr:0.000200\n",
- "time of epoch 108 is 34.39s\n",
- "Epoch:[108/200], step:[ 0/ 468], loss_d:1.316208 , loss_g:0.752527 , time:0.047863s, lr:0.000200\n",
- "Epoch:[108/200], step:[ 100/ 468], loss_d:1.226642 , loss_g:1.014658 , time:0.044958s, lr:0.000200\n",
- "Epoch:[108/200], step:[ 200/ 468], loss_d:1.242489 , loss_g:0.805440 , time:0.048612s, lr:0.000200\n",
- "Epoch:[108/200], step:[ 300/ 468], loss_d:1.336364 , loss_g:0.950849 , time:0.047765s, lr:0.000200\n",
- "Epoch:[108/200], step:[ 400/ 468], loss_d:1.250432 , loss_g:0.867144 , time:0.047037s, lr:0.000200\n",
- "time of epoch 109 is 36.11s\n",
- "Epoch:[109/200], step:[ 0/ 468], loss_d:1.271340 , loss_g:0.811424 , time:0.041381s, lr:0.000200\n",
- "Epoch:[109/200], step:[ 100/ 468], loss_d:1.277861 , loss_g:0.777123 , time:0.040948s, lr:0.000200\n",
- "Epoch:[109/200], step:[ 200/ 468], loss_d:1.262773 , loss_g:1.134534 , time:0.040416s, lr:0.000200\n",
- "Epoch:[109/200], step:[ 300/ 468], loss_d:1.217336 , loss_g:0.876227 , time:0.042833s, lr:0.000200\n",
- "Epoch:[109/200], step:[ 400/ 468], loss_d:1.187468 , loss_g:1.047299 , time:0.039426s, lr:0.000200\n",
- "time of epoch 110 is 35.33s\n",
- "Epoch:[110/200], step:[ 0/ 468], loss_d:1.290276 , loss_g:0.999078 , time:0.051047s, lr:0.000200\n",
- "Epoch:[110/200], step:[ 100/ 468], loss_d:1.314519 , loss_g:0.766162 , time:0.040582s, lr:0.000200\n",
- "Epoch:[110/200], step:[ 200/ 468], loss_d:1.277430 , loss_g:0.976806 , time:0.045778s, lr:0.000200\n",
- "Epoch:[110/200], step:[ 300/ 468], loss_d:1.238655 , loss_g:0.868288 , time:0.050655s, lr:0.000200\n",
- "Epoch:[110/200], step:[ 400/ 468], loss_d:1.351409 , loss_g:0.888745 , time:0.041035s, lr:0.000200\n",
- "time of epoch 111 is 34.84s\n",
- "Epoch:[111/200], step:[ 0/ 468], loss_d:1.253341 , loss_g:0.940134 , time:0.047712s, lr:0.000200\n",
- "Epoch:[111/200], step:[ 100/ 468], loss_d:1.264957 , loss_g:0.803884 , time:0.041883s, lr:0.000200\n",
- "Epoch:[111/200], step:[ 200/ 468], loss_d:1.268405 , loss_g:1.134383 , time:0.038082s, lr:0.000200\n",
- "Epoch:[111/200], step:[ 300/ 468], loss_d:1.228103 , loss_g:0.894812 , time:0.047263s, lr:0.000200\n",
- "Epoch:[111/200], step:[ 400/ 468], loss_d:1.261829 , loss_g:0.993884 , time:0.047271s, lr:0.000200\n",
- "time of epoch 112 is 35.59s\n",
- "Epoch:[112/200], step:[ 0/ 468], loss_d:1.258753 , loss_g:1.191665 , time:0.046999s, lr:0.000200\n",
- "Epoch:[112/200], step:[ 100/ 468], loss_d:1.259707 , loss_g:0.870625 , time:0.052085s, lr:0.000200\n",
- "Epoch:[112/200], step:[ 200/ 468], loss_d:1.278076 , loss_g:1.036802 , time:0.043790s, lr:0.000200\n",
- "Epoch:[112/200], step:[ 300/ 468], loss_d:1.267510 , loss_g:0.793068 , time:0.044864s, lr:0.000200\n",
- "Epoch:[112/200], step:[ 400/ 468], loss_d:1.214011 , loss_g:1.011071 , time:0.048509s, lr:0.000200\n",
- "time of epoch 113 is 36.19s\n",
- "Epoch:[113/200], step:[ 0/ 468], loss_d:1.192810 , loss_g:0.947201 , time:0.047911s, lr:0.000200\n",
- "Epoch:[113/200], step:[ 100/ 468], loss_d:1.239804 , loss_g:1.054534 , time:0.042661s, lr:0.000200\n",
- "Epoch:[113/200], step:[ 200/ 468], loss_d:1.174106 , loss_g:0.880735 , time:0.044992s, lr:0.000200\n",
- "Epoch:[113/200], step:[ 300/ 468], loss_d:1.314139 , loss_g:0.851185 , time:0.045122s, lr:0.000200\n",
- "Epoch:[113/200], step:[ 400/ 468], loss_d:1.247335 , loss_g:0.754230 , time:0.041527s, lr:0.000200\n",
- "time of epoch 114 is 33.72s\n",
- "Epoch:[114/200], step:[ 0/ 468], loss_d:1.266369 , loss_g:1.062516 , time:0.047467s, lr:0.000200\n",
- "Epoch:[114/200], step:[ 100/ 468], loss_d:1.208506 , loss_g:1.067186 , time:0.046478s, lr:0.000200\n",
- "Epoch:[114/200], step:[ 200/ 468], loss_d:1.210452 , loss_g:1.011056 , time:0.042296s, lr:0.000200\n",
- "Epoch:[114/200], step:[ 300/ 468], loss_d:1.297954 , loss_g:1.119763 , time:0.046112s, lr:0.000200\n",
- "Epoch:[114/200], step:[ 400/ 468], loss_d:1.276475 , loss_g:1.105644 , time:0.044821s, lr:0.000200\n",
- "time of epoch 115 is 32.94s\n",
- "Epoch:[115/200], step:[ 0/ 468], loss_d:1.211765 , loss_g:1.040868 , time:0.049438s, lr:0.000200\n",
- "Epoch:[115/200], step:[ 100/ 468], loss_d:1.248928 , loss_g:1.385214 , time:0.045408s, lr:0.000200\n",
- "Epoch:[115/200], step:[ 200/ 468], loss_d:1.260017 , loss_g:1.123079 , time:0.040535s, lr:0.000200\n",
- "Epoch:[115/200], step:[ 300/ 468], loss_d:1.254612 , loss_g:1.095119 , time:0.042827s, lr:0.000200\n",
- "Epoch:[115/200], step:[ 400/ 468], loss_d:1.249005 , loss_g:1.181086 , time:0.042072s, lr:0.000200\n",
- "time of epoch 116 is 34.16s\n",
- "Epoch:[116/200], step:[ 0/ 468], loss_d:1.213979 , loss_g:1.108207 , time:0.047231s, lr:0.000200\n",
- "Epoch:[116/200], step:[ 100/ 468], loss_d:1.256017 , loss_g:0.858797 , time:0.044244s, lr:0.000200\n",
- "Epoch:[116/200], step:[ 200/ 468], loss_d:1.318390 , loss_g:0.773079 , time:0.041134s, lr:0.000200\n",
- "Epoch:[116/200], step:[ 300/ 468], loss_d:1.250701 , loss_g:0.912923 , time:0.047869s, lr:0.000200\n",
- "Epoch:[116/200], step:[ 400/ 468], loss_d:1.231393 , loss_g:1.022859 , time:0.043941s, lr:0.000200\n",
- "time of epoch 117 is 33.48s\n",
- "Epoch:[117/200], step:[ 0/ 468], loss_d:1.200470 , loss_g:0.837901 , time:0.047325s, lr:0.000200\n",
- "Epoch:[117/200], step:[ 100/ 468], loss_d:1.364929 , loss_g:1.018399 , time:0.042544s, lr:0.000200\n",
- "Epoch:[117/200], step:[ 200/ 468], loss_d:1.245403 , loss_g:0.955839 , time:0.042407s, lr:0.000200\n",
- "Epoch:[117/200], step:[ 300/ 468], loss_d:1.291929 , loss_g:1.063396 , time:0.040782s, lr:0.000200\n",
- "Epoch:[117/200], step:[ 400/ 468], loss_d:1.371064 , loss_g:0.708585 , time:0.041774s, lr:0.000200\n",
- "time of epoch 118 is 35.10s\n",
- "Epoch:[118/200], step:[ 0/ 468], loss_d:1.251089 , loss_g:0.932023 , time:0.049962s, lr:0.000200\n",
- "Epoch:[118/200], step:[ 100/ 468], loss_d:1.271200 , loss_g:0.865552 , time:0.045633s, lr:0.000200\n",
- "Epoch:[118/200], step:[ 200/ 468], loss_d:1.183690 , loss_g:0.924572 , time:0.043103s, lr:0.000200\n",
- "Epoch:[118/200], step:[ 300/ 468], loss_d:1.229748 , loss_g:1.135687 , time:0.040202s, lr:0.000200\n",
- "Epoch:[118/200], step:[ 400/ 468], loss_d:1.269796 , loss_g:0.878133 , time:0.042011s, lr:0.000200\n",
- "time of epoch 119 is 32.63s\n",
- "Epoch:[119/200], step:[ 0/ 468], loss_d:1.249897 , loss_g:0.994552 , time:0.053744s, lr:0.000200\n",
- "Epoch:[119/200], step:[ 100/ 468], loss_d:1.277300 , loss_g:0.709877 , time:0.050448s, lr:0.000200\n",
- "Epoch:[119/200], step:[ 200/ 468], loss_d:1.325880 , loss_g:1.005621 , time:0.044147s, lr:0.000200\n",
- "Epoch:[119/200], step:[ 300/ 468], loss_d:1.326895 , loss_g:0.782711 , time:0.048421s, lr:0.000200\n",
- "Epoch:[119/200], step:[ 400/ 468], loss_d:1.222522 , loss_g:0.880688 , time:0.050931s, lr:0.000200\n",
- "time of epoch 120 is 36.55s\n",
- "Epoch:[120/200], step:[ 0/ 468], loss_d:1.228207 , loss_g:1.091192 , time:0.050076s, lr:0.000200\n",
- "Epoch:[120/200], step:[ 100/ 468], loss_d:1.224199 , loss_g:0.950746 , time:0.041954s, lr:0.000200\n",
- "Epoch:[120/200], step:[ 200/ 468], loss_d:1.240260 , loss_g:0.855890 , time:0.051784s, lr:0.000200\n",
- "Epoch:[120/200], step:[ 300/ 468], loss_d:1.266151 , loss_g:1.146879 , time:0.042392s, lr:0.000200\n",
- "Epoch:[120/200], step:[ 400/ 468], loss_d:1.257645 , loss_g:0.852158 , time:0.048375s, lr:0.000200\n",
- "time of epoch 121 is 36.18s\n",
- "Epoch:[121/200], step:[ 0/ 468], loss_d:1.219151 , loss_g:0.966171 , time:0.053296s, lr:0.000200\n",
- "Epoch:[121/200], step:[ 100/ 468], loss_d:1.321041 , loss_g:0.920692 , time:0.040022s, lr:0.000200\n",
- "Epoch:[121/200], step:[ 200/ 468], loss_d:1.247602 , loss_g:0.717073 , time:0.039237s, lr:0.000200\n",
- "Epoch:[121/200], step:[ 300/ 468], loss_d:1.248384 , loss_g:0.937853 , time:0.037790s, lr:0.000200\n",
- "Epoch:[121/200], step:[ 400/ 468], loss_d:1.209570 , loss_g:0.791589 , time:0.036499s, lr:0.000200\n",
- "time of epoch 122 is 34.59s\n",
- "Epoch:[122/200], step:[ 0/ 468], loss_d:1.236038 , loss_g:0.961080 , time:0.043517s, lr:0.000200\n",
- "Epoch:[122/200], step:[ 100/ 468], loss_d:1.239962 , loss_g:0.975202 , time:0.051728s, lr:0.000200\n",
- "Epoch:[122/200], step:[ 200/ 468], loss_d:1.227556 , loss_g:1.078973 , time:0.042627s, lr:0.000200\n",
- "Epoch:[122/200], step:[ 300/ 468], loss_d:1.315636 , loss_g:1.082853 , time:0.041076s, lr:0.000200\n",
- "Epoch:[122/200], step:[ 400/ 468], loss_d:1.246736 , loss_g:0.929578 , time:0.043762s, lr:0.000200\n",
- "time of epoch 123 is 35.11s\n",
- "Epoch:[123/200], step:[ 0/ 468], loss_d:1.231609 , loss_g:0.876290 , time:0.044724s, lr:0.000200\n",
- "Epoch:[123/200], step:[ 100/ 468], loss_d:1.168045 , loss_g:0.968915 , time:0.038062s, lr:0.000200\n",
- "Epoch:[123/200], step:[ 200/ 468], loss_d:1.207285 , loss_g:0.952756 , time:0.041762s, lr:0.000200\n",
- "Epoch:[123/200], step:[ 300/ 468], loss_d:1.297474 , loss_g:0.813684 , time:0.040283s, lr:0.000200\n",
- "Epoch:[123/200], step:[ 400/ 468], loss_d:1.200598 , loss_g:0.855109 , time:0.039354s, lr:0.000200\n",
- "time of epoch 124 is 36.65s\n",
- "Epoch:[124/200], step:[ 0/ 468], loss_d:1.233270 , loss_g:1.012869 , time:0.047932s, lr:0.000200\n",
- "Epoch:[124/200], step:[ 100/ 468], loss_d:1.231152 , loss_g:0.935236 , time:0.042354s, lr:0.000200\n",
- "Epoch:[124/200], step:[ 200/ 468], loss_d:1.324848 , loss_g:1.103574 , time:0.046100s, lr:0.000200\n",
- "Epoch:[124/200], step:[ 300/ 468], loss_d:1.243928 , loss_g:0.928588 , time:0.045043s, lr:0.000200\n",
- "Epoch:[124/200], step:[ 400/ 468], loss_d:1.297712 , loss_g:0.812811 , time:0.040345s, lr:0.000200\n",
- "time of epoch 125 is 34.17s\n",
- "Epoch:[125/200], step:[ 0/ 468], loss_d:1.298354 , loss_g:1.074371 , time:0.047265s, lr:0.000200\n",
- "Epoch:[125/200], step:[ 100/ 468], loss_d:1.192448 , loss_g:0.843773 , time:0.041822s, lr:0.000200\n",
- "Epoch:[125/200], step:[ 200/ 468], loss_d:1.378511 , loss_g:1.214076 , time:0.045200s, lr:0.000200\n",
- "Epoch:[125/200], step:[ 300/ 468], loss_d:1.280184 , loss_g:1.001797 , time:0.047696s, lr:0.000200\n",
- "Epoch:[125/200], step:[ 400/ 468], loss_d:1.369594 , loss_g:1.003022 , time:0.044084s, lr:0.000200\n",
- "time of epoch 126 is 35.73s\n",
- "Epoch:[126/200], step:[ 0/ 468], loss_d:1.249043 , loss_g:1.100413 , time:0.052885s, lr:0.000200\n",
- "Epoch:[126/200], step:[ 100/ 468], loss_d:1.290439 , loss_g:0.771846 , time:0.043131s, lr:0.000200\n",
- "Epoch:[126/200], step:[ 200/ 468], loss_d:1.303779 , loss_g:1.080373 , time:0.039379s, lr:0.000200\n",
- "Epoch:[126/200], step:[ 300/ 468], loss_d:1.259372 , loss_g:0.811913 , time:0.047549s, lr:0.000200\n",
- "Epoch:[126/200], step:[ 400/ 468], loss_d:1.259651 , loss_g:0.752175 , time:0.042367s, lr:0.000200\n",
- "time of epoch 127 is 34.70s\n",
- "Epoch:[127/200], step:[ 0/ 468], loss_d:1.216092 , loss_g:1.120060 , time:0.055629s, lr:0.000200\n",
- "Epoch:[127/200], step:[ 100/ 468], loss_d:1.270169 , loss_g:0.868980 , time:0.049590s, lr:0.000200\n",
- "Epoch:[127/200], step:[ 200/ 468], loss_d:1.237363 , loss_g:0.881967 , time:0.050152s, lr:0.000200\n",
- "Epoch:[127/200], step:[ 300/ 468], loss_d:1.188738 , loss_g:1.040956 , time:0.045134s, lr:0.000200\n",
- "Epoch:[127/200], step:[ 400/ 468], loss_d:1.239505 , loss_g:0.915287 , time:0.050848s, lr:0.000200\n",
- "time of epoch 128 is 37.49s\n",
- "Epoch:[128/200], step:[ 0/ 468], loss_d:1.251801 , loss_g:0.771124 , time:0.047905s, lr:0.000200\n",
- "Epoch:[128/200], step:[ 100/ 468], loss_d:1.278723 , loss_g:1.058657 , time:0.042116s, lr:0.000200\n",
- "Epoch:[128/200], step:[ 200/ 468], loss_d:1.285703 , loss_g:0.774826 , time:0.058672s, lr:0.000200\n",
- "Epoch:[128/200], step:[ 300/ 468], loss_d:1.237582 , loss_g:1.111778 , time:0.050733s, lr:0.000200\n",
- "Epoch:[128/200], step:[ 400/ 468], loss_d:1.190418 , loss_g:0.802273 , time:0.047387s, lr:0.000200\n",
- "time of epoch 129 is 37.73s\n",
- "Epoch:[129/200], step:[ 0/ 468], loss_d:1.230130 , loss_g:0.910067 , time:0.051656s, lr:0.000200\n",
- "Epoch:[129/200], step:[ 100/ 468], loss_d:1.250949 , loss_g:1.108891 , time:0.044065s, lr:0.000200\n",
- "Epoch:[129/200], step:[ 200/ 468], loss_d:1.180374 , loss_g:0.962172 , time:0.048027s, lr:0.000200\n",
- "Epoch:[129/200], step:[ 300/ 468], loss_d:1.166507 , loss_g:0.972092 , time:0.043529s, lr:0.000200\n",
- "Epoch:[129/200], step:[ 400/ 468], loss_d:1.241718 , loss_g:0.973474 , time:0.039280s, lr:0.000200\n",
- "time of epoch 130 is 35.39s\n",
- "Epoch:[130/200], step:[ 0/ 468], loss_d:1.237576 , loss_g:0.957496 , time:0.050475s, lr:0.000200\n",
- "Epoch:[130/200], step:[ 100/ 468], loss_d:1.272929 , loss_g:1.078616 , time:0.047593s, lr:0.000200\n",
- "Epoch:[130/200], step:[ 200/ 468], loss_d:1.279699 , loss_g:1.126004 , time:0.038760s, lr:0.000200\n",
- "Epoch:[130/200], step:[ 300/ 468], loss_d:1.253120 , loss_g:0.756736 , time:0.044957s, lr:0.000200\n",
- "Epoch:[130/200], step:[ 400/ 468], loss_d:1.265954 , loss_g:0.835062 , time:0.052487s, lr:0.000200\n",
- "time of epoch 131 is 35.92s\n",
- "Epoch:[131/200], step:[ 0/ 468], loss_d:1.199909 , loss_g:1.096966 , time:0.053551s, lr:0.000200\n",
- "Epoch:[131/200], step:[ 100/ 468], loss_d:1.227247 , loss_g:1.041866 , time:0.045922s, lr:0.000200\n",
- "Epoch:[131/200], step:[ 200/ 468], loss_d:1.313592 , loss_g:0.666782 , time:0.044803s, lr:0.000200\n",
- "Epoch:[131/200], step:[ 300/ 468], loss_d:1.248281 , loss_g:1.027408 , time:0.046066s, lr:0.000200\n",
- "Epoch:[131/200], step:[ 400/ 468], loss_d:1.236027 , loss_g:1.039880 , time:0.050180s, lr:0.000200\n",
- "time of epoch 132 is 37.00s\n",
- "Epoch:[132/200], step:[ 0/ 468], loss_d:1.219428 , loss_g:0.830245 , time:0.061098s, lr:0.000200\n",
- "Epoch:[132/200], step:[ 100/ 468], loss_d:1.240666 , loss_g:0.861235 , time:0.042396s, lr:0.000200\n",
- "Epoch:[132/200], step:[ 200/ 468], loss_d:1.249452 , loss_g:1.034500 , time:0.046122s, lr:0.000200\n",
- "Epoch:[132/200], step:[ 300/ 468], loss_d:1.219478 , loss_g:0.899734 , time:0.043537s, lr:0.000200\n",
- "Epoch:[132/200], step:[ 400/ 468], loss_d:1.326759 , loss_g:1.027639 , time:0.043309s, lr:0.000200\n",
- "time of epoch 133 is 35.64s\n",
- "Epoch:[133/200], step:[ 0/ 468], loss_d:1.288635 , loss_g:1.069440 , time:0.047987s, lr:0.000200\n",
- "Epoch:[133/200], step:[ 100/ 468], loss_d:1.238994 , loss_g:1.017625 , time:0.040841s, lr:0.000200\n",
- "Epoch:[133/200], step:[ 200/ 468], loss_d:1.225071 , loss_g:0.850641 , time:0.048242s, lr:0.000200\n",
- "Epoch:[133/200], step:[ 300/ 468], loss_d:1.238514 , loss_g:0.906290 , time:0.044202s, lr:0.000200\n",
- "Epoch:[133/200], step:[ 400/ 468], loss_d:1.174123 , loss_g:1.038534 , time:0.048240s, lr:0.000200\n",
- "time of epoch 134 is 34.53s\n",
- "Epoch:[134/200], step:[ 0/ 468], loss_d:1.215767 , loss_g:0.971510 , time:0.051183s, lr:0.000200\n",
- "Epoch:[134/200], step:[ 100/ 468], loss_d:1.287062 , loss_g:0.828384 , time:0.042149s, lr:0.000200\n",
- "Epoch:[134/200], step:[ 200/ 468], loss_d:1.250480 , loss_g:0.946067 , time:0.044558s, lr:0.000200\n",
- "Epoch:[134/200], step:[ 300/ 468], loss_d:1.271723 , loss_g:1.133352 , time:0.048002s, lr:0.000200\n",
- "Epoch:[134/200], step:[ 400/ 468], loss_d:1.240910 , loss_g:0.865673 , time:0.052469s, lr:0.000200\n",
- "time of epoch 135 is 36.09s\n",
- "Epoch:[135/200], step:[ 0/ 468], loss_d:1.186677 , loss_g:0.959959 , time:0.049916s, lr:0.000200\n",
- "Epoch:[135/200], step:[ 100/ 468], loss_d:1.239182 , loss_g:0.857179 , time:0.043276s, lr:0.000200\n",
- "Epoch:[135/200], step:[ 200/ 468], loss_d:1.223235 , loss_g:1.018876 , time:0.043041s, lr:0.000200\n",
- "Epoch:[135/200], step:[ 300/ 468], loss_d:1.239283 , loss_g:1.011850 , time:0.041442s, lr:0.000200\n",
- "Epoch:[135/200], step:[ 400/ 468], loss_d:1.236282 , loss_g:0.854093 , time:0.040757s, lr:0.000200\n",
- "time of epoch 136 is 32.01s\n",
- "Epoch:[136/200], step:[ 0/ 468], loss_d:1.204626 , loss_g:0.894870 , time:0.056207s, lr:0.000200\n",
- "Epoch:[136/200], step:[ 100/ 468], loss_d:1.216238 , loss_g:1.085996 , time:0.048250s, lr:0.000200\n",
- "Epoch:[136/200], step:[ 200/ 468], loss_d:1.199035 , loss_g:1.021832 , time:0.047195s, lr:0.000200\n",
- "Epoch:[136/200], step:[ 300/ 468], loss_d:1.266105 , loss_g:0.928631 , time:0.043134s, lr:0.000200\n",
- "Epoch:[136/200], step:[ 400/ 468], loss_d:1.202520 , loss_g:0.806209 , time:0.045631s, lr:0.000200\n",
- "time of epoch 137 is 35.41s\n",
- "Epoch:[137/200], step:[ 0/ 468], loss_d:1.342219 , loss_g:1.287664 , time:0.051517s, lr:0.000200\n",
- "Epoch:[137/200], step:[ 100/ 468], loss_d:1.265011 , loss_g:1.242670 , time:0.041192s, lr:0.000200\n",
- "Epoch:[137/200], step:[ 200/ 468], loss_d:1.227713 , loss_g:0.975574 , time:0.045488s, lr:0.000200\n",
- "Epoch:[137/200], step:[ 300/ 468], loss_d:1.221781 , loss_g:0.949308 , time:0.047062s, lr:0.000200\n",
- "Epoch:[137/200], step:[ 400/ 468], loss_d:1.289430 , loss_g:0.855573 , time:0.042515s, lr:0.000200\n",
- "time of epoch 138 is 34.25s\n",
- "Epoch:[138/200], step:[ 0/ 468], loss_d:1.252146 , loss_g:1.092927 , time:0.048329s, lr:0.000200\n",
- "Epoch:[138/200], step:[ 100/ 468], loss_d:1.324106 , loss_g:0.924327 , time:0.043616s, lr:0.000200\n",
- "Epoch:[138/200], step:[ 200/ 468], loss_d:1.193763 , loss_g:0.978442 , time:0.041951s, lr:0.000200\n",
- "Epoch:[138/200], step:[ 300/ 468], loss_d:1.218822 , loss_g:0.810233 , time:0.043603s, lr:0.000200\n",
- "Epoch:[138/200], step:[ 400/ 468], loss_d:1.273668 , loss_g:1.156853 , time:0.043699s, lr:0.000200\n",
- "time of epoch 139 is 34.37s\n",
- "Epoch:[139/200], step:[ 0/ 468], loss_d:1.289938 , loss_g:0.901528 , time:0.048920s, lr:0.000200\n",
- "Epoch:[139/200], step:[ 100/ 468], loss_d:1.245776 , loss_g:1.229541 , time:0.050046s, lr:0.000200\n",
- "Epoch:[139/200], step:[ 200/ 468], loss_d:1.231757 , loss_g:1.043111 , time:0.043995s, lr:0.000200\n",
- "Epoch:[139/200], step:[ 300/ 468], loss_d:1.254862 , loss_g:0.781832 , time:0.038852s, lr:0.000200\n",
- "Epoch:[139/200], step:[ 400/ 468], loss_d:1.282014 , loss_g:0.805559 , time:0.044610s, lr:0.000200\n",
- "time of epoch 140 is 35.74s\n",
- "Epoch:[140/200], step:[ 0/ 468], loss_d:1.228223 , loss_g:0.999424 , time:0.050335s, lr:0.000200\n",
- "Epoch:[140/200], step:[ 100/ 468], loss_d:1.230281 , loss_g:0.809730 , time:0.050109s, lr:0.000200\n",
- "Epoch:[140/200], step:[ 200/ 468], loss_d:1.317479 , loss_g:0.581595 , time:0.046570s, lr:0.000200\n",
- "Epoch:[140/200], step:[ 300/ 468], loss_d:1.263096 , loss_g:0.923749 , time:0.038997s, lr:0.000200\n",
- "Epoch:[140/200], step:[ 400/ 468], loss_d:1.231823 , loss_g:0.942184 , time:0.043436s, lr:0.000200\n",
- "time of epoch 141 is 35.80s\n",
- "Epoch:[141/200], step:[ 0/ 468], loss_d:1.312307 , loss_g:1.246901 , time:0.048033s, lr:0.000200\n",
- "Epoch:[141/200], step:[ 100/ 468], loss_d:1.280633 , loss_g:0.998498 , time:0.047358s, lr:0.000200\n",
- "Epoch:[141/200], step:[ 200/ 468], loss_d:1.251682 , loss_g:0.931941 , time:0.042737s, lr:0.000200\n",
- "Epoch:[141/200], step:[ 300/ 468], loss_d:1.207261 , loss_g:0.982106 , time:0.049536s, lr:0.000200\n",
- "Epoch:[141/200], step:[ 400/ 468], loss_d:1.264504 , loss_g:1.248677 , time:0.042446s, lr:0.000200\n",
- "time of epoch 142 is 34.89s\n",
- "Epoch:[142/200], step:[ 0/ 468], loss_d:1.231033 , loss_g:1.339029 , time:0.044511s, lr:0.000200\n",
- "Epoch:[142/200], step:[ 100/ 468], loss_d:1.230095 , loss_g:0.904688 , time:0.043046s, lr:0.000200\n",
- "Epoch:[142/200], step:[ 200/ 468], loss_d:1.276222 , loss_g:0.864175 , time:0.041712s, lr:0.000200\n",
- "Epoch:[142/200], step:[ 300/ 468], loss_d:1.233822 , loss_g:0.967283 , time:0.038140s, lr:0.000200\n",
- "Epoch:[142/200], step:[ 400/ 468], loss_d:1.283755 , loss_g:0.782747 , time:0.047657s, lr:0.000200\n",
- "time of epoch 143 is 33.33s\n",
- "Epoch:[143/200], step:[ 0/ 468], loss_d:1.236485 , loss_g:0.938999 , time:0.053652s, lr:0.000200\n",
- "Epoch:[143/200], step:[ 100/ 468], loss_d:1.214107 , loss_g:1.218673 , time:0.046750s, lr:0.000200\n",
- "Epoch:[143/200], step:[ 200/ 468], loss_d:1.231279 , loss_g:0.850708 , time:0.051629s, lr:0.000200\n",
- "Epoch:[143/200], step:[ 300/ 468], loss_d:1.258048 , loss_g:1.013894 , time:0.048475s, lr:0.000200\n",
- "Epoch:[143/200], step:[ 400/ 468], loss_d:1.260021 , loss_g:0.728290 , time:0.043300s, lr:0.000200\n",
- "time of epoch 144 is 35.32s\n",
- "Epoch:[144/200], step:[ 0/ 468], loss_d:1.214455 , loss_g:1.170789 , time:0.049644s, lr:0.000200\n",
- "Epoch:[144/200], step:[ 100/ 468], loss_d:1.238240 , loss_g:0.881131 , time:0.051033s, lr:0.000200\n",
- "Epoch:[144/200], step:[ 200/ 468], loss_d:1.245214 , loss_g:0.827520 , time:0.052569s, lr:0.000200\n",
- "Epoch:[144/200], step:[ 300/ 468], loss_d:1.157818 , loss_g:1.211782 , time:0.042830s, lr:0.000200\n",
- "Epoch:[144/200], step:[ 400/ 468], loss_d:1.237574 , loss_g:0.956799 , time:0.043697s, lr:0.000200\n",
- "time of epoch 145 is 36.59s\n",
- "Epoch:[145/200], step:[ 0/ 468], loss_d:1.214580 , loss_g:1.078360 , time:0.049105s, lr:0.000200\n",
- "Epoch:[145/200], step:[ 100/ 468], loss_d:1.290705 , loss_g:1.140330 , time:0.048227s, lr:0.000200\n",
- "Epoch:[145/200], step:[ 200/ 468], loss_d:1.267706 , loss_g:1.195359 , time:0.052533s, lr:0.000200\n",
- "Epoch:[145/200], step:[ 300/ 468], loss_d:1.193339 , loss_g:0.985734 , time:0.046947s, lr:0.000200\n",
- "Epoch:[145/200], step:[ 400/ 468], loss_d:1.246293 , loss_g:0.992945 , time:0.048728s, lr:0.000200\n",
- "time of epoch 146 is 35.62s\n",
- "Epoch:[146/200], step:[ 0/ 468], loss_d:1.278365 , loss_g:1.151565 , time:0.050347s, lr:0.000200\n",
- "Epoch:[146/200], step:[ 100/ 468], loss_d:1.220055 , loss_g:0.934415 , time:0.048027s, lr:0.000200\n",
- "Epoch:[146/200], step:[ 200/ 468], loss_d:1.221439 , loss_g:1.111594 , time:0.041240s, lr:0.000200\n",
- "Epoch:[146/200], step:[ 300/ 468], loss_d:1.243252 , loss_g:0.885589 , time:0.041939s, lr:0.000200\n",
- "Epoch:[146/200], step:[ 400/ 468], loss_d:1.217750 , loss_g:0.941551 , time:0.042511s, lr:0.000200\n",
- "time of epoch 147 is 33.15s\n",
- "Epoch:[147/200], step:[ 0/ 468], loss_d:1.253747 , loss_g:0.979363 , time:0.049524s, lr:0.000200\n",
- "Epoch:[147/200], step:[ 100/ 468], loss_d:1.270115 , loss_g:0.886575 , time:0.041592s, lr:0.000200\n",
- "Epoch:[147/200], step:[ 200/ 468], loss_d:1.334394 , loss_g:1.370667 , time:0.044621s, lr:0.000200\n",
- "Epoch:[147/200], step:[ 300/ 468], loss_d:1.202730 , loss_g:0.900760 , time:0.043717s, lr:0.000200\n",
- "Epoch:[147/200], step:[ 400/ 468], loss_d:1.177239 , loss_g:1.229463 , time:0.042015s, lr:0.000200\n",
- "time of epoch 148 is 32.63s\n",
- "Epoch:[148/200], step:[ 0/ 468], loss_d:1.191921 , loss_g:1.024941 , time:0.044980s, lr:0.000200\n",
- "Epoch:[148/200], step:[ 100/ 468], loss_d:1.240819 , loss_g:1.084795 , time:0.047200s, lr:0.000200\n",
- "Epoch:[148/200], step:[ 200/ 468], loss_d:1.133924 , loss_g:1.059991 , time:0.048905s, lr:0.000200\n",
- "Epoch:[148/200], step:[ 300/ 468], loss_d:1.248736 , loss_g:1.160723 , time:0.045889s, lr:0.000200\n",
- "Epoch:[148/200], step:[ 400/ 468], loss_d:1.207293 , loss_g:0.920350 , time:0.041910s, lr:0.000200\n",
- "time of epoch 149 is 35.40s\n",
- "Epoch:[149/200], step:[ 0/ 468], loss_d:1.178374 , loss_g:1.090297 , time:0.059093s, lr:0.000200\n",
- "Epoch:[149/200], step:[ 100/ 468], loss_d:1.174750 , loss_g:1.050161 , time:0.044784s, lr:0.000200\n",
- "Epoch:[149/200], step:[ 200/ 468], loss_d:1.239224 , loss_g:0.984491 , time:0.044765s, lr:0.000200\n",
- "Epoch:[149/200], step:[ 300/ 468], loss_d:1.260408 , loss_g:0.937319 , time:0.042257s, lr:0.000200\n",
- "Epoch:[149/200], step:[ 400/ 468], loss_d:1.269423 , loss_g:1.052568 , time:0.044614s, lr:0.000200\n",
- "time of epoch 150 is 33.14s\n",
- "Epoch:[150/200], step:[ 0/ 468], loss_d:1.170594 , loss_g:0.991195 , time:0.048889s, lr:0.000200\n",
- "Epoch:[150/200], step:[ 100/ 468], loss_d:1.178068 , loss_g:0.941558 , time:0.041894s, lr:0.000200\n",
- "Epoch:[150/200], step:[ 200/ 468], loss_d:1.158231 , loss_g:1.014776 , time:0.044062s, lr:0.000200\n",
- "Epoch:[150/200], step:[ 300/ 468], loss_d:1.232818 , loss_g:1.034113 , time:0.048266s, lr:0.000200\n",
- "Epoch:[150/200], step:[ 400/ 468], loss_d:1.153843 , loss_g:0.956440 , time:0.049545s, lr:0.000200\n",
- "time of epoch 151 is 35.61s\n",
- "Epoch:[151/200], step:[ 0/ 468], loss_d:1.280484 , loss_g:1.074107 , time:0.049894s, lr:0.000200\n",
- "Epoch:[151/200], step:[ 100/ 468], loss_d:1.233203 , loss_g:0.978087 , time:0.040923s, lr:0.000200\n",
- "Epoch:[151/200], step:[ 200/ 468], loss_d:1.219635 , loss_g:0.792682 , time:0.041144s, lr:0.000200\n",
- "Epoch:[151/200], step:[ 300/ 468], loss_d:1.348707 , loss_g:1.156421 , time:0.043480s, lr:0.000200\n",
- "Epoch:[151/200], step:[ 400/ 468], loss_d:1.190515 , loss_g:0.937349 , time:0.041330s, lr:0.000200\n",
- "time of epoch 152 is 33.80s\n",
- "Epoch:[152/200], step:[ 0/ 468], loss_d:1.229221 , loss_g:1.012020 , time:0.050176s, lr:0.000200\n",
- "Epoch:[152/200], step:[ 100/ 468], loss_d:1.206731 , loss_g:0.860064 , time:0.051631s, lr:0.000200\n",
- "Epoch:[152/200], step:[ 200/ 468], loss_d:1.240012 , loss_g:1.180171 , time:0.044624s, lr:0.000200\n",
- "Epoch:[152/200], step:[ 300/ 468], loss_d:1.175616 , loss_g:1.050436 , time:0.043550s, lr:0.000200\n",
- "Epoch:[152/200], step:[ 400/ 468], loss_d:1.279641 , loss_g:0.961793 , time:0.045515s, lr:0.000200\n",
- "time of epoch 153 is 37.29s\n",
- "Epoch:[153/200], step:[ 0/ 468], loss_d:1.273757 , loss_g:0.892181 , time:0.045317s, lr:0.000200\n",
- "Epoch:[153/200], step:[ 100/ 468], loss_d:1.273622 , loss_g:0.938109 , time:0.045328s, lr:0.000200\n",
- "Epoch:[153/200], step:[ 200/ 468], loss_d:1.200373 , loss_g:0.951342 , time:0.045191s, lr:0.000200\n",
- "Epoch:[153/200], step:[ 300/ 468], loss_d:1.260965 , loss_g:1.044254 , time:0.043867s, lr:0.000200\n",
- "Epoch:[153/200], step:[ 400/ 468], loss_d:1.221386 , loss_g:1.017935 , time:0.044915s, lr:0.000200\n",
- "time of epoch 154 is 34.92s\n",
- "Epoch:[154/200], step:[ 0/ 468], loss_d:1.236784 , loss_g:0.841637 , time:0.046248s, lr:0.000200\n",
- "Epoch:[154/200], step:[ 100/ 468], loss_d:1.296975 , loss_g:1.137346 , time:0.042837s, lr:0.000200\n",
- "Epoch:[154/200], step:[ 200/ 468], loss_d:1.236956 , loss_g:1.016962 , time:0.047586s, lr:0.000200\n",
- "Epoch:[154/200], step:[ 300/ 468], loss_d:1.432515 , loss_g:0.676165 , time:0.049176s, lr:0.000200\n",
- "Epoch:[154/200], step:[ 400/ 468], loss_d:1.208143 , loss_g:1.026819 , time:0.049749s, lr:0.000200\n",
- "time of epoch 155 is 36.94s\n",
- "Epoch:[155/200], step:[ 0/ 468], loss_d:1.252760 , loss_g:0.912173 , time:0.058003s, lr:0.000200\n",
- "Epoch:[155/200], step:[ 100/ 468], loss_d:1.227688 , loss_g:0.998305 , time:0.050207s, lr:0.000200\n",
- "Epoch:[155/200], step:[ 200/ 468], loss_d:1.204697 , loss_g:0.871638 , time:0.046391s, lr:0.000200\n",
- "Epoch:[155/200], step:[ 300/ 468], loss_d:1.271309 , loss_g:0.929498 , time:0.047021s, lr:0.000200\n",
- "Epoch:[155/200], step:[ 400/ 468], loss_d:1.198491 , loss_g:0.910898 , time:0.044628s, lr:0.000200\n",
- "time of epoch 156 is 34.98s\n",
- "Epoch:[156/200], step:[ 0/ 468], loss_d:1.249652 , loss_g:0.935166 , time:0.052474s, lr:0.000200\n",
- "Epoch:[156/200], step:[ 100/ 468], loss_d:1.215906 , loss_g:1.001854 , time:0.038426s, lr:0.000200\n",
- "Epoch:[156/200], step:[ 200/ 468], loss_d:1.202658 , loss_g:0.850606 , time:0.047502s, lr:0.000200\n",
- "Epoch:[156/200], step:[ 300/ 468], loss_d:1.252039 , loss_g:0.752556 , time:0.045426s, lr:0.000200\n",
- "Epoch:[156/200], step:[ 400/ 468], loss_d:1.266144 , loss_g:0.874625 , time:0.045419s, lr:0.000200\n",
- "time of epoch 157 is 34.95s\n",
- "Epoch:[157/200], step:[ 0/ 468], loss_d:1.202284 , loss_g:0.941207 , time:0.047721s, lr:0.000200\n",
- "Epoch:[157/200], step:[ 100/ 468], loss_d:1.249295 , loss_g:1.107733 , time:0.044802s, lr:0.000200\n",
- "Epoch:[157/200], step:[ 200/ 468], loss_d:1.277378 , loss_g:1.010626 , time:0.044204s, lr:0.000200\n",
- "Epoch:[157/200], step:[ 300/ 468], loss_d:1.238174 , loss_g:1.010879 , time:0.048519s, lr:0.000200\n",
- "Epoch:[157/200], step:[ 400/ 468], loss_d:1.217827 , loss_g:1.080772 , time:0.050322s, lr:0.000200\n",
- "time of epoch 158 is 36.80s\n",
- "Epoch:[158/200], step:[ 0/ 468], loss_d:1.196756 , loss_g:1.392768 , time:0.060238s, lr:0.000200\n",
- "Epoch:[158/200], step:[ 100/ 468], loss_d:1.217244 , loss_g:1.058053 , time:0.048495s, lr:0.000200\n",
- "Epoch:[158/200], step:[ 200/ 468], loss_d:1.195158 , loss_g:1.239378 , time:0.047403s, lr:0.000200\n",
- "Epoch:[158/200], step:[ 300/ 468], loss_d:1.136801 , loss_g:0.934092 , time:0.050702s, lr:0.000200\n",
- "Epoch:[158/200], step:[ 400/ 468], loss_d:1.250435 , loss_g:1.012433 , time:0.048983s, lr:0.000200\n",
- "time of epoch 159 is 36.98s\n",
- "Epoch:[159/200], step:[ 0/ 468], loss_d:1.340272 , loss_g:0.802437 , time:0.043710s, lr:0.000200\n",
- "Epoch:[159/200], step:[ 100/ 468], loss_d:1.267144 , loss_g:0.959948 , time:0.044165s, lr:0.000200\n",
- "Epoch:[159/200], step:[ 200/ 468], loss_d:1.213295 , loss_g:1.074334 , time:0.040443s, lr:0.000200\n",
- "Epoch:[159/200], step:[ 300/ 468], loss_d:1.207185 , loss_g:0.931791 , time:0.043606s, lr:0.000200\n",
- "Epoch:[159/200], step:[ 400/ 468], loss_d:1.250235 , loss_g:0.929704 , time:0.045086s, lr:0.000200\n",
- "time of epoch 160 is 34.73s\n",
- "Epoch:[160/200], step:[ 0/ 468], loss_d:1.267033 , loss_g:1.028349 , time:0.055836s, lr:0.000200\n",
- "Epoch:[160/200], step:[ 100/ 468], loss_d:1.306480 , loss_g:0.963357 , time:0.047053s, lr:0.000200\n",
- "Epoch:[160/200], step:[ 200/ 468], loss_d:1.188892 , loss_g:0.955224 , time:0.038865s, lr:0.000200\n",
- "Epoch:[160/200], step:[ 300/ 468], loss_d:1.236253 , loss_g:0.878152 , time:0.047959s, lr:0.000200\n",
- "Epoch:[160/200], step:[ 400/ 468], loss_d:1.239311 , loss_g:1.179810 , time:0.044868s, lr:0.000200\n",
- "time of epoch 161 is 34.68s\n",
- "Epoch:[161/200], step:[ 0/ 468], loss_d:1.244338 , loss_g:0.965392 , time:0.052398s, lr:0.000200\n",
- "Epoch:[161/200], step:[ 100/ 468], loss_d:1.191032 , loss_g:0.994752 , time:0.048003s, lr:0.000200\n",
- "Epoch:[161/200], step:[ 200/ 468], loss_d:1.183452 , loss_g:1.096201 , time:0.047343s, lr:0.000200\n",
- "Epoch:[161/200], step:[ 300/ 468], loss_d:1.222740 , loss_g:0.860494 , time:0.045638s, lr:0.000200\n",
- "Epoch:[161/200], step:[ 400/ 468], loss_d:1.238803 , loss_g:1.017025 , time:0.052061s, lr:0.000200\n",
- "time of epoch 162 is 35.54s\n",
- "Epoch:[162/200], step:[ 0/ 468], loss_d:1.306711 , loss_g:0.693623 , time:0.048806s, lr:0.000200\n",
- "Epoch:[162/200], step:[ 100/ 468], loss_d:1.378708 , loss_g:0.732352 , time:0.038485s, lr:0.000200\n",
- "Epoch:[162/200], step:[ 200/ 468], loss_d:1.297013 , loss_g:1.237053 , time:0.049946s, lr:0.000200\n",
- "Epoch:[162/200], step:[ 300/ 468], loss_d:1.185789 , loss_g:0.883647 , time:0.045509s, lr:0.000200\n",
- "Epoch:[162/200], step:[ 400/ 468], loss_d:1.325860 , loss_g:0.777724 , time:0.044852s, lr:0.000200\n",
- "time of epoch 163 is 33.93s\n",
- "Epoch:[163/200], step:[ 0/ 468], loss_d:1.261062 , loss_g:0.933405 , time:0.047442s, lr:0.000200\n",
- "Epoch:[163/200], step:[ 100/ 468], loss_d:1.243260 , loss_g:1.197348 , time:0.039491s, lr:0.000200\n",
- "Epoch:[163/200], step:[ 200/ 468], loss_d:1.319026 , loss_g:1.180923 , time:0.041142s, lr:0.000200\n",
- "Epoch:[163/200], step:[ 300/ 468], loss_d:1.199208 , loss_g:0.940118 , time:0.048506s, lr:0.000200\n",
- "Epoch:[163/200], step:[ 400/ 468], loss_d:1.193522 , loss_g:1.162683 , time:0.042281s, lr:0.000200\n",
- "time of epoch 164 is 35.18s\n",
- "Epoch:[164/200], step:[ 0/ 468], loss_d:1.193270 , loss_g:1.048745 , time:0.050211s, lr:0.000200\n",
- "Epoch:[164/200], step:[ 100/ 468], loss_d:1.203523 , loss_g:0.989984 , time:0.045682s, lr:0.000200\n",
- "Epoch:[164/200], step:[ 200/ 468], loss_d:1.228045 , loss_g:1.060421 , time:0.042259s, lr:0.000200\n",
- "Epoch:[164/200], step:[ 300/ 468], loss_d:1.230802 , loss_g:1.032586 , time:0.046835s, lr:0.000200\n",
- "Epoch:[164/200], step:[ 400/ 468], loss_d:1.220490 , loss_g:1.023786 , time:0.050582s, lr:0.000200\n",
- "time of epoch 165 is 33.19s\n",
- "Epoch:[165/200], step:[ 0/ 468], loss_d:1.197300 , loss_g:0.819975 , time:0.049417s, lr:0.000200\n",
- "Epoch:[165/200], step:[ 100/ 468], loss_d:1.141800 , loss_g:1.130530 , time:0.046407s, lr:0.000200\n",
- "Epoch:[165/200], step:[ 200/ 468], loss_d:1.236614 , loss_g:1.113174 , time:0.048641s, lr:0.000200\n",
- "Epoch:[165/200], step:[ 300/ 468], loss_d:1.201457 , loss_g:0.878331 , time:0.044142s, lr:0.000200\n",
- "Epoch:[165/200], step:[ 400/ 468], loss_d:1.331488 , loss_g:0.792865 , time:0.043573s, lr:0.000200\n",
- "time of epoch 166 is 33.31s\n",
- "Epoch:[166/200], step:[ 0/ 468], loss_d:1.306885 , loss_g:0.819407 , time:0.054159s, lr:0.000200\n",
- "Epoch:[166/200], step:[ 100/ 468], loss_d:1.289713 , loss_g:0.991035 , time:0.045716s, lr:0.000200\n",
- "Epoch:[166/200], step:[ 200/ 468], loss_d:1.272629 , loss_g:1.228504 , time:0.046092s, lr:0.000200\n",
- "Epoch:[166/200], step:[ 300/ 468], loss_d:1.208199 , loss_g:1.228082 , time:0.047422s, lr:0.000200\n",
- "Epoch:[166/200], step:[ 400/ 468], loss_d:1.172051 , loss_g:1.045154 , time:0.046528s, lr:0.000200\n",
- "time of epoch 167 is 35.10s\n",
- "Epoch:[167/200], step:[ 0/ 468], loss_d:1.317217 , loss_g:0.852527 , time:0.047978s, lr:0.000200\n",
- "Epoch:[167/200], step:[ 100/ 468], loss_d:1.249088 , loss_g:0.826664 , time:0.041497s, lr:0.000200\n",
- "Epoch:[167/200], step:[ 200/ 468], loss_d:1.216322 , loss_g:1.087818 , time:0.044692s, lr:0.000200\n",
- "Epoch:[167/200], step:[ 300/ 468], loss_d:1.241948 , loss_g:0.954411 , time:0.046008s, lr:0.000200\n",
- "Epoch:[167/200], step:[ 400/ 468], loss_d:1.318762 , loss_g:0.829006 , time:0.051752s, lr:0.000200\n",
- "time of epoch 168 is 35.92s\n",
- "Epoch:[168/200], step:[ 0/ 468], loss_d:1.194308 , loss_g:0.783405 , time:0.052012s, lr:0.000200\n",
- "Epoch:[168/200], step:[ 100/ 468], loss_d:1.210498 , loss_g:1.081323 , time:0.042148s, lr:0.000200\n",
- "Epoch:[168/200], step:[ 200/ 468], loss_d:1.369564 , loss_g:1.191396 , time:0.040777s, lr:0.000200\n",
- "Epoch:[168/200], step:[ 300/ 468], loss_d:1.204381 , loss_g:0.978527 , time:0.043683s, lr:0.000200\n",
- "Epoch:[168/200], step:[ 400/ 468], loss_d:1.292288 , loss_g:1.043221 , time:0.043641s, lr:0.000200\n",
- "time of epoch 169 is 32.17s\n",
- "Epoch:[169/200], step:[ 0/ 468], loss_d:1.168257 , loss_g:1.011050 , time:0.046923s, lr:0.000200\n",
- "Epoch:[169/200], step:[ 100/ 468], loss_d:1.225904 , loss_g:1.143820 , time:0.046160s, lr:0.000200\n",
- "Epoch:[169/200], step:[ 200/ 468], loss_d:1.255177 , loss_g:0.849501 , time:0.045283s, lr:0.000200\n",
- "Epoch:[169/200], step:[ 300/ 468], loss_d:1.220416 , loss_g:0.875058 , time:0.044675s, lr:0.000200\n",
- "Epoch:[169/200], step:[ 400/ 468], loss_d:1.218172 , loss_g:0.919142 , time:0.043473s, lr:0.000200\n",
- "time of epoch 170 is 34.88s\n",
- "Epoch:[170/200], step:[ 0/ 468], loss_d:1.241298 , loss_g:1.284683 , time:0.050715s, lr:0.000200\n",
- "Epoch:[170/200], step:[ 100/ 468], loss_d:1.251287 , loss_g:0.799930 , time:0.044601s, lr:0.000200\n",
- "Epoch:[170/200], step:[ 200/ 468], loss_d:1.226526 , loss_g:1.038939 , time:0.042885s, lr:0.000200\n",
- "Epoch:[170/200], step:[ 300/ 468], loss_d:1.189696 , loss_g:0.976870 , time:0.040921s, lr:0.000200\n",
- "Epoch:[170/200], step:[ 400/ 468], loss_d:1.246282 , loss_g:1.104314 , time:0.044547s, lr:0.000200\n",
- "time of epoch 171 is 34.16s\n",
- "Epoch:[171/200], step:[ 0/ 468], loss_d:1.224246 , loss_g:0.951312 , time:0.051148s, lr:0.000200\n",
- "Epoch:[171/200], step:[ 100/ 468], loss_d:1.258456 , loss_g:1.062141 , time:0.048251s, lr:0.000200\n",
- "Epoch:[171/200], step:[ 200/ 468], loss_d:1.219401 , loss_g:0.781191 , time:0.044288s, lr:0.000200\n",
- "Epoch:[171/200], step:[ 300/ 468], loss_d:1.261454 , loss_g:1.051230 , time:0.042094s, lr:0.000200\n",
- "Epoch:[171/200], step:[ 400/ 468], loss_d:1.244421 , loss_g:1.064613 , time:0.044860s, lr:0.000200\n",
- "time of epoch 172 is 33.27s\n",
- "Epoch:[172/200], step:[ 0/ 468], loss_d:1.278136 , loss_g:1.060717 , time:0.051893s, lr:0.000200\n",
- "Epoch:[172/200], step:[ 100/ 468], loss_d:1.144892 , loss_g:0.936683 , time:0.042638s, lr:0.000200\n",
- "Epoch:[172/200], step:[ 200/ 468], loss_d:1.156648 , loss_g:0.966154 , time:0.042105s, lr:0.000200\n",
- "Epoch:[172/200], step:[ 300/ 468], loss_d:1.200349 , loss_g:1.036019 , time:0.046842s, lr:0.000200\n",
- "Epoch:[172/200], step:[ 400/ 468], loss_d:1.211750 , loss_g:0.924513 , time:0.046779s, lr:0.000200\n",
- "time of epoch 173 is 34.42s\n",
- "Epoch:[173/200], step:[ 0/ 468], loss_d:1.177241 , loss_g:0.980363 , time:0.054743s, lr:0.000200\n",
- "Epoch:[173/200], step:[ 100/ 468], loss_d:1.215636 , loss_g:1.240232 , time:0.046565s, lr:0.000200\n",
- "Epoch:[173/200], step:[ 200/ 468], loss_d:1.164805 , loss_g:1.097504 , time:0.042699s, lr:0.000200\n",
- "Epoch:[173/200], step:[ 300/ 468], loss_d:1.261997 , loss_g:0.857288 , time:0.046725s, lr:0.000200\n",
- "Epoch:[173/200], step:[ 400/ 468], loss_d:1.307989 , loss_g:0.924246 , time:0.042768s, lr:0.000200\n",
- "time of epoch 174 is 34.43s\n",
- "Epoch:[174/200], step:[ 0/ 468], loss_d:1.168073 , loss_g:1.153193 , time:0.048002s, lr:0.000200\n",
- "Epoch:[174/200], step:[ 100/ 468], loss_d:1.234723 , loss_g:1.106092 , time:0.048643s, lr:0.000200\n",
- "Epoch:[174/200], step:[ 200/ 468], loss_d:1.218813 , loss_g:1.282322 , time:0.048120s, lr:0.000200\n",
- "Epoch:[174/200], step:[ 300/ 468], loss_d:1.239144 , loss_g:0.861288 , time:0.048877s, lr:0.000200\n",
- "Epoch:[174/200], step:[ 400/ 468], loss_d:1.164380 , loss_g:1.004864 , time:0.050008s, lr:0.000200\n",
- "time of epoch 175 is 36.72s\n",
- "Epoch:[175/200], step:[ 0/ 468], loss_d:1.259525 , loss_g:0.953751 , time:0.049259s, lr:0.000200\n",
- "Epoch:[175/200], step:[ 100/ 468], loss_d:1.179477 , loss_g:1.022547 , time:0.045414s, lr:0.000200\n",
- "Epoch:[175/200], step:[ 200/ 468], loss_d:1.263935 , loss_g:1.076475 , time:0.046725s, lr:0.000200\n",
- "Epoch:[175/200], step:[ 300/ 468], loss_d:1.260028 , loss_g:0.869681 , time:0.043782s, lr:0.000200\n",
- "Epoch:[175/200], step:[ 400/ 468], loss_d:1.286478 , loss_g:1.306736 , time:0.042404s, lr:0.000200\n",
- "time of epoch 176 is 35.29s\n",
- "Epoch:[176/200], step:[ 0/ 468], loss_d:1.303428 , loss_g:0.855975 , time:0.053799s, lr:0.000200\n",
- "Epoch:[176/200], step:[ 100/ 468], loss_d:1.211591 , loss_g:0.857514 , time:0.046750s, lr:0.000200\n",
- "Epoch:[176/200], step:[ 200/ 468], loss_d:1.303570 , loss_g:1.119506 , time:0.044973s, lr:0.000200\n",
- "Epoch:[176/200], step:[ 300/ 468], loss_d:1.285334 , loss_g:1.069412 , time:0.045181s, lr:0.000200\n",
- "Epoch:[176/200], step:[ 400/ 468], loss_d:1.217211 , loss_g:1.000850 , time:0.048740s, lr:0.000200\n",
- "time of epoch 177 is 35.01s\n",
- "Epoch:[177/200], step:[ 0/ 468], loss_d:1.163360 , loss_g:1.038829 , time:0.049220s, lr:0.000200\n",
- "Epoch:[177/200], step:[ 100/ 468], loss_d:1.263352 , loss_g:1.033413 , time:0.050307s, lr:0.000200\n",
- "Epoch:[177/200], step:[ 200/ 468], loss_d:1.191785 , loss_g:1.079380 , time:0.049384s, lr:0.000200\n",
- "Epoch:[177/200], step:[ 300/ 468], loss_d:1.249770 , loss_g:1.088413 , time:0.050026s, lr:0.000200\n",
- "Epoch:[177/200], step:[ 400/ 468], loss_d:1.220351 , loss_g:0.886867 , time:0.042614s, lr:0.000200\n",
- "time of epoch 178 is 35.48s\n",
- "Epoch:[178/200], step:[ 0/ 468], loss_d:1.195096 , loss_g:0.987785 , time:0.051629s, lr:0.000200\n",
- "Epoch:[178/200], step:[ 100/ 468], loss_d:1.266780 , loss_g:1.301589 , time:0.043558s, lr:0.000200\n",
- "Epoch:[178/200], step:[ 200/ 468], loss_d:1.261156 , loss_g:0.924103 , time:0.044296s, lr:0.000200\n",
- "Epoch:[178/200], step:[ 300/ 468], loss_d:1.300958 , loss_g:1.146890 , time:0.052032s, lr:0.000200\n",
- "Epoch:[178/200], step:[ 400/ 468], loss_d:1.156795 , loss_g:0.903449 , time:0.046894s, lr:0.000200\n",
- "time of epoch 179 is 37.72s\n",
- "Epoch:[179/200], step:[ 0/ 468], loss_d:1.098413 , loss_g:1.013364 , time:0.051289s, lr:0.000200\n",
- "Epoch:[179/200], step:[ 100/ 468], loss_d:1.276092 , loss_g:0.827745 , time:0.052877s, lr:0.000200\n",
- "Epoch:[179/200], step:[ 200/ 468], loss_d:1.234274 , loss_g:0.820050 , time:0.042670s, lr:0.000200\n",
- "Epoch:[179/200], step:[ 300/ 468], loss_d:1.245669 , loss_g:0.817511 , time:0.044519s, lr:0.000200\n",
- "Epoch:[179/200], step:[ 400/ 468], loss_d:1.211035 , loss_g:0.997647 , time:0.041989s, lr:0.000200\n",
- "time of epoch 180 is 32.41s\n",
- "Epoch:[180/200], step:[ 0/ 468], loss_d:1.252230 , loss_g:0.906906 , time:0.055448s, lr:0.000200\n",
- "Epoch:[180/200], step:[ 100/ 468], loss_d:1.203182 , loss_g:1.064631 , time:0.051734s, lr:0.000200\n",
- "Epoch:[180/200], step:[ 200/ 468], loss_d:1.268211 , loss_g:0.928888 , time:0.050325s, lr:0.000200\n",
- "Epoch:[180/200], step:[ 300/ 468], loss_d:1.216875 , loss_g:0.972128 , time:0.040000s, lr:0.000200\n",
- "Epoch:[180/200], step:[ 400/ 468], loss_d:1.138947 , loss_g:1.017994 , time:0.042363s, lr:0.000200\n",
- "time of epoch 181 is 35.05s\n",
- "Epoch:[181/200], step:[ 0/ 468], loss_d:1.201890 , loss_g:1.253512 , time:0.048703s, lr:0.000200\n",
- "Epoch:[181/200], step:[ 100/ 468], loss_d:1.221572 , loss_g:1.084337 , time:0.048046s, lr:0.000200\n",
- "Epoch:[181/200], step:[ 200/ 468], loss_d:1.278651 , loss_g:1.096883 , time:0.051671s, lr:0.000200\n",
- "Epoch:[181/200], step:[ 300/ 468], loss_d:1.250518 , loss_g:0.937740 , time:0.041773s, lr:0.000200\n",
- "Epoch:[181/200], step:[ 400/ 468], loss_d:1.182371 , loss_g:1.078604 , time:0.038210s, lr:0.000200\n",
- "time of epoch 182 is 33.72s\n",
- "Epoch:[182/200], step:[ 0/ 468], loss_d:1.220909 , loss_g:1.277611 , time:0.044699s, lr:0.000200\n",
- "Epoch:[182/200], step:[ 100/ 468], loss_d:1.226709 , loss_g:0.913745 , time:0.044920s, lr:0.000200\n",
- "Epoch:[182/200], step:[ 200/ 468], loss_d:1.199324 , loss_g:0.951796 , time:0.046564s, lr:0.000200\n",
- "Epoch:[182/200], step:[ 300/ 468], loss_d:1.181819 , loss_g:1.012426 , time:0.045454s, lr:0.000200\n",
- "Epoch:[182/200], step:[ 400/ 468], loss_d:1.226393 , loss_g:1.050092 , time:0.045428s, lr:0.000200\n",
- "time of epoch 183 is 35.29s\n",
- "Epoch:[183/200], step:[ 0/ 468], loss_d:1.205263 , loss_g:1.052972 , time:0.058037s, lr:0.000200\n",
- "Epoch:[183/200], step:[ 100/ 468], loss_d:1.168257 , loss_g:1.063699 , time:0.044908s, lr:0.000200\n",
- "Epoch:[183/200], step:[ 200/ 468], loss_d:1.225259 , loss_g:1.049176 , time:0.043375s, lr:0.000200\n",
- "Epoch:[183/200], step:[ 300/ 468], loss_d:1.213476 , loss_g:0.993739 , time:0.049268s, lr:0.000200\n",
- "Epoch:[183/200], step:[ 400/ 468], loss_d:1.224397 , loss_g:1.123203 , time:0.050683s, lr:0.000200\n",
- "time of epoch 184 is 35.30s\n",
- "Epoch:[184/200], step:[ 0/ 468], loss_d:1.235125 , loss_g:1.059956 , time:0.048866s, lr:0.000200\n",
- "Epoch:[184/200], step:[ 100/ 468], loss_d:1.166338 , loss_g:0.822342 , time:0.046082s, lr:0.000200\n",
- "Epoch:[184/200], step:[ 200/ 468], loss_d:1.272878 , loss_g:1.047076 , time:0.043800s, lr:0.000200\n",
- "Epoch:[184/200], step:[ 300/ 468], loss_d:1.147182 , loss_g:1.057525 , time:0.045788s, lr:0.000200\n",
- "Epoch:[184/200], step:[ 400/ 468], loss_d:1.206162 , loss_g:0.868631 , time:0.044592s, lr:0.000200\n",
- "time of epoch 185 is 36.81s\n",
- "Epoch:[185/200], step:[ 0/ 468], loss_d:1.223336 , loss_g:0.858114 , time:0.050555s, lr:0.000200\n",
- "Epoch:[185/200], step:[ 100/ 468], loss_d:1.222463 , loss_g:1.204376 , time:0.040848s, lr:0.000200\n",
- "Epoch:[185/200], step:[ 200/ 468], loss_d:1.205641 , loss_g:1.048867 , time:0.040236s, lr:0.000200\n",
- "Epoch:[185/200], step:[ 300/ 468], loss_d:1.187565 , loss_g:1.099094 , time:0.045253s, lr:0.000200\n",
- "Epoch:[185/200], step:[ 400/ 468], loss_d:1.225134 , loss_g:0.900765 , time:0.045837s, lr:0.000200\n",
- "time of epoch 186 is 33.74s\n",
- "Epoch:[186/200], step:[ 0/ 468], loss_d:1.269069 , loss_g:1.000440 , time:0.047070s, lr:0.000200\n",
- "Epoch:[186/200], step:[ 100/ 468], loss_d:1.211031 , loss_g:1.093462 , time:0.048214s, lr:0.000200\n",
- "Epoch:[186/200], step:[ 200/ 468], loss_d:1.246028 , loss_g:0.738132 , time:0.049433s, lr:0.000200\n",
- "Epoch:[186/200], step:[ 300/ 468], loss_d:1.226768 , loss_g:1.017653 , time:0.043042s, lr:0.000200\n",
- "Epoch:[186/200], step:[ 400/ 468], loss_d:1.222387 , loss_g:0.956919 , time:0.043321s, lr:0.000200\n",
- "time of epoch 187 is 34.91s\n",
- "Epoch:[187/200], step:[ 0/ 468], loss_d:1.202455 , loss_g:0.817922 , time:0.049112s, lr:0.000200\n",
- "Epoch:[187/200], step:[ 100/ 468], loss_d:1.241711 , loss_g:0.849983 , time:0.052105s, lr:0.000200\n",
- "Epoch:[187/200], step:[ 200/ 468], loss_d:1.190964 , loss_g:0.977885 , time:0.052275s, lr:0.000200\n",
- "Epoch:[187/200], step:[ 300/ 468], loss_d:1.257135 , loss_g:0.940552 , time:0.049508s, lr:0.000200\n",
- "Epoch:[187/200], step:[ 400/ 468], loss_d:1.235184 , loss_g:0.883774 , time:0.045740s, lr:0.000200\n",
- "time of epoch 188 is 36.85s\n",
- "Epoch:[188/200], step:[ 0/ 468], loss_d:1.218155 , loss_g:1.063594 , time:0.044652s, lr:0.000200\n",
- "Epoch:[188/200], step:[ 100/ 468], loss_d:1.160277 , loss_g:1.041409 , time:0.043465s, lr:0.000200\n",
- "Epoch:[188/200], step:[ 200/ 468], loss_d:1.287502 , loss_g:0.807326 , time:0.041938s, lr:0.000200\n",
- "Epoch:[188/200], step:[ 300/ 468], loss_d:1.230783 , loss_g:1.153967 , time:0.041447s, lr:0.000200\n",
- "Epoch:[188/200], step:[ 400/ 468], loss_d:1.197217 , loss_g:1.034803 , time:0.042261s, lr:0.000200\n",
- "time of epoch 189 is 33.66s\n",
- "Epoch:[189/200], step:[ 0/ 468], loss_d:1.225700 , loss_g:1.117663 , time:0.050365s, lr:0.000200\n",
- "Epoch:[189/200], step:[ 100/ 468], loss_d:1.196917 , loss_g:1.073184 , time:0.044238s, lr:0.000200\n",
- "Epoch:[189/200], step:[ 200/ 468], loss_d:1.129148 , loss_g:1.021484 , time:0.040764s, lr:0.000200\n",
- "Epoch:[189/200], step:[ 300/ 468], loss_d:1.190587 , loss_g:1.327877 , time:0.045524s, lr:0.000200\n",
- "Epoch:[189/200], step:[ 400/ 468], loss_d:1.234074 , loss_g:1.060046 , time:0.038496s, lr:0.000200\n",
- "time of epoch 190 is 34.80s\n",
- "Epoch:[190/200], step:[ 0/ 468], loss_d:1.174294 , loss_g:0.960412 , time:0.048246s, lr:0.000200\n",
- "Epoch:[190/200], step:[ 100/ 468], loss_d:1.270005 , loss_g:0.972594 , time:0.045788s, lr:0.000200\n",
- "Epoch:[190/200], step:[ 200/ 468], loss_d:1.237765 , loss_g:1.176997 , time:0.035734s, lr:0.000200\n",
- "Epoch:[190/200], step:[ 300/ 468], loss_d:1.229265 , loss_g:0.806409 , time:0.038106s, lr:0.000200\n",
- "Epoch:[190/200], step:[ 400/ 468], loss_d:1.258551 , loss_g:1.079994 , time:0.038538s, lr:0.000200\n",
- "time of epoch 191 is 35.85s\n",
- "Epoch:[191/200], step:[ 0/ 468], loss_d:1.275414 , loss_g:0.969427 , time:0.045643s, lr:0.000200\n",
- "Epoch:[191/200], step:[ 100/ 468], loss_d:1.211061 , loss_g:1.370910 , time:0.041514s, lr:0.000200\n",
- "Epoch:[191/200], step:[ 200/ 468], loss_d:1.221945 , loss_g:1.107085 , time:0.046227s, lr:0.000200\n",
- "Epoch:[191/200], step:[ 300/ 468], loss_d:1.143856 , loss_g:0.913824 , time:0.042443s, lr:0.000200\n",
- "Epoch:[191/200], step:[ 400/ 468], loss_d:1.419553 , loss_g:1.258330 , time:0.049940s, lr:0.000200\n",
- "time of epoch 192 is 35.05s\n",
- "Epoch:[192/200], step:[ 0/ 468], loss_d:1.191133 , loss_g:0.980667 , time:0.046218s, lr:0.000200\n",
- "Epoch:[192/200], step:[ 100/ 468], loss_d:1.167464 , loss_g:1.023220 , time:0.048479s, lr:0.000200\n",
- "Epoch:[192/200], step:[ 200/ 468], loss_d:1.172068 , loss_g:1.092904 , time:0.037380s, lr:0.000200\n",
- "Epoch:[192/200], step:[ 300/ 468], loss_d:1.232565 , loss_g:1.228527 , time:0.038632s, lr:0.000200\n",
- "Epoch:[192/200], step:[ 400/ 468], loss_d:1.243355 , loss_g:0.987800 , time:0.043290s, lr:0.000200\n",
- "time of epoch 193 is 33.33s\n",
- "Epoch:[193/200], step:[ 0/ 468], loss_d:1.166546 , loss_g:1.206838 , time:0.051881s, lr:0.000200\n",
- "Epoch:[193/200], step:[ 100/ 468], loss_d:1.148963 , loss_g:1.054476 , time:0.041737s, lr:0.000200\n",
- "Epoch:[193/200], step:[ 200/ 468], loss_d:1.096771 , loss_g:1.062835 , time:0.040473s, lr:0.000200\n",
- "Epoch:[193/200], step:[ 300/ 468], loss_d:1.153534 , loss_g:1.175065 , time:0.039009s, lr:0.000200\n",
- "Epoch:[193/200], step:[ 400/ 468], loss_d:1.149676 , loss_g:1.271051 , time:0.040645s, lr:0.000200\n",
- "time of epoch 194 is 34.69s\n",
- "Epoch:[194/200], step:[ 0/ 468], loss_d:1.163631 , loss_g:1.246624 , time:0.044640s, lr:0.000200\n",
- "Epoch:[194/200], step:[ 100/ 468], loss_d:1.226489 , loss_g:1.216786 , time:0.037571s, lr:0.000200\n",
- "Epoch:[194/200], step:[ 200/ 468], loss_d:1.210007 , loss_g:1.041248 , time:0.040890s, lr:0.000200\n",
- "Epoch:[194/200], step:[ 300/ 468], loss_d:1.239979 , loss_g:0.876833 , time:0.036461s, lr:0.000200\n",
- "Epoch:[194/200], step:[ 400/ 468], loss_d:1.231214 , loss_g:1.015513 , time:0.039640s, lr:0.000200\n",
- "time of epoch 195 is 33.30s\n",
- "Epoch:[195/200], step:[ 0/ 468], loss_d:1.132347 , loss_g:0.993191 , time:0.051763s, lr:0.000200\n",
- "Epoch:[195/200], step:[ 100/ 468], loss_d:1.246632 , loss_g:0.923422 , time:0.038327s, lr:0.000200\n",
- "Epoch:[195/200], step:[ 200/ 468], loss_d:1.209304 , loss_g:1.295300 , time:0.042164s, lr:0.000200\n",
- "Epoch:[195/200], step:[ 300/ 468], loss_d:1.156869 , loss_g:1.063914 , time:0.038578s, lr:0.000200\n",
- "Epoch:[195/200], step:[ 400/ 468], loss_d:1.203755 , loss_g:0.958413 , time:0.043637s, lr:0.000200\n",
- "time of epoch 196 is 33.91s\n",
- "Epoch:[196/200], step:[ 0/ 468], loss_d:1.194354 , loss_g:1.017212 , time:0.048939s, lr:0.000200\n",
- "Epoch:[196/200], step:[ 100/ 468], loss_d:1.284311 , loss_g:1.383054 , time:0.045014s, lr:0.000200\n",
- "Epoch:[196/200], step:[ 200/ 468], loss_d:1.136481 , loss_g:1.056764 , time:0.040642s, lr:0.000200\n",
- "Epoch:[196/200], step:[ 300/ 468], loss_d:1.283196 , loss_g:0.949850 , time:0.042258s, lr:0.000200\n",
- "Epoch:[196/200], step:[ 400/ 468], loss_d:1.160837 , loss_g:1.011806 , time:0.042898s, lr:0.000200\n",
- "time of epoch 197 is 34.83s\n",
- "Epoch:[197/200], step:[ 0/ 468], loss_d:1.197892 , loss_g:1.009276 , time:0.049630s, lr:0.000200\n",
- "Epoch:[197/200], step:[ 100/ 468], loss_d:1.168854 , loss_g:1.164440 , time:0.042325s, lr:0.000200\n",
- "Epoch:[197/200], step:[ 200/ 468], loss_d:1.190279 , loss_g:1.018515 , time:0.036608s, lr:0.000200\n",
- "Epoch:[197/200], step:[ 300/ 468], loss_d:1.196159 , loss_g:1.074415 , time:0.043475s, lr:0.000200\n",
- "Epoch:[197/200], step:[ 400/ 468], loss_d:1.166519 , loss_g:1.054058 , time:0.037495s, lr:0.000200\n",
- "time of epoch 198 is 34.83s\n",
- "Epoch:[198/200], step:[ 0/ 468], loss_d:1.265847 , loss_g:1.432787 , time:0.050606s, lr:0.000200\n",
- "Epoch:[198/200], step:[ 100/ 468], loss_d:1.191604 , loss_g:1.128230 , time:0.041880s, lr:0.000200\n",
- "Epoch:[198/200], step:[ 200/ 468], loss_d:1.238599 , loss_g:1.050956 , time:0.050597s, lr:0.000200\n",
- "Epoch:[198/200], step:[ 300/ 468], loss_d:1.194071 , loss_g:1.239539 , time:0.045487s, lr:0.000200\n",
- "Epoch:[198/200], step:[ 400/ 468], loss_d:1.359404 , loss_g:0.890722 , time:0.045265s, lr:0.000200\n",
- "time of epoch 199 is 32.91s\n",
- "Epoch:[199/200], step:[ 0/ 468], loss_d:1.205836 , loss_g:1.123699 , time:0.049476s, lr:0.000200\n",
- "Epoch:[199/200], step:[ 100/ 468], loss_d:1.275838 , loss_g:1.206755 , time:0.038420s, lr:0.000200\n",
- "Epoch:[199/200], step:[ 200/ 468], loss_d:1.154675 , loss_g:1.040136 , time:0.039236s, lr:0.000200\n",
- "Epoch:[199/200], step:[ 300/ 468], loss_d:1.226662 , loss_g:0.902854 , time:0.042469s, lr:0.000200\n",
- "Epoch:[199/200], step:[ 400/ 468], loss_d:1.299620 , loss_g:1.181718 , time:0.044500s, lr:0.000200\n",
- "time of epoch 200 is 35.76s\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAGFCAYAAAA7JBDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAcElEQVR4nOy96XPd13nY/7n7vmO52BcSAEUKsjZSMhUtjhMvslNnqtRNOpPMZNJmpu407f+QvOpMO5m86IxfdZq1Tew69sRSbFq2IsnWLpLiBoAkdtx93+/3br8X/J2jC3ADsd4LnM8MhyBxL/C955znPOc8q67VarVQKBQKhULRFegP+wEUCoVCoVBsH6W4FQqFQqHoIpTiVigUCoWii1CKW6FQKBSKLkIpboVCoVAougiluBUKhUKh6CKU4lYoFAqFootQiluhUCgUii7CuN0X6nS6/XyOjqeT69SouenMuVHz0pnzAgc/NzqdTv4BaDQaO/oZBoOBVqu1o/e306lzo2Rme/OibtwKhUJxgOxGaXaqwlUcLNu+cSsUiu5Er9ej1+tpNps0m83DfpxjSavVotVq7epG2Wq1tjV/ev2d+5ia66OLUtwKxRFHKG51Wzt8djsHD3t/uzlep9OpOT+iKMWtUBxxms3mtm9riu6mfZ6V0j66KMWtUBxxDkJht5uAlcLYHWIsdzqOavyPPkpxKxSKXSP8t0ppbA+hnPV6PTqdDrfbjdvtplarkcvlqNfr1Go1aS1R46poRyluhUKxJyjl8nCED1oobLPZjMFg4NSpUzzzzDMkEgkuXrxIoVAgl8tRrVap1+u7Tv9SHC2U4lYoFIoDxGAw4HQ6MZlMOJ1OzGYzQ0NDDA4OYjQa8Xq9GAwGqtWqzARQilvRjlLcCoVCcYB4vV6+9KUv0d/fz+nTpwkGg7hcLjweD5FIBLvdTjKZ5OOPPyYWi5HJZKjVaof92IoOQiluheKYIUy14uutucXCp3pcb3m7DQ570M/V6XRYLBZGR0cZGxvjqaeeYmxsTL7GaDQyMjKCxWLB6/VSKBQoFov79kyK7kQpboXiiCMUhtVqxWaz4fV6OXnyJE6nk6GhIRwOB2azGaPRiKZpFAoF4vE4P/nJT0gkEsdOWezX5zWZTDgcDgKBAGNjY4yPj+N2uzEajfJ3CoWt1+s5e/YsU1NTXL58mfn5eTRNo1QqyYA1xfFFKW6F4ogjbthWqxWv18vIyAjnz5+nt7eXJ598kp6eHhwOBzabjXw+TyKRYH5+ng8//JBUKqUUxR4hfNper5fBwUGGhoZwOp2y/nir1cJkMuFyuTCZTNhsNmq1GplMhkgkQrFYpFKpADurda44OnSM4tbpdNjtdoxGIz09PXi9XnQ6HUajEaPRKBezyWRCr9eTz+fJZDLk83lWV1dl9KUqMrH3qLnZOw7L5NlqtdDr9XLOjEYjBoNB/hHV1fR6PSaTCYPBINO7lNLeHWJce3p6OH36NKOjo/KmnUwmSSQScg6KxSLlcplyuUwikaBUKlGpVOScgDKXKzpIcRuNRvx+Pw6Hg2effZbTp09jNpux2Ww4HA5OnDiBw+HA4XBgsVhYXFxkfn6ehYUFfvjDH5JOpykWi9RqNbWw9xg1N3tDe+nRg7wxiTE3GAxYrVYsFgtmsxmz2SwPXEKRi/83m82b3qvYOQaDAaPRyNjYGK+++ip9fX309fVhsViYm5sjGo1KWarVahSLRYrFIouLi6RSKXK5HFarlUqlouZDAXSA4tbr9ZjNZux2O2NjYwQCAcbHxxkeHsZkMmG1WrHb7fT09GCz2bDZbJhMJgKBAMFgkGq1yszMDOl0mtXVVfL5PJVKRUVh7gFqbvaWw9p022/SFosFu92Oy+XC5XJhsVik0havFYpczKmmadTr9W39LqvVisfjOfbtGduxWq04HA68Xi9+vx+n00m9Xpc361KpRKlUIplMSsVdqVSIRqNks1my2SyVSgVN0wB1mFJ0gOK22WwMDAwQDAb5oz/6I06fPo3X65W+H2FCar8BNJtNBgYG8Pv9zM7O8mu/9mskEgn++q//mrm5OdbW1ohGo4f8ybofNTd7S6vV2rYC3CtEUJrZbMbr9dLX18fw8DCzs7P4/X4CgQBWq1XOp3hOEUClaRqhUIhsNrsthTE2NsbLL7+MxWLZ74+2Z+xnxTe9Xs/Q0BATExOcOXOGiYkJ9Ho98XhcKud0Os3i4iILCwtUKhWy2axU7KL4Svvfirv7dh+3w8yhK26TyYTX66Wnp4exsTFOnjy5yVQnTIsiQKZardJoNDAYDDgcDpxOJ729vfh8PoLBIPF4nEQiccif6mig5qb7EdW57Ha7DIzyer2yxKa4cYtKXs1mk1qtRqPRwGg0yspe28VkMuHxeLpKccP+KG8Rze90OmVsiMPhkGOsaRqNRoNWq0WhUCAajVIul0mn0zQaDRUUeB/EuApLkYjdEN8TiIOypmmPfGhu/x1Go1HOWft8HGb8x6Epbp1Oh8FgIBgM8vWvf53h4WFGRkaw2+1y0BqNBpqmUavVSCaTVCoVisUimqZhNpuxWCw4HA6CwSAej4cXX3yRiYkJfvCDH7C8vHxYH63rUXNzdDAajZw5c4bx8XFOnz7Nk08+ic/no7+/H4vFclfv5uXlZd59913W19el/7VYLG57g1pfX+f111/HYDDwp3/6p/v2uXZLe5Dgft62TSYTU1NTfOlLX2JgYACPx0Oz2aRer1OpVDAYDPj9fvL5PPF4nHQ6TSaTUUr7Puh0OunKOXnyJKOjo4yMjPDUU0/JmA1xCGs2m3z22Wd88MEHpFIpbt26RbVafeDciwwMr9eLzWbj1KlTzM7OEovFeP/99ymVSvJ9Isf+MDg0xS38bh6PhzNnzjA0NITP58NsNm8qrC8WeCqVolQqSX+PCOYQplmLxcLJkyfx+/28++67h/WxjgRqbo4G4gA2MDDAzMwMs7OznDt3DpPJdFfwmdjokskkly9fJhwOE41GyWQyjxRIl8lkyGQy+/Fxug4x/v39/UxNTeHxeLDZbDSbTRlf0Gg0MJvN9PT04PP5qNVqqlnLfRCXBhHsFwwGeeyxx3jiiSd49dVXsdls8jAq1rPX6yUej2OxWFhZWZHjC58r7vaxForb4XDgdruZmprixRdfZHFxkVu3bm2SB5FXfxhzdWiKe2hoiMnJSR577DFGRkYIBAI0Gg2y2Sw3btxgcXGRUqlEKpWiWq2STqfRNE0GN/X39zM4OMjIyAijo6NYLBZsNhtutxuz2awW/y5Qc3N0ED5uEfEvaDeNt1otKpUK1WqVVCpFKBQiHo+jadqRvfnt92cSisXtdtPX14fX68VqtUrTuNlsRq/XY7fbgTvzVCgUVOT4QzAYDNLl8Nhjj/H8888zPDyM1WrFaDRuMpXr9XpOnDjB17/+dbLZLOfOnZNWQmExFBZCMR8i7c7pdGKz2ZiYmODkyZN4PB6ZUz83N0c6nZauwGKxSDKZlDEIBzF/h6K4dTodo6OjfPnLX2Z8fJyJiQnsdjvFYpFCocDbb78tqzatr6/LFnftJ6SZmRkef/xxisUizz33HGazGYfDIVNeFDtDzc3RQqfTyUOTxWLZdGtpv3mIoKh4PM7q6irpdJpKpXLf3HtVgvPBmEwmhoaG5CHW7/dvahYi0vDq9bpUOPl8/pHcEscRvV4vgyq/8IUv8KUvfUkWq2lX2uLrU6dOMT09DSAbthQKBWq1GoVCgXK5jM1mw+PxyEyKdtkQP6tarTI9PU06neb73/8+i4uLVKtVarUa4XCYcrksY3yOpOIWpRV7e3uZnJwkGAxisVhoNpuEQiGSySQbGxskEglyuRyVSoVGo3HXgLSfisTtQZh4xddH9bawX6i5OTqIwBpRZtPtdm+aD3HIElaSlZUVlpeXuX37trz5Paxgjpq/eyMCAicnJxkfHycYDEo3U3shona3k9lsxuPxSEWugtPuRoxVuVwml8sRj8dZX1+X/mixttsRh1S4sy81m02ZtirmSVgERTCmiPsQv1O8V1iuxsfHsVgsci4HBwfx+Xyk02muXbtGPp/f97E4UMWt0+lwuVw4HA5mZ2f52te+JgcunU7zzjvvMDc3x8cff8zNmzflQr/X4nW73YyOjkrl0p6e1J7aokoDbg81N0cLvV6PzWbD6XQyMDDA+Pg4PT09cmMSMQrJZJJ8Ps8bb7zBT3/6U2kqv18PaFVN7cEIReHxeHj11Vf54he/iMfjweVyUavVKJfLNBoNKpWKtFY1Gg3cbjeTk5NYrVY2NjYA5A1uN8+y1TLS7fNWr9dlCt1HH32EXq/n1KlTBAIBudc8CFH6F8DhcNBqte5qunMvhOI2mUx85StfoV6vy2h2Udt/YWGBP/uzP6NYLO57lcgDVdx6vR6fz0dfXx+9vb243W55+2o0GqRSKcLhMNlslmq1+sCfJW4SVqtVnrTEBIjgBVDKYbuouTlaiGp3gUAAj8cjfdxigxLpSJlMhlQqRSwWk/Wwa7Wauu3tEKPRiNPpxO12y/G/1y2uXq/LG1uz2ZR1zIVLqf31O+UoFsFptVrSNScsgC6Xi7W1Nex2O263WypZsc+0vxc+H5cHjbEoOiTkpP31DodjU/lgk8mEpmly7g6CA1Pcwtf2O7/zO7zyyiuMj49L04WoFnTjxg0++eQTcrncQ3+Wx+NhbGxMmqHa8/jcbjc+n49SqXTsy2xuBzU3RwudTkdfXx9/8Ad/wPj4OM8++6ysdmc0GqlUKjL16Gc/+xnLy8t8+umnxGIxqUzuNy9qvh5MIBDg+eefZ2RkRGZUtEc5V6tVNE0jm83KA5KIfj516pRUOpVKBb1ev6vD7VHsDSAUd6PR4LPPPmNpaQm32833vvc9gsEgX/nKVwgGg5w6dYpgMLipzLCwEIpxEfKwlXq9zq1bt4jFYqytrbG0tCTnx+VyceLECTwej7yU5HI55ufnWVpa2paLaS84UMVtMpmYnJzk2WeflcEErVZLRiSnUini8fi2FqvZbMbtdstTTrsfVZR21DRNRTBvAzU3Rw+73c7MzAzT09MEg0GcTqf8XqPRoFAokMlkpF87FotRKpUO8YmPBlarlZGREYaHh3E4HJtadgrrVb1elwpc3OKEj9vpdMqCOIp7I2r9J5NJkskkBoOB+fl5hoeHOXHiBI1Gg4GBAXw+n7TytRdQEXuYSMXbiqZpJJNJQqEQt2/f5tq1a/T398sAw2azuelmXalUSCaTpNPpA6tsdyCKW1TScrvdMmjJZDIBEIlEeOutt1hbWyMcDj80Kk8oAIfDQV9fHx6PR7bFKxaLlEolisWi7EilFMODUXNztNhak9zhcMj5rNVqVKtVotEoly9fJhKJMDc3x9LSEul0+pCf/Gjg8Xh44oknGB4elrey9sqCiUSCarVKsVikXq9Ls225XJZ+b2F+NRgMSk62gYi3SSaTXLhwAbfbzdtvv43X65Wvaa/w2B5wdq8DUrPZJBqNyij/QqEgDwBC0TebTZlCuby8zK9+9SvpaoLP4wv2Kx7kQBS3yFcUisFqtcoFm0wmpXJIJpMPNTO0J8gHAgHsdrsUjlKpRC6Xo1wuS3OK4sGouTlaCMUtureJaFmdTketVpPNLObm5uSNYmNj40iaVfeCR7EKifKm09PTjIyM4HK5pJlWKO5UKkWtVrvLTSSaiLQr7vYoaaW874+4RWcyGX71q18ByHKo7dH596qS1v71vQL4nE4nLpcLn8+HwWCQ0ejNZpNyuUyhUGBjY4PLly+TSqUol8vy5+3n3B2Yqbw9h3Fr/mgoFCISicgm8fdD+GKtVqs057ZHA4pTUbsfRPFw1NwcHdxuNyMjI4yPj+PxeLDb7dKsV61WyWazxGIxbt26RSQSoVQqqUC0B/Ao4yIiyoUciPUvFEs6nebGjRtomiZvew6HA7PZLLuE1et1GWAlCh/F43F5cFYHrO1xr5S7rWz9v60V1HQ6HT09PUxNTTE9PU1PT4/M925/j6Zp5HK5e0aT75dcHYjiFgtXDGK7CSGfz7OwsMD6+vpD2z2KMpyiJWF7cwRAnlQbjYYyx24TNTdHi76+Ps6fPy/zh9s3mmKxSDgc5vbt27z33nuyOpqah90jNnqTySRloP12Vq/XWVtb42c/+xm1Wk02YhkaGsLr9cpYEk3T6O3tpbe3l8HBQex2O++99x6FQkH6xhUP51EPOferWX7y5Em+/vWvMzg4yMTEBE6nE4vFsqngVLlcJh6PUygUaDabm/bQrlbc7V1WtqZFiMVuMpk2BQ6I74sPLsLvXS4XfX19MohDBD+1my7aK3kpHoyam6OBuMG53W6Gh4cJBoOyXSfc2chE+8j19XVKpZIsaarYPUJx36sOdqPRkBHkRqNRKuB6vU4ikZDuI/HHYrFgMpno7+/H6XTi8XikDKqAzoNB1JtwuVz09/cTCARk3AF87jMXilrElYg9VNRBEJeivebAgtNcLhdut1suQPGhzWYzQ0NDALLMohAAEUyj0+lkdZvZ2VlmZmaYmZnB5XLJDatcLrO8vEw4HJbRz2pTejhqbo4GIhDt1KlTfOMb38Dn80m/nKjP/NFHH/Hd736XdDpNLpdT7oo9RBxehWzUajVZl1/EdxiNRqampshms6yurlIqlZifn6dUKskNv6enhy984Qv4/X6ef/55ent7WV1d5caNG7uqZa4U/vZpd/uNj4/z3HPPyW6HImZHRKlXq1XMZjPBYBBN02RcTyKRoFgsShfIXnNgN27h44TNp1FxU/N6vTSbzU31lEX3FRFAZbfb6evro7+/X/qB2n9mPp+XCkYt0u2h5uZoIHpuezwe+vr6pKkWPo8mTyaTrKysyBueYu8Q/u32jX1rGpiQp1qtRr1el723M5mMLEzkcDhk7Wyfz4ff78ftdmO329WcHRCiMY/L5cLj8eD1eu9qYNKOKLpTq9Vk6VVN06SLqlwu7/medyCKu1aryXSTbDYrw+tNJhMej4ezZ89SKBSw2+2YzWYpAIVCgWQyidFopL+/H5vNxpkzZzbl6Amq1Spzc3Ncv36djY2NAyv23u2ouel+9Ho9Q0NDTE1NMTk5Kdsbwh2T3fLyMpFIhJWVFVkZTY3/vbmXuXs7mM1mXC4XNptNmsfFe+12O0ajkVKpxNjYGHq9nng8LlOOqtWqTKW0WCw89dRTMj5Br9czMTHB+fPnuXXrloxLeFS2Vg1T3BtRv/y5557jscce46mnnpKui/Z10Ww2cTgc6HQ6hoeHeeaZZygUCrJA1QsvvMDAwAC/+MUveP311+9bQninHIjibjabFItFTCYTpVKJSqWCxWKR3VjGx8ep1WoMDw9v8o9ms1nC4TBms5nR0VEcDodsRt+OqIoTiURYXl4ml8spP+o2UXPT/eh0Onw+H6Ojo7IeeXt8QTKZlCl9u61/fRwQh85HGSej0YjVasVsNt+1vsXGL6oGiv71qVRKbujtwW3Dw8MMDAzI21sgEGBycpJsNrtrxasU98MxGo1MTEzw9NNPMzIysunCAnfWhV6vl3Pt9XoZHh7e5H564oknePzxx1lfX5dpaXv6jHv60+6DSAEqlUp8/PHHAExMTDA9PU29Xmd4eFh2bTEYDNIHV6lUKBQKOJ1OrFarVBzti0+YoUSv1Hg8vi+miaOKmpvuRfjiLBYL4+PjPPnkk/JGJ3xwpVKJ69ev88knn7C8vKzG/iG0l8TcyVi1x4iI94tqaWLDFweqe0U+ixRMgJGREWw2m2xgEQ6Hdx0boub/wYhYhZ6eHkZHR/F6vXd1HROXkY2NDdbX17lx4wbvv/8+hUKBbDZLq9VCr9dz8eJFPvroo33JoDlQxV0oFHj33Xe5desWL7/8Mh6PRzYrB6TZKJFIsLS0JP2vwvcjUii2IqI0k8kksVhMVq9RPBw1N91Le/GckydP8txzz8mgQBHJn8vluHjxIhcuXCCXy6mgwG2wkzFqL94hDqxCebdHkYubtWgy0r6h6/V6KpUK6+vrNJtN+vr6sNlsRCIRrl69SiKRUIp7HxFxCiKif3JyUgabbTWTNxoNlpeX+eSTT7hy5Qo///nPqVarcn6uX7+OwWCQ8QxdqbgFzWaTXC6HwWDg5s2b+P1+Ga0HyBSV1dVVIpGI9PsUCgVSqZQsCi+CbsR7otEoGxsbmzobKR4NNTfdh9FoZHBwkEAgQF9fn4xDgDu3vGKxSD6fp1QqqYC0Lex1Vatms4mmaZTLZfL5vOwQ1v77SqUS6+vrhMPhu2pai+A0kX6p1+tladRKpUKlUlEujn3GYDDIeRPdxba6FkRBnEKhIOv8RyIRWVRKrCfxb/F/Xa+4Q6EQ0WiU5eVlfvKTn2yKaBYnVHFKEafTyclJpqenZY6j3W6Xg5FKpXjnnXekQIjqQ4pHQ81Nd6HT6XA4HLzwwgvMzMwwOzsr079ESlIkEiEajRKPx8lkMmrjb0P4K/eqaly1WiWXy5FMJlldXaXRaOD3++WNzWAwEI1G+cUvfkEkEiGfz296v8lkktYTEUWeyWTI5XLSJy6Kr6jUrv3BbDYzODhIf38/Pp9PxibA53UtqtUqV65cYW1tjQsXLvDuu+/KhjHtc9KutPeDA1XcgDQRiYXeHsUpEBu/+F4mkyGZTOL1ehkaGtrkRyqXyyQSCRKJhGypphb1zlBz0x2IZgcOh4Pe3l4GBgY2VauDO3OZy+XIZDLytqbGfv8QJnFR/tLtdm+K3m9vOgGfF/gQ/xbpR+3dwcT7RQ1zZa3aXwwGA16vF6/XK2/cW5uQ1Ot14vE4GxsbxONxGZC2NWp/vwNwD1xxt/OwDycURCqV4sKFC1y7dg23201fXx+apqFpGuFwmI8//piNjQ0ymYxSDnuEmpvOQ/jg3G43k5OTDA4O8sUvfpHHH38ct9sto1ybzSb5fJ6PP/6YlZUVotGo2vS3sJsAtHshNu9UKsXVq1dJp9NMT0/j9/uBO26NgYEBXnjhBdbX14nH47KKWrPZZGpqitnZWeny0Ol0stKg6KgnKt0pGdofnE4nzzzzDGNjYwwMDMgUMHHgEofhn//853zwwQfE4/FNlSD1er1s0iRiGvaLQ1Xc26HVutNVZ21tTd4ERZSmpmkUCgVisRjxeJxqtaoW9QGi5uZgEQGBVquV3t5egsEgAwMDDAwMyAAaYaKrVCpEo1FCoZDqs30P9notigOTCOC0Wq0yWEnEg9jtdllhy+l0SsXcaDQIBAKMjIzg9XplxTVRv1woAXX42j9E/nZ/fz+Dg4OySlq7BVHEHKyurnLr1q27sgLai/DsJNf+Ueh4xQ13TrOlUkkGSAmTbq1WQ9M02etZRO8pBXFwqLk5OETa3eTkJN/85jelP6496lXUI19aWuLq1ausrKyQzWYP+cmPB+IgG41GMZvNNBqNTbc2EXzmcrmYmpqit7dXdgc7ceIEjz32mOxlX6lU+Oyzz9jY2GBtbW2TDCn2FovFgtPpJBgMMj09zcmTJ2U9ilgsRigUIhaLcfHiRaLRKKurq3ftZeJWLhT2fseTdIXiFgMilIO41YmbnYiaVX68g0fNzcFhsVhk286XXnqJwcFBXC7XpjiEbDbLwsICt2/f5ubNm6yvr6ugtANE0zSSySQOh0OWORUIv7bNZmNsbIy+vj6CwSBut5tgMMjQ0BAWiwWv10s6nSYUCnH16lXC4bDs87xbVAGWuzGbzXg8Hvx+P+Pj40xMTGC1WqXrY35+noWFBf7+7/+eVColc7UF7X5tobj3e6/rCsUNn5sJhc+nvRm9xWLZ1JlFcbCoudl/RP1kETxjs9lkxGuz2ZQHpKWlJT766CNCoRDFYlEdlg6YWq1GLpcjm81SqVSo1WpSYVssFtllStRFEG09vV4vPp9PpmWKGuaZTGZPW3mq9XA3TqeTsbExRkZG5F4lytaur6/z/vvvs7GxIeds6yVExPscJF2luEUuZCaTAT6vzGWz2XA4HPL/FQeLmpv9RYyvuG2Ldo82mw34PLc0Go3y4Ycf8r3vfU/mb6vb9sGiaRqxWAyz2Uw+n6dcLsv2qg6Hg+HhYfl/jUaDsbExAoGANKOn02nm5uYIhUJsbGzINErF/qDT6QgEApw9e5aRkZFNLVTr9TpXrlzhb/7mb2Scgfj/rQeggz4QdY3iFs3o2ysSicAAi8WyqT6zOlUeLGpu9hdh0XC5XAwPDxMIBGRZU/i817aIVhY151Uw08Ej1r6maUSjUdbW1mQ/Z0BG/ns8HhqNBg6HQ97yRKWtWCxGNBqlVCrJ4DXF3iPkym634/f78Xq9MsBTFL7JZrN31Z/ohD2sKxR3o9GQXauE+Un4UgH8fr9sZCE2tE4Y3OOAmpv9R1TTevzxx3nttddk/eRKpQLcyS399NNPuXDhAqurqypn/pBptVoUCgXeeOMNbty4wVe/+lXOnz8vi+Y4HA58Ph+AbOgjFH4ikeDNN9+UdbCLxeKeHsCUj/tzRLW63t5eZmdn6enpkc2Wrly5wvr6+qbocRGQ1gly1RWKW5gntpaQE6kWwo8qbnWKg0PNzf7SHo3sdrtl1yjRqEJE8KdSKTY2Nkin00ppdwD1ep1oNAogrSAmkwmz2Sw7SwkXiJhLcdMTN24R1KnYH8SN22w2y2p14sYtggPbuxl2itKGLlLcIr1IKAlRItDtduPxeDa1oxSBBYr9R83N/iHyQnt6evD5fPT29uJ0OqX7oVarsbS0RCqVYmFhgZWVFenX3o8NZmuHJMX90TRN1rHu7++n1Wrh8/kYHh7GZrPR398v68rDnWyATCbD0tISt27dIhKJ7FkkeTtq3j6nvZWq0+nE4XBgNBqpVqtcunSJt956i1AotG/1xndD1yhucSIVflRRiMJqtWKz2WSU7dYWbIr9Rc3N/iEUt8vlIhAI4Ha7Zf1ko9EoU49EjflkMrnvaXcqTmF7iIDBdDrNrVu38Hq9DAwMyNudx+PZNJaFQoF4PC7/JJNJNc4HgJAxs9ks96hGo8Ha2hrXrl3rWLdTVyhuMbhGoxG3200gEJD/FgNuNBpl2oVKPTo41NzsL3q9XhbnGB8fl61TRT/0tbU1lpaWKJfLOBwOWfQG9vZ2dVA1mI8Swrq0vLxMo9HA7XZz9epVLBYLfr9/Uye9QqFALpeTfm3F/qLX63nyySc5ffo0zzzzDD6fD5vNJvcpj8dDX18fqVRKxpJ0El2luM1mM16vl76+PlnkQyiHdgWhbnUHh5qb/aPVamEwGDh16hQvvfQS4+PjWK1W2T89l8uxtLTEwsICxWIRp9O5qeDNXt+Oj7rC3utWn0Jx3759m8XFxU1Ne7b+3R4borIB9hcRN3Lu3Dm+/e1v09vbKzM1RN69z+djYGCAer1OIpE47Ee+i65R3EajUXZrEQEElUqFYrFIOp0mnU7L2sBHfYPpJNTc7C+tVotEIsHq6ip2u52BgQGq1SqpVIpkMim7r+VyOarV6qae52qsH539GLMHWSn2+rDQjrBuKSvJvTGZTFitVhkoCJ+34ywUCqTT6X2JM9gLukJx6/V6bDYbdrtdlhAsl8vSv3f9+nWi0SiZTEZ20FEcDGpu9pdarcalS5eIxWLkcjl8Ph+lUon19XVisRjXrl1jYWFhU/eo/TggHYeN/zA+4379ThF0JW6R+9mpqttob9bjdDqxWq2bqqVVq1XW19eZm5vr2FLNXaG4RecWq9UKINtGVqtVebOrVCqyg04nDvRRRc3N/tJqtchms5hMJsLhsMzTDoVC8qZdLpele0LdrhSKByO6tRmNRhnsKVLyarWaPATvZanZvaYrFLfVamV8fJze3l6q1Sqrq6sUi0VZEzifz5PP52WTC3WrOzjU3OyM7ZhIRY58JBIhnU4Tj8d55513aDabVCoVWZ2rUql0XJ6p4uC4VyyDSNMUCklxB2GJsFqt+Hw+gsGgdPNVKhUikQjxeLzjAwS7QnHr9XocDgdOp5NqtUo6naZSqch2ksK3115yU3EwqLnZX1qtlgw4S6fT3L59+7AfSdFBtAe5bZUtpbDvjSgvK+pNCESznnw+T61WO8QnfDhdobjL5TI3btxgZWWFjY0NPB6PNA2KAB1hjlWK4WBRc7P/dNtNWmUOPBq7if7vpnXRKTQaDen3F10Mm80m+Xye9fV1QqEQpVKpo2sWdIXirlQqLC4uAnD16tVDfhpFO2pu9p9O3Tzuh1Lcik5FBKCJy0V7ueZisUg0GiUSiVCpVPY14n+3dIXiViiOGp24GewVR/mzPQwR9ATI21z790TLyPbvHefxOmhEFozNZiMSifDRRx+Ry+WIRCJks1muXr0qU1jFvDzKzbu99vx+omtt84mO+ym6k4VLzU1nzo2al86cF9j53Ijc6PttzKLuNdyphtbuK7VYLDidTmmWPcwUrU6dm/2WGaPRSDAYxOl0MjU1xejoKIuLi3z44YcygLbVasmv24vmPEwZi2JUopbFTpT3dudF3bgVCoViD7mf8hH5w52qNI8LYn7q9TqVSoVyuSwzX+51MHvUG/dBsO0bt0KhUCgUisNHdXxQKBQKhaKLUIpboVAoFIouQiluhUKhUCi6CKW4FQqFQqHoIpTiVigUCoWii1CKW6FQKBSKLkIpboVCoVAougiluBUKhUKh6CKU4lYoFAqFootQiluhUCgUii5CKW6FQqFQKLoIpbgVCoVCoegitt0d7KBbFIp2auL3NhqNHf0Mg8Egm6fvhk7uxaLaR3bm3CiZ6cx5ASUznTo3Sma2Ny9dcePezSLr1AWqUOwnSmYUikejm2SmY/txt1otWq3Wrk5grVZrW83M79WDVaHoNpTMKBSPRrfKTMcqbsFuTzIPe3+7meRRGqYrFJ2KkhmF4tHoNpnpeMW937SfltQGpFA8HCUzCsWjsdcycyQUtzjJ7HRA1OajOG4omVEoHo1OkpmuUdxi0PR6PTqdDrfbjdvtplarkcvlqNfr1Go1ms2m9FsoFMcZJTMKxaPRLTLT8Ypb+AbEQJrNZgwGA6dOneKZZ54hkUhw8eJFCoUCuVyOarVKvV7fdVi+QtGtKJlRKB6NbpOZjlfcAAaDAafTiclkwul0YjabGRoaYnBwEKPRiNfrxWAwUK1WaTabNJtNtQkpjjVKZhSKR6ObZKYrFLfX6+VLX/oS/f39nD59mmAwiMvlwuPxEIlEsNvtJJNJPv74Y2KxGJlMhlqtdtiPrVAcGkpmFIpHo5tkZk8U926d9g/6uTqdDovFwujoKGNjYzz11FOMjY3J1xiNRkZGRrBYLHi9XgqFAsVicd+eSaHYC5TMKBSPhpKZz9kTxb1fD20ymXA4HAQCAcbGxhgfH8ftdmM0GuXvFAOp1+s5e/YsU1NTXL58mfn5eTRNo1QqyUAChaJTUDKjUDwaSmY+p6NN5cLX4PV6GRwcZGhoCKfTKevCtlotTCYTLpcLk8mEzWajVquRyWSIRCIUi0UqlQqwsxq0CkW3oWRGoXg0ulFmOlJx6/V69Ho9PT09nD59mtHRUXkCSiaTJBIJDAYDer2eYrFIuVymXC6TSCQolUpUKhVMJhMGgwFQpr/dotPpsNvtGI1Genp68Hq96HQ6jEYjRqNRLmiTyYReryefz5PJZMjn86yursoITFUec/9QMtNZKJnpfLpZZjpScRsMBoxGI2NjY7z66qv09fXR19eHxWJhbm6OaDSKzWbD4XBQq9UoFosUi0UWFxdJpVLkcjmsViuVSkVtQHuA0WjE7/fjcDh49tlnOX36NGazWc7BiRMncDgcOBwOLBYLi4uLzM/Ps7CwwA9/+EPS6TTFYpFarabmY59QMtNZKJnpfLpZZjpScVutVhwOB16vF7/fj9PppF6vyxNPqVSiVCqRTCblgFYqFaLRKNlslmw2S6VSQdM0QN0edoper8dsNmO32xkbGyMQCDA+Ps7w8DAmkwmr1YrdbqenpwebzYbNZsNkMhEIBAgGg1SrVWZmZkin06yurpLP56lUKip6eR9QMtMZKJnpHrpZZnStbf629u4p+9lYQK/XMz09zcTEBE8++SS/9Vu/hV6vJ5PJUKlUWFlZIZVKsbi4yMLCApVKhWw2KwdcJMWLv/dqwXfyRrZfPWwdDgcDAwMEg0H+6I/+iNOnT+P1eqX/R5iRzGYz8Hk9Xk3TqFarVKtVMpkMiUSCv/7rv2Zubo61tTWi0eiePmenzo2Smc6cF1Ay06lzo2Rme593xzfu/RhUEZbvdDqlX8jhcNBsNqnVamiaRqPRoNVqUSgUiEajlMtl0uk0jUZDRcLuMSaTCa/XS09PD2NjY5w8eRKz2Sw3Hb1eLzeeVqtFtVql0WhgMBhwOBw4nU56e3vx+XwEg0Hi8TiJROKQP9XhoWTm6KNkZm9RMnNvtq242/PV9vMUZDKZmJqa4ktf+hIDAwN4PB6azSb1ep1KpYLBYMDv95PP54nH46TTaTKZTEcM5lFBp9NhMBgIBoN8/etfZ3h4mJGREex2u1z0jUYDTdOo1Wokk0kqlQrFYhFN0zCbzVgsFhwOB8FgEI/Hw4svvsjExAQ/+MEPWF5ePuyPeCAomTk+KJnZG5TMbI+O8nGLxd/f38/U1BQejwebzUaz2cTlcmGxWGg0GpjNZnp6evD5fNRqNdUTeI8R0ZYej4czZ84wNDSEz+fDbDZvKq4vFnkqlaJUKkmfjwjoaDabDAwMYLFYOHnyJH6/n3ffffewP96RQslMZ6Bkpns4CjKzbcW93w9sNBoJBoO43W76+vrwer1YrVZpsjCbzej1eux2O3Bn8AuFgoqC3QeGhoaYnJzkscceY2RkhEAgQKPRIJvNcuPGDRYXFymVSqRSKarVKul0Gk3TZBBNf38/g4ODjIyMMDo6isViwWaz4Xa7MZvNHSUA+4mSmeODkpm9QcnM9uiYG7fJZGJoaEguYL/fv6mIu8h5rNfrGI1GdDod+XyeYrHYUQPa7eh0OkZHR/nyl7/M+Pg4ExMT2O12isUihUKBt99+m5/85CckEgnW19dlmztxo2i1WszMzPD4449TLBZ57rnnMJvNOBwODAYDVqv1sD/ikUHJTGegZKZ7OCoy0xGKW7RRm5ycZHx8nGAwKE1M7UUI2k1OZrMZj8cjB7hTgga6GbPZjNFopLe3l8nJSYLBIBaLhWazSSgUIplMsrGxQSKRIJfLUalUaDQa8rQqEF12bDabbJMnTIniazVXu0PJTGegZKZ7OEoyc+iKW/gbPB4Pr776Kl/84hfxeDy4XC5qtRrlcplGo0GlUpEn1UajgdvtZnJyEqvVysbGBoCM0NzNs2wtGn/YE3RQ6HQ6XC4XDoeD2dlZvva1r8mAmXQ6zTvvvMPc3Bwff/wxN2/elIv9XuPjdrsZHR2Vm1h7Goz4GlRJzZ2iZKYzUDLTPRw1mTl0xW00GnE6nbjdbvx+P4FAQPoZBCKoQ5yKms2mrC8rzEntr98p+5Xb2Q3o9Xp8Ph99fX309vbidrvlKb/RaJBKpQiHw2SzWarV6gN/lijab7Va5Y1B3BpEtSJQm9BOUTLTGSiZ6R6OmswcuuIOBAI8//zzjIyMyGjK9lzHarWKpmlks1lqtZocUK/Xy6lTp6QPqFKpoNfrd7Wwj2tdYJ1Oh81m43d+53d45ZVXGB8fx2AwyLzGYrHIjRs3+OSTT8jlcg/9WR6Ph7GxMWmKEpuOTqfD7Xbj8/kolUqqnOMOUTJz+CiZ6S6OmswcuuK2Wq2MjIwwPDyMw+HY1EpNnFzr9bocWHHiEb4Hp9OJ0Wjck5PQcUWn02EymZicnOTZZ5/FZrPJKFYR+ZpKpYjH49tasGazGbfbLU+p7f46k8mExWJB07RjEym71yiZOXyUzHQXR01mDl1xezwennjiCYaHh/F4PJuCMKrVKolEgmq1SrFYpF6vSzNDuVyW/gij0Si7tNzPh6S4N6Jik9vtlsExJpMJgEgkwltvvcXa2hrhcPiugJqtiI3G4XDQ19eHx+ORrfGKxSKlUolisSg7H6l52hlKZg4XJTPdx1GTmT1X3I9yIhRl56anpxkZGcHlcknzhRjQVCpFrVa7y0Qkiru3D6jwDcHxCZDZLSJnUWxAVqtVjmEymZSbUDKZfKiJR9wSRFN6u90uBaRUKpHL5SiXyzLwQ3EHJTPdhZKZw+e4y8yeK+5H+SAi0k8sfmGGaLVaNBoN0uk0N27cQNM0GRjgcDgwm82ye0u9XsftdmMwGGTRg3g8LoXmuPrgHoX2PMb2BVmpVAiFQkQiEdko/n4In5/VapVmQzGf7UE2rVZLbUJbUDLTfSiZOVyOu8wcmqlcRE2aTCZcLpdsLK/T6WTaxNraGj/72c+o1Wp4PB4sFgtDQ0N4vV7pR9I0jd7eXnp7exkcHMRut/Pee+9RKBSkz0Jxf8TiFWYjcZJttVrk83kWFhZYX19/aPcbUe5RzKXwB4lNTZxWG42GMvvtECUznYGSme7hqMrMoSvurUXlhVCIyD6j0SgHpl6vk0gkpOlI/LFYLJhMJvr7+3E6nXg8Hkwm0yahUtwbnU6H0Wi8K/BCjJ2oJCTmpf37Ylz1ej1GoxGXy0VfX58M5BBBNs1mk3K5TKFQ2FQxSvFoKJnpDJTMdA9HVWYOTXGLhavT6eTAiJq8wrdjNBqZmpoim82yurpKqVRifn6eUqkkBaanp4cvfOEL+P1+nn/+eXp7e1ldXeXGjRu7qjF7XDYvg8GAy+XC7XbLRShMP2azmaGhIQDS6TSVSkUKQa1Wo1qtotPpZF3l2dlZZmZmmJmZweVySbNTuVxmeXmZcDgso2yVOfbRUTLTGSiZ6R6Oqswc6o1bLFKx6LeG54sTaa1Wkw3MRXs1UZTA4XBgs9nweDz4fD78fj9utxu73b5nzc2PMu2+NNh8IhXj7/V6aTabWCwWuQlpmiYXtt1ux26309fXR39/v/QFtf/MfD4vN7LjsLnvB0pmOgMlM93DUZWZXSvue5khtoPZbMblcmGz2aTZQrzXbrdjNBoplUqMjY2h1+uJx+NEo1Hy+TzValWmUVgsFp566inZw1av1zMxMcH58+e5desW8XgcTdMe+XOJZznqlaFqtRrpdBqAbDZLoVCQuaMej4ezZ89SKBSw2+2YzWYpBIVCgWQyidFopL+/H5vNxpkzZxgYGMDn820yIVarVebm5rh+/TobGxsPTZE56iiZ6W6UzBw8SmY2syc3brHgHiXq0Wg0YrVaMZvNd02E8CWIikGid20qlaJer9NoNDYFHQwPDzMwMCAL9AcCASYnJ8lms7veRI76JtRsNikWi5hMJkqlEpVKBYvFgtFoxGazMT4+Tq1WY3h4eJMfLpvNEg6HMZvNjI6O4nA4ZEP6dkQZwUgkwvLyMrlcTvnrUDLTzSiZORyUzLR9rl39NpD+HfH1Tt/fbsIQVWwajYaMshSv2ernEekXACMjI9hsNuLxOAsLC4TD4V37hY66sIhUk1KpxMcffwzAxMQE09PT1Ot1hoeHaTab2Gw2DAYD6XRadjkqFAo4nU6sVqvcoNoXoDBF1Wo1MpkM8Xiccrl85Mf0YSiZ6W6UzBw8SmY2syc37p08tHhQMaDt6RXt0X3ixCOKv7d/QL1eT6VSYX19nWazSV9fHzabjUgkwtWrV0kkEmoTeghiEyoUCrz77rvcunWLl19+GY/Hg81mY2JiAkCajhKJBEtLS9LPJ/w/Io1iK2Iuk8kksViMYrF40B+xI1Ey070omTkclMx8zrYV915Ximk2m2iaRrlcJp/Py84t7b+vVCqxvr5OOBymXq9ver8IGhCpF3q9Xpasq1Qqsu+tYns0m01yuRwGg4GbN2/i9/uxWCw4HA4ASqUSmqaxurpKJBKRvp9CoUAqlcJkMsn5EJRKJaLRKBsbGxSLRZl6cVxQMnO0UTKz9yiZ2R7bVtzCv7BXTcSr1Sq5XI5kMsnq6iqNRgO/3y9L/hkMBqLRKL/4xS+IRCLk8/lN7zeZTLLsoIjuy2Qy5HI56asQSfHHJU1lNzSbTUKhENFolOXlZX7yk59sipwV8y4iL8UJdXJykunpaZnnaLfbpS8plUrxzjvvSKEQFYiOC0pmjjZKZvYeJTPb49DSwYSpQtM0crkcbrd7U51YscjFv0WqhPi31WrF5XJt6toi3i9qyx6nk+peIMxEYrG3R3IKxAYjvpfJZEgmk3i9XoaGhjb5ksrlMolEgkQiQaVS2TNhPK4omek8lMx0NkdVZratuHcTGHAvRFh+KpXi6tWrpNNppqen8fv9dx7MaGRgYIAXXniB9fV14vG4rG7TbDaZmppidnaWvr4+7HY7Op1OVhkS3XQ0TVMLf4c8LIpVbESpVIoLFy5w7do13G43fX19aJqGpmmEw2E+/vhjNjY2yGQyx24ulMwcL5TM7B4lM9tj24p7rx9KnDJF8IbVaqVardJsNqUvyG63EwwG0TQNp9MpB6zRaBAIBBgZGcHr9cpKOKKurAg4ULeH/aXVutNZZ21tTd44RKSmpmkUCgVisRjxeJxqtXqsNiBQMqO4GyUzD0bJzPY41H7cYhFHo1HMZjONRkMWgBf1gEVx+KmpKXp7e2XXlhMnTvDYY4/JPraVSoXPPvuMjY0N1tbWpG/ouC38g6bRaFAqlWQgjjAd1mo1NE2TPYXFXKj52B1KZrofJTMHy1GUmUNV3ACappFMJnE4HLL8nED4G2w2G2NjY/T19REMBnG73QSDQYaGhrBYLHi9XtLpNKFQiKtXrxIOhymXy3vyfEe9mMRuEb4esQmJ24O4QZRKJcrl8rGv/LSXKJnpbpTMHDxHTWYOXXHXajVyuRzZbJZKpUKtVpMDabFYCAQCmEwmmRMp2q15vV58Pp9MyRC1ZTOZzJ62WFOC83BEfqrw+7Q3pLdYLFgslk3lHBW7Q8lM96Nk5mA5ajJz6Ipb0zRisRhms5l8Pk+5XMZqtWIwGHA4HAwPD8v/azQajI2NEQgEpHkjnU4zNzdHKBRiY2NDplAoDg5hciqVSmQyGeDzClA2mw2HwyH/X7F7lMx0P0pmDpajJjOHfqQTwQOaphGNRllbWyOXy0mHv9lsxmq14vF48Hg8OBwOWWPWYDBQq9WIxWJEo1FKpZIMKlAcHKIhvahK1Gg05BxYLBbZaEGZUPcGJTPdj5KZg+Woycyh37jhzqAWCgXeeOMNbty4wVe/+lXOnz+PTqfD4XDgcDjw+XwAspi/mIhEIsGbb77JxsYG6+vrFIvFPY3yU4LzYBqNhuyOJExQwmcH4Pf7ZcME0VpPmVJ3j5KZ7kXJzOFwlGSmIxQ33ClkEI1GAYjH45RKJUwmE2azGb1eL0PxxR9xSi0Wi/IkJAI6FAeHKHAgbgwiClakWwh/nbo97D1KZroTJTOHx1GRmY5R3Jqmcfv2bSKRCP39/bRaLXw+H8PDw9hsNvr7+zGbzfL12WyWTCbD0tISt27dIhKJ7FmEXzvqpPtgRElHkdYiUi3sdjtutxuPx7Op7WGr1Tr0RX9UUDLTnSiZOTyOisx0jOJuNBrE43HS6TS3bt3C6/UyMDCA2WyWi7m9NF2hUCAej8s/yWRSbRiHQHvXHeGv0+v1WK1WrFYrNpsNm80mC/SrG8TeoWSmO1Eyc3gcFZnpGMUNyJPl8vIyjUYDt9vN1atXsVgs+P3+TV10CoUCuVxO+hsUh4NOp5MddNxuN4FAQP7bbDbLDkgi9UKluOwtSma6DyUzh8tRkJldKe69bsEmBvT27dssLi5uKti/9e92v5Aq03h4iE3IbDbj9Xrp6+uTxSTEJtS+ER3324OSGYWSmUdDyczd7PrGvR9mgweV+dvrSWxHnGxVmcHtI0oGis45Op2ORqNBpVKhWCySTqdJp9OyPrAaVyUzxx0lM4+OkpnN7EpxH8aC2q/fqdPppE9J9M9VPBy9Xo/NZsNut8syguVymWQySSgU4vr160SjUTKZjOyic5xRMqNQMvNoKJm5G+U8UewKnU4nixcAsj1htVqVN4hKpSK76Kjbg+K4o2RGsVs6KjjtoGiPGhSIFA2Ru6fYHlarlfHxcXp7e6lWq6yurlIsFmVd4Hw+Tz6fl80U1Nh2J0pm9g4lM8eD/ZSZY6e424MPtg6qEpBHR6/X43A4cDqdVKtV0uk0lUpFti2sVquyMpS6PXQnSmb2FiUzR5/9lhlda5uropMiG+81GPtNJwvPYc6N1WplcHAQu93O4OAgHo9HRsgmk0muX79OpVLZV19dp86NkpnOnBdQMtOpc6NkZnu/TynubdKpCx06a24Og06dm06aFyUzm+mkuTkMOnVuOmleOllmDt1UrtfrZWSl6Efb/j2TyST9AuJ7nbroFIqDQMmMQvFoHDWZ2feocr1e/8DKP6IfqsPhkAMrMJlMOJ1OHA4HBoNhvx9VoegIlMwoFI/GcZOZQ79xw/3NIzqdDr1e39EnH4XiMFAyo1A8GkdJZrbt41YoFAqFQnH4qAIsCoVCoVB0EUpxKxQKhULRRSjFrVAoFApFF6EUt0KhUCgUXYRS3AqFQqFQdBFKcSsUCoVC0UUoxa1QKBQKRRehFLdCoVAoFF2EUtwKhUKhUHQRSnErFAqFQtFFKMWtUCgUCkUXse0mI53UJ/Uw6OSS7mpuOnNu1Lx05rzA8Zubrb2lO3Vujtu8bGW786Ju3AqFQqFQdBFHVnEf95PbYSCa1T+oL65CoTh4OvWG3al0+l7WmU+1S3Q6nfyjODhEM3s17gqFopvp9L1s2z7ubkKcLtUp82BpNpu0Wi2azeZhP4pCoVDsmE7fy46k4galtA+Dg1jk7SdgNccKhWI/6PS97EiayhVHF2VNUSgUR4Hd7GVKcSu6DqW0FYr7o+J7uoed7mUdaSoXgQE2mw23233PyL56vU6tVqPRaKBpGs1mE03TaDQah/DECoVCoVAcDB2luMVJ0ePx4HK5eO655/i93/s9bDYbBoNBFhFotVqEw2FWV1dJJpPMzc2RzWa5desWmUxGvqadTg0yUCgUir1EWaSOPh2juIXSbr9pT0xM8OKLL+J0OjEajZuq/ywuLuL3+wmHwxQKBWw2G6FQiGKxSKPRkIr6XkpccTCI+RRfbzXfiblRVhKF4tEQciX+VnK0v3TaXtYRilun02EwGPB6vdjtdl555RXOnj3L9PQ0drsdk8m0abBarRa9vb0YDAZGRkYYHBwknU7T29tLKBQiGo2SSqUoFAokk0mluA8IMUdWqxWbzYbX6+XkyZM4nU6GhoZwOByYzWaMRiOaplEoFIjH4/zkJz8hkUioeVIotoHFYqG/vx+73c6TTz7J0NAQV65c4eOPP0bTNIrFopKlXdLpe1lHKW6Px4PX6+X555/ntddek4O29XSj0+nw+Xz4fD4ajQbT09Nks1mazSarq6vMz8+ztLRELBbbseLeWttX8XDEqdRqteL1ehkZGeH8+fP09vby5JNP0tPTg8PhwGazkc/nSSQSzM/P8+GHH5JKpWTupEKhuD8mk4m+vj56e3v5yle+wlNPPcUPfvADFhYWKBaLlMtldfveJZ2+lx264nY4HPT39+N2u3nmmWcIBoNMTU1htVoxmUwPfK9IkK/VatRqNSqVCuVymd7eXlwuF9lslrGxMSqVColEQv5dLBYf+lzdrkDarRMHSavVkuUCxR+DwSD/iMBDvV6PyWS6K3ZBoVA8mEajQaFQkHukz+cjEAjQ09OD0Wgkk8ncV3F3agnPB6H2srs5VMWt1+vxer2cPXuWwcFBfvd3f1cqbYvF8sC0BqG06/U6lUqFUqlELpcjn88zPT3N2NgYjUaDWq1GJpPhk08+IR6P88knn2xLcXczYjEdtN9LLFaDwSDn0Gw2YzabMZlMmEwmufjF/5vN5k3vVSgUD6ZWqxGPx6nX69hsNoaGhhgZGWFiYoJQKMT6+jq1Wu2u9+n1eqlcugW1l92bQ1PcYvFYLBb8fr+8Jdvtdrm4tlaWabVa8nady+VIpVJomkY+nyeXyxGNRkkmk2QyGXw+HzabjUAggMViYXx8HJfLJQPYyuUypVLpsD7+vnJYSrD99GmxWLDb7bhcLlwuFxaLRS508Vqx+G02GzabDU3TqNfr2/pdVqsVj8fTVZuQQnE/RF1sk8mEw+FAp9PJNNd6vS4DbhuNhnQttt8AW62WfN396MbiRWovuzeHqrjFjfupp55iaGgIp9NJrVaT32tfaI1Gg0ajQSQSIZvN8vbbb/PP//zPaJpGtVqlVquRzWap1WpEIhFu3LjBU089xbe+9S0sFguzs7OUSiU8Hg8XL17k5s2bXLt2rasW8XYRQnyQiEAOs9mM1+ulr6+P4eFhZmdn8fv9BAIBrFar3GjEcwYCAcbGxtA0jVAoRDab3dacjI2N8fLLL2OxWPb7o+0794pQVRwPhIIQN7aenh6+8IUvYDQaiUajFAoFMpkMhUKBcrlMPp/HZDLh9/vp6+vDYrHQbDYpFotEo1Eymcx9U18PY1/YLWovuzeHprhNJhM2mw2Xy4Xf78fr9WI0bn4c4eBvNBqUSiU0TSORSJBKpVheXubGjRvUajU0TdtUEN5mswGQTqelOSkQCNBoNBgeHiYWixGLxVQA2h6i0+kwm83Y7XacTiderxev14vb7cbtdstTqrhZiNiERqOB0WjEbDZLIdgOJpMJj8fT9YpbWJbECV741MT3BGIDE2v9UTaz9t9hNBrl2LevfRVjcLCIy4nImrFarVitVqkkRPprPp/f5FMtlUpyjYibtnAJapp217xuRc3xw+mGvezAFbc4YT777LO89NJLjIyMMDMzg9vtlmYIQCrrbDZLLBbjwoULxGIxNjY2SKfThEIhEokEzWZTKnixKNfX10kmk+TzeUKhEBMTE/zhH/4hwWCQ8+fPMzU1RaPR4IMPPlCFWfYIo9HImTNnGB8f5/Tp0zz55JP4fD76+/uxWCwyKEaM9/LyMu+++y7r6+vMzc0RjUYfKY1lfX2d119/HYPBwJ/+6Z/u2+faT4Rp1Gg0cvLkSUZHRxkZGeGpp56SvjRxuGw2m3z22Wd88MEHpFIpbt26RbVa3RS4s3Xs2q1aNpuNU6dOMTs7SywW4/3336dUKsn3FQqFIx/70SkYDAbcbjdOp5NvfOMbnDlzBofDgdPpxGaz0dfXB9y5eJTLZcLhMPF4nLm5Od5++23q9TqZTIZ6vc7Gxgbr6+vkcrmObkPZTXTDXnYoittgMDA6OspLL72E3+8nGAxisViwWCwYDAbpz6lWq2SzWUKhEO+88w5LS0uEw2Gy2ewDf4emaWSzWfnexx9/nG9/+9uYTCYmJycZGxvj3XffVYt8jxA+t4GBAWZmZpidneXcuXOYTKa7AjaEEkomk1y+fJlwOCxNfI8SfJLJZMhkMvvxcQ4EcQsWvspgMMhjjz3GE088wauvvorNZpObhBgzr9dLPB7HYrGwsrIi3UrwueJu3yyE4nY4HLjdbqampnjxxRdZXFyUVQbFmGuaJhW5Yn8xGAzY7XY8Hg/nzp3jy1/+Mk6nE5fLJddEs9mkUCigaRrr6+tEo1EALl68SLFYlIohk8mQSqUol8tyvtW+tnO6ZS87UMWt0+lkAJrb7ZabkwhGq1artFotIpEIyWSS1dVVLl68SDQaZWlpiVQqRbVa3dbvaq9k036rFqclh8NBT08PpVKJfD5Pq9WS5o+HBXko7kb4hRwOxyaTT7s5qdVqUalUqFarpFIpQqEQ8XhcBuEcN6Uhig45HA4ee+wxnn/+eYaHh7FardJUKtDr9Zw4cYKvf/3rZLNZzp07J02jol6/pmnSV9qeoiJuchMTE5w8eRKPxyOzLebm5kin0zidTnp7eykWiySTSRqNBvV6/djNyX5itVpxu9309fXxm7/5mwwODnLmzBlcLhdra2ssLi6i1+tlRo2QCXHIEz5XYcY1GAx8/PHHhEIh5ufnCYfDKod7D+iGvexAFbder8fj8eD3+/H5fNjtdrlJAVQqFTRN49atW8zPz3Pp0iV++MMfUi6XqdVqj2zWFieiRqMhBUD4ipxOJ/39/WQyGbnYhe9CLf5HR6fTyVK17al87eknYrFns1ni8Tirq6uk02kqlcp95/awcjgPAr1eL4NdvvCFL/ClL31Jxn60K23x9alTp5iengaQLqJCoUCtVpPBSzabDY/HIyNct6b/iAPy9PQ06XSa73//+ywuLsoAT7H5V6tVKTeKvcFutzM4OMipU6f49//+33Py5EmpDJaWlvj7v/979Ho9LpdLzp/RaOTEiROMjIxgsVhktoyINv/lL39JIpGQwbtqvnZPN+xlB24qF8q03bTXbDbR6/VomkalUiEWi7G4uEgkEqFarVKv13fki3Y6nUxMTDAyMoLZbN40YHa7nd7eXgAikYj8HTv9XccVEfQk0liEJUVsSGKOK5UKtVqNlZUVlpeXuX37NoVC4YELXXAUNyMxLuVymVwuRzweZ319Xfqj72XyFJsHIM2pNptN+sLNZjMWi0Vu+OLm3f47xXvFjWJ8fByLxSLX/eDgID6fj3Q6zbVr18jn8wc3KEcUYQUZHh7m7NmzjI+P43a7MRqNVCoV6vU66XSaSCQCIC8zwhpZqVRIJpPkcjmGhobka1qtFlarlWg0SiKRkOZ0xc7opr3swBS32IREwRRhhhPKEqBQKFAoFLh06RKvv/46+XyearW6Y0U6OjrKb/3WbzEyMoLb7d7kmxCl64S/T5g9hClEsT1EUxin08nAwADj4+P09PRIpSEioEWw4BtvvMFPf/pTaV66n1viOFRTq9frRKNR0uk0H330EXq9nlOnTsnaAw+LTBUlGeGO60dYldqbIdwLobhNJhNf+cpXqNfrMlJZ1FxeWFjgz/7szygWi0oedkF7eeaXX36ZP/mTP8Hr9eLxeGi1WqRSKTKZDAsLC1y6dGlTVLiYR1H845lnnuG1117D5/MxMTGB0Wjk8uXLrK2t8S//8i+88cYbR1pe9ptu2ssO/MZdr9ep1+uUSiXZgtPtdgNQLBYpFArk83ny+TyVSmVXH1akVwQCgbtSzcxms6w1295h56gri73GaDRKc6/H45F+ITGmIk1FBNHEYjEikQjFYlG6P47reIuCQq1Wi2QyycbGhvR3ijgQoWS3rl8xZkI5P6iUpSgGIeai/fUOh2NTWUeTyYSmaTgcjkdKaVFsRrjjzGYzwWCQ/v5+BgcHZXOQRqNBuVwmHo/LG3OpVLrn5l8ulzEYDGiahtfrlfImbuUqIG1v6Ka97EAVd6vVIp/PUy6X+fTTT2k0GgwNDXH+/HmMRiMrKytkMhni8fiuF6JOp5O+w56eHux2uzw16XQ6LBaLnBzxu9TN4tHQ6XT09fXxB3/wB4yPj/Pss88yPDwsU5wqlQrxeJx0Os3PfvYzlpeX+fTTT4nFYtI0e7+FfhyUuVDcjUaDzz77jKWlJdxuN9/73vcIBoN85StfIRgMcurUKYLB4Kbyj+0WK0CO+Vbq9Tq3bt0iFouxtrbG0tISXq+XU6dO4XK5OHHiBB6PR27+uVxONunZjulPcTciCPdrX/uaTCmanJykt7cXq9VKrVaT0cd/+Zd/yfvvv084HL4rB1vsS8KK4vF4mJycxOPxYLPZqFarfPLJJ7z11ltsbGwcC5nZL7ptLztwxS0iYePxODdv3qRWqzEzM4PZbJblSqvV6qaiA496khHvs9vt9PT04PP57trURFqaOq3uDrvdzszMDNPT0wSDQZxOp/yeaIaQyWSkLygWix3ZUrM7QWQ+JJNJkskkBoOB+fl5hoeHOXHiBI1Gg4GBAXw+n1yz7QVUxO2s0WjIdJV2NE0jmUwSCoW4ffs2165do7+/H7/fLwPc2m/Wwp8qihcpHg2Rm2+325mcnOT06dM88cQTTE9Pyz2tWq2Sy+VIJBLMzc3x0UcfbTqEiZ8jECmDIird6XSi0+nkAWBxcZFCoaAU9y7ppr1s24pbBEM8anT31kg68V7R+qzRaHDz5k1cLpc0Kz333HNMTk6yvr7O5cuXpVl9OxuJXq/nzJkzTE1Nce7cOdnjW5g7hKl+fn6eH//4x0SjUcrl8rY/j+IOW+v4OhwO2c2tVqtRrVaJRqNcvnyZSCTC3NwcS0tLpNPpQ37yzkbEfCSTSS5cuIDb7ebtt9/G6/XK12wN8ITPD6v3+nnRaJR8Pi9dUeIAIBR9s9mUMR7Ly8v86le/kiZA+DznXLmRHs6JEyf41//6X9Pf3y+tfb29veh0OhqNBtVqlVAoxA9+8AOWl5e5devWPffTVqslLSwnT55kYmKC2dlZXC4XpVKJt956i1AoxNzcHKVS6Z5NRRTboxv3sm0rbhGVLU7p2+V+ijubzcqI1ZWVFfx+v8wx7evrQ6/X89lnnxEOh2Wt3u0q7hMnTvDKK68wMzMjDwTiGUSTksXFRd5++200TVOpXztALHaz2SwL64vc41qtRqlUIplMMjc3J297GxsbyvT6EMQtOpPJ8Ktf/QpAlrcUNQnuVyWt/ev2QEyBKPLh8/kwGAwyGr3ZbFIulykUCmxsbHD58mVZ1EP8vKOclrdX6HQ6hoeH+f3f/32GhoakmVWYuqvVKtVqlVgsxptvvsn8/PwD61mLLIKxsTHOnTvH1NQUDoeDdDrNv/zLv7CwsCBdGmoP2znduJdtW3EL09xOcqkf9L1KpcLGxgaVSoWRkRHpH3K5XGiaRrlclpVpcrmcDN4QrTz9fj+nTp2SrddMJhPPPvssMzMzDAwM3BV4Jn6m8BGqjWhnuN1uRkZGGB8fx+PxyIIQgKx4F4vFuHXrFpFIhFKpdKwD0XaDkLn7KW24W862+kp1Oh09PT1MTU0xPT1NT0+PzPduf4+maeRyuXtGk6u5uxux55w4cYJTp05x5swZPB6PbP24NR1PFMqpVCr3VLjigGS1WnnssccIBAI8/fTTco+7cuUKqVQKr9fL6OgooVDoriJTD0K5Be+mG/eybSvunZqTH+Swb7Va5HI5rl+/TiAQ4PTp0wSDQfr6+hgZGWFycpIvfvGLRKNRfvSjH8kasCJQIBKJMDs7y3e+8x16e3vxer0yj1V0b2nfmETBClGs4rAHv5vp6+vj/PnzjI+PEwwGNymBYrFIOBzm9u3bvPfee7KikBrrnfGoVq771Sw/efIkX//61xkcHGRiYgKn04nFYtmUTSEinQuFAs1mc5OJXM3fZkSxFIfDwauvvsp//I//cVM2QHvQq3ALlkolisUiuVxOVmwUiAOWuLx885vf5PHHH5d17G/cuMEbb7xBs9lkeHiY/v5+5ubmth2L0J4qqPicbtzLDq07mECkRRQKBUKhkDTfVatV3G43vb29+Hw+RkdHcTgcsktYIBCQ5vXe3l4CgYA0i4tSj+2544VCQfrwYrEY0Wj00Ae/GxG+VLfbzfDwMMFgUB6S4M4mlU6nWVxcZH19Xc6XMpEfHiIoyuVy0d/fTyAQkDICn/vMhaIW/r72uBBRmUvN4+fo9Xp6enoIBoMMDg7KcqRi7xFjGo1GSaVSspzs4uLiXRH7Yo4cDgeDg4P09vYyMjIiFYnFYqHRaBCPx6nX67Iw1aNeqNSe9zndvJcduuLWNI1UKkUul+P73/8+FouFQCCA1+vllVde4Y//+I/p7+/nW9/61qayfiKnzmaz0dPTs0lZt0eKt1otisUily5dIhaL8YMf/ICLFy+SSqVULeYdIII3Tp06xTe+8Q1ZXELkmdZqNT766CO++93vkk6nyeVyyv92iIjyjVarlfHxcZ577jksFovM3xbKRQThiABRTdNkUGcikaBYLFIul1VGwP+PqGf91a9+lfPnzzM9PS2L5ohxFaVjf/CDH/DjH/+YQqFAOp2mVCoRDoc3/SwRGPXkk0/yn//zfyYYDDI8PIzT6ZQ59rlcjs8++4xMJkM2m0XTtEcKkFJWk81081526Ipb5KTW63UikQg6nY5MJoPT6WR6eppWq4XJZMLpdN7lLxI3hHv5bdqDczRNIx6Ps7GxweLiIgsLC5teo9g+osGBCCJ0uVx3RWAmk0lWVlZkjXnF4SEUjMvlwuPxyL739/N1Go1GnE4ntVpNFifSNE2aDsvlspIbPg8c6+npYWxsTG74wrUgzOKFQoG1tTVu3LhBsVgkk8lsctGJ/UukkAUCAWZmZggGg7LWvLBIZrPZTcU/tttwSXFvunkvO3TF3Y5YzCK9IZPJkMvlZATsvfwz9ypY0O5TqtfrhEIhfvSjH3Hz5k2WlpbUxrND9Ho9Q0NDTE1NMTk5Kbu7wR1z6vLyMpFIhJWVFVlNSI314SHqlz/33HM89thjPPXUUzKYqt0i1Ww2ZSGi4eFhnnnmGQqFArlcDoAXXniBgYEBfvGLX/D666+r7nkgU7VEtTlxyxaBs9lslp/+9KcsLS3xwQcfkEwm71moQ5jWh4eHmZ6eZmZmRh6YhAy9+eabvP/++9y+fZu1tTXZEEaxc7p9L+soxQ13R15Wq9WHBgOIamjAphOv8AVlMhkuXbrE3Nzcsd9wdoOouzw6Oipr+Lb785LJJGtraySTSdldSnG4GI1GJiYmePrpp2Wznfac70ajgV6vl+meXq+X4eHhTWbBJ554gscff5z19XWZlnacaQ8iEznxYt9pL+d8+fJlrl27xtLS0j17nYtbu9lsxufzMTY2RjAYxGw2yzifcrnM5cuX+ad/+ify+TzpdLqjFEi30u17WccpbrhzCjUajTgcDhm1ea/bdruSBqQ5T9M0qtUqN2/e5N1332VlZUUWfNnJoj/uKRTCT2qxWBgfH+fJJ59kbGxM3jJEruP169f55JNPWF5eVptLByBuhD09PYyOjuL1eu+qFCiUzcbGBuvr69y4cYP3339fmmZFIZCLFy/y0UcfqbgQNrcLTqVSbGxssLa2BkAmk5HFOS5dukQkErkrehw+v7GLSmiTk5M8/fTT+Hw+UqkU0WiUd955h1AoxIcffkgmk5F15hU756jsZXuiuPe6OIPwPbhcLrmwtzY8ECfeer2+qXGC8MmJgLS/+Iu/kMVedhINqNInkOVjnU4nJ0+e5LnnnsPlcsnym6I15cWLF7lw4QK5XK4jIi+PM+I2ZzKZ6O/vZ3JyUgabbTWTNxoNlpeX+eSTT7hy5Qo///nPN3Xlu379OgaDgVqtphT3/4/Y5GOxmDSrrq+vEw6Hef/99ymVSveNwhc3daPRiNfrlX7tL37xizIeJxwO87//9//m8uXLco4Uu+eo7GV7orj3WpAbjQa1Wo2NjQ3efvttueGIE6poECKaI2y9RRgMBtkKT/yt1+t3tPjVJnXHkjE4OEggEKCvrw+73S6r0TUaDYrFIvl8nlKp1HFBHMcVg8GA0+nE7XbL7mJbLUcivahQKMj6y5FIRDY+EWtf/Fv8n5KJOzSbTSKRCDdv3pT9sIVp9UE+UYvFImthnzlzhoGBAUZHRzGbzWSzWa5fvy4rRqqD0t5yVPayjjSVC7/2W2+9xeXLlzfdHmZnZxkaGuKJJ57g7NmzOJ1O+vv7MRqNUoHbbDbMZjOBQIDBwUFMJhP5fP6RJkHVZr6DTqfD4XDwwgsvMDMzw+zs7KYI2lqtRiQSIRqNEo/HyWQy6nbQAZjNZtlG0ufzyaA0+DwmpFqtcuXKFdbW1rhw4QLvvvvuPWNK2pW24g7C2vfhhx9y5coVWcmx0Wg8MCZHp9Ph8Xj4jd/4DYaHh/n1X/91ZmZm5KEqHA7zl3/5l4RCIeLxuBrzPeQo7WUdqbhFmpeocAaf15P1er20Wi2Gh4flTQDurtWsun7tHhE443A46O3tZWBgAJfLJQ9JcCcCM5fLkclkZAlHtdkcPgaDAa/Xi9frlTfurW6fer0u0yTj8bgMSNva61sdYO+NqBEhDjsP80GLfclisdDf38/Q0JCsFFkoFCgWi2iaRiKRIJVKKZ/2HnLU9rIDU9ztUd/w8M1ga5lFccK9efMmGxsbDA0NbYrqbPeBi1NvPp8nHA6TTqcf2eTRqRN2EAgLh9vtZnJyksHBQb74xS/y+OOP43a7NzWcyefzfPzxx6ysrBCNRjvSH3QccTqdPPPMM4yNjTEwMCBTwNqjn3O5HD//+c/54IMPiMfj0rwrAtKsVqu8masWn5sRlwvh99/OujcYDFitVvr6+njxxRc5deoUgUAAuBNQKwqrlMtlWZJZsTuO6l52YIpb3IDFn/bAjYcp8Pa/M5mMbFHY/vPaXyMKulSrVVnxqZMnodMQByKr1Upvby/BYJCBgQHZtEXMn8hZjUajhEIhVVWrQxD52/39/QwODsqsjPbSpkI2VldXZWvJrf2gRdqYuvndm/aMlu0grIZ2u53BwUGGh4flbU/TNHnrbrckKnbHUd3L9l1x63Q67HY7J0+elEUe4I4vZ21tbdOG8bBbrigNKMoDtifNi0pFmqZx69Yt1tbWuHTpkjRlHecb9KNitVpliso3v/lN6Sttdz+IGr5LS0tcvXqVlZUVstnsIT+5wmKx4HQ6CQaDTE9Py1a5ALFYjFAoRCwW4+LFi0SjUVZXV++yfolbuVDYSonsDS6Xi/HxcUZGRqQ1Q5hjP/roI/7f//t/rK2tUSgUDvtRjwxHdS87kBu3zWZjamoKv9+/6ZYcDocfKVJV3CSsVuumNp5wx3RVLBYplUosLCxw8eJF5ufnpTJXbB+LxSJb3b300ksMDg7icrk2xQxks1kWFha4ffs2N2/eZH19XW3wHYDZbMbj8eD3+xkfH2diYgKr1Uqr1SKVSjE/P8/CwgJ///d/TyqVuqsfdLv1SsiNOvTuDQ6Hg+HhYQYGBmSRlWazSb1e5+rVq/zN3/xNx0YxdytHdS/bV8UtzBTixi0ivA0GA319fZw4cYJYLMbVq1dlGH77whXvN5lMMg1saGgIn8/HyMiILA1YKpUolUp88MEHhMNhrl27xu3bt2WvWsX2EbWtRWCTzWbbdDgSaRJLS0t89NFHhEIhisWi2tw7BKfTydjYGCMjI7LDlzDprq+v8/7777OxsUE+n5cVodrnrr0KoWL3iD7oHo+HU6dO8Wu/9msMDQ3hcDjQNI3333+fxcVFLl26pNx5e8xR3sv2/cYtcq9feOEFpqensdvt0rwNcPHiRf78z/+cUCjE0tLSJsUtSjGKZHmPxyNLN545cwa32y27i4XDYf72b/+Wy5cvy25j4jSr2B7CEiJOqP39/TidTmw2G/B53m80GuXDDz/ke9/7nsx5VAekw0en0xEIBDh79iwjIyN4PB5MJpMMRrty5Qp/8zd/I4PNxP9v3ai6YeM6KITbYDfvn5yc5PTp05w7d45/82/+jcwdzufz/NVf/RXf//73O7KsZjdz1PeyfVfcYnPI5/Pk83k5eCISvLe3V/q/G40GmUxGfk/4JxwOB+Pj47hcLtlA3u12y0hzEcIv/uylefw43T6EhUOMcyAQkKUA4fP+tOvr68TjcUql0l19hRWHQ7t1y+/34/V6pQ+1WCzKxhelUmnTYVYp6fuztcrcg1x67S5Ao9Eo+59brVbGxsaYnJwkGAzKYlLJZJJUKiUvGWoe9pajvpftq+IWSjubzfLLX/6StbU1vva1r9Hf3y8X+cmTJ/nOd75DNpvlvffeIxaLyTKn/f39nDhxQlZAEwpdbFCtVotcLsf169dlucF0Or1nJyZhpj8uyttkMmEymXj88cd57bXXZG3rSqUC3InW//TTT7lw4QKrq6tyoatN5/AxGAwYjUZ6e3uZnZ2VPepLpRJXrlxhfX19U/T4wxTRcUfE0xiNRjlOoqLjvWICxN4kqjq63W6ef/55BgcHOXv2LE888YR07SWTSX7+85+zvr7OyspK1yiLbuKo72UHEpymaRqxWAyz2Sy75AjFbbfbGRsbo1AoEIlEsNvt+Hw+3G43AwMDzMzMyOYhgDTz6fV66vU65XKZRCJBIpHY8xJ1W9PNjjLipiDiCQYGBrDZbJsCaGq1mmyqkE6nu2qhH3XEDcNsNuN2u7Hb7fLGnU6nCYVC8manlPb2aE9hFal0sNkKJwp4iIBZq9WK3+/H4/EwOjrKyMgIY2NjDA0NyQYW2WyW9fV1VldXKRaLh/XxjizHYS87EMVdLBa5ePEia2trPP744wQCAXw+nzRfmM1mXC4XTz/9NOVyWUaLi2CCdnOVEJRsNks6nebatWv8+Mc/JhKJEI/H9/S5RSOBo47I2e3p6cHn89Hb24vT6ZR13mu1GktLS6RSKRYWFlhZWZG+oP1Y7Fu7VykejlAwJpNJupeMRiPVapVLly7x1ltvyWBNpbQfjoiqv1fBKPG30WhkenpaXjBmZ2exWq24XC4sFovMoRdFVm7evMmFCxeIRCL88pe/JJlMEg6HD+cDHlGOy152IIq7Wq2yvr5OLpeTNXhFLXEx0AaDgZGRkfv+DHFLF6fgarUqbxJXrlyRlZ/2kkctsNCtiDlwuVwEAgEZwW8ymTAajWiaRjKZJBQKyUYK+10OcLdBQceR9v7OJpNJNtZZW1vj2rVrXWcOPGzq9fpd67Bdket0OunOO3fuHL/xG7+BxWKRBW+2ll2OxWK8++67xGIxrly5Qj6fP/DPdNQ5LnvZjhW3UKLtJqQHIczaly9fplarcf78eQYHB2WBd/Ez74Uwa5RKJS5dusTa2hrpdJpEIiELFhwHBbuf6PV6Tpw4wWOPPcb4+LiM/K9UKhQKBdbW1lhaWqJcLstUFmHm28tFqepjPzp6vZ4nn3yS06dP88wzz+Dz+TYFgHo8Hvr6+kilUtLHp9geD4q4bzQarKysUC6X8fl8TExM4Pf7mZiYkCWYRQexdDrNjRs3WFpaUr2195njsJftWHGLfrJbSyXeCxGkViwWef/997lx4wZOp5OXXnppkx/5Xoq71WpRrVYJh8PE43H+7u/+jnfffVfmbqtetbun1WphMBg4deoUL730EuPj41itVmq1GoVCgVwux9LSEgsLCxSLRZxOp8yBbDQae36iVAp7+wh/3rlz5/j2t79Nb2+vdEHVajUMBgM+n4+BgQHq9TqJROKwH/nI0Gg0WFpaYmVlBZ/Px8mTJxkeHmZ0dBSLxSL3xlAoxNzcHFevXuXmzZuqBPM+clz2sh0rbnHTfpQHa7ValMtldDod8/PzvPnmm7JP8IOCwCqVCuvr62SzWVlHVvS8VewNrVaLRCLB6uoqdrudgYEBqtUqqVSKZDIpAwBzuZwc++2WqlXsPyaTCavVKityweftOAuFAul0WnbaU+wdYg+Mx+NcvXqVaDRKtVrdpLhv377N6uoqq6ur225Iotg5x2Ev27Hi3s5NeyutVot0Ok02m+Uf/uEfeOONN+5S1lv/LcwMYsEXCoUH9rtV7IxarcalS5eIxWLkcjl8Ph+lUon19XVisRjXrl1jYWFBtjBsTyvaS9S8PhrtTRScTidWq3VTtTQRXzI3N9fRbQq7FbE/ffbZZ9y8eVPGGLTvY5qmUa/Xt9X6U7F7jsNeduD9uMUg5XI5crncQf96xX1otVpks1lMJhPhcFjmNoZCIXk6LZfLsvOa8kF3BiIIymg0yiAckfZSq9Xk5lStVg/7UY80lUpFxQ90CMdhLztwxa04WLa2PL0XwqIhgmji8TjvvPMOzWaTSqWCpmlEo1EqlYrKAe4gRPqX1WrF5/MRDAZlumSlUpEpkipXeP8R0cwqT37/UHvZ5yjFrQDuLHgRpJFOp7l9+/ZhP5JiG+j1egwGg+zzLBBNFLY27lHsD/eK0elGhXAUOA57mVLcCkm3nT6PQ0W7hyHKcIpqUCJoNJ/Ps76+LoM5VV78/tKeFquCzw6fo76XKcWtkHTTQgeluEUAmvDV1et1GUleLBaJRqNEIhEqlcq2zIyK3dHNptejRrfNgVLc2+A43T6O8uc8yp9tO+j1emw2GzabjUgkwkcffUQulyMSiZDNZrl69SrpdJp0Oi3H6lHWvjD/qhvk9jlOe8tBc5TH9VE/m661zXccldtNe9OAR81B71SOytzslE6dm/2eF6PRSDAYxOl0MjU1xejoKIuLi3z44YdomibTv8TX7X7YhyljEWwlGpXsRHl36rzA3s+NiO7vljLJnTo3ai/b3rwcuxt3u+JWKLodsdHV63UqlQrlcpl8Po+maej1emCzkn7UG7dCoeg8tn3jVigUCoVCcfjoD/sBFAqFQqFQbB+luBUKhUKh6CKU4lYoFAqFootQiluhUCgUii5CKW6FQqFQKLoIpbgVCoVCoegilOJWKBQKhaKLUIpboVAoFIouQiluhUKhUCi6CKW4FQqFQqHoIpTiVigUCoWii1CKW6FQKBSKLmLb3cGOe6egTu7FouamM+dGzUtnzguouenUuTmIeTGZTOj1eur1+n1bsIrn2GknvZ2O73bfp27cCoVCoVB0EV3Xj1s0rG82m5v6DCsUinujZKb7eZQ+6ooHU6/XHzqejzrWD3r9o97et0PXKm61iBWK7aFkprvR6XT7svkfV1qt1oGN437NXdcp7mazSavVUjcHhWKbKJnpbsSGr5T2HfR6PTqdTq7r+72mE6xM+zVnXam495v2QAMlLIpuR8lM93NcxnQ7t1ODwSBfd7/gMoPBgMFgoF6vH/qBdT/mTgWn3QN1wlUoHg0lM4q9YDtmbHHT1uv1mM1mjMa775/CwnRU16NS3PfhqE64QrFfKJlRHASNRoN6vY7ZbMbtdmOz2aT5XFCv16nVave9kR82u0176zpTuUKhUHQTwt9qs9lwu93o9Xffl9oVjaZpNJtNNE3rWMVz2LQfEo1GI3a7XX7d7v/WNA1N0w40IO0gUIpboVAo9gERUezxeHC5XDz33HP83u/9HjabTfpphUIJh8Osrq6STCaZm5sjm81y69YtMpnMPZXOYfttO4FKpUKtVqOvr48TJ07gdDoZGRnBYrFQKBSoVqvcvHmTa9euUavVpAKHz+dma2zGXo3rwwqy7PYQ0fWKW6fTyRPs1omAz30m6uSqUNxBycz+I8a1/aY9MTHBiy++iNPplDdDsYEvLi7i9/sJh8MUCgVsNhuhUIhisUij0ZAK5ajdHHdDo9Gg0WhgMBjw+/34/X4mJyex2WzkcjlKpRLpdBqLxSJv4e2KWQSwtfvD92t89zolrOsUtxAIq9WKzWbD6/Vy8uRJnE4nQ0NDOBwOGbCgaRqFQoF4PM5PfvITEomEWvSKY4eSmYNFp9NhMBjwer3Y7XZeeeUVzp49y/T0NHa7HZPJdFd+b29vLwaDgZGREQYHB0mn0/T29hIKhYhGo6RSKQqFAslk8ljOhxhT4K5DTDabZX5+HqfTST6fx2q1yvf5/X5effVVNE0jl8vRaDTkYWhiYoKRkRFCoRBXr16lUCgQCoWoVqt7Ftgm5lk869bCLztV6F2puPV6PVarFa/Xy8jICOfPn6e3t5cnn3ySnp4eHA4HNpuNfD5PIpFgfn6eDz/8kFQqdaQjDRWKe6Fk5mARSsbj8eD1enn++ed57bXX5MFpq4VDp9Ph8/nw+Xw0Gg2mp6fJZrM0m01WV1eZn59naWmJWCy2Y8Xd7ZXXdDqdjB4XFgjxefL5PEtLS1itVgqFAlarFafTicVi4dSpUzzxxBNomkYqlULTNBKJBLVajV/7tV/j6aef5uLFi5TLZeLxOKlUilqttmc3byF794pyb1fqj8quFPdhVfMRqQBGo1H+EWYPg8Egg0H0ej0mk+kuf5JCcVgomTnaOBwO+vv7cbvdPPPMMwSDQaamprBarZhMpge+V2zutVqNWq1GpVKhXC7T29uLy+Uim80yNjZGpVIhkUjIv4vF4kOfq9vnsN1186CDZLPZRK/Xc+LECYaHhxkYGCAYDJLJZEgkEtTrdZxOJzqdDrfbjcPhYHBwkCeffJJoNEoulyOVSpFMJrc1rg96XvF3uxn+fq97VHasuNvLKB6kL0x8UIPBgNVqxWKxYDabMZvNmEwmTCaT3JTE/5vN5k3vVSgOAyUzRxu9Xo/X6+Xs2bMMDg7yu7/7u1JpCz/r/dKAxAZfr9epVCqUSiVyuRz5fJ7p6WnGxsZoNBrUajUymQyffPIJ8XicTz75ZFcKpltotVrUarVtvc5oNPLCCy/wwgsvyDFfX19nYWGBer1OIBDAbrfT39+P3+/HbDZLt0SxWGRjY4OrV6/uybg+KNhtN7K1Y8V9WALdfiuwWCzY7XZcLhculwuLxSI3IPFasSnZbDZsNhuaplGv17f1u6xWKx6P59i3AFTsDUpmji7i81osFvx+v7wl2+12ab3YGsEslFGtVpM3PU3TyOfz5HI5otEoyWSSTCaDz+fDZrMRCASwWCyMj4/jcrmksimXy5RKpcP6+IeKMEcbjUbpnjCZTDKlrlqtUigUpI/ZYDDINa/X67FYLLjdbkqlEoODg7RaLRnhL3LGO41dKe6D/kAiwMZsNuP1eunr62N4eJjZ2Vn8fj+BQACr1SrNf+I5A4EAY2NjaJpGKBQim81uaxMdGxvj5ZdfxmKx7PdHOzJ0uy9tP1Eyc3QRysPr9fLUU08xNDSE0+mkVqtt8nPC52bfRqNBJBIhm83y9ttv88///M9S0dRqNbLZLLVajUgkwo0bN3jqqaf41re+hcViYXZ2llKphMfj4eLFizLt6bjJnlDEFosFn8/H008/TV9fH81mk8XFRSKRCBsbG3K8RRCmKNgi5EP8+c3f/E0SiQT5fJ5yuUwul5Nrv5PGtquC03Q6HWazGbvdjtPpxOv14vV6cbvduN1ueXtoL0IvihoYjUbMZrPcnLaDyWTC4/Ecq03oXoEzOp0Oi8Uix068Zqu/VuRViv8Xt7Z73Tbavxb5lbVaTeWn7jFKZg4Gk8mEzWbD5XLh9/vxer13leIUvs5Go0GpVJKBUqlUiuXlZW7cuLEp31jIgs1mAyCdTlOv1+XNu9FoMDw8TCwWIxaLHdtDs9hbxO3ZZDJRKpVIJBJEIhFCoZBMyzObzVSrVQwGA41GY1PshxhXnU6Hw+GQsR6dSFcpbqPRyJkzZxgfH+f06dM8+eST+Hw++vv7sVgsMjdVLPjl5WXeffdd1tfXmZubIxqNUiwWt72419fXef311zEYDPzpn/7pvn2uTsFqtWI0GuXp0mQy4XA4cLvdfO1rX2N0dHRTUJPJZNq0Ef3f//t/+fjjjzEajZhMJmZmZvj93/99fD7fpsYA7WQyGd5//33i8TifffYZGxsbh/DJjy5KZvYX4YZ49tlneemllxgZGWFmZga32y1dEYCUkWw2SywW48KFC8RiMTY2Nkin04RCIRKJhMw1br/hra+vk0wmyefzhEIhJiYm+MM//EOCwSDnz59namqKRqPBBx98cOwOvuLAXyqViEQiXLhwAZvNJt09woIBSNO4y+WSLp0TJ07IPU8cmqrVKqVSiXw+L9/baXSN4hYmkYGBAWZmZpidneXcuXOYTKa7AmnEaTWZTHL58mXC4TDRaJRMJvNIQUGZTIZMJrMfH6fjEOkWFotFbhrC9xMMBnnxxReZnZ3dFNAkXivMeu+99x6ffvqp/N7IyAj/6l/9KwYHB+WtbivhcJharcby8jIrKytKce8hSmb2H71ej8FgYHR0lJdeegm/308wGMRisUgrlUhfqlarZLNZQqEQ77zzDktLS4TDYbLZ7AN/h6ZpZLNZ+d7HH3+cb3/725hMJiYnJxkbG+Pdd989dnEFgvbxzeVywOe38Pa13mw20el02O12bDYbsVgMTdOAO/Mo/Nm1Wo1qtUq1WqVer3ekFaNrFDd87q9zOBybTHFb+7NWKhWq1SqpVIpQKEQ8Hpf1fztxEg4bkeP7yiuvcOrUKblRm0wmnE4nbrebyclJPB6P9BVVq1UqlQrZbJbPPvuMVCqF3+/nq1/9KjabDbvdzmOPPSaV+/1wOp08/fTTjI2NYTQamZmZObb+uv1Aycz+odPpZACaaHYhlLVOp6NardJqtYhEIiSTSVZXV7l48SLRaJSlpSVSqdS2b3Tt1ezab9XiMOxwOOjp6ZE3RRFdrdfrqdfrR74K3tbiJuLfIqakvQCKTqej0WiwsbHB/Py8tJoUi0Xm5+dJJpOEw2GluPcKnU4nywe2p1e0m2HFJpTNZonH46yurpJOp6lUKvc1Ix1Wbm0nIG7aDoeDV199lW9+85tykQufkcFgkNGxuVxOFu4vl8usrq7yj//4jyQSCV544QWef/556U/1+/1YrdZNpr+ttwKXy8X58+ep1WoMDQ2xsbHBP/7jP3Ljxo0jv9kcBEpm9g+9Xo/H48Hv9+Pz+bDb7dLdBHdiPjRN49atW8zPz3Pp0iV++MMfUi6XdxTPIawiwjcr5lGv1+N0Ounv7yeTyVAul2k0GjJ+Qfz7qLN1Lban2AmEMq9Wq6ysrPDZZ5/JA1E2m+XTTz8lnU6zuroqD16dSFcobqFc2n2u7a3chFIQwVErKyssLy9z+/ZtCoXCAzcgQadO0H5jNBplsFI2m2V5eRmfzycjM8WY3rx5U+aWFgoFufhjsRjhcJhMJsPy8jK1Wg2r1YrdbsdutxMKhaRpvb0+tt1ux+fzYbVaGRgYoNVqEQqFZIMFj8cjfU3HdW52g5KZg2FrgQ3xb71ej6ZpVCoVYrGYjHAWt7id+KKdTqcs02k2mzeNv91up7e3F4BIJCJ/x05/11FFWKAsFgter1eOWbPZlP9Xr9c3xfp0Il2huEVEoNPpZGBggPHxcXp6ejCbzTLNol6vywCON954g5/+9KfS7Hc/U5GqDHUnIG1qagqv18v8/DyhUIhXXnmFEydOUCgU2NjYIBqN8nd/93csLCxQKBRksJI4/ZdKJRqNBmtra1JBt6dbtEehiz8TExOcO3eOkZERfvu3fxu73c6bb77J66+/jtVqZXJyklwux9LS0rYKLyg2o2RmfxFrWhRMESbV9hteoVCgUChw6dIlXn/9dRnstFNFOjo6ym/91m8xMjKC2+3eZBYW5WsXFxe5deuWdH0Id8hx5F5R9gaDgUAggNvt5vTp05w7d07uV/F4nEwmQygUYnV1lXA4fEhP/nC6QnEbjUaZc+rxeKS/TtzgRDRgJpMhlUoRi8WIRCIUi0VpkjruG82DaDcVlctlmUKRz+dZX18nGo2ysbHBxsYGxWLxvoUeRCpYew3erZu/+J7JZGJgYACAtbU1bDabLDgRCATw+/1omobBYOhYP1Mno2TmYKjX69TrdUqlkmzB6Xa7ASgWixQKBfL5PPl8nkqlsqsxtVqt9PX1EQgE7ko1M5vNst68mON2K8BxZatrzmAw4Ha78fv9eDweWf5UpLzC513HOpmOV9w6nY6+vj7+4A/+gPHxcZ599lmGh4dluH+lUiEej5NOp/nZz37G8vIyn376KbFYTJqJ7rdwj/OChjtjW6lUmJubw2w24/f7sdvt0s8sKjpVq9VNLQbvR/smcb+cUvGacDjM22+/jdVq5Ze//CV6vZ7FxUWKxaIsRajT6XA6nRgMBiqVSscLU6egZOZgaLVaslDHp59+SqPRYGhoiPPnz2M0GllZWSGTyRCPx3cd8a3T6QgEAnzhC1+gp6cHu90uLSdC6YgDmvhdx/mmLRBR/wKn08mzzz7L5OQkMzMzeL1e2RGvUChw/fp1bt++3fGZER2vuOGO/2ZmZobp6WmCwSBOp1N+r9FoUCgUpI/19u3bxGKxY1v+71Gp1+tkMhl5Shft7zKZzF2BHY/Cwzb4Uqkk52hxcVH+f3sahyjPCciiIIrtoWRm/xHFg2q1GvF4nJs3b1Kr1ZiZmcFsNstypaLghwgke1Rrhnif3W6np6cHn893141bKCjhojqu3KuAVHs5X6vVSjAYZHR0FJ/Ph8VikcF+ooNYIpHo2PxtQUcr7q31lUU1G0Dm2kWjUS5fvkwkEmFubo6lpSXS6fQhP3l30L55NJtNac7TNE0u5sN4png8zpUrVxgdHeU//af/hKZp/NVf/RULCwsH/jzdhpKZ7WG1WndUrW9rNL14r2h/2mg0uHnzJi6XC7PZTDAY5LnnnmNycpL19XUuX74szerbORTr9XrOnDnD1NQU586dkz2+xUFbmOrn5+f58Y9/TDQapVwuP+pwdAzioF6tVnd0UG/PXBEdwPx+v+w939PTw3PPPceJEycIBoMyXS6bzZLL5SiVSpt+d6dWo+sKxW02m2XDA6PRiE6nk9Vykskkc3NzhEIhbt++zcbGxrE1Ee0UYb7ulC5DqVSKdDrN6Ogo/+7f/TuazSY///nPleLeBkpmtoeIyhaVyrbL/RR3Npsln88DsLKygt/v5+TJk3g8Hvr6+tDr9Xz22WcyA0NkZjwM0aLylVdeYWZmRh4IxDOIJiWLi4u8/fbb8tDdrdhsNhk4uZvPIfzWTqeTYDAog/d6e3t54oknGB0dldYJEWArsilE/YJOVdrQ4Yrb7XYzMjLC+Pg4Ho9H5hIDsgpRLBbj1q1bRCIRSqWSCqp5CPerGd5J9Pf3MzQ0xIkTJ2RK2nFTLDtFycz2qNVqm+qBb5cHjZNIr9vY2KBSqTAyMiKLtLhcLln7QFSny+VyUkGJVp5+v59Tp07JlCWTycSzzz7LzMwMAwMDdwWeiZ8pAji7fR5F7vRO5b29ToFer8fn8zExMYHD4ZBBhLFYTFZKazabLC8v8/HHH7OxsUEymZTP0F7p8V6BtodJRyvuvr4+zp8/z/j4OMFgEI/HI307xWKRcDjM7du3ee+992Slp25fuPtNe6eiTlqI7Zw8eZKvfvWrjIyMUK/XKRQKHfusnYaSme2xU3Pyg4L2Wq0WuVyO69evEwgEOH36NMFgkL6+PkZGRpicnOSLX/wi0WiUH/3oR7IOvAgWjEQizM7O8p3vfIfe3l68Xi8WiwWbzSY7uLX7tpvNpgyqKpfLR+IAJqx+O/kcQmmLpiFGo5HBwUGeffZZNE0jHo+TTCa5efMm8XicQqFAqVTik08+4Yc//CHFYpFisUiz2ZTvb6+01knj25GKW5yW3G43w8PDBINBuXDhzoJNp9MsLi6yvr4uO+2oW9mD0el0DAwM0NvbSzqdZn19veMUorihDA8P43Q6ZfOFbvbbHQRKZjqDRqNBuVymUCjI4kOi/Knb7aa3txefz8fo6CgOh0POg0iBPHnyJL29vQQCAWkWF12q2nPHC4UC1WqV5eVlYrEY0Wi0Y5TKbtiLz9CeBieaj4hObCJAzel0ygDZcDgs43vEftiu/E0mk+xJ3ynKuyMVtwiqOXXqFN/4xjfw+Xyyw5SI4vzoo4/47ne/SzqdJpfLdZwC6kQMBgOvvfYav/u7v8tPfvIT/vt//+8UCoXDfiyJOC1PTk7yG7/xGywtLfG3f/u3hEIh1tfXD/vxOholM52BiEzO5XJ8//vfx2KxEAgE8Hq9vPLKK/zxH/8x/f39fOtb35L5wsJXrWkaNpuNnp6eTcq6PVJcxKJcunSJWCzGD37wAy5evEgqlVL1DvhcaQvf/8WLF7l165bMkBFtbg0Gg4xvKJfLmyo0ilLPosmS1+ulUCiwsrKyJ/X7t/YJ2AkdqbhF/2AR2OFyue6KjE0mk6ysrMi6v4qHo9Pp8Pl8jI2N0dPT03FpIxaLBbPZjNvtpqenh/X1ddbX11lbW1M37oegZKYzEIFV9XqdSCSCTqcjk8ngdDqZnp6m1WrJ5j1bfagiIOpectleJU2YfTc2NlhcXJRBm8ddabcjLEn5fF52DHsQ90ojE0pe+Mfb0/naX/eo4761SNVO6DjFrdfrGRoaYmpqisnJSdlxB+6YiJaXl4lEIqysrMgqT2rBbo9ms8mHH36I2Wzm8uXLHbV5WywW2Z3s3LlzwB1/1+rqKhsbG0pxPwAlM52JGONSqUStViOTyZDL5WQv+3u1uW2fl/ZCKiLVrF6vEwqF+NGPfsTNmzdZWlpSc8num95sLRwlytj6fD6cTif1eh2LxSKVdrPZlD0YhLWk/Xff7zlE1UhhCdupq6rjFLe4FY6OjsraysJkJPoFr62tyeg/Ze7bPs1mk5WVFYxGI2trazsurrIfGAwGZmZmOH/+PKOjo7RaLdlmUuTIKu6NkpnORdyQRcORarX60IDArbnIIpBUNPbJZDJcunSJubk5NZewyUqxVz7y9oJP7XEGRqNRujeMRqNMzbvXJeh+zyJ857vZfztGcYv2gxaLhfHxcZ588knGxsakaULkoF6/fp1PPvmE5eVlddLcAaJ9Y6vVIhAIyEpph7UBiIpQbrcbj8eDx+Nhbm6Ot956i1u3blGtVjEajeqWeA+UzHQHZrNZts51uVw4HI573ra31vcXEeSaplGtVrl58ybvvvsuKysr8jC70+jrbkP4+oG7PvdermlxaBKui0wmw9LSEuVyWQavWa3WTSlnDodDdhVLpVIPtWSKQ8Fu9tyOUdxiA3c6nZw8eZLnnnsOl8slgwjK5TK5XI6LFy9y4cIFcrmcuoXtgHK5TCqVAqC3t5dKpXKo/XqNRiMej0cGU3m9Xt58803+1//6X3KBm0ymrij8f9Aomdkf9rrXuIg/cLlcuN1uWX9/6+8UvaI1TQOQXas0TZMBaX/xF38hi73sZC7vdWDoBkSbWuCeh/i9Vt7i54nueSK4zWAw4HK5sFgsMgdfFHkpl8vk8/mHXjKEYt/NM3eM4hY5d4FAgL6+Pux2uzRDNBoNisUi+XyeUqmkgmt2iDA/FwoFgsEgU1NTVCoVrFYr+XyeRCJx4NXT7HY7s7OzBAIB8vk8Fy9elE3s23Mn1U3xbpTM7A97vdYajQa1Wo2NjQ3efvttWbJUpO+JBiEej2dTS1yBwWCQgZvib1FA5FHpVjlqL8pykJ9BKGyxBwlLFtw5kFmtVqxWK/B5r2+xz241hW9tb9z1UeU6nQ6Hw8ELL7zAzMwMs7OzMpVFlGqMRCJEo1HZM1XdvnZGNpulUCjw1FNP8Sd/8idUKhV+9rOfEQ6Heeutt7h58+aBCkYwGOQ//If/wNDQEN/97nf5y7/8SwqFggzcOCoVofYaJTPdg/Brv/XWW1y+fFmaWU0mE7OzswwNDfHEE09w9uxZnE4n/f39GI1GqcBtNhtms5lAIMDg4CAmk0ne7LZLt/dRF37ng0ZcHtr/nc/nMRgMDA0NEQwG5fdEK12RwVEsFjeNt5hPIaMiL3wnHLriNhgMMuS+t7eXgYEBXC6XXLhwJzJWdKwSfoZuXYCHjViIzWYTg8Egu+XodDpZ4P+gEJuJSFcSLRDFgn7UOtLHBSUz3YVI8xIVzuDzmvJer5dWq8Xw8PCmgKj2G/fWXG7FwbI10l/Mp5BBvV6P2WymUqnIKo9bc+/vlW62Gw5NcYuTh9vtZnJyksHBQb74xS/y+OOP43a7NzUByOfzfPzxx6ysrBCNRtVmvktarRZLS0v8wz/8A/39/TzzzDM88cQTfPTRR3z22WfyNXvB/fyFYv4jkQj/7b/9N8xmM8vLy/KUqub4bpTMdA7tZk/gobfZ9mpe4n31ep2bN2+ysbHB0NCQVNCiBaig0WigaRr5fJ5wOEw6nX7k26c6tO0t7TUxhoaGOH36NIlEgr//+78nHA7LwDXxWiGX7c1pdiOTh6q4Rfm53t5egsEgAwMDspC+qA8rCvBHo1FCoZDqGbxH5HI5FhcXabVaeL1enE6nLLHY3plnvwRe+HmKxSIXL15UG8s2UDLTOYjx3lrLGh7eiKT970wmQz6fp1gsbvp57a8RBV2q1SrFYlHWJVccDkIO7XY7Xq+XYDAoO7eJ+AUxh+Lre/nouzI4TdSLnZyc5Jvf/CaDg4P09/dv+tCitvLS0hJXr15lZWWFbDZ7WI98pLBYLHi9XgA+/PBDrFYrTz/9NBMTE1y/fp2LFy/K3NFms0mpVKJer8t8RnF7EEriXhuJKB0IbDIDtt8+utnvdtAomTl8hEvp5MmTOBwOOe7hcJi1tbVNN6mHrWudTidLa9rt9k2Fc0SrSU3TuHXrFmtra1y6dIlisSi7Vyn2l63uChGX0NfXh9vt5ty5c3zpS1/C5XLhdDoxm83SOiIOciIafutFaLfzd2iKW9SBHRkZ4aWXXmJwcBCXy7VpsLLZLAsLC9y+fZubN292ZFOMbsVkMsnxvnLlCkajkZdffpmpqSl+/OMfEw6HZeEIESBWrVZlu8H2Sk73qwAkfD/tEZTtr1NK+9FQMtMZ2Gw2pqam8Pv9m27J4XBYxhJsZ10LP6mITBZtPOGOKbVYLFIqlVhYWODixYvMz89LZa7YX7a6QkTTEYvFQn9/Pz09PczOznL+/HlqtRrlclmmrQqLpYgjai9vuld73qEobhE27/V68Xq92Gy2TQtWpK8sLS3x0UcfEQqF7orQU+yOTCbDtWvXMBqNaJqG0WjEbrcTjUYB+PKXvwwgFXSxWKRer8tuOaImczqd5p133iGdTt9Vlas9EnRrcJS6bT8aSmYOn3YT6cmTJ2WEt8FgoK+vjxMnThCLxbh69apMxWv3RYv3m0wmmQY2NDSEz+djZGQEm82GXq+XXas++OADwuEw165d4/bt24RCIXUIOyBEWp4oa+r1ejl58iQul4uTJ0/i9/sZGhpCr9dTLpfZ2NggFAqRzWblXgmfp5PtdVexA1fc4vQhbg79/f04nU5sNhtwZ4OPx+NEo1E+/PBDvve978lcVLVo945QKEQsFpP/NhgM3L59m56eHn77t3+b//Jf/oss9Qd3R1aK2/Pc3BzRaJS5uTkymcymmuKixeHW9wuUn257KJnpHETu9QsvvMD09DR2u12atwEuXrzIn//5nxMKhVhaWtqkuIUFShTM8Xg8PP3004yMjHDmzBncbrfsLhYOh/nbv/1bLl++LLuNCSWg2F+EedtoNMrYn5mZGf7tv/239PX1MTo6KovpGI1GstksV69eZXFxkUgkQjKZlHvbfhWOOhTFrdfrZc/lQCCwqeOK6Bu8vr5OPB6nVCrd14eq2DnNZnOTyU2v18suOhsbG9y+fRuv18vo6Kgs2dhedalQKJBKpchkMtKncy/lrG58u0fJTOcgLE35fJ58Pi8PUCISvLe3V/q/G40GmUxGfk/EKDgcDsbHx+V89vf343a7ZaS5SOMTf/bSPK5Syj5HHIhFJL9Q1CaTCb/fL+MO7HY74+Pj+Hw+HA6HdBuGw2FqtRrLy8ssLS2xsbGxI7kT6Z2PMjcHrriF6eHxxx/ntddew+v1otfrqVQqwJ0Iyk8//ZQLFy6wuroqB0IpgP2l2WwSj8dJp9P8n//zf/jpT3/KU089xX/9r/+V/v5+AoGArBAEcOPGDb73ve+xsbHBysrKIxeEUGwfJTOdgVDa2WyWX/7yl6ytrfG1r32N/v5+qQROnjzJd77zHbLZLO+99x6xWEyWOe3v7+fEiROyAppQ6ML83mq1yOVyXL9+nfX1dZn6tVc3NmH6PU7Ku/2zbpUHk8mE0WiUByqfz8dzzz1HIBDg3LlzjI2NyYh+YS2p1+vcvn2bQqEgG72kUikpd+l0+pGf0eVyMTg4+EjlaA9UcQsThPDxDAwMYLPZZPBSvV6nVquRSqXY2NggnU6rDegAEc3ny+Uy4XAYp9NJNBqVm4swzQJEo1FpGhIR52qe9h4lM52HpmnEYjHMZjOlUkkW2BAR52NjYxQKBSKRCHa7HZ/PJ+duZmZG1twGZGlMvV5PvV6nXC6TSCRIJBJ7XqZ2a7rZUaY9h1r8LQLFBDabDavVis1mw+1209vby8jIiEzvmpyclL0cyuUyyWRSzk86nWZpaYm5uTlyuRyxWGzHFi5xKNhav/5BHJjiFgPX09ODz+ejt7cXp9Mpa+/WajWWlpZIpVIsLCywsrIifXT7sQk96CSmuMPt27f5H//jf2C327FarZsWllDc7dWClGl2b1Ey05mI2gNra2s8/vjjBAIBfD6fdGGYzWZcLhdPP/005XJZRouLgML2PG3hgspms6TTaa5du8aPf/xjIpEI8Xh8T5+7vc72UaS9Y5cYaxGL4/P5mJ6exmKxSNP4xMQEw8PD8nBls9kYHBzEZrMRCARkSl4ymWRpaYl/+qd/Ip1OE41GKZVK0kK5286FhUKBlZWVzrxxi0F1uVwEAgEZVSnMFZqmkUwmCYVCRKNRksnkvpdpFEFWinuTSCR48803D/sxji1KZjqTarXK+vo6uVyOUChEPB6XtcTFnBkMBkZGRu77M8QtXeTgV6tV0uk0oVCIK1euEI/H91zJtrcMPaoIpSxu0iI4zO/3MzMzg91ul5kAX/jCFzh16hQOhwO/3y/nTdT6by96EwqF+OUvf0ksFiObze5pSp5Iu30UDtRUrtfrOXHiBI899hjj4+MyGlPc2tbW1mTvU4fDIdvZwd6e8LdbplChOGyUzBwMQolut9yuMGtfvnyZWq3G+fPnGRwc3GSOvZ9JWrg2SqUSly5dYm1tjXQ6TSKRYG1tTVqwFNtHFLPp6enBarUyODgoC0y1Wi16enqYnJzEarXKw5LT6aTVasl8+fYqeCsrK/JQvLq6ysbGBolEomMyNQ5McbdaLQwGA6dOneKll15ifHwcq9VKrVajUCiQy+VYWlpiYWGBYrGI0+mUuamNRmPPT/pHcfNRHC2UzBwcosDGdmpIiyC1YrHI+++/z40bN3A6nbz00kub/Mj3UtztEcnxeJy/+7u/491335W526JugmL7iEOXxWIhGAzi8Xh47LHH6O/vl6Zzj8fDxMSENJ8DuN1uWq0WhUJBxoY0m02q1Spvv/02t2/fZnFxkYWFhX1L69opB3rjbrVaJBIJVldXsdvtDAwMUK1WSaVSJJNJGZSRy+WoVqvUarVD6cGqUHQKSmYOhq1NILb7nnK5jE6nY35+njfffBOj0fjQILBKpcL6+jrZbFbWkhdzp9gZ4jBVKBQAZHyA1WrFbrdLS1R7FUebzYbNZqNcLlMoFKTiFilekUiEXC63ax/2fnCgirtWq3Hp0iVisRi5XA6fz0epVGJ9fZ1YLMa1a9dYWFiQ/WvFQO71oHXaJCgU90PJzMGwk25NrVaLdDpNNpvlH/7hH3jjjTce2r5RuBpENS3Re/6oj+9+Isa0XC6zsrKC0Wgkk8nIFLzBwUFSqRRXr16V1ihRR/x+DUBEtH+nZssc+I07m81iMpkIh8My9y0UCslbQ7lc3jRgnThoCsVBoWSmsxEKP5fLyQJGisNBFJVqNBryBi1u3Ol0mng8LhV3t8uJrrXNp39Q7t/9ei7f63UOh0N2pvL5fDSbTSqVCpqmyTD7Tqxj3UnPspXjkJf5IDp1bpTMdM6zbEXJTGfOzb0sFo8SNChu0aLao8lkwmKxoGkauVxu37Mudst2n+1AFTfcuz9pN9DJk602oc6cGyUznTkvoGSmU+dmt4pbIGSm24oRbfdZD7zkaafdCh7GcRdwxeGjZEZxXNnpYbUTLVB7yaEo7m5CbUKKw0bJjOI4s5P1320y86jsieI+yoN0lD+b4vA4yuvqKH+2TkRVs+tedjp3B37j7jaUQCgUj4aSmYOjPV9cjXv30J7rvxN3wParmisUCoWiozgu3b4Um9l2VLlCoVAoFIrDR924FQqFQqHoIpTiVigUCoWii1CKW6FQKBSKLkIpboVCoVAougiluBUKhUKh6CKU4lYoFAqFootQiluhUCgUii5CKW6FQqFQKLoIpbgVCoVCoegilOJWKBQKhaKLUIpboVAoFIouYtvdwY57IftOLumu5qYz5+Yg5sVkMqHX66nX6zQajQc+x3bHaetz73R8O3VeQMlMp86NmpftzYu6cSsUCoVC0UUc2X7cqrm84jhQr9cfutYfVQ4e9HrV+1mhOHyOpOJWzeUVx4VWq3Vga1zJlULRGRxJxS02FbW57C0Pu9lZLBaMRiO1Wg1N0w7wyboXvV6PTqej2Wzed2z1ej16vZ5ms0mz2TzgJ/wcJU+Ko8BROHweWR93N09KJyJuW/cLHtHpdNhsNtxuNxaLZd9+fzexnWc2GAwYDAb0+vuLosFgwGg0PvA1B8VB3vAVir2kfQ/rxv2knSN541bsDw/btOv1OtVq9b7RzQBmsxmTyUSz2ZT+WaPRiE6no1qtyv9r/53tf3cT23nmZrMpb9QGg0GOy9af86AbuUKh2D7dvKcIdK1tPn03n072gk6e5E6ZG3GKvZeCF98LBAJ4PB40TaNYLGIwGHC5XOh0OuLxOIVCQb622Ww+8BAg6NS52e686HQ67HY7NpuNarVKsVi8aww7Odjyfs/Wqc8LnSMzh0Wnzs1hzUunyNd2n6Ejb9ziBiJMr/cyEdbrdWq1Go1GA03TaDabaJq2rY1esT+0KxudToder5d5xkajEaPRSF9fH319fZsUt8PhoNlsUiwWKRQKh/wpDp52YTUajdjtdvl1u/9b0zQ0TVPmaoVil4j96V41C4QV0GAwYLVasdls93xdo9Gg0WhQqVTI5/MHKpMdpbjFTcvj8eByuXjuuef4vd/7PWw2GwaDYdNtLhwOs7q6SjKZZG5ujmw2y61bt8hkMvfc2A4zqOc4IRa9yWTC5XIxMjKC3W6nr68Pp9PJuXPnmJ2dlXPUaDSoVqvk83n+5//8n0Sj0WM5V5VKhVqtRl9fHydOnMDpdDIyMoLFYqFQKFCtVrl58ybXrl2TwX/th6StPjthXt8LHlaQRR0iFN2CTqeTcSVOpxO73U6z2aRWq8nXGAwGxsbG8Pl8PP300zz//PPy4gF3Lo3NZpNYLEYqleLjjz/mH//xH6lUKgcmCx2juMXG037TnpiY4MUXX8TpdMrbhxiYxcVF/H4/4XCYQqGAzWYjFApRLBZpNBpy01K3k4NDBFCZzWasVisul4v+/n5cLhfDw8N4PB5mZ2c5e/astKrU63UymQzJZBKv13ts50uc3g0GA36/H7/fz+TkJDabjVwuR6lUIp1OY7FY5C28XTGLzajdH75fY3kUonIVxw9xwxbZL06nE5fLRb1el0pXp9NhNpvp7+9nYGCA2dlZXn75ZUwmEyaTCUBWKVxbWyMcDpPJZLBarTQaDWq12oHIRUcobnEK8nq92O12XnnlFc6ePcv09DR2ux2TyXRXDmlvby8Gg4GRkREGBwdJp9P09vYSCoWIRqOkUikKhQLJZFJtMAeAxWLh1Vdf5YknnsBut0ufrc/nw2w243K5MJvN9PX1US6XpeIulUrMz88Ti8XIZDKH/TEOBLHegbsOmNlslvn5eZxOJ/l8HqvVKt/n9/t59dVX0TSNXC5Ho9GQB9WJiQlGRkYIhUJcvXqVQqFAKBSiWq3uWWDb1hiGrX5BpdAVnYrD4WBgYAC/38/LL7/M0NAQJpMJo9HIxsYGV65cwWq1Mj09jdvtZnBwEK/Xy9jYGBaLZVPmhzCj9/b2YrfbabVamM1m1tbW+OEPf0gsFtt3Gegoxe3xePB6vTz//PO89tpr9/Uv6HQ6fD4fPp+PRqPB9PQ02WyWZrPJ6uoq8/PzLC0tEYvFdqy4OyVYoVuwWCz8+q//Or/927+Ny+XC7XbfZbpttVoUCgVKpZJMccrn8ywvLxMOhw/cT3RYCHcCIK1D4nPn83mWlpawWq0U/r/2rqxHyvQ6P7UvX+1LV3VtvdIN3TQYDIMMMxNm7EmGi3h8kc1xpCiKZFtW/kGkXOQyUaQoV4lkyXJkxYml2MEej4MYe8YMOMMIaJhh64Xea9/Xr/bKBTqHr5puaKD3/h4JjTFV3VXv+73nvOec5zynVIJer4fJZIJOp8Phw4dx7Ngx1Ot1ZDIZ1Ot1pFIpNBoNvP766zh58iQmJychiiKSySQymQxHAJvluJVK5Zosd6lTlyFjt8FgMKCvrw/BYBDf/OY3MTExgWaziWazic8//xztdhtmsxlf+9rX4Ha7YbFYuERLl2wC/Z0yY3a7HUNDQ7h37x6uXLmCZDK5/x23IAjweDywWCz48pe/DK/Xi0OHDkGv13NqYj2QAWk0Gmg0GqhWqxBFEW63G2azGfl8Hn19fahWq0ilUvzfcrn83M+11w3QdhlRlUoFo9HIvARBEKDVavn3t1otVCoV3Lp1C8lkEuVyGdVqFT6fD2NjYxBFEVqtFkaj8akDsl9B6wLgmdEwtYoNDQ0hEAigt7cXXq8XuVwOqVQKzWYTJpMJCoUCFosFgiDA5/PhS1/6EuLxOAqFAjKZDNLp9Iae+Wd9XvqvNA2/3utkPOkUUKvVcLlcsNlsfGFTq9Uwm82cflUqlSgWi8jlcigWi1haWuLWyIPI99gKWCwWHD16FMFgkAnPFFg4HA5MTExAp9PBaDR2EdfWak1dHUhqNBrOMlIafqv3bkcdt1KphM1mw+nTp+Hz+fBnf/Zn7LSplrdeewAZEapPVCoVFAoFFItFjIyMoK+vj2sOuVwON2/eRDKZxM2bN1/JiO0FSMlKW33w1Wo13G43XC4XnE4nGyjgseOpVquIx+P4t3/7N3z22Weo1Wqo1+s4f/48vvOd77DTttls0Gq1W/pZdws6nU4XGeZZr1Or1Th37hzOnTvHe7qysoLp6Wk0m004nU4YjUZ4PB44HA5otVouGZXLZYTDYdy9e3dTnvlnPUuy0+6GWq2Gw+GAIAg4deoUxsbGoNVqYTAYIAgChoaGIAgCBEGATqfD3NwcpqamMD09jYsXLyKbzaJcLm9bzXS/w+12491330UgEEBPTw87Z5VKhUAgAL/fzwxx4El2iSAle65mo2u1WthsNlitVhgMBuh0uk0lh66FHXPc9MV1Oh0cDgdHyRR5rXXbIYPXaDQ4mqjX6ygWiygUCojH40in08jlcrDb7TAYDHA6ndDpdOjv74fZbGaDJooiKpXKTn39bcFWHni1Wg29Xg+LxYLh4WF4vd4up02/n6LLUqmEXC7H+1er1bhNzGw2o9PpQKfTcSr2oBorMhhqtZpLRyRYU6/XUavVUCqVuMZMJQeqwel0OlgsFlQqFfh8PnQ6He6+aLVaT4m7yNhcEDnTaDSir68PTqcT/f39CAQC0Gg00Ov1MBqNcLlcMBgMMBgM0Gg0cDqd8Hq9qNVqGB0dRTabxdLSEorFInccyHhx2O123gOHwwGLxcJEZ6nzVigUnDpvtVrodDpoNpvcgtlsNiGKIgBAr9dz2yZxUJRKJfR6PQKBAEqlEmKxGJdvt6JFeUcdN0XcJ06cgN/vh8lkQqPR6KqlAd09c7QgV65cwf/+7/+yMWs0Gsjn82g0GojFYnjw4AFOnDiB9957DzqdDhMTE6hUKrBarZicnOTWmv3oILbD8dlsNvT392NwcBDf/va30dfXB4/H89TrVmdF6PNpNBpYrVZYrVYIgoByuQyXywWdTsc9+gcN5Ih1Oh23ovT09KDdbmNubg6xWAzhcJjPglarZSY/GSK9Xs9/3nnnHaRSKRSLRYiiiEKhgHw+f6AvRlsNg8HAJY2//uu/xtjYGGw2G0wmU5e8LWWXKDIj4tTExARef/11pFIp/OhHP8LDhw+xvLyMeDy+w99sb4F8yOuvv44//uM/hs/nY7Iz8Uuk9Ws6D1S6qNfrqFarWFpawtzcHPL5PBYWFgAAoVCIU+9DQ0NdGhXf+ta3EI1GcfHiRdy5cwflchnFYnHTv9+OOW6NRgODwQCz2QyHwwGbzcYLSqB6GtVJiYyTyWSwsLCABw8edPW0UmrCYDAAALLZLJrNJkferVYLgUAAiUQCiURCJtO8AgwGAzweD/x+P4aHh9HX17fm69YrdRA3gRxQp9OB1WqF3W5HqVQ6kI4beLJeFD1rNBpUKhWkUinEYjFEIhFumdRqtajValCpVBwlULROz7xCoYAgCNBoNAeGQ7CT0Gg0sNlscLlc6Ovrw/DwMLRaLTvq1eQ+kggmISKTyQS32w273Q6v14tkMolUKrXD32rvgbJQLpcLIyMjXLaQ8qbWIj3TMB/STkgmkwiHw8hms5ibm+PX2e12hEIhtFqtLu0Kr9fLapBbOV9g2x03tQGdOnUKb775JoLBIEZHR2GxWGA2m3lABTnrfD6PRCKBy5cvI5FI8CJGIhGkUinuZ5VGESsrK0in0ygWi4hEIhgYGMBf/dVfwev14uzZszh06BBarRauX78ukz82CHrIKWIYGxvDt7/9bXg8HjidzjXfQ+kjs9kMr9eLQCCAbDaLfD6PmZkZ/OhHP4LH48Ebb7wBi8WCb3zjG3jrrbfw/vvv4z//8z8PnAoelYIqlQpisRguX77MqVS1Ws3ZJeDJPpjNZuj1elitVr7908+h11cqFRSLRX6vjM0HZUu8Xi8uXLiAQCDA4kOUDSGVx0ajgXQ6jWq1inK5jHq9Dq1WC51OB0EQ4PV6YbVa8cYbb2BgYAA/+9nPONqT8WyQEw2FQrDb7RgdHUV/fz8zxDeCarWK//mf/8HNmzeRz+eRy+VQrVaRy+WgUCiwvLwMs9kMm82GUCgEo9EIrVaLZrOJfD6PTCaDXC6HfD6/ZVMSd8Rxq1QqhEIhvPnmm3A4HPB6vdDpdNwvRy0ytVoN+XwekUgEn3zyCebn5xGNRpHP55/5O+r1OvL5PL/36NGj+JM/+RNoNBoMDg6ir68PV69ePfB6xS8KaU2ot7cXr7/+OteM1gJJnup0OlitVjgcDlQqFXQ6HSQSCXz22Wfw+/1cAzx+/DjcbjcWFxfxk5/85MA5bgBdz36hUADw5NKk0Wg4cmu3210a54lEgo2EUqnkejbxCYilLGeYtgYUkFitVoyPj8Pv97OGgTSwoLJRJpPhwKRarTJpjdLmOp0Ow8PDcDgcuHr16k5/vT0DukDZ7XYEAgEOLNazUWuh0Wjg9u3b+NWvfsVlKSr5KZVKZLNZGAwGxGIxVCoVviwTGbdcLqNSqUAUxS0LDLfVcSsUCiagUZ8cOWuaDtXpdBCLxZBOp7G0tITJyUnE43HMz88jk8lsOGqQEqOki0epC0EQ4HK5OBohBi+peR1Ep/E80JpSlkPagywtO9CDWygUsLCwgGw2C6VSCb/fj3K5zBevfD4PjUaDe/fuIZlMotlswufzIZVKHWgHs3o96e9ELJMKoFAkFw6HMTU1xQ6kXC5jamoK6XQa0WhUdtxbDL/fj8HBQRw5cgTBYJBLc/l8Hg8ePMDc3BwqlQrbsGw2y3XURqMBj8cDn8+HYDCIUCgEnU7HCpLS9koZ64Oibb1ej4mJCZw4cQKDg4N8btZz3mTLyuUy5ubmkE6noVQq4fP5UKvVUK1WORgEnpw/kmrWaDRotVrQ6XQYGhpiHYut5JJsq+OmGyk1rRMrjxaUFmh2dhZTU1O4ffs2Ll68CFEU0Wg0Xvj2Qk6G6n90G1MqlTCZTPB4PMjlchBFkRderVbz32U8gdSJSFvxqD4nrd0Rq3JpaQm//vWvUalUIAgC+vv7kclkWFmIjNjNmzdhs9nQarWQy+UQj8cPvJFaSw989chPcua1Wg2Li4v4/PPP+bKaz+dx69YtZifTpVjG5kOhUCAUCuGrX/0q+vv7MTAwAKPRyENzrly5gkuXLiGVSmFlZYUzIVJZ2tHRURw9ehTlchlnzpyBVquFIAg86ELG86FQKLin+tSpU7hw4QKMRiOfGQoQV0Oa4bp37x4SiQSUSiVCoRBKpRKKxSJKpRJKpRL7hU6nA1EUkc/nodPp0G63WSSpt7cXNpttS0fxbnuqfC0tZRKaoBtoIpFgFu2rCBGYTCaWgiQCFMFoNMLtdgMAYrEY/w5Z9ODZoLWhVGyz2WTCB60vHYJmswmHwwGz2Qyn08ltTXa7nbkLCoUC+Xweoihienqayxuyk3k+iEWu0+lgs9n4eSYjYrPZ0Gw2OZUnr+nmg5j9brcbg4ODXPZrt9uIRCJIp9MIh8NIpVIoFAqoVqucfpXuBw29MBgM3CVA2RMpaUrew6ehVquh1Wq5I0Or1aJQKCAcDnOZyGKxoL+/n1tYyRa1223k83lEo1Ekk0lMTU0hmUxiZWUF+XyeeSSkNUF/NxgMCAaDzDGhC4H0UgZsnRDWtjlu6RerVquctpNGEXSruX37Nj744AMm1LysIw2FQvjDP/xDVsuRRo1utxtf+tKXMDc3h9nZWVSrVdRqtW0RLdnLoIe9Xq9DFEV2HNL+60KhgKWlJajVapw4cQI6nY7b/aQygx988AESiQRu3bqFYrGIu3fvQqVSbWltaK9iLQOgUqngdDphsVgwNjaG1157jY19MplELpdDJBLB0tISotHoDn3y/Qsq/QmCgImJCbz77rtMMstms/jkk0/w8OFD3LhxAzMzM2zr1jLkFosFoVCIHb+0dUzatiRnAp+GwWBAT09Pl5bB9PQ0RFHEgwcPcOfOHYyMjODP//zP4fV6MT4+Drvdzm3EMzMz+PjjjxEOh3Hp0iWk02kO4A4dOoTx8XG4XC6Mj4/DZDLB6XTCYDAw+5/sH+lVFAoF1Ov1LS1vbHvETYa7UqnwCE6LxQIAnFoqFossPPAqX1yv16Onp2dNcgKlouiGC6ArCyDjxSFl+KtUKlYU0uv1sNlsEASBI4hEIgG3283tMKIossCBvP5rY3WaT6VSwWKxwOFwwGq1svwpTUACnkwdk7H5UCqVsNvt6OnpYX1rioxbrRYymQyTaZ/HzdFoNBAEAXq9vqsvnxy3VNtexrPRarWQzWahUqkQiUQQDodhNBqxvLyMRqMBs9nMQWGj0cDy8jKWl5cRi8W464VAHASlUgmn0wmr1Yqenh4mE1IZQxRF1Go1HnBFCmxbhW113J1Oh8Ugbt26hVarBb/fj7Nnz0KtVmNxcRG5XA7JZPKVGd8KhQJOpxPHjx+Hy+WC0WjkqJAMG4l/SCU6ZTwfxBWQRtsAOC0lCAKGh4eh1+vhdru5Z1+qWBQMBnHu3DnMzs7i008/RTablVOBa0B6DsiIE0wmE06dOoXBwUGMjo7CZrOhXq9z5ur+/ft49OjRgZm6tp1QKBQwGAz4oz/6I5w/fx79/f1QqVSsT1Aul/HgwQPcvHmTuwOe9bOsViv6+vrg9Xo5/U7/ZrFYYLfbUalUZAnUNSCKImKxGAvbKJVKZDIZqFQqlEolVKtVzM3N4Qc/+AF0Oh1MJhO0Wi2Ta0ulErLZLJf4pH4gFotxa+Xv//7vw+FwwOPxsKCOUqlELBbD9PQ04vE4PvroI8RiMXzxxRf7R/K00+lwH2MymcTMzAwajQZGR0eh1WpZrpREJWhhXtSg0/tIWtButz8VcZMRXK07K+PZoLWSStJSpF2tVlGtVtnYGAwG2Gy2NSVsKb2VzWZfqFXjIGEtgQhy3NQj7/V6uWdVp9Nx7ZQmiKVSKbl/ewtARKjBwUGcOnWKpxjS2lPLVzKZ3FCUrNVqeVAMnRcqe1BL5VanX/cqiCRLHUEKhYJlSgmFQuG5F6i1IIoi0uk0SqVSl2St0WgEAGaXR6NRLC0t4fbt24hGo8hms5v2/dbChi2mXq9nYYcXuUmsntFL781kMpxSmpmZ4XnNXq8XZ86cweDgIFZWVnDnzh1Oq29EZ1mpVGJ8fByHDh3Ca6+9xjO+KSqkVP3U1BR++ctfIh6Pc4pWxvNB8n75fB43b96EXq9nAmE4HOaJbMPDw0y2UalUzGvIZrOsM08pKjJI+w10uKkc8KKg7BDwJPJyOBwwmUzw+/1wuVw4c+YMhoaG4PV62XDl83kUCgVUKpWu3y0b/c0BqZxZLBZ+xomgGYvF8PHHH2N5eRnRaPQpEtpqkHMWBAE9PT2wWq1QqVTodDrcVlkul+V2vueA+FKkuLhZJQWPx4PBwUGMjY11DfKRYmlpCT/96U+RTCaxvLzMojpbiQ07bmJlU3S1UaznuPP5PGu4Li4uwuFwYHh4mGsISqUSn3/+OaLRKHK5HEql0oYd99DQEM6fP4/R0VG+ENBnoCEXc3NzuHLlCur1ulw3egFQ7bpUKjGZLJPJQBRFzM7OIplM4o033oDL5UK73ea6H9X5FhYWEIlEmMlJEeF+ZM0aDAYW3XiVZ4yyFSaTCV6vl4mVbrcbx44dQygU4swRKQ5SirBer7NYy35a250EZfPIaUtZxel0mh13Op1+rq2kyFoQBJ70RmeBtBCoHVa2U88GnbXNhMPhwOHDhzE4OAiXywWr1fpUhjASieCjjz7iOQDbgQ07bqqtvEwv9bP+rVqtIhwOo1qtIhgMMlPTbDYzczmdTuPOnTvcYkTj1yqVCi8s1Vs1Gg1OnTqF0dFR9Pb2PkU8o59Jt1fZmL0YSF9eo9GgVqvBZDLh8OHDUKlUCAaDyOfzOHz4MDweDyqVCn73u9+xXGCtVmM5QLPZjGAwCEEQ0NvbC7VajWw2u68mtlHv9MvWushhU0nHbrdjYGAAgiAwwZN6Tqlet7CwgBs3biAcDiOdTvNnWD2iUHYCrwbp1CdpcFKtVhGJRBCLxZ5LUKI6uV6v51Q77ZOUmEYBh7xn2w+Px4MTJ04gEAhAr9d39YJTELsTAceGHffLppPX+0LS1qH79+/D6XRibGwMXq8XPT09CAaDGBwcxFe+8hXE43H8/Oc/RzweR7lcRrVaRTKZRCwWw8TEBL73ve/B7XbDZrOx4hAtsvR2RESEUqnELUey49446FLV29sLk8mEUqkEm82G8+fP8xQrchIKhQI3btzAD3/4Q8RiMeRyOdTrdU4Nnj17Fm+//TaKxSJWVlZgsVgwNTW1rxw3zcB+mWdMyiqm8oTP58OpU6dQr9eRTCaRTqcxMzODZDKJUqmESqWCmzdv4uLFiyiXyyiXy2i32/x+qdKa/Oy/PKSKjFKVOyLfTk9PY2Vl5bmDckiQigIV6aQ3ADy4otVqyanyHYBCocChQ4fw9a9/HQaDASaTqWt/aOznTozK3XFWELUClUolRCIRaDQalj+1WCzcKxcKhSAIAk8JczqdnF53u91wOp2cFqdJSNIFpmkvCwsLSCQSsjrXS4AMFBFBBEGAVqtlBSFpLa7ZbOLRo0dIpVLIZrMoFotoNBpMOqzX613kw+fVAvciNuP7SFsUafgITckjgprJZEKlUkGlUkE0GuVWSorQpM5fo9GwsZGd98uBpDVXT38iJ67RaKDRaJ7KbEgzfNJZ9D09PTCZTDzRirQkyC5KVdZkbB2Ila5Wq+HxeGA2m3mICAm2NBoNFAoFnqNRLBaxtLS07dmQHXfcxH4tFAr47//+b+h0OjidTo7kaALVe++916U4RBR9g8EAl8vV5ayltyIiedy+fRuJRAI/+9nPMDk5iUwmc6BusKu5Bi/6PlpXURSRyWTQ19fH3QCTk5Oo1Wq4fv06FhYWIIoi9+RHo1FO80nJVuTkK5UKkskk4vH4lvc+7jWQsSZexuTkJGZnZ1nIQ6FQsGIUpexEUeRBLsCT8aA6nQ4WiwU2mw2lUgmLi4tc/36VM0Bn7SBdAmhsIylwSbk/Wq0Wfr8fwOOxwtRloVAoeOALtaMaDAZMTExgdHSU+Th0mRVFEQsLC6zotXrmgozNh1arRSgUgsPhwF/+5V/iK1/5CpxOJ5emisUiCoUCfvOb32B5eRl37tzBzMwM8vl815nbDuy44yZCQbPZRCwWg0KhQC6Xg8lkwsjICDqdDjQaDacppO8j0s1ajGSpShqlFsPhMObm5jA9Pd31mv0KtVrNYwWlbUKrU3i0hs8yDNK6DjEmae55MplEPp/H7OwsZmZmutK0691Eae/olkv8BEoNykbqCWgtyHA8D2u1kZGTJyMkzXZIX/cyFzv6s9/PE0Fafwa6syIURZNWtU6n4/Wp1+uoVCpMbjMajejp6YHH44HFYulSSKO0Ozn/g7K2OwmNRgO73Q6Px4NDhw5hYmKiixuVy+WQyWSwtLSE+fl5TE9P48GDBzuSDdlxxy0FfXkSGsjlcigUClCpVNBoNGsOJZcu2GrSAOlpRyIR/PznP8fMzAzm5+cPzCE4fPgwvvOd78BkMmFqagqZTAafffYZ7t69yxcftVrNzG9Ksa6G1Dg3Gg2IoohCoYBkMolisYgPP/yQyw9EIHxW3YfGUdKM7r/5m79BsVjEr371K3zxxRdIJpMHWq/8ZbMjhNU6ydSKZ7fbWXaW9LSBx+eFLk2UyZL+7vU+B6WFqfRxUC5bjUaD+3Tz+TxKpRL3W1utVpw+fRqlUonnNNMlqVQqIZ1OcyrWYDBgfHwcvb29sNvtXfatVqvh4cOHuH//PsLh8L4sJe0WEBfK7/fjL/7iLzA0NITR0VEoFAoeijQ7O4uf/vSnSKfTWF5e5r3cqWd+Vzlu4EmETCIGtVrtKUOy1nukKV2qLdHkpFwuh9u3b+Phw4cHipnp9Xrx3nvvwW6349q1a1hZWUE4HMaDBw/4gVOr1RAEAWq1mtdbaviloMhd6rzT6TTu3buHSCTyQp+NLgx2ux1HjhxBvV7H8vIyjzuMRqMH0lBJM0ibVSOXMpKlHBC1Ws0OgQY1AFiTVLXeZ6Fa704QdHYK7XYb5XIZGo0GlUoF1WqVJwsaDAb09/ej0WggEAh01a6pBZJSstRRYbVau34+ZSFjsRgWFhZQKBTkGvcWgi5dNpsNZ86cwZEjR1jKlDo3pqam8MEHHyCZTO7wp32MXee4gScTdwRBYBH/taJtqZMGnsxbrdfrqNVqmJmZwdWrV7G4uMiCLy/L8N2LWFpawve//31YLBbW5jWbzTh9+jRcLhf6+/tZArDdbuPq1auYmZlBsVhkHXn6Q47ebDbDarWi2Wzixo0bKBaLqFQqG0qVUi8yKdrR3qrVarTbbRw5coTXemZmZt8aK2nbz+pncjO/r5Tx3G63kcvlMD8/D1EUmbxGPcgUFQqCwFPFMpnMc5nRdCk4SBdiugxVKhXcuHEDADAwMICRkRE0m00EAgG0220WHyLRoWq1ilKpBJPJxKRCYvsTKFNIGcdkMglRFPflOdhqUBeM1WrtYubT2GabzQaz2Yz+/n6cPn0awWCQJWeBx3sxNTWFX/ziF8zd2S3YFMe9mREC8NhxG41GJoCQLuzq36lQKJiSDzxRIarX60xI+5d/+Rdm/71MWmOtC8NewaNHj/BP//RPMBqNGB0dhdPphNfrxdDQEI4ePYo/+IM/4EihUqmwEVlaWmLNXlozcqJmsxl+vx/5fB5Xr17ltX6e4yZnZbFY4HK5WMzAZDIBeLzOx48fR19fH+LxOD788MN9mx4kVjLwRB9Bis123vTz0uk0nwOqc5vNZuh0OtZHIJEXURS5E+BZn4cc+37cp/VAjrtUKuHq1auYnZ3F7/3e78FqtcJgMGBgYAAA+LKcSqUwPz/f1d4nCAKsVisPg5GCMoXpdBqJRILbCmVsHLTWNpsNAwMDnHklvlOtVoPb7UYwGMT58+fx3e9+t+siRbbv888/x7//+7+zmNFuwaY47s0+tHTjDIfDuHLlCqsJkeGnASFWq7VrZi1BOpeV/ksiFS+KvWyQrFYrjh49CovFgsHBQVitVmbs+3w+6PV65g7QTOFQKMTGhsg0Uoay1Wpl9a6+vr6uVrvZ2VkkEgn+/TSqkIyTQqGA3++Hx+PB8PAwHxKKDCkKoQlJq8lT+wXSDMZ2Pl/SsZL0GcjxarVa6PV6ThHSfnQ6HY5UpFitWX+QWOWEdrvNHJyZmRk4HA7odDoIggAA3Lq6tLTEQzCo1p3JZKDRaLhFj1CpVBCPxxEOh1Eul19YYvqgQqlUwmQyYWxsrKvf2uVywev1otFoIJ/P8xCeRqOB3t5eeDweDA0NQa/X82W63W7z5DAq1e62DqRdmSqnxfr4449x584dTuVpNBpMTEzA7/fj2LFjOH36NEwmEzweT5d4gcFggFarhdPphM/ng0aj4ehho5CKKuxVjIyM4O/+7u/g8/lgtVq7iDIkmA+A+7KPHDkCk8kEq9WKarXKNTmKulQqFUKhEE6ePIlQKITjx49DoVCgVCohl8vhH/7hH3D58mVet/7+fnz3u9+Fw+HgtR8eHkYgEIDRaGSHTmtMA+otFgtL7O7HqJsitu3GarZ+q9VCsViESqWC3++H1+vlf1Or1XA4HBz5lcvlrn2gs0YtmNQXfpDQbrcRiUQQj8exsLCAS5cudbHN6TLTaDS4fU+hUGBwcBAjIyNoNBrQ6XQwGo18ZjKZDD755BOsrKwgGo2iUqkcKP7Ay4D4GoODg/j7v/97JpbR86lWq7m0QYRc6mah4I5sIWWeMpkMS87Ss72bOid2peOmRSKFM6CbQNDpdBAIBLpIN9KIe3Uv90GFtDXFbrfzwykl89H/pmyG2+2G1+tFMBhkXd5qtYpCoYBWqwWr1Qq32w2PxwOfzweFQoFyuQxBEFgsh9JMNpuN56HT7/F4PHC73V3pqPUOxG45JPsJq7swaP2pVYwMGtVj6VK3+nmR4iCfM+qgoJGQa7WnklOmf8vlckin07DZbPD7/V194KIoIpVKIZVKoVqtHshMxkZBpD+j0Qir1Qq/349AIIBAIPDUPlBtG0BXACMthdJat1otlMtlHvVJo4ul/776HNEFli5tWy1Ru22OW5paA/DcaFZKjKL3NZtNzMzMIBwOw+/3d/VTSmvgrVYL9XodxWKRR6y9aISzHw5LoVDAnTt3kMlk8OUvf7krDUqQ9lIPDAzA5/NhcHAQb7/9NqeVMpkMfvzjH2NhYQEnTpzA22+/DaPRyPrKdGt96623YLPZUKvVIIoigsEgLBYLjEYjHA4H68kTMYoG1BsMBm5HI7Y6DVbYD/uw26FQKGC329HX1we/34+xsTGkUin85Cc/QTQaZSNHryVHQ3vzooOH9is2YtOoxejy5cu4d+8eLBYLenp6uJMmGo2y1nwul5Md9zpQKBTo6emB2+3G2NgY3nnnHXg8nq75FFKoVCrWnaCLqNQOSv1Mq9XC7du3ce/ePSSTSRw+fBiiKLIfKRQKXO+mDC+VcJ1OJ/OE0un0U35ss7Btjlu6WLQ4G6nzSYVUACCXy6FYLDIhaq32GektuFwusy75QUOtVkM8HodWq33mTGZaQ9JMdrlcAJ6IrcTjcXz88cfIZDLo6enhGy2BLk1+v79rFKHT6eSbKNWv6eZL+yO9+ZJwS6VSkUVYtgl0cTMajbDZbPB6vaziRdwS2mv632vV6GXnsjEQZ2B5eZmjdGpdpYtyIpFgApW8rk+DIluz2Qy3282scKvVyqN013rP6qle64FKFqQ373a7US6XebgVZUKkpVmr1Qq9Xo+enh7uJKCJlo1GY9PT7FvuuElsY3h4GIIgsBGIRqNYXl5+irn8vJ9F8o0U8VGdlMYZ1ut1zM7OYnl5Gbdv32ZpzYN4AJLJJC5duoRgMIhjx45xWg7AUzfOZ0Gr1fIENo/Hs+ZrFAoFrFYrPB4Pt5IVi0X85je/gUajQSAQgCAIWFlZQTwe5/eo1WrY7XYoFAqOMu7evXug2ou2A6uzLMQZ6enpgcViwWuvvYa33noLZrMZJpMJWq2WM1d0iaL9or2RnfbLgWwV2SsKNEj8hi6v8gTDp6HT6TA0NAS73Y433ngDJ0+eRG9vL7xeL3Q63VPdRxsFnQ+VSgW9Xo9Tp06ht7e3S7cilUpBFEUmDvp8PvT09DAhkboFFAoF0uk0SqUSPvnkE1y6dIllizcL2xJxGwwGHDp0CA6HoytKlg6a38jDSWlZYr+STCbwRBShUqlgenoak5OTPG1qN9H4txOZTAbXrl1DKBRCJpMB0F1ve95DTq9Vq9Xo7++HIAgcja8G9Wg7HA6eJRyPx3Hz5k00m0309fVBEATcuXMHDx8+hEajYca/w+EAAMzNzSGZTMqGapOxukxFXQQ6nQ4ejwculwsTExM4e/YsGymSniWyTrvd5uyJlLgp79WLg0SmyDbROlPUXalUuNdYXt9uaDQaDA4OIhgM4qtf/Sq+9rWvbdrPluoZjI+PY2RkhMuw1WqVCWuPHj1CqVTCsWPHMDo6yq9Z3Y9Pdva3v/0ti+ps1n5uqeOWpuGGh4eZ4a1SqdDT04OhoSEkEgncvXsX5XL5KeY3vV+j0XANwe/3w263IxgMcm2Ubq/Xr19HNBrFvXv38OjRI0QikQMfuXU6j6dKXbt2DaVSCf39/fD7/V1tK5T6zOfzEEWRsyGUzhZFEbOzsyiVSggGgxgfHwfQLTHbaDQwNzeHBw8eIJVKIR6PI5fLIRqNsqiEVqtFIpHgVotGo8ERnEKhkIUmtghUiiBZU5vNhuHhYZjNZgwPD8PhcMDv9/Nwi3A4jEgkwhPfiNVM7WRy3fXVQbat0Whw2xdxOiiruJc1JDYb0mlq4+PjOHLkSFcXxGpIAxTg2QRKuixRRlfaMaFUKrvaYYmlTq189JrVP58uY9RRsNllvy2PuImtfO7cOYyMjHS1AQHA5OQk/vmf/xmRSATz8/NdjptIUyaTCcPDw7BarTh58iQ7D4vFwtPFotEo/uM//oPJWCQgIrdSPOYF/OAHP4DNZsM3v/lNXLhwgdvDiC3ZaDQwPz+PaDSKjz76CO+//z5HX1LBjrGxMbz99ttd9U4azfrpp5/i8uXLzIqlhxcAZmdnATxRhiJIU/ZyTXvzQelttVoNk8kEs9mM0dFR/Omf/il6enoQCoVY6EitViOfz+Pu3buYm5tDLBbr0mM+aAppWwl67iuVCnK5HIAnZ8NgMEAQBP7/ZYDZ406nE++88w7OnTvX1f++GlSClTrV9dj+5XIZ4XAYarUaLpeL28T0ej07X2qHVavV0Ov1PAlurbo58RhqtRoLt2x2H/iWO25KERSLRRSLRZhMJpYCVKlUcLvdXP9utVrI5XL8b0RoEgQB/f39MJvNCAQCPE2HmOaFQgG5XI7/bGZ6fD+0urTbbZRKJbTbbSwsLODhw4cwm81IJBJ8oyTGfjwex8rKCqsMET+AUubxeBzz8/McxUn3N5FIIJfLMSFQmkpd76GVI7fNATkCaVRgMpmg0WjgcDiYE2I0GtHf3w+73Q5BENjIUL/+wsIC5ufnEQ6HmYTzIlCpVNBqtfvi3Gwl6DJMZQgp4Y9KSJR+lc/I4+dKEAT2H9Qh8yysZo1TkEFtXmSnCoUCEokEVCoV7HY7NBoNDAZD19Ad6gMnwm+1WoXJZGK+FbXBUvYkkUigWCwilUptSYZqSx03GfV8Po9r165heXkZ7777LjweDxua4eFhfO9730M+n8f//d//IZFIsMwpqdpQuxE5dEq/dzodFAoF3L9/nwULstnspkUFlF7c60aILkTFYhEXL17ElStXmJxE6SHgsSRmpVJBqVTiwQZSw91ut5ldTqkrEpioVqu4fv06VlZWNtwxIOPFsFb7CoFSd3TZtdvtOHPmDJxOJ1577TVWuWs2m5zJajabXK+jITw0trBarfIErBeB2WyGz+eT07zPQKvV4oli1WqVe34pO+VwOHjIiLR/+CBDEAQMDQ0hFAqtyxyXgoIKaY88tQhfunQJi4uL+OKLLzA1NcX/RsEIXXp1Oh1HzfQaqXjSyZMnMTY2hmPHjuHChQuo1Wq4desWUqkUrl+/jrm5OczOzu7NVDnwuIaQSCSg1WpZQpMct9FoRF9fH0qlEmKxGN9eLBYLent7MTo62pWOIPlFpVLJrUWUmqXe383C6nazvQwy2olEAqlUqitCo5nBxMBfD+12G8lkErOzs/yAU+RAJQvp+w+6sdksSHuo6b+ryTAUhVBPKekwU3vX4OAgqtUqRFGEKIpIp9N8drLZLObn5/Hw4UOOPl7W0NCl4GXZvQcBFNBQ6UHqYOg8UqCyH2zPZkCj0cDpdMLpdHLAsNba0FoSK18qmkJ65UtLS5ibm8PDhw9x7969p34GEW31ej2nvKVywcDj55xErRwOB9u+eDyORCKB+fl5zM7OIpVKbYkd3BbHXS6XMTk5ieXlZRw9ehROpxN2ux1Op5MPutlsxsmTJyGKIrPFKV0h7dMmubp8Po9sNot79+7hl7/8JWKx2KaPXJNqOe91UK1H2n5H60pyjM/7rp1OB/F4nHvoVSoVGyEit9HrZLwapOQYOgdk3O12O0ZGRphIo1KpMDAwwFKydrsdBoMBPp8PBoMBTqeTW5DS6TTm5+fx/vvvI5vNIh6Po1KpIJlMssDEq+xfqVTC4uKiHHE/AxS1Ue2z1WpBo9HAaDTCYrGw5DANACLHc5ARCATwrW99Cz6fDxaLBdlsFkajsStlTt0s5XIZ//Vf/4UbN26wvaM1rNfrWFxcRKFQ4E6b1eh0OlybJt7B6g6KTqeDhYUFZLNZTE9P43e/+x0UCgUTbx89erSlk922xXHXajWsrKygUCggEokgmUyyljgZKJVKhWAwuO7PkEpz0gJls1lEIhF88cUXSCaTm+5k98uBkWYOVqe/AbzQdywUCigWi7wXa0kAytgckFOmSJoiNIfDgdHRURiNRu7SOH78OA4fPgxBEOBwOLpaVIjZSnW9SCSCa9euIZFI8OCFzQIpgMlYH3QGaT8p0qY2V4PBwJc1Wbr5MWw2G06fPo3e3l5ks1meh77acVM6/Nq1a7h48eJTZbuN2qmNBDHpdJovwjdu3IBOp4Pb7YZGo2F9/63yHy/tuKWGeyNpNUpr37lzB41GA2fPnoXP5+tKB633gDYaDe6hu337NpaXl5HNZpFKpbC8vMyayjLWhrTn9lUdrJRsJgtwbA2Id+ByuaDX6+Hz+WCz2QA8XmuXy4XBwUGeokapPWLIUmsLKRQuLi4inU4jEolgaWkJ4XAYqVSKFepkbC8oWFGr1bBYLKwwqFarodVqu1qNpHKzBxkLCwv413/9V54Vr1Ao8NZbb+HMmTPMD4jH4/jFL36BlZUVTE1NPSVgs1V2SqrYWSwWoVQqOb2+VXhpxy2tcT7vA1I6tVwu49NPP8WDBw9gMpnw5ptvdkWD69UsiPWaTCbx4x//GFevXuXe7dXtRTLWxmY+RLLD3jpIeQderxdWqxVHjhyBx+NhI261WjEwMMDpc+DxCNVOp4NSqYRsNsvnslar4cqVK3j06BHm5uYwPT0tt3XtMMhxa7VaHsRDHBRy3FLnLUfcwKNHj/CP//iPzC4nid7Tp09zULi0tITvf//7uH///rZLJlP5g1r4Vstwr4eX7Rp4acdNkfaL/NJOpwNRFKFQKDA1NYVf//rXPJP5WSSwarWKlZUV5PN5RCIRpuXvl/qzDBlS0EW3VCoBAHM39Ho9jEYjy2ISZ6HT6XB6VRRFbv0jjsbCwgJisRgKhYI8uGUXQNpbTxkT0sGmqVTUsiQzyh9DSugjbs39+/fx4YcfMl9gfn4euVxuR/2CdK+28sKl6GzwqdisD0GUe6PRCJPJ9NTPXa9JnghQpVKJafnb+UDv5sNz0G/ku3VvXmVfKOpWq9XweDzcHunz+ZDJZHD37l2WxSQd8fUGgFAnBv3ZLuzWfQF29sxotVq4XC44HA787d/+LS5cuIBsNot0Oo379+/jhz/8IeLxOKLRKCvXbfa+7da92ci+0LNusVi61B8bjQay2eyuEN1aq3WTSh7PygRsdF+2fR43RQKFQgGFQmG7f70MGXsCRLShnt92u80RdzabZcbqi2j9y9gdkM5cAJ4Q+qhnuFwuo1qtyvKy64CedxLcOojYdsctQ8ZBxYsSOslo53I5rl0vLCywtrLM5t+b0Ov16O/vh9vtRq1Ww9LSEsrlMgqFAvL5PKtMSiezydhbWOtcbuY+yo5bhoxdCoosSHKxXC7LjnofQKlUsnwntbVWq1Um3BJ/RyqHKkOGFNte496r2M2HZ6/vjVQc5mXWebfuzVr7slG26au+ZzdgN3/enTwz1OJnNBrh8/lgtVq5jk11bqkAyFZgt+7NXrdlr4qN7ovsuDeI3fqgA3t7b6TynS+bFtyte7OX92UzsFv3BZD3ZrfujbwvG9uXA9nZf9Afjt0EqU7zbjUmMjYG+VzJkLE9OHA1bmm/uOwodgdkMZC9jedJ6sqQIWNzceAi7v0y7UuGDBkyZBxMbLjGLUOGDBkyZMjYeRy4iFuGDBkyZMjYy5AdtwwZMmTIkLGHIDtuGTJkyJAhYw9BdtwyZMiQIUPGHoLsuGXIkCFDhow9BNlxy5AhQ4YMGXsIsuOWIUOGDBky9hBkxy1DhgwZMmTsIciOW4YMGTJkyNhD+H9IAf5JrEUwfQAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import mindspore\n",
"mindspore.set_context(device_target=\"Ascend\")\n",
@@ -1787,25 +456,9 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-10T01:39:37.298891Z",
- "start_time": "2023-02-10T01:39:37.177217Z"
- }
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAGJCAYAAADIVkprAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLWklEQVR4nO2dd3hU1dbG30mb9AapEBIgkU5oBgIinVCliCLyCVhABUTEil4B8QpXsSIKei3BgiJVL9K7FOm9CqRQkpBCOqlzvj9W9pxzpiSTZJIJsH7PM8/MnLrPOfvs/e611t5bI0mSBIZhGIZhGCtiZ+sEMAzDMAxz98ECg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2Eqyc6dO6HRaLBz506rH3vOnDnQaDRWP255xMfHQ6PRIDY21mrHrMl7xNRdaiIv1SWq837GxsZCo9EgPj7euomqw7DAqEXi4uIwdepU3HfffXB1dYWrqytatmyJKVOm4OTJk7ZOnlVZv3495syZY+tk2BRRoIiPs7MzgoODERMTg4ULFyInJ8fWSbyjyc/Px5w5c2pVxAjhtHLlylo7Z1W41/JeWFiY6nrNfe5W4VNX0fBcJLXDunXrMHr0aDg4OGDs2LGIjIyEnZ0dzp8/j9WrVyMhIQFxcXEIDQ21dVKtwtSpU/HFF1/gbsxeO3fuRK9evbBjxw707NnT7HaxsbF48sknMXfuXDRu3BjFxcVITk7Gzp07sWXLFjRq1Ah//PEH2rZtq9+npKQEJSUlcHZ2roUrISRJQmFhIRwdHWFvb2+VY+p0OhQVFcHJyQl2djXTjklLS4Ofnx9mz55da2JWPPsVK1Zg1KhRtXLOqlCVvGcNaiIvWcLatWuRm5ur/79+/Xr88ssv+OSTT1C/fn398q5du6JJkyZVPk913s/S0lIUFxdDq9XWupXSVjjYOgH3ApcvX8Zjjz2G0NBQbNu2DUFBQar177//Pr788ssaK4itQV5eHtzc3GyaBlFp1Wblaw0GDhyITp066f/PnDkT27dvx5AhQ/DQQw/h3LlzcHFxAQA4ODjAwaF2XsuSkhLodDo4OTlZ/Z7a2dndcc9JUBfyurWoTN6rDjWZlyxh+PDhqv/Jycn45ZdfMHz4cISFhZndr7LPujrvp729fa2KrrpA3a3R7iI++OAD5OXl4fvvvzcSFwBl2mnTpiEkJES1/Pz58xg1ahR8fX3h7OyMTp064Y8//lBtI0yhe/fuxYwZM+Dn5wc3NzeMGDECqampRufasGEDunfvDjc3N3h4eGDw4ME4c+aMapsJEybA3d0dly9fxqBBg+Dh4YGxY8cCAP766y888sgjaNSoEbRaLUJCQvDSSy/h9u3bqv2/+OILAFCZJwV5eXl4+eWXERISAq1Wi2bNmuHDDz80snZoNBpMnToVP//8M1q1agWtVouNGzeavc+///47Bg8ejODgYGi1WjRt2hTvvvsuSktLVdv17NkTrVu3xtmzZ9GrVy+4urqiQYMG+OCDD4yOee3aNQwfPhxubm7w9/fHSy+9hMLCQrNpsJTevXvj7bffRkJCAn766Sf9clM+3i1btuCBBx6At7c33N3d0axZM7z55puqbQoKCjBnzhzcd999cHZ2RlBQEEaOHInLly8DkH3jH374IT799FM0bdoUWq0WZ8+eNek3F3kgMTERQ4YMgbu7Oxo0aKB/rqdOnULv3r3h5uaG0NBQLFu2TJUeUzEYlt73oqIizJo1Cx07doSXlxfc3NzQvXt37NixQ79NfHw8/Pz8AADvvPOOPo8pLRnbt2/X53Vvb28MGzYM586dU51L3O+zZ8/i8ccfh4+PDx544IHyHp1FXLlyBY888gh8fX3h6uqKLl264M8//zTa7vPPP0erVq3g6uoKHx8fdOrUSXUvc3JyMH36dISFhUGr1cLf3x/9+vXD0aNHq5w2c3mvZ8+eJi1yEyZMUFXSVc1L169fx/Dhw+Hu7g4/Pz+88sorRu9meno6nnjiCXh6esLb2xvjx4/HiRMnrOLeqG65Bph+P0U5tXbtWrRu3RparRatWrUyKqtMxWCEhYVhyJAh2LNnD6KiouDs7IwmTZrghx9+MEr/yZMn0aNHD7i4uKBhw4b497//je+//75Ox3WwBaMWWLduHcLDw9G5c2eL9zlz5gy6deuGBg0a4I033oCbmxt+++03DB8+HKtWrcKIESNU27/wwgvw8fHB7NmzER8fj08//RRTp07F8uXL9dv8+OOPGD9+PGJiYvD+++8jPz8fixcvxgMPPIBjx46pCpGSkhLExMTggQcewIcffghXV1cAwIoVK5Cfn4/nn38e9erVw8GDB/H555/j2rVrWLFiBQDg2WefxY0bN7Blyxb8+OOPqnRKkoSHHnoIO3bswNNPP4127dph06ZNePXVV3H9+nV88sknqu23b9+O3377DVOnTkX9+vXLbY3ExsbC3d0dM2bMgLu7O7Zv345Zs2YhOzsbCxYsUG1769YtDBgwACNHjsSjjz6KlStX4vXXX0ebNm0wcOBAAMDt27fRp08fJCYmYtq0aQgODsaPP/6I7du3W/YQK+CJJ57Am2++ic2bN2PixIkmtzlz5gyGDBmCtm3bYu7cudBqtbh06RL27t2r36a0tBRDhgzBtm3b8Nhjj+HFF19ETk4OtmzZgtOnT6Np06b6bb///nsUFBRg0qRJ0Gq18PX1hU6nM3nu0tJSDBw4EA8++CA++OAD/Pzzz5g6dSrc3Nzw1ltvYezYsRg5ciSWLFmCcePGITo6Go0bNy73mi2579nZ2fjmm28wZswYTJw4ETk5Ofj2228RExODgwcPol27dvDz88PixYvx/PPPY8SIERg5ciQA6E3+W7duxcCBA9GkSRPMmTMHt2/fxueff45u3brh6NGjRvnokUceQUREBObNm1dtt15KSgq6du2K/Px8TJs2DfXq1cPSpUvx0EMPYeXKlfp397///S+mTZuGUaNG4cUXX0RBQQFOnjyJAwcO4PHHHwcAPPfcc1i5ciWmTp2Kli1bIj09HXv27MG5c+fQoUOHKqfRkrxXEZXNSzExMejcuTM+/PBDbN26FR999BGaNm2K559/HgBZKIcOHYqDBw/i+eefR/PmzfH7779j/PjxVb5OQ6pTrpXHnj17sHr1akyePBkeHh5YuHAhHn74YSQmJqJevXrl7nvp0iWMGjUKTz/9NMaPH4/vvvsOEyZMQMeOHdGqVSsAwPXr19GrVy9oNBrMnDkTbm5u+Oabb6DVaqt/U2oSialRsrKyJADS8OHDjdbdunVLSk1N1X/y8/P16/r06SO1adNGKigo0C/T6XRS165dpYiICP2y77//XgIg9e3bV9LpdPrlL730kmRvby9lZmZKkiRJOTk5kre3tzRx4kRVGpKTkyUvLy/V8vHjx0sApDfeeMMozco0CubPny9pNBopISFBv2zKlCmSqey1du1aCYD073//W7V81KhRkkajkS5duqRfBkCys7OTzpw5Y3QcU5hK27PPPiu5urqq7mOPHj0kANIPP/ygX1ZYWCgFBgZKDz/8sH7Zp59+KgGQfvvtN/2yvLw8KTw8XAIg7dixo9z0iGdz6NAhs9t4eXlJ7du31/+fPXu26r598sknEgApNTXV7DG+++47CYD08ccfG60TeSIuLk4CIHl6eko3b95UbSPWff/99/plIg/MmzdPv+zWrVuSi4uLpNFopF9//VW//Pz58xIAafbs2fplO3bsMLpHlt73kpISqbCwUJXGW7duSQEBAdJTTz2lX5aammp0XkG7du0kf39/KT09Xb/sxIkTkp2dnTRu3Dj9MnG/x4wZY3QMU4jrWrFihdltpk+fLgGQ/vrrL/2ynJwcqXHjxlJYWJhUWloqSZIkDRs2TGrVqlW55/Py8pKmTJliUdqUVCXv9ejRQ+rRo4fRduPHj5dCQ0P1/6ual+bOnavatn379lLHjh31/1etWiUBkD799FP9stLSUql3795Gx6yIBQsWSACkuLg4o3RUp1wzfD8licopJycnVdl14sQJCYD0+eef65eJZ6JMU2hoqARA2r17t37ZzZs3Ja1WK7388sv6ZS+88IKk0WikY8eO6Zelp6dLvr6+RsesS7CLpIbJzs4GALi7uxut69mzJ/z8/PQfYX7OyMjA9u3b8eijjyInJwdpaWlIS0tDeno6YmJi8M8//+D69euqY02aNElluuvevTtKS0uRkJAAgMzsmZmZGDNmjP54aWlpsLe3R+fOnVXmZ4FoWShR+mvz8vKQlpaGrl27QpIkHDt2rML7sX79etjb22PatGmq5S+//DIkScKGDRtUy3v06IGWLVtWeFzDtIn71r17d+Tn5+P8+fOqbd3d3fF///d/+v9OTk6IiorClStXVGkNCgpSBfO5urpi0qRJFqXHEtzd3cuN6Pf29gZA7h9zrcNVq1ahfv36eOGFF4zWGZpzH374Yb1rwRKeeeYZVVqaNWsGNzc3PProo/rlzZo1g7e3t+remcOS+25vbw8nJycA1KrNyMhASUkJOnXqZJFrICkpCcePH8eECRPg6+urX962bVv069cP69evN9rnueeeq/C4lrJ+/XpERUWpXC3u7u6YNGkS4uPjcfbsWQB0P69du4ZDhw6ZPZa3tzcOHDiAGzduWC19yjRVpzdJZfOS4T3u3r276rlv3LgRjo6OKouKnZ0dpkyZUuU0mqImyrW+ffuqLIVt27aFp6enRe9Ey5Yt0b17d/1/Pz8/NGvWzOjeREdHo127dvplvr6+ehdPXYUFRg3j4eEBAKoIZ8FXX32FLVu2qPygAJnMJEnC22+/rRIgImIeAG7evKnap1GjRqr/Pj4+AMgkDQD//PMPAPK/Gh5z8+bNRsdzcHBAw4YNjdKcmJioL7iFL7VHjx4AgKysrArvR0JCAoKDg/X3RdCiRQv9eiUVmdyVnDlzBiNGjICXlxc8PT3h5+enr8wM09awYUOjytfHx0d/v0RawsPDjbZr1qyZxWmqiNzcXKN7oWT06NHo1q0bnnnmGQQEBOCxxx7Db7/9phIbly9fRrNmzSwKPqvM/XR2djaqQLy8vEzeOy8vL9W9M4cl9x0Ali5dirZt28LZ2Rn16tWDn58f/vzzT4vzGGD6ObVo0QJpaWnIy8tTLa/MfbHk/ObOrUzf66+/Dnd3d0RFRSEiIgJTpkxRub4Ait86ffo0QkJCEBUVhTlz5lhUaVlCRXmvIqqbl0y9b0FBQXq3hSA8PLzKaTSkpso1w/IXMJ2vq7qvKIsMsea9qQk4BqOG8fLyQlBQEE6fPm20TsRkGAboiMrjlVdeQUxMjMnjGmYsc9HJUpk/WRzzxx9/RGBgoNF2hpWTVqs16tVSWlqKfv36ISMjA6+//jqaN28ONzc3XL9+HRMmTDDbwq4Olka4Z2ZmokePHvD09MTcuXPRtGlTODs74+jRo3j99deN0lbR/aoNrl27hqysrHILCRcXF+zevRs7duzAn3/+iY0bN2L58uXo3bs3Nm/eXOmo9Mr0GDB37OrcO0v2/emnnzBhwgQMHz4cr776Kvz9/WFvb4/58+frg1atjTV6UlSWFi1a4MKFC1i3bh02btyIVatW4csvv8SsWbPwzjvvAAAeffRRdO/eHWvWrMHmzZuxYMECvP/++1i9erU+ZqUqmMp7Go3G5DM0DMQUWCMv1TY1Va7V9Dtxp8ICoxYYPHgwvvnmGxw8eBBRUVEVbi/6aTs6OqJv375WSYMw3/n7+1f5mKdOncLFixexdOlSjBs3Tr98y5YtRtua6+cdGhqKrVu3IicnR9V6Ei6Mqo4DsnPnTqSnp2P16tV48MEH9cvj4uKqdDyRltOnT0OSJNX1XLhwocrHVCICYM2JSIGdnR369OmDPn364OOPP8a8efPw1ltvYceOHXrT7IEDB1BcXAxHR0erpM2WrFy5Ek2aNMHq1atV911Y7wTl5THA9HM6f/486tevX6PdUENDQ82eW5k+AHBzc8Po0aMxevRoFBUVYeTIkXjvvfcwc+ZMfXfPoKAgTJ48GZMnT8bNmzfRoUMHvPfee9USGKbyno+Pj0nriKFVsaYIDQ3Fjh07kJ+fr7JiXLp0qUbPW5lyzVaEhoaavA81fW+qC7tIaoHXXnsNrq6ueOqpp5CSkmK03lCp+vv7o2fPnvjqq6+QlJRktL2p7qcVERMTA09PT8ybNw/FxcVVOqZQ2sr0SpKEzz77zGhbUYBnZmaqlg8aNAilpaVYtGiRavknn3wCjUZT5ULTVNqKiorw5ZdfVul4Iq03btxQjdqYn5+Pr7/+usrHFGzfvh3vvvsuGjduXK4fNSMjw2iZ8MOK7rIPP/ww0tLSjO4pcGe2gkw9ywMHDmD//v2q7UQlZJjHgoKC0K5dOyxdulS17vTp09i8eTMGDRpUMwkvY9CgQTh48KAqvXl5efj6668RFhamjylKT09X7efk5ISWLVtCkiQUFxejtLTUyDzv7++P4ODganWVNpf3mjZtivPnz6vKghMnThi5bWqKmJgYFBcX47///a9+mU6n08em1RSVKddsRUxMDPbv34/jx4/rl2VkZODnn3+2XaIsgC0YtUBERASWLVuGMWPGoFmzZvqRPCVJQlxcHJYtWwY7OzuVb/CLL77AAw88gDZt2mDixIlo0qQJUlJSsH//fly7dg0nTpyoVBo8PT2xePFiPPHEE+jQoQMee+wx+Pn5ITExEX/++Se6detmsoJS0rx5czRt2hSvvPIKrl+/Dk9PT6xatcqkn7Fjx44AgGnTpiEmJgb29vZ47LHHMHToUPTq1QtvvfUW4uPjERkZic2bN+P333/H9OnTVYFSlaFr167w8fHB+PHjMW3aNGg0Gvz444/VqmAnTpyIRYsWYdy4cThy5AiCgoLw448/GvmIK2LDhg04f/48SkpKkJKSgu3bt2PLli0IDQ3FH3/8Ue7ARHPnzsXu3bsxePBghIaG4ubNm/jyyy/RsGFDfRDhuHHj8MMPP2DGjBk4ePAgunfvjry8PGzduhWTJ0/GsGHDqnwPbMGQIUOwevVqjBgxAoMHD0ZcXByWLFmCli1bqmKZXFxc0LJlSyxfvhz33XcffH190bp1a7Ru3RoLFizAwIEDER0djaefflrfTdXLy8sqo36uWrXKKHAYAMaPH4833ngDv/zyCwYOHIhp06bB19cXS5cuRVxcHFatWqU30ffv3x+BgYHo1q0bAgICcO7cOSxatAiDBw+Gh4cHMjMz0bBhQ4waNQqRkZFwd3fH1q1bcejQIXz00UcWpbMyee+pp57Cxx9/jJiYGDz99NO4efMmlixZglatWumD1WuS4cOHIyoqCi+//DIuXbqE5s2b448//tCL7Joa/bIy5ZqteO211/DTTz+hX79+eOGFF/TdVBs1aoSMjIy6OzJoLfZYuee5dOmS9Pzzz0vh4eGSs7Oz5OLiIjVv3lx67rnnpOPHjxttf/nyZWncuHFSYGCg5OjoKDVo0EAaMmSItHLlSv025rqjmeomKJbHxMRIXl5ekrOzs9S0aVNpwoQJ0uHDh/XbjB8/XnJzczN5DWfPnpX69u0rubu7S/Xr15cmTpyo75Kl7EZWUlIivfDCC5Kfn5+k0WhUXbtycnKkl156SQoODpYcHR2liIgIacGCBaputpJE3b8q00Vv7969UpcuXSQXFxcpODhYeu2116RNmzaZ7C5pqnugYXc8SZKkhIQE6aGHHpJcXV2l+vXrSy+++KK0cePGSnVTFR8nJycpMDBQ6tevn/TZZ59J2dnZRvsYdoPbtm2bNGzYMCk4OFhycnKSgoODpTFjxkgXL15U7Zefny+99dZbUuPGjSVHR0cpMDBQGjVqlHT58mVJkuTugwsWLDA6p7muhabygLl7FxoaKg0ePFj/31w3VUvuu06nk+bNmyeFhoZKWq1Wat++vbRu3TqTz2ffvn1Sx44dJScnJ6Muq1u3bpW6desmubi4SJ6entLQoUOls2fPqvYX97u8bsBKxHWZ+4iuqZcvX5ZGjRoleXt7S87OzlJUVJS0bt061bG++uor6cEHH5Tq1asnabVaqWnTptKrr74qZWVlSZJEXXhfffVVKTIyUvLw8JDc3NykyMhI6csvv6wwnVXJe5IkST/99JPUpEkTycnJSWrXrp20adMms91Uq5uXTHX5TE1NlR5//HHJw8ND8vLykiZMmCDt3btXAqDqGl0R5rqpVrdcM9dN1VQ5FRoaKo0fP17/31w3VeV7IzDVZfjYsWNS9+7dJa1WKzVs2FCaP3++tHDhQgmAlJycbP5m2BCei4RhGIaps6xduxYjRozAnj170K1bN1snp04xffp0fPXVV8jNza0zgbRKOAaDYRiGqRMYDs1dWlqKzz//HJ6entUaufRuwPDepKen48cff8QDDzxQJ8UFwDEYDMMwTB3hhRdewO3btxEdHY3CwkKsXr0a+/btw7x582zSlbguER0djZ49e6JFixZISUnBt99+i+zsbLz99tu2TppZ2EXCMAzD1AmWLVuGjz76CJcuXUJBQQHCw8Px/PPPY+rUqbZOms158803sXLlSly7dg0ajQYdOnTA7NmzrTaUQU1gU4GxePFiLF68WD/QVKtWrTBr1iyzXRVjY2Px5JNPqpZptVoUFBTUdFIZhmEYhqkENnWRNGzYEP/5z38QEREBSZKwdOlSDBs2DMeOHdPPImeIp6enahCbOts9h2EYhmHuYWwqMIYOHar6/95772Hx4sX4+++/zQoMjUZjcqhrhmEYhmHqDnUmyLO0tBQrVqxAXl4eoqOjzW6Xm5uL0NBQ6HQ6dOjQAfPmzTMrRgAa7VA56p2YnbFevXps/WAYhmGYSiBJEnJychAcHGw0r4upjW3KyZMnJTc3N8ne3l7y8vKS/vzzT7Pb7tu3T1q6dKl07NgxaefOndKQIUMkT09P6erVq2b3EQOj8Ic//OEPf/jDH+t8yqt3BTbvRVJUVITExERkZWVh5cqV+Oabb7Br1y79eP3lUVxcjBYtWmDMmDF49913TW5jaMHIyspCo0aNcPXqVXh6elrtOhiGYRjmbic7OxshISHIzMyEl5dXudva3EXi5OSknzK4Y8eOOHToED777DN89dVXFe7r6OiI9u3blzujnFarhVarNVru6enJAoNhGIZhqoAlIQZ1biRPnU5n8UyBpaWlOHXqFIKCgmo4VQzDMAzDVAabWjBmzpyJgQMHolGjRsjJycGyZcuwc+dObNq0CQDNEtmgQQPMnz8fAM0s2aVLF4SHhyMzMxMLFixAQkICnnnmGVteBsMwDMMwBthUYNy8eRPjxo1DUlISvLy80LZtW2zatAn9+vUDACQmJqqiVG/duoWJEyciOTkZPj4+6NixI/bt22dRvAbDMAzDMLWHzYM8a5vs7Gx4eXkhKyuLYzAYhmEYiyktLUVxcbGtk1HjODo6mp1ArTJ1qM2DPBmGYRimrpObm4tr167hXmiTazQaNGzYEO7u7tU6DgsMhmEYhimH0tJSXLt2Da6urvDz87urB2mUJAmpqam4du0aIiIiqjUVPAsMhmEYhimH4uJiSJIEPz+/e2LaeD8/P8THx6O4uLhaAqPOdVNlGIZhmLrI3Wy5UGKt62SBwTAMwzCM1WGBwTAMwzCM1WGBwTAMwzCM1WGBwTAMwzB3McnJyXjxxRcRHh4OZ2dnBAQEoFu3bli8eDHy8/Nr7Lzci4RhGIZh7lKuXLmCbt26wdvbG/PmzUObNm2g1Wpx6tQpfP3112jQoAEeeuihGjk3CwyGYRiGqQSSBNRgw79cXF2BynTymDx5MhwcHHD48GG4ubnplzdp0gTDhg2r0YHDWGAwDMMwTCXIzweqOchllcnNBRQ6oVzS09OxefNmzJs3TyUulNRk11uOwWAYhmGYu5BLly5BkiQ0a9ZMtbx+/fpwd3eHu7s7Xn/99Ro7P1swGIZhGKYSuLqSJcFW564uBw8ehE6nw9ixY1FYWFj9A5qBBQbDMAzDVAKNxnI3hS0JDw+HRqPBhQsXVMubNGkCADU+7Dm7SBiGYRjmLqRevXro168fFi1ahLy8vFo/PwsMhmEYhrlL+fLLL1FSUoJOnTph+fLlOHfuHC5cuICffvoJ58+fr9ZkZhXBLhKGYRiGuUtp2rQpjh07hnnz5mHmzJm4du0atFotWrZsiVdeeQWTJ0+usXOzwGAYhmGYu5igoCB8/vnn+Pzzz2v1vOwiYRiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYRjG6rDAYBiGYZi7kAkTJkCj0UCj0cDR0REBAQHo168fvvvuO+h0uho/PwsMhmEYhrlLGTBgAJKSkhAfH48NGzagV69eePHFFzFkyBCUlJTU6Ll5sjOGYRiGqQySBJTm2+bc9q6ARmPx5lqtFoGBgQCABg0aoEOHDujSpQv69OmD2NhYPPPMMzWVUhYYDMMwDFMpSvOB39xtc+5HcwEHt2odonfv3oiMjMTq1atrVGCwi4RhGIZh7jGaN2+O+Pj4Gj2HTS0YixcvxuLFi/UX2apVK8yaNQsDBw40u8+KFSvw9ttvIz4+HhEREXj//fcxaNCgWkoxwzAMc89j70qWBFud2wpIkgRNJVwtVcGmAqNhw4b4z3/+g4iICEiShKVLl2LYsGE4duwYWrVqZbT9vn37MGbMGMyfPx9DhgzBsmXLMHz4cBw9ehStW7e2wRUwDMMw9xwaTbXdFLbm3LlzaNy4cY2ew6YukqFDh2LQoEGIiIjAfffdh/feew/u7u74+++/TW7/2WefYcCAAXj11VfRokULvPvuu+jQoQMWLVpUyylnGIZhmDuT7du349SpU3j44Ydr9Dx1JsiztLQUK1asQF5eHqKjo01us3//fsyYMUO1LCYmBmvXrjV73MLCQhQWFur/Z2dnWyW9DMMwDFPXKSwsRHJyMkpLS5GSkoKNGzfqvQDjxo2r0XPbXGCcOnUK0dHRKCgogLu7O9asWYOWLVua3DY5ORkBAQGqZQEBAUhOTjZ7/Pnz5+Odd96xapoZhmEY5k5g48aNCAoKgoODA3x8fBAZGYmFCxdi/PjxsLOrWSeGzQVGs2bNcPz4cWRlZWHlypUYP348du3aZVZkVJaZM2eqrB7Z2dkICQmxyrEZhmEYpq4SGxuL2NhYm53f5gLDyckJ4eHhAICOHTvi0KFD+Oyzz/DVV18ZbRsYGIiUlBTVspSUFP0gIqbQarXQarXWTTTDMAzDMOVS58bB0Ol0qpgJJdHR0di2bZtq2ZYtW8zGbDAMwzAMYxtsasGYOXMmBg4ciEaNGiEnJwfLli3Dzp07sWnTJgDAuHHj0KBBA8yfPx8A8OKLL6JHjx746KOPMHjwYPz66684fPgwvv76a1teBsMwDMMwBthUYNy8eRPjxo1DUlISvLy80LZtW2zatAn9+vUDACQmJqqCULp27Yply5bhX//6F958801ERERg7dq1PAYGwzAMw9QxNJIkSbZORG2SnZ0NLy8vZGVlwdPT09bJYRiGYeo4BQUFiIuLQ1hYGFxcXGydnBrn9u3biI+PR+PGjeHs7KxaV5k6tM7FYDAMwzBMXcLe3h4AUFRUZOOU1A7iOsV1VxWb9yJhGIZhmLqMg4MDXF1dkZqaCkdHxxofP8KW6HQ6pKamwtXVFQ4O1ZMILDAYhmEYphw0Gg2CgoIQFxeHhIQEWyenxrGzs0OjRo2qPRkaCwyGYRiGqQAnJydERETcE24SJycnq1hpWGAwDMMwjAXY2dkZBT0y5rl7HUkMwzAMw9gMFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdFhgMwzAMw1gdmwqM+fPn4/7774eHhwf8/f0xfPhwXLhwodx9YmNjodFoVB9nZ+daSjHDMAzDMJZgU4Gxa9cuTJkyBX///Te2bNmC4uJi9O/fH3l5eeXu5+npiaSkJP0nISGhllLMMAzDMIwlONjy5Bs3blT9j42Nhb+/P44cOYIHH3zQ7H4ajQaBgYE1nTyGYRiGYapInYrByMrKAgD4+vqWu11ubi5CQ0MREhKCYcOG4cyZM2a3LSwsRHZ2turDMAzDMEzNUmcEhk6nw/Tp09GtWze0bt3a7HbNmjXDd999h99//x0//fQTdDodunbtimvXrpncfv78+fDy8tJ/QkJCauoSGIZhGIYpQyNJkmTrRADA888/jw0bNmDPnj1o2LChxfsVFxejRYsWGDNmDN59912j9YWFhSgsLNT/z87ORkhICLKysuDp6WmVtDMMwzDMvUB2dja8vLwsqkNtGoMhmDp1KtatW4fdu3dXSlwAgKOjI9q3b49Lly6ZXK/VaqHVaq2RTIZhGIZhLMSmLhJJkjB16lSsWbMG27dvR+PGjSt9jNLSUpw6dQpBQUE1kEKGYRiGYaqCTS0YU6ZMwbJly/D777/Dw8MDycnJAAAvLy+4uLgAAMaNG4cGDRpg/vz5AIC5c+eiS5cuCA8PR2ZmJhYsWICEhAQ888wzNrsOhmEYhmHU2FRgLF68GADQs2dP1fLvv/8eEyZMAAAkJibCzk42tNy6dQsTJ05EcnIyfHx80LFjR+zbtw8tW7asrWQzDMMwDFMBdSbIs7aoTIAKwzAMwzAylalD60w3VYZhGIZh7h5YYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VYYDAMwzAMY3VsKjDmz5+P+++/Hx4eHvD398fw4cNx4cKFCvdbsWIFmjdvDmdnZ7Rp0wbr16+vhdQyDMMwDGMpNhUYu3btwpQpU/D3339jy5YtKC4uRv/+/ZGXl2d2n3379mHMmDF4+umncezYMQwfPhzDhw/H6dOnazHlDMMwDMOUh0aSJMnWiRCkpqbC398fu3btwoMPPmhym9GjRyMvLw/r1q3TL+vSpQvatWuHJUuWVHiO7OxseHl5ISsrC56enlZLO8MwDMPc7VSmDq1TMRhZWVkAAF9fX7Pb7N+/H3379lUti4mJwf79+01uX1hYiOzsbNWHYRiGYZiapc4IDJ1Oh+nTp6Nbt25o3bq12e2Sk5MREBCgWhYQEIDk5GST28+fPx9eXl76T0hIiFXTzTAMwzCMMXVGYEyZMgWnT5/Gr7/+atXjzpw5E1lZWfrP1atXrXp8hmEYhmGMcbB1AgBg6tSpWLduHXbv3o2GDRuWu21gYCBSUlJUy1JSUhAYGGhye61WC61Wa7W0MgzDMAxTMTa1YEiShKlTp2LNmjXYvn07GjduXOE+0dHR2LZtm2rZli1bEB0dXVPJZBiGYRimktjUgjFlyhQsW7YMv//+Ozw8PPRxFF5eXnBxcQEAjBs3Dg0aNMD8+fMBAC+++CJ69OiBjz76CIMHD8avv/6Kw4cP4+uvv7bZdTAMwzAMo8amFozFixcjKysLPXv2RFBQkP6zfPly/TaJiYlISkrS/+/atSuWLVuGr7/+GpGRkVi5ciXWrl1bbmAowzAMwzC1S50aB6M24HEwGIZhGKZq3LHjYDAMwzAMc3fAAoNhGIZhGKvDAoNhGIZhGKtTJYFx9epVXLt2Tf//4MGDmD59OvfkYBiGYRgGQBUFxuOPP44dO3YAoKG7+/Xrh4MHD+Ktt97C3LlzrZpAhmEYhmHuPKokME6fPo2oqCgAwG+//YbWrVtj3759+PnnnxEbG2vN9DEMwzAMcwdSJYFRXFysH35769ateOihhwAAzZs3V41ZwTAMwzDMvUmVBEarVq2wZMkS/PXXX9iyZQsGDBgAALhx4wbq1atn1QQyDMMwDHPnUSWB8f777+Orr75Cz549MWbMGERGRgIA/vjjD73rhGEYhmGYe5cqj+RZWlqK7Oxs+Pj46JfFx8fD1dUV/v7+VkugteGRPBmGYRimatT4SJ63b99GYWGhXlwkJCTg008/xYULF+q0uGAYhmEYpnaoksAYNmwYfvjhBwBAZmYmOnfujI8++gjDhw/H4sWLrZpAhmEYhmHuPKokMI4ePYru3bsDAFauXImAgAAkJCTghx9+wMKFC62aQIZhGIZh7jyqJDDy8/Ph4eEBANi8eTNGjhwJOzs7dOnSBQkJCVZNIMMwDMMwdx5VEhjh4eFYu3Ytrl69ik2bNqF///4AgJs3b3LgJMMwDMMwVRMYs2bNwiuvvIKwsDBERUUhOjoaAFkz2rdvb9UEMgzDMAxz51HlbqrJyclISkpCZGQk7OxIpxw8eBCenp5o3ry5VRNpTbibKsMwDMNUjcrUoQ5VPUlgYCACAwP1s6o2bNiQB9liGIZhGAZAFV0kOp0Oc+fOhZeXF0JDQxEaGgpvb2+8++670Ol01k4jwzAMwzB3GFWyYLz11lv49ttv8Z///AfdunUDAOzZswdz5sxBQUEB3nvvPasmkmEYhmGYO4sqxWAEBwdjyZIl+llUBb///jsmT56M69evWy2B1oZjMBiGYRimatT4UOEZGRkmAzmbN2+OjIyMqhySYRiGYZi7iCoJjMjISCxatMho+aJFi9C2bdtqJ4phGIZhmDubKsVgfPDBBxg8eDC2bt2qHwNj//79uHr1KtavX2/VBDIMwzAMc+dRJQtGjx49cPHiRYwYMQKZmZnIzMzEyJEjcebMGfz444/WTiPDMAzDMHcYVR5oyxQnTpxAhw4dUFpaaq1DWh0O8mQYhmGYqlHjQZ4MwzAMwzDlwQKDYRiGYRirwwKDYRiGYRirU6leJCNHjix3fWZmZnXSwjAMwzDMXUKlBIaXl1eF68eNG1etBDEMwzAMc+dTKYHx/fff11Q6GIZhGIa5i+AYDIZhGIZhrI5NBcbu3bsxdOhQBAcHQ6PRYO3ateVuv3PnTmg0GqNPcnJy7SSYYRiGYRiLsKnAyMvLQ2RkJL744otK7XfhwgUkJSXpP/7+/jWUQoZhGIZhqkKV5iKxFgMHDsTAgQMrvZ+/vz+8vb2tnyCGYRiGYazCHRmD0a5dOwQFBaFfv37Yu3dvudsWFhYiOztb9WEYhmEYpma5owRGUFAQlixZglWrVmHVqlUICQlBz549cfToUbP7zJ8/H15eXvpPSEhILaaYYRiGYe5NrDrZWXXQaDRYs2YNhg8fXqn9evTogUaNGpmdxbWwsBCFhYX6/9nZ2QgJCeHJzhiGYRimklRmsjObxmBYg6ioKOzZs8fseq1WC61WW4spYhiGYRjmjnKRmOL48eMICgqydTLufEoLgNLCirdjGIZhGAuwqQUjNzcXly5d0v+Pi4vD8ePH4evri0aNGmHmzJm4fv06fvjhBwDAp59+isaNG6NVq1YoKCjAN998g+3bt2Pz5s22uoS7A10xsLETiYzBZwB7tvgwDMMw1cOmAuPw4cPo1auX/v+MGTMAAOPHj0dsbCySkpKQmJioX19UVISXX34Z169fh6urK9q2bYutW7eqjsFUgdR9QNYZ+p11BvDtYNv0MAzDMHc8dSbIs7aoTIDKPcPRV4DzH9Hvzt8BTZ+0bXoYhrmn0OmA9euBjh0B9njXbSpTh97xMRiMFbixTv6decJ26WAY5p5k505g6FDguedsnRLGmrDAuNfJ/gfIviD/v8UCg2GY2iUujr7Pn7dtOhjrwgLjDkWnA3bvBnJyqnmg6/+jb5cyu2TmSeDe8poxDGNjMjPpOynJpslgrAwLjDuUP/4AevQAyuJiq45wjzSbDmjsgaIM4Pb16iavZsg6DxTn2joVlnN1DbD3caC4uiqQsTo3dwNpB22dCqYMITBycoDcO+gVZ8qHBcYdyqFD9H1BeDfyr1OwZu4Vyw+iKwFSy+ZyaTgc8GxOvw3dJJIE/LMYyDhSnSRXj9T9wJ8tgANP2y4NlUGSgCPTgYRfgITltk4No6QoC9jeD9jeFygtsnVqGAC3bsm/2Ypx98AC4w7ln3/oOy2tbMHFL6gnyPlPLD9IXjygKwLsXQCPcMA7kpZnnlRvl7QZODQZ2De2uskmSgupkK8MKdvo+9rvQEm+ddJRXW6dALb3p26+hmRfAPLLuljfMpgrR1dS+xXbjY3A2QWArtR4XcltYENHYM/o2k2Trci9RPm+JKdygpypMYQFAwBu3LBZMhgrwwLjDsVIYORcLPu+bPlBRHCnRwSgsQN82tJ/QwtG+t/y9reTqYK89DWQf63yCdeVAlt7AGsbApmnLN9PiB5dIZm3awNdCXBhEZB+yHidJJHoSt4C7B0DlOQBOZeAC5+TAEraKG+rtPyU3AY2dQb+CANuGzTVSgvpnNYg+yJw+VtKpyQB+8cBx18DLi4y3jb9IImgxN+AwnRalvY3Peu7kdx4+XfOBbOblbv/qXeAgrQKN2UsQykw2IJx98AC4w5EkgAxAGp6OgV8IrdMWOQnlL/z8TeBDe2pIhECw7MZfQsLRvrfVKmKyk5ZwabuAS59BRx8FtjzaOUTf+V7IP0AUJIL/P20+QpVVwpc/FIWE0rRk7RJ/n1jE7BjgGkrQmW4dZKuaYUPCaDSIuDCp8CRF+g6DQNfU3YAaWXnzE8E9k8g4XBkGnDsFbXAuHWCRksFgNPvUGV+Owk49jotu7mbzrHCE9jSHZB01bsWANg7GjjwDFl8bl8HClNp+cl/AXlX1dsqhV76YSDtALA5Gtg1tPxzFGUCV2LrjkXJUvLi5N/ZlRQYRbfIvXJqDnDmPasm616GLRh3Jyww7kBSUuRAKJ0OyLwlyabevATzvUDyrwPnPgBuHafeI9llfcI8ygSGTzsAGjrGpihgWy86VsZh+Rg3/wISV9DvtP0UG5F7hVrz2ReNz1laCByeBvzZGrjyA3DybXldxiHgwmfy/6IsOYjz3PvA4SnAX6MoSDLnH3k7UXlfWQrsGkyCY/84EgW3U4BL3xinRVdK1gNTZJ6h6730NVCcSRX+oeeolQqQK+nWcfU+p+fSd70o+r66kgJkAeDSf4GUnfRbY09Wl6xzJNTOLZCPEf8jCZOtPeie6opI3N1QiJOqkHVeTm/aXnXaS3KBw1MNtlcKjIPA9bLA34zDJLzMceJfwN9PkjC7k1BaMLIt6BeZuhf4333AX48Au4eTiwUAbvxZE6mrWa6vI3Fcm1xYBJz+d7lzHVU7BiP/GpVNTJ2CBcYdyD//qP9nJKcDxdn0pyRPrugMufwtIJX54NMOyOZhYcFwCQS6xALBg6hiTN1DlXdBinyM6/8DUhUv8pl5wM4hFAS6fzwJEl0xcGMDEPczVZ4XP6chyP8eDxQkA+5Ngfu/pP1PzAROzqH4gLUNgLUhwIm3gZOzaH1hKgkJSICjN7lyss8DR2YAf0+g69HYkwXn1Bxga3fg4ERgXTNgQwdyGUkSVQyr/U0LjwPPkAio3xVo9x9afuV7qowF19Yo7sE64OYuwM4J6L4KaFRmyfF/EAjoDUgldDzXhoBft7KHdIQqYkkHhI4Bmj5Dy+OW0neTCUDo4/T7wqfyubIvAuuaAwcmWj4ZnRCAQJn7o8z6Uy8K0DgA1/8gUSVQioj0g0DKdvl//I+mzyFJchfn+J9qz21lDfLi5d8VWTBKblO+zvmHROTN3YC9K2DnSMuy/yl//7pE8jaySu0cROVEbZ3zyAvUsNjeByi4aXKzalsw9jwKbH0QuPa/KiXTKhyeBqxvd2f1dKthWGDcgRgKjLwUg0C1PBNuEhE3IUg/oHCRNJeXNxkH9PwTCBpI/0+8Sd8uwWXHjqNKUvy/sQ7IPld2zL+B+J8pOn/nIGD//9F5nHyAiMlUKANAu/eB8OeA0MdIjJx+h+IDSvLIgnDm37JwAIDzH9N3vfuBep3p94WyYNYWrwD3L6HfZ+dToe/oTRXprWMkQhJ+oXSW5JLYUd3MLyndDh7AA8uBlq8D4ZPKVmqAZi/Rz6tlAiNpM7DnEfod/iyJiK4/Ab23AL02A+0VFoqgAYBPx7Jr+IjS4+AOdPwMiJwHOAcAdlqgy1Kgy/dA5L9JQCVvkQXA6XfpOV3+hkzzIkbiSiywroXpAvWqQmBkHJGDTENGAYH9yp7bevqWdEDWaXn7tH0kMgTxy0wHhiqDWAGyipQWGG9XF1EKjIpiME7PJfHq0gBo9iJZ+br9Cvh1p/V3ihWjJB84WJavSwvIFVbT6EqBoy/L/1P3klXURH6qVgxGSR6VMwBw8i3TLsaiW0ChmYaXNZB0wOX/0kjIaSbctZKOGjJnP6i5NNRBWGDcgQiB4eueDjtNKYpvGQR2mhIYN/4kX7yDB/3PPCFbJjzvM96+0cP0fesYfQcPBNybyOsjngcC+9JvjT3QcAT93j+OWnkO7rS+yQRgwGHg/i+AweeAvrvo2BoN0HUZ8MBvJFa0fjQPSvsF1KvFqxUJEUD2mftEUqUtaP8hbd/kScC7LEDVOQCIOQgMvUhpSN1DZnxB3I9y6y0vkSwoAND+fRILANDhY7IwdFoEtHmbxErWaeDs+8Cuh6iADh4iiwk7R7pWey1NFNfkKVoe9jjgWyYwxGRy4ZMAZz/6DDoNDL9Gog4A3BtTd2GARFXeVSDhV/rv4EaWo3UtyJrx95NkyTn0rLo1mnWeYirsHOk+luSRNQmgyjG4TDgmlS3LSyDhZedI11mUQRYY1xAShrdvADd3wgjhpqoXBTj50jlX1Qf+ehgoSJW3u3W8rHXZy/LWfv71movrkCQgVxGDUZguizbD7eJ+kl1a938JdPwUGHgMaDgUCB5My4VQq210JaYDui98TjFJ1/6ndpWemq3uMSMCtwGyKpz/FMgw6O0EVNzbyZT4FMT9QOWMoxfQ9y/A0RPIOmtUARcVAYUFJZgW8xn++8wzeKPbSFw9+he6dwe2bCn/9AAo3UJUZJ4CEn5Tr4//BVgdBGyIrLkxafISZYGdddZ4/a1jZEE+8dY91TWaBUZdRFdSbqBf6tUkLH/hUaR/VR/zH5tp3NXOlMC49A19RzxPFbo4vksQvfiGNBgqWxAAwLeT3GoDSFC0fa/M3bEEiF5KlTskqqwe/J1a9V2+l4WJR1NyIwg0GqDRI8CwBGDEdZpkrcUrwMNpJEoaPaJOk3ckWQ1CRpEwaVHWOrKzB6J/BMKeAHpvAzwjqLIWAkVXRGlwbwIUZ9G4FJIEHHyOKmC/B+i4Agc3oPN/gfsmUyUb0JOWH3+DXB8NhwHdV5qf1j7qa2DEDSCgl3pmWo0DDWgmcK5PHyXCYnLlOzJnSyWAf0+g/9+AV0tyGV0ue5b2rhQsev5TIGUX8PdTZDUCgIC+srgpLYs98YmUBcbNv8itJgI8PVvIIg0gS4dw/ZyZT2bfi18AaxoCFxbKgbaNHpWffUkecHW1bCk7NZcCihNXkEjZ3BlIVrhfAKqg8hJlQZFxFPijSeW7zOZeARJXVRwgW5gGlJadyzmAvg3dJEW3yAq3/wmypDV6FGj4kHqbBmUC4+Yu0ybx4hyy/hhWdpaiKykL0DXTk+fEm8D/wtXusOyLwNGX6NnsfogsXqUFFIx7/lPaRliw0v6md+DMPLrfR1+i/CaCkQGKmfrNlUTtyVl0X5Scmgus9DJtRZN0JGoAoPW/AP8HgAbD6P/VVapNMzOBhzr8gc/GTcczvb5F/xZrcPvAbOzZA3z5ha4s4LwcISOC0IWF9NRsOXj89HvAvsfpvc2/RgHqNYEyDwmLrhJhkZRK1PFkdzksMOoaumJgfWsKOjQVrJl/HR/2ao1Hu1DBMqF7LLRFZUFnQhAYCgxdMXCzLLAr7HHZzQDIAZ6GaOtRBSnw7QT4lwkMjwiq7OpHAQ9dAsKfARw9qMXvFkqWicDell+znYNcOACAgytg7wy4NaKKT+DdFnAJALqvMBYfPm2Brj8A3q3kZRHPAQF9yO3QcaEsIi58RkFnSRsojiLqv7SNOUJGyr9bvgE8sMq8uABI8Iih1z3uI8ECAGFjAbcQ8/sBVBC3Los/ERPPtXgF8G4NDDxOVhv3cPruXCY0Tr8DbOtJcSOiS2zj/5MDUAFKj7M/jXfiEUEFXfI2WWB4t1FvH9Cb7p/GgcYg+SOM3CC3r9MAYmJckqABQIMhJKiERef6/0i8nJlH/0MfozxXdIsqsYI0qoD+egRY4Q78Hgpsup/y6cVFJAhv/EmWEEmimJd8M455XTEJoHUtgT2jKh4HRrhHXILpmgFjgXH0ZYpDsXcBIt8Don8wPo7HfSRYRVoFkg44PpPiffaNpd48wjKQl0hdmQESVCdnA/8sMX7PJYncGbuHAxvaGXeTLi2gQGKgLD6pjJP/IkHkEUFpT9lGzyJ5Cz1vzxZAmzm0bdrfZNk68ZZsAbt9A7j2h7z+4EQ6XvZ5ctWJuCigrJfXItp331gKYlaSeQrIv0oi+L6yoGJhFb26WnXNmZlApybksjl/g8ojP8cTACRE+S6mslDkJVMIl17zV6jcyrlIlsqMI3RPALlhc+6jSrnyiosr3gaA2tVmyoIhLJiA2iV5l8MCo66RG08FXsYReWwLBdKNDfB2ycDllCa4XewGf69UNHYqi/r3vZ++DQVGxhEqCJx8qVCtrxAYnmYEBiBXrHZOtF/Y/wEtXiOrhEZjvH2jUcCwePq2FkExZWlwVMeKWILGDui5Dhh6mVqcTZ6k42SeBE6VFZat3wa8Kjhu4wlUyfdYB7SbTwLCUuzsgZCHKS6k5RuW7dNmDtCqrGD0biNbHewcyWrz0D/0HTqarBSi1dnkKbIm9fiTAklFfgDkLsiAHF9zY305AqMXuVT67ACcA8mNoLEH6nUBUBbI69KAhCZA91oEqaYfBP75ilqNns1JcPbdScKoNJ9M5JmnKWhSaVa+uEgx6qlEFfc/X5IoWd/auKWsK6FeRifepHMB1EuqPPeKcI+4hcniWlk5pOwkoQZQTE2rN02LSY1GtvAcfYlEU2kRVbZn/0PXJQR/6h76v6kz8L8IYN84+n16LnDoedpH2cPp7Hw5DQUpFCgtKn6AnltxJv1O3koWlPRDZdYMDQUe3/cCrb+6WnaRBQ8EfNpTPipIlnt0hT8LtCxzFf7zJZUff40k8dRwBIksgCwqQhik7ZW7PpfkALuHyYHmAMUqAZSP7J3pd2B/Etv5V8nyc3IOcH0dMjOBto0o0Dh2zySUlNrDxzUDDXyvo31AmSsu4WfjZyDIKBNggb3ld+z0O2RxBEjY99pCbr+CZIpfsoDffwc8PIBlyyzYuCILhkpgnDFef5fCAqOucVsxeFXa30arc5PjAQCbTg1AYmEfAIC7Y9mAP8JqYCgwRLc0/x5UEdTrIq8rT2A0ehTwag00fZoKWXstxSqInhG1gYhJ8L0fsHeq/P72zoB7GP129gM6fk6tmfrRFB/S4rWKj+HgQq1zYRavLF1igZEpFQsZgUYDtJ0L9N0N9Npk3rqisQO6/kwBs33/Arp8C0Q8CzQYRMeopxAYPu3k38GD6Pv6H1RRAIBXm7LKwIV607iWBfH6PwAMPEoFd5+dJBSEBSx4kFpougaXiRpJNo+HjqFt7J3pWABVhiIoz/9BoF1Z4NuxV2T3BUCV6oWF9LvoFpn91zSgUUdPzqIW9vU/6NjCFVdw07QZPGkzuSyEBcMtTM77onIoypS73IY/J6fXHK3/RQLqdhKwawiwoS3FzGgcyOrRuuwepP1NvbYKytwd8T9SK1Zbn7ZN+AXY0Z9ERsJysioAdF+CBpKL66+HZfEVp+jZoysEkjcDx16l/42fILEYUhYTdf1POU4keCDlZe929F8E/zZ7kfKNxo4sN5uj6Zq8WtN1NHuJ8kX+VVmQiqDn4MGAayMy+59WjAsiXGhB/eVlDi5y3tsRQyJg/3jcytAhshFZ6+JzonD+Br0nkY1OoH2jg/Izyr5IQu7yt+RqK7pF/4WL2LcTBZO7BFEZmLyV7m+bdwB7J0gt6B5lH/igfJdLGdu2AYWF9G2SrLM0Vo+kUwuMwnR1HJLYVv9bITCKssgieOlrtXvqLoEFRl0jXzHRWNp+49Wp8QCA7JIwpDkNUK8MKBMYhoNtiTEZRCyBb0e50jLnIgHI3Dj4lNyl1BYE9KCWZDdLmhEWEPEsBZr230eVUlVES2XRaCp/Ho2GXFLC1WIOz2ZA1GLTlaF7E7JaAWoLRkAPOm7BTXk0Vu82JMSGnKdeREpcgshy4/8Aicwe66jyazvX+JwNygbnEnEfoY/J64RFJUMhMOp3Be6bQvEQIn5CWEKurSUrnoMHEDGFlt2+QRXj6XepJaqxA7r+QmKxVVmPp7MfqOMibmwAdg4kS4Fovbo3lgVG2t9kcdnQns7nHEjXWw4ZGaDWeLdfycInemU5egE9/kcVvbAUph+gFjtA4ty/JwUJDzpJcUqO3mTl2BFDXWIBitVp+SrQ4w+yHEolFEtw7FXZJSOCrI++Qse3d5afSb0oem4lOWQFcXCTY6jqKxoYft0Brxbk2hSBq7eTSDj12gA4upMwCOhTdi/XkRVDdNtu+oxcPlz4jCywJflyV3ZhgRSElLlJdGWBjkUZcMzcjZB6lA+z7drg5FWKBXqowx8I8FJ0a73+P7oHB56hLq+rg4DjZcLK4z7AyZvcq63ekvdp+hTFfgGI0zyNjFwfeNrFofT6RrI4nV0gW3gAsjSV5cObZadONxEDjNsp1CPm8BQKIjXsjZR1lvJgcQ5Zj5WDuykFxuGpdN8OPkvd0f9ZorYE3eGwwKhrKIffNiEwdDnx9O0ahjxPxcvr4CEH9RWmy35VXTEVXoAcU+HoTi1L9yaAX1crX0ANENSPCkCmcmg0QKuZVKE1GCQvt3cG+u2hSsw5kAL/RA8at0ZUUJeHc32q/FwCjdcpgyF9Oqh7KAmLSvohatEDZA1xcKXuwQBV1h0/LRNWZeb4JuOB+xeRFWjAYQroDehDrer7lwAhw2m7sCconxQkA5u7UFfM5O0UMCrEizBfu4WR6NI40PaHniPrhltjEljl3IPFi4F69YCffgIFznZZSu9Wp0XA8EQguEz4C5dT7hU5GDPsCaDvDqDn/+gaA3qSILF3pkpZVwg0eIhibACKT+oSCzSdSNdw7kN6p70jZUElKq8Wr8vvicZO7tkFlN2vMldP/Wh5ub5LNoDmZVMz+7QjES7yBEA9ZwCKh7l1jCwE9q5koQgeRI0bXSG5q27uJgHh2ogqfiUNhpCbJqCP3pLauJCsVCm5YfCs54UTCSSGx3T9Rb3vuQ8onsTOka5TVygLRqV7r+kzFG/i5Cu7GgFkZLviu13Uw6vg1Jfkijr+GnWpPzID2DsWWO5C0xgcfB4OtykY0630PIlWEeQq6aj7uxjTI/4nudwW1uGMI9Rr5c+WcoyIcBXlXCIhc3Ut7auxo/io3CvkMlsdpO7eewfDAqOuoRQYWaeB4hxcuyaP3OlcGg8AcA8Ig6t/E1xMiqAV7k2oUBQ9Qq6uBY68RL7c0nyyRngpAiC7/gQ8dLniyoS5s2nxClVohj2F3JsAHT8BRiYBvTebjqmpCt5tydcNqK0XYp2dI3WFFYFuopUf/hxVoh0XkisreIi8X8Rk+nb2JxHd+P+APluB0flA+ER5O3snsmY4B1ArcdP91NItyaGeQk4+iusPo4DhmL+B5i/TcZs+Td1QlT1/THCgTButEB04wh4D+mwnS4zyPjt5y3FD4nr9exgf0P8BSredEwmubsvUcT529kDUV0D3NfI73Gya+ppcGwEtDdx9IQqBEawQmP7d6VzOAbJFASCx89AVoP8ButdKhHUj7W/gWNl5ggeQONRogA4fAdCQu0e4mYL6q/LVmjXAhi1u5HLrs5V6YwEIdfgdAHA9PxLBwcCJRBIYni7UpTSusCxmSFToEVMpnWKwOkDtDrTXAgMOUfmmCKrOyQGWbHuOblfmBnXg6IVPgIQyK+ntJODSEnwzsi2+enoSvh3VHjj+OjI2PYennwayDi+ibtoixkZ02dbWky2JZ+eTYMi/Jse61I8ma5VUSo3HQ2X3qcXrdD0dPiFhVJp/17hLWGDUNZQxGJIOaRcPoXFjICYGQGkhvJwomj6gaRjq1wc2nSyzYpSZAfUtmP3/RyNCipddxF8wTE2i0VBLvvF4ckcpsdeqXTWujWQXkIML0PlreZ+wMjdJ8GAy4VuKXzT1tgmKofyuLRMrD66Ve+cAZMEASFh0+JAsI52/AZy8KjxFRtl4Tbt3A6UVufKVPbacA8zHPIUMB0Ymk+tO9DpSotHQNgNPAMOvkunfzpHus8Ye6LSQKnsl/j0oENfeWR0/5NqQuj3330f3XYl7Y9PuPNcGZHmAVNaDSEOiUODTjqxlgDwAm8I9kp4OPPIIMGyYYljwMpetnYasS6nFbREUJAsMwb5rZbFgALmgWr9FzzbqK7LCeUSorTUA3UODxlN2NnA5JRwbT8RAA4msLEEDyc2l9aP09j8A9NwABPaFs2MBJvX+L5wdKRDZN+c35J/7Ba4Xy6xtHT9TW3k8mgGeZUHPhYqJ8FJFnFMruZfbgWdIMHm1BNrMpvQ2nw4MPkPWxebTcTfANU5do8yCUSRRQZd1eT9KSoB9+4DMG4mw00jIK3BFRKv6qF8f+Gj9y1h3bDBKwsvGT3BVuBLEaJuA7ENlmJqm4UNAdKzp8VWULU1lbyZDAnrSQGTdfq38+V0CgV4bgceKgYdvkjtCW48sIf4PUsvfrXHlj1uGEBiZmcCJExVsrIx38O9ZvqXIyafiRoCdvbpSa/8huY7KrAHqbR2B/nuBmMPqfQDAt7164DxLEN28A3rTYHZB/dTrI98DBhwlq0jwYJXVJC6OxFhxMbBjh0hDR5WYyrKLRHQ0cDM7ELkl8vgw+y9GkaAS59DWo98aO7LCDb1YcfdvkAUDAL7YUhbPY+9CAwCGjqZ72Gsjdb0PHoCS7psx6ZuvcPhKR7z44+eQyuKCfpn6OBw1BeRWjJhM7iyBZzO1GHbyVXe/92olCyURmNrxM3UvJY2G4nQq+2zqKCww6hilOSQwlu+lAsM1T47DOLA9HgAQnxaG5i008PEBEtPDMPTDdUi3KzPNCYVcP5oC9vrsoEJIaUpm7jn+/W9g0CCKircpyq6z9coRGADlZUf3qp/LsLK2d6LYgn5/Va6rsQHKibl27qxgY+U1iiBra2JnL1e4pnALVY8NUx0ingUeyQF6bwXqdTK9jW97GoSu5zqVReXqVXkT/eicdo5AfblH2m1tWzzwAJCeroFbA7Ji5Nx2x95TzchSMeIGuaGqiBAY644NwSd7FlOsjXuZ0DQQfqlpGvx3xyTc//ZhLNw4FTlN3kVRKYmF/GIPsnZpNGph59lMPW5PsxflwcWAMoGheBbBg+RA3bsUFhh1idIi2BWTn3H53zSQVD3dbgT7UM+SY3viAQCp+WFwdQXs7QHfsk4CacIi1/IN8uf22kyDXwX0pDETlEqauaeQJOCDD4ANG4C/jXs+1y4qC0YX89vVYYQFA7BAYHi3Ib87NHIvr0qQlQXMn08WgDqBo3uV4nWUAmPrVsWKAIpJyStwhcaT3Lze3oDGhwTG4bhOuBJnDwmaintUmeDWLblsFAID0ODD359TDyRogOhBIki73QRfbHsZOp0GH+1cSMHQAFmlhKXOoxm52AL7kgvuvinqOBGvlsh3IguGTrKTu2ffxbDAqEsUJEEDCYXFTthwfCBuu3SCkyYHS58bD41Gh9KseABAvp1s3q1fZknUCwwnbwo6q07Lj7mrSE+XC9f4eJsmhVp4ni3IReFTfjBlZbhyBfjkk0qMvFhFJEktMCqMw7BzoO6ePf5nes6fCvjuO+DNN0lk2JqiIhKoJSWV3/eaIrTs0iVFPmwwDEUlTth0Kgbe3orqqPE46Nya4Mstk5GdrbYaWUppKRAZCbRsSZa7bEXvzxs3lILDmJQU9f+kJGDG0nnwez4VX2+dIK+wdyI3R9hYeUC83luAof+QZSmoH/XUafEaoK2H/ZcfxBdbJuPFnxZD8rKSZakOwwKjLlEWf3H9VgPoJHuc8vgJRaWu6Nt6G6YP+BRhfvEAADuPMP0ufn70nZYGhjHJZcWcWDZvCdvZAwOOAINPGwcYVhGdDnjoIWDGDCA21iqHNEt+PlW0AODiQhYGi+IwqjhI24Wy4RWSzUxJUpssWABERwNLllR+X6UFA1C4Sbxboc/CK3hi8Y/wUXTygU8k7IZdxl8JZMmtijC+cYPOm5pKFglDQWE4K7USQ4Fx/jwAaJCRWw9JSQaisskE6pWnjKWwc6BvEYzanuZFSrxqj6mxX2DRxklG57gbYYFRlygTGNcyKCDralYz/HKRpiqfO2oW2ocdAwB4BIXpdxEWjFSDgeNsycWLwNtvV63VYS2SkoDly6vW2rrbuKKYC8/mFgyAhIVhj4dqsGIFcKZs7KJdu6x2WJMI64WjI9CzJ/3eZ2J2bmshBGFWVs2dw1JO0mjeRvc4J0deZw4hMFqWdbJQukkuXm2A/EI3eHsb79e4zFhblXyrFNO3bhkLDCHeTGHoIjmrGIiztNR4PQDk5QE//AAMHgyMG0fC1xCl0Lp0yfz57xZYYNQhcm+qBUZ6OrD65CScSGgLd+c8tGxAgwQFNg3T72PkIqkDvPceBRWaa03qdNQSrElmzAAee4zmE7jXqVMWDCtTWgq88478f+/emj2fEM2+vkB4OP2+ft389tWlLgmMpCT6PnZMvfypp8gVIcYHMYWoWJ8q6wyyfTu5myRJvqemBEZYGH1XJd8qRYlSYNiV1XrlCQxD64JSYABkHVGSlAR06ACMHw+sXw/8+CNw6pTxcRMT5d8sMJhaJe0qlVRCYKSlARkZGsz7403VdiHNw/S/66LASCgbqVzZclYybBjQoIHal21tyKR591SoGzYAISHAl1UYtV35HO6W+yH47Tfg3DmqnOzsqFIxLPyticizvr5AQAD9NtWatQY6nfwuZWbWzDkqgxAYly+r4xn2lA0UfNF4bkYAJAKFCBs+nILT09LoOd2+LcfNmBIYoWW97sV9qAzKvJ6ZKae5VVnoQ1UtGIBaVKalAf360fUHBcn5wtS7xhYMxmYUZKgtGGlpZMVYeWAU0opoxM78Ijc4ucvd0oTAqKlCzhQ3bwKjR5ufBEgURIZ+V8HevfTCCxFQE4igsrokvKrKrl3AyJF0Tb9WYVgIpcC4fl2OIbAVOp0FA1RZyA9lM6lPnw60pSksatSKoRQY/mWDXdaUL/3GDflZ1SULBiDHndy6JceHmBNBycn0vO3tySJxX1ms66lT8j729oC7ibj04GD5GAC5IXbutCz/mHORdCybUcESC0aDBvSttDwAaoExcSK56IKDSWz1KuucYqqBxQKDsRmagrIJf4plF0lGBqCT7HG7MU09rPFuruomJl6AmjTTGvLTT9RyfP990+tFQWT4UgJkEhUtieoUmv/8A/TvT6ZWQwoKZGFxpwuMa9eAoUPpmoCq+aKVLhKdzrzwqw0kiQIFIyPl+Jhz56pmdSgullvPw4cD3cqGVKgNgeHjU/MWDGUFlZVFzy43F1i3rvZji3JyqHIXHD9O3+cUM5Obe5+F2A8OJiEhhODJk2r3iKner4Fl090IgfGvf1EF/tNPFafZnItEnF/Zs8UQ8UxbmBlEVpS3kiR3VV6+HGjShD6A+r0T27KLhLEZHvaU4xveR6ohNVWeyU/TZALQ+Ru49PhGtU/DsgH6alNgCN+i4QsEUCEkXmRTFVlentz6UJpZK8uKFRSJ/tlnxuuU98LkTIh3EDt30v0MKRuosLIWiIIC+X4Ia5ctAz3T04GDB6nFl5BAebx9ezlg0hTZ2dRi/usv9UBhR49ShevjA7RpA3Qtm7evJoMuq2LB+P57YM4cqmAqg7IFLkl0rR9/TIJzXtk0GqWlastCTWF4DhGHoXQdmLNgiHJA5GFRwSstGKbcI4CxwDhdNqXLfuN5II0wdJGIcqlp2awK6emmAzEB+ZmKoFRBvTLjsXin0tPla+hQ1utaCAxDC0ZmplqkXbpU+Txxp8ECo46QnVUKf3dqxrXqRKohPl5uqdSrb0eTMfm0U+0nLBjXrtVeZhUCIyHBeNwBZXe6tDTjYE5lK6c6FgzRa0bZghIoWyZ3ugVDFF5RUYCzMxWI5bW8DImPp3zh7g50Kht80ZZxGEpLxdWr9PwKC8kiZWqU0f37qSt2u3bAgw+qAzpFb4YHH6T4C2HBOHas5oKIlUGeSguGuXdPpwOmTKF0V9YlaPicsrLkY/zwA51z8mSyDNSkqAKMBYawYCgFhrn32VBgtGlD3ydPAocP028Ra2GIocAQFbsQGuYoLla/J7duyQ0aETiq05nu6SZJ5i0Y7dur0yG6ujZsCLiWdYwyJzDEffAsG5crK8u4AXTkCIlHfTfeOxwWGHUETWkO0tERmUUN0agZlVzChObsTH3uTSF8lIWF5bfWr14lE151RUhpqVyolJYaWykMCyLDylBZCFXHgiGEw+XLxhXT3SQwlBWaKIQrY4EQhVzTptXr8meKa9eo4qxMF2mldenqVbXJ2NRYDz//TBYb+7KRvZU9GIRpWlg/GjUiwV1SQlaDmsCUBaOgwPygTampFMgImBbDubnUop8+3XidocDIzFTn+z/+AL79lv7X9Ait4r0WIuH0aXoulrhIRBkhrK3CgnHuHLB6Nf0eNMh4P0AWGDk5JBqFQD1zpvyy7OpVtXVC6SLx9QW8yua0M5V3MzPlhpOhwBBWCpEOITAiIuRthMCIj6cyUriXRF5v2lS+F4Zukh07gLfeqrn8W9vYVGDs3r0bQ4cORXBwMDQaDdauXVvhPjt37kSHDh2g1WoRHh6O2JoeWaeW8PD1RsATB+A94Srq+9EgLSKTC7OcKbRauaAz5yYpKaEo58ces2Bo4wq4ckUuMMV/JYYCwzAOw1oWDFHQ6nTGA+bc6QLj6FH5GpQ+atHyqkxEvXBjNWkiCwxrWTD+8x8y/T/zTIWb6jG0YFQkMDZtou9ny+bZEnm8pIRcJoAsMDQa4Mkn6ffUqeROUCJJtP6RR+TKae/e8oP9DFEKDDc3+gDm4zCUAtyUBePIEbIImoopMGXBUObnCRNkd2NFcSAZGdUbK0e819HRVDkXF5NAMOUimTyZXAuGrlIhTho1olZ8cTGNhAqQ28cUHh5y4+rKFbnMyMwsP27H8N6lpMjWYE/P8gcoFPfS01O2EAuEwBD5UPScEYGrAIkHBwcSYBcv0r3o2FFOU6NGchdnQ4Eh3m1zFp07DZsKjLy8PERGRuKLL76waPu4uDgMHjwYvXr1wvHjxzF9+nQ888wz2CRKobsEQ0Eh5hsxh9JNYopffpEL0ap091Ji2LfbMA7DUGAYWjiUflprWDAA45ahUmhlZJj3s9YGlQ3GO3OG3CGjRtF/cb98fGSBURULRpMmVdu/PETl8scflgtXQwuGMj8a5p0rV6gAdnAA/u//aJmoVI4dk+MvRIsYIIvKyy/T75dfpgpccPMmjc2yciVVODdvAj16kPi2FKXAACqOw1Dmf1NCRoiq9HTjvCIqJGG9MRQYynepvDgQwyGzq4J4NsHB5K4CKMBaKRBF5f/rr/ROHj1K/0W5JASGRiO7SQCqnJUVtBKNRrZiKJ8lIA+uZgpx70TgqDKfubuX371f3Et/f+OyWAiMzEyyqJiyYIjeMgBZmK5do2f/44+0LCSkYoEh9r/TsanAGDhwIP79739jxIgRFm2/ZMkSNG7cGB999BFatGiBqVOnYtSoUfjkk09qOKW1i4+POqK6PAsGIJvbrl2jSvunn8hkWlxMhdbcufK2le1Pn5ur7hJm6Pu0tQUDoMKstJQKNMMYBZ3OdmMIvPIKPUtz4wOY4o8/6FpE4SksGD4+VXORCAGodJFU1YJx5AiJ2WXL6L+ycHz5ZcuEXGUsGJs303fXrkDz5vQ7PZ1cEkLQdO8uD5wE0O8FC4AhQ+i/0pettCBkZVE+EW6+zEzKuwEBFDNhDmUvEkAWGFW1YCiFgTJPFxbKYkyY6ZUuEjuDkrs8C8bVq3StaWnlB4NfvUoVqKnAafFeBwXJgmzOHPU2mZlU3og8K85laMEA1KLQnPVCIASGECyC8uIwRB4XFb/IZ25udO/KGwFZ3MuAALLWiHttZ0dCXVitrl+XBYahQBJuEqWr49Ah+i7PgiHebbZg2ID9+/ejb1/19LYxMTHYX05IcWFhIbKzs1Wfuo5yllSgYguGsifJv/8NPPGEbMps1UqdiStTqaemUoUiCmtAtmA0KptM0JwFQ/RpN7RgWDsGAyCBMXcumSG/+srYkmMtN8mVK2RdsGQsCkmi+IHcXNkMbAnCGJebS5WMUmCYskCUlpof0EykGVBbMJKSgFWrKn//ly4lgfD99+QmE8/W1ZUKfws8nOUKDENxKu5F//7kInJ2lo8hxmGIjjY+h0YD9OlDv0U3VsA4XkApPOPiyP998yZdpznLk6EFQwR6mrMgKPPihQvGcQNKUaUUCYmJtK2rq1xJJiXJ7slHaIoO/XWWJzCU7395bpIvvyTL0KxZxkGySoHxwgvU6BH5R9yLrCz14HnXr1MjR+wryimgcgJD3OPKWDDEOyKCMkU3bw8P+i7PRaK0YNjZyddXvz6VzcqhAUTjQWnBAGSBYWowwZAQuSeL0r0rSWzBsCnJyckIELmtjICAAGRnZ+O2MjBAwfz58+Hl5aX/hChldB1GabWoyIKhdJEIv7SzMxVG4gUQx6hMa/7kSSpENm+W/alCYAwbRt+GlZsoMMVgNtW1YBQUAC++SC175bLcXPn/mTPAf/9Lv1evtkxgrFoFfPppxedXsm4dtUIsmezp+nX5XpgaD0TJyZPUus3JUY/hkJ5uOgZDKTAWLqTCytRsm5Ikb9u4MeUBUbCOGkVm88rkBxHxf+qU/Nw9PWX3hQjATEoCZs+mwr1FC/XzKM9FoqxsCwvlMU5iYkg0iHx+44YsbEVL0JAHHqDvvXtly4pSYGRmqq89Pl6uiPPyzFdeyqBboHIWjKwsYyGi/K88hmiBh4XJ1hJxzY6OZHrfsYMaFIbHMUQpMMylU5Jk4ZydDaxZo16vFBiensDMmfI6IfKUFhaAnvv163T/nZxkoQDIrgZfX7n3jzmEBUP0XBGNF0ssGEJgCEQPjvJcJGJeFZG3RNkpnrXIh3/9RXlFWDaUKP87OsrCBqDGWbNm9Pv8eVl0KkcbFQ24O507SmBUhZkzZyIrK0v/uWrLUYYqgXgBAMstGPHxcsvu+HFqMa1eTS2yl16i5ZWxYIgCX6ejsQsKCmTFLQTG5cvqVpkoiKKi6NtSC0ZWFk0SNGGC+ng//ECV6NSp8jLD3jKnTsnn3bNHTreokA0LkaIisvK89FLl3AWi9V2exUBw8KD8W1SiqanGQw7n5JALoEMHqjSULee0NNMxGNeuyQHAonviO+/Qszh6lIIvb9+m+yT63TdqRJX0unUUhOfvT/nFMBDSHMXFsoBISZHHIYiIkM25Qkg8/TRZlI4fpwL0vffk4ygtGLduqccFSEqiCrBpUxLI2dn0HojKSNlyVLp+TNGuHZmyMzPle16RBUNZEZsyihYXq3siABVbMAzzv2EchjkLhpjXo2lTuceDuOb69enaevaUK9/yuspaIjAOHFALV8NeDEqBAVAeEs9DCASlWweg30qTv9KtExVFQn31aoqxKQ9xjSKv9O5N32fPmnbLSZL8jhoKDFHRl+ciEe+UGFdFCAzxrEVQ8Ycf0ndYGAkoJUqB8cADaitNSAi5VOztKY+Ld0KUE35+cpfXO507SmAEBgYixeBNTklJgaenJ1zM9OPUarXw9PRUfe4EqiIw9u+nisXDgwr+++4DRoygmf3EMSrTYlUWfvv3UwGt09GxRKslO1ttBhQFUefO9H31qrrgM2XBKCoCHn6YJglaulRd6f/8s3wcUYGJQsHPj3rRKCkooPM5Oan99krOnpVNzZWJZxDXdu1axcFySoEhLBgDB5LLSmkBuXKFCs7bt+XgREFamtpFEhBA16vTGfu3CwtJ9EVHU+vy11/lawsKkt0LUVHAF18AixfT/08+sax3wdmzspkZkFu44eHGg72JCn3iRPr+9ltKZ3GxXBEbxhAAlN+2blULuOefl7cVXbLPn5fTbE5gODgAXbrQb+EmMbRgKPNifLza3WdKYIhnodHIlb6lFgxRSRnGYZiyYBQXy3nk0UeNBYbSoinOX1ho3uVlicD45Rf6fvBB+t6+nSYMDA0FvvtOvnYhMFxcaLC7554jsSFixpT38Pr18ntFPPssBdlWhBAYgh49yCqQm2vaOnjoEN1XFxe5HBJU5CLJypKtV6KMMxQYzz1H76G434buEUAtMAYMoHIYoLwcFET7CwuJeF/uNvcIcIcJjOjoaGwzmABjy5YtiDbliL3DUQoMS10kogLo0MG4ABcj5VXFggFQgbtjB/1u144UtihsRIVQXCwX/PffT995eerBbEwJjMmT1fOaiAC+xER1/IIo9EWhEBAgmxoBdSHWoIH5QkTpy63MCKhCYChdD+YwtGAUFMhBas8/T5U8oG7hitaY6DWQkiK3mMVkXsJ0Ks6vLGDPnJFH+Tx9Wt7GVIE1YgTlk9xc4IMPzF+HSJNwjwjEdNsREWoXXWmpLARnz6bKoLiYzpGSQvfOwUEdFOfoSN9JSbIImDCB7pkyQFlpmgboHSmvvSDcJHv20H1UumoMXSSGFgxT40oIIe3lJT+j8iwYykm+RKzEhQu0XIhuUxaMVauoVRsQQLEW4t0VFZCybHB1lV0G5sSDstK/eZPua8eOJF5EOn/7jX6/9hpZCCSJxGdiIjBtGq3TamV3DUAV8OLFdD9Exa28h0oLRnUqTUOBERYmv/em3CRifpoRIyhtyjxSkYvkwAG69iZN5GcrthX//f2p0SYw1QPGUGAMHgz07UvvvrDYiFFChcC42wI8ARsLjNzcXBw/fhzHy5xrcXFxOH78OBLLSs2ZM2dinOJJPvfcc7hy5Qpee+01nD9/Hl9++SV+++03vCTs/3cRSlFhaTdVgYh/UCJaQdWxYIghR0SAmWg9igJMFLIODtSqFRW8shI17KZ6+za1kAC5NSMEhuitoEwDIBcK9evLEfbBwcDrr8vbNmxovhBRRqNXZlRMZRBieW4SnU5dIV+9qva1AhRXkpws3xthibG3l02wyopBVDLKOIyiIvkZvfoqVTTCXH3+fPmFu0Yj+++/+MJ0MFpsLOW9GTPkCHhhChZCRmnBuHaNKsbSUhINQUEUMAhQjIxwsQQFqQtRYcZOSZErjMhIY+uUyOciH5izXgiUAsPQcmDoIjl5Ul1BX7xobPkyDPAEyrdgpKTIk3yJZ7pjB1nWunenfKLcT4jzhQvpW7SUxbsrenMpBUZFadDp1PkoNZVcikePkgUiKUl2K/r4UA8RISgaNKBySLgmAgNNzxcCGFtZADq2sEZWp9I0FBjBwbIL1jCwuLBQtsaMH0/fSlFUkYtE5C1lm3XwYNpeORiYcmA0UxYMLy96v954g7rkurhQj6ZFi+RthMAQFpO7bQwMwMYC4/Dhw2jfvj3al5UwM2bMQPv27TGrrFRKSkrSiw0AaNy4Mf78809s2bIFkZGR+Oijj/DNN98gJibGJumvSSpjwfDwkF9wQPZZK6muBePWLSqYtFqaSRUwHhJXVMABAerWtqm+8gC1pES0vLMzTWQEkMAQvTAAWXiYEhjCpPvUU9RCEFRGYJSWknvhscfKHx3QUoFx4QK1mF1dqXIpKZFFU+fOVCmLEVGFwJgwgVwkixbJ91XEu7i7y618pcC4fp3Sq9VS3EVWliwaLlyouPU4YABV5Ldvk2tKIEnAm2/SoFRZWdSSFS4REXsjCA+XK/6cHFkgNGxIeaBXLxIQhYVyIG6DBuoui8LaVVwsB7kazgEh9gPkHg4VCYzOnen+JyQA//ufep2hBUPkUT8/uUUq4iAEhgGeQPkWDPFsg4LkKcKPH6dW/t699PyVQ+3fvEkibP9+et7PPUfLDefpMCcwTKVB2fNEnEP5Pu7eLXcHHjSIBOSwYSSwLl5Uxz4Ji6UpRBqVAqOkRBam1rRgNGggWxCWLycr3IIFZHmZOZOEYHCwbDUyJTDMWTcN4y8Act/evKkuX1q2BMaMUYtHQ956i4KvzYkycxYMdpFYiZ49e0KSJKOPGJ0zNjYWOw1G8OnZsyeOHTuGwsJCXL58GRMmTKj1dNcGlYnBANRdwCyxYMTGkmuivLELhMBQBjA99JD8wooCXvRUEduLgkhUIoaR9ErEvoGB9FI7OtL2339PlZWTE/DRR7TN0aNUUSkFxrPPUoE8Z466Nd2woSzMlC3RkhI5EBagSvrSJeqlsny5cVc4geFQ7KYmehMI90iHDnJ6RJfLFi3kFs/ly7IFpXFjChp77jn52Qtzs7KAFIXP5cvqIZjt7Ogj4k7i4uSAQjH+hSEajVyJLVkii6stW+ReKeIZi9axGClTEBFBAkjkLyECRStMo6E8AwB//knfwcFqgREeLj8r0aI0JTBEDIagIoHh4SFXMuJ6hOswK8u02A4Pl1uvhnEY5VkwMjONJ6FTjv+gdOUJDAcnu3lTPme/fnLFqmw8AMYCo7xZXQ3HWTAUGLt2yWOFKAcci4gggfzss7K4LU9gmLJgAHLlWZ1WubL3iRh468EH6Vnl5pLF5bXXyDokhkT6v/+T3VhKgWZowcjNlV3LOp3sGjP0upsSCUuXkqhTDhpWGYToPHtW3UWVLRhMjVOZbqqA3LpzdzftE1RaMCSJTHeLF8tdvwSiZQzIgkGp3IXZEZAtJaKlJ1r4omAUlYg5CwYgV4KBgVSgicA8MTT0U0/Refz8qAA/elQtMOztaR97e3Vl1q6dsQVDpyNTubJFd+2aui+68EWLdb6+5Dc1HATKnAWjtFSuSKOi5MJCTMzVvLnatWRqECLxvEXloCwghUvozBl5X2WXtoAA8jPrdHJwY3ktorFjKc9cvCh3CxUm5kmTKDZGCMx69agSEv89POSWoMh/ogWoTNPAgfQtxKyhBSM0VN1K9fAwdvspzyGoSGAA1LK1s5N754jKwNCCIQgPl/Og4bTvpgSGr69ckRlW8Mpn6+9Plr/evWXXjSmBIVw5SoFlaMEwLA/Ks2CIPCSek6HA+PNP2Z1nMMQQABIVIlajvIpPpNHcJHPVaZU7O8vH9/cnwaPRUNkAyD1eOnYkV4Szs7wOUAt0EYPh5SXHQojy4exZctu6uVkmGhwdLSubzXHffZQ3b92iZ8cWDKbWqKoFo3170xH6ooVRUkKmbFEYKgvZ27fJZH7//aTqxYv38MP0HRBAYxIIhBlRRPUbdmUTlYylFgxANjeWlND55s2jwkQU+vv3qwWGIQsWUADiY4+pBcakSXSOr76iZaLAMhQYK1bILfn16+nl/+0340GgTFkwUlPp/qxYQf8HDJDvgRA1zZrJFeOlS6YFhki3eEbKAlIUfGfPyv5t5b4ajWzFEC2z8gosDw/qsgvQQEtFRbJfe+xYqlSETz46mgplIXIiIuSWnch/QmwqK6NOndTPytCC0aiRunXcooXpFmNlLRgADeg0ebL8X+QjZQyG8lxNm8rdIEVwqEBYm5Tvo52duvJWony2Gg317Nm2TX5vhOgUwunmTVlwKy0e1rBgiHOmpqoFhnBRtmhhWtQBNF7M228b93JSYphGYfUAKM8YPrvKIsoHZRrHj5fLuoYN6d4mJlJ5pLx/piwYGo1xA0QI8qioirvOWgMXF9kdevCgLGDZgsHUOKLA9fY2DnYzhWjxdO9uer2bm9zSunRJrkSVXdtSUuh/UpJcUdjbk79z/nyqaJUvnq+vbObbu1d2PYhK1dCCIUny+cRLr7RgAGp/5mefyZWrMFnu21e+wHB1JbO4cjjgq1cpkDQ1VQ6yEq3qlBT12BTx8XKLTrhLMjLkaxMtlitXjOM1XniBCjlXVzpfv37GhYXSgnHpkvE8DaauSykwmjSh4xcWyr16DAflMTTHVzRoz/PP0/fq1dRrIzOTnocIGH33XXoWwvwsRI5ykCtR8IsB0JTntLcnsaXc1lBgKC0YptwjAL0HyhajJQIDoGsKCpLHjgDUFgzldYSHU8syPJziI4T7QJLkOBSlfx4wH4dh6tkCskAT+ViMapmbK1sUKyMwTAV5vvwyWf5E+sX7U1IiDySlpLz5WOrXp3uodMMaYphG5TMMCZHLnqoi7rFSYAQHA48/TmLmm28oDfXrG79zpmIwAGOBIXpG9epVvbRWBnGf1q+nb2/v8ntG3WmwwKijNGlCXfu+/tqy7adMoUC2N980vV7Zd18ZUW842JVAmMsDAkhUvPGGHFCpRJh7//xTfknE0OKGFozcXNlMLtYZWjC6d6dRJl98UTbNAnJlt2eP7Kc3JTCUiMooP189nwpAFZ6jI1UcoiusGNxGuEmU8RiiG22XLiRe8vPVBXpamjz19NatcqyCsqJ1cKBKUVSMp0+TUFCOUmnqupQFpJ2dLOpEd03DCkxYMAAqhCsSqG3ayCZlMSjWww/LlYKzM1kxREU8dCilQ2nNMqx8DEWNMgI/OJjiQpo2lV1ZSguGOYEByPfJ1dU4+M8cPj4UPHnypHzvlRYM5WBM4hpFHl63jr4PHiSrlaurcaCrqPwMB9UynKZcoHw+AAka4XYSeUq5jaUWDCFwJInKjWPH5DzcqpVccQmrhjLOoDITvpnC0I0TGSn/tobJXzxrQ0vI999Tg6i8OH9TLhJAtjylplL5IN7x6t6LyiDeZVF23E3uEYAFRp3m1VflLqEV4exMhaKYiMcUohBQTr6lFBjK30JgVFSIC4Hx/fdUWTZvLhcuouITPTVEge7oKLe6RGyDOI+jI7kYPv1UbbqOiqKKUmlxsFRgCF54gQooR0cSS6KwEvdDBDyuWEHXopw5VlgLQkPl61K6SX7+mVq8HTuqC25la6ppUzp3kyZ0bUL0BAaqTcqG6TYsvIUFQfRAKM+CYWmBtWCB/EwAtbgz5NFHSSwq/dyGlahhK7J/f7U528mJnuOhQ3QvKiswxD20lIAA2kdU1hkZcn4Xs4MCssAYPJi+168nUSy6TA8fLo87IRCDORkM0aO33JUnAEXalPfex0edtx0c1O+1uRgMIU4yMtRD6QMkYpTnAGTXmIODZQNelYehCFIKDGuY/Fu3pm/D2AgHh4rjIEy5SAC1BePwYSqfvLzIpVdbiOsRjSYhOO4WWGDcQ4hCQDlcsTkLhnCRWCowRGU5Zoxc8AcFUSu4tJSEhDi+l5dxgWQwxYwRzs6y/1wE7FUkMBwd1eeZMYNEw6lTVPEaVorTplFBnpBAgknZK0CYUYOCjLvnSpI8loey0gXUlb+o+J2d1RYLwwqoPAsGIBe25vZXVmCWCgxfX3kWzYYNK54fwnDgXEP/vWGa6tWj47/xhhyE7OQku9yU+Uy4EEwhzmOpe8QQUdnk5souLmHB8PKS4ysefJCEREoKiaDly2n5448bH1O42zZvlvNmTo48BLThOAne3urrDQxUV/7NmhmLJ2UlWVE3VREsGBBAcTXz5hkLDFdX6mnxwAM0ZL6y4q0KyvQprWyAdVrlr75K1stJkyq/b0UuktRU2ZXUp0/txF8IRo6ka5s+Xe2GvFuoxVvJ2BrDuAfAvMAQreOKBEZoKBX6oufJmDHyOjHzYGIifYR7xJTAsMTc3aOHHBgHyCbO8qhfn66rc2e5oBOViFJgeHmRGBg6lILx3nmHlms06liL4GASGDt2UC+Arl2pZ8vJk2RhUV4/oBYYyoq/aVPzPnoxUqQQbYYCw7AVZ7h/eDgV8jpd5Qr30aOpAA4Lq7zPXHkvzc2loBxTwRDlENTltXhFxWVqrBdLMMx3Wi3FZQwYQKJCVOxOTmQqX7OGRoRMSSGR1L+/8TGjoihPZWRQN8cHHpCtYv7+xs8PIBElrHeGFgxTXVq9vOgdc3IytqAIcS66ygqB0aSJHF8DqN+XRo3oWQs3W3VR3td69Yx7CVUXrbZi0WsOcxYM5VgYYvyW2nSPAHRd5Y2ke6fDFox7CFEIWOIiEVRU8Ws0shWjY0fj1poyDkMIGFOBTJYKDIGLi2UTAonCVwwOpkTZ6hY9IoRrQBT+hoPoBAXJLfBvvyWhINxYI0caVyZubrIJ11BgCAwFgkajNvuac5EAxkMhA1RoibEvKiMwNBpyDVTFTKu8l1WZCbJjR6pYx48vX9xMnkwxLq++WvlzAHRvxLwsgDwN/IYN6hlCAbn3lOhBNGGC2pUlsLeXYwA2bKBvEedkSiwAaiuNKQuGIeLdrV/f2Lrh4yPfs9RU890dleew9mydSoFRv75acNo6rsBcDIawYMTFqccfYawHC4x7CFFRKWewNGfBEFhS8T/zDLXgTAWYKnuSVMdFApCLRBTwFblHBO++S7EXpkyrykJQCKMBA9QtRDEVuSAoiNwgkyZRRWxvT9c4YADNvWGKqCiqFJSxGeUJDEB9fYaiJSBAbn2Z2hegVre7e/V965ZSr54cTFqVFquHB1XKYhI2czg5kRnbzNyGFqHMe4biTcnjj1Pw8tq11EvqP/8xv61wk4hAZ1PdTZUoxaYlFgyRTlPxBnZ2ajeJuTktalJgGLpwPD2p7LCzM38PaouKYjA2biTXlgg8ZqwHu0juIQwrdcA6AqNvX+N5GwTK0TxFxW3Y6vbysqzCcHWlMTr27bNcYPTuLY9rYIihBQOgdAwdKg821bMnCRHhzggKonOL8TQkqeJgw5UrySKinACpOgIDICvG9u3mK4oFC8j3bqrFXROInjBXrli/8rI23t5yvEJ5AkOjUfd+KY+YGNr++HGyeAiBYRjQKVBaMPz9K2fBMIW/P503Odn2FgwhgjZsIPdDeSOA1gYiPRqNWmAo38F69dQT6zHWgS0Y9xCmClNrCIzyUM5HYs6CUZlziBZ5dUbQEygtGMrRT4WbxNeXWjWiV4O9vXHchyU9GVxd1eICqL7AEFH65Zmfa0tcCMT9rOsDBSnfA1Oiuyr4+8u9DzZurNhF0r49uc9ataLnJPKVnZ16XA7DNJsTGEIgnzplftpvwxgMa2IqCLVdO9Ojg9Y2AQE0Lsg776jfiagoEv/r1pE4M7RWMtWHLRj3EBVZMMRvT0/5tyWui/JQWjBEa646AmP8eOozPnZs9dIFmLZgAGTBmDWLCkiNhlqbmzfLJl9roKxETAmM8mIwAOrxkpcnj7JZF3jiCSqoLW312wpLXSSVZeBA6nGybp08Oqw5gVGvHokQYdUTrfzGjU2PWyICkw27mgqio6my3LfP9hYMS62LtcmHH5peLuJsmJqBBcY9hKUWjM6d5W5bNWXBULpIKnOOZs2Mp96uKsHBZDItKlJXBPb2ci8SQLZgWNPU6+1NEzTl5ZkeRrkiC0ZYmOymqSs88wx96jrK98CaAmPQIDKz/+9/1AvL0dH8RHOA2oLWsyfF9ShHPFUyYQIFI4qxWgwR8T3bt5seTRWoWYHh4kLdO0tK6qbAYGwDC4x7CEtjMLp1I4Hh4VH9/vGidZ6aKvu9q2PBsCaOjnSdRUXlm8qHDaPZZ59+2rrnf/998+tEIa3VVi+gkTGmpiwYnTqRZULEI4WHWz6mglZbvmCMiJAH+zJFhw4UACvERWCgcb4RAtnRsfxhv6uCRkP3Mi2NBQYjwwLjHkJZsIrxHUy5SKKjae6R0NDKjZZoCl9fikHIz6cZQAHjbqrVdcNUBzEKY3kEBMizhNYWwkVizQqQIWrKgiG6qwohUJu9J7RaEhliunFTsTn169MQ4m5uls1vVFm8vFhgMGo4yPMeQlmYCstCYSF9ALUL4403jAeNqgoajXwu4ZeuKxaMuowIyLNkJl2mcijznrWCPAXK+JPa7p6pnITNXPDvxImmRyO1Bo8+SsHLYsRdhmGBcQ+hLEyVQYZiSmohMKw9m5+YJE2M5Cn6yQtYYBjTowfNLVPeFNlM1agpCwYgd1cFzHdRrSmU46zYYnCrefNoIjVr9PBi7g7YRXIPoSxMGzQgU2leHrlG6tWTXSTWbtUtXky9PjZsoMK3e3f6FsNZs8Awxs2NggUZ61NTMRgAiefBg6nXkRjhtrawtcBgGENYYNxDKAvWgACyIgiBoZzS3NoCw96eWuSGo0p260ZuE+UYFAxT09SkBQOguWyys2t/gKkGDShuKiHB9FgaDFPbsMC4h3B0lAMuhcBISqLCULhH7O0tm+PDGmzfTt3alHNDMExNU5MxGABZn5TTq9cmsbE0rHmvXrY5P8MoYYFxj+HlpRYYgFpgeHpWv+eIpTg41O7UyAwD1LwFw5b07Gk8QR/D2AoO8rzHEIPtNGyoFhg1FX/BMHWNmozBYBhGhtuP9xgffwzs3k09Oz7/nJYZWjAY5m4mKIjmhvHwqD13IMPci7DAuMdQzi5qykXCFgzmbsfRETh7lnox1ZY7kGHuRVhg3MOwwGDuVWpiJEuGYdRwDMY9DMdgMAzDMDUFC4x7GHO9SBiGYRimurDAuIdhFwnDMAxTU7DAuIdhFwnDMAxTU7DAuIdhFwnDMAxTU7DAuIdhFwnDMAxTU7DAuIdhgcEwDMPUFDwOxj2MUmB4eKiXMQzDMEx1qBMWjC+++AJhYWFwdnZG586dcfDgQbPbxsbGQqPRqD7OPB1nlRBiIi8PuHWLfrMFg2EYhrEGNhcYy5cvx4wZMzB79mwcPXoUkZGRiImJwc2bN83u4+npiaSkJP0nISGhFlN89yCsFgCQmkrfLDAYhmEYa2BzgfHxxx9j4sSJePLJJ9GyZUssWbIErq6u+O6778zuo9FoEBgYqP8EBATUYorvHrRaQGn8cXAA6tWzXXoYhmGYuwebCoyioiIcOXIEffv21S+zs7ND3759sX//frP75ebmIjQ0FCEhIRg2bBjOnDljdtvCwkJkZ2erPozMO+/QzKpPPQUsX662ajAMwzBMVbGpwEhLS0NpaamRBSIgIADJyckm92nWrBm+++47/P777/jpp5+g0+nQtWtXXLt2zeT28+fPh5eXl/4TEhJi9eu4k3ntNWDXLuDbb4GRI22dGoZhGOZuweYuksoSHR2NcePGoV27dujRowdWr14NPz8/fPXVVya3nzlzJrKysvSfq1ev1nKKGYZhGObew6bdVOvXrw97e3ukpKSolqekpCAwMNCiYzg6OqJ9+/a4dOmSyfVarRZanpuZYRiGYWoVm1ownJyc0LFjR2zbtk2/TKfTYdu2bYiOjrboGKWlpTh16hSCgoJqKpkMwzAMw1QSmw+0NWPGDIwfPx6dOnVCVFQUPv30U+Tl5eHJJ58EAIwbNw4NGjTA/PnzAQBz585Fly5dEB4ejszMTCxYsAAJCQl45plnbHkZDMMwDMMosLnAGD16NFJTUzFr1iwkJyejXbt22Lhxoz7wMzExEXZ2sqHl1q1bmDhxIpKTk+Hj44OOHTti3759aNmypa0ugWEYhmEYAzSSJEm2TkRtkp2dDS8vL2RlZcGTx8VmGIZhGIupTB16x/UiYRiGYRim7sMCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq8MCg2EYhmEYq1MnBMYXX3yBsLAwODs7o3Pnzjh48GC5269YsQLNmzeHs7Mz2rRpg/Xr19dSShmGYRiGsQSbC4zly5djxowZmD17No4ePYrIyEjExMTg5s2bJrfft28fxowZg6effhrHjh3D8OHDMXz4cJw+fbqWU84wDMMwjDk0kiRJtkxA586dcf/992PRokUAAJ1Oh5CQELzwwgt44403jLYfPXo08vLysG7dOv2yLl26oF27dliyZEmF58vOzoaXlxeysrLg6elpvQthGIZhmLucytShDrWUJpMUFRXhyJEjmDlzpn6ZnZ0d+vbti/3795vcZ//+/ZgxY4ZqWUxMDNauXWty+8LCQhQWFur/Z2VlAaCbxDAMwzCM5Yi60xLbhE0FRlpaGkpLSxEQEKBaHhAQgPPnz5vcJzk52eT2ycnJJrefP38+3nnnHaPlISEhVUw1wzAMw9zb5OTkwMvLq9xtbCowaoOZM2eqLB46nQ4ZGRmoV68eNBqNDVNmTHZ2NkJCQnD16lV239gIfga2h5+B7eFnYHvq6jOQJAk5OTkIDg6ucFubCoz69evD3t4eKSkpquUpKSkIDAw0uU9gYGClttdqtdBqtapl3t7eVU90LeDp6VmnMtS9CD8D28PPwPbwM7A9dfEZVGS5ENi0F4mTkxM6duyIbdu26ZfpdDps27YN0dHRJveJjo5WbQ8AW7ZsMbs9wzAMwzC1j81dJDNmzMD48ePRqVMnREVF4dNPP0VeXh6efPJJAMC4cePQoEEDzJ8/HwDw4osvokePHvjoo48wePBg/Prrrzh8+DC+/vprW14GwzAMwzAKbC4wRo8ejdTUVMyaNQvJyclo164dNm7cqA/kTExMhJ2dbGjp2rUrli1bhn/961948803ERERgbVr16J169a2ugSrodVqMXv2bCOXDlN78DOwPfwMbA8/A9tzNzwDm4+DwTAMwzDM3YfNR/JkGIZhGObugwUGwzAMwzBWhwUGwzAMwzBWhwUGwzAMwzBWhwVGHaKy09YzVWPOnDnQaDSqT/PmzfXrCwoKMGXKFNSrVw/u7u54+OGHjQZ3YyrH7t27MXToUAQHB0Oj0RjNHSRJEmbNmoWgoCC4uLigb9+++Oeff1TbZGRkYOzYsfD09IS3tzeefvpp5Obm1uJV3NlU9AwmTJhg9F4MGDBAtQ0/g6ozf/583H///fDw8IC/vz+GDx+OCxcuqLaxpOxJTEzE4MGD4erqCn9/f7z66qsoKSmpzUuxGBYYdYTKTlvPVI9WrVohKSlJ/9mzZ49+3UsvvYT//e9/WLFiBXbt2oUbN25g5MiRNkztnU9eXh4iIyPxxRdfmFz/wQcfYOHChViyZAkOHDgANzc3xMTEoKCgQL/N2LFjcebMGWzZsgXr1q3D7t27MWnSpNq6hDueip4BAAwYMED1Xvzyyy+q9fwMqs6uXbswZcoU/P3339iyZQuKi4vRv39/5OXl6bepqOwpLS3F4MGDUVRUhH379mHp0qWIjY3FrFmzbHFJFSMxdYKoqChpypQp+v+lpaVScHCwNH/+fBum6u5k9uzZUmRkpMl1mZmZkqOjo7RixQr9snPnzkkApP3799dSCu9uAEhr1qzR/9fpdFJgYKC0YMEC/bLMzExJq9VKv/zyiyRJknT27FkJgHTo0CH9Nhs2bJA0Go10/fr1Wkv73YLhM5AkSRo/frw0bNgws/vwM7AuN2/elABIu3btkiTJsrJn/fr1kp2dnZScnKzfZvHixZKnp6dUWFhYuxdgAWzBqAOIaev79u2rX1bRtPVM9fjnn38QHByMJk2aYOzYsUhMTAQAHDlyBMXFxapn0bx5czRq1IifRQ0RFxeH5ORk1T338vJC586d9fd8//798Pb2RqdOnfTb9O3bF3Z2djhw4ECtp/luZefOnfD390ezZs3w/PPPIz09Xb+On4F1ycrKAgD4+voCsKzs2b9/P9q0aaOaUTwmJgbZ2dk4c+ZMLabeMlhg1AHKm7be3DT0TNXp3LkzYmNjsXHjRixevBhxcXHo3r07cnJykJycDCcnJ6MJ8fhZ1BzivpaX/5OTk+Hv769a7+DgAF9fX34uVmLAgAH44YcfsG3bNrz//vvYtWsXBg4ciNLSUgD8DKyJTqfD9OnT0a1bN/0o1JaUPcnJySbfE7GurmHzocIZprYZOHCg/nfbtm3RuXNnhIaG4rfffoOLi4sNU8YwtuOxxx7T/27Tpg3atm2Lpk2bYufOnejTp48NU3b3MWXKFJw+fVoV+3U3whaMOkBVpq1nrIe3tzfuu+8+XLp0CYGBgSgqKkJmZqZqG34WNYe4r+Xl/8DAQKOA55KSEmRkZPBzqSGaNGmC+vXr49KlSwD4GViLqVOnYt26ddixYwcaNmyoX25J2RMYGGjyPRHr6hosMOoAVZm2nrEeubm5uHz5MoKCgtCxY0c4OjqqnsWFCxeQmJjIz6KGaNy4MQIDA1X3PDs7GwcOHNDf8+joaGRmZuLIkSP6bbZv3w6dTofOnTvXeprvBa5du4b09HQEBQUB4GdQXSRJwtSpU7FmzRps374djRs3Vq23pOyJjo7GqVOnVEJvy5Yt8PT0RMuWLWvnQiqDraNMGeLXX3+VtFqtFBsbK509e1aaNGmS5O3trYoWZqzDyy+/LO3cuVOKi4uT9u7dK/Xt21eqX7++dPPmTUmSJOm5556TGjVqJG3fvl06fPiwFB0dLUVHR9s41Xc2OTk50rFjx6Rjx45JAKSPP/5YOnbsmJSQkCBJkiT95z//kby9vaXff/9dOnnypDRs2DCpcePG0u3bt/XHGDBggNS+fXvpwIED0p49e6SIiAhpzJgxtrqkO47ynkFOTo70yiuvSPv375fi4uKkrVu3Sh06dJAiIiKkgoIC/TH4GVSd559/XvLy8pJ27twpJSUl6T/5+fn6bSoqe0pKSqTWrVtL/fv3l44fPy5t3LhR8vPzk2bOnGmLS6oQFhh1iM8//1xq1KiR5OTkJEVFRUl///23rZN0VzJ69GgpKChIcnJykho0aCCNHj1aunTpkn797du3pcmTJ0s+Pj6Sq6urNGLECCkpKcmGKb7z2bFjhwTA6DN+/HhJkqir6ttvvy0FBARIWq1W6tOnj3ThwgXVMdLT06UxY8ZI7u7ukqenp/Tkk09KOTk5NriaO5PynkF+fr7Uv39/yc/PT3J0dJRCQ0OliRMnGjVw+BlUHVP3HoD0/fff67expOyJj4+XBg4cKLm4uEj169eXXn75Zam4uLiWr8YyeLp2hmEYhmGsDsdgMAzDMAxjdVhgMAzDMAxjdVhgMAzDMAxjdVhgMAzDMAxjdVhgMAzDMAxjdVhgMAzDMAxjdVhgMAzDMAxjdVhgMAzDMAxjdVhgMAxjRM+ePTF9+nRbJ0OFRqPB2rVrbZ0MhmEshEfyZBjGiIyMDDg6OsLDwwNhYWGYPn16rQmOOXPmYO3atTh+/LhqeXJyMnx8fKDVamslHQzDVA8HWyeAYZi6h6+vr9WPWVRUBCcnpyrvXxeno2YYxjzsImEYxgjhIunZsycSEhLw0ksvQaPRQKPR6LfZs2cPunfvDhcXF4SEhGDatGnIy8vTrw8LC8O7776LcePGwdPTE5MmTQIAvP7667jvvvvg6uqKJk2a4O2330ZxcTEAIDY2Fu+88w5OnDihP19sbCwAYxfJqVOn0Lt3b7i4uKBevXqYNGkScnNz9esnTJiA4cOH48MPP0RQUBDq1auHKVOm6M8FAF9++SUiIiLg7OyMgIAAjBo1qiZuJ8Pck7DAYBjGLKtXr0bDhg0xd+5cJCUlISkpCQBw+fJlDBgwAA8//DBOnjyJ5cuXY8+ePZg6dapq/w8//BCRkZE4duwY3n77bQCAh4cHYmNjcfbsWXz22Wf473//i08++QQAMHr0aLz88sto1aqV/nyjR482SldeXh5iYmLg4+ODQ4cOYcWKFdi6davR+Xfs2IHLly9jx44dWLp0KWJjY/WC5fDhw5g2bRrmzp2LCxcuYOPGjXjwwQetfQsZ5t7FtpO5MgxTF+nRo4f04osvSpIkSaGhodInn3yiWv/0009LkyZNUi3766+/JDs7O+n27dv6/YYPH17huRYsWCB17NhR/3/27NlSZGSk0XYApDVr1kiSJElff/215OPjI+Xm5urX//nnn5KdnZ1+ivHx48dLoaGhUklJiX6bRx55RBo9erQkSZK0atUqydPTU8rOzq4wjQzDVB6OwWAYptKcOHECJ0+exM8//6xfJkkSdDod4uLi0KJFCwBAp06djPZdvnw5Fi5ciMuXLyM3NxclJSXw9PSs1PnPnTuHyMhIuLm56Zd169YNOp0OFy5cQEBAAACgVatWsLe3128TFBSEU6dOAQD69euH0NBQNGnSBAMGDMCAAQMwYsQIuLq6ViotDMOYhl0kDMNUmtzcXDz77LM4fvy4/nPixAn8888/aNq0qX47pQAAgP3792Ps2LEYNGgQ1q1bh2PHjuGtt95CUVFRjaTT0dFR9V+j0UCn0wEgV83Ro0fxyy+/ICgoCLNmzUJkZCQyMzNrJC0Mc6/BFgyGYcrFyckJpaWlqmUdOnTA2bNnER4eXqlj7du3D6GhoXjrrbf0yxISEio8nyEtWrRAbGws8vLy9CJm7969sLOzQ7NmzSxOj4ODA/r27Yu+ffti9uzZ8Pb2xvbt2zFy5MhKXBXDMKZgCwbDMOUSFhaG3bt34/r160hLSwNAPUH27duHqVOn4vjx4/jnn3/w+++/GwVZGhIREYHExET8+uuvuHz5MhYuXIg1a9YYnS8uLg7Hjx9HWloaCgsLjY4zduxYODs7Y/z48Th9+jR27NiBF154AU888YTePVIR69atw8KFC3H8+HEkJCTghx9+gE6nq5RAYRjGPCwwGIYpl7lz5yI+Ph5NmzaFn58fAKBt27bYtWsXLl68iO7du6N9+/aYNWsWgoODyz3WQw89hJdeeglTp05Fu3btsG/fPn3vEsHDDz+MAQMGoFevXvDz88Mvv/xidBxXV1ds2rQJGRkZuP/++zFq1Cj06dMHixYtsvi6vL29sXr1avTu3RstWrTAkiVL8Msvv6BVq1YWH4NhGPPwSJ4MwzAMw1gdtmAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1WGAwDMMwDGN1/h8ghnUs5kyuawAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"plt.figure(figsize=(6, 4))\n",
"plt.title(\"Generator and Discriminator Loss During Training\")\n",
@@ -1821,37 +474,16 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-07T08:15:38.144519Z",
- "start_time": "2023-02-07T08:15:38.137537Z"
- }
- },
+ "metadata": {},
"source": [
"可视化训练过程中通过隐向量生成的图像。"
]
},
{
"cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T13:36:54.052385Z",
- "start_time": "2023-02-09T13:36:50.876603Z"
- }
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEQCAYAAACDXd7KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAArEAAAKxAFmbYLUAAB0iklEQVR4nO29d3hc13nn/5l7pzf03kF0sIC9gJRIkVShZDVbxZbtJI/tJE4ceZ2ySfZ5kv1tdrPP7qY4cSI5lhXFNZItyZIskSIlkaLEJhLsINGJ3svMANP77w/6XoEUCwiCxB3wfp6HTxxh5uIcnHu+55z3vEUTj8fjqKioqKgoBmG+G6CioqKicimqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkM73w24lQSDQX7nd34Hp9M5303hscce43d/93fn9JnvvPMOzz333Jw+czbo9XpefPFFMjIy5uyZb731Fv/2b/82Z8+7HhqNhng8fsn/Dxf79u///u+kpaXN2e8Kh8N8/etfZ3R0dFbf12g0WCwWgsEg4XB4Vt+X+vrggw/yrW99a1btuBKhUIivfe1rjI+Pz9kzZ8vDDz/MN7/5zfluxqxY0MIcjUbZv38/Q0ND890Uqqur5/yZvb297N69e86fe6MYjUYCgcCcPrO7u1sRfTOZTASDwTl9ZiwWY//+/fT29s76GYIgEI/HL1lMZvo9nU5HKBQiHo9TXFw86zZcCWnO9ff3z+lzZ0N5efl8N2HWqKYMlQWLtOtdiMRiMVmUb6SfsViMcDh8w4KucntZ0DtmlTubhSw+Op0OURSx2WwYDAYcDgehUIhIJHLd78ZisdvQQpWbQRVmFZV54GZ285KNuaqqiurqapKTkxkaGqK7u5v29nacTqcqvgmOKswqCcXll3QzRRRFDAYDVqsVu92OXq8HYGRkBIfDcdt31zcjzHq9nsLCQp566inuuusurFYrLpeL/fv38/rrr3P+/Hm8Xu8ctlbldqMK81XQaDRotVoMBgOiKAIXj8bRaJRwOJzwdjpRFNHr9eh0OlkkYrEYkUiEcDg8oyPxfDBbUU5NTaWiooKNGzeyfft2srKyCIfD/NM//RMvv/zyrLwbbobZ7mh1Oh0FBQU8/fTTbNq0CZPJRG9vL319fYyOjpKVlYXD4aCvr0++4FNJPFRhvgJ6vZ7k5GQqKipYv3492dnZiKKIz+djZGSEc+fOcebMGSYmJhLuxRcEAZPJRF5eHsuXL2fp0qXYbDbC4TBOp5Ouri4aGxtpaWkhFArNd3PnBI1Gg81mY+nSpWzevJnq6mr0ej2dnZ3z1sfZ7phzcnL42te+xrZt20hNTeXjjz9m586daLVaRFFEq9WSmpqK2+1mYmJCsQusyrVRhXkaGo2G5ORk6urq2LJlC0uXLmXRokXY7XY0Gg3hcBiPx0N/fz+vvvoqH3zwgSLcgmaKTqcjLy+P7du3s3r1aqqqqsjNzcVgMBCNRgkEAjgcDk6cOMErr7zC8ePH59xV7Haj0WgwGo2UlJSwfPlyampqsNls+Hw+BgcHcblc87a4ajQaBOGiY1Q0Gr3u5wVBICUlhbVr15Kbm8vQ0BDNzc2cOXNG/nk4HMbr9eLxeBRjZ5bGIBKJyP3UaDSXeJaoXIoqzNMwGo3U1tby0EMP8cgjj5Cfn49Op5NfHmkSlZeXMzg4SFNTU8IIsyAIpKens2nTJp5++mnq6upISkqSbbaSSMRiMWw2Gy0tLTQ2Nia8MGu1WrKzs1m3bh11dXWkp6cTi8WYmJjg7NmzDA4OKkbArodGo8FgMJCRkYHZbCYUChEKhYhGo0xMTODz+YhEIorrjyiKpKWlUVxcTH5+vrzR8fl8nDx5kp6eHjwez4yeJZ00Frqgq8L8G7RaLRUVFdx7773cfffd5ObmEg6H6e3txeFwEA6HSU5OprS0lFgsRlJSEmazeb6bPWNSU1NZs2YNDz/8MLW1tVgsFiYmJhgaGsLtdqPVaikuLiYlJQW9Xk9qaqpsW09kDAYDixcv5q677qK8vBytVovL5eLs2bPs37+fnp6eeRMy6c5ipoiiiNFoxGKxYDQaSUpKIiUlBZPJJN8PKE2UASwWC2vXruW+++5j48aNclCLy+XiJz/5CYcOHaKtrY2xsTGMRiM2mw2TyYRWe1GeBEEgFAoxODiIx+MhGo0uePu5KsxcXIVTUlL4rd/6Le677z5ycnJwu920trby0ksvcezYMVwuF2vXruVv//ZvycnJwWAwyDf7Sker1bJixQr+4A/+gGXLlmEwGOjr6+O9997j1VdfpbOzE0EQ+Ku/+isefPBBBEHAaDTKJ4RExmw2s2LFCgoKCmQBGx4eZufOnTQ1NeF2u+elXbMRFZvNRkFBAWazGUEQiEajRKNRYrGYIgUZPj2pfeUrXyElJQWDwYBWq0Wr1ZKVlcXv/d7v8cwzz3DgwAF27dpFUVERK1asoKysDIvFAlxckFwuFy+++CJHjx7F6XQyOjqKx+NZsOKsCjNgtVpZsWIFmzZtori4mOHhYfbu3cuPf/xjWlpamJqaIhKJMDQ0xMjICDk5OdTW1lJQUDDfTb8uGo2GoqIiNmzYwOrVq9FqtZw+fZqf//zn7N27l8HBQQKBAHq9nsHBQdxuN6mpqdTV1WEymea7+TeFKIrY7XaqqqpITU1FEAQGBgbYt28fR44cweFwKFbQrkR+fj5r167FYDAQCoVoa2uju7tb0cIcj8cZGBjgL/7iL7BYLHz+85/n85//PDk5ORiNRux2OxaLhXvuuUc2r1mtVkwm0yUbg5ycHP70T/8Up9PJ6dOn+clPfsInn3wy56kAlMIdL8wGg4HKykq++c1vUl5ejiAINDY28vLLL3Pq1Cl8Pp/8WckWq9VqSUtLIyUl5ZbkiZgrpJPAww8/zOc//3lsNhsTExO88cYb7Nmzh97eXnlCT7ejm81mMjMzsVqtiKJ4Q8dtJZGWlsbGjRupqqrCbrcTCARoaWnhnXfeYXBw8La7yN0MWq2W0tJSNm7ciFarpbu7m+PHj3PhwgVFe17E43ECgQCtra2IoojX6+XIkSOUlZXx5JNPUltbi16vx263k5KSgk6nk78rnQg0Gg2iKFJQUEBubi7j4+NEIpEFu1sGVZjJyclh+/btbNq0CavVyuHDh3n77bc5efIkfr//ks8aDAbS0tLQarXypZiS8zFotVrWrFnDvffeS21tLRMTE/z617/m/fffZ2Bg4JJdliAIJCcnY7VaicfjitmBzTagBCA9PZ36+npycnIQBIHW1lb27t3LmTNnFLuYXo3U1FQWLVpEaWkpAK2trVy4cIFAIEB6ejqCINDX1/eZd1YpxONxIpEILS0ttLa2kp2dTTgcpqSkBFEU0Wg06PV64vE4wWBQjheIx+Okp6ezfft20tPTZbvzQhZlUIWZkpIStm/fjtlsJhwO895777F7926mpqYuGXy73U5eXh4ZGRmIokgkEiEYDCp6t6LX69m8eTNVVVUADA0N8eMf/5jOzs5LdouiKJKVlUVubi42m02+XFFCEM1shTk9PZ2lS5dSV1eH2WzG6/XyySefsHv3bpxO54yeeTsXXckj5kqIokhNTQ3Lli3DbDbj8Xjo6upCEAQWL15Meno63d3d+P1+RkdHFX8xFo/HGR8f5/XXXycSiRCJRBBFEZ1ORyQSwev1EgqFiMVi8qV8aWkpRqMRg8GAz+dLuIX1RrnjhdlqtZKbm4tWqyUUCsmhrFlZWWi1WiKRCFqtlurqajZv3ozFYpFvx0VRVMzO8koIgkB2djZJSUkAso+r3W4nOTlZ9iW12Wxs3bqV0tJS9Ho90WgUg8Ewq7SSc81s/r56vZ5169bxzDPPUFNTIweTnD17lvb29hmbZm5X3wVBQK/XEwwGr/g7BUFg3bp11NfXIwgCgUCAqakpysvLWbx4MWazmWAwSGFhIbFYDIfDQSAQmPexuxbhcJjh4WHgUxOhxPR2i6Io9y8cDhMIBOjs7KStrW3BBEBdiTtemKWgiuLiYkRRZO3atSQlJck7yImJCQwGA4WFhZSVlckucpOTk4o9NkrE43GcTider5ekpCTS0tJ4/PHHMRgMFBUVIQgCbrebtLQ0KioqKCgoQBRF/H4/LpdrXm3LGo1m1rvlnJwc1qxZI1+U+f1+Dh8+TGNjoyInczweJxQKXbO/UmSfdJoxmUy43W6ampqYmppicHAQjUZDRUUFfX19dHZ2KlqY4VIBvlpbc3JyePDBBykrKyMejzM8PMzIyMhVF7GFwh0vzBcuXOCtt94iJyeH7Oxs6uvr5eOvxWLB6/USDoflXaYgCASDQT744APOnDmj6B1zMBhkz549FBUVsXXrVtLS0njyySfRarXY7Xbi8TherxdBEMjIyJC9MPr7+3n77beZnJyct5d/trt1URRZsWIFq1evJikpiVgshtPp5PDhw7S1tSluMiclJWG323G73Vd13dNoNESjUdl8Njw8TGdnJy0tLbjdboLBIBaLhbKyMiYmJm7omK/kOxKj0UhlZSWPPfaYvEk6ePAgu3fvJhKJyPcigUDgkkv6hcAdL8yDg4Ps3LkTvV7P448/TkFBAQaDgfHxcRobG2Wn99raWlJSUuRb5mPHjtHR0aG4iT6dSCTC8ePHMZlMeL1e7rnnHjIzM/F4PLS3tzMwMIDP5yMjI4MNGzZgMpmIRqMMDg5y4MCBhMxQJgiCHGGm0WhwuVzyIupyuea7eZ8hHA7j8/kIh8PXXOQlUXa5XLS0tNDV1UVHRweTk5PARQ+UjIyMeQ8znys0Gg1r167lq1/9KhUVFYiiyOjoKGfPnqW1tZV4PC6bEhO9r1fijhdmyYXqRz/6ER6Ph/LycqLRKAMDAzQ1NTE6OkpBQQFarZbKyko5nHdgYGDeghNminTJ8v777+N0OhkZGcFms8mTu7u7m2g0yurVq1myZAl2ux2v1ysfFxPNTU5KVpSXl0daWhrBYJDe3l5+/etfX+IaqCR8Pt91d3uxWIyxsTH6+/tJT09neHgYi8WC1WqVw7CDwSCdnZ2Mjo7i8/lmLFZKFDVBECgpKeFzn/scDz30EHq9nkAgwKlTp2TbspRCwOfzyS51SuzLbLnjhRku7kb6+/t5/vnnL0mBGYvFEAQBv9+Pw+EALpoHLly4IJsAEgGPx8OBAwf45JNPAGR3uFgsRnJyMhkZGbIHxujoaMLk/5iORqPBbDazbNkyFi9eTGpqKmNjY5w4cYKzZ88qcrc8U2KxGOfOnePo0aPU19eTlZXF5s2bycrKor29nfHxccLhMC6XC5/Pp8gF6EYwGo08+OCDbNmyRY7+8/l8HDp0SN4tS77N4XA44TYQM0EV5t8g+U9ejiiKmEwmjEYjsViMYDDIwMCAvGonCpKz/uUIgiAnlYlGo3K4a6IsOhJGo5Hy8nL+/M//nPr6egA6Ozt55ZVXGBkZuWGxUtLYxmIxWlpaKCkpYdOmTWzatAmv18u6detwOp10dnZy+PBhPvroo4QU5emJiQRBICkpiVWrVlFRUUEsFsPtdtPe3k5fXx9ut1u+f5Bc6hYiqjBfB8nxXRRFWbx7enpwOp2K9mGeKVLVZMl1bmJigv7+frxeb8IcDQ0GA6WlpXzpS1+itrYWs9nM6Ogozc3NtLa2zsrn9XIXrtvBtY7jPp+PyclJAoEAZrMZnU4n514uKysjPT2d8+fPMz4+fsO/c76Z3mez2cymTZvIzs4mFArR3d3Nf/7nf3LkyBHOnDlzyeZiIe6UJVRhvg56vZ6SkhKysrLkHL6tra3z7k42F0i32lVVVQiCwPj4OF1dXXR3dyvSrexKSGHny5cv55577iE5ORmXy8XHH3/Mm2++icPhmPU4KWlhisfjcjGD1tZW/H4/OTk55OfnYzQacbvds0qqpaQ+arVaUlJSKC8vx2g00tPTw6FDh3jjjTfo6upK+BS0N4IqzNdBSjk4NTVFd3c3x44dY2hoaEH4UUq7Ja/Xy/j4uJxj2uVyJcxtt8FgYNGiRdx9992UlJSg1+vp7+/n+PHjHDt2LKEm8/X+3hMTE5w8eZLk5GTMZrOcl1mv12M2my9JRJ+ISHmbKysrSUlJobu7m4aGhjtOlEEV5usSCoU4ceIEWVlZVFZW8tFHHzE1NUU0Gk0I4boW0mXfvn37yMrKoq2tjZaWFsXm9b0cjUZDeno6q1ev5u6778ZkMhGJRGhvb6ejowO/35/wYyQRj8fp6elh165dFBQUUFVVRW1tLX6/XzZBSbmKExWpEEBubi6iKNLd3U1bW9uCMBneKKowXwPJ5jc1NSUfH0dGRhgbG1swkz4UCjE0NMTx48eZmJhgdHQ0YeznoihSXl7OihUryMrKIh6PMzQ0xM6dOzl48OCC22VNTU3J/ucdHR1y7giTycSuXbtkn+ZEJRaLMT4+zuHDh4lEIhw4cIBTp04l9GIzW1RhvgoajQadTkdSUhKFhYXU1taSkZFBc3Mzdrsdl8uV0BNf8jbJzMykvLycZcuWcfToUfR6PTabLSEmeTwelyt6xGIxBgcH2b1794LdZUmeCFJQyn/+539y4sQJ7HY7DQ0NOJ3O+W7irDEYDOTn57Nq1Sra29tpbm6mo6MjoefYzaAK81WQdsM6nY60tDRMJhMOh4OBgQH5djyRkVyTzGYzWVlZBINBRkZGGBgYUFQhz2shXYh5vV7GxsY4c+YM77//Pm1tbQvCn/dqSAItvYs6nW7GSf+lDYcSMgdOx2w2k5KSIi+oU1NTCy7M+kZQhfk6SEnxx8fHaWlpYXR0FK/Xm/CTXnIHM5vNWK1WGhoa6OjoYGJiQvEeGZKJKR6P09vby549e2hqauLChQucOHGC0dHRhEqCP1usVqtclPVGRFZJgiwRi8XQ6/VUV1dz4cKFBe2jPBNUYb4GsViMaDSKx+Ohv79fTp6/EF4YKfovFAoxNjbG4cOHGRkZSQgTwHRh7ujooKurC/g0WlOJwjPXaDQaLBYLpaWl6HQ6GhoaZuR7Lp0ylIY0r1atWkVvb69c/ftORRXmayDV+Xv33XflKsQLadJ7PB7OnTtHS0tLQu1QprdzLurdSSlGldb/ayXPBxgbG6OyspJly5bR29tLb2/vZ0T3es9QAlJ+81AoxOHDh/H7/XJVk4U0324EVZivgxSGvRCRyv0oeZd8Oyan0ib/9HwtV/u5xWIhFApx/Phxzp8/j8vl+owoK3GxkZg+rnq9nsWLF1NTU8MvfvELJicnL7kjSITFZa7RxJX2Vs4h0WiUAwcOKEJYi4uLqaysnNNn9vX10dTUNKfPnA2CILBp0yaMRuOcPbOnp4eWlpY5e95sEUWRTZs2YTAY5uyZsViMAwcO3NQFslarnZPTQkFBATU1NTf1jOnMpm+iKMr1Jvv7+z9jwpjt4lxYWEh1dfUNf08JLGhhVlFRUUlEEiuFmIqKisodgCrMKioqKgpDFWYVFRUVhaEKs4qKiorCUIVZRUVFRWEsaD/mYDDI17/+dSYmJmb1fVEUsdls+P3+m3a5e+yxx/jGN75xU8+4nHfeeYfnn39+Tp85GwwGAz/84Q9JT0+fs2f++te/5t/+7d9m/X0p85rb7b4plzKj0ciLL75IamrqrJ9xOeFwmN/93d9lZGRkzp45W3bs2MG3vvWtOXteKBTiG9/4BmNjY7P6vjTnAoHATeejefjhh/n93//9m3rGfLGghTkajbJ3716GhoZm9X0pl0QwGLzhIAypiq/kk1lVVTWrNlyL3t5e3n333Tl/7o1iNBrx+/1z+syurq6b6pter0er1c4qEY5U7zAWi2EymeY8YVUsFmPfvn309vbO6XNnQ1FR0Zw+LxqNsm/fvlkX9J3LOVdWVjarNiiBBS3MN0s8Hsfr9c76+1LEkuoqfvsJhUKzTsYkCII6ZvPEzc45URQXxJxThfk6SHkURFFEEATC4fCMjsZKTRZzJyHtoLRarVwlfCYTVskh6ncCNzPnlJ4ZcaaownwNNBoNJpMJk8lEVlYWZrOZ/v5+PB4Pfr//js5+pXR0Oh0mkwmbzUZBQQHj4+M4HA58Pt+CqNe4ULnSnBsYGMDtdt9Rc27BC7NkL5wNGo0Gu93OI488Qn19PcnJyTgcDo4ePcp7771HT0+Puru6RUi7ptkKqE6no6qqiqeeeopFixbJtQA//vhjDhw4MKMUmSo3jjRuN/N9m80mz7nU1FQmJiZoaGhgz549dHd33xFzbsEL82wnn0ajISkpic2bN/Pggw9SWVlJKBSSV/KCggKmpqaYmJi44zJf3S5mO3ZarZaKigoefPBBtm3bhtFoZHJyErfbTXZ2Nvn5+XR3d6s7Z4UhbYQ2b97Mjh07qK6uJhQKYTQa6enpkefc+Pj4gp9zqjBfhaSkJDZu3Mhjjz1GZWUlw8PDnD59GpfLxfDwMCkpKWRlZREIBBKuookgCFitVjIzM8nMzESv1xOJRAiFQrhcLsbHx3E6nfMqWjezoFZWVvLAAw+wfft2zGYzhw8fZnh4mPHxcSKRCDk5OUxOTiZEtZbpaDQa9Ho9ycnJ5OXlYbVa0Wg0cg3A8fFxxsbG5jWbolTAYDbY7XZ5zlVVVTEyMsLp06dxOp0MDw+TnJxMZmYmfr8/4ebcjbLghXk2xyqNRkNeXh5f+cpXWLlyJbFYjMOHD/P6669js9nkXLharRaTyZQwVU0k+11ubi6VlZWsWbOG5cuXY7fbCYfDOJ1OOjo6OHbsGIcOHZrX08D0cbsRk4ZWq2X79u08+uij5OTk0NPTwyuvvMLU1BRWqxWtVks4HMZkMimy9t3V0Gq1pKSkUFRUxLJly9i0aRN5eXlotVo8Hg+jo6OcPn2aDz/8kAsXLsy5++KtRqPRkJOTw1e+8hVWrVpFLBbjyJEjvPrqqwk952bLghdmqbadKIrAzG7cBUHAZrNRVlaGzWajubmZ3t5exsbG5LI34XBYTjKfKBcSZrOZ2tpafvu3f5uNGzeSm5uLyWSS3cOkW+36+noMBgPvvPPOTbku3QySWEo38zOtHqPT6SgoKCA/P59gMEh7ezsTExP09fXJ4zZ97BJBlAVBICcnh23btvHUU09RW1tLUlISWq1WXrSi0SgPPPAAeXl5/OxnP+PcuXPz2ubZzDm73b7g5txsWfDCPP3FvRG0Wi02mw2TyYTVaiUpKQmTyYTT6cTr9Sbci6HX6ykoKOBzn/scmzdvpri4GIPBILuRiaKIVqvFaDSSlZVFUVEROp1u3tor7Zij0egN+aVKpwKr1Yooitjtdux2OwBerzfh7MqS3XX9+vXs2LGDVatWkZSUhEajkQVPGjetVktxcfGcRmDOltnMOWlDJHnT2O12TCYTLpcLj8eTcHPuZljwwixNwhuZjCaTidTUVCwWC3q9Xg7vTeSAkfLycp5++mnuv/9+cnNzCYfDnDp1igMHDjA4OIgoijz22GMsW7YMjUaD0Wi8qdv1uWSmf29BEEhOTiYpKQmDwUAkEsFkMqHVauXis4k2dkajkQcffJBHHnmEVatWYTKZGB0d5YMPPqC5uRmPx0NJSQlPP/00NpsNvV4/rwvqdG7kb200GklPT8dkMslzzmg0JvScuxkWvDDPhvT0dKqqqjAajcRiMSYmJnC5XPLuLdFISkpi1apVPProoxQUFOB0Ojl+/Di7du3io48+YnBwUDYBFBcXYzKZyMvLm9cJPpuJqNPpqK6uJjMzE0EQCAQCDA8PEwwGE3JyS2Pyuc99jo0bN6LVamlqauLDDz/krbfeoqWlBbfbzapVq6ivr6eiooKsrCxSUlLmu+k3TEZGBlVVVZjN5kvm3FyUz0pEVGG+DEEQKCkpYd26dWi1WiYnJzlz5gxdXV0zjhxTEnq9nrq6Ou655x7Ky8sJBAIcPHiQl156iaNHj+L3+2X78tTUFIFAgJycHGpqajCbzQlVqdhoNFJfX09BQQHBYJD+/n6OHz+Oz+dLmD5ICIJAWloa27dvZ8WKFaSlpdHc3Mxrr73GT3/6U0ZHR2VThs/nY3JyEkEQKCsrIy8vD1EUE+boLwgCRUVFrF+/Hp1Ox9TUFGfPnqWzszMhF9S5QE37eRlGo5GKigrWrVuHRqOhtbWVkydP0t/fjyAI6PV6xRzxr4cgCOTn5/PUU0/x+OOPo9FoGBgY4Je//CUnTpz4jGBJx0edTofFYpHttImAIAikpKTIwjwxMcGpU6dobGwkEAig1Wrly7JEwGKxsHz5cv7oj/6I4uJiPB4PR48e5fXXX79ElOGijdlsNqPT6TAajVit1jktjHurMRgMlJeXXzLnjh8/Tl9fHxqNBp1OlzDjNleowjwNQRAoKCigrKyMlJQUotEoTU1NjI2NYbfbqa6uZsmSJbL/qNIxGAzs2LGDdevWYbFY6O/v5+///u85duwYbrf7ks/qdDqysrJk1zmv10sgEEiY3YrFYqG6upq8vDyMRiPDw8O0tLQQiUQoLCykrq5Odi9LBBYtWsQTTzxBbm4uAG+++SY//vGP6e3tvUSUJZ/0nJwcRFHE7/fj9/sTJjpOo9FQUFBAeXk5KSkpxGIxmpqaGB8fx263U1VVJc+5m4niTTQS4y2dI6SENlcLKhBFkY0bN8r2vKmpKUZGRiguLqa0tBSbzcYnn3yCy+Wit7dX8d4ZoihSW1srT+7JyUkaGhpwuVyXhDybTCZWrlxJYWEhJpOJWCyGTqdTlH1Pas/V/t4ZGRk8/vjjZGVlEYvFcDqdBINB7rrrLpYsWUJ7ezuxWIxAIMDo6Kji/ZfT09NZunSp7DnT1tZGa2srkUhEdm+UTkTLly8nOTkZURTlE51S3ktpzl3t7y2KIvX19WzcuBGdTofH42FkZISioiJKSkpISkpKqDk3V9xRwgyf+jVf6SURBIHCwkLy8/MBZNeqtLQ0bDabfPmXnJwMwPDwMA6HQzHidTkajUY+wsOnR8a8vDySk5PRaDQEg0GSk5NZv349ixYtkhcupV10Xk9EzWazfHkk+btKrn9Sjl69Xk9mZiYGg4H+/v55jZC7HoIgXHKEz8zMZMWKFRiNRpKSkvB6veh0OsrLy7n77rtls5O0mCpp0blWW6RTakFBAfDpnEtNTcVut8vunNKcGxkZuSPSINwxwqzT6dDpdEQikWteaEkXYeFwGI/HQygUYnx8nO7ubqampvB4PJjNZsxmM36/H4fDcZt7MnOi0Sjt7e0MDAxgt9tJS0vjySefxGw2k5+fj0ajYWpqCrvdTmFhIUlJSQiCgNvtpq2tjVAoNO8TXHLdi8fj1x07uNjnYDAoh+22tLTQ0NDA5OQkkUiE9PR0zGaz7K0xk98/HzgcDpqbmyksLMRsNrNmzRpyc3PJzMwkOzsbh8OBKIpkZmaSk5Mj76y7u7sZHh6e93GDmc85+DRNrtvtJhgMMj4+Tk9Pz2fmXCAQmHVFokTijhFmu92OzWbD7XbjdDqv+rloNEooFMLn89HT00NzczPnzp3D5XIRj8fJyMhg5cqVdHd3Mzk5qYgJcDWCwSA7d+4kIyMDi8VCVlYW9913n+z8HwgEsFgsctUIyd+3q6uL119/HZfLNd9dQBRFsrKy5Dwe16pIEgqFiEQijI2N0dHRwcmTJxkaGsLr9WI2m6muriYlJSUhMpR1dnbyyiuvkJ2dzeLFi1m6dCk1NTWygBkMBsLhMBaLRb7oC4VCvPvuuzQ0NChiRykFibjd7mu+S+FwWJ5zvb29tLS00NjYyOTkJNFolMzMTHnOSfNwoXPHCLPL5WJqauqadtN4PE4gEMDj8RAOh2lsbGRsbEz+rhRm2trayuDgoOKFWdox/+AHP2BgYIAvf/nLJCcnMz4+ztmzZ2lubsbv91NdXc1TTz0lB2WMjo5y7tw5RRz1I5EIAwMD140ki0QieL1ePB4P7e3tXLhwAZfLhdPpJBwOE41G6e/vZ2xsjMHBQcUnL3K5XOzfvx+Xy8Uf/MEfsGTJEmKxGD09PZw4cYK+vj7S0tLYsmULmzdvBi66zbW2tjIwMDC/jf8NUka/a90NAPKci0aj8pybnJxkcnISjUaDw+FImDk3V9wxwizZqq5FLBajtbWVs2fPUlJSgiiKLF26FFEU6erqwufzodPpGBkZweVyJUSFklAoRE9PD6+//jqnT59Gp9Ph9/txuVxMTk5iMBjw+/08/PDDxONxJiYmZPurUibATP7Obrebo0ePkpKSgs/nIycnh5UrV6LX6xkdHUUURXw+H06nU/bdngnz9TeIxWJMTk5y/Phx/u///b+kpKQQj8dxu91MTEzg9/spLS1l0aJFco6Tnp4enE6nYi7HZjLnotEoHR0dnDlzhkWLFiGKIsuWLUMQhISdc3PBHSPMMyEajXLu3DkWLVpEYWEhS5cupbi4mOrqavr6+ujv76e3t5f29nbF77imEw6H6evro6+v7zM/S0tLIxQKySeJiYkJhoeHE8IdcDoul4uDBw+yZMkSsrOzsdlsVFRUsHjxYnncurq6FCVc1yMej+PxeDhx4sRnfibZl6VETKFQiL6+PgKBQEK5lcViMc6fP09paSlFRUUsWbKE4uJiqqqq5He2t7eXjo6OO0aUQRXmS4jH4/T399Pd3Q1ATU0Nfr+fiooK/H4/w8PDHDx4cNYVgJWIKIpYLBY5J4HT6WRkZCRhxEvC5/PR0tKCw+Ggrq4Oi8WCx+NhyZIleDweGhsbefvtt2/4mK/kBUrK4SIJ88DAAB6PRzEnnZkQj8fp6+ujq6sLuDjnAoEA5eXl+P1+RkZGOHjwoGzOulO4I4VZEqErEYlE8Pv9uN1uAoGAfEmUnZ0t55F47733GBoaup1NvmXodDpsNhsajYZQKMTo6Cg9PT2KDGOWRPJK7YrH4wSDQbkeo+T3bDAYKCgoICcnh+7ubo4ePZpQYeZXQwosMRqNsn29q6uLiYkJRe4srzXnpItoj8dDIBCQ25+VlUVxcTFms5k9e/YwODh4O5s8r9yRwnytG2tpgg8PD8u5I5YvX05KSgo6nY709HQ5U1miI4oiaWlp1NbWyjuX5uZm+vr6FJmr+HrtkfJ9nDt3jmg0itVqpb6+HpvNJoct32i+E6X9DSQMBgNlZWXk5ubicrlob2+ntbWVqakpRbZ5JnNuaGhInnN1dXWkpKRgMBjkNKZK7Net4o4U5uvR2dnJ22+/TV5eHkVFRUSjUQRBkJO2BwKBhDvqXwnpsu/AgQPk5eXR3t7OuXPnZlwuXmkEAgE+/PBDuru7yc3NZcmSJWg0GnnsIpGIIjxN5gLJg6GsrAyPx8OHH36I0+lUXHDJTOnq6vrMnJPGTppzSndxnEtUYb6MeDzOyMgIR48eJSMjg/7+fnJycsjIyECn03Hq1CncbndCvvyXE4/H5ex5+fn5DA4OyoE0iTgJwuEw58+fZ2BggOzsbNlWqdfraW9vp7u7W5HH/NkQDodl04zL5eL8+fOMjY0lVH4TiXg8zujoKMeOHSM9PZ3+/n6ys7PJyMhAr9dz6tSphLOd3yyqMF+BQCBAMBiUi0BqtVpcLhcGg4Fdu3YxOTk53028aaSsXVLlC8k+K50GEnESxGIxXC4XbrebsbEx3G43er2e5cuXc/z4cU6dOpWQJ4HLEUURg8GATqcjHo/j9Xrx+XzySScRx276nBsZGUGn0zE5OYnJZGLXrl2KCHa6najCfBWkm+6JiQneffddzp49i8lkor29fcbHYSVfMgmCgMlkIj09nfLycqqqqhgaGiIej2MwGBTtjXA9otGoHI49ODhIaWmpHFwyk/G41iXjfCPlP7Hb7RQVFVFVVUVqaipHjhxBr9cnTJrWK3G1OdfR0UEgEJjRM5Q8524EVZivgxQCK7lZzVSUpdzNSgrUmI6UE8RgMJCcnExPTw8dHR10dnbi9/sXhA09Fovh8Xhobm6Wq5jMBKlyixJ91aVx02g0JCcnEw6HaW1tlX20F4KpZvqc02g0MxZlpc+5G0EV5usglVVPTk7G5/PR3d09owkei8UUkQToasTjcURRxGq1YrFY2Lt3r7wzWQiiDBczzhUUFKDX6+np6ZmxCUrp4haPx9Hr9aSmpjI4OMiRI0eYnJxUfCrTmaLRaMjOziYlJQW/309XV9eCmHM3girMXP/44/F4WLx4MTk5OQQCgSsGYFzpGUq2Z0q2yQsXLuB2u+nu7sbr9Sq6zZdzPZNDKBQiFAqxdetWzGYz586dw+PxXPe5Sp/Y0WiUiYkJjhw5QiAQYHBwMOFE+XoZHqU5l5ubK9duTPQ5dyPc8cJ8PVuqlLx7aGgIrVa7YHaTcFG4hoeHGR4enu+m3DDXGzdRFNFoNIyNjTEwMHDVgJlEtEnGYjHcbjctLS3z3ZRZcb2x0+v1eL1eBgYG0Ol0C2rOzZQFLcyCIFBTU0NGRsZVfw6f2u2u9HOLxUIwGCQSichuPFlZWfJnZnpRJFURmUvS0tJYunTpnD/3RtHr9ej1+jl9ZkZGxlX7Nr36Clz5by95m0jmJ6lQ6fTPzmTsTCbTnFcL12g01NTUyMnf55O8vLw5fZ4gCFRXV5OamnrVn8ONzbmsrCyysrLkz0vjf73d8Vz37XaiiSfaduEGUUr3bpWXw0Lun9q3W4/aN2Wy4IVZRUVFJdFInPyAKioqKncIqjCrqKioKAxVmFVUVFQUhirMKioqKgpjQbvLxeNx2traFBHJlZ6eTnZ29pw+0+FwKCJ5uCAIlJeXz6lb2cTEhCKKEQiCQEVFBVrt3E2VeDyumPJkaWlp5OTkzNnzlDTn5rpvt5X4Asbr9cbz8vLigiDM+7/vfOc7c96/5557bt77JYpi3Gw2x3t7e+e0b//8z/88730TBCFusVjiAwMDc9q3QCAQLy4unve+CYIQ/+Y3vzmnffP7/fGCgoJ5fycFQYg/++yzc9q328mC3jEDcpHRhYoS+nYr2hBXSJWYW9UGpbyX8Tn2lo3/JnBkIfbtdqLamO9wEtkJX2Vhor6TC9zGfLNICcmnh+5Go1H5XyKvyBILoQ8qn6LT6eQ8IcJvCqDeSMpTJaC+k6owXxGdTofVaqWkpITf+73fIzs7Wy7D1NLSwtmzZzlz5gwjIyOKuOS4nLlIzDN916JOlMTAYDBw//33s2TJEvLy8sjKyqK/v5/nnnuOtra2eR3HuX4nYWG/l6owX4bBYGD16tXs2LGD4uJi7rvvPlJSUojH4/h8Pvr7+2lra+Ptt99m3759dHV1Ke4FmU17NBoNZrOZ9PR0SktLL0my8+GHH3L06NE7MstXomAwGFiyZAmPPvoo69evJz09neTkZMbGxvD5fFy4cIHW1lYOHjw4L7vn2c4RnU6HzWaTi+vm5+djMpkYGRnhF7/4xYItOaUK82/QarXk5+dTW1vLY489xhNPPIHNZpNXaY1Gg9VqpbKykqKiIiwWCxkZGezdu5cTJ04kvGgJgkBSUhLLli3jvvvuY+vWraSlpTE5OcnY2BjHjx9P+D4uVNLT01m/fj2bN29m7dq1pKenEwwGmZiYIDU1lS9+8Yu0trby6quvcvjw4YQxa2g0GgwGA7m5uWzfvp3Pfe5zVFZWotVqOXHihFx/U2kbo7lAFWY+Fd3Nmzfz1a9+lVWrVmE2m+XyNl6vVy7no9VqsVqt1NXVsXjxYsrKyvibv/kbOVl5oiIIAikpKSxZsoQ1a9aQnp5OPB6nt7eXiYkJRbz8M033eCeRmZnJ9u3b+fa3v01eXh4TExN89NFHDA4OkpSUxMaNG8nOzuajjz7i/PnzCfW3k4S5oKCATZs2UVpaitlsZmxsjAsXLijCD/xWoQozF3fL6enpFBcXy3lk3W43/f39/M//+T85c+YMfr8fvV5PVlYWq1evZsuWLRQXF1NaWspXv/pVXn75ZXp7exPyZREEAbvdTk1NDStXrmTRokUYDAZcLhcDAwM4HA5FTGij0YjBYCAWi8kXXPHfFPBcSCWxZorVauXJJ5/kz/7sz0hNTWVqaooXX3xRriqdnp7O7/zO7/DEE0/Q0dFBW1ubIsZxpuj1enJycli9ejVLliwhIyODcDgsv5eJvBG6HqowczGh9p/+6Z9SX19PTk4OwWCQtrY2/uM//oODBw8yOjpKJBJBEAQGBgbo7Oxk//79FBcXs3LlSu6++27q6ur4m7/5GxobGxPq5YeLE6CsrIx7772X5cuXYzabCQQCdHd3s3//fi5cuDDvfdJoNNhsNurq6ti2bRtLlizBaDQSiURoaGjgF7/4Ba2trZcUy51+WSSJuLTzF0UxoT1rzGYz3/nOd/jqV79KXl4eoVCIsbEx3G43Xq+XiYkJzGYzWVlZeDwe4vE4FotFMaef66HRaEhPT2f16tU88MADZGVlIQgCTqeT06dPs3//fvkkuxC544VZFEXS09NZs2YNixYtIhKJ0NjYyBtvvMH777/P+Pg4kUgEuBgU4Pf78fv9slivWLFCDkfesGEDo6OjigglvhGMRiPLli1j8eLFpKenIwgCU1NT7N+/n6NHjzI6OjrvE0Cn03H33XfzxBNPUFJSQm1tLUajkVgsRmlpKaWlpXR1dbFz504ikQiFhYUUFRXJJhlJiNvb23n//fdxu934fL6ELN6ZlJTEt771LZ555hnKysoIhUL09fXx5ptvcv78eXw+HzqdjtTUVEpLS4nH44yPjzM1NZUwfdVoNOTl5bFixQpKS0vlRbipqYl9+/bR1taWkKfTmXLHC7MgCAiCIB+DNRoNQ0NDHDt2jNHR0asel6LRKOFwGI1Gg8lkwu/3Y7fbMZlMt7P5N43kjbF48WKysrLkemvSBOjt7Z1x+fhbTSgUor+/n4mJCTIyMsjOzkav11NcXEx+fj6Tk5NyGbGSkhJKS0svEeZIJEJrayv5+fmMjo5y8uRJ2tracDqd89yzmSOKIjk5OTzxxBNUVlYSDofp6Ojg5Zdf5s0336Snpwefz4fNZqOwsJDc3FwMBgPhcBi32z3fzZ8xWq2W3NxcampqMJvNAPT393PkyBE++eQTXC5Xwiwys+GOF+ZoNMrk5CTnz5+nsLAQu90u17C7XuIaj8cjl433eDxMTU0lnN3LaDSSn59PZWUlycnJ8oXfnj17OHv2rGImcygUYufOnXzwwQcUFBQQCoWora2luLiYrKwszGYzNpuNJ554Qh6/K10W1tXVUV1djcvl4l/+5V8YHx9PGGHW6/VkZ2ezfv16bDYbHo+H7u5u3nzzTb73ve/h8XjkvmZmZlJfX09qaio2mw2bzSbX21M6Go2GtLQ0ysrKKC4uRqvV4vf7OXToEB9//DH9/f3zblq71dzxwhyLxRgeHuaNN94gLy+PyspKLBYL5eXldHV1AeDz+a5YOj0/P5/S0lJ0Oh3JyclUVFSQkpJCX1/ffHRlVmRkZHDvvfdSWVmJ1WrF4XBw6tQpdu3ahdPpVNSuJBKJEIlEaG9v56//+q/ly68vfOELFBcXy/cAOp1OtinHYjFCoZDseWOxWDAajRiNRtxut2JOA9fDZDJRUlLCtm3b+L3f+z1SUlJobGzkJz/5CS+//DJut/uSsaqurua3f/u3SUpKAj494SUCWq2W1atXU19fLwd39fT0sHv3bs6ePSubFhcyd7www0UPjI8++ojx8XE5oCQ9PZ1vfOMbtLS0cODAAfr7+2WXOYPBINs8t2/fLl+qHDt2jP7+/tvefin09kYRRZHMzExWrVpFUlIS4XCYo0eP8sYbb9DX1zejCTAfeQ2kU47b7Wbnzp2cPn0auBjEYDQaAQgEApfYkC0WC08++SSf//znsdls8me1Wu2cRKXdSkwmEw8//DCPP/44y5cvx2az0dLSwgsvvMC7777L5OTkJZ+3WCykpqZit9vRaDR4vd7bbksXBOGqlbCvh9FopLa2lkWLFqHVahkZGeHll1/m+PHjTE1NXff7Sh/PmaAKMxd3zS6Xi1OnTuHxeEhNTSUrK4unnnqK1atXU1tby8DAAMFgEI/Hw4oVK7DZbCxbtoy8vDyi0SgejweHwzEvO7DZRvpVV1fzyCOPyJ4Y4+PjnDp1imPHjuH3+2/Z754rYrEYPT09DAwMyB4WkvkpEokQDoflBSspKYmenh7cbjcGg0H2hVXaqeByrFYrX/va13jkkUeora3FZrPR1dXFf/zHf/DBBx8wOjr6me8sW7aMu+66i3g8jtfr5bvf/S779u27re2erSjbbDYefPBBtmzZQmFhIaFQiJ6eHtk3eyYbECWP50xRhXkaPp+PlpYW2V85JyeHJ598knvvvVdOBuPz+WSPAL1eTyAQoLm5md27d9Pd3T0vx8XZvIh2u10OPZcS+Dc3N3Pu3DnGxsYS5uUOBoOXuMhN/98SoihSUlJCQUEBOp0On8/H8PAwg4ODirGhX4mkpCS2b9/OF77wBcrLywkEArS1tfH+++/z3nvvMTg4+JlxEgSBpUuXsnHjRsLhMM3Nzbzzzju0tbXd1rbP5v3R6XTk5eXx4IMPsnTpUqxWK4ODg5w4cYKurq4ZbxYWAqowX4Y00T0eDz/72c8wGo185Stfoby8HEDO2iVlmhsaGuLdd9/l+9///rz4iM7m2KbRaCgpKWH16tVUVFQgiiJut5sjR45w7ty5BReoYTKZ2LJlC/X19SQlJdHf38/p06flm31RFBFFUVHuV0lJSaxbt45vfOMbFBcXMzAwwJkzZzh8+DBvv/024+PjV9w9iqJIXl4excXFjI6O8s4779xW903pwnU2WK1Wli9fzsqVK0lNTSUSidDX18fevXtnZMJYSCTGNe08EI/HcTgcvPzyy7S3tyMIAlqtFlEUgYsvYDAYpKuri6NHj8pO/PPRzhtFEARWrlzJihUrMBqNhEIhuru7OXr0qCKTMt0Mer2eiooK7r//fpYtW4ZOp2NoaIif//zn9Pf3o9FoMBqNJCcny2OrBGpra/nWt77FmjVrEEWRAwcO8O///u/88pe/ZGxs7IqLp0ajITMzk+TkZDQaDWNjY/zyl79kYGDgtrV7tiYMuFgKatu2bWRmZqLRaJiYmODcuXMcPXr0jtotg7pjviZ6vZ7FixdjtVrxer3yTkCv18uT2OFwXLfGmeQrrRS0Wi2ZmZmkpaURjUbly5Vz584patd4swiCQG5uLv/f//f/sXbtWvR6PUNDQ5w7d47BwUFCoRCCIBCJRBRl0jAajRQVFbFy5UosFguTk5M0NTVx9uzZq24ANBoNSUlJfO1rX2Pbtm2yucbtdieEa5kgCFgsFvLy8tDpdPj9fj755BPeeOMNXC5XQvRhLlGF+TeIoiiv9tKLHw6HaWlp4V//9V9JTU3FaDRSWVnJY489RnZ2NkajkZycHBYtWsTw8PBVTQBKKSMEF/uZnZ3NokWLSE9Px+/3097ezscff8zIyMiC2i3n5eXx1FNPsXz5cux2O/F4nP7+ft577z05Ck66LAyFQooYI0EQeOyxx/iDP/gDbDYbwWCQzs5OBgYG8Pl8Vx2f5ORkvvSlL8k+2idPnuSFF15IGB9tm81GUVERJSUl6HQ6+vv7OXHiBKdOnUoYN7+5RBVmLtogCwoKmJycRKvVEgqFmJiYIBqN0tPTw+joKIIgyIEM8Oku2Gw2Y7FYrmpXm60r261ACj9/8sknWbNmDWazmQsXLrBnzx66u7sTxqf3aky3t4uiSGFhIQ899BDp6eloNBo8Hg+9vb20tLQQDAZlP2eNRqMYu7rU7lgsxo9+9CNEUaShoYHm5uarttFqtVJdXc2GDRtoaWnhvffeo7u7m4MHDyqmX9fCZDKxYsUKnnjiCXJycohEInzyySd88sknCZPbY66544XZZrNRXV1NfX093d3duFwuhoaGcLlcsstVOBxGEATy8/OpqKjAarXKpolIJCJP8ishXRbON6IokpKSwrp16/jiF79IdXU1gUCACxcu8P7778/KbexmLnpuNampqVRUVLBo0SI0Gg3t7e00Nzdz8OBBXC6XLFhKEi5RFFm5ciXFxcV0d3fz6quv4nA46O7uxuPxXPE7BoOB4uJi7r//fgoLC3n55Zd5//33EyYHiMFgoKKigh07dvDwww9jMpkYGBjg0KFDNDY2ziqYREmbodlyxwtzaWkpX/7yl9myZQvt7e3s27dPdheTXmydTkdSUhLV1dWsXr0ak8lELBbD4XAwODiI3++/6iSIRqNotdrrhnffakwmE5WVlXzpS1+ioKCAeDxOX18fJ06coK+vb1a2ZaVNfKk9Wq2WiooKVq9ejc/nIxAI8NOf/pS3336b9vZ2vF7vZ76jBPR6Pc888wyPPPIIvb295OXlyb71lyOFLefm5lJfX8+jjz6Kz+fD4/Fc0WVQiYiiSEZGBvfddx/33HMPRqMRr9fLqVOnaG5uxuFwzGp8lDSms+WOF+acnBzWrVtHYWEh+fn56HQ6JiYm6OvrIxwOo9fryc3NZdWqVTz44IMsWrQIURRxOBy89NJL/Md//Af9/f3XFDYplHi+kMww69atY82aNVitVkZGRti1axc/+9nPbirrmBIngdVqJScnh8zMTDweD2fOnOG9996jqalJ0ZeboVCIX//61xQVFWG1WhkeHpbbK/nNSxgMBr72ta+xevVq9Ho94+Pj/O///b85ceLEfDX/hjEajSxZsoQNGzZQVlZGMBikqamJF154gTNnzsx6zijxnbxR7nhhPnPmDD/84Q/5H//jf8jipdfrqa6uJhQKUVpais1mIz8/n7KyMsxmM8FgkNdee4033niDCxcuKP5ywmq1snTpUnbs2EFaWhqCIDAyMsKFCxcYHR1N+GPf5ZjNZsrKyli2bBmRSITm5mZGRkYULcrwqWlIyvkhXTibTCaeeeYZtm7dKmeKm5qaoqysjEgkwsGDB9m5cydnzpy55DSgZLRaLVlZWTzwwAMsXrwYg8HA1NQUFy5coK+vD5/PN99NnFfueGEeGRnhww8/ZN26dTz66KOkpaWxdu1aSktLiUajZGRkIIoiBoMBo9GIz+fj+PHj7Nq1i6amJsWLsiAIFBcXs2bNGmpqatDpdHg8Hg4ePEhDQwOBQGBB7DCm4/P5mJiYoLOzk56eHg4cOMD4+Ph8N+u6SCHmQ0NDlJeX8+STT7J+/Xr0ej319fXU1tbKwUBHjx7lgw8+oK2tjZaWFk6fPp1QyX2sVisrVqxg5cqVZGZmEo1G6e3tZdeuXdf0cLpTuOOFWcou9+qrr7Jy5UrsdjtJSUlyVi64GA3ocrk4f/48TU1NfPjhh5w8eTIhopEEQSA7O5uSkhIsFgs+n4/z589z+PBh2tvbFb+w3CgGg4Hk5GQcDge7d++msbGRM2fOXPXyTEnEYjE6Ozv54IMPgIsBF1/60pewWq309/dz8OBBfD6fHKX53nvv0dnZqSh3zJliMpkoKyuT82cPDAzQ0NBAQ0MDU1NTCdefueaOF2a4mFf52LFjHDhwALfbjdFolL0N4vG4fMQ6fPgwH3zwAePj4wlzwSJlxBMEAb/fT29vLzt37qSzs3O+mzbnSAVlFy9ejM1m4+zZsxw/fjyhjsXhcFjOO11UVMRf/uVfkpaWxr59+zh06BATExOEw2H8fj9OpzOhdsnTkULhY7EY4+PjHD16lL179ya8y+ZcoQrzb3A6nfz1X/+1nMt3uhtYLBYjHA4TDAYJBAIJtZrHYjG8Xi/Dw8N0dHRw/Phx9u7dS2tr64KrmSYIAsnJyUQiEQKBgOwJk2h9DIVChEIhWlpaePbZZxEEgUAgQDAYJBaLyR5DifQeXk44HJYv2aempvj44485fPgwY2NjC+4UNxtUYf4N8Xj8lkVJ6XQ6dDrdLXn21ZB8OePxOI2NjQwPD8vhvaOjo9d08UtUJBfGL33pS5jNZl577bWEtqFHIhEmJibmuxlzxvQczVNTU7z99tscPHiQSCSCw+HA4XAk7AlgrlGF+TYQjUZv+2XGdDGanJz8TDL12aD0BOQajQa/38/U1BQ6ne4S9zKV+efydAeDg4M3nWBJ6e/kbFGFeQ7R6XREo9HPHDHn43LmVrysSp4EUlHZ2tpa2traCAQCC9IVMJG5/N2Zi3dp+l3QQmJBC7MgCFRVVZGWlnZbfpfJZCIcDl/RXzYnJ2fOf2daWhqLFy9GFMXbsiO/Wqir0Wicc1ON1LeZtker1ZKWlsaOHTs4efIkPT09GAwGKisrgU+TVN2oUN+Kvmk0GqqqqrDb7XP63NmQl5c3p8+bPuduhx1cSndwpd+Tm5t7S3/3rUQTX2hLzWUopXu3KqfEQu7fbEtmzfXfRCl9uxWofVMmC16YVVRUVBKN+U97pqKioqJyCaowq6ioqCgMVZhVVFRUFIYqzCoqKioKY0G7y8Xjcdrb2+c1mkjyEkhLSyMrK2tOn+10Om9rafqrodFoKC8vn9NiAA6Hg+Hh4Tl73myQQvPLysrmtG/xeJyOjg5FhB6npKTMqSvnXPdNGoMrucNdzwMnNTWV7OzsOWnHbSe+gPF6vfG8vLy4IAi35Z8oinFRFC/5b1qtNi6KYvw73/nOnPfv+eefv219u9Y/s9kc7+3tndO+/fM///Nt7cPl4yaKYlyr1catVmt8YGBgTvsWCATixcXF8z5ugiDEv/nNb85p3/x+f7ywsHBOxkAQhLhOp4tbrda4Vqv9zGf1ev1n/vv0f88+++yc9u12sqB3zDD/Fapv5e+OKySRza1og1L6dqsCd+b7vZSIz7G3rDRuc9W3WCxGNBq94q5ZGpurRf/Ndd9uJ6qN+TokspP6nY46dspmpuNzPaGPT8vBsVBQhfk6LLQBv5NQx27hcKeN5YI3ZaioLBQ0Gg1arRar1Up1dTVmsxm4mL95cnJSTp3p8/kUKWR6vZ5YLCZfxiuxjUrhjhTm2eZT0Gg0cv0/i8WCwWBAEARCoRCjo6N3fJ2y28Fsx04QBHQ6HSaTCYvFglarJR6P43K5EqJEmEajISUlhcLCQiorK/mv//W/UlxcTCwWw+VycfbsWY4dO8aHH35IS0uL4vqk0WiwWq2EQqFLynxJhSmm25KlpFwztVMvxAxzd6Qwz1aUjUYjWVlZ1NXVcf/991NTU4PZbKa1tZU/+ZM/YWRkZEG9HEpkNn9fURRJTk6mrKyM9evXc88995CdnU0kEuG5557jl7/8pSJc166GTqcjOTmZhx56iD/8wz8kKyuLzMxMOd90SkoK2dnZrFq1ivz8fF5//XWOHz+umDqHkthOr+UnCAJms5mioiK5Qvbk5CRms5m0tDTGx8cZGxu7ZqEDKWOgVApOqSeF2XBHCvNs0el05ObmsmXLFtavX09ubi4+n4/m5mb1oknh2Gw2lixZwj333MPy5csxGo309PQowjPiWphMJtatW8eOHTvYunUrNTU1l5gEJCEyGAxkZWXx0EMPUVNTw65du/j+978/7/UOJVG+/AIvPT2dJ554gk2bNhGPxxkZGSEYDFJVVYXNZsPpdPLuu+/yxhtv4HQ6rzhO0gk1GAzKJykl5wy/EVRhniHSrquyspJVq1aRm5uLTqdjamqK/v5+Re+4boSFdiyUTjqFhYUsW7aM2tpa7HY7gUCAwcFBXC6XYvuq0WiwWCxUVVWxbt06ysvL5RJoO3fupKenh1AohFarxWazUVJSQkVFBVVVVQQCAVpbWzl48CCTk5Pz1kfJLi6JJ1y0Nefm5rJx40Y2bNiAKIo4HA7C4TBlZWWYTCYCgQBms5lQKMSHH37I0NDQVQPFppsQlTqWN4oqzDPEarWyaNEiNm7cSGlpKVarFbfbTX9/P83NzQSDQcW/FFqtVq4ibbFYiEaj+P1+hoeH6e3tBS4m9E9JSSEQCJCUlIROp6Ozs5O+vj7F9+9KiKJIRkYGK1eupK6ujszMTABcLhfNzc2MjIwodtdstVpZt24dq1evJjMzk2g0isPhoKGhgeeff57z588TCATQ6XSkpqZSW1vLmjVrWLRoEVarlUcffRSbzca+ffsYGRmZlz5IkXvTT5SCIBCJROju7qaqqgpRFOnv72dqagpBECgsLJTHrby8nBMnTsxb++cLVZhngEajITs7m3Xr1rFlyxaSk5MBGBwc5JNPPuHQoUP4/f75beRVEEURs9lMUlISWVlZLFmyhD/6oz8iLy8Pj8fDhQsXePPNN3nrrbew2Wzcd999LF68mPHxcdasWYPdbue1117jl7/8JSMjI4rt59UwGAzU1taybds22QwwNTXF+fPn+fDDD+nq6lKkMGs0GnJzc/mjP/ojVq5cicFgwOl00tDQwL/8y7/Q1NSEx+MhHo8TDofx+/2MjIxw5MgRCgsLue+++3jmmWfYuHEjU1NT7Nu3b17GTjK5TDc1hEIh2traeP7554lEIvh8Pj755BPGxsa455572Lx5M0lJSZw6dYp9+/Zdc7e8UFGFeQaIokhhYSErVqwgJSUFnU6Hx+OhoaGB999/n/7+fkW+OBqNhtTUVDZu3MgjjzzC3XffjclkwmazEQ6HGR0d5fz58+zdu5dgMMj69evJz88nEolgMpnIzc0lNTWVb3/729TV1fFP//RPXLhwAZfLlTAeKGazmZUrV1JYWIjFYiEejzM6Osrbb7/N2bNnFee9ICGKIjabjezsbCwWC+FwmHPnzvHzn/+cM2fOyKIsIQm09B6mp6eTm5uLKIqsXbuWjo4OWltbb3s/4vH4Jd4WUmRgOBxmZGSEf/3Xf5XFORKJ0NfXx5tvvklOTg5er5e+vj7cbvc1F8+FZn4DVZhnhF6vJy8vj0WLFmEwGAiHw5w6dYr9+/dz/vz5K9b4UwparZaqqirWrl1LQUEBfr+f5uZmXn/9dQ4fPszAwAD9/f2YTCaam5u5cOEC4XCYaDTKm2++SX5+Pl/4whcwGo3k5ubyW7/1W3zve9+bl0l+o0jiVlVVRXp6OoIgMDw8zEcffcThw4cZHx9X7AITj8cJBAKMjIxQXFyMwWAgEokwMTFBKBS6qghJNmjJfXNycpKRkZF5uwTUaDQIgiC7v01vdyQSYXR0VP5vGo2GYDBIOBzGZrMRjUYJBALXPdFIphKlhPHPBaowXwdRFKmurmbFihXk5+cjCAIOh4MPPviAo0ePMjU1pdiVWqvVYrFYKCgoIDc3l97eXn7wgx/Q1tbGqVOn6Ovrk3czgiAwODgoH4tjsRitra3Y7XYGBwcxm814vV7WrFlDSkrKfHdtRiQnJ7N27Vq58GkwGKS1tZWdO3fS39+v6AU1FovhcDjYu3cvBQUF5OfnY7VaycvLk23LV3vvTCYTVqsVjUaDXq8nOzsbm812m3vwKZcL8vT/Pp3U1FQ2bNhAYWEheXl5NDQ00NjYeN3nS89W6jycDaowXwetVktdXR11dXUkJSXh9Xr55JNP+Oijj+jv71fsy2C329m6dSsVFRWUl5fT0dHBm2++yb/9278xOTl5yWcl53+tVovP5yMYDMqTaXJykg8//BCAsrIyent7ueuuu3A4HLS1td3yftyM+1NGRgYbN24kLy8PrVZLa2srH3/8McePH1e8rTwej+NwONi9ezd2u521a9fi8/koLCxk/fr1dHd309vbK5tipMVV+E2V6pUrV8r+vVLwxnz141rjp9FoMJvNFBcXs379enbs2EFWVhZTU1N0dnbKVbCv9zum/9+FwB0hzIIgzCrRiVarJT8/n2XLllFUVEQ8HmdoaIhXX32VlpYWAoHAdZ8xH36VgiBQUFDAf//v/51FixbR1NTEiy++yEsvvUQwGPzM50VRlHfBsViMQCBwRZu5x+Ph/PnzfO1rX2NsbEzRwpyUlERFRQXLly/HbDbj9/s5cuQIu3btYmJiYkZH3vn2TQ8EApw7d47R0VHOnTtHUVER0WiUJ598ksHBQfbt20dnZ6csvOnp6RiNRu699142bdqEyWTC7XZz+vRpBgYGbkubp3thXGvcBEFAFEVycnIoLCxk3bp1bN26lbKyMrxeLx0dHYyPj894DBaSKMMdIsyzsTtpNBrS0tL48pe/zLZt28jOzsbr9dLe3k5DQwMOh2NGz5mPF8Zut1NTU0NaWhrxeJzXX3+dn/70p1cUZYBwOMyFCxeAa2fyMhqN1NTUkJSUhCiKt6z905nN2Ol0OtauXctXvvIVFi9ejNFopKOjg9OnT9PU1DTji1olTPZoNMro6CjvvfceNpuNwsJCVq5cySOPPMLy5csZHR0lGAwyMTHB3XffTUpKCikpKVgsFjweD/39/Xg8ntu2Y5Y2QNcTZZ1Oh91u5+mnn6a8vJyenh5eeOEFiouLaWtro7m5mdHRUUWbm24lC16YZ7vrMZlMlJeXs3XrVgoKCmQb7N69e2e845ovli1bxn/7b/+N5ORkjh07RmNj43XDc68nVoIgYDQaMRgMhEKhW+6FMpNd19XIyspizZo1bNiwAbPZTDAY5JNPPqGxsfGqi5OSiUajOJ1OJicnmZiY4J/+6Z/4L//lv7BmzRpWrFgh75hTUlIQBAGNRsP4+Dh79+7lBz/4AefOnVNUv6cLd2dnJ83NzbS3tzMyMoLBYJDNaYDcHyUskreTBS/Msx3Q1NRU7rnnHkpKSjCZTPj9fjo7O/noo4/wer1z3Mq5xW63U1ZWJrtQzQU5OTksW7aM7u5uUlNTb/kt/2xz7IqiSF1dHWvWrCE9PV2+RDt8+DBtbW2KXlCvhXSScbvdnDlzhhdeeIGMjAy2bNlySQBHPB4nGAzS19fHRx99pDiXQKmt0WgUj8fDkSNHCAQCuN1uQqGQfN+xfPlyUlJScDqdDA8PMzAwsGCia2fCghfm2aDRaLDb7SxbtgybzUYkEqGtrY2PP/6Yzs5OxR+v4vG4nEfh3LlzN2VfFASBpUuXcu+997Jq1Srcbje7d+9WrLucIAiUl5dTUlKCIAhMTk5y8OBBTp06xcTExHw3b06IRCKMjY3JF5jSjlJayCKRCIODg5w+ffqa9yCXR+TdDqQ2xmIx/H7/Z95NURTJy8tjyZIlaLVazGYzJSUlDA0NodFoGB0dxe/3k5KS8pmTwPTMdIm+w1aF+QrodDq5SKUoikxOTnL48GH27Nmj+Nt8uJif1+12Y7PZaGtrm3XBVq1Wy7Jly/jt3/5ttm/fTjgcZv/+/fzqV79SpDBLN/xZWVkkJycTCoXo6+vjjTfeoLu7W7E+yzeKVqslJyeH4eFhDh8+LOdoLiwsxGw2y5fdlwehXM58XW5ez/5sMBhwuVxMTk4yNTXF8uXLSU5OJikpSfbJNplMXLhwQfbplnJymEwmvF5vwo+1KsyXIQgCWVlZLF26lNLSUkRRpLOzk5MnT9LR0ZEQAz45OUlLSwtr167lscceo6+vjz179tzwMd5ut/NXf/VXbN26ld7eXl555RVeeuklxeaeNhgMVFdXU1NTQ3p6Oi6XizNnznDy5EmcTud8N++GEQQBk8kk2/OliLlQKMTRo0e5cOECer0eq9XK+vXrefbZZykuLsZsNpOfn8/ixYvp6+u7qgngav7F80k4HKapqYn29na5fS0tLZjNZsxmM6tWrSIpKYlDhw7Jfx9RFOVFRvLAUeL7eSOowjwNQRBISUlhx44dPPvss6SmpjI1NcXu3bs5fPjwjNzjLmc+Li5aW1t54YUXWLx4MevXr+fIkSOcOnWK4eFh4FNXpSv5t4qiKPuOpqamotfr8Xq9NDQ08NOf/lSxSX8MBgOlpaX82Z/9GRs3bkQQBDo7O/nFL37ByMjIDU/U+XaV02g0JCUlUVdXx8jIiOxj3tPTQyQSwePx4PP50Gg0FBQUkJqaKvuiA9eNmpPGX2lI9yLTFxPpBCgIAm63m5SUFLRaLbm5uUQiESorK4nH45w6dUoxOahvFlWYf4MgCNhsNjZv3sz9999PcXExAH19fZw9e5b+/n5FvshXYmpqira2NoLBIFlZWXzxi18kGAzy3HPPAbBixQo2bNhAR0cHb7zxhixaer1e9iXds2cPTqeTf/mXf8FisdDR0cHAwIAi/wZ6vZ6ioiKeeOIJVq5cSVJSEhMTE7S2tnL+/PlZXVRKx+P5Ii8vj+3bt3PvvffS1tZGY2Mj586dk9smhR9rtVrS09NZtWoVFotF/r6Uo+JqxGIxRFG8bW6PN4PUl2g0itFoJC8vj+TkZCwWC0ePHiUrKwuTycSJEyfwer2KzFtzo6jC/Bu0Wi3FxcVs3ryZ5cuXE4/HZfvkbCc3zI8vbCwWY3BwkO9///vcc8891NTU8Pjjj8v2x/LycsrLy+nu7gZg9+7deL1eYrEYTqeToaEhvF4vLpeLjz76iEgkotgLT41GQ3JyMsuWLeO+++4jNTUVt9vNJ598ws6dOxkbG5v1sXY+j/mFhYU89thjLF++nOrqaux2OxMTE7K/uSAI2O12iouL2bJlC0uWLMFgMBAMBmloaOBXv/oVXV1dVxWpRMwrodFo5Nwn+fn5nD17lsnJSc6dO4fBYGBycpJwOKw488xsUIWZT1/y9evXs3LlSrKysggEArS0tLBr1y56enoSbrDHx8f53ve+R3NzMxs3bqSgoIAlS5aQmpqK3W7H4XAQCAQoKSlBp9MBF2/zjx07xvHjx+UJrXQXJZ1OR3FxMXfddRfl5eUYDAa6u7s5dOgQ+/fvn5X5SQlEIhECgQBWq5WsrCzgYuSl3+8nHA6TnJxMZmYmy5Yt46677iInJwdBEGhsbORnP/sZv/zlL5mamrrurllpttjpkYM2mw2TyYTL5ZL/m9VqxW63YzKZOH/+PC6Xi+PHjwModvMwG1Rh5qJ9sri4mPvvv59Fixah0WiYnJykqakJh8ORsEejQCDA7t272bt3r1xjraKigtraWoaHhzl//jyDg4P4/f5L3JgSZSclRWeuXr2abdu2YTabiUajdHV10dXVdUm/Eo0zZ87wj//4j5SVlVFbW0ttbS02m41ly5YRCoUoLy/HaDRit9tJT09Ho9EwMTHBK6+8wp49exRdmeVqSEmXMjIy5HQIqamptLW1yalB9Xo9Y2NjNDU10dPTkxAFKmaDKsxczKuwfv16ysvLsdls+Hw+zp8/zyuvvMLQ0JDidhU3wvSLFK/Xy+TkJGfPnpXNE4m66MDFC6yKigpWrVpFTk6O7Of6zjvv8PHHHyfsbhku1rG7cOECP/rRj/j2t79NSUkJhYWFZGdnE4vFMBgMwKc+61LCo3379jEwMKBYsdLpdBgMBnQ63SV5WURRxGg0kpmZyTPPPIPFYmFoaAiHw8GqVasYGRmhsbGRxsZGOjo65GrbSu3nzaIKMxdNGUlJSRgMBjweD01NTezfvx+n05nQonw5UlSYksJzbxaz2SyntBweHmbfvn20tbVdMy1mouB0OtmzZw8PPfSQnKBIMjsBuN1uenp6aGho4IMPPqC5uZnu7m7Fmp80Gg0bN27kc5/7nFy/8Be/+AXHjx9Hp9NRV1fH8uXLKS8vx+fzkZ6ezsTEBIcOHaKlpUU+vUqpdhPlZDcbVGHmU/9Qn8+H0+nkyJEjfPzxxwtOmBcaUtmiYDCIw+Hg3LlzvPfee7IwJzqRSISenh6+//3v884776DT6S4JvQ4EAoyPj9PV1UVLS4viAyvi8ThjY2OEw2E2bNiA0WjEbDazZcsWdDodWVlZGI1GwuEw7e3ttLW10dvbS2trK8PDw4pdcG4FqjADPp+Pc+fO8fbbb+N2uzl69CjNzc14PJ4FvSonOvF4nMHBQQ4cOMDAwADNzc0cO3aMwcHBBXMRFAgEeOutt4DP+lZPz0M8m9OB5M9+O+nu7mbv3r3k5uZSWlqKw+GQvYUGBgYYGRnB7XZz9uxZzp49e0m9P7vdLhdyWOjcscI8PUez2+3mgw8+YN++fbLNLpFtrwsdQRDkqLDW1lYuXLggJ8aJRCILbjG9Vf2ZHkx0uzAYDJw/f56/+qu/YvXq1TQ0NMhJwaSIPclvWcr3AhfHXEqe5ff7F3zGuTtWmKe/7JLt9WaZbUJ+lRtj+tjNxSIquWItNEGXuJqITS/eertwu914PB653t/0u4ArtVFKTBSJROSKQYIgoNVqF8yp6ErcEcJ8u1ZXVZTnntsxdgt9zIxGI5FI5Io22tvdd6kN8Xh8RkFb0yMYpy8iC93evKCFWa/X893vfle2Sd3ql/BaIlJbWzvnv++ee+7hpZdemvPn3ijTS1PNFdu3b+ell166bYvq1X6PVqslOTl5Tn+XTqfj7//+729LXgcp69rVgkmqqqrm9Pfp9Xr+4R/+4Yo5y2cyltf6zI2+CzU1NTP+rNLQxBf6dkFFRUUlwbi9ln8VFRUVleuiCrOKioqKwlCFWUVFRUVhqMKsoqKiojAWtFdGPB7nwoULiggWSU1NJTMzc06f6XQ6GRkZmdNnzgaNRsOiRYvk6hlzwVz3bXoo841+b677Fo/H6ezsVITLV3JyMtnZ2XP2PCXNuZSUFDllasIRX8B4vd54fn5+XBCEef/3J3/yJ3Pev+eff37e+yUIQtxiscR7e3vntG/f+973PvN7RFGMi6J41XaIohjXarWf+YwoinGLxRI3mUyX/EwUxbhOp4vr9Xr52Zd/12q1xgcGBua0b4FAIF5cXDzv4yYIQvyb3/zmnPbN7/fHCwsL571fgiDEn3322Tnt2+1kQe+Y4WLtMyVEdN2KNsQVkmHrViTOmeu80FJ9POnZEtPbfiU/2VuVFEgpea8v7+9cPG+h9u12suCFWSUxmWm9vZmaKOJqVKZikRIpKTkz3u1GFWaVKyL8puJJcXExbreb0dHRq4b1zidzKbaqcKsoBVWYr4AUxmqz2aioqJCrDweDQVwuF06nE6fTmdCli66G2WzGbreTnJxMdXU169evZ2xsjCNHjnDmzJlLMn7dSq72O4TfJLBZKEU3VT67UzaZTKSlpZGZmUlSUpKcAS8ajdLd3U1vb68iTCW3ElWYL0MQBFJSUigoKKCqqoo///M/p6CggHg8jsPh4OzZsxw9epT9+/fT2tqK2+2e7ybfNKIokp2djdFopLCwkKqqKmpqanjggQfIzMwkFArx2muvcebMmXkXQ71ej81mw+FwyBNaEuv4bxLexONxRFFEo9Hc0A5f+E06UZXbj9FoxGq1YjQaycvLY8OGDWzbto26ujqMRiNw8Z7gRz/6ET//+c9xOByMj48v2PFShXkaOp2O5ORkHnnkEX7/93+fzMxMsrOz5XI+KSkp5OTksGrVKvLy8nj99dc5derUFRO2JAqCIFBUVMQ///M/U1FRIddjg4siCDAxMaGIChKiKBKNRi8RZb1eT3p6OtnZ2XIqSbjoBqbVaunv78ftdl/VfintxiTTjVSFWqloNBp5IZLaLtnPo9GovDAlEqIosmLFCh5//HHy8vJIT0/HYDCQlZVFSkoKJpMJuDj/vvnNb/Lggw9y5MgR/s//+T8MDAwsSHFWhfk3mM1m1q5dy4MPPsg999xDbW2tXDByuk+m0WgkJyeHRx55hMWLF/PrX/+aF198MWGrKpSUlPD7v//7rF27loyMDAC6urp49913CYVCbNmyBVEU5cT084V0QTTdlCKKIvX19ezYsYOysjLGx8cZGhoiLy+PvLw8ANrb2/nBD35AR0fHFctNxWIxOcm+3+8nEokoNgm7ZF4rLS1l1apVZGVlodVq8fl8jI2N0draKld2TxREUSQvL4/6+noef/xx7HY7er2eSCSCVqtFp9NdcnGbmpqKzWYjKSkJt9vND3/4Qzo7OxU5XjeDKsxc3C1ZLBYWL15MfX29XCjS4XCwc+dOent75RfFZrNRUlJCRUUFNTU1+Hw+Ojo6OHToEG63O6FekMzMTOrr63nooYcuSW05MjLCrl278Hq9lJWVsXjxYrKystDpdPNWyHX64iB5YtjtdpYsWcLdd99NSUkJU1NTjI2NkZubKwcWVFVV4XK5eOedd2hubmZqauozz5bGTMk7ZZvNRmVlJfX19Sxbtozq6mpSUlIQRZFAIIDb7aarq4u33nqLAwcOMDQ0NN9Nvi46nY7ly5ezfft2duzYQUFBgRzIEwwGCYfDTExM0N/fT39/vxyklZ6eTm5uLg8//DCTk5O8/vrrtLW1zXNv5hZVmAGr1cq6detYsWIFaWlpRKNRJiYmaGho4Pnnn6epqYlgMIhOpyMtLY3a2lrWrVtHaWkpZrOZxx57DJvNxr59+xgfH5/v7swIjUZDbW0tDz/8MCUlJZdUX4aLFy1dXV20tbVRU1PD4sWLufvuu9m3b9+8nA6kI7xUbUS6oJUmbmpqqlyY1OfzEY/HSU1NxWAwUFVVxYkTJ+jq6rqiMCsdvV5PeXk5Dz74IF/4whcoLS3FYDDIP5cWqmXLluH1eunu7k4IYTaZTNxzzz08/fTT1NTUXFLmKhaL0d3dzfHjxzl9+jRtbW0UFBRQX19PfX09ycnJZGVlUVxcjN1un8de3BrueGHWaDTk5+fz7LPPsnz5cvR6PU6nk6NHj/Lcc8/R1NSEx+MhHo8TCoXw+XwMDQ1x6NAhiouLuf/++/niF7/Ixo0bcblcfPzxxwlRoVmn07F06VIeeOAB+eg4Pj6O1+slEomwfv16Ojo6OHjwIPn5+WzYsIE/+7M/4/Tp0wwMDNz29ko24un+zQ6Hg7feeovJyUnuu+8+GhoaOHbsGOXl5WzdupUlS5bg8XjYuXMn586dS0hRFkWRwsJCtm7dyrZt2yguLkYQBLloaTgcxmq1kp2djUajkY/6iYBer6ekpIS0tLRL7OUej4exsTF2797Nj370I/r6+ohEIiQlJZGVlcWWLVsIh8OMj4/zxhtvcP78+XnuydxzxwuzVqvFbreTnZ2N1WolGAxy5swZXn75Zc6cOYPX673EPBGPxy+plZaRkUFubi4Aa9eupbOzk46Ojnnpy40i7UBDoRC9vb18//vf58SJE2RnZ7NkyRLMZjPHjh3D6XTS0tJCTk7OvC060Wj0kl2zFF3m9/v5+OOPOXHiBF6vF5/PR29vL8eOHSMtLY2UlBS6urqYmJi4bo04pXllaDQa7HY7v/Vbv8WOHTsoKioiFArR0tLCj3/8YxoaGpiYmGD58uX8j//xP8jJyUGv13/m9KNUgsEgvb29DA8Pyxd8Pp+PAwcO8NZbb3HixAnGx8florEWi4XU1FQsFgtTU1N0dXURi8XQ6XQJe8dzNe54YY7H4wQCAUZGRiguLkav18urcSgUuqrNOB6P43Q6GRsbIxqNMjk5ydjYWMK8IJFIhKmpKUZHRwmFQrz88st8/PHHpKamsnHjRurr6ykrK+Pv/u7vOHnyJF1dXfKEmA+m+7LCp3bhWCyGx+P5jH0/EAjIO8i2trYZ+T1LhT/n+6JTwmQysXTpUu6++27Ky8txOp0cPHiQn/3sZ5w5c4aJiQnC4TDJyckMDw+TnZ1NZWUlBQUF8930GeHz+fj5z3/O8ePHSUpKIhgM4vV6GR4eZmhoCLfbTUpKCmvWrGHdunUUFBRQV1eHVqtlYGCAPXv2MDw8rKjFdK6444U5Go0yPj7Ohx9+SGFhIdnZ2dhsNnJzc2Xb8tUmqcFgwGw2o9Fo0Ov1ZGVlYbVab3MPZkcsFqOzs5OdO3cSDAZ5//336e/vZ+nSpaxbt46ysjKys7P51a9+RUdHB729vcD8RMdJXhJXCqu+/L8JgsDSpUupra0lNzcXo9HIqVOnZvR7rvY75gOdTkdpaSm/8zu/Q3V1NQaDgdbWVn7xi19w8OBB2bwGn+bd0Gq18uWYwWCYt4vamSIFjIyMjMiVsMPh8CWujdFoFJPJxIYNG6isrCQ5OZlAIEBPTw+HDx+mr68vIUyHN8odL8zxeJzx8XHeffdd7HY7q1evxufzUVRUxNq1a+nt7aW3t1cOJJGO04IgUFtby4oVKzAajfIuK5Hi/VtbW3n55ZeJxWK0tbURDAbx+/2Mj4+TmZmJyWRi5cqVtLa20tjYeFsF6/JcGdfbFWm1WlJTU1m6dCk7duxg2bJl6HQ62tvbL7kouxZKEWW46DGzefNmHnjgAVJSUmhsbGTPnj0cOnToElGGi7balJQUtFotkUgEQRBk98JE4FqnzEgkQigUIjk5Wb7M7e/v5/Dhw1y4cAGXy6WYMZtL7nhhhovH3rNnzzI8PMzWrVvJy8tDo9HwxS9+kf7+fvbu3UtPT4/sQ5uWlobRaOS+++6jvr4eo9GI0+nk5MmTCXEbLjE4OIjL5SInJ4f8/HyMRiMOh4Nf/epX9Pf3s2TJEpYtW8bx48dpamq67Tl2p++Ur/ZzjUaDzWYjPz+fiooKHnzwQVasWIHVamVgYIC+vj7ZPn09lDTBi4uL2bFjBzabjWg0yrvvvssbb7yB0+m8pJ0mk4nMzEwyMzMRRZFQKEQgEFBEPuS5wGq1smjRIjlgCKCnp4d3332XyclJRY3ZXKIK82+IRCKMjIywe/duLBYLJSUlrFy5kscff5zly5czPj6O3+/H6XSyefNmkpKSSEtLw2Kx4Ha7GRgYwOv1KsLeJQna9QIlBEGgpKSEP/zDP2Tz5s1Eo1Fee+01+bj80EMPUVBQQDAYlD03bhcz2b1qtVq0Wi11dXV84QtfQKfT8cEHH3D8+HEikQiNjY10dHQoZlxuBJvNRlFRETqdjnA4jNPpxOPxYLPZ5EtKQRCorKzkrrvuwm63o9VqMRqNcoRkomOxWFi1ahV/+Id/SF5eHqIo4vf7GR0dZXh4eEH08WqowjwNyX/Z5XLhcDj47ne/yx//8R+zatUqVq1aJed2TklJkc0Zo6OjfPDBB/zwhz+ksbFxXu16oihiNBoRBIFQKITRaCQYDBIKhT4jTIIgkJOTQ11dHaWlpUSjUfr6+mhra6Onp4doNMrLL79MTk4Oo6OjirRXSuLkdrtpaGigs7OT9vZ2WdR9Ph/hcFgeq0SayMFgkKmpKaLRKKIosnz5cuLxOBkZGeTk5OBwODAYDBQVFVFVVYXFYkGj0eD1eheEzdVkMvGFL3yB73znO+Tn56PRaAgEArz11lu88MILOByOhFtsbwRVmC9DukgJh8OcPn2aF154gczMTDZt2iQfneHiji4YDNLT08P+/fs5ffo0Ho9n3tptMBj40pe+RDgcZmRkhPr6eqxWKwaDgQMHDrB//34cDgcajQar1YrNZmPDhg2sWLGCN998U/YqaWtrIxAIEI/HGRwclHebShM26TQQCoXo7u5mbGwMh8MhB5fodDpycnKora0lEAgwNjbGwMAATqdzvps+I/r6+ti9eze5ublkZmaybt06qqursdls2O12Of+H3W4nLS0NURQJh8McPHiQxsbGhBYtg8HAjh07ePrpp6mtrcXn8/H+++9z9uxZPvroI06cOHFd18dERxXmayAlxfH7/bIoTz9iRyIRBgYGOHPmzDV3lDNN+j4X1NXVkZeXx8aNGzGZTFgsFmpra1m0aBEXLlxgZGSE1NRUKisr2bBhA0ajkffff5/Dhw9/xuXMaDSydetWdDodTqcTr9fLiRMnFOMSKC2iDofjM/kh7HY7ixYtYunSpXR3d5OdnU1xcTEulwuA7u5uMjMzGR0dZWBg4JJ+KyFx+8DAAG+99RYWi4UHHniAvLw8kpKScLlctLS0MDExgVarZdGiRaSnp8sbhSNHjtDc3JyQtldBEEhLS+Ohhx7iySefZM2aNQQCAU6fPs3Pf/5zGhoaZPfOhY4qzNdAq9WSk5PD8PAwn3zyiezkXlhYiNlslm19lwehXI7kyXEriUajNDU1sW3bNp544olLbuU3btzI4sWL6enpoampieTkZJYvX05ubi79/f3cc889DA8P09raSjAYJCkpiaKiIgoLC/njP/5j9Ho9AwMDjIyM0NXVxdDQ0LzvyK4nPHq9HlEU6e/vp7W1lcrKSoqLi+XEOBkZGWRmZnLixAmGhoYuSSEqednM5wLk9/s5d+4czz//PG63m5qaGmKxGH19fZw5c4bBwUFyc3N5/PHHKSsrk/3q+/r6FH8qMBqNpKenk5qaytTUFC6XC4vFQllZGRUVFfzFX/wFRUVFxONxWlpaePXVVzl06NCCTvN5Oaowc3Eymkwm2etCyigXCoU4cuQIHR0dGAwGrFYrGzZs4Nlnn8VisWAymSgoKKCmpkZOdHQlbkcNNIPBwDPPPMPWrVs/4yoViURkv9ji4mLZnCGKIgUFBXz1q19FEAR+8pOfMDIywtq1a/nmN79JXV0dKSkphMNhcnNzOX36NEaj8baeAGbL6OgoDocDrVZLKBSio6MDk8mE2WwmOzubDRs2cPbsWUZGRjCbzUSjUfmC02QyEQ6H5/1kEIlE6O3t5R//8R8v2cVLGfAqKirYuHGjHI3a2dmJx+O55ZuAm0Gv11NWVsZDDz1EfX09LS0tHD58mMrKSr7+9a+Tnp4up18dGxvj4MGDvPLKKwvepnw5d7wwazQakpKSqKurY2hoCL1ej9frlS/APB4PPp8PQRAoLCyUQ0KnTxTJJnslpEiyW43f7+df//VfMRgMfP3rX79kchqNRvR6PfF4HK/Xy5EjR1i0aBFlZWVyYYC77rqL4eFhvF4vGzduZM2aNXI0Vjwex+VycfLkSZxOp6JszVdDyk0smZgikQg+nw+n08n4+Djj4+MYjUaSkpKw2WwYjUaWLFnCqVOn5NzTSliApBPZ5UgXvUajUTZjDAwMEAwGFSvMVquV2tpaHn30Ub74xS+SmprKmjVrePzxx2W3P0EQ8Pv9NDU18dprr/H6669f4qssXeROD8tPRLPN9bjjhTk/P59t27axbds2OZCiqanpEnvy9KiqlStXYjab5e9fz60rFoshiuItd/iPxWL09vYyMjJySRUP+NSU0t3dzXPPPcfJkyfZsmULjz32GLW1tUQiEfx+P1u3bsVqtZKRkUEsFmNoaIh3332XxsZGent7aW1tTchEQMAlYyllCczIyCA5OZnx8XFGRkaora2ltbWVQCBwzcVWKWi1WkRRlC9Be3t7cTgcivRhNplMfOc732Hz5s2UlJRQUFCAIAjYbDYyMzMv+axeryc7O1tOlA/IHiqVlZWsXr2atLQ0Tp48yYkTJxgZGVFkn2+GO16YS0pKePzxx6mrq5NvvcfGxujs7AQurtBJSUmUlJRw9913s3jxYjnc9dixY7z++ut0dXVd9cWQxOB2TPJIJMLhw4f57ne/S3JyMk899RRJSUlEo1EaGxv52c9+xssvv8z4+DhOp5PJyUmWLFmCz+ejvb0do9GIyWSSd4qBQIAPP/yQtrY2JicnFZ2v+EbQ6XTk5uayYsUKnE6nbDc/duwYw8PD+P3+K2azUxI6nY78/HwyMjIIBAKMjo7S1tamuBONRqMhPT2dL33pS3z5y1+moqLiut8RBIGsrCy2bdtGeno6ExMTjI+P4/F4qKmpYd26dSQlJbF8+XLC4TCHDx9mcnLyNvTm9nHHC7NkS7bZbGRlZRGPx+V0iuFwmJSUFDIzM6mrq+Puu+8mJycHgPPnz/OTn/yE119/XV7Nr8btsDFLfdm/fz+HDh2S83YsXboUh8PBG2+8wb//+7/L4bxNTU2Mjo6yZ88eQqGQHI4tia+0E5uamkpIQZ5egiktLQ2v10soFEKj0WAymbBaraSlpdHe3k5HRwcTExNy3pDpY6VUYdZqtRgMBqLRKP39/Zw4cYK+vj7FFQgWRZGcnByefvppCgsLr/nZyclJzp49i8/nIysri/z8fIqKimhra6OtrY3k5GQWL15MUVGRnKDq7bfflkugLSTueGE+ceIE3/3udykrK6O6upolS5Zgt9tZuXIl4XCY8vJyDAYDycnJpKWlodFoGB8f52c/+xnvv/++4mL1pWO43+/nL//yL9m+fTudnZ0cPXoUn88nfy4cDjM6Oion9p9eumn67l9JfZspoihit9tJSkrCaDRSW1tLX1/fZ475x44d49SpU3INwStd9in1wikUCtHQ0EB6ejrj4+Ps3bsXl8ulOJur9F41NzdTUlIiF1YNhUKMjIzIC2EsFqOlpYW//du/ZXx8nE2bNvHAAw+QmprKm2++yf79+3n00Ufl0GytVsvk5CROp3NBus/d8cIcDAZpb2/nRz/6Ed/+9rcpLCykuLiY3NxcYrHYJQlwpGTyu3fv5qOPPvqM/6uSiEQi9Pf38+qrr8r5E6YTj8cvEanpgTNKR6PRyBeaUiVs6ZJSyvi3ceNG7r77blwuF/39/VitVjmHb0dHB3v37gUu2i4T0T4Zi8VwOp00NTXh9/sZHBxkdHQUn8+nqMUkFAoxNDREQ0MDNTU1mEwmBEGgtbWV//W//pdcizEWixEIBBgfHycajfLmm2/ywQcfIIoibrcbr9fLiy++yP79+1m0aBF2u13OMqfUU83NcMcLM1yshLFnzx4efvhhOYOVdDySjvM9PT0cO3aMffv20dzcfE27slKIxWIzvqxLBEGWSEtL4ytf+QqrVq0iNTWV8+fP89prr9Hf3091dTXLly+ntraW1NRUJiYmyM/P5/Tp0zQ3N9Pd3Y3P55N3x0oSsZmi1+ux2Wzk5ORQXl5OXl4eLS0t2Gw2XC6XokKy4/E4k5OTfPjhh4yOjrJ69WrC4TB79uyhsbERj8dzRTOg2+2WMzpKSHZm6T7EYrEQCoUUPw9ngyrMXDzWd3V18dxzz5Gfn49Op7tkBymlwuzo6KC1tTUhk+IsJILBIP39/Xzxi19k6dKlVFRUkJubi8vlIjs7m6SkJARBYGxsjPPnzzM0NERLSwudnZ1y5F+io9fryczMlPMTDw8PMzk5qcicJuFwmO7ubkZHR2ltbSUSidDW1jarOSSZ6qTYg9udXOt2oQrzb/D7/fzqV7+64rFI2k3ONl+v5HupMjf4fD6OHDnCzp07mZyclPN4pKenEwgE6O/vx+l0Mjw8zNGjR2lra5OP+DqdTq7EksiLq1arJSUlhampKTo7O+WKH0rsk1QlKBAIyFGJN3tCk/y7L0+sv1BQhXkat+qlvh1+zLcSpdmfpRpwzz//PB9//DGiKHLixAmMRqOcUW56BOf0iWsymUhPT5fD6JXSpxtBek+lAgfSxW4i9GWu27gQL/5AFeY55Wr5jyXXu0RFp9MhCIJibJfhcJixsTFCoRCHDx+WU0JeK/+05P7ndrvx+/1EIhG0Wi2xWCzhdlyRSITBwUF27dolX5olgiirzBxVmOcQKcdCIovwlVBKePJ0JDGaLqrXEqfpn5PGR8qNkohEo9ErhmqrLAwWtDDr9Xr+4R/+4RL/3VuFRqO55g5s8eLFc/47t2zZwosvvjjnz71RRFGUQ2fniq1bt161b9erzDKXaLVakpOT5/SZOp2O//f//t+85u+WqK6untPn6fV6/u7v/k4Ri0ZNTc18N2HWaOKJumVQUVFRWaCorgIqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWFoQqzioqKisJQhVlFRUVFYajCrKKioqIwVGFWUVFRURiqMKuoqKgoDFWYVVRUVBSGKswqKioqCkMVZhUVFRWF8f8D1INbZj7laWIAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import cv2\n",
"import matplotlib.animation as animation\n",
@@ -1890,25 +522,9 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-02-09T13:36:54.707633Z",
- "start_time": "2023-02-09T13:36:54.053382Z"
- }
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAEtCAYAAAC21I3tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAABJ0AAASdAHeZh94AAChDElEQVR4nOz9eXDc533nib/6vu9uoHHfB0EQBA+REnVRsiTHkhzZcRzbcbyOPTl2Z5M4NeVkdsaumYlTmZqabHZ2KuNJPPHEOXbtxM7O2PIl2ZIoyaQkkuIJkARI3Hc30Oj7vn5/8Pc8alA8ABJAN+h+V7FEsa/n+T7P834+90dRLBaLVFFFFVXsICjLPYAqqqiiio2iSlxVVFHFjkOVuKqoooodhypxVVFFFTsOVeKqoooqdhyqxFVFFVXsOFSJq4oqqthxqBJXFVVUseNQJa4qqqhix6FKXFVUUcWOQ5W4qqiiih0H9UY/oFAotmIc24b1pmb+PMzz52GOUJ3nTsFG0qarEtcWQ6FQoNVqUalU5R5KFVXcN6gS1xZDpVJhtVoxGAw3fX2n35JVVFEObFhVrGJjyOfzxONxcrnc+15TKBSSuKrVhaqoYv2oOOLaqQdZoVCgUqnQarXkcjny+TwqlQqFQkGhUEClUqHRaIDrc8tkMvLvd/Nbd/vZKqq4H1BxxFUph3Ej5KBUKnG5XDz88MN86Utf4p/+6Z84fvw4jz32GE6nE61WS01NDQ0NDRSLRUKhEH/yJ3/C/Pw8CwsLG56zy+XCarUyNzcnCbCKKn6eUHHEtdNgMpkwmUwMDAywf/9+9u3bx/j4OIlEggMHDuBwONBoNHg8Hurr6ykWiwSDQfbu3YvVakWpVBIOh4nH4+Tz+XX/bqFQ2MJZVVFFZUOx0dLNO92YvNmu5YMHD9Lb28tXvvIVPB4PZrOZdDpNNptFp9OhUCjI5/Pk83kKhQLFYpFCoUAqlWJqaoqf/vSnvPbaa5w/f55IJLJu8lIoFLedSzUc4j1U57kzsBEqKovEpVQqUSqVqNVqeZBzuZwcuMFgwOPxsGfPHpqbmxkbG2N5eZmLFy9WlKShUCjIZrOEw2FeffVV1Go1sViMfD5PsVjEYDBQLBZJJBKoVCpUKhXd3d243W6am5vxeDwcOnQIs9lMX18f/9//9//h9/vXNcdbLbJSWXUU3yuUSiXFYvGOB0mpVKLT6ejr68PlctHS0iLtmuICUiqVhEIhVlZWmJ2dJRwOEw6H5WUmfqdSTCR3gkKhkPPWaDRyv9/qvbA15p9tJy6FQoFarUalUmEwGCgUCmSzWYrFolxIi8VCb28vn/vc5/jgBz/Id77zHc6dO8elS5cqhrjEoiSTSXw+H3/7t39LKBRibGxMbkSbzUaxWGR1dRWj0YjVauVXfuVX2Lt3L3V1dbjdbrxeLwcPHiQcDvP222+zurp6T3YrcSlUcfcQz0/sx5tBoVCg0WiwWCx84AMfoL+/n6efflrG7KXTaYrFIlqtlrGxMS5evMirr77K5OQkk5OTpFIpUqnUGkm80iFIS6PRYLVaMRqNcg43g0qlkud6s7GtxCUOlclkQqvVYjAYSCQSpFIpediVSiVOp5PDhw9TW1sLQHNzM4FAoKIOpNho8/Pz+P1+lEol2Wx2DemEw2Hguj0qmUySy+V48cUXeeuttxgeHqavr4/nnnuObDZLPp/nueeeo6Wlhe9///s3DZ+4E8RNX05yVygUmM1mtFotOp2OfD5PIpEgm82umdPdzG+7IA7arcjEYrHgcDj49Kc/zcDAAL29vZjNZlQqFe+++y5jY2MoFAocDgePPPIIXq8Xp9PJwMAAPp+Pr3/96/h8PpaWllhdXSUajW7n9NYNEa5jMpnQ6XTY7XbU6uuUEQ6HWV5evu06bgVhCWwbcQkJy2AwYLPZpNQlpK3STaJWqzGZTPIhORwOHA7Hdg11Q4jH47d8rZTEhGowMTHB/Pw8arWabDbLwYMH0Wq1KBQK+vr6UKlUnD59mnA4fFcbupxqh8FgwGQy4Xa7MZvN6PV6UqkUq6urRCIREokEZrMZgEQiQS6XI5vNVpzEcaexiEM8ODjIgw8+iNVqJZ1Os7KywtWrVzl79ixarZa6ujr279+PzWbD7XZTW1tLXV0dTU1N0syQTCZvuc6lcX7lgAjhqampwWazSUEim82SSqVYWVm57SW5lWu6LcSl1Wqx2Ww8+eST7Nu3D4PBQCQS4a233gJgeXlZvrdQKDA9Pc03vvENampq2Lt3L/X19fh8vh1vfBRIp9OcOXOGmZkZrl27xgsvvMDDDz/M008/zRNPPMHRo0f5zne+w1e/+tUNfW+5Dr+IYTt69Ci/+qu/ysDAAG63m1wux9LSEufOneO1117j0qVLfP7zn8dkMnHy5ElmZ2el/TKRSKxZ30q1+yiVSsxmMw0NDSwtLXH+/HkArl69yne/+13m5+cJBoNotVra29vZv38/Xq+XmpoapqamCAQCtLe3U1NTQ1tbGz/72c8IBoPyAi+FzWZDq9WWYZbX4XQ6aWpq4vd+7/fYv38/BoOBQCDA8PAw//RP/yTtseW4eLZN4ioWi9K+5XQ6sdlsHD58GJPJRCwWY2VlhWQySbFYJJfLEYlEyGQyFItF/H4/fr+/Ijfy3SKdThMKhRgfH2d2dha/309zczNms5n29nZcLtcdPYeVAGHv2LdvH4cPH6anp4e6ujpMJpM0Rvt8PjKZjAwLcTgc7N69G6fTicPh4J133pFrrVQqpSReaeqkRqPB5XLR1tbG7t27UavVrK6uMj09zfj4OFNTU1Ky1Gg0+Hw+3n77bRobG2lqaiKXy5HL5VAqlVLi0uv1OBwOQqGQlD4FcrlcWS9rh8NBd3c3ra2tNDY2olarUSqV2O12jEYjGo2mbHGE20JchUKBdDpNMBjE7/fT2tpKbW0tzz//PK+99hoAp0+fZmlpSRpEM5kM2WyWbDbLyZMnOXfuXMUY5jcLsViMq1evMjQ0JA+z1WqlsbERp9OJUqmsODWqFMKetWvXLv7jf/yP1NbW4na7yWQyRCIR3njjDUZGRjh27BhwXfK2WCw0NDTQ3NxMKpWSl1YwGCSXy6HRaDCbzUQikYoiLiFp7du3jyNHjvDMM89w9epVZmdn+da3vsXKygqBQEC+P5/PMzMzw3/+z/+Z1tZWdu3axZNPPonX6yWfzxOLxZibm8NgMNDR0cHVq1eJxWKkUin5HbFYrBxTBa6vbVtbG88++yzt7e3Y7XbguopvNBrln0QiUZb9uS3EJUIe+vr6ePbZZ6mvr8dkMmEwGHA4HDQ0NDAyMkI4HEatVksVsb29HY1Gg16vR6/Xb8dQy4LLly+TSCTo7u6mq6uLjo4OTCYTDQ0NLC8vk0wmyz3E96Gvr4+Ojg727dtHc3MzTqeTpaUlTp8+zZUrV1haWuLy5csEg0GWlpbwer3Y7Xbm5uZIJBJEIhEcDge1tbXS3pnP56W0nU6nyz3FNVAoFDidTj7ykY/Q2dlJfX09r7/+OhcvXiQQCNzU1lksFslms5KczWYzTU1NuFwukskkg4ODzM3NsbCwwNzcXMUY6UVFE7vdTnNzM3q9XpJTJBJhdHQUn89HPB4vmzCxrcTV2trKoUOHpDG6WCxiNBqx2+3o9Xo0Go08sA899BD19fUy/qmSPIqbjampKfx+PyMjI+h0OlpaWtDr9dTU1BCJRCqSuNrb2zly5AhPP/00TqcTlUrFwsICJ06c4LXXXmNmZoZIJCI3fE1NDXq9Hp/PRyAQYHFxkc7OTpxOp7SRKRQKcrlcRc5XpVJht9t55JFHcLvdWK1WlpeXGRsbIxqN3pRoRShAJpMhHo9jNBqpqamRdqt8Ps+VK1cwGo1otdqKkayFScdsNuPxeNaMLZlMMj8/z+rqKqlU6v4mLri+SOl0mmQyST6fl2rQyMgI3/3ud5mdnSWRSKDT6XC73Tz33HO4XC7y+Tyvv/46Z8+e3VL3ajkhAnCFJLKwsIBSqaS3t5elpSVCoVC5hyih0WgwGo00NTXR0dHBj3/8Y/x+P2fPniUYDBIIBIhGo2QymTXrNTY2xuzsLO+++64M23C73TQ2NpJIJGhtbWVkZIRCoVBxtj2FQkFzczMdHR3U1tbKwOLZ2VmuXbt2RztPQ0MDjz/+OG1tbTidTpLJJHNzc7z11lucPn2ay5cv4/P5yOfzFZFALyTFaDTK4uIiTqcTo9EoJbGamhrMZnNZhYltIS7B4MJ2pVKpKBQK0hYi1KF8Pi9DIQTTZ7NZQqEQ4XC4ojbzZkJIpOFwmEAgwPLyMtFoVBpnBcmXE0qlEpvNhs1mo76+Hp1Oh8/nY3R0lPn5eS5evEg6nb7lIU4kEiSTSUKhkJyTUEHq6uooFApMTk7KyhqVBIVCgdVqxWq1otPpUCqVZDIZEonEbW08RqORrq4udu/eTVdXF2q1mnA4zMzMDBMTEwwNDUk7mQhYhfIXGhD7MRQKMT09TVtbGy6XC1gbqlTOcW45cQmWFnFYwuNSKBTw+XyEQiHS6bSUwtxut6yoUEp0IqbrfoS44c6dO8fKygrpdJqhoSHOnTtHMplEr9eTTqfLaqjX6XQcPXqUvXv38ku/9Et8/etf5z/9p//E0tKSXL87ofRgKpVK9uzZw//yv/wv2O124vE4ly5dqjgJE96zb7lcLjQaDel0mkAgcNt5K5VKurq6+Na3voXFYkGr1TI8PMyZM2f467/+axYXF5mdnS1bOMGdkMvlGBoaIh6P09nZSXNzM4DUiERwcbnGvS1soNPpqK2txWg0UiwWJVur1WqZcFwoFFAqlaRSKTKZjMwXUyqV8ma7n6FSqWhqaqKxsRGtVktPTw8ej4e5uTn8fj9vvvnmGo/TdkKtVqPT6TCZTPLgRqNRwuHw+1TC9UClUmE2m/F6vXR1dZHJZMjlcrjdbimVVRJEKSIxLmGL9Xg8eL1elpaWpEQsarI988wzMp5NoVCQSqW4ePEiFy9eZG5uToY/VDKy2SyJREKeTWGzSyaTN407205sOXGJZOOmpibMZjPFYlEW1BNSlYjfgusu4HQ6LfVnpVJJNBolGo1W3K20WRDGaREzUygU2LVrFz09PQwNDTE6OsqpU6fKZrQWnl2DwSCThqPR6G0TbG8HEcvX2NhIX18f4+PjhEIh6urqiMViTE9Pb8EsruNubEjFYpHl5WUZSygCqhsbG2lubmZlZUWqyCJ/8fOf/zwDAwPY7XYikQjxeJy3336b48ePS3tWpUOYc0QMJlyXxMLhsNQAyoVtkbg6Ojr4vd/7PVpaWqitrZW2q1J7hlKpxGKx8OlPf5r9+/ejVCrl68K+EI1GyyqebhW8Xi+1tbUyMNdut2O328nlcpw4caKspAXIoMkPfOADeL1ebDbbGhf5eiDIef/+/XR0dPDJT36Szs5O1Go1Xq9XmhS22iRwN3tHEJfIzdNoNLKXgMPhQK1WYzAYqKur4xd/8Rd59NFHOXDgABaLhWKxyIULF/j+97/PxYsXWV1d3RGkBddzMpuamtasdTKZZHZ2tuyCxLbYuERel9FoRKfTAe8dBpG7aDAYcLvd7Nu3j87OzjWeJVE9NJfLyaz6TCZDoVBAo9HIaPtKtBXcCiIPTa1WY7PZ8Hg8cs5ioyQSCRmVXc5gTOHpa2lpkak8Go1mQ14lk8mExWKhu7ub/v5+jh49KmPzRLiLCDquRCSTSWKxmAwKFWE6Op0Os9ks5/bQQw/x1FNPSU/x0tIS165d4/Tp0/j9/rKp+3cDIVkK045CoSCTybCyslJ2082WEpdCocBisazpcCNETq1WS0NDA0888QQKhYIjR47Q2NgoPVbwntj9b/7NvyEWi+Hz+bh8+TKnTp3i3XffJRQK0dvbSyqVYnZ2tqIz7UuhUCjQ6XRYLBbq6uqoqanB4XAwNDTE9PQ0nZ2d5HI50um0DOYs5y0tbFw2mw2TyUQ0GsVsNuN2u/H5fLclGyFp/fIv/zIf/OAH6erqwmazSYk6k8lw7NgxhoeHef3117fUvrXeOls3gyhP9O1vf5uGhgYaGhpYWFggnU7z3HPP0d/fz6/8yq/Iub3zzjsMDw/zta99jZWVFVZXVysqE2A9EHW3RIxdsVgkHA7LoNtyYlskLlHOpjTvStQzqqurY3BwkPb2dtxuNyaTSb5PbHoR8GcymWQBQpfLRSQSobm5mWw2y9LSEsvLywQCAc6ePVvWdImbQa1Wo9FoGBgYwOPxYDAY0Ov12O12WcNJGD9FPJPoEFRuiLI877zzDq2trXR0dNDa2srevXt56623ZKiKRqNBp9Phcrlk8KKQzESRPVGALpVKsbS0xNzcHO+88w7Xrl0jFotVrMQFkEqlGBkZQaFQ4Ha7qa+vR6PR0NnZSVtbGx6Ph8XFRfx+P8ePH+fatWvMzMxIDWGnQWg4pWV+xL4st2az5cQlDHgiQVOInEJN6ujooL29/ZbJpAqFQqb8WK1WmpqaePTRR4H3ErfFgZ+fn2d2dpbf+I3fYHR0dKuntm6IOTgcDv7lv/yXPPHEExiNRlmranZ2Fp/Px8zMDLOzs3znO9+RkcuxWGxNpkE5kM1mWV5e5itf+QpPP/00f/qnf8rRo0dpbm6W9fWFLdLtdvP444/T1dXFM888I6XtCxcuMDU1RWNjo/QUv/LKK/y//+//K43zWz2/ezUmi/xLlUpFf38/jz/+OAaDga6uLjQaDQqFgrfeeouf/vSn/OAHPyAQCJT9gN8LRNiHMNALk4Fery97eNKW/3oul2NxcZFXXnmFPXv20NraKl8TRFaKjWTDi9ZfQvxPp9NSQil30KaQFi0WC3v37qWzs5P+/n76+vowGo2SyI1GI3V1dVgsFlkZoaenh0gkQjQapb+/H5VKxTvvvCODdEX4wHYeinw+TzAYZG5ujqGhIbLZLGazmY985CMkk0nq6+sxm81YrVYaGhqwWq3o9XqmpqZ4+eWXZTT94OAgBoOBWCyG3+9nYWFhjVe5kiFIqrm5WXZaMhgMaLVaMpkMq6urDA8Pc+rUKWKx2I6Y0+0gaqlls9k12s+DDz4oJeZyYUuJSxjNV1ZWOHXqlDRCC0mpVIUU/1Wr1ZK8SptL3KoEbGnd7nA4TDAYXJNSVA4Iw61er8flcnHw4EEOHjzIo48+Krv+wHVy1Wq10psoiKmlpYX5+XkZ/Gez2ZiampJxU7FYTEo523U4isUi0WgUv9/P6OgoDocDs9nMwYMHMRgMkpCEhJXL5Zibm2N6epoXX3wRq9WKy+WS1V5FetDKysqOsP2IQphtbW14vV5ZBdVgMMheA4uLi0xOTkpVf6dDZLaI9RHZE7t37+bChQtlHdu2SFzz8/N8//vf58c//rH0UIiN0NXVxd69ezEYDJjNZo4ePSrDJUQ6xNjYmMyHE95DIa6K9yaTSRmoOjc3d8+H4V5yxg4ePEhfXx/9/f04nU4aGhrweDwolUqCwaC0GZU2HVCpVLhcLtRqNfv376elpYXl5WU+8IEP0NjYyIc+9CECgQDj4+OcPXtWlsPZzgz9QqHAtWvX+L//7/8bvV6PVquV+aWi9InH48Hn8xGJRJicnCQSibCyssLRo0d54okn6OnpIRaLcezYMUZGRuR6VjKUSiVtbW3s2rWLX/qlX0KhUDAzM0OxWMRqtWKxWDh//jxf+cpXuHbtWsXPZ71IJpMsLy8Tj8fJZDJotVrMZjM9PT04nc6yjm1bAlBTqRQ+n0/WlwdkKIQQqR0OBy6Xi3379qFWq4lGo0xOTjI2NsbQ0BA+n+99xKXRaNBqtTKaV8R9lVtFbGxsZN++fbK+ltFoBGBlZYVQKEQymSQSiUh3s5BeRHR2OBwml8thMBiwWq04nU5qamowmUzMzc2hUqnKNr9EIsHU1NSaphCi24vdbsfhcLC0tEQsFmNpaUlGydfV1dHW1oZSqSQWizE5OcnKysqOUKdE+k5PTw82mw2fz8fExAQKhQKPxwNAKBRifn6+4pxC9wJhlig9TyLertzVWrbFwibqcZdu0nw+L/PzhoaGGBgYoL29nYGBAVKpFJcvX+bSpUtMTEwwMjLyvoapWx1HcjcHSng8jxw5wq//+q+j1+tlJYSLFy9y/PhxfvaznzE7O8vKygo2m42uri4effRRdu3axf/z//w/0lBfV1dHe3s7fr8fu92O0+lkbm6Of/iHf2BychKfz1eW6OVcLicPp3AYKBQKgsHg+/5NeBYPHTrEgQMH6O7uZmhoiAsXLvDqq6/uCNuWOKi/+7u/S0dHB7Ozs/z0pz/lW9/6Fi+88AK9vb0MDg6yurqK1+slFotVXMrS3UJ04BJpTHB9/aPRqLR73de5inBrIhAPRximdTod0WiUiYkJ5ubm5AHdCdHGbrebvXv30tLSIqsICI/c7Ows4+PjLC4usrKyIkMdpqam8Hg8ZLNZWcI5EolIwhNu9UKhwNTUlIxa3m7j/M1QmjR941j0ej2HDx+mpaWFAwcOSPXw5MmTjI+P75g1bWtrk3Ytq9WKSqWSNcNGR0dJp9OymquQQu8XiHXNZDIyLCKXy8n0r9Lk/+1GRZRcEPlfJpMJs9nM4uIio6OjzMzM4Pf7Kzq2R0ChUFBfX89HPvIRurq6ZFxWKpVienqasbExLl++zOLiIpFIRHaGmZycRK1W4/f7mZmZkd63WCzGwsICS0tL6PV6WfpEiO6V2kxCwGAw8Au/8At0dnayZ88efvCDH3DixAmOHTsmPVU7Af39/Tz22GPU1dVJbzBcDxEZHh5mcXGRhx56iGQyueFsgp0A4a1PJBJkMhkymQxWqxWz2YzJZHpfnfztQkUQF1xPro5EIlgsFgBp2K0EyeJOsFqt/K//6/9KX18fjz32GE6nk2KxyMLCgjRmLy0t4ff7pYorbH1qtVpKYaIZrAhWVCgUzM/Po1QqpcdRbJJKfiZGoxGbzUZDQwP5fJ4f/ehHvPnmm5w7d67iasnfCqJa6UMPPcSHPvQhFAoFY2Nj/Jf/8l8YHR2VuaNKpZKXXnpJtvK6XzpRlWJlZYX5+Xn0er3M6Kirq2Pv3r28++67MltlOy/TiiEuYVgXsV3C9V/JB1RAp9Px0EMP0d3dTUtLC3Ddhre8vMzMzAxnzpwhl8vJnDyVSoXJZAKQHlGRcS86wYh578SIa7vdTm1trayMMDw8zOTkpKzdtRPW1GQyyeDo5uZmFhcX5VoGAgHpJBIqvlCf7jeIVKfFxUVcLpfUIkwmE16vd0036+3MFa4Y4hLNMkW3lNL4rEqGqOTZ399PQ0PDmkafr776KpcuXUKlUtHW1kZfXx/T09Pkcjk++clP4vf7ee2111heXiYYDMqOz/eCct/4SqWSz3zmMzz44IPU19czNTXFP/7jP0pVYyeECmg0Gg4ePMhXv/pVrFYruVyOv/iLv+D8+fMsLCxIm6zT6ZSe1Hg8ztDQ0KYb5su9nsVikZdffpmrV69y+PBhDAaDtOM1NTXR1dWF3+9naWlJFkDYDlQMcYkGCiLz3GQyybK4lb7ZM5kMly5dIpVK0dvbK6Um0cHogQceoLm5mZ6eHjQaDaFQSDYHDQaDsi3VZsyztHbSdkMkY9fU1FBTUyODTGOx2I6I1wJk30C3243H45Edx0WuKSBLD9XX12Oz2ejt7WV5eRmfz7fp4RCVcHEvLS1RLBapqamhtraW9vZ2DAYDHo+H8+fPyw5N27m+FUNcw8PDLCwscPjwYUKhEF6vV0oilSx5iVrxf/EXf8EjjzzC7//+78taYw888AADAwM8//zzOJ1Oamtr8Xg8XLp0ia997WuEw2EZSb6Zi16uZyXyMT0eD1arlddff51r165VRFLueqFWq2lpaZFVSkRGR1dXF4lEglOnTtHR0cHhw4dlDf4nnniC8fFxlpeXZaPf+wlTU1MsLi4CsH//fp555hk8Hg86nY4f/ehHUsPYTi9xxRCX8F5cuXIFnU7H4cOHWVhYwOfzcfXq1bLX/7kdstksV65ckUGIgohE7JmosWU0GmX5HWHD20k1xG4HUVdMqMuhUIjXXnuN8fHxHTVH0SQiGAwSCoUwm81otVoeeOAB3G637LAuUrJWV1claY2Ojsp4tvsN+Xxe9gMwGAzodDr0ej27d+8mm80yMTGxrWtcUcQl8tsaGxtl2Vubzcb09HRFE5foWjwzM8PJkyfLPZxthyhRZDabqampAa5Hkp85c0aWO94pKBaLxONxmeQuDmh3dzd2ux2fz8eVK1c4f/68tEdeuHCBWCwm4+vuR+Tzean2A9LJJEpXb7d5oqKIS9Rt2rt3Lx/5yEeYnJxkamqKU6dO3bc32f0Ag8FAZ2cnRqORZDLJ6dOn0Wg078t22AnI5/MyNCUej2O1WqUUFgqFZFce0RM0Ho8TDAbJ5XJrGkgIe9hOCOdZD0RF3qGhIf70T/+Uj33sYxw6dIi3336bixcvbvs6VxRxCfVKxHTFYjGSyeSOMOr+vELUZ2pra5PVIQwGgzTG78S1y2azrK6uMjQ0xNLSEjabDb/fTzAYZHp6Gr/fL7scxWKx26r89wNpCQh77vDwMB0dHWg0Gvk8tnueiuIGf3ErRULh0fF4POzatUsmJY+Pj29as4j1Trfcbuh7xXrmuRlz1Gq1tLe380d/9EfU1tZSU1Mjo/7/2T/7Z1ta4ncr11KpVMqAUpGTJy7X0syF7TiwlbZnRU6uSGnbLBvmRr6jYiQuuM7oiUSClZUVRkZGSCaTsodbFZWJfD5PKBTipZdewmKxYLFYSKVShMPhHdUY4kYUCgXS6XS5h1GREG3LyomKkri2A+ud7s2qs+4kbJfEVU5UmiSyVajO8/24vzJCNxE7mbSqqOJ+R5W4qqiiih2HDauKVVRRRRXlRlXiqqKKKnYcqsRVRRVV7DhUiauKKqrYcagSVxVVVLHjUCWuKqqoYsehSlxVVFHFjkOVuKqoooodhypxVVFFFTsOG06y/nnJh/p5mOfPwxyhOs+dgmquYhVVVLGt2G7SrBLXHbDTb7EqtgbVfbEWoqnIdqGi6nFVIrYilVOhUGCxWOjq6uK5555DrVajUCi4fPkyCwsLvP3222vKAFdRedistXE4HJhMJnw+346uO7fdDVGqxFUGKJVKjEYjnZ2dfPrTn8ZgMKBQKPjhD3/I0NAQp0+fJp/P77h67VVsHCaTCZfLRSAQ2NHEtVHSElVl7xZV4ioDCoUC0WiUsbExvvvd7zI4OEhzczMnT57k8uXLshxuFZuDGw/JvR6azYTP5yMQCOzoarF3A1Go8273eZW4thkKhQKdTkdXVxfNzc2o1WoikQjz8/MsLCywvLx8X5GWQqFAqVRisVgwGo1YrVbgevfvaDRKMBjcUQ1jNxvZbLYiJS2FQoFarUar1VIoFGQ/CNHROxqNEo/HZQf2jezZUlvY3V4iVeLaZuj1eurr6/nGN75BTU0NSqWSH/3oR/zoRz/i3LlzrKys3FfEpdFoMJlMPProo+zbt48nnngCnU7H2NgYb7zxBt/97ndlk9Wtwo0H4+eVJNcL0SfT4/FQV1dHNptFp9Px/PPPy3977bXXOHv2LFevXiUWi62776kgrXw+L3sz3s3FtSOIS3RaUalUFAqFHW37qampobm5GYfDIXv2RaNR5ubm5O21kyE2pkKhwGQyUVdXx4EDBzh06BB9fX20traiUqlkN2SPx8P/+B//g7GxsR23riqVCr1ez+DgIFarFbvdjsViQa/Xv68DULFYlO3OJiYmKrZxrFqtxmg00t7eTltbG729vRQKBTQaDXv37pXzPHLkCPX19Vy7do35+Xlee+012ZLuThDP5V66JO0I4hLMrNPppLdtpx7wpqYmuru7MZvN6PV6crkcoVCI6enpHd9VRlwwQs1wOp309fXxa7/2a/T19dHc3IxSeT0CR3Qr/+hHP8rIyAiTk5M7irgUCgVarRa73c6HP/xhWltb6enpob6+HpfLtaYRbLFYJJ/P81d/9VecPHmSubm5iiUurVaLw+HgoYceYu/evRw+fBilUolSqcTlckn1sbGxkWw2y/j4OMPDw7z99tskEok7nssbyfxuvZEVTVwGgwGz2czv/d7vUV9fTywWY2xsjIsXLzI8PLylPfu2AgqFgqNHj/LYY49hNBoJh8Ncu3aNsbExFhYWKtLWsRGo1Wp0Oh2Dg4O0tbXxwgsvUF9fT3t7OxaLRUpjpRu2UCjgdrupr69ndna2oslLqVRiMBh48MEH+eAHP4jX68Vut9PV1YVer8doNKLVakkmkwSDQZaWlnjppZdoa2tjcHCQuro6BgYG+MlPflKR0rVSqcTr9dLV1cUv/MIv0NjYSGNjIyqVCqVSiU6nkxeTXq+nUCjQ3d2NzWbjX//rf81bb73Fyy+/LBvkrgf3lcSlUqnQaDS4XC5qamp4/PHHaW1tZXV1Fb1ez+LiIlqtttzD3DAUCgXNzc10d3ejVquJx+OMjY3h9/uJxWLlHt49QUggZrOZnp4e9uzZw9GjR7FarajVanK5HKlUSkrMKpVKHgi3201jYyMLCwsVR1wajQaVSiX/7nQ66e7u5pFHHqGlpQWLxUI2m5XOBhHGsry8zMzMDCdOnCCRSFBfX4/NZqOhoUE2mq0klDpRnE4nbW1tuN1uLBYLKpVKEhZc94qLv9vtdjQaDY888gh+v59XX311Wy7gshJXqT1EMK9CocDj8bB3716efvppHnjgAQYGBjAajdTU1HD69GnOnz9PJBIp59A3DNEZ2Ww2Y7VaUSqVTE1N8bWvfY3x8fFyD++eoVAoqK2tpaenh0996lMcOHAAq9WKQqGgUCgwPj7O9PQ0Fy9eRKVSceTIEbxeL42Njfzqr/4qDzzwAL/1W7/FyspKuaeyBt3d3bS1tZHL5bBYLBw6dIjm5mZptggEAvzgBz9gZGSEV199VZJzPp8nl8sRj8fJ5XLU1NTw1FNP0d7ejtVqJRqNblp39s2AkJadTiculwuDwfA+ghUe0GQyKS8do9GI2WxmYGCAd999F61WSzqd3vILqCIkrlLSMhqN1NbWsn//fnp6emhpaZEiKkAulyOZTFbczXwn6PV6bDYbRqMRjUYju3YvLCwQj8fLPby7hlqtRqVSoVarsVgsuN1urFYrJpOJQqHA6uoqo6OjTExMMDs7y+XLl6WdZHBwkKamJjweD7FYTGYQVILXz2q10tjYyMGDB+np6SGfz2M0Gunt7UWpVLK8vMzs7CzRaJQzZ84wNTXF/Pw8mUxmjX1LoVCQz+elp06n06HValGrK+LoSQgtR6PRoFQqpborOpLn83lJyNlsltbWVurq6tBqtfJzYq7rTfDfsQGoNw5cpVLhdrvp7+/nM5/5DLW1tdjtdnl7JZNJUqnUhnToSoHD4aCzsxOn04ler5eqxfz8/I62bRmNRnQ6nbxwGhoapP0jnU5z8eJF/vRP/5SVlRVCoRA+nw+1Ws3ly5f59Kc/zSOPPILL5SKZTMpDU+5LSaVS0dzczK/+6q/y+OOPMzAwsOb1ixcv8rOf/Yw33niDyclJpqen5aG+MdBVrVZjMBiw2WySrAwGA3q9nmg0uq3zuh20Wq1cSwC/38/bb7/N9773PRYWFohGo6RSKUnAn/vc53juueew2+2oVCoymQzpdHrdtrv7KgBVrVbT09NDZ2en9GCkUimmp6dZXFzklVde4ezZs8Tj8bJv7vVCGDV3797Nhz/8YRoaGigWizJieqcGX4rwlPb2dtxuN62trbS0tLBr1y4MBgPhcJhTp05x7tw5xsfHicVi8tIBpEoF15+RVqulpqaGZDJZVnXRaDTy3HPPsXv3bj7wgQ/Q2NiITqeTRLy0tMSlS5f42c9+xrVr11hdXb0paYlL+Nlnn+XgwYM88MADOBwOqSJWWqR8Op2mWCxy5coV5ufnmZ2dZXFxkZmZGeLxOJlMhnw+T21tLQcOHODAgQP09PRgNBrJZrPMz8+zurp6Wy9hqZR1r4JHxRFXa2srTU1NWK1Wcrkc6XSa6elpLl++zLe//W1WV1dJJpM75rArlUpMJhPt7e0cPXoUt9tNoVDA7/ffcaErGYK4GhsbaWpqYv/+/dTX10v7TzQa5dy5cwwNDUmPqQgBUKlUpNNpMpkMxWJxTfhEIBAoG3EJb9mDDz7Inj172LdvnwwFENLE3NwcY2NjXLhwgdXV1ZtKGGI+brebX/iFX6C7u1uqm0L12sqA27tBJpMhm80yPT0NwPnz59fEWYlnU1tby6FDh9i1axfNzc0oFAqpOYRCoVsSkjDul4aI3Asqirg0Gg29vb20tLSgVCrJZrOEw2FefPFFWTlBbPadAofDwQsvvMBjjz1Ge3s7SqWS1dVV/ut//a9cvnz5ppv+bhJWYXsjwpVKJWq1mra2Nrq7u9m3bx8OhwOXyyVVwhdffJG5uTl5mwtkMhnm5+eZn59nbm4Ot9uNSqXC6/WyurrK1NTUts2jFAqFgmQyybe+9S2WlpZ4+OGHpaT1wx/+kGvXrvHKK6/IS6eUeEsJWKvVsnv3bvbs2cORI0dkmtPly5cZHR1dd6aAUJ23A4KkSolKlKrRarW43W7++I//mNbWVjo7O6WDKZlMMj09zV/+5V8yMjJyU+Iq3Z+btVcrhri0Wi0mk0kG8CkUCoLBILOzs0xNTTE7O0s6nd5xti2dTkdzczMejweDwUAqlSKZTDI+Ps7i4qJ8X2nw5o2bqNIgNrPJZMLr9dLQ0IDD4cBgMFAoFJienubatWssLi4SDAbft2aCDILBINPT0xiNRhQKBWazGYPBUKZZXUc+n2dxcZGJiQmGhobIZDIkk0nOnj3LxMQEV69eJZ1Ovy9KXBxI8Vx6enro6enBbreTTCaZm5vj4sWL8vOVurZwfc96vV6MRiNGoxG9Xo/b7Wbfvn3U1dXJ81koFJiZmZGxiLeTlAUJbpaGUTHEVVtbS0dHB0eOHKGmpgaFQsHx48f5yU9+wunTp6VatZMg3MW7du2itraWQqFAJBJhZWWFmZkZ/H6/fJ/wzCkUCnK53IbK2my3pFWax/bYY4/R3d2NVqslHA6zsLDAn/3Zn/HWW2/dds0KhQKjo6N85zvf4XOf+xxNTU00NjaytLS0bXMphThU2WyWYDDI66+/zoULFwiFQsRiMfL5vEwmVqvVqNVq+f8irkmhUOB0OmloaOC3fuu36OnpQaPR8JOf/IRvfOMbnDt3Dr/fvy5njEKhKIvTRqPR0NjYyBe+8AV27dpFf38/Op1OpgKVXq7pdJqvfvWrnD9/ntHRUXK53E01hmKxKL2p0Wh0U85xxRDXI488wsGDB7FYLDINZmpqitHR0XWlElQijEYjdrud1tZWHA4HxWKRCxcuMDQ0JOekUChwOBzYbDYsFgv5fJ6lpSWSySTJZLLi5i3yDAcHBzl48CB1dXXSSzo2Nsbx48eZmJggFovdcey5XE4+h3w+z8LCAqurq9s0k5ujWCzKINl8Pk8ymXxfKlapRCzUH3H57Nq1iwMHDmC328lms1y9epXR0VGuXbtGOBxeNxmVQyJTKBTY7Xa8Xi979uyhoaEBq9UqVVZBSvl8Hr/fj8/nw+/3E4lE1qiANxu7CBHZrHlVBHEplUqeffZZnn32WcxmM+FwmLm5Oa5evcrw8PCOzOETScYul4vu7m4MBgPFYpHjx4/z5ptvkkgkKBaLKJVKamtraW5uxuv1SqN1KBSSKkUlqRVqtRqz2cxjjz3Gxz/+cTweDwCRSIQLFy7wN3/zN/j9/nV5zXK5nLQTFQoFJiYmmJ+f3+op3BSlz7g00PJGlB5e8RmRBaDVannggQf42Mc+ht1uJx6Pc/bsWS5evMjo6Oi2zeVuISTGpqYmBgcHMRqNMmoe3kvVymazTE1NceXKFfx+P/F4/LZVHhQKxaY7I8pOXL29vRw8eJCuri5MJhMKhYLV1VXefvtt5ubmdmwJY6VSSVdXF93d3e/zSk1PT6NQKGhvb+fRRx9lYGCAjo4OTCYTmUyGI0eOcOLECX70ox+RSCQqKiG3ra2NT33qUzz44IMymXh+fp6vfe1rnD9/Hr/fv66LRqFQ0Nvby6c+9Snq6uowm8384R/+IceOHeOP//iPK27NS22QWq0WvV6P2WzG6XTy2c9+FpfLhcPhoLW1Fa/Xi16vJ5/PE41Gd8zFWywWCYfDrKysMD8/j8vlwmazkUql5CUjQlcaGxtxOBzodDpGR0f52te+dst9uhVrWXbiEkY/l8uFRqMBIBaLce3aNRnntBMhUpfcbjdw3eibyWRkFLLL5ZI328DAAO3t7ajVajKZDGazmaWlJRwOB4VCoWIyBYRae/jwYRobG9Hr9QSDQZaXlzl58iSzs7MbqsvkcDjo6enBbDajVqvZtWsXk5OTWzyLu4OIdhdla4xGI06nk/r6ep588km8Xi8ul0vavIQtcDs9g5uBVColC1sKIopEIlIT0Gq1MgNEBIeLdKHtTGEqO3G1tLTw1FNPyaJ6xWKRubk5vvWtb+3oVBilUklTUxMNDQ0y8j+Xy8kE66efflqGD7hcLrRarYylKRaL9Pb28tnPfpbXXnuNqakpFhcXy05ewtv08MMPy8qY586d4+zZs1y4cGHdQZWlYQPiYKdSKV5++WVOnTpVUdKWsF21tbXR0dHBr//6r0tPW0NDAzabDYfDgVqtlgQlVEmTycRTTz3F3NycVKUqGcViUQZ8/9mf/RktLS10dnYyOztLLBZDq9VSW1vL4OAg/f39MuYyFovh9XrJ5/PbViyg7MSVzWZlImqhUCAcDhMKhYhGoxWlIm0UIu/SaDRKw6ZCoaCjowObzUZnZydqtZp0Os3MzIxMmRB2L1He+eLFiywvL5c9FUav1/Poo48yODiIXq8HrsdjDQ0NMTQ0tKHEWuGVtNlsaLVaOTdB0JUEIU00NzfT2tpKbW0ter0erVYrE4pPnz5NOp2W+xhg7969mM1mbDYbtbW1tLS0sLS0tG6JtFzI5/MkEgmmpqaIx+OEQiGWl5dJJpNotVp8Ph/JZFI6JNxuN3a7nf3796NSqVhaWtqWi6fsxLW6usqlS5doaGjAbDZLA21poupOhEKhwGq1Sq+M8CB+4AMfkEURA4EAly5d4s0332RoaIhsNovVauXQoUP09vZy5MgR3n33XZaWllCpVGV9Jjabja985Su0tbWhVCplmZpvf/vbXLhwYd2XjCD0/v5+mpqaMBgMqNVqstksZ8+e3XYj9q0CIsW/izzDw4cP09nZiclkktLV7Owsy8vLfP3rX2dubo7x8XHy+TwajYa//Mu/ZHBwkJ6eHnp7e3n66ad56aWXZGR6pSKTycg82qtXrwJrn41Ixp6dncXn88maa7/1W7/Ft771Lc6cObMtaWxlJy63282ePXuwWq1kMhnOnDnD6OjojiYtuB6nFAqFCIfDFItFtFqtrG0EyHzF7373u1y9epW5uTmKxSL19fU0NDTgdrvRarXSNlbu5yGaJZhMJmnE9fl8JBKJdXmMSiujGo1G6urqZOiLqNcl8hm3E3d6rhqNBoPBsMa7JjA9Pc3k5CRjY2MEg8E1kfSjo6MyEFXk97399ttbOZVNxa2ei/AqXr58mXw+z6OPPioT7EXC9XaksZWduGw2G+3t7RiNRuLxOJcvXy5bysdmIx6PS9VABC0KO14ikWB5eZkTJ06wvLxMOBxGqVRiNpupra2V1QQqibhMJpOMbA+HwywtLUlnw50gchtFp5/a2lrMZrMMtM3n88Tj8YrwwJUSlJAwxDqIqHmlUinzFhcXF9fYYwuFAvPz89TW1qJQKHC5XNIJcS9jqQQI+93MzAyJRELGcLlcLkwm07Y5IspGXKI8hl6vl2EQ8XicV199ldnZ2XINa9OgUCjo6emRUeViQZPJJPF4nJMnT3Ly5EkWFhbkYTUajbL8jSgBLCoJlDOeqzQUQMQxHT9+nB//+McsLy/f8bMajUYS1mc+8xm6urrYt2+fPMgipUtUGCg3Sp/z6uoq0WiUv/u7v5NqYzabJZ1OEwqF5BqVQqlU0t3dTXd3t/Se7tq1C4vFck9j2QyI9ngi0X2jrcUEdDqdTNHSarXSNnszyXQrsKnEpVKpNlRjR1RRFOqTUK8qqU7RvUB4EkUhOYVCQTqdJhaLMTc3J1uRiQoETU1NNDc3Y7FYSCQS+Hw+GQdUzgh6kY5U6jVbXl5mcnLyjmqiMOLW1tbS1NTEnj17aG1txel0olQqyWQyTE5OcvXqVeLxeMXVJhNruLi4KINMheR1u0oIwlssJM3Sy6tcEGPp6OjAbrcTjUYJh8PMzs5u6GIU82tra0Ov10ub53ZerptGXCqVSgZQrsdOIewdGo1mTTVIkRO201EoFDh79iz5fJ7+/n5MJpM0yC8sLDA8PMzc3JyM1dJoNPz2b/82u3fvxmKxMDo6yksvvcTo6CiBQKCsz0SU5xVqbi6Xk/mW6yWuX/iFX+AXf/EX2bNnDxqNRoZ35HI5vv71r3PixInblkXZbKy3SoF4/XbR9DdCSFxdXV2SnLfbSy4uytLnKdqpfelLX+Lo0aPMzs7y5ptv8u/+3b+TKvB6v/vJJ5/kl37pl6ipqZHqo6i9vx1ruGnEJQa/ke4epQXYSlWR+wVibqUNF3Q6HTabjcHBQdrb2zlw4IBsHrFv3z7cbrd0QQv3ebmzB5xOJ7W1tSSTSVZXVwkGgwQCAeLx+E3XW9jzvF4vbrebXbt20dvbK8MIRPkYMUeRIrSdc9zob633/cKYr9PpZED1lStXeOWVV7bVBHIzL6lI5/F4POh0Oqanp1lYWFj3mRW5jB0dHXR0dODxeFAqlbL7lriMdlQ4RCkRrff9IuCyUCis0Y0rpe74ZkDEZInKD8Ke9/jjj2MwGPB4PHKuarV6TcmbpaWlNbFB5UJNTQ0NDQ3EYjGi0ShTU1NybKXrfWNpl927d7N7924+8pGPAO8FcxYKBeLxOFNTU7z77rusrKyULdRjs/eaTqfDZDLJSPtiscjp06f5D//hP2x7DFfpvJRKJTU1Nezbtw+n0ykT/sfGxtbtBRQq/wc+8AF27dpFTU0NgKx2Ozk5uW0S86YT10YgqgJkMhk0Go0si3E/EFexWJQHXbj8VSoVFosFo9FILpeTtiMhqQaDQXw+Hz/96U959913OX/+vAynKCd8Pp+stZVMJrl69aoM3QgGg5jNZh5++GG6u7vp7++XkpXdbsdqteL1etckJGezWVlv7cqVK4RCobKQc2lVB5FuJVrD31ip805rIOxH/f397N27V5b5EUUVN6JC3UzNu1cUCgVsNhsdHR0YjUYMBgO/8iu/Ql9fHyqVisuXLzM9PS1/UzyDYrEoQ1geffRR9uzZwwsvvIDD4QCQtcu+973vbWu61qYa5+/mgJXWNCr3Ad1MCOIKh8PS2WA0GqUapdVqyWaza/LAAoEA8/PzXL58mYmJCfx+f0XY+xKJhEzlEC23zGYzDQ0NmEwm7HY7Bw4cYHBwkIceegitVvs+75JYX/H5UChEIBDA5/OVpTlqaVyZxWLBbrcTCoXkWIT9bSMqosVioa2tjb6+PjQaDfF4nPHxcZaXlzesQm22yUSYLMxms3SgdXZ2UiwWGR0dlTYuIUGX/r6oCDI4OEhfXx89PT0yUNXn8zE9Pc3Vq1cJBoN3Nba7mWvZ47hEzaPSej/3A4Hl83lOnz7N4uIi9fX17N27l0OHDslDnclkuHr1Kv/zf/5PxsfHWVhYIJFIkEwmpdH7blJ8tsJzZTAYZPCs3W6nr6+PAwcOoNfraWpqwmQyYbFY0Gq1sktMaUljQUq5XE7Wp/pP/+k/sbS0xNLSUlkahoig4Lq6Op555hk++clP8tprrzE+Ps7ExASBQEBKEHcam1KppK2tjY985CM8/PDD7N69G6VSycjICP/7//6/EwgENqSNCHvxZiOVSrG6usq1a9eIxWK0tbXR2NjIb//2b/PZz35WekuFM8FkMmG1WmW4Tm1trSwImE6nSSQSfPOb32R4eJjFxcW7lppFy76NoOzEJTa2uOXuJ4iNcubMGYLBIH6/Xxqns9kss7OznD17lsXFRQKBgLT53crovR4IwthMiE1aKBQwGo00NzdLdUOUcCmVsMTNLZpCiFinRCLB22+/zbVr11hYWCASiZTVficIQq/X4/F4GBgYkGEbs7Oz5HI5VldX39d8WISviGTrtrY2urq66O/vx+VyUSwWZdWM5eXliikWsLq6yuXLl2XfA7PZjMVikUUsRd0sIRWLtnOCdE0mE3B9P0xMTDAxMSHX8l5slCJcaCOoCOIqjUq+H6QtgVwuh9/v59vf/vb7vKaCpDd7vlshsQaDQVnl1Ov10t7eLl+7mYSXzWZl7bFwOMzi4iLLy8usrKzwjW98g8XFxYrIBhD1sjKZDGq1mg9+8IMYjUZSqRQXL15Er9dz8uRJrly5Ij8j6nHpdDqampqor6/nn/2zf0ZTUxNdXV2srKzg9/uZmppibGxs3ZkF24GrV68yNjbGpUuXaG1txWw2y7hBYZcUqqTL5ZLnUsRqqVQq2Sj2xz/+MT/+8Y8ZHh4mHo/f01reTZpX2YkrlUoRDAbR6XREIhFMJpNM/7lfUFrit/TfdgpyuRzBYJCvfvWrHD58mM9//vNStU8mkwQCAY4dOybteaUhLpFIhOnpaYLBIJFIRKpN61G/RGDjVqA0k8Hn8zE6Oorf78dsNtPb20tzczO//Mu/zKOPPiptN4VCgVwuh06nw2AwYDab0ev11NTUkM/nGR4e5q233mJoaIhQKMTq6mrZPcI3olAosLi4SCwW45vf/CY2m42amho+9KEPcfjwYRkoKxwXarVaNvMVhSKvXr3K0NAQU1NTZRM2yk5cInXCZDKRTCYxm833HXEJ7CSyKkWhUCAWi/E//+f/JJFI8Mu//MsyvCORSDA7O8uPf/xjlpaW8Pl88nauqakhGo0yMTEhG6GuF4K4tsrDLC6RdDpNIBBgfHxcpiW1tbXhcrl47LHH3ldrPZlMSueK8KRPTk5Km9jrr7/Om2++WRES5a0QCARkLJ5Iu6urq5MNXksLAeRyOXw+H/Pz87zyyitMTk5y5swZadYoFxTFDT7dzbafPPXUU3zyk5/koYceQq/X85WvfIWRkRHefffdLfE0biStYSdjPfPc6BxVKhVWq5Xm5mb5edFqzO/3k8vl5GYWHjvx+t0Y4O9EWpu1lsKrqFKpMJvNPPfccwwODvLxj398TWhCMplkcXGRV199lW9/+9symyAUChGPx1lZWZG5jZu5b7dqz5ZKVl6vF6fTKf8f3vMEp9Npstms7IMg+iWU62xCBUhcsViMxcVFafi12+13lUVfxdYjn88TDAbv2u29UWzmwRA10ITxuTTlJxqNEovFUCqVGAwG2cW5s7NTvk8Q8NLSEufPn+f8+fOYTCZp90mn05KwKlXSuhHCAZTP55mdnWVubm7N65U8j7IT1+LiIm+99RYf+MAHaGhoWFPzqZT5obIfZBWVDbPZTEdHhyz+p9VqAaSrX6iCsViMV155hddee40///M/X/MdgpREjFcoFFrz2kZxM4mynMHXO+l8lZ24IpEIExMT/MM//AO1tbW88847zM/Pv+/m2kkPtYrKQyaTkSWIgdt6+kR9sDvZcO51T97s8zt1n683aX3Tfq/cNq7tRtXG9R5+HuYI1XluB0o7e98tNkJFO6dv0g6EaBRaxc8vSuuY3c/Y7nJU9/8TLSOES7+KnYV7lVxKq5wIz939ju1WcTesKlZRRRVVlBtVcaCKKqrYcagSVxVVVLHjUCWuKqqoYsehSlxVVFHFjkOVuKqoooodhypxVVFFFTsOVeKqoooqdhyqxFVFFVXsOFSJq4oqqthx2HB1iJ2evrDdCatqtRqbzYZarUaj0ZBIJGQDiTv17ruXEifbmWQtUltERY/b/faNpYpufG0j9azW+z6VSlURdbJuV0Hhdq/thCTrzcCOKiR4v+FGsjEYDOzatQubzYbVamVycpJgMMj8/Lzs4l1a56n0e5RKZcX3mxRkIzq1qFSq21Y7Vauvb7lMJrPm38Vnt6Lbk1arvW2Zmq1owHozrIfQK6WxRqWjWtbmFtiMeYoOwK2trezdu5eHH35YVsz8wQ9+wMLCAteuXZP1n8opcYmW8ffanPVOYxbSz42/cWMH81IyudX3rffZqNXqm/7mesZdKgmJ0tWifPFmoipxVSWuioFGo0GlUpHL5XC5XAwODtLU1EQ+n2dychKFQsHY2Ngt1ZjtlLTUajV6vV5WBL1b3GnMN5MoSssji/8XVRU2QwpajxRzu3GL8YmOzsAaVX8zUMlSdSWiSlzrwN2oEkqlkpaWFtra2vjsZz9LZ2cnPT09aLVaIpEI2WxWdg3e7vbzN0MqlZJNLQTWo/ptBm787lK1WUg6NpuNVCq16ZLOesdmt9tRKBT4/X4AdDrdGlW/iu3FjiKuctbj3ujviy43VquV3t5evF4vZrNZqoWBQIBIJFIRpAU3N5aXU/WoFDIQ0p9Op5OtvMSlIwi9dKxarVZK2fdTd3aFQoHFYpGt2WKxGMlksmzz2xHEJdq7C2P1VksAAqW/WSgUNqS+FItFkskkhUKBjo4ODAYDxWKRRCLB8vIyb775JktLS1s+h3tBJXji4L3uQoBcj3vFemukC2+wXq/H6/Vy9OhRRkdHeffdd8nlcuTz+TXFImtqanC5XKysrJBIJAiFQht+hqIA5Xbt8/VAp9Nx+PBh3G43TU1NvPXWWwwPD8sGwNuNHUFcgjQAXC4XHo+H5eVl4vH4Pbf/vh1udO+v93d6enpobW3l4MGDdHV1odVqyeVypNNpfvSjH3HhwoWyLfhGcTeqkEKhwGQy8eEPfxiLxYJWq2V+fp7l5WUuX75MLBZ7n1fxRmg0GtRqNel0+n1j2Gg5bK1WK7tQi/Hd6bdLjfnit1OpFNeuXcPv96+xx4nXlUol6XSacDhMJpO56/UVv10ppAXXn+GBAwdoaGigpaWF6elpLl++XLbxbBlx3WgXEv8PG7/JxUIqlUpqa2s5cOAAQ0ND+Hy+LRdXS2/39Y55//79fPCDH+T555/H5XLJ3n3BYJC/+Zu/4dVXX93U1uxboULfy3eq1WqcTidf/OIXaWxsxGazcfz4cc6ePUswGGRubo5sNnvb79fr9RgMBnK53PsuD5VKtaGS2EK9E/0UxdyKxeL7JC+FQrGmSzW8twcSiQSnTp2SUr+QyEv/Ho/HpWf2bsmnUiTdUuh0Oh5++GG6urpob2/n+PHjZR3PlhGX6ItYV1dHc3MzR44cYX5+noWFBS5cuEAsFtsweeVyOVZWVhgdHeX555/HYrHwla98hXA4vFXT2BCEMXvXrl088cQTWCwWCoUCmUyGl19+mb/+67/m/Pnzm0a0W9kSaiPfKQ57XV0dbW1tfPjDH2bXrl20t7djMBjQaDTs3r0bt9vNuXPn0Gg0XL58WdqBboZkMimbt944lmw2uyH7m+i8XDqv24U+5HI5PB4Pe/bsIZVKkc/n8Xg8GI1GnE4n8XicUCjExYsX8fv9xGIx4LrElcvlyGQyFUk+94JCoUAwGCQSiUiSVqvVZbODbqnEJeJe6uvrOXToEBcvXqRYLN61iFksFkmlUoTDYTo6OmhtbcVut0uPWLmh1+vxeDw0NTXR1NSEQqEgn8+TSqWYmJiQktZmbuhKcFioVCoMBgNer5f+/n6eeOIJdu/evWZjOxwONBoNLS0thEIhRkdHb0vgwn50qzCRjcz5Run2ToGgOp0Ou91Oe3s72WyWfD6Py+XCbDbT2NhIJBJhZWWFYDCIUqmUHazF3xOJREXZpzYLpe3HxLrfN8QlJmQ0GjEYDDgcDjweD3V1dVy4cIHl5eU7qgm3g06nw2azUVdXR3t7O88++yyXLl3izTff3OSZbBxHjhzhz//8z/F6vXJBk8kkw8PDLCwsbLoHcbNv9bshQb1ej9lspru7myeffJKPfexjNDc3S1VOqPmxWIxIJMJHPvIRuru7effdd+9o59uug1+qJur1eh5++GEaGhpobW2ltbUVr9dLTU0NBoMBq9Uq7WUf+tCHCIVCMsA1m83y/e9/nxMnTjAxMSGbz94Nyn0h3QiNRkNvby8tLS0oFAp0Oh1Go7FsXaw2nbhUKhUajQar1YrdbufBBx+ko6MDm81GOp2WxHW3yGQyxGIxcrkcKpWK5uZmlpeXN3EGdweFQoHRaKSxsRG9Xi//PZPJsLi4KL1LlbQZb8RGxiYupqamJjweDwMDA+zatQuXy4VCoSAWizE1NSW9bmazGb1eT21tLaurq1gsFjKZDKlUat2/qdPpMBgMxOPxe9pDAuKSFetiMplwOBz09/dTV1dHa2sr9fX1uN1urFYrOp0Ok8kk39/U1ITT6UStVkvJur29Hb/fTyqVIhQKsbq6WtFrvh6IEAiDwYBarSaZTJJKpe45y+KexrTpX/j/T3Pxer10dHTwB3/wB1gsFpLJJLFYjJGRkXuy8USjUaanpwmHwxQKBfr7+6WrvJxQqVRotVpMJtOaWyiRSHDx4kXm5+crJmZrM+DxeGhoaOD555+nvb2dBx98UJJZIpFgdXWVv/7rvyaZTGIwGHj++ed56KGH0Ov1JBIJ6uvryeVyG7JP2u12mpqaGBsbIxQK3fMclEoler2efD5PLpejtraW1tZWnn/+eerr6/F4PKhUKtmlWRCdQENDgySxVCpFMBhkcHAQq9WKwWBgZmaGU6dObXuz1M2G0WjEYrFICSsYDLK6usrq6uqmOpk2gk0lLoVCwaFDh3jhhRfweDzYbDZJVj/+8Y85c+bMXS+gMAh2dnayf/9+WlpasFgs9Pb2MjU1tZnTuCuo1Wq5qcUc0+k0gUCA06dPMz09Xc7hbRo0Gg0mk4nBwUH279/PQw89RE1NDVarlVQqxeLiIq+++ipXr17l5MmTOJ1Ojhw5gsViQafTSTPC7t27yWazzMzMrOt3lUolsViMmZmZTY2eV6vVMsNBp9NhNpvx+/0ybiufz5NOpwmFQuTzedmZWqVSEQ6HicfjnDlzhkAgwNzcHMvLy4RCIRYWFqQqfLeexUqAQqHAZrPhcDgIhUIkk0kWFxfv2eRzr9h04tq1axe/9mu/htFoBGBycpLR0VH+4R/+gWAweNcTFbddY2MjDz/8MLW1tZhMJpqbm6mtrS2rTUBEyYtKCXB942UyGSKRCCMjI6yurpZlbJsNtVqNxWKhq6uLQ4cOsXv3bpm/Fw6HWVxc5NixY5w9exa/3093d7eUQDQaDXBd5WtsbNzQhaNQKEgmk8Tj8U2bi0KhQKPRUFdXx/79+4lGo3Ie0WhUxpElk0mWl5elA0gEIq+srLC8vMz3vvc9FhYWGB8fl04FqMywhruByWTCYrEQi8UIh8NMTExIIi8XNo24lEolBoMBi8WCw+GQtoOmpiZsNhsrKyv3ZJcQMTcqlUre3IIwhPeqXJtEpVJRX1+Py+Uik8mg0WhQKpUy/UPU4NoKiGewXeklRqOR5uZment76e/vR6lUkkgkSCaTHDt2jH/8x3/k0qVLBAIBstksq6urXLx4kf7+fvkd8Xics2fPMjs7u67fLI0B3CwIj/e+fftQKpWcPHkSn8+HTqfjkUceweFwkMvliMfjBINBLl68SCAQYHl5mbm5Oa5du0YqlSKbzUrpQxBb6T6sNCP7RiAkS6PRiMlkIpvNyjCQQCBQ1rFtGnEZDAb6+/sxm81MT0/j9XoxmUySVDYjmVgk34rYGnjv9ruxLMp2Qq1W09HRQUNDw5p/TyQSJBIJ6VLfKmynS9poNNLW1obH48FsNhOLxYjH40xOTnL58mVGR0cJBoOkUimp3pvNZiltwfU4LL/fLyWcckDYrjQajQyxCQQC6HQ6tFoter1ept6I+KxEIsHi4iIzMzNMTU3J6HgRtwXvpevo9XoZgJ3L5eSlfSOpCVQquQmvsLDTJZNJAoGAXN8dryq2tbXxN3/zN5w+fZovfelL/MEf/AH79u2TcS33OkFBWqurq0xMTKyxc5S7DpHFYuELX/gCHR0daLVaGb916dIlhoaGSCaTW2bEFIG525W72dLSwq//+q/T2tqKUqlkamqKK1eu8Gd/9mesrKys8aIplUqampr4xCc+QVtbmxxvMplkZGRk3cR1Y+rVZkCn06FQKJidnZXezVAohMViwWw2YzKZ0Gq12Gw2tFotTU1NZDIZTpw4QSqVwmq1Eo/HJXmJAy6cNJ2dneh0OtLpNKurq/h8vjXrVFq6B6jIuC8R+R+JRFhdXSWdThOJRJiYmCAWi6FWq8tm59o04orFYhw7dgyNRsPTTz+Nx+MhmUzy0ksvcfLkyU2bnNlspr6+fk3IgVarxeVyEY1G7yl25m4gNl4kElmTNymI68qVK1uuwpUeaiHpbgVE/I7b7ZbSdDAYxOfzsbq6+r4LSniYa2trpc1TVCLdaC7fZt/u2WxWej9FtHs+n0elUsk/IiNAoVDQ2tqKyWSiUCjIUIBMJkMmk5EBp/l8HpPJJMM+1Go1uVyO6elpRkdHmZ6eJhKJkE6nJdE5nU7MZjPj4+PbvnfXi1QqRTweZ3V1lWAwuK5c063GphCXUqlkdXWVv/u7v+MTn/gEv/M7v4NKpWJ5eZm///u/Z2JiYjN+BrjuEu/s7FxzOIUHSIiy2wlxoJaWlnC5XMB7UtDp06c5d+7culXk20mOtzu0pa+1tLTg9XrXOfqNQRxkEUWuVqtZXl5maWmJSCSyZjMLw7fZbKaurg6tVgsgD3upEXs9vyv+u1kEJrItUqmUlOaF7VTkQoooep1OR09PD52dnRw8eFDafgT5RKNRqQ46HA4sFov0MBeLRYaHh3nrrbc4duyYDOUR5N3d3U19fT1LS0tyLJUEEeoRjUbx+/2srKzIJPJyYtOIS6FQvM+jolQq8Xq9BINBZmZm7mlRRNOJ1tZWDhw4gM1mk6+lUimWlpbI5/NYLBbi8fi2xc0Ih4HD4cBms60JaJyZmWF2dvaOY3E6nVitVgYGBnC5XLS2tsokY4VCQTQa5T//5/9MMBi8o2h+7dq1dYcYbBSFQoFsNks0GsVoNKLX69mzZ89NcwfNZjO/8Ru/wQMPPIBWq0WpVJLNZnnxxRc5c+bMhlRnQSzi75sF8b1CbRPfbTAYpCopIMJdhK2uNE9URM4Xi0VZ9baUbFtaWjCbzfT397OyssKbb75JLpfDYDAwOzvL9PS0lE4302u6WbBarXi9Xg4cOEBjYyPz8/MMDQ0xOTlZtjFtmqooRGhxm4rFq6+vZ2Vl5Z4aPwjPmd1ux+l04na75WYRLvJEIiENrttp8xLEJQL0hEG2UCgQDoeJRCI3/Yw4LBqNBqfTidfrZWBggIaGBnbt2oXJZMJsNktp9sUXX0Sj0eDz+W4Z0KhQKLY0GFc878XFRcxmMzabjZqaGmpqatYE3RoMBpxOJ4cOHaKnp0eSQi6XY3h4mEuXLm34YrkXwrpd96BSm1Mp+YimHqXfcatx3PjeG2G1WjGbzdTU1BCNRlleXiaXy2EymYhGo8zPz0sJr9KgUCiw2+14vV4aGhrQarW0tbUxPT1d1nCPTSGuXC5HLBZjdHSUa9euMTs7i8lkQqVS8Tu/8zu89tprnD59esNhAaWH2+12c/ToUVpaWohEIlgsFrLZLD/84Q85efKkTEUQ5XS3CyaTCafTSUdHB/X19cB1d38gEJB2E7EphfqgUChkHmdHRwcDAwN0d3fz+OOPSzWsdCO3trby3e9+l9dff50vfelLLC8vryHEjbb1ErgbtWtoaIgvfOEL/Mt/+S/51Kc+hcvlkjYv4WE7evQoAwMDPPbYYzidTgBp/H711Ve5ePHitsYAOZ1OGVN3I0qfW6nKKFTbG997M0mx1LMNN1f5xZprtVqee+45IpEIS0tLKBQKmpqa+K//9b/KKhOVApHq8/GPf5zHHntMSo5HjhxhZGSkrNkAmyZxiSTTubk5jh8/TldXFy6Xi9raWtrb23nqqafWRBaX1kYSMWBarRa73S4PuSht4na7ZR2uhoaGNQ9M1D+60UuzXRCu89IAS1Hyo9QWIojIbrdjsVjo6+vD4XDQ1NRER0cHjY2NOBwOafS+8Qauqamhq6uLxx57jCtXrjA7O0sgECCfz6PRaGTaykYI4W5uSxEd7/P58Pl8Mkpc/K5CoaCmpobGxkZMJpN8JoLUylHJQ9TiWg8EeZU+x0KhwMzMDOFwmJmZGXmghSew9CKC6+vf2NgIwOLiotwHNTU1Mim9UChgsVikFFuJXkW4vp6iUIJYy1QqtW2e7Fth03MVT506xcTEBL/2a7/Gvn378Hq97Nu3jz/7sz/jjTfe4OzZs5w9e5ZYLCZVQI1GI5N19+3bh16vR6vVMjU1xfLyMgcPHqSuro6BgQFyudyaxFyx4CLgU6lUypLJW4VS+4ZIzNXpdFJ91ev12Gw2jEajrH4qPtPV1UV3dzf/4l/8C+x2u5y/ICu4vjG0Wi0ajWbNLb5r1y7+6I/+iO9973u8+eabvPXWW8Tjccxms/T8iIqhW4VMJkMoFGJ8fJzz588zOjrK+Pi4jK1TKpU0NzfLxiDiMslmsySTSXmIt1PiWm8+pDC2JxIJ0um0dADlcjleeeUVLly4wHe+8x3MZrP0movLoq6ujiNHjkib2Sc/+UkUCgXf+9730Ol0WK1WnnnmGZqbm2XalMvlIhwOc+XKFbmnKylgVQgWNpsNp9Mpg40nJyfvqiT1ZmLTiUuUrj116hThcJhdu3bJPLXBwUFaWlp49NFHZUCekCxE9QCPxyMNoc3NzTJeRKFQcPXqVfkwxcFuaWkhFosxMDDAxMQECwsLW/ZAb1a4LxgMsri4KG+h0qh5sVGHh4flZ44ePUp/fz92ux2j0YhGo5E2scnJSZaXlzl79iwNDQ10d3fT2toqjf5KpRKj0UhdXR2dnZ2Ew2H8fj+Tk5NkMplti6kpFAqcOHGChYUFIpEI4XCYXC6HXq+XRC6qPwBrQgvKIRXfDDdby2KxSDwe55vf/Cb79+/nox/9KAqFgnQ6zdmzZxkaGiIWi5FKpYjFYmtsjYlEQjqFhEddqVQyPj6OwWDAZrPJpGyr1Uoul5NSS6lkXSmkVWreEEG0+Xwev9/PG2+8wfz8fFnHt+nElc1mpb1LRBoXi0VpzxERxfD+yGEhdov/r62tJZlMMjMzQzQaZXZ2VjYucLvd0jgcCoVobW1lcXFxU8qd3Ao32+wiOE/Y70R8mVqt5sEHH8Tj8awRrffv38/evXsxm82SfBOJBKlUiunpacbHx/ne975Hf38/+Xxeqo9CFdbpdLhcLhobG/H7/RSLRS5durStortw8V+6dEmqD8LYLCRNnU4ny56I9wjJUuQAViKSySQ//elPyWQyPPPMM2g0GjKZDFNTU0xMTMg5lUpxIuF6bm5OHvhr167JQ282m7Hb7czOzuJyuaT9rLTixK3IvFwkL/abKE0tqtUGg0EuXLhwU3vhdmLTiUvcQqI5wj//5/+cvXv38uu//ut0dHRQV1cnbyXR+UZALFI2myUej/Nf/st/4X/8j/8hPZW5XA6j0YjdbudP/uRPOHjwIMlkkvn5eY4dO7blicw3U8FEnMvJkycJh8Ps27dPdoV+8MEHGRwc5KmnnpKkLEoAC09UsVjk2LFjvP3228zPzxMOhwmFQkxNTaFWq9m9ezeNjY1riEmolxcuXGBmZqYs9gZx6EqdLRqNBqPRyMjICKlUio6ODjweD11dXdLG9PTTT+P1evnBD36woZCIu3VA3Aq3+p5cLsfY2BhqtZr/9t/+G08++SR9fX3s2bOHYrHIm2++KfejQKnaW6puiia7FotFVus1Go1YrVaUSiUmk4n6+noaGxtv6gy43Ti3AkJNFWdT1OAKhUJSwlpdXZVxaOXElpRuLhaLstnp6OgoarVasrRQ5YxGI319fXJDLi4uyhgWUUbk3LlzstyzWECTyYTdbieZTEqiy2QyrK6ubmrw6UZsDblcjomJCSwWC3v37pUkZbVasVqtuN1u+Z2lQZRCBBeBkMKYLZpNOJ1OdDqdvPXgvQMsPLmJRAK9Xr9G9dgu3PhbYj4rKytotVp0Oh0AHR0d0jvc3d1NLpfj+PHj0rFypzELNVNE3W9lyWBhLA+FQszNzcm0pPr6epaXl+/4u6WZEyI0Rq1WYzAY0Ov16PX6Nc4XEUYkLoIbn8V2SVzCFCH2rnAwCdNHsViUVTNu1ytgu7Cl7cmEh2Z4eJgvf/nLcrGEofkb3/iGVK3+/b//95w+fRq4nj7k8/luGtogkqxF1x+DwbCm7vdmQXgD12NETiaTvPjii8RiMZ577rn3qcI3a6clAnYjkQidnZ04nU66urqk3au0usSNrvZUKkUgECCXy6HT6fB4PIRCobL3aYxEIqRSKcxmM9FoFJ/Px8DAAA899JA0UH/84x/n2rVrXLx4kfHxccbHx+XFdKtnLYg8Ho8TDodlHuFWIp/Py6oX2WyWAwcOoFKp+OY3v7kuSVGQuNirKpUKu92Oy+WSJKHVapmcnOTEiRPE4/E16yw+s9XEJUhKOJKEnVSo+KJMusfj4fLlyzKguty2uG3pqyg63QgoFArm5+f5u7/7O6kyXbx4UR68TCZzS+lJFHYTpKbX63E4HDQ3N7O6urppFQc2sjhC9xepEGJjlsZt3QxCJK+pqcFisWC32yVZCZK/0Xgsct/Onj1LPB6XpVcymcymNUtdD4RkKDymQqIwGAxkMhlWVlbI5/PMzc0xPDxMS0uLrJsmAnatVisWiwVA1qUvHb9IVi8UCnKOwD31LFwPhGe4sbERu92OTqeTYTif+9znuHjxIqdPn76phCsI6YknnsDj8eB0OnG5XHi9XpljW0pQdrud+vr69xUOEM9kOyQucYmKC0SsT0tLCz09PTidThncXM6KHqUoS0NYoRr+6Z/+6YY/Kx6wsDOYTCY8Hg89PT1cuXJlU4lrvRCdlkWFyNIYLPHfm21AtVotKxHc6j0CQu0Q6vfPfvYzEokEhUKB1dVVeUNvVzSzUHvEfB0Oh1SNRRsr4WV955130Gg0ssekSM0S7xfhESKkQnjaxJzz+fwaY/hG6tTfLUwmE52dnXg8HkwmE0ajkfr6etrb2/m7v/s7hoaGbhrPJFJ3PvWpTzEwMEBHR4eMcRTSdKkTSsTnnT59+n3rtl1rqVQqZdkpodY6HA7ZAMXj8QCwsrJS9jAIgbIQlzjMdyMdCDE2FosRjUaxWq3yRtuqHL31IJPJcOrUKT7/+c9L20BLSwtOp5POzk56e3sZHByUm7Y0TUQcTuGFSiQSUmKbm5sjkUhgt9sZHh7mb/7mbxgeHiYSichSwna7/a7bvW8UopDjs88+y+HDh5meniYYDHL16lXUarVsaCG8v9lslmvXrlFbW4tOp5NVE0SO49TUFEajUUq4pSVioHzhAZOTk/zFX/yFTHERHmC3283HP/5xBgcHpRPp9ddfJ5PJoFar6e/vp6Ojg8HBQWw2m3RACVulkB6TySTBYJC33nqLn/zkJ2XrDSqkeEGSpX9qamo4cOCAFDR++MMfylSfcqMsxHWv4m+xWJSVKOvr66V6Vk4UCgV8Ph8//elPpTrU3d1NTU0NwWCQQqEgq0eUxjSJInWChPL5vGx5pVaruXr1KtFoFI/Hw8WLF3nppZdIp9PSzlKan7kdG0qot52dnTz00EO43W7Zxai0NIwYi1BlI5EIkUhEBjLW1tZitVrXfPeNB6ecCIfDXLhwgbGxMebn52loaECn06HX6+nq6pKeUhHXlUql0Gg0HD58mN7e3jXBw/BeKW/R9SmRSBCJRGSSdTmrLdwoQAi7l8ivnJ+fJxgMMjk5id/vL9Mo16IsxHWv9olisci///f/nq9+9ascOXKEeDzO1atX8fl8t/3cdnloxC129epVxsfHeffdd/n7v/97WXFAoVDIcri1tbXSjiPK487OzqLVajEajczPz0tvq6j9VHqoM5nMtnYQMhqNsrlER0cHbrebcDiM1+tlZGSE8+fPE4vF5J/6+nra2tqoq6vD4XDIarD19fXodDqCwSALCwtks9l1u9hLbUTrhSizs16PWKFQIJ1O8+d//ud8+9vf5utf/zq7d++WMXVCarbZbHzyk5+U36nT6dZUe4X3apBNTU0xMzPDf/yP/xGr1crRo0cliZXbSyegUFyvudbW1obD4SCfz3P16lWuXLki7V83i2fcbpSFuDYDoli/xWKR3o9QKHRbA/V2P2gRonBjsKXYHAaDgWg0KtUkEdawsrIi1S5RBvl2Y9/OFlHCziaCYUVMUk1NDYFAAJfLJT2LFotF5mK63W50Op0MlfH7/YTDYRk2s9E53M1a3g05iJilY8eOMTU1hdlspqGhgba2NgwGAyqVak1Ry5tJvsLZFAwGWVlZYX5+npWVFWw2Gz6fr2JIC95rsycyWUq92kKTKM32KJd0vGOJC5Dem1QqhV6vl73tSmuAVyJE0KoY706CaLmWyWTQarXyT319vYxHq62tJZvN0tDQQFNTEw8++KD0lIqO1qdPn+batWtrqsauF3eztkIK3ihyuRzRaJR/82/+jWx0/MILL/Bbv/VbNDQ0yIKKAmKepWENiUSCQCDAwsICc3NzspKoiFGsJIgL1W63yya44hISVTNKU4B2fOnmciCfzzMzM4PX6+WFF14gGo3KfnZC2qlicyFiz6anp7ly5QoNDQ2oVCrZKs5sNhMOh+VhDQQC/OxnP5NSlVKpZGVlhddff31L80o3Czfa3SKRCCdOnCAcDkvju9vtloGrjY2NUuoU6W+rq6v4/X4WFhZkyE6lVoNIpVJEIhGmpqYYHh7G5XJx4cIF2ZVcSMzllLbgPiCu+fl5XC4X+/bt4/XXX8doNErVqkpcmw8RmLm8vMzMzIzMpSwtSxSPx6VkJSpJiIoLFouFQCDAhQsXyl7+dyMQHs9kMsmlS5e4dOmSzA5oaWmRhvq+vj5aW1sJh8MyUHhlZQWfz0c8Hi9rE9X1IJPJEIvFmJ+fx2azYbPZGBkZYWlpaU0oEpS3koWiuMFfroTMfgGlUonb7ZaibSgUkoX8c7ncTYNY1zvdSprnzXCnTbOeed7tHBUKBb/5m7/Jhz/8YR544AFMJpOsoHDs2DHMZrNMBl9YWOCNN96goaFB5mn6fD7++3//7xs6xDfmKooYr/WOdytQWqkErpO6IHDhcBEJyiJgulh8r9Rz6fjvdS3FeDYDwn4pqn2I8j2iXNRWdqxaL3a0xFUoFKR7dnp6Wnp0hOGwijtDBEyKstt3gnCVBwIBxsfHZSBqNpvl4sWLXLp0CZPJhMlkoqmpiaWlJXw+nzzcer2eQCBQEWkj9wpBpKUBsRv1jJYSsfjOckM0nREOhUrEjpa47gb3i8R1J6xX4vJ4POzdu5fR0dF1dZYWXjQhUZTWkhIShnh2wsMrUldKD+dmpOzshLW8lWQswinEc7wdce2EeW4Gfm4kriruHclkktnZ2XXXOxfpK9tZIUBErCcSibJFmN8t7qQCitcrQdLaSdgSiauSys/eiI3YVDby/vV+53Z5YrbSxrXdMJvNDAwMsLCwwNTUlPz3nSyJCJV7PSrzTp7nRrCRc1FVFW+Bn4d5ls5RqHLrlaJEsURRtqUUIgVps4rNqVQqrFarbKIqjPqbvZYiDWs7krg3guqefT8qr5FbFTsCIoL6ZodFJIhv1kES1TdEJYqtOqDl6MtZxd1hwxJXFVVUUUW5UZW4qqiiih2HKnFVUUUVOw5V4qqiiip2HKrEVUUVVew4VImriiqq2HGoElcVVVSx41AlriqqqGLHoUpcVVRRxY5DlbiqqKKKHYcNV4fY7nSIzU7YruZ9vYefhznCz988K6HIwd2M4b7KVSz3AlTx84e7bX9WKXmOlXBmtnoMFU9cVVSx3VCr1RtuMCwa5ZZ2/Kli6/Bz9ZQr4TasovJxNx148vk8qVRqUyq7CpjNZlnyeidgo6WR7gU/N8RVJa0q1ou7OXiiMuxmwmAwYDAYNvU7NxuljWJLiUs0BRHNNTa7gGa1kOAt8PMwz5+HOcLmzLMczSzUajVKpfJ9ndBvhbuxy93LfBQKBW63G5fLxUMPPUQ0GsXv92M0GrFarTz//PPMz8/zve99j4WFBQKBgOwUdDNUVM35my24KFtrNBqx2Ww4nU7S6bRsgZTL5UilUrJonEqlolAoEIvFyOfzmyqOV7E9EF2Q6+vrKRaLzM3Nkc1mN11K2SoI47vdbsdoNGIymaQxXvTxFAUPI5GIbEFWSjobJYmt7gu6GWQszjKA0+nE7XZjt9txOBzs27cPq9XKO++8QygUIhAIbMq4YYuJS6FQoNFopBgtHpRKpcJisTAwMMAzzzzDJz7xCSYnJwkEAly5cgW/38/4+Dg6nQ61Wo3T6SSRSPD2228TiUQIh8PyYd9JrN9OvbuKW6OhoYGWlha+9KUvkc1m+fKXv8zCwgKLi4vlHtotUSqRKJVKXC4XL7zwAoODgzz44IO4XC7UajUTExMkEgni8Tj/+I//yJtvvonD4SCXyzE1NSVVpxu7P5fb+yccEKVnYyNCQbFYZGVlhdXVVSYnJ/nkJz/Jv/gX/4KGhgbMZjNKpZJ8Pk9bWxvT09PE4/FNG/uWElfpYon/V6lU9Pb20tjYyBNPPEFfXx8mkwmr1UqhUKCtrQ2v10tbWxsqlQqVSoXL5SKZTGIymZiZmWFsbAy/308ikVjXGHa6SrSTIbxtBw4c4MiRIzQ2NrK6uorBYECj0ZR1XGJf3KoPZ7FYRKvVYjAYeP7552ltbWVwcJDGxkbq6uowGo0olUoaGxvJZDKkUimefvppmpqaZNfqw4cPyzr54nKem5uriC7rYs53Q6RCGxJNY1tbW+ns7JRNf0V/01QqxcLCwrq7SK0XW64q3rhASqWSgwcPMjAwwCc+8Qk0Go1UGwuFguyCbLfb5YP0eDyk02laWlo4e/YsKpWKRCKxLuKC8t9st8ONpFrJY70baDQa7HY7jz32GJ/+9KfRaDSkUqmyE5ewH4mmHreSyPV6PS6Xi9///d+nv79f1tkvlcaE+pvP52lubiaVSnHu3Dmy2SwNDQ2kUimi0SgvvfTSmnb25ca9mFyUSiUajQar1UptbS2PPfYY/f39uFwuVCqVlCzj8TgTExNEIpFNDYwti1dRkFU0GpUbQXShhveaLYj+fTMzM6RSKZLJJB0dHTQ2NpJIJMhkMoRCoTuqgffysDajpZiw02k0GkwmE0ajke7ubpqamnjggQfkIQoEAszMzPC3f/u3pFKpitjc94r29nY+85nPcODAATQaDbFYjEAgwOLiIpFIpGzjEra125kRFAoFnZ2d9Pf3Y7VaUSqV0p4jPiekCmEDW1paYnFxkfn5edLpNH6/n7q6OlpaWnj++ecZGBjgnXfeqbhOQuuFWq1Gr9fzgQ98gP3798vnkc/nSSQSTExMSGk0nU4TjUZZWlq6rZBxNxrRthKXMOSJfnLCiCkWvfQWFG3AE4kEsViMTCZDOp2Wxnyn04ler99SNfDGm/Vuv0OtVmMymbBYLLhcLqxWK3v27KG7u5unnnpKtsVaWlriypUr/PCHPyQYDO645qc3g91uZ//+/dTW1qJWq0mn03JN1+st2wqsx+apUCgwGo04HA552d5MQhbt0lKpFH6/n9nZWZaXl8lms5jNZrxeL3a7HbPZjMlkKqukea/Q6XTU1NTQ19fHkSNHJGGNjY1RLBaJRqO43W7pTItGo8RiMfmMNgvbSlw6nQ6j0Ugmk2F5eZnXXntNvqbRaNBoNDgcDnnAz549y7Vr1zCbzRgMBjwej/Ts6PV6aWPYKi/jvbaKVyqVaLVaamtrOXToEE899RQdHR24XC7q6+vR6XQYDAZ5IDweDzU1Nfzu7/4ur7/+Ot///vc3cTbbD6VSiU6nw+12y3gkQVzRaLSsxLVejI6OEgqF+I3f+A0pXcB7XagFcc3Pz3Pq1CkuX77M9PQ0mUyGuro6/vk//+d4vV5qamrI5XJkMhlJgjvNYaRSqdi1axe/8zu/Q3d3N42NjajVaqLRKPF4XM5Tq9WSSqV4+eWXefvtt4lGo7ed690Q2rYTl9lslrcTQDwel/qv8Dbq9XqcTiejo6PMz89jt9ux2WyYTCaCwaAkq0qOKlYoFJjNZtxuN48//jj9/f309fVRX1+PxWLBbrdLwsrlcuTzeTQaDUajkcbGRux2e7mncE9QKpXYbDYZPiCCEePxOPF4nHw+X/EHt1gskkgkCAQCvP766ywuLlJXV4fFYsFqtUotYGZmhqWlJakmLiwskM1mMRgMWK1WDAYDKpWKVCq16ZLHdqFU+mxqasJut6PVakkkEjI2S6FQoNVqyeVyJBIJrl69yuzs7Lq6dW8UGyauu7X5KBQKrFYrNTU15PN5kskkqVSKyclJhoeHyWQycjMLEhO/4fV68Xg8OBwOgsEg4+PjJBKJLVcV7xZCJa6rq2NwcJD/8B/+g0zfEGQlVNB8Pk8sFiORSOByudBoNDQ3N+NwOMo9jXuCWq2mra2N5uZm7HY7arWabDaLz+fD7/ff1iBeKRDG5UQiwZe//GW8Xi8f/vCH6e3tZWBggGg0SiQS4fjx4yQSCVKpFFNTU0xOTpJMJtHpdFgsFoxGIwCxWEzaZHcaealUKjweD3V1dTQ2NmI0GlEoFMzMzMjYtXw+j16vJxqNsri4yGuvvcb09PSWzHXDxHW3m02hUBCPx1leXpbBiNlslpWVFaLRqMwPKzWAwnWi9Hg8eDwecrmcXPzZ2Vn8fv+GVLntIrmamho8Hg8f+chH6OnpQavVUigUyGazBAIBYrEYo6OjLC0tMTIygkqlQqvV8vnPfx6LxSJtepVQnuRuoFKpMJlMPP300/T39wPXJet0Os2FCxe4dOlSxZNWKYrFIslkEp/PxyuvvMKZM2f4yU9+IgNoI5GIJKPl5WVSqRRer5eGhgYZGiAkFovFgslkQq/Xk0wmb/mbm7X2mxFkqlKpsFqtfPSjH2VgYACHw0E4HMbn83Hq1CmCwSAAtbW1pFIpgsEgq6urKJXKLUs63xZVUUggmUyGaDTKysrKGkOtICwRsFo6YbVaLY2b4gZcXFzE7/ezurq67gOwnZKZx+Ohq6uLJ598kra2NpRKJblcjnQ6zeLiIktLS7z++uuMjo7y2muvYbfbcblc/OIv/iJarVYe8p0K4SZ/4IEHaGlpASCVShGJRBgbG2NycnLHEXImkyGTyXD+/Pk1/y7iDEVFCSF5CMlEr9fLvSxsvHq9Hq1We0vi2gyn0GbCaDTidDo5evQora2tmM1m6Tm9dOkSoVAIp9NJKBQik8kQj8eJxWIyDnMrsC3EpdFosFgsNDU10dDQwEc/+lFqa2sxGAwkEgnC4TAej0cacMXCCelLo9GQSCS4cuUK8XicUChELpdbI5ndCduxCcSYP/rRj/KZz3yG2tpaFAoFwWCQd955h5deeokrV66wurpKKBQilUqRyWRkJkA2myWVSjE2NsbKysqWj3croFAoOHr0KP39/XR3d2O32+XmzeVy0ha0E1TF9UJI1NFoFLPZTGNjI//6X/9rdu/ejVarlXsvmUzKS+l2qU6bmZB8L9+jVqvRarX80R/9EY8++iitra0olUoikQhvvPEGr732GkNDQySTSQwGg4zXa2xsxGazYbFYtswOveXEpVarsVgstLW10dXVRXt7O7t376ampgaTySSD82pqajAYDGsWTWx4IamFw2EWFxdxOBz4/f6KuZEEhOezra2N9vZ2FAoFkUiEK1euMDQ0xIULF5icnCQcDq85tMIWIqTNm7nddwLEheNwOKipqUGn00nng/AkRiIR4vH4plcLKCdKY7saGhpob2+np6eHpqYmKTkVCgVmZma4du3ausrflFPiEjZmr9dLS0sLe/fuZffu3eRyOQKBACMjI1y+fJmxsTECgQDFYlF6+tVqNUajUWoYmUxmS8a4pcSlVCoxm83s2bOH3/zN32RgYIDOzk55QG+EWCyx0OIgiGxzl8tFbW0tHo+Hv/qrv8Ln823l8DeM1tZWPv3pT7Nnzx6ZGD4zM8MXv/hF/H4/KysrN5Uyent7GRwcpLa2FrvdTn9/P6OjozvuYJcG2qrVaultyuVyUkWcm5sjEAjcN9KWkLLFnD/1qU/xS7/0S3i9XrnHxX7+y7/8S1599VV8Pt9tJS4RgC3KwWwnVCoVarUam83GJz7xCf7wD/8Qm82GUqlkZmaGn/70p/yrf/WvyGQycnwNDQ184hOf4PDhwzQ2NpLNZslkMoyMjGxZLuqWEZeI4ens7GTXrl3s2rWL2tpaeQsLlMbCpFIpLl26hEKhwGKx4HQ6sVqtMt9QpVIRi8WYnp6W1SPEAbjxO8sBrVaLx+NBr9cDyCoXq6urxGKx9x1WEf4wODjIU089hc1mI5vNMj09zerqajmmcM9QKBR4vV6amppkkHEgEMDn8xEIBHZsOMDNIPIw9+zZI1Wj7u5uLBaL9L5ns1mi0SihUIilpSUCgcAdpS1BdNsJceH09/fjdDppbm5mcHAQg8HAW2+9xdzcHKOjo1y+fFnapcW5VKvV1NfXYzKZiMfjnDp1ipGRERn2shXYMuJSqVQYjUb27NnDvn37GBgYuKkKVCgUZPTt6uoqP/jBD6Qrvbe3l6ampusDVauxWq0EAgGGhoaIxWJrpDYhnQnVpBzQ6XQyyRSQibfhcFimhdzs/UeOHOFjH/uYdC9funSpoqsm3ApC+mhqaqKrq4tsNksoFGJsbOy+JC6RY/vwww/T1NREe3s7DQ0N6PV6GWuYTCZZXl5mcnKSxcVFgsHgulLUtrt0k0hHe/zxx+nq6mLv3r14PB4UCgXf//73eeONNxgaGrqppKjX62lqasJgMBAKhXjxxRdl4OlWrfWWEVc+nyedTrOyskIoFFrTgCCbzZJIJJiamuLy5cucPn2a+fl5QqEQ09PT0v1qNpsxGo20t7dTX1/PM888QzKZpKGhgWvXrq35vUqwmRiNRtra2rBarcD1jV1fX88f/uEfks/nZWkUo9GIVqtFr9djs9no6elZQ2o7ITjzZlCpVOj1elKpFIlEgtbWVil9ffe73+Xdd9/d9PLG5URtbS3Nzc089NBDeL1eHA6HrDsvLuR0Os2VK1f40Y9+xMrKiowqrwQoFApMJpOsxtLc3MyHP/xhGhoaMJlMzM/Pc/LkSc6cOcP4+PhNBQKbzUZNTQ29vb2Ew2FGRka4du0a09PTWypAbAlxCVtVLpcjGAwSDAalQTafz8uaWiMjI5w+fZpjx44xMzNDJBKRoRGlCdc+n4/Ozk4GBgZIpVIYjUaMRiMGg4FcLlcxAX1iziL5VgTdPvLII8D1g11XVycrYGg0mjXuckDmaG6VUXMrodVqMZvNMv/UYrFIewlAIBAgk8lUxFrdC0TcnTDENzU14Xa71wREl5o//H6/VJ22MtRB1L5bL2FotVpsNhvt7e3s2rWLjo4Ourq6cDqdJJNJgsEgFy5cYGFh4aZ5swqFgtraWhoaGnA6nUSjUVZXV2We7Vau85YQl9B9M5kM586dI5fL0dLSQiAQYHV1lZdffpnV1VUZGyOqnwopQxh04frDGR4eJhgM0tvbSyKRIJ1Oc+DAAfr6+njllVeIxWIVcYsNDw/zxS9+kd/+7d/m+eeflyVRHn74YfkeUQcql8uRzWaJxWKYTCZ0Oh0A0WiU48eP4/f7yzWNu4JCoaC5uZmDBw/y4IMPMjAwgMFgkBUCpqenuXTpUkWs072ioaGBnp4efvd3f5cDBw5QU1OzJuQjn89LT+rMzAyTk5OMjY0RiUS2lLj7+vqIRqPMzs7eUWrXaDR0dHRw+PBhvvCFL+BwODCbzVgsFlKpFFeuXOEnP/kJf/VXf3XLAoA6nY4//uM/Zt++fTLndrsupS2TuACZk7i0tMQ777xDOBwmGo0yNzcnpatS3GzSxWKRTCZDLBZjYmJCRt23tLRQLBYZGhpCqVRWxIEQ6u/bb7+NQqGgpqYGm81Gd3c3gMzVSyQSTE9PYzabaWtrkxtMuJAjkUhFzGej0Gq1MjdPOGGEnUvEL5Vb2jIajeh0OhkoejcwGAy43W4cDofMORUG9VgsJtN9RD6tQqEgnU7fVfegjSAej8sy0nf6HZVKRX19PQ0NDXg8HlnIQNS4n56eZmlp6bYJ0iqVSmaJKJVKeRFvhzd0y2xcpaWVp6en+du//du7noxCoSAWi/HWW2/R1dXF4OAgjz76KHa7neHhYUZHRytCQhHE9dWvfpWvfe1r7Nu3j/7+fv7gD/4AuF4ZYWxsjLm5Ob75zW8yODjIv/23/1ZuaGEbikajO5K4RPme0nAX8UxujF0rF2pqaqitrWV4ePiuSwmbTCZZ3UNIWIVCgUwmw+LiIsvLyzQ2Nkovs9FolLXltvIZjI2Nret9ov7dnj176OrqkmYLEcITiUR45513mJycvOV4RciG2WzGbDajUChIJBIsLS2RTCZ3JnGVDnozJiA2hk6no6Ghgf3790uPh9g4lQSRlzg5OUkkEuGP//iPgevzENLH9PQ0bW1tGAwGGV0dCoWk16nckslGoNFo8Hg8dHR0yKJ7QupeXl7mjTfeYH5+vsyjvI5gMChjkISNJ5lMbqi08OLiIidOnCASieB2u+XBNxqN9Pb20tLSgtlslmRgMBi2XNraCAwGAxaLBbfbjc1mQ6PRkM/nicfjvPrqq4yMjHD8+HGWlpZu+R2HDh1i3759OBwOacubmpri9OnThEKhLZ/DjuirKFhf3GBdXV1YrVYSiYS8ySoJQlT3+Xz4fD4uX778vveIEsalxvlQKLSuiq6VBkFc9fX1tLe3YzQa5TMIhUKcO3eO5eXlcg8TQNaOEvXSXS4XwWBwQ8QVCATk5SPqyJlMJmpqanA6nezdu1eWptbr9eh0urta063KnjCZTNjtdhknKSp3JBIJjh8/zsWLFxkeHn7fuRKxlFqtlr179/LMM89gNpvJZrOsrq7KWK/Nri9/M+wI4hKibWNjI7W1tbhcLhQKBclkkqWlpR0XrKnX6zl69CiHDh2SuVzZbJaf/exnnD17dkcRl3Cp79+/n+7ubpxOJ2q1WqpNo6OjnDlzZlM7vNwLxLMV++iBBx7g8uXL687CKE1hEvmyuVwOg8EgE8kBKYWJzI/a2lqWl5dvWxHiRmyFhKZQKPjsZz/LkSNHePDBB6VqPzo6ysjICK+++iqTk5NrSlvDdXuW2+3m4MGD/M7v/A719fVruhz9X//X/yUj5bfDI76pxHWrEhqlvdeADalCpWVtGhsbcblc6HQ6YrGY/LPT7EFarZb+/n6ZzyjsI5OTk0xPT+8o4hKVPER4isFgWDOnZDJ5T4bwrYBCoaC3txev14vX62V+fv625V8UCoUkZOHxzmazMvwhFApJc0Y+n5et+MSe1+l0WK1WWf6l3Kivr6ejowO32y3ntLi4yKVLlyS5Op3ONZV5TSYTHo+H/fv3Mzg4iF6vl5ksoVCI0dFRFhYWyGQy27J/N424RPVD0bBVhESIlACdTicfRDweX5fnQaVSodPpePbZZ+nu7ubQoUM0NDRgMBgYHx9nbGyMxcXFbdGpNwui9PRv/uZv0tjYCCA9iW+++SYXL17cEU1SxdoKySKRSKBUKrHb7dKbKA5uJdnshIr4la98hZaWFo4fP87CwoL0At4s3UatVvPss8/idDoJh8Osrq7i8/lkldp3330XvV5PbW0txWKR1dVV3G63lKZtNhudnZ0EAgGi0eh2T3kNxJqJtDTxb8ePH+e///f/TiQSweFw8OSTT6LX69FoNHzuc5+jr69PGuRFNYx8Po/P52NmZoaZmZktjZS/EZuuKgrXsGh8USwWcbvd9PX1SZa+cuUKoVBIVni4cbLiFq+vr8fr9XL48GFaWlqk23VlZYVz584xNDRUES72jcBqteJ2u2X0fLFYZGRkhEuXLskAzZuhtHlnJcxXjEFU/xgYGJCeNBHDNzc3x8rKSkWMV0BUrrBardjtdnp7e5mcnKSzs5M9e/ZQU1Pzvs8olUoeeOABjEajbPwaiURkjTkhnTgcDurq6mRMnpDMAMxm85bVptoISolLhN+kUini8TiFQoFHHnmEpqYmnnzySZk4LiqeisDqeDzO/Pw8y8vLzM/P4/P56OrqYn5+npmZmW1xRGw6cQkJS6Q+5HI5Ghsb+dCHPoTVakWr1fKDH/yAyclJVldXpQFQTFQYAPV6Pd3d3ezdu5ejR49SW1tLOp0mHA4zNzfHm2++KVNIdhKcTid1dXWSxIvFImfOnOH73/8+KysrN1WpxDMtJflKIQO1Wo3D4eChhx6ioaFBknE6nWZ8fJz5+fmKGStcD4fo7u7GYDBgMpnYu3cvi4uLDA8P83u/93sMDg5KZ0mp1iDWSqiEhUJBxiX29fXJOK3m5mYMBoP0LIuMkUogLqEOi4KGgrRWVlZIJBKo1Wp+8Rd/kYGBAR555JH3XZYihSkSiXD+/HmGhoZkyfV9+/ahUqlYWFjYFrPAphJXNpvFZDJhNptJp9Oo1Wqefvppdu3axcMPP4zFYkGn06FSqRgdHSUQCEhPWmnxQI/Hw549e3j66ad54IEHcDqdFAoFVldXeeedd3j55Zc5d+4cPp+vomwnd4JCoWDXrl3ycIgbb2JigvPnz5NMJuXmEnW5hEotbu5Ksn+J4OBQKMTw8DBKpZKGhgbZa/AnP/kJo6Oj5R7m+1AoFDh+/Dizs7N0d3fT3d3NF7/4Rdra2qTEeDMIAhNVSUQTkP7+fhKJBKFQSHrpSklueXmZ8+fPl7WPJCBDIAwGA/F4nLfffptwOEwwGKS/v5/Dhw/zyCOP4Ha719ikhXb01a9+VRbATCaTpNNpdDqd7CWwsrKybSldm0JcYqFLO32ICF5Re7uxsVE2jOjt7UWlUtHa2srKyoqUPoRkUVdXR19fH729vXR1dcnaTouLi1y9epXTp09LI+JGHlIlFOerqamhqalJRigHAgFWVlZkAwlYWwG2tBBdJSKfz8tbu9RzmM1mmZmZqYjA4FLkcjmSySRXr14llUpJ71hnZ+e6Pi/2kEKhkPZcoUkUCgVpOxJhOoFAAL/fz9LSUtnLcQsngUajoVAoyNpoq6urHD16lP3799Pc3CznICSy+fl5pqamOHbsGIFAgFwuJwsgiKKBomnzdpkyNoW4Sgcaj8elZyGdTvPqq68C8Gu/9mvyturr66O1tZWOjg55IEXci0ajWZOsCzA+Ps7IyAj/5//5f8rYqI1GIWu12rKL6oBMFlcqlYyMjPBXf/VXnDx5UkqOgrBEve5Ki1G7Eel0WpYiFnPIZDJks1nZUq6SMDU1xfz8PFeuXKGnp4c9e/ZI+816S4GLXESRU9rX14fNZqOurk6+NjIywvT0NN/61reYnJxkYWGhrGspenyKfES73U5TU5MUMtxuN/X19ajVaukZPXPmDK+//jo//OEPmZiYWNOhSGgLor5YIpHY1iDbTbdxiUmJCYjWRZlMRrqPhTguvGqi6KAwyosqjOl0mmQyyaVLlxgeHmZ+fl7mQm1UAim31KLT6TCZTDgcDln2JpFIMD8/LyUVQVjCRlLppAXvqYvz8/Nrov7FOm9Vl5e7hci0CIVCzM/P8+abb+J2u/F4PLS2tspKFgaDYU1IgKivJeK3RA5mMBgkGo3K+nMi5Wd0dJS5uTnGx8ellFKu/SfGL8ooCceZ6EJkNBpxu91SioxGo7z77rsMDQ1x9uxZZmZm3udkEV5joQ5vd1mpLSEuMZFCoSBbFQn9XuQ1iQ7Pt4Io77K6usq3v/1thoeHWV5evmtWL3eIgd1up7W1lYaGBtxut+xYND8/L0MJhMfH6/USjUZlPe9Kh8gjFQnjwhYkOtpUUscaeK/R69WrV/nyl78MXD/cv/Ebv0F/f7+sHf/QQw+h1Wqldy2dTjM1NUUulyOXy7G8vCz3t1CrXn75ZU6ePMnQ0BDRaFRqH+VW9UV5oebmZtnfc3Bw8H22VNGs5f/4P/4PlpaWWF5evunalfZBFRfVts7nbj94Y0CpwI1er3Q6zcWLF/m3//bf0t/fT0dHB4cOHcJms8k4l1J7gTjMJ0+eZGpqirm5OYaGhqRIWkkHYCMQLubGxkbZzcjpdPLwww9z8uRJKUmKGmapVGpNaZ9yzFtIgKKi560qemQyGfx+P6+//rok33Q6zfz8vIxbKo3pqiSU7tcTJ04wMjIio92///3vS+lEGORFOeJiscji4qL0GAqb3sjICLOzs5K0KmXPFgoF5ufnOXHiBKFQiJqaGlwuF83NzTz66KOcOHGC4eFh2T5QXKi3GvuNZXNKJdOKD0AtbQZwq8TqbDbLxMQEMzMzPPbYYxw4cIDGxkaKxaLshgvvxbysrq4yOjrKD3/4Q4aGhpiamqqYxb8X1NbWcuDAAVlwLpVKYTKZ6O3tZWJigrGxMWnQjUajUqXZysJzd4JQ3UUL+VsFGAqyvXjxIsvLy7LUy/LyslSDS+dRqWt56dKl274unEfw3h43m83s3r2bUCjEiRMnCIfDMsC6UiC0H+EEGhkZkaWh9u/fT1tbG8eOHePHP/6xLK99J5T2eijdn9u1X++auEqrfN5pkMLuderUKYaHh3nxxReluHqz9wkVMZlMVtQGuBeIiGO4/uxEPt/ExAR+v1820xC3ViUccEGeIoXlVjdpqdQVDAalh7i0BtVOClu5FUqri4q1iUaj/NM//RP5fJ5YLCY1h0pD6TkSF+T4+DiLi4ucPHmSQCBAOBze8NjFPi0Wi2sk063GPdu41nu4isUi0WiUaDRacW3FtgPRaJT5+Xk6Ojowm81Eo1EWFhaYm5uTG0Ysfml9/nKTV+lhvdP7REv6+xk3rkc+n6+YyhfrhSCaVColu1Bt1nfuWK9iFTfHhQsXWFxcRKfT0d/fz/Hjxzl//jwvvvjiGi+s8LACO7LufBX3H9Z7iW6nE2JTiatSVJxKRCKRYGVlhZdffpmLFy/KdJgbW9GL+Lf7XXKpYuegEs+zorjBUd0pHaISXL+3w3qnWwlR9veC9czz52GOUJ3nTsFGqGjTJC5hgK1Edq6iiiruL6wvx2GdqJJWFVXcv6gkiW7DqmIVVVRRRbmxqRJXFVVUUcV2oEpcVVRRxY5DlbiqqKKKHYcqcVVRRRU7DlXiqqKKKnYcqsRVRRVV7DhUiauKKqrYcagSVxVVVLHjsOGUn0qKnr0bVPO+3sPPwxxh/fMUdcQqrQbc/bxnS+v5lSVXsYoqdjqqSSQ7B1XiqqKK/z8quarJ/Yq7vSyqNq4qqqhix6FKXFVUUcWOQ5W4qqiiih2HHWvjEg0ldDodhUKBbDaLTqdDo9HIjjlVVFHF/YkdJ3GJEtFarRaTyURbWxuNjY0YjUa6uro4dOgQJpOp3MOsoooqthA7QuJSKBQ4nU6eeOIJbDYbVqsVpVJJNpvlwoULhMNh0uk0hUKh4qWtSmk7VkUVOxk7grjUajV1dXX87u/+Li0tLbS0tMjOvF/4whfk+zKZDCsrK7IDdGl33UogCqHeKhSKimwaWsXdQVxGld6p+35C2YmrtM27Wq2mUCiQy+VIpVLShvX7v//77Nmzh76+PqkGFgoFMpkMc3NzzM3NEQwGZYehTCazZvNUwkbSarXodDpcLhc6nY5EIkEikSAQCJR7aFWsE8JModFo0Gq1OBwO7HY7Tz/9NA6HA5fLxalTp7h06RKLi4skk0mSySR6vR6j0cjy8jKJRKLc07gvUDbiUqvV2Gw2dDoder0ei8WCWq0mnU6TSqWIRqPSjvXII4/Q19eHy+WSt1s8HicUCsk/4XC4XFO5IxQKBQaDAYfDQVtbm+xkHQqFgOtzSaVS5R3kPUBIkSqVStof1Wo1KpUKYE2HboF8Pi//LRQKkU6nyzX8O0KhUGCxWGRKkMlkwmKxUFtbS21tLQ8//DAej4eamhrC4TA+n49YLIZGo8FqtWI2m3E4HLJf5k7rmalSqVAqlWg0GuD62mk0GtRqNXq9HqXyuqm8UCiQz+eJRCJbvp5lIS6lUklraytf/vKXaWtro729HZVKRS6XY25ujkAgwMTEBK2trdTX19Pd3Y3JZFqz8V955RXOnDnD3NwckUikHNPYEPbv38+v/MqvcOTIEerq6igWi/j9fs6fP8/f//3f85Of/KTcQ7wrqNVqNBoNNpsNt9tNY2Mjhw8fprGxEa/XC0A2m8Vms2E0GlGr1eRyOfx+PyaTCbvdzhe/+EV+9rOfVaT6rNFoMBgM/OZv/iZutxu/309nZycDAwO43W6MRiNOp5NkMsni4iLT09MMDQ2hUChobGzkf/vf/jcaGxtpamriK1/5CsePH2dqaqri8iFvROlF5PF4sNlsDA4OyrXbvXs37e3tPP3009jtdorFIsFgEJ/Px5/8yZ9w8uTJLb2Mt524FAoFNTU1NDU10dPTQ0NDA/X19QDSNmWz2dDr9Xi9XjweDwaDQXbJnp6e5sqVK5w4cYJr166RSqUq3hiv0Whwu910dnZSV1eH2+0GrquPmUyG+vp6bDYbsVisIg/vzSA2tZCW9+zZQ0NDA62trfT391NTU4PL5QKuE5fZbEav10vistvt6PV6TCYTNTU12Gw2QqFQxa2lkCoaGhpobGyUhOz1erFYLOh0OtRqtZQ0NBoNLpcLpVJJbW0tra2t1NXV4fV6GRwcJJ1Os7CwUFbiUqlUGAwGjhw5gkqlIpVKSSm5VHqG6/vXbrdjNpvp7e2lUCgQCoVoaWmhoaGB5uZmzGYzxWIRi8WCxWLhsccew2w2c+zYsS07n9tOXEqlkoGBAfbv38/evXvR6XRS1FQoFNTW1lJTU0NHRwdKpVKqE8Lo+fLLL/Pv/t2/IxgMVrR6IaBUKjGbzTQ2NjIwMIDVapWSo91uZ//+/ezatYvz588zOjpKMpks84jXB71ej8FgwGw209rayuc+9zk6Ozvp7u6Wa1q6buJAiLX2er3ytebmZlpbWxkaGqo44tLpdFgsFlpbW+nr66OhoYFMJkMikaBQKJBKpcjlcgSDQRYXF3G5XBw8eJBsNktDQwPt7e2StD/2sY+xf/9+Xn311bLauvR6PY2Njfy3//bfMJlMLCws4HA4sFgs8sxptVpyuRzZbFaum9FolOt3M9jtdux2O//qX/0r5ubmeOaZZ1hYWCCTyWz6HLaduIrFIgsLC3g8HlZWVrDZbFINLBaLpFIpUqkUoVAIn89HKBQiEAgQiUSYnJzk4sWLRCKRihe1BZRKpQyMFTeaOMgCXq+Xnp4epqenK564hDOloaEBr9dLXV0dLS0t9PX1Ybfb5fsKhQLLy8tEo1F8Ph/BYJBoNIrX68XhcNDX14dGo0GpVLJv3z7y+TxXr16tKPuPQqGgvb2dvr4+GhsbcTgcqNVq/H4/ExMTnDt3jpWVFbRaLZFIhKmpKbxeLy6Xi/379+P1erFarVIim5qaYmRkRErh2z1XnU6HwWDg4x//OPv27cPhcKDVamloaECn06HVatdcMCqVSu5Z4LakVQqtVovH4+EP//APOXXqFH/7t3+76Q6yshBXMBhkZWWFcDgsH6ZCoZA3WDgcZm5ujqtXrzI9Pc3ExAQ+n4/Tp0+TyWQqanPfCWKTCtH7ZnA4HDQ2NqLVardxZHcHoWYIqbi9vZ3m5mZaWlpQqVQUCgWKxSL5fJ6VlRWWlpa4fPkyMzMzBAIBurq6aGpqoqGhAbPZjMlkoquri1wuJ42/lQKFQkFdXR19fX243W7M5v9fe9cW3MR1/n/SaqWVLFmWbMtXGZv6xhCwTRJCaZiQwCRNQ9N0OplJnzKdhulDJ0+9PHSml6e+dDq9ZNLJa4eW6bSQtE3SDDApNTAUzAQwYFu28U2y7lrdV6vLrvb/wP+cymCCoZaspfub0QPYWu85e85vv/N9v+/7rNDr9UilUpifn8epU6ewsLAAjuOQz+cRjUbx4osvor+/H/v27UN7ezsMBgO10LxeLxYWFgDcmcdar2Oz2YyWlha8+OKL9Din1+vBcdx9v/N56/bzvmO32/HNb34TNpsNx44do+tis7AlPq7W1lZ0dHTA5XLBarVS0ioUClhcXITH48HHH39MJQPz8/PIZDIQRbEupA0Pg3K5jFwuh1AoBI/Hg+HhYTgcjjW/k8vlkEql6t6/pdPp0NXVhcOHD6Onp4f6bVpaWmA2mwGAioBTqRQuX76Mmzdv4q9//SuKxSIkSYLJZILFYsGf/vQnvPbaa3jrrbfQ0tKCzs5OsCxbN5o7APQEkMlkqAyiVCrh6tWrePfddxEMBiEIAg1QWK1WuFwudHV1wWg0UgI/ffo0jh07Bo/Hg1gshng8jnK5TP221R4vOeZ9/etfx9tvv42enh4q4q4WdDodrFYrzGZzVcZYc+JiGIZGEol2qxKlUgmSJEGSJOr8LRaLVBmvNiiKgmKxCJ7nMT8/T48clSCbol4rWOp0OhgMBrjdbgwODmLXrl1wuVxwOp3o6Oigm4C8VQVBQCKRwNzcHObn57G6urpm4ZpMJgBANBoFAOorq+ZGehQoioJsNgue5yHLMhRFgSiKSCQS8Pl8yOfzkGUZDMPAarWiv78f3d3daGlpgaIoKBQKkGUZq6uruH79OiW6SmF0LUCeX1NTE7Zt20ZPOI+Kjd4/kVFUAzUlLmKWHj16FGNjY9S3RZTkJCIzNDQEq9UKWZZRKBSo/yAQCNTN23ijINGmiYkJhMNh9PX1we12r/md5uZmbNu2rW6PigzDoLm5GT/60Y/Q39+PnTt3guO4NZEo4M5YRVGEz+fD7du3cezYMfA8f88zY1kWLpeLEp7D4UA2m6074gIAj8cDnufx3e9+F4VCAT6fD9FolAaGyFj27duH73//+3A6nbDZbBAEAalUCjzPw+PxYH5+/p55qNVaJsSVTCbh8XjQ1dWFxsZG2O32h55zUtCAkNKDvk/8ZZttddWUuBobG9HS0gKn00mPiGTRFwoFFItFWK1WsCwLm80GRVEgSRJef/11zM7O4vjx4xBFsSpRimpDEASEQqF1I6GyLKNUKtUtKROLyOFwUKmK0WikPq1cLofbt29jZWUFs7OzCAaD1DG/XhDFZrPhwIED6O/vBwDwPI9QKARJkupuDorFIrLZLARBgCAISKfTUBQFTU1N6Ovrg8vlws6dOzE4OIiOjg4aYbxy5QoikQiWl5dx7dq1LR0Xx3EYGhpCW1sbZFlGsVi8J7uEgLgr7vZtSZIEv99PJUtEIlG5h9e71mb7tghqSlzNzc3o6+uDw+FYIyglJnihUEBTUxPVzpCfj4yM4MaNGzh16hRisZgqiSuXy6FUKq1LXKVSiYbX6xEWiwVNTU1obGxEQ0MDfTY6nQ7FYhHxeBzj4+MYHx/HRx999MDFarfbceTIEfT09EBRFIRCoboVZRLHejqdRiqVQiKRAAC0trbi0KFDeOKJJ/DCCy/AarXCZDLB6/UiFArho48+wuzsLG7cuLHlvkuLxYKxsTF0dXXRI2w+n78nLY64NSpzagHQoNn09DRkWYbZbL6vq6fyerIs05eRan1cer0ehw8fxte+9jW0tbXRSQJAJ5P8+24GZxgGnZ2dePvtt3H27Fn8/e9/39DfrCdHL/Cf+ymXy2veaLOzszh79iwymcwW3t39kc/nqdVBiDcSiSAajeK9997D8vIyjRo+iLSMRiPVtaXTafzrX//CH/7wB0xOTtbl+Mmmff/99+F0OhEKhbCyskJlOvF4HCzLgmVZlMtlnD9/HmfOnMHly5fX+Ma2Eul0Gv/85z+xsLCA+fl5BAIBGAwG/OAHP6BBMlEUKZmRD8/zCAaD+PDDD7GwsIBkMonu7m48//zzaG1thdvtXtfaymazEEURMzMz8Hg86rW4CHt3d3djZGQEHMdBkiRkMhnIsgxZlhGJRFAsFlEul2E0GqmqmrzdGxoaMDo6irm5uYf6u0B9JFkTXQyAe950PM9jZWWlbi3JUqmEfD6PWCxGj/terxderxdnz57F4uLihu+d5KaazWaEQiFMTU3hypUrmJqaqovndDeI5TA9PQ2bzQZRFJFMJmneIvEfSZJEZRLXrl2jSdb1gGKxCK/Xi2KxiHw+T7Vkr732GmRZhsViQTKZpEd74roIBoNYXl7Gp59+iunpaRgMBuRyOezfv5/mn66HUqmETCaDubm5ewIzm4WaWVw6nQ6CICAajYLjOAiCgDNnzoDnecRiMUxOToLneZoKYrfb8cYbb+DQoUNrQssPMwn1dPTiOA7Nzc3gOG6NtVUul5FOpxGNRuvyqATcsbhCoRDeeecd2Gw2NDc3Y2lpCYFAAMlkcsP3rdfr0dHRgdbWVvA8j/Pnz+O9995DKBSqS9IiKJfL8Hg8cDqd2L17N/r6+mC323Ho0CFs374dJpMJN27cwG9/+1t89tlnmJ+fr6tnWS6XIQgClpeX4fP5IEkS9Ho9fvrTn2LHjh149dVXsbCwAK/Xi6tXr1KBtyRJKBaLEASBVl1xOBw4ePAgOjs71yUuElUOBAJ499134ff7qzKmmhGXoihIJpPw+/1gGAbJZJKSVSwWw8LCAjKZDGKxGEwmExoaGnDp0iUAwLPPPlu3UoGNgvjtKkmLHBuJ1VmvIJGkUChExcORSASJROKhCEev12NgYAC9vb2IRqOIRqNIJBIbEmJu5bFfURTqnxRFEd3d3XjiiSfQ3d0Np9MJvV6PTCaD2dlZ8DxflwJpEugihKooCsLhMFiWxaVLlxAIBBCJRLC6uopcLkeNhMo5J+WnKnV7lSCVLyqP0dU6/teEuMgELC8vY2Jigi7aDz74AKlUCplMZt1FubS0hBMnTuDEiRP3PU+rBUSgyDAMTfkhhFCtyMtmQpZlhMPh/+oaLMvilVdegdvthsfjwerqKnUPPAgkgrmVVnSxWITf78fevXvx8ssvw+l0wmQyQVEUpFIpTE5O1iVprQeSLJ1KpTA9PQ0A9xBVJXQ6HSwWC+x2O9rb2+/Zi5Uat6WlJSwuLiKbzVbN/VFTi6u/vx8HDhyAw+FAPB7Hyy+/jMnJSUxMTDzw+xzHYXBwEG1tbTW4281HZcZ9pYCPYRi0t7djcHAQKysrqkgcfxSMjo5ix44d6O/vp5UgGIbZMHHVg0XqcDjwjW98A0899RQaGxtpihKxNOpRzvEgbDTiZ7fb8b3vfQ+jo6PrkpYkSVhaWsLExAQuXLiAxcVFesSsBmrmnGdZFm63GyMjI1Roun//fqTTaVy+fHnd71U6tI1GI1WdE5W2mlAZKLibuBwOB7q6uhAMBh9b4hocHMTBgwfR3d29Zi42utnrgRBsNhuee+459PT0rKnES0hLDZbzo4BUOHnjjTfQ3d297u/IsoxgMIgrV65gfHwcKysrVb2nmhBXT08PXnjhBYyOjsJut9MNOzY2hlu3bt33ey0tLdi+ffsaTVdDQwM6OjrA87yqqoaKoohYLIZcLodisbjGsUl8f/UaVfxvQNK2hoaGsH//flitViwuLuI3v/kN/H7/hjc6OWJv1QuLZHYMDw/DZrMBAPx+P7LZLAwGA1KpVN3JbzYLpEAk0ardDfICyuVySCQSNVnHVScuorIlZT6IYE2SJHi9XiroWw9msxlNTU1rHNrEClObv4uITInymKBcLkMUxaqa1VsFkmjb3d1NI6rhcBgrKytYWlpCNpvd6lvcMFiWpRIdlmUhSRLC4TB4nofJZEIqlUJDQwPy+bxq/FwbRW9vL3bs2AGTybTuvpNlmZYir5VAvOrExbIstm/fjm9/+9trsv+Xlpbw1ltv3bdWvE6no+VeKsudlEolCIJQV+HmjYCkKhGdGsnPLBQKtH5+PfhxNhNGoxFDQ0M4evQo2tvbsbq6ij//+c+Ym5tDKpV6qGe4lXOj0+nQ3NxMex4Ui0WIoogLFy5gdnYWHMchHo9jaGgIPp8PkUjksbG89Ho9jh49ipdeegmNjY33/JxUAyG+6nPnztXkBVxV4uI4DgcOHMCePXtgNBrpID/++GNcv34d6XR6XXYmxeoA0LcXWQilUgmiKKrOOiG+LRIZI4mnpMqkGh279wOpGvrVr34VAwMDGBgYwNzcHJaWljA1NYVAIKCq50fcGsQxHY/Hsby8jFu3bmFmZgYulwuKotDimI/LkZHU27fb7esmZJOMl2g0itOnT2Nqaqpmz7WqxGU2m/Hqq69i9+7d0Ov1tNLDr3/9a9y8eXNdZTE5ChKiIzWryaYnuWNqBdFtVbZiq8zpehxgsVjQ1dWFH/7wh2hubka5XMYnn3yCEydOIBwOo1AoqGqsDMPg2WefxdjYGPR6PcLhMK5evYqJiQl4PB4MDAygtbUVfX198Pl8NauzVU3odDoqBCc5qpXHRLIfc7kc/H4//vKXvyCZTNaMtKtGXKR42TPPPINt27bR/yebVZKkNRNBrKzW1la0t7djbGwMe/fupSWBk8kkXShqBCnvYTAYqDVJqolyHAeO41RpSVaCpMC8/vrreOqppwDcycO8ePEi1e+Rumpq2tR6vR7Dw8MYHh4GwzDw+/04d+4cYrEYrZogCAIYhoEoijCZTKosegncGavb7cZ3vvMd2v9hZGTkHt9WPp+HIAj429/+hps3b0IQhJpWOKkacZEcrra2NjidzjV5XQ6HA06nc41DmlSRdLlc6O3txZ49e7Br1y4MDAzAaDRSoVwoFKrWLVcVhLgqs+6JTIR81BQlXQ8kWjw0NISxsTGah0mK6JEKGGrb0MTf6nA4oNPpaP8DMp5sNguGYajfrrJGmdrQ0NCA9vZ2mtbT1ta2bpFLEmy6ffs2FhcXqRykVqjqUbHSp6MoCkwmE5xOJ37xi1/A6/Xik08+oXWOmpqaYLFY4HA48IUvfAFf/vKXYTKZwDAMstksVlZWcPz4cQQCgWrectXAsuyaLimVFhjpdCwIgqod9KSBr9PphMPhgCiKNPG4Ui6gNuIC1urv4vE4PB4PdXWQGlekwa/FYqERZDXBYDDgK1/5CsbGxrBr1y7aTq4SJGc4kUggFApRt0dDQwNNjarJvVbrwsRxd+3aNWSzWezcuZNaXJ2dnTAajXjyySeRzWaRyWSQSqVoiWYSfSO+kIsXL2JqagqhUKguS59sBJXOeVLul5AXUc5nMhnVhtIZhkFvby9GR0fR1tYGvV4PSZJoGkhlyZT/Fg9qPrLZqMzzI1U/WZalxfhIKkxnZycikQgVEavNSc8wDHbu3Ekr3N5NWmTtFgoFJBIJBAIB+Hw+KpyuZaS/asRVLpeRSqXwu9/9Ds899xwlLtIsw+l0orOzk2qYjh8/jpmZGbo4/H4/XRw//vGPMTMzo2r/DwkskA8xv3U6HUZGRiDLMs3vUtNiB0D78B0+fBg/+clPaKt5Ikj0+/00CLEZIH0Ka4lCoYBCoUAjba2trXQTu1wu9PT04Etf+hIuXLiASCRS03vbDJBn+Morr2B0dHTdCCJZu4IgYHFxEdevX8e5c+cQDAZrvmarelQslUrweDzgOA4nT57E8PAwenp6qIAvFovRjjAWi4V2xZUkCX/84x+RyWSQTqcRDAZVTVrAf44Tn332GTiOw8GDB2EymWjDTY7j1jRRVQuMRiMaGxsxNjYGg8GAU6dOYXl5GfF4HMFgED6fb9MTyXO5XE1ToyRJwocffgiv14sjR46gra0Nhw4dQktLCywWC6xWK+2LoNbjPrEqL168iFwuhy9+8YvUqpUkCYIg4NSpUzCbzRgYGEA0GkUoFNqykuNVJS7S4cRgMODTTz+lBQE5jkOpVEI4HEY6nUYikaA5ex0dHVhYWMCZM2cQDAbB83w1b7FmIAtjZmYGHMfh6aefpsdp4A4B1GOziM8DyWFzuVzYs2cPyuUyrly5gomJCQSDQQSDwao4bWudzynLMs6fP49kMol9+/bBZrPh6aefxpNPPgmXywWdToebN2/i1q1b9KhP3ABqITGyPicnJ2EwGPDMM8/Q9SjLMnK5HCYmJuB0OtHe3k7LG22Va6MmuYqBQAAnT57E6dOnYbFYaN4Z0S8RDRMpaZzP5xGPxx/L3D2itrZarejq6kJvby8ikQjNBlCLtWWz2dDU1ISf/exnGBwchNvtxvj4ON5//30EAgGEw+G6bgDyMCiXy5iensbKygpu3LiBI0eO4M0334TZbKYBieHhYbz55pv4xz/+AY7jsLq6Sjv9qGUOZFnGxMQEZFnGt771LRpJJM73vXv30vJG169fx/j4+Jb5nGtCXMVikdbgIri7bREJIZMCZmo/Gt4PpGLo5OQkIpEIUqkU4vE4eJ5XjTCTaH0GBgawe/dumgiv1+sRi8UgCMJ9u8ioFblcDqIoIp1OY3BwED6fj/aU1Ol0MJlMtNRNZRG+z5uDeqtyoigK4vE44vE4HQPZpyzLorOzE9FoFLOzs/D7/Q9dSHKzb/ahAEDVn3oZp9FoVEwmk2IymRSj0aiwLKvodLqajvNRrmswGBSbzab86le/UpLJpCKKoiIIguLz+ZSf//znSmNjo2IwGB7rZ2k2m5XW1lblnXfeUa5du6akUillbm5O+f3vf6+89NJLCsuyil6v/9znyTCMYjabNzRXtRwnx3HKvn37FJ7nlUKhQK9dLpcVURSVEydOKFarVWFZdsuep6IoSs07WWu4g7tzMNUC0tTXYrFQXVowGMTx48fx73//m6ZoPc4oFou0c87y8jJaWlqoc560WXvQcyUZJPU2V5IkIZlM4uzZszAYDJBlGW63G42NjTCZTLQYgPL/1thWrV+NuLYIaiMsAoPBAIvFQhvCAndalf3yl7+kWrzHHaRHwAcffPDI11BqKNZ8GEiShGg0ipMnTyKfzyOTyeD5559Hb28vXC4XIpEIGIaparPXjUCnPORfVmsqA8FGh/u/MM5HGSNJgB8aGoLb7QYApFIpXLp0qeYWhPYs12Kzxkk6+YTDYSwtLcHhcNDu5clkEvPz81XxQz8MFWnEdR/8L4zzf2GMgDbOh0VTUxMOHDgAn8+H6enpmkWHq0pcGjRo0LDVUJfiUYMGDRqgEZcGDRpUCI24NGjQoDpoxKVBgwbVQSMuDRo0qA4acWnQoEF10IhLgwYNqoNGXBo0aFAdNOLSoEGD6qARlwYNGlQHjbg0aNCgOvwf8P0WREAGHA4AAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import mindspore as ms\n",
"\n",
diff --git a/Season2.step_into_llm/16.Practical-cases/rnn/mindspore_sentiment_analysis.ipynb b/Season2.step_into_llm/16.Practical-cases/rnn/mindspore_sentiment_analysis.ipynb
index 35e1b79..5bebb46 100644
--- a/Season2.step_into_llm/16.Practical-cases/rnn/mindspore_sentiment_analysis.ipynb
+++ b/Season2.step_into_llm/16.Practical-cases/rnn/mindspore_sentiment_analysis.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
- "id": "ace41c03-dfa3-4cb6-88bc-bcaa72cfdc85",
+ "id": "0",
"metadata": {},
"source": [
"[](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.4.0/tutorials/zh_cn/nlp/mindspore_sentiment_analysis.ipynb) [](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.4.0/tutorials/zh_cn/nlp/mindspore_sentiment_analysis.py) [](https://gitee.com/mindspore/docs/blob/r2.4.0/tutorials/source_zh_cn/nlp/sentiment_analysis.ipynb)\n",
@@ -12,7 +12,7 @@
},
{
"cell_type": "markdown",
- "id": "1823275c-96a6-4c12-839c-623ac2662c6c",
+ "id": "1",
"metadata": {
"jp-MarkdownHeadingCollapsed": true,
"tags": []
@@ -35,7 +35,7 @@
},
{
"cell_type": "markdown",
- "id": "1bd4ac0d-886b-44a0-b794-ef7c4d867a3e",
+ "id": "2",
"metadata": {},
"source": [
"## 数据准备"
@@ -43,7 +43,7 @@
},
{
"cell_type": "markdown",
- "id": "9db27766-c50a-4142-b107-8f96c877c7db",
+ "id": "3",
"metadata": {
"tags": []
},
@@ -60,7 +60,7 @@
},
{
"cell_type": "markdown",
- "id": "a5a74272-f34c-485c-8785-c220c9e6bc01",
+ "id": "4",
"metadata": {},
"source": [
"### 数据下载模块\n",
@@ -72,8 +72,8 @@
},
{
"cell_type": "code",
- "execution_count": 1,
- "id": "572e506f-169a-4a07-95a8-40d89fc39104",
+ "execution_count": null,
+ "id": "5",
"metadata": {},
"outputs": [],
"source": [
@@ -118,7 +118,7 @@
},
{
"cell_type": "markdown",
- "id": "ba2340db-925a-4cc8-8d3d-545b13bda228",
+ "id": "6",
"metadata": {},
"source": [
"完成数据下载模块后,下载IMDB数据集进行测试(此处使用华为云的镜像用于提升下载速度)。下载过程及保存的路径如下:"
@@ -126,28 +126,10 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "id": "bb0df701-e3b5-46e3-968d-9d44a2796eec",
+ "execution_count": null,
+ "id": "7",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 84125825/84125825 [00:05<00:00, 14175797.70B/s]\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'/home/ma-user/.mindspore_examples/aclImdb_v1.tar.gz'"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"imdb_path = download('aclImdb_v1.tar.gz', 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/aclImdb_v1.tar.gz')\n",
"imdb_path"
@@ -155,7 +137,7 @@
},
{
"cell_type": "markdown",
- "id": "b146320f-206d-4ce3-92b8-19c71d23e3d9",
+ "id": "8",
"metadata": {},
"source": [
"### 加载IMDB数据集\n",
@@ -179,8 +161,8 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "id": "0f260663-5525-4831-ad5b-b24cdc2ee07b",
+ "execution_count": null,
+ "id": "9",
"metadata": {},
"outputs": [],
"source": [
@@ -229,7 +211,7 @@
},
{
"cell_type": "markdown",
- "id": "78e5d172-f64d-4bb7-8cf2-d8e07d251c59",
+ "id": "10",
"metadata": {},
"source": [
"完成IMDB数据加载器后,加载训练数据集进行测试,输出数据集数量:"
@@ -237,21 +219,10 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "id": "e08908b9-4997-4c93-a1e1-d1573991d729",
+ "execution_count": null,
+ "id": "11",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "25000"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"imdb_train = IMDBData(imdb_path, 'train')\n",
"len(imdb_train)"
@@ -259,7 +230,7 @@
},
{
"cell_type": "markdown",
- "id": "f6a05899-85f4-4e84-803a-e6afb3e784a7",
+ "id": "12",
"metadata": {},
"source": [
"将IMDB数据集加载至内存并构造为迭代对象后,可以使用`mindspore.dataset`提供的`Generatordataset`接口加载数据集迭代对象,并进行下一步的数据处理,下面封装一个函数将train和test分别使用`Generatordataset`进行加载,并指定数据集中文本和标签的`column_name`分别为`text`和`label`:"
@@ -267,21 +238,10 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "id": "cbf93849-0061-41e3-b49e-0f6475c84f00",
+ "execution_count": null,
+ "id": "13",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(4694,ffff9b460010,python):2024-11-22-16:14:29.588.533 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(4694,ffff9b460010,python):2024-11-22-16:14:29.588.591 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(4694,ffff9b460010,python):2024-11-22-16:14:29.588.627 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:14:29.737.886 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore.dataset as ds\n",
"\n",
@@ -293,7 +253,7 @@
},
{
"cell_type": "markdown",
- "id": "145600b6-a525-46dd-952c-8f83db5c7eae",
+ "id": "14",
"metadata": {},
"source": [
"加载IMDB数据集,可以看到`imdb_train`是一个GeneratorDataset对象。"
@@ -301,21 +261,10 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "id": "2471d850-6770-4308-bcbe-40b5bbd919db",
+ "execution_count": null,
+ "id": "15",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"imdb_train, imdb_test = load_imdb(imdb_path)\n",
"imdb_train"
@@ -323,7 +272,7 @@
},
{
"cell_type": "markdown",
- "id": "45ee5b20-7547-4ca1-83fa-6ee083cc65a4",
+ "id": "16",
"metadata": {
"tags": []
},
@@ -344,8 +293,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "id": "519a863f-4053-4c20-93e2-b0acac829372",
+ "execution_count": null,
+ "id": "17",
"metadata": {},
"outputs": [],
"source": [
@@ -376,7 +325,7 @@
},
{
"cell_type": "markdown",
- "id": "7fa216e1-db92-4c74-868a-b0a1889810f3",
+ "id": "18",
"metadata": {},
"source": [
"由于数据集中可能存在词表没有覆盖的单词,因此需要加入``标记符;同时由于输入长度的不一致,在打包为一个batch时需要将短的文本进行填充,因此需要加入``标记符。完成后的词表长度为原词表长度+2。\n",
@@ -386,28 +335,10 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "id": "34ca0aee-7deb-45ea-8231-2be5f9c2e632",
+ "execution_count": null,
+ "id": "19",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 862182613/862182613 [01:03<00:00, 13613579.64B/s]\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "400002"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"glove_path = download('glove.6B.zip', 'https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/glove.6B.zip')\n",
"vocab, embeddings = load_glove(glove_path)\n",
@@ -416,7 +347,7 @@
},
{
"cell_type": "markdown",
- "id": "0f199e78-e711-4801-87f0-a099289bdfc1",
+ "id": "20",
"metadata": {},
"source": [
"使用词表将`the`转换为index id,并查询词向量矩阵对应的词向量:"
@@ -424,38 +355,10 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "id": "b12e8554-496c-4f35-a0bc-67a3f60ff488",
+ "execution_count": null,
+ "id": "21",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(0,\n",
- " array([-0.038194, -0.24487 , 0.72812 , -0.39961 , 0.083172, 0.043953,\n",
- " -0.39141 , 0.3344 , -0.57545 , 0.087459, 0.28787 , -0.06731 ,\n",
- " 0.30906 , -0.26384 , -0.13231 , -0.20757 , 0.33395 , -0.33848 ,\n",
- " -0.31743 , -0.48336 , 0.1464 , -0.37304 , 0.34577 , 0.052041,\n",
- " 0.44946 , -0.46971 , 0.02628 , -0.54155 , -0.15518 , -0.14107 ,\n",
- " -0.039722, 0.28277 , 0.14393 , 0.23464 , -0.31021 , 0.086173,\n",
- " 0.20397 , 0.52624 , 0.17164 , -0.082378, -0.71787 , -0.41531 ,\n",
- " 0.20335 , -0.12763 , 0.41367 , 0.55187 , 0.57908 , -0.33477 ,\n",
- " -0.36559 , -0.54857 , -0.062892, 0.26584 , 0.30205 , 0.99775 ,\n",
- " -0.80481 , -3.0243 , 0.01254 , -0.36942 , 2.2167 , 0.72201 ,\n",
- " -0.24978 , 0.92136 , 0.034514, 0.46745 , 1.1079 , -0.19358 ,\n",
- " -0.074575, 0.23353 , -0.052062, -0.22044 , 0.057162, -0.15806 ,\n",
- " -0.30798 , -0.41625 , 0.37972 , 0.15006 , -0.53212 , -0.2055 ,\n",
- " -1.2526 , 0.071624, 0.70565 , 0.49744 , -0.42063 , 0.26148 ,\n",
- " -1.538 , -0.30223 , -0.073438, -0.28312 , 0.37104 , -0.25217 ,\n",
- " 0.016215, -0.017099, -0.38984 , 0.87424 , -0.72569 , -0.51058 ,\n",
- " -0.52028 , -0.1459 , 0.8278 , 0.27062 ], dtype=float32))"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"idx = vocab.tokens_to_ids('the')\n",
"embedding = embeddings[idx]\n",
@@ -464,7 +367,7 @@
},
{
"cell_type": "markdown",
- "id": "186eba95-4501-4427-9079-f5202f06e989",
+ "id": "22",
"metadata": {},
"source": [
"## 数据集预处理\n",
@@ -482,19 +385,10 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "id": "6a9451b7-e30b-4039-9955-40daac18b6e8",
+ "execution_count": null,
+ "id": "23",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:01.292.785 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:01.295.116 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import mindspore as ms\n",
"ms.set_context(device_target=\"Ascend\")\n",
@@ -506,7 +400,7 @@
},
{
"cell_type": "markdown",
- "id": "35e08575-85cf-4c50-8654-52bae0c3b413",
+ "id": "24",
"metadata": {},
"source": [
"完成预处理操作后,需将其加入到数据集处理流水线中,使用`map`接口对指定的column添加操作。"
@@ -514,8 +408,8 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "id": "4f8cdc63-8460-4432-baa7-297acb17dd80",
+ "execution_count": null,
+ "id": "25",
"metadata": {},
"outputs": [],
"source": [
@@ -528,7 +422,7 @@
},
{
"cell_type": "markdown",
- "id": "3efc8699-25b3-4d04-9f0c-f77c7a99703f",
+ "id": "26",
"metadata": {},
"source": [
"由于IMDB数据集本身不包含验证集,我们手动将其分割为训练和验证两部分,比例取0.7, 0.3。"
@@ -536,25 +430,17 @@
},
{
"cell_type": "code",
- "execution_count": 12,
- "id": "c8a62480-abb5-4a11-b83b-bef585e69066",
+ "execution_count": null,
+ "id": "27",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:03.701.435 [mindspore/dataset/engine/datasets.py:1231] Dataset is shuffled before split.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"imdb_train, imdb_valid = imdb_train.split([0.7, 0.3])"
]
},
{
"cell_type": "markdown",
- "id": "ec8a81cf-2376-4840-9bda-84338897f8af",
+ "id": "28",
"metadata": {},
"source": [
"最后指定数据集的batch大小,通过`batch`接口指定,并设置是否丢弃无法被batch size整除的剩余数据。\n",
@@ -564,8 +450,8 @@
},
{
"cell_type": "code",
- "execution_count": 13,
- "id": "8b9988cf-0dfb-424d-930a-1dc2f1ff9176",
+ "execution_count": null,
+ "id": "29",
"metadata": {},
"outputs": [],
"source": [
@@ -575,7 +461,7 @@
},
{
"cell_type": "markdown",
- "id": "bfab4316-c35d-430d-bfaa-7af9b4f5b736",
+ "id": "30",
"metadata": {},
"source": [
"## 模型构建\n",
@@ -591,7 +477,7 @@
},
{
"cell_type": "markdown",
- "id": "f64cdfd1-4fef-4394-a4ea-e5e7b509a9cc",
+ "id": "31",
"metadata": {},
"source": [
"### Embedding\n",
@@ -637,19 +523,10 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "id": "c0f1e26d-1b7c-4d50-947d-4fdda527b651",
+ "execution_count": null,
+ "id": "32",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:09.229.763 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:09.231.974 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import math\n",
"import mindspore as ms\n",
@@ -683,7 +560,7 @@
},
{
"cell_type": "markdown",
- "id": "8e703dd4-aa69-4b16-a2c6-95219d7a95f5",
+ "id": "33",
"metadata": {},
"source": [
"### 损失函数与优化器\n",
@@ -693,18 +570,10 @@
},
{
"cell_type": "code",
- "execution_count": 15,
- "id": "591b1301-e9e3-44eb-a88b-09d2e807f9f9",
+ "execution_count": null,
+ "id": "34",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] CORE(4694,ffff9b460010,python):2024-11-22-16:17:10.940.604 [mindspore/core/utils/ms_context.cc:530] GetJitLevel] Set jit level to O2 for rank table startup method.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"hidden_size = 256\n",
"output_size = 1\n",
@@ -720,7 +589,7 @@
},
{
"cell_type": "markdown",
- "id": "db8ee0e4-2381-4c4c-b493-60c40396165d",
+ "id": "35",
"metadata": {},
"source": [
"### 训练逻辑\n",
@@ -736,8 +605,8 @@
},
{
"cell_type": "code",
- "execution_count": 16,
- "id": "f5479830-8370-484d-a6ae-2a5985ab43b3",
+ "execution_count": null,
+ "id": "36",
"metadata": {},
"outputs": [],
"source": [
@@ -770,7 +639,7 @@
},
{
"cell_type": "markdown",
- "id": "95ffc4b0-2779-46a8-a952-7d4f404943f6",
+ "id": "37",
"metadata": {},
"source": [
"### 评估指标和逻辑\n",
@@ -780,8 +649,8 @@
},
{
"cell_type": "code",
- "execution_count": 17,
- "id": "028a0b84-deee-4d1b-a1ad-a6ad515fd22f",
+ "execution_count": null,
+ "id": "38",
"metadata": {},
"outputs": [],
"source": [
@@ -799,7 +668,7 @@
},
{
"cell_type": "markdown",
- "id": "db89c215-0152-4bc1-9ae5-f82a6d4a3261",
+ "id": "39",
"metadata": {},
"source": [
"有了准确率计算函数后,类似于训练逻辑,对评估逻辑进行设计, 分别为以下步骤:\n",
@@ -816,8 +685,8 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "id": "78bfafbc-3a10-4aab-b9bb-3189f84bc81a",
+ "execution_count": null,
+ "id": "40",
"metadata": {},
"outputs": [],
"source": [
@@ -847,7 +716,7 @@
},
{
"cell_type": "markdown",
- "id": "126a6e44-3401-4b5d-b169-6f33584670a0",
+ "id": "41",
"metadata": {},
"source": [
"## 模型训练与保存\n",
@@ -857,43 +726,10 @@
},
{
"cell_type": "code",
- "execution_count": 19,
- "id": "851ec476-ca3a-439c-95db-55312dbda7c2",
+ "execution_count": null,
+ "id": "42",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:22.830.118 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(4694:281473286799376,MainProcess):2024-11-22-16:17:22.833.006 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "Epoch 0: 0%| | 0/273 [00:00, ?it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Epoch 0: 100%|██████████| 273/273 [04:36<00:00, 1.01s/it, loss=0.636]\n",
- "Epoch 0: 100%|██████████| 117/117 [00:16<00:00, 7.19it/s, acc=0.712, loss=0.59] \n",
- "Epoch 1: 100%|██████████| 273/273 [03:24<00:00, 1.33it/s, loss=0.5] \n",
- "Epoch 1: 100%|██████████| 117/117 [00:16<00:00, 6.95it/s, acc=0.863, loss=0.339]\n",
- "Epoch 2: 100%|██████████| 273/273 [03:26<00:00, 1.32it/s, loss=0.323]\n",
- "Epoch 2: 100%|██████████| 117/117 [00:16<00:00, 7.16it/s, acc=0.871, loss=0.314]\n",
- "Epoch 3: 100%|██████████| 273/273 [03:33<00:00, 1.28it/s, loss=0.248]\n",
- "Epoch 3: 100%|██████████| 117/117 [00:15<00:00, 7.48it/s, acc=0.935, loss=0.201]\n",
- "Epoch 4: 100%|██████████| 273/273 [03:29<00:00, 1.30it/s, loss=0.188]\n",
- "Epoch 4: 100%|██████████| 117/117 [00:15<00:00, 7.40it/s, acc=0.958, loss=0.136]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"ms.set_context(device_target=\"Ascend\")\n",
"\n",
@@ -912,7 +748,7 @@
},
{
"cell_type": "markdown",
- "id": "7299006e-0fe9-4b9e-b1eb-b825bea8a24e",
+ "id": "43",
"metadata": {},
"source": [
"可以看到每轮Loss逐步下降,在验证集上的准确率逐步提升。"
@@ -920,7 +756,7 @@
},
{
"cell_type": "markdown",
- "id": "9ccc7b0d-9055-4cab-9b6d-46bc0b06f60a",
+ "id": "44",
"metadata": {},
"source": [
"## 模型加载与测试\n",
@@ -932,21 +768,10 @@
},
{
"cell_type": "code",
- "execution_count": 20,
- "id": "d477ec12-04ff-488b-8d31-ae82e5e9be2f",
+ "execution_count": null,
+ "id": "45",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "([], [])"
- ]
- },
- "execution_count": 20,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"param_dict = ms.load_checkpoint(ckpt_file_name)\n",
"ms.load_param_into_net(model, param_dict)"
@@ -954,7 +779,7 @@
},
{
"cell_type": "markdown",
- "id": "244a8caa-6c81-47cf-b8f2-73e041acedb6",
+ "id": "46",
"metadata": {},
"source": [
"对测试集打batch,然后使用evaluate方法进行评估,得到模型在测试集上的效果。"
@@ -962,28 +787,10 @@
},
{
"cell_type": "code",
- "execution_count": 21,
- "id": "b3969ddd-ef79-433b-8f3a-dafaaf0a0540",
+ "execution_count": null,
+ "id": "47",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Epoch 0: 100%|██████████| 391/391 [00:26<00:00, 14.68it/s, acc=0.856, loss=0.424]\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "0.4239299254077475"
- ]
- },
- "execution_count": 21,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"imdb_test = imdb_test.batch(64)\n",
"evaluate(model, imdb_test, loss_fn)"
@@ -991,7 +798,7 @@
},
{
"cell_type": "markdown",
- "id": "0f5be370-edc3-4453-802a-f5eea34cd77f",
+ "id": "48",
"metadata": {},
"source": [
"## 自定义输入测试\n",
@@ -1009,8 +816,8 @@
},
{
"cell_type": "code",
- "execution_count": 22,
- "id": "b35902c6-84a3-4879-8fde-2d6f322f49eb",
+ "execution_count": null,
+ "id": "49",
"metadata": {},
"outputs": [],
"source": [
@@ -1031,7 +838,7 @@
},
{
"cell_type": "markdown",
- "id": "68b87324-889b-4061-888c-4cd260f5c1d8",
+ "id": "50",
"metadata": {},
"source": [
"最后我们预测开头的样例,可以看到模型可以很好地将评价语句的情感进行分类。"
@@ -1039,42 +846,20 @@
},
{
"cell_type": "code",
- "execution_count": 23,
- "id": "4f6ea007-96a9-4b7c-9f5c-59329c0c7de9",
+ "execution_count": null,
+ "id": "51",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'Negative'"
- ]
- },
- "execution_count": 23,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"predict_sentiment(model, vocab, \"This film is terrible\")"
]
},
{
"cell_type": "code",
- "execution_count": 24,
- "id": "d6d9108e-8151-4ccc-a433-b33f437f1c24",
+ "execution_count": null,
+ "id": "52",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'Positive'"
- ]
- },
- "execution_count": 24,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"predict_sentiment(model, vocab, \"This film is great\")"
]
diff --git a/Season2.step_into_llm/16.Practical-cases/shufflenet/mindspore_shufflenet.ipynb b/Season2.step_into_llm/16.Practical-cases/shufflenet/mindspore_shufflenet.ipynb
index 29d5d5d..0aa7f24 100644
--- a/Season2.step_into_llm/16.Practical-cases/shufflenet/mindspore_shufflenet.ipynb
+++ b/Season2.step_into_llm/16.Practical-cases/shufflenet/mindspore_shufflenet.ipynb
@@ -41,20 +41,9 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] GE_ADPT(168277,ffffb39b2010,python):2024-12-19-17:59:30.790.628 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleGetModelId failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleGetModelId\n",
- "[WARNING] GE_ADPT(168277,ffffb39b2010,python):2024-12-19-17:59:30.790.684 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleLoadFromMem failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleLoadFromMem\n",
- "[WARNING] GE_ADPT(168277,ffffb39b2010,python):2024-12-19-17:59:30.790.702 [mindspore/ccsrc/utils/dlopen_macro.h:163] DlsymAscend] Dynamically load symbol aclmdlBundleUnload failed, result = /usr/local/Ascend/ascend-toolkit/latest/lib64/libascendcl.so: undefined symbol: aclmdlBundleUnload\n",
- "[WARNING] ME(168277:281473695031312,MainProcess):2024-12-19-17:59:30.912.829 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindspore import nn\n",
"import mindspore.ops as ops\n",
@@ -118,7 +107,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -193,7 +182,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -272,31 +261,9 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz (162.2 MB)\n",
- "\n",
- "file_sizes: 100%|████████████████████████████| 170M/170M [00:14<00:00, 11.4MB/s]\n",
- "Extracting tar.gz file...\n",
- "Successfully downloaded / unzipped to ./dataset\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "'./dataset'"
- ]
- },
- "execution_count": 12,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from download import download\n",
"\n",
@@ -307,7 +274,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -355,10870 +322,9 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(7712:281473579339792,MainProcess):2024-12-19-16:16:17.982.151 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(7712:281473579339792,MainProcess):2024-12-19-16:16:17.984.986 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model size is 2.0x\n",
- "============== Starting Training ==============\n",
- "-\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/Ascend/ascend-toolkit/8.0.RC3.alpha001/opp/built-in/op_impl/ai_core/tbe/impl/util/util_conv2d_dynamic.py:130: UserWarning: conv2d fmap ori_range changed from [[32, 2147483647], [48, 48], [16, 63], [16, 63]] to [[32, 2147483647], [48, 48], [16, 63], (16, 63)].\n",
- " warnings.warn(to_print)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\\\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/Ascend/ascend-toolkit/8.0.RC3.alpha001/opp/built-in/op_impl/ai_core/tbe/impl/util/util_conv2d_dynamic.py:130: UserWarning: conv2d fmap ori_range changed from [[32, 2147483647], [480, 480], [16, 63], [16, 63]] to [[32, 2147483647], [480, 480], [16, 63], (16, 63)].\n",
- " warnings.warn(to_print)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "|\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/Ascend/ascend-toolkit/8.0.RC3.alpha001/opp/built-in/op_impl/ai_core/tbe/impl/util/util_conv2d_dynamic.py:130: UserWarning: conv2d fmap ori_range changed from [[32, 2147483647], [960, 960], [4, 15], [4, 15]] to [[32, 2147483647], [960, 960], [4, 15], (4, 15)].\n",
- " warnings.warn(to_print)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "/\r"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/Ascend/ascend-toolkit/8.0.RC3.alpha001/opp/built-in/op_impl/ai_core/tbe/impl/util/util_conv2d_dynamic.py:130: UserWarning: conv2d fmap ori_range changed from [[32, 2147483647], [1920, 1920], [7, 15], [7, 15]] to [[32, 2147483647], [1920, 1920], [7, 15], (7, 15)].\n",
- " warnings.warn(to_print)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "epoch: 1 step: 1, loss is 2.75980544090271\n",
- "epoch: 1 step: 2, loss is 2.5670511722564697\n",
- "epoch: 1 step: 3, loss is 2.4105427265167236\n",
- "epoch: 1 step: 4, loss is 2.3655662536621094\n",
- "epoch: 1 step: 5, loss is 2.4783384799957275\n",
- "epoch: 1 step: 6, loss is 2.557666301727295\n",
- "epoch: 1 step: 7, loss is 2.7726364135742188\n",
- "epoch: 1 step: 8, loss is 2.708310127258301\n",
- "epoch: 1 step: 9, loss is 2.580253839492798\n",
- "epoch: 1 step: 10, loss is 2.372993230819702\n",
- "epoch: 1 step: 11, loss is 2.3711836338043213\n",
- "epoch: 1 step: 12, loss is 2.3730173110961914\n",
- "epoch: 1 step: 13, loss is 2.4239094257354736\n",
- "epoch: 1 step: 14, loss is 2.5057613849639893\n",
- "epoch: 1 step: 15, loss is 2.52937388420105\n",
- "epoch: 1 step: 16, loss is 2.354022741317749\n",
- "epoch: 1 step: 17, loss is 2.2720425128936768\n",
- "epoch: 1 step: 18, loss is 2.3076610565185547\n",
- "epoch: 1 step: 19, loss is 2.3866496086120605\n",
- "epoch: 1 step: 20, loss is 2.404115676879883\n",
- "epoch: 1 step: 21, loss is 2.37735652923584\n",
- "epoch: 1 step: 22, loss is 2.303785800933838\n",
- "epoch: 1 step: 23, loss is 2.309417247772217\n",
- "epoch: 1 step: 24, loss is 2.3778350353240967\n",
- "epoch: 1 step: 25, loss is 2.2510104179382324\n",
- "epoch: 1 step: 26, loss is 2.2096996307373047\n",
- "epoch: 1 step: 27, loss is 2.280653953552246\n",
- "epoch: 1 step: 28, loss is 2.336916446685791\n",
- "epoch: 1 step: 29, loss is 2.2206225395202637\n",
- "epoch: 1 step: 30, loss is 2.1820828914642334\n",
- "epoch: 1 step: 31, loss is 2.191270351409912\n",
- "epoch: 1 step: 32, loss is 2.2589340209960938\n",
- "epoch: 1 step: 33, loss is 2.2834393978118896\n",
- "epoch: 1 step: 34, loss is 2.2658863067626953\n",
- "epoch: 1 step: 35, loss is 2.233153820037842\n",
- "epoch: 1 step: 36, loss is 2.170480728149414\n",
- "epoch: 1 step: 37, loss is 2.245612144470215\n",
- "epoch: 1 step: 38, loss is 2.1554932594299316\n",
- "epoch: 1 step: 39, loss is 2.161050319671631\n",
- "epoch: 1 step: 40, loss is 2.17901611328125\n",
- "epoch: 1 step: 41, loss is 2.231091022491455\n",
- "epoch: 1 step: 42, loss is 2.172175884246826\n",
- "epoch: 1 step: 43, loss is 2.13637113571167\n",
- "epoch: 1 step: 44, loss is 2.1085221767425537\n",
- "epoch: 1 step: 45, loss is 2.149837017059326\n",
- "epoch: 1 step: 46, loss is 2.1344566345214844\n",
- "epoch: 1 step: 47, loss is 2.1971163749694824\n",
- "epoch: 1 step: 48, loss is 2.1419458389282227\n",
- "epoch: 1 step: 49, loss is 2.100971221923828\n",
- "epoch: 1 step: 50, loss is 2.0694847106933594\n",
- "epoch: 1 step: 51, loss is 1.9892370700836182\n",
- "epoch: 1 step: 52, loss is 2.112950325012207\n",
- "epoch: 1 step: 53, loss is 2.124391555786133\n",
- "epoch: 1 step: 54, loss is 2.105656862258911\n",
- "epoch: 1 step: 55, loss is 2.022850275039673\n",
- "epoch: 1 step: 56, loss is 2.024585485458374\n",
- "epoch: 1 step: 57, loss is 2.020308494567871\n",
- "epoch: 1 step: 58, loss is 2.108119010925293\n",
- "epoch: 1 step: 59, loss is 2.0770769119262695\n",
- "epoch: 1 step: 60, loss is 2.1304168701171875\n",
- "epoch: 1 step: 61, loss is 2.028489589691162\n",
- "epoch: 1 step: 62, loss is 2.001586437225342\n",
- "epoch: 1 step: 63, loss is 2.0726583003997803\n",
- "epoch: 1 step: 64, loss is 2.0158157348632812\n",
- "epoch: 1 step: 65, loss is 2.0902786254882812\n",
- "epoch: 1 step: 66, loss is 2.0740370750427246\n",
- "epoch: 1 step: 67, loss is 2.02785325050354\n",
- "epoch: 1 step: 68, loss is 2.0279736518859863\n",
- "epoch: 1 step: 69, loss is 2.0466506481170654\n",
- "epoch: 1 step: 70, loss is 2.074131488800049\n",
- "epoch: 1 step: 71, loss is 2.058871030807495\n",
- "epoch: 1 step: 72, loss is 2.019763708114624\n",
- "epoch: 1 step: 73, loss is 2.046131134033203\n",
- "epoch: 1 step: 74, loss is 1.9550176858901978\n",
- "epoch: 1 step: 75, loss is 2.0520830154418945\n",
- "epoch: 1 step: 76, loss is 2.1202194690704346\n",
- "epoch: 1 step: 77, loss is 2.0659918785095215\n",
- "epoch: 1 step: 78, loss is 2.027775526046753\n",
- "epoch: 1 step: 79, loss is 1.9887727499008179\n",
- "epoch: 1 step: 80, loss is 1.9759016036987305\n",
- "epoch: 1 step: 81, loss is 2.0818727016448975\n",
- "epoch: 1 step: 82, loss is 2.0271098613739014\n",
- "epoch: 1 step: 83, loss is 2.029927968978882\n",
- "epoch: 1 step: 84, loss is 2.0566868782043457\n",
- "epoch: 1 step: 85, loss is 1.9924031496047974\n",
- "epoch: 1 step: 86, loss is 1.996401071548462\n",
- "epoch: 1 step: 87, loss is 1.9768834114074707\n",
- "epoch: 1 step: 88, loss is 2.0737290382385254\n",
- "epoch: 1 step: 89, loss is 2.0161893367767334\n",
- "epoch: 1 step: 90, loss is 1.9706740379333496\n",
- "epoch: 1 step: 91, loss is 2.0001158714294434\n",
- "epoch: 1 step: 92, loss is 2.046380043029785\n",
- "epoch: 1 step: 93, loss is 2.0490479469299316\n",
- "epoch: 1 step: 94, loss is 2.0252761840820312\n",
- "epoch: 1 step: 95, loss is 2.043809652328491\n",
- "epoch: 1 step: 96, loss is 1.9563770294189453\n",
- "epoch: 1 step: 97, loss is 2.049975872039795\n",
- "epoch: 1 step: 98, loss is 1.9703243970870972\n",
- "epoch: 1 step: 99, loss is 1.9601037502288818\n",
- "epoch: 1 step: 100, loss is 2.0626094341278076\n",
- "epoch: 1 step: 101, loss is 2.057330369949341\n",
- "epoch: 1 step: 102, loss is 1.9933860301971436\n",
- "epoch: 1 step: 103, loss is 1.9648717641830444\n",
- "epoch: 1 step: 104, loss is 1.9323358535766602\n",
- "epoch: 1 step: 105, loss is 2.0042471885681152\n",
- "epoch: 1 step: 106, loss is 1.9503452777862549\n",
- "epoch: 1 step: 107, loss is 2.063812255859375\n",
- "epoch: 1 step: 108, loss is 2.0226542949676514\n",
- "epoch: 1 step: 109, loss is 1.9879087209701538\n",
- "epoch: 1 step: 110, loss is 2.0272059440612793\n",
- "epoch: 1 step: 111, loss is 2.0028254985809326\n",
- "epoch: 1 step: 112, loss is 1.9343068599700928\n",
- "epoch: 1 step: 113, loss is 2.0272648334503174\n",
- "epoch: 1 step: 114, loss is 1.972496747970581\n",
- "epoch: 1 step: 115, loss is 2.008842945098877\n",
- "epoch: 1 step: 116, loss is 1.990540862083435\n",
- "epoch: 1 step: 117, loss is 2.0785160064697266\n",
- "epoch: 1 step: 118, loss is 2.073641300201416\n",
- "epoch: 1 step: 119, loss is 1.9699013233184814\n",
- "epoch: 1 step: 120, loss is 1.9664998054504395\n",
- "epoch: 1 step: 121, loss is 1.9853829145431519\n",
- "epoch: 1 step: 122, loss is 1.9614557027816772\n",
- "epoch: 1 step: 123, loss is 2.0395641326904297\n",
- "epoch: 1 step: 124, loss is 1.9586012363433838\n",
- "epoch: 1 step: 125, loss is 1.935078501701355\n",
- "epoch: 1 step: 126, loss is 1.917393445968628\n",
- "epoch: 1 step: 127, loss is 1.9316489696502686\n",
- "epoch: 1 step: 128, loss is 1.9924571514129639\n",
- "epoch: 1 step: 129, loss is 1.9180103540420532\n",
- "epoch: 1 step: 130, loss is 1.8830822706222534\n",
- "epoch: 1 step: 131, loss is 1.9893871545791626\n",
- "epoch: 1 step: 132, loss is 2.0457324981689453\n",
- "epoch: 1 step: 133, loss is 1.9473958015441895\n",
- "epoch: 1 step: 134, loss is 1.9713988304138184\n",
- "epoch: 1 step: 135, loss is 1.9245795011520386\n",
- "epoch: 1 step: 136, loss is 2.0111937522888184\n",
- "epoch: 1 step: 137, loss is 1.9782899618148804\n",
- "epoch: 1 step: 138, loss is 2.011812448501587\n",
- "epoch: 1 step: 139, loss is 1.9299283027648926\n",
- "epoch: 1 step: 140, loss is 1.9381563663482666\n",
- "epoch: 1 step: 141, loss is 1.8691617250442505\n",
- "epoch: 1 step: 142, loss is 1.9355195760726929\n",
- "epoch: 1 step: 143, loss is 2.0354208946228027\n",
- "epoch: 1 step: 144, loss is 1.9860905408859253\n",
- "epoch: 1 step: 145, loss is 1.8859858512878418\n",
- "epoch: 1 step: 146, loss is 1.9505501985549927\n",
- "epoch: 1 step: 147, loss is 1.9749855995178223\n",
- "epoch: 1 step: 148, loss is 2.0081610679626465\n",
- "epoch: 1 step: 149, loss is 1.9252101182937622\n",
- "epoch: 1 step: 150, loss is 1.9293466806411743\n",
- "epoch: 1 step: 151, loss is 1.880336880683899\n",
- "epoch: 1 step: 152, loss is 1.9007970094680786\n",
- "epoch: 1 step: 153, loss is 1.9256908893585205\n",
- "epoch: 1 step: 154, loss is 1.903590440750122\n",
- "epoch: 1 step: 155, loss is 1.9196360111236572\n",
- "epoch: 1 step: 156, loss is 1.8820894956588745\n",
- "epoch: 1 step: 157, loss is 1.878994107246399\n",
- "epoch: 1 step: 158, loss is 1.950648307800293\n",
- "epoch: 1 step: 159, loss is 1.9154410362243652\n",
- "epoch: 1 step: 160, loss is 1.8783516883850098\n",
- "epoch: 1 step: 161, loss is 1.9601423740386963\n",
- "epoch: 1 step: 162, loss is 1.8808218240737915\n",
- "epoch: 1 step: 163, loss is 1.9126462936401367\n",
- "epoch: 1 step: 164, loss is 1.9157588481903076\n",
- "epoch: 1 step: 165, loss is 1.8644219636917114\n",
- "epoch: 1 step: 166, loss is 1.8545265197753906\n",
- "epoch: 1 step: 167, loss is 1.8698030710220337\n",
- "epoch: 1 step: 168, loss is 1.9071085453033447\n",
- "epoch: 1 step: 169, loss is 1.916622281074524\n",
- "epoch: 1 step: 170, loss is 1.9241015911102295\n",
- "epoch: 1 step: 171, loss is 1.9427170753479004\n",
- "epoch: 1 step: 172, loss is 1.8719244003295898\n",
- "epoch: 1 step: 173, loss is 1.9249184131622314\n",
- "epoch: 1 step: 174, loss is 1.8090195655822754\n",
- "epoch: 1 step: 175, loss is 1.916797161102295\n",
- "epoch: 1 step: 176, loss is 1.9270663261413574\n",
- "epoch: 1 step: 177, loss is 1.9432189464569092\n",
- "epoch: 1 step: 178, loss is 1.8819589614868164\n",
- "epoch: 1 step: 179, loss is 1.9404748678207397\n",
- "epoch: 1 step: 180, loss is 1.8541083335876465\n",
- "epoch: 1 step: 181, loss is 1.9062340259552002\n",
- "epoch: 1 step: 182, loss is 1.9527924060821533\n",
- "epoch: 1 step: 183, loss is 1.8839168548583984\n",
- "epoch: 1 step: 184, loss is 1.9268646240234375\n",
- "epoch: 1 step: 185, loss is 1.8324300050735474\n",
- "epoch: 1 step: 186, loss is 1.8515335321426392\n",
- "epoch: 1 step: 187, loss is 1.8711837530136108\n",
- "epoch: 1 step: 188, loss is 1.9212442636489868\n",
- "epoch: 1 step: 189, loss is 1.9718868732452393\n",
- "epoch: 1 step: 190, loss is 1.9413766860961914\n",
- "epoch: 1 step: 191, loss is 1.915600061416626\n",
- "epoch: 1 step: 192, loss is 1.8985328674316406\n",
- "epoch: 1 step: 193, loss is 1.8649976253509521\n",
- "epoch: 1 step: 194, loss is 1.8688143491744995\n",
- "epoch: 1 step: 195, loss is 1.8243794441223145\n",
- "Train epoch time: 225782.011 ms, per step time: 1157.856 ms\n",
- "epoch: 2 step: 1, loss is 1.8835930824279785\n",
- "epoch: 2 step: 2, loss is 1.8765673637390137\n",
- "epoch: 2 step: 3, loss is 1.9059536457061768\n",
- "epoch: 2 step: 4, loss is 1.8868937492370605\n",
- "epoch: 2 step: 5, loss is 1.839110016822815\n",
- "epoch: 2 step: 6, loss is 1.8309670686721802\n",
- "epoch: 2 step: 7, loss is 1.8669013977050781\n",
- "epoch: 2 step: 8, loss is 1.9598655700683594\n",
- "epoch: 2 step: 9, loss is 1.849687099456787\n",
- "epoch: 2 step: 10, loss is 1.8534170389175415\n",
- "epoch: 2 step: 11, loss is 1.908738374710083\n",
- "epoch: 2 step: 12, loss is 1.8766202926635742\n",
- "epoch: 2 step: 13, loss is 1.8670843839645386\n",
- "epoch: 2 step: 14, loss is 1.9053030014038086\n",
- "epoch: 2 step: 15, loss is 1.8498446941375732\n",
- "epoch: 2 step: 16, loss is 1.83674955368042\n",
- "epoch: 2 step: 17, loss is 1.8222582340240479\n",
- "epoch: 2 step: 18, loss is 1.8349320888519287\n",
- "epoch: 2 step: 19, loss is 1.8130180835723877\n",
- "epoch: 2 step: 20, loss is 1.8537371158599854\n",
- "epoch: 2 step: 21, loss is 1.8492515087127686\n",
- "epoch: 2 step: 22, loss is 1.8609511852264404\n",
- "epoch: 2 step: 23, loss is 1.8824775218963623\n",
- "epoch: 2 step: 24, loss is 1.8832416534423828\n",
- "epoch: 2 step: 25, loss is 1.9459093809127808\n",
- "epoch: 2 step: 26, loss is 1.8674077987670898\n",
- "epoch: 2 step: 27, loss is 1.9142320156097412\n",
- "epoch: 2 step: 28, loss is 1.8707239627838135\n",
- "epoch: 2 step: 29, loss is 1.818388819694519\n",
- "epoch: 2 step: 30, loss is 1.868898868560791\n",
- "epoch: 2 step: 31, loss is 1.875065565109253\n",
- "epoch: 2 step: 32, loss is 1.85364830493927\n",
- "epoch: 2 step: 33, loss is 1.8230578899383545\n",
- "epoch: 2 step: 34, loss is 1.8882098197937012\n",
- "epoch: 2 step: 35, loss is 1.885534405708313\n",
- "epoch: 2 step: 36, loss is 1.9048235416412354\n",
- "epoch: 2 step: 37, loss is 1.8643020391464233\n",
- "epoch: 2 step: 38, loss is 1.827202320098877\n",
- "epoch: 2 step: 39, loss is 1.8662165403366089\n",
- "epoch: 2 step: 40, loss is 1.9586678743362427\n",
- "epoch: 2 step: 41, loss is 1.7446067333221436\n",
- "epoch: 2 step: 42, loss is 1.820096492767334\n",
- "epoch: 2 step: 43, loss is 1.836179494857788\n",
- "epoch: 2 step: 44, loss is 1.842527151107788\n",
- "epoch: 2 step: 45, loss is 1.8931591510772705\n",
- "epoch: 2 step: 46, loss is 1.9003570079803467\n",
- "epoch: 2 step: 47, loss is 1.9502613544464111\n",
- "epoch: 2 step: 48, loss is 1.8058934211730957\n",
- "epoch: 2 step: 49, loss is 1.869890570640564\n",
- "epoch: 2 step: 50, loss is 1.8696047067642212\n",
- "epoch: 2 step: 51, loss is 1.8107106685638428\n",
- "epoch: 2 step: 52, loss is 1.8398702144622803\n",
- "epoch: 2 step: 53, loss is 1.8218626976013184\n",
- "epoch: 2 step: 54, loss is 1.8827303647994995\n",
- "epoch: 2 step: 55, loss is 1.8509058952331543\n",
- "epoch: 2 step: 56, loss is 1.820065975189209\n",
- "epoch: 2 step: 57, loss is 1.840116262435913\n",
- "epoch: 2 step: 58, loss is 1.8949873447418213\n",
- "epoch: 2 step: 59, loss is 1.8778489828109741\n",
- "epoch: 2 step: 60, loss is 1.8530941009521484\n",
- "epoch: 2 step: 61, loss is 1.769039273262024\n",
- "epoch: 2 step: 62, loss is 1.8116259574890137\n",
- "epoch: 2 step: 63, loss is 1.797375202178955\n",
- "epoch: 2 step: 64, loss is 1.7704265117645264\n",
- "epoch: 2 step: 65, loss is 1.90865957736969\n",
- "epoch: 2 step: 66, loss is 1.8896136283874512\n",
- "epoch: 2 step: 67, loss is 1.823585033416748\n",
- "epoch: 2 step: 68, loss is 1.8057748079299927\n",
- "epoch: 2 step: 69, loss is 1.8464064598083496\n",
- "epoch: 2 step: 70, loss is 1.9253573417663574\n",
- "epoch: 2 step: 71, loss is 1.756753921508789\n",
- "epoch: 2 step: 72, loss is 1.8651765584945679\n",
- "epoch: 2 step: 73, loss is 1.7854652404785156\n",
- "epoch: 2 step: 74, loss is 1.8520358800888062\n",
- "epoch: 2 step: 75, loss is 1.7570254802703857\n",
- "epoch: 2 step: 76, loss is 1.7863357067108154\n",
- "epoch: 2 step: 77, loss is 1.7877100706100464\n",
- "epoch: 2 step: 78, loss is 1.8751368522644043\n",
- "epoch: 2 step: 79, loss is 1.8790359497070312\n",
- "epoch: 2 step: 80, loss is 1.7300336360931396\n",
- "epoch: 2 step: 81, loss is 1.8071209192276\n",
- "epoch: 2 step: 82, loss is 1.872692346572876\n",
- "epoch: 2 step: 83, loss is 1.859041452407837\n",
- "epoch: 2 step: 84, loss is 1.8289787769317627\n",
- "epoch: 2 step: 85, loss is 1.8514699935913086\n",
- "epoch: 2 step: 86, loss is 1.7746024131774902\n",
- "epoch: 2 step: 87, loss is 1.8034545183181763\n",
- "epoch: 2 step: 88, loss is 1.8302220106124878\n",
- "epoch: 2 step: 89, loss is 1.835216999053955\n",
- "epoch: 2 step: 90, loss is 1.7966628074645996\n",
- "epoch: 2 step: 91, loss is 1.7283095121383667\n",
- "epoch: 2 step: 92, loss is 1.7857308387756348\n",
- "epoch: 2 step: 93, loss is 1.7471954822540283\n",
- "epoch: 2 step: 94, loss is 1.8245375156402588\n",
- "epoch: 2 step: 95, loss is 1.8201725482940674\n",
- "epoch: 2 step: 96, loss is 1.8172305822372437\n",
- "epoch: 2 step: 97, loss is 1.7599267959594727\n",
- "epoch: 2 step: 98, loss is 1.7652099132537842\n",
- "epoch: 2 step: 99, loss is 1.8111861944198608\n",
- "epoch: 2 step: 100, loss is 1.7994215488433838\n",
- "epoch: 2 step: 101, loss is 1.84322190284729\n",
- "epoch: 2 step: 102, loss is 1.8316501379013062\n",
- "epoch: 2 step: 103, loss is 1.8635199069976807\n",
- "epoch: 2 step: 104, loss is 1.8726353645324707\n",
- "epoch: 2 step: 105, loss is 1.785705804824829\n",
- "epoch: 2 step: 106, loss is 1.818791389465332\n",
- "epoch: 2 step: 107, loss is 1.8749570846557617\n",
- "epoch: 2 step: 108, loss is 1.6863653659820557\n",
- "epoch: 2 step: 109, loss is 1.8321771621704102\n",
- "epoch: 2 step: 110, loss is 1.7761744260787964\n",
- "epoch: 2 step: 111, loss is 1.879426121711731\n",
- "epoch: 2 step: 112, loss is 1.838904619216919\n",
- "epoch: 2 step: 113, loss is 1.81224524974823\n",
- "epoch: 2 step: 114, loss is 1.8092156648635864\n",
- "epoch: 2 step: 115, loss is 1.8144543170928955\n",
- "epoch: 2 step: 116, loss is 1.7913870811462402\n",
- "epoch: 2 step: 117, loss is 1.8155028820037842\n",
- "epoch: 2 step: 118, loss is 1.7962980270385742\n",
- "epoch: 2 step: 119, loss is 1.7516214847564697\n",
- "epoch: 2 step: 120, loss is 1.771040439605713\n",
- "epoch: 2 step: 121, loss is 1.7596282958984375\n",
- "epoch: 2 step: 122, loss is 1.8537299633026123\n",
- "epoch: 2 step: 123, loss is 1.8120876550674438\n",
- "epoch: 2 step: 124, loss is 1.8149526119232178\n",
- "epoch: 2 step: 125, loss is 1.7668054103851318\n",
- "epoch: 2 step: 126, loss is 1.768244743347168\n",
- "epoch: 2 step: 127, loss is 1.8183424472808838\n",
- "epoch: 2 step: 128, loss is 1.744974136352539\n",
- "epoch: 2 step: 129, loss is 1.7528072595596313\n",
- "epoch: 2 step: 130, loss is 1.6339621543884277\n",
- "epoch: 2 step: 131, loss is 1.7914652824401855\n",
- "epoch: 2 step: 132, loss is 1.75065279006958\n",
- "epoch: 2 step: 133, loss is 1.7865480184555054\n",
- "epoch: 2 step: 134, loss is 1.7826173305511475\n",
- "epoch: 2 step: 135, loss is 1.7941867113113403\n",
- "epoch: 2 step: 136, loss is 1.7378052473068237\n",
- "epoch: 2 step: 137, loss is 1.744471549987793\n",
- "epoch: 2 step: 138, loss is 1.8432142734527588\n",
- "epoch: 2 step: 139, loss is 1.6913396120071411\n",
- "epoch: 2 step: 140, loss is 1.78922700881958\n",
- "epoch: 2 step: 141, loss is 1.8243529796600342\n",
- "epoch: 2 step: 142, loss is 1.7244917154312134\n",
- "epoch: 2 step: 143, loss is 1.7133386135101318\n",
- "epoch: 2 step: 144, loss is 1.817855715751648\n",
- "epoch: 2 step: 145, loss is 1.681628942489624\n",
- "epoch: 2 step: 146, loss is 1.8370722532272339\n",
- "epoch: 2 step: 147, loss is 1.8401905298233032\n",
- "epoch: 2 step: 148, loss is 1.8338029384613037\n",
- "epoch: 2 step: 149, loss is 1.783419132232666\n",
- "epoch: 2 step: 150, loss is 1.8037354946136475\n",
- "epoch: 2 step: 151, loss is 1.7952284812927246\n",
- "epoch: 2 step: 152, loss is 1.7852938175201416\n",
- "epoch: 2 step: 153, loss is 1.8060368299484253\n",
- "epoch: 2 step: 154, loss is 1.7099151611328125\n",
- "epoch: 2 step: 155, loss is 1.7653192281723022\n",
- "epoch: 2 step: 156, loss is 1.7221190929412842\n",
- "epoch: 2 step: 157, loss is 1.771467685699463\n",
- "epoch: 2 step: 158, loss is 1.7833179235458374\n",
- "epoch: 2 step: 159, loss is 1.7899360656738281\n",
- "epoch: 2 step: 160, loss is 1.8668212890625\n",
- "epoch: 2 step: 161, loss is 1.758234977722168\n",
- "epoch: 2 step: 162, loss is 1.7473156452178955\n",
- "epoch: 2 step: 163, loss is 1.7216883897781372\n",
- "epoch: 2 step: 164, loss is 1.7644455432891846\n",
- "epoch: 2 step: 165, loss is 1.7482396364212036\n",
- "epoch: 2 step: 166, loss is 1.7509338855743408\n",
- "epoch: 2 step: 167, loss is 1.7386764287948608\n",
- "epoch: 2 step: 168, loss is 1.7262775897979736\n",
- "epoch: 2 step: 169, loss is 1.814494013786316\n",
- "epoch: 2 step: 170, loss is 1.7928271293640137\n",
- "epoch: 2 step: 171, loss is 1.6762036085128784\n",
- "epoch: 2 step: 172, loss is 1.7089025974273682\n",
- "epoch: 2 step: 173, loss is 1.7569890022277832\n",
- "epoch: 2 step: 174, loss is 1.8112742900848389\n",
- "epoch: 2 step: 175, loss is 1.694785237312317\n",
- "epoch: 2 step: 176, loss is 1.8345460891723633\n",
- "epoch: 2 step: 177, loss is 1.8058542013168335\n",
- "epoch: 2 step: 178, loss is 1.7824225425720215\n",
- "epoch: 2 step: 179, loss is 1.7446579933166504\n",
- "epoch: 2 step: 180, loss is 1.7286276817321777\n",
- "epoch: 2 step: 181, loss is 1.7398707866668701\n",
- "epoch: 2 step: 182, loss is 1.6718776226043701\n",
- "epoch: 2 step: 183, loss is 1.7323997020721436\n",
- "epoch: 2 step: 184, loss is 1.7368733882904053\n",
- "epoch: 2 step: 185, loss is 1.8023041486740112\n",
- "epoch: 2 step: 186, loss is 1.7890045642852783\n",
- "epoch: 2 step: 187, loss is 1.6989820003509521\n",
- "epoch: 2 step: 188, loss is 1.8555846214294434\n",
- "epoch: 2 step: 189, loss is 1.7777941226959229\n",
- "epoch: 2 step: 190, loss is 1.7652006149291992\n",
- "epoch: 2 step: 191, loss is 1.7266161441802979\n",
- "epoch: 2 step: 192, loss is 1.6861340999603271\n",
- "epoch: 2 step: 193, loss is 1.7856721878051758\n",
- "epoch: 2 step: 194, loss is 1.736732006072998\n",
- "epoch: 2 step: 195, loss is 1.7464721202850342\n",
- "Train epoch time: 115257.921 ms, per step time: 591.066 ms\n",
- "epoch: 3 step: 1, loss is 1.6841131448745728\n",
- "epoch: 3 step: 2, loss is 1.7501670122146606\n",
- "epoch: 3 step: 3, loss is 1.7752610445022583\n",
- "epoch: 3 step: 4, loss is 1.8088630437850952\n",
- "epoch: 3 step: 5, loss is 1.7312605381011963\n",
- "epoch: 3 step: 6, loss is 1.7129393815994263\n",
- "epoch: 3 step: 7, loss is 1.727431058883667\n",
- "epoch: 3 step: 8, loss is 1.810046672821045\n",
- "epoch: 3 step: 9, loss is 1.7651646137237549\n",
- "epoch: 3 step: 10, loss is 1.7154899835586548\n",
- "epoch: 3 step: 11, loss is 1.6839958429336548\n",
- "epoch: 3 step: 12, loss is 1.6822993755340576\n",
- "epoch: 3 step: 13, loss is 1.7335350513458252\n",
- "epoch: 3 step: 14, loss is 1.7258131504058838\n",
- "epoch: 3 step: 15, loss is 1.738661527633667\n",
- "epoch: 3 step: 16, loss is 1.7651036977767944\n",
- "epoch: 3 step: 17, loss is 1.784008264541626\n",
- "epoch: 3 step: 18, loss is 1.7540134191513062\n",
- "epoch: 3 step: 19, loss is 1.6211364269256592\n",
- "epoch: 3 step: 20, loss is 1.718348503112793\n",
- "epoch: 3 step: 21, loss is 1.8035595417022705\n",
- "epoch: 3 step: 22, loss is 1.720760703086853\n",
- "epoch: 3 step: 23, loss is 1.7492343187332153\n",
- "epoch: 3 step: 24, loss is 1.7155003547668457\n",
- "epoch: 3 step: 25, loss is 1.78609299659729\n",
- "epoch: 3 step: 26, loss is 1.7881174087524414\n",
- "epoch: 3 step: 27, loss is 1.7392337322235107\n",
- "epoch: 3 step: 28, loss is 1.6965761184692383\n",
- "epoch: 3 step: 29, loss is 1.7969112396240234\n",
- "epoch: 3 step: 30, loss is 1.818634033203125\n",
- "epoch: 3 step: 31, loss is 1.7111769914627075\n",
- "epoch: 3 step: 32, loss is 1.759969711303711\n",
- "epoch: 3 step: 33, loss is 1.7239017486572266\n",
- "epoch: 3 step: 34, loss is 1.6556309461593628\n",
- "epoch: 3 step: 35, loss is 1.6414852142333984\n",
- "epoch: 3 step: 36, loss is 1.7257921695709229\n",
- "epoch: 3 step: 37, loss is 1.7067492008209229\n",
- "epoch: 3 step: 38, loss is 1.6874881982803345\n",
- "epoch: 3 step: 39, loss is 1.7304046154022217\n",
- "epoch: 3 step: 40, loss is 1.7286373376846313\n",
- "epoch: 3 step: 41, loss is 1.7652695178985596\n",
- "epoch: 3 step: 42, loss is 1.7852199077606201\n",
- "epoch: 3 step: 43, loss is 1.669382929801941\n",
- "epoch: 3 step: 44, loss is 1.7078745365142822\n",
- "epoch: 3 step: 45, loss is 1.7322012186050415\n",
- "epoch: 3 step: 46, loss is 1.7248754501342773\n",
- "epoch: 3 step: 47, loss is 1.8024485111236572\n",
- "epoch: 3 step: 48, loss is 1.671626091003418\n",
- "epoch: 3 step: 49, loss is 1.7302730083465576\n",
- "epoch: 3 step: 50, loss is 1.7077665328979492\n",
- "epoch: 3 step: 51, loss is 1.6927061080932617\n",
- "epoch: 3 step: 52, loss is 1.7586188316345215\n",
- "epoch: 3 step: 53, loss is 1.76719331741333\n",
- "epoch: 3 step: 54, loss is 1.6907131671905518\n",
- "epoch: 3 step: 55, loss is 1.7159448862075806\n",
- "epoch: 3 step: 56, loss is 1.7365708351135254\n",
- "epoch: 3 step: 57, loss is 1.704948902130127\n",
- "epoch: 3 step: 58, loss is 1.7479050159454346\n",
- "epoch: 3 step: 59, loss is 1.729019284248352\n",
- "epoch: 3 step: 60, loss is 1.7397884130477905\n",
- "epoch: 3 step: 61, loss is 1.7830913066864014\n",
- "epoch: 3 step: 62, loss is 1.6789608001708984\n",
- "epoch: 3 step: 63, loss is 1.6698534488677979\n",
- "epoch: 3 step: 64, loss is 1.6799232959747314\n",
- "epoch: 3 step: 65, loss is 1.817123532295227\n",
- "epoch: 3 step: 66, loss is 1.7281492948532104\n",
- "epoch: 3 step: 67, loss is 1.7114418745040894\n",
- "epoch: 3 step: 68, loss is 1.697174310684204\n",
- "epoch: 3 step: 69, loss is 1.670013666152954\n",
- "epoch: 3 step: 70, loss is 1.7232799530029297\n",
- "epoch: 3 step: 71, loss is 1.6988884210586548\n",
- "epoch: 3 step: 72, loss is 1.6875848770141602\n",
- "epoch: 3 step: 73, loss is 1.5793190002441406\n",
- "epoch: 3 step: 74, loss is 1.773633360862732\n",
- "epoch: 3 step: 75, loss is 1.7373473644256592\n",
- "epoch: 3 step: 76, loss is 1.7004932165145874\n",
- "epoch: 3 step: 77, loss is 1.7461297512054443\n",
- "epoch: 3 step: 78, loss is 1.6598271131515503\n",
- "epoch: 3 step: 79, loss is 1.7789373397827148\n",
- "epoch: 3 step: 80, loss is 1.7122302055358887\n",
- "epoch: 3 step: 81, loss is 1.7141821384429932\n",
- "epoch: 3 step: 82, loss is 1.6238118410110474\n",
- "epoch: 3 step: 83, loss is 1.733994960784912\n",
- "epoch: 3 step: 84, loss is 1.6897964477539062\n",
- "epoch: 3 step: 85, loss is 1.7056931257247925\n",
- "epoch: 3 step: 86, loss is 1.6320717334747314\n",
- "epoch: 3 step: 87, loss is 1.6662894487380981\n",
- "epoch: 3 step: 88, loss is 1.7769612073898315\n",
- "epoch: 3 step: 89, loss is 1.710070252418518\n",
- "epoch: 3 step: 90, loss is 1.7610437870025635\n",
- "epoch: 3 step: 91, loss is 1.7293509244918823\n",
- "epoch: 3 step: 92, loss is 1.756462812423706\n",
- "epoch: 3 step: 93, loss is 1.6930468082427979\n",
- "epoch: 3 step: 94, loss is 1.7188326120376587\n",
- "epoch: 3 step: 95, loss is 1.7497308254241943\n",
- "epoch: 3 step: 96, loss is 1.8129918575286865\n",
- "epoch: 3 step: 97, loss is 1.6941945552825928\n",
- "epoch: 3 step: 98, loss is 1.641719102859497\n",
- "epoch: 3 step: 99, loss is 1.6319137811660767\n",
- "epoch: 3 step: 100, loss is 1.7291414737701416\n",
- "epoch: 3 step: 101, loss is 1.7556796073913574\n",
- "epoch: 3 step: 102, loss is 1.5970323085784912\n",
- "epoch: 3 step: 103, loss is 1.6415477991104126\n",
- "epoch: 3 step: 104, loss is 1.6172653436660767\n",
- "epoch: 3 step: 105, loss is 1.7159910202026367\n",
- "epoch: 3 step: 106, loss is 1.7129868268966675\n",
- "epoch: 3 step: 107, loss is 1.6541032791137695\n",
- "epoch: 3 step: 108, loss is 1.734543800354004\n",
- "epoch: 3 step: 109, loss is 1.6203200817108154\n",
- "epoch: 3 step: 110, loss is 1.677174687385559\n",
- "epoch: 3 step: 111, loss is 1.7477593421936035\n",
- "epoch: 3 step: 112, loss is 1.650285243988037\n",
- "epoch: 3 step: 113, loss is 1.7538528442382812\n",
- "epoch: 3 step: 114, loss is 1.7439944744110107\n",
- "epoch: 3 step: 115, loss is 1.6835726499557495\n",
- "epoch: 3 step: 116, loss is 1.6939976215362549\n",
- "epoch: 3 step: 117, loss is 1.7131999731063843\n",
- "epoch: 3 step: 118, loss is 1.7545164823532104\n",
- "epoch: 3 step: 119, loss is 1.6518956422805786\n",
- "epoch: 3 step: 120, loss is 1.6332716941833496\n",
- "epoch: 3 step: 121, loss is 1.653060793876648\n",
- "epoch: 3 step: 122, loss is 1.7415505647659302\n",
- "epoch: 3 step: 123, loss is 1.6880912780761719\n",
- "epoch: 3 step: 124, loss is 1.643927812576294\n",
- "epoch: 3 step: 125, loss is 1.6699855327606201\n",
- "epoch: 3 step: 126, loss is 1.6960227489471436\n",
- "epoch: 3 step: 127, loss is 1.6869429349899292\n",
- "epoch: 3 step: 128, loss is 1.6218465566635132\n",
- "epoch: 3 step: 129, loss is 1.6617004871368408\n",
- "epoch: 3 step: 130, loss is 1.7297581434249878\n",
- "epoch: 3 step: 131, loss is 1.6627494096755981\n",
- "epoch: 3 step: 132, loss is 1.6735060214996338\n",
- "epoch: 3 step: 133, loss is 1.6792749166488647\n",
- "epoch: 3 step: 134, loss is 1.6935715675354004\n",
- "epoch: 3 step: 135, loss is 1.7778264284133911\n",
- "epoch: 3 step: 136, loss is 1.6708532571792603\n",
- "epoch: 3 step: 137, loss is 1.6677041053771973\n",
- "epoch: 3 step: 138, loss is 1.6557347774505615\n",
- "epoch: 3 step: 139, loss is 1.7370514869689941\n",
- "epoch: 3 step: 140, loss is 1.6776245832443237\n",
- "epoch: 3 step: 141, loss is 1.7884455919265747\n",
- "epoch: 3 step: 142, loss is 1.7902798652648926\n",
- "epoch: 3 step: 143, loss is 1.6678006649017334\n",
- "epoch: 3 step: 144, loss is 1.6726068258285522\n",
- "epoch: 3 step: 145, loss is 1.6331015825271606\n",
- "epoch: 3 step: 146, loss is 1.6607431173324585\n",
- "epoch: 3 step: 147, loss is 1.727637767791748\n",
- "epoch: 3 step: 148, loss is 1.7257366180419922\n",
- "epoch: 3 step: 149, loss is 1.7135244607925415\n",
- "epoch: 3 step: 150, loss is 1.653186559677124\n",
- "epoch: 3 step: 151, loss is 1.64363431930542\n",
- "epoch: 3 step: 152, loss is 1.783362627029419\n",
- "epoch: 3 step: 153, loss is 1.6822437047958374\n",
- "epoch: 3 step: 154, loss is 1.7662022113800049\n",
- "epoch: 3 step: 155, loss is 1.6621829271316528\n",
- "epoch: 3 step: 156, loss is 1.677652359008789\n",
- "epoch: 3 step: 157, loss is 1.7367796897888184\n",
- "epoch: 3 step: 158, loss is 1.691730260848999\n",
- "epoch: 3 step: 159, loss is 1.6946136951446533\n",
- "epoch: 3 step: 160, loss is 1.7284181118011475\n",
- "epoch: 3 step: 161, loss is 1.6398156881332397\n",
- "epoch: 3 step: 162, loss is 1.5906654596328735\n",
- "epoch: 3 step: 163, loss is 1.7063485383987427\n",
- "epoch: 3 step: 164, loss is 1.7030251026153564\n",
- "epoch: 3 step: 165, loss is 1.7250406742095947\n",
- "epoch: 3 step: 166, loss is 1.6462278366088867\n",
- "epoch: 3 step: 167, loss is 1.5875654220581055\n",
- "epoch: 3 step: 168, loss is 1.6804282665252686\n",
- "epoch: 3 step: 169, loss is 1.7418447732925415\n",
- "epoch: 3 step: 170, loss is 1.7042070627212524\n",
- "epoch: 3 step: 171, loss is 1.6737473011016846\n",
- "epoch: 3 step: 172, loss is 1.6122379302978516\n",
- "epoch: 3 step: 173, loss is 1.6897451877593994\n",
- "epoch: 3 step: 174, loss is 1.6230573654174805\n",
- "epoch: 3 step: 175, loss is 1.7668870687484741\n",
- "epoch: 3 step: 176, loss is 1.5819287300109863\n",
- "epoch: 3 step: 177, loss is 1.6527924537658691\n",
- "epoch: 3 step: 178, loss is 1.678804636001587\n",
- "epoch: 3 step: 179, loss is 1.648897409439087\n",
- "epoch: 3 step: 180, loss is 1.6257283687591553\n",
- "epoch: 3 step: 181, loss is 1.6626296043395996\n",
- "epoch: 3 step: 182, loss is 1.6427736282348633\n",
- "epoch: 3 step: 183, loss is 1.6220641136169434\n",
- "epoch: 3 step: 184, loss is 1.6349902153015137\n",
- "epoch: 3 step: 185, loss is 1.6943621635437012\n",
- "epoch: 3 step: 186, loss is 1.677880048751831\n",
- "epoch: 3 step: 187, loss is 1.667533040046692\n",
- "epoch: 3 step: 188, loss is 1.5964527130126953\n",
- "epoch: 3 step: 189, loss is 1.606506109237671\n",
- "epoch: 3 step: 190, loss is 1.618372917175293\n",
- "epoch: 3 step: 191, loss is 1.6176166534423828\n",
- "epoch: 3 step: 192, loss is 1.6634066104888916\n",
- "epoch: 3 step: 193, loss is 1.5549530982971191\n",
- "epoch: 3 step: 194, loss is 1.6754807233810425\n",
- "epoch: 3 step: 195, loss is 1.5997204780578613\n",
- "Train epoch time: 109768.354 ms, per step time: 562.915 ms\n",
- "epoch: 4 step: 1, loss is 1.632151484489441\n",
- "epoch: 4 step: 2, loss is 1.7264846563339233\n",
- "epoch: 4 step: 3, loss is 1.7161239385604858\n",
- "epoch: 4 step: 4, loss is 1.671665072441101\n",
- "epoch: 4 step: 5, loss is 1.6735305786132812\n",
- "epoch: 4 step: 6, loss is 1.5976629257202148\n",
- "epoch: 4 step: 7, loss is 1.668761968612671\n",
- "epoch: 4 step: 8, loss is 1.6833436489105225\n",
- "epoch: 4 step: 9, loss is 1.6010526418685913\n",
- "epoch: 4 step: 10, loss is 1.5976853370666504\n",
- "epoch: 4 step: 11, loss is 1.6464104652404785\n",
- "epoch: 4 step: 12, loss is 1.5889983177185059\n",
- "epoch: 4 step: 13, loss is 1.57478928565979\n",
- "epoch: 4 step: 14, loss is 1.592933177947998\n",
- "epoch: 4 step: 15, loss is 1.7329944372177124\n",
- "epoch: 4 step: 16, loss is 1.7235604524612427\n",
- "epoch: 4 step: 17, loss is 1.6543910503387451\n",
- "epoch: 4 step: 18, loss is 1.6419198513031006\n",
- "epoch: 4 step: 19, loss is 1.5611886978149414\n",
- "epoch: 4 step: 20, loss is 1.5621662139892578\n",
- "epoch: 4 step: 21, loss is 1.6384258270263672\n",
- "epoch: 4 step: 22, loss is 1.6253340244293213\n",
- "epoch: 4 step: 23, loss is 1.6027189493179321\n",
- "epoch: 4 step: 24, loss is 1.692981481552124\n",
- "epoch: 4 step: 25, loss is 1.6590511798858643\n",
- "epoch: 4 step: 26, loss is 1.6275076866149902\n",
- "epoch: 4 step: 27, loss is 1.5699542760849\n",
- "epoch: 4 step: 28, loss is 1.6664592027664185\n",
- "epoch: 4 step: 29, loss is 1.6113371849060059\n",
- "epoch: 4 step: 30, loss is 1.5733962059020996\n",
- "epoch: 4 step: 31, loss is 1.651510238647461\n",
- "epoch: 4 step: 32, loss is 1.5506412982940674\n",
- "epoch: 4 step: 33, loss is 1.677369236946106\n",
- "epoch: 4 step: 34, loss is 1.6951649188995361\n",
- "epoch: 4 step: 35, loss is 1.7658153772354126\n",
- "epoch: 4 step: 36, loss is 1.6035091876983643\n",
- "epoch: 4 step: 37, loss is 1.6281245946884155\n",
- "epoch: 4 step: 38, loss is 1.6767975091934204\n",
- "epoch: 4 step: 39, loss is 1.7299246788024902\n",
- "epoch: 4 step: 40, loss is 1.6403136253356934\n",
- "epoch: 4 step: 41, loss is 1.6801038980484009\n",
- "epoch: 4 step: 42, loss is 1.6813998222351074\n",
- "epoch: 4 step: 43, loss is 1.6128292083740234\n",
- "epoch: 4 step: 44, loss is 1.5497729778289795\n",
- "epoch: 4 step: 45, loss is 1.6363134384155273\n",
- "epoch: 4 step: 46, loss is 1.658717155456543\n",
- "epoch: 4 step: 47, loss is 1.5864410400390625\n",
- "epoch: 4 step: 48, loss is 1.724147081375122\n",
- "epoch: 4 step: 49, loss is 1.6560754776000977\n",
- "epoch: 4 step: 50, loss is 1.6705589294433594\n",
- "epoch: 4 step: 51, loss is 1.6401616334915161\n",
- "epoch: 4 step: 52, loss is 1.6280434131622314\n",
- "epoch: 4 step: 53, loss is 1.6531908512115479\n",
- "epoch: 4 step: 54, loss is 1.6056238412857056\n",
- "epoch: 4 step: 55, loss is 1.591927409172058\n",
- "epoch: 4 step: 56, loss is 1.7126481533050537\n",
- "epoch: 4 step: 57, loss is 1.617047667503357\n",
- "epoch: 4 step: 58, loss is 1.6465672254562378\n",
- "epoch: 4 step: 59, loss is 1.6363983154296875\n",
- "epoch: 4 step: 60, loss is 1.600630283355713\n",
- "epoch: 4 step: 61, loss is 1.566674828529358\n",
- "epoch: 4 step: 62, loss is 1.6564844846725464\n",
- "epoch: 4 step: 63, loss is 1.6219236850738525\n",
- "epoch: 4 step: 64, loss is 1.6109635829925537\n",
- "epoch: 4 step: 65, loss is 1.6193220615386963\n",
- "epoch: 4 step: 66, loss is 1.6031917333602905\n",
- "epoch: 4 step: 67, loss is 1.6834722757339478\n",
- "epoch: 4 step: 68, loss is 1.6825077533721924\n",
- "epoch: 4 step: 69, loss is 1.6245614290237427\n",
- "epoch: 4 step: 70, loss is 1.688910961151123\n",
- "epoch: 4 step: 71, loss is 1.6050342321395874\n",
- "epoch: 4 step: 72, loss is 1.6169708967208862\n",
- "epoch: 4 step: 73, loss is 1.6678271293640137\n",
- "epoch: 4 step: 74, loss is 1.6826083660125732\n",
- "epoch: 4 step: 75, loss is 1.6716305017471313\n",
- "epoch: 4 step: 76, loss is 1.6281429529190063\n",
- "epoch: 4 step: 77, loss is 1.7824180126190186\n",
- "epoch: 4 step: 78, loss is 1.669790506362915\n",
- "epoch: 4 step: 79, loss is 1.6335220336914062\n",
- "epoch: 4 step: 80, loss is 1.695752739906311\n",
- "epoch: 4 step: 81, loss is 1.6094547510147095\n",
- "epoch: 4 step: 82, loss is 1.635634183883667\n",
- "epoch: 4 step: 83, loss is 1.6075245141983032\n",
- "epoch: 4 step: 84, loss is 1.6564500331878662\n",
- "epoch: 4 step: 85, loss is 1.6660058498382568\n",
- "epoch: 4 step: 86, loss is 1.6991667747497559\n",
- "epoch: 4 step: 87, loss is 1.6710928678512573\n",
- "epoch: 4 step: 88, loss is 1.6151670217514038\n",
- "epoch: 4 step: 89, loss is 1.5943197011947632\n",
- "epoch: 4 step: 90, loss is 1.6190614700317383\n",
- "epoch: 4 step: 91, loss is 1.659781575202942\n",
- "epoch: 4 step: 92, loss is 1.6849955320358276\n",
- "epoch: 4 step: 93, loss is 1.7099926471710205\n",
- "epoch: 4 step: 94, loss is 1.672356367111206\n",
- "epoch: 4 step: 95, loss is 1.635805368423462\n",
- "epoch: 4 step: 96, loss is 1.6677284240722656\n",
- "epoch: 4 step: 97, loss is 1.599265217781067\n",
- "epoch: 4 step: 98, loss is 1.5523755550384521\n",
- "epoch: 4 step: 99, loss is 1.621001958847046\n",
- "epoch: 4 step: 100, loss is 1.711308479309082\n",
- "epoch: 4 step: 101, loss is 1.7047224044799805\n",
- "epoch: 4 step: 102, loss is 1.5642669200897217\n",
- "epoch: 4 step: 103, loss is 1.602745771408081\n",
- "epoch: 4 step: 104, loss is 1.6317754983901978\n",
- "epoch: 4 step: 105, loss is 1.630226731300354\n",
- "epoch: 4 step: 106, loss is 1.5829434394836426\n",
- "epoch: 4 step: 107, loss is 1.6169558763504028\n",
- "epoch: 4 step: 108, loss is 1.5777840614318848\n",
- "epoch: 4 step: 109, loss is 1.6572725772857666\n",
- "epoch: 4 step: 110, loss is 1.6351275444030762\n",
- "epoch: 4 step: 111, loss is 1.6470080614089966\n",
- "epoch: 4 step: 112, loss is 1.595346450805664\n",
- "epoch: 4 step: 113, loss is 1.6564357280731201\n",
- "epoch: 4 step: 114, loss is 1.6840795278549194\n",
- "epoch: 4 step: 115, loss is 1.6232919692993164\n",
- "epoch: 4 step: 116, loss is 1.6740002632141113\n",
- "epoch: 4 step: 117, loss is 1.5374162197113037\n",
- "epoch: 4 step: 118, loss is 1.6951665878295898\n",
- "epoch: 4 step: 119, loss is 1.6204252243041992\n",
- "epoch: 4 step: 120, loss is 1.6221181154251099\n",
- "epoch: 4 step: 121, loss is 1.5537707805633545\n",
- "epoch: 4 step: 122, loss is 1.6277174949645996\n",
- "epoch: 4 step: 123, loss is 1.6667327880859375\n",
- "epoch: 4 step: 124, loss is 1.4986757040023804\n",
- "epoch: 4 step: 125, loss is 1.6182351112365723\n",
- "epoch: 4 step: 126, loss is 1.6394846439361572\n",
- "epoch: 4 step: 127, loss is 1.6260210275650024\n",
- "epoch: 4 step: 128, loss is 1.545825481414795\n",
- "epoch: 4 step: 129, loss is 1.6431002616882324\n",
- "epoch: 4 step: 130, loss is 1.6482861042022705\n",
- "epoch: 4 step: 131, loss is 1.659328818321228\n",
- "epoch: 4 step: 132, loss is 1.5606145858764648\n",
- "epoch: 4 step: 133, loss is 1.635382890701294\n",
- "epoch: 4 step: 134, loss is 1.6413743495941162\n",
- "epoch: 4 step: 135, loss is 1.5529956817626953\n",
- "epoch: 4 step: 136, loss is 1.5545841455459595\n",
- "epoch: 4 step: 137, loss is 1.6351344585418701\n",
- "epoch: 4 step: 138, loss is 1.6698541641235352\n",
- "epoch: 4 step: 139, loss is 1.6729806661605835\n",
- "epoch: 4 step: 140, loss is 1.6431035995483398\n",
- "epoch: 4 step: 141, loss is 1.6157598495483398\n",
- "epoch: 4 step: 142, loss is 1.5533349514007568\n",
- "epoch: 4 step: 143, loss is 1.605139136314392\n",
- "epoch: 4 step: 144, loss is 1.5951838493347168\n",
- "epoch: 4 step: 145, loss is 1.6883686780929565\n",
- "epoch: 4 step: 146, loss is 1.6930533647537231\n",
- "epoch: 4 step: 147, loss is 1.616921067237854\n",
- "epoch: 4 step: 148, loss is 1.589206337928772\n",
- "epoch: 4 step: 149, loss is 1.6340148448944092\n",
- "epoch: 4 step: 150, loss is 1.5479761362075806\n",
- "epoch: 4 step: 151, loss is 1.6992318630218506\n",
- "epoch: 4 step: 152, loss is 1.5573326349258423\n",
- "epoch: 4 step: 153, loss is 1.5911777019500732\n",
- "epoch: 4 step: 154, loss is 1.665592908859253\n",
- "epoch: 4 step: 155, loss is 1.6043286323547363\n",
- "epoch: 4 step: 156, loss is 1.6947126388549805\n",
- "epoch: 4 step: 157, loss is 1.5575032234191895\n",
- "epoch: 4 step: 158, loss is 1.6363940238952637\n",
- "epoch: 4 step: 159, loss is 1.6107062101364136\n",
- "epoch: 4 step: 160, loss is 1.563986897468567\n",
- "epoch: 4 step: 161, loss is 1.5581750869750977\n",
- "epoch: 4 step: 162, loss is 1.6054623126983643\n",
- "epoch: 4 step: 163, loss is 1.6519685983657837\n",
- "epoch: 4 step: 164, loss is 1.5929789543151855\n",
- "epoch: 4 step: 165, loss is 1.5881822109222412\n",
- "epoch: 4 step: 166, loss is 1.624574065208435\n",
- "epoch: 4 step: 167, loss is 1.5660936832427979\n",
- "epoch: 4 step: 168, loss is 1.7413311004638672\n",
- "epoch: 4 step: 169, loss is 1.617895483970642\n",
- "epoch: 4 step: 170, loss is 1.5311201810836792\n",
- "epoch: 4 step: 171, loss is 1.5229462385177612\n",
- "epoch: 4 step: 172, loss is 1.629323124885559\n",
- "epoch: 4 step: 173, loss is 1.6958014965057373\n",
- "epoch: 4 step: 174, loss is 1.6713364124298096\n",
- "epoch: 4 step: 175, loss is 1.6335649490356445\n",
- "epoch: 4 step: 176, loss is 1.6315730810165405\n",
- "epoch: 4 step: 177, loss is 1.650512456893921\n",
- "epoch: 4 step: 178, loss is 1.6020163297653198\n",
- "epoch: 4 step: 179, loss is 1.5183154344558716\n",
- "epoch: 4 step: 180, loss is 1.6194127798080444\n",
- "epoch: 4 step: 181, loss is 1.5776127576828003\n",
- "epoch: 4 step: 182, loss is 1.5435810089111328\n",
- "epoch: 4 step: 183, loss is 1.5908143520355225\n",
- "epoch: 4 step: 184, loss is 1.625827670097351\n",
- "epoch: 4 step: 185, loss is 1.4971815347671509\n",
- "epoch: 4 step: 186, loss is 1.5430313348770142\n",
- "epoch: 4 step: 187, loss is 1.6019543409347534\n",
- "epoch: 4 step: 188, loss is 1.6593749523162842\n",
- "epoch: 4 step: 189, loss is 1.5537240505218506\n",
- "epoch: 4 step: 190, loss is 1.5439367294311523\n",
- "epoch: 4 step: 191, loss is 1.5692863464355469\n",
- "epoch: 4 step: 192, loss is 1.6208775043487549\n",
- "epoch: 4 step: 193, loss is 1.6452176570892334\n",
- "epoch: 4 step: 194, loss is 1.5839658975601196\n",
- "epoch: 4 step: 195, loss is 1.6222418546676636\n",
- "Train epoch time: 105716.095 ms, per step time: 542.134 ms\n",
- "epoch: 5 step: 1, loss is 1.6291134357452393\n",
- "epoch: 5 step: 2, loss is 1.630381464958191\n",
- "epoch: 5 step: 3, loss is 1.6272845268249512\n",
- "epoch: 5 step: 4, loss is 1.6062297821044922\n",
- "epoch: 5 step: 5, loss is 1.5725517272949219\n",
- "epoch: 5 step: 6, loss is 1.6263139247894287\n",
- "epoch: 5 step: 7, loss is 1.5958149433135986\n",
- "epoch: 5 step: 8, loss is 1.5896222591400146\n",
- "epoch: 5 step: 9, loss is 1.5668258666992188\n",
- "epoch: 5 step: 10, loss is 1.5255160331726074\n",
- "epoch: 5 step: 11, loss is 1.6277358531951904\n",
- "epoch: 5 step: 12, loss is 1.5296845436096191\n",
- "epoch: 5 step: 13, loss is 1.4964330196380615\n",
- "epoch: 5 step: 14, loss is 1.562056541442871\n",
- "epoch: 5 step: 15, loss is 1.5771225690841675\n",
- "epoch: 5 step: 16, loss is 1.5375909805297852\n",
- "epoch: 5 step: 17, loss is 1.5960278511047363\n",
- "epoch: 5 step: 18, loss is 1.6009914875030518\n",
- "epoch: 5 step: 19, loss is 1.5288138389587402\n",
- "epoch: 5 step: 20, loss is 1.613315463066101\n",
- "epoch: 5 step: 21, loss is 1.6063491106033325\n",
- "epoch: 5 step: 22, loss is 1.6259429454803467\n",
- "epoch: 5 step: 23, loss is 1.6105166673660278\n",
- "epoch: 5 step: 24, loss is 1.5539393424987793\n",
- "epoch: 5 step: 25, loss is 1.564895749092102\n",
- "epoch: 5 step: 26, loss is 1.6098949909210205\n",
- "epoch: 5 step: 27, loss is 1.6622965335845947\n",
- "epoch: 5 step: 28, loss is 1.702588438987732\n",
- "epoch: 5 step: 29, loss is 1.5608000755310059\n",
- "epoch: 5 step: 30, loss is 1.5815403461456299\n",
- "epoch: 5 step: 31, loss is 1.6231831312179565\n",
- "epoch: 5 step: 32, loss is 1.529085636138916\n",
- "epoch: 5 step: 33, loss is 1.601198434829712\n",
- "epoch: 5 step: 34, loss is 1.6691968441009521\n",
- "epoch: 5 step: 35, loss is 1.6418415307998657\n",
- "epoch: 5 step: 36, loss is 1.5125951766967773\n",
- "epoch: 5 step: 37, loss is 1.573991060256958\n",
- "epoch: 5 step: 38, loss is 1.5374033451080322\n",
- "epoch: 5 step: 39, loss is 1.6113100051879883\n",
- "epoch: 5 step: 40, loss is 1.6513816118240356\n",
- "epoch: 5 step: 41, loss is 1.7058184146881104\n",
- "epoch: 5 step: 42, loss is 1.5606614351272583\n",
- "epoch: 5 step: 43, loss is 1.5729628801345825\n",
- "epoch: 5 step: 44, loss is 1.5059725046157837\n",
- "epoch: 5 step: 45, loss is 1.6124483346939087\n",
- "epoch: 5 step: 46, loss is 1.6108061075210571\n",
- "epoch: 5 step: 47, loss is 1.5724024772644043\n",
- "epoch: 5 step: 48, loss is 1.5875262022018433\n",
- "epoch: 5 step: 49, loss is 1.554578423500061\n",
- "epoch: 5 step: 50, loss is 1.551038146018982\n",
- "epoch: 5 step: 51, loss is 1.6033042669296265\n",
- "epoch: 5 step: 52, loss is 1.5672204494476318\n",
- "epoch: 5 step: 53, loss is 1.6042449474334717\n",
- "epoch: 5 step: 54, loss is 1.8136216402053833\n",
- "epoch: 5 step: 55, loss is 1.6811379194259644\n",
- "epoch: 5 step: 56, loss is 1.5468108654022217\n",
- "epoch: 5 step: 57, loss is 1.519727349281311\n",
- "epoch: 5 step: 58, loss is 1.5434579849243164\n",
- "epoch: 5 step: 59, loss is 1.5377097129821777\n",
- "epoch: 5 step: 60, loss is 1.5702345371246338\n",
- "epoch: 5 step: 61, loss is 1.6920826435089111\n",
- "epoch: 5 step: 62, loss is 1.6663700342178345\n",
- "epoch: 5 step: 63, loss is 1.533160924911499\n",
- "epoch: 5 step: 64, loss is 1.6377326250076294\n",
- "epoch: 5 step: 65, loss is 1.5873849391937256\n",
- "epoch: 5 step: 66, loss is 1.5319710969924927\n",
- "epoch: 5 step: 67, loss is 1.588597297668457\n",
- "epoch: 5 step: 68, loss is 1.5093746185302734\n",
- "epoch: 5 step: 69, loss is 1.6486823558807373\n",
- "epoch: 5 step: 70, loss is 1.6806023120880127\n",
- "epoch: 5 step: 71, loss is 1.6301050186157227\n",
- "epoch: 5 step: 72, loss is 1.509552001953125\n",
- "epoch: 5 step: 73, loss is 1.4995574951171875\n",
- "epoch: 5 step: 74, loss is 1.568403959274292\n",
- "epoch: 5 step: 75, loss is 1.5902581214904785\n",
- "epoch: 5 step: 76, loss is 1.6017258167266846\n",
- "epoch: 5 step: 77, loss is 1.5831518173217773\n",
- "epoch: 5 step: 78, loss is 1.6122655868530273\n",
- "epoch: 5 step: 79, loss is 1.51787269115448\n",
- "epoch: 5 step: 80, loss is 1.5347437858581543\n",
- "epoch: 5 step: 81, loss is 1.5797195434570312\n",
- "epoch: 5 step: 82, loss is 1.6857746839523315\n",
- "epoch: 5 step: 83, loss is 1.631077766418457\n",
- "epoch: 5 step: 84, loss is 1.615084171295166\n",
- "epoch: 5 step: 85, loss is 1.5356749296188354\n",
- "epoch: 5 step: 86, loss is 1.5127631425857544\n",
- "epoch: 5 step: 87, loss is 1.6314640045166016\n",
- "epoch: 5 step: 88, loss is 1.630873203277588\n",
- "epoch: 5 step: 89, loss is 1.5950806140899658\n",
- "epoch: 5 step: 90, loss is 1.5196205377578735\n",
- "epoch: 5 step: 91, loss is 1.614460825920105\n",
- "epoch: 5 step: 92, loss is 1.5702085494995117\n",
- "epoch: 5 step: 93, loss is 1.5679209232330322\n",
- "epoch: 5 step: 94, loss is 1.590861201286316\n",
- "epoch: 5 step: 95, loss is 1.6107532978057861\n",
- "epoch: 5 step: 96, loss is 1.5590496063232422\n",
- "epoch: 5 step: 97, loss is 1.660438895225525\n",
- "epoch: 5 step: 98, loss is 1.5570570230484009\n",
- "epoch: 5 step: 99, loss is 1.5751655101776123\n",
- "epoch: 5 step: 100, loss is 1.4615893363952637\n",
- "epoch: 5 step: 101, loss is 1.630858302116394\n",
- "epoch: 5 step: 102, loss is 1.6327793598175049\n",
- "epoch: 5 step: 103, loss is 1.4481351375579834\n",
- "epoch: 5 step: 104, loss is 1.510433554649353\n",
- "epoch: 5 step: 105, loss is 1.548460602760315\n",
- "epoch: 5 step: 106, loss is 1.5288385152816772\n",
- "epoch: 5 step: 107, loss is 1.5139927864074707\n",
- "epoch: 5 step: 108, loss is 1.5642671585083008\n",
- "epoch: 5 step: 109, loss is 1.590576171875\n",
- "epoch: 5 step: 110, loss is 1.5412566661834717\n",
- "epoch: 5 step: 111, loss is 1.5235416889190674\n",
- "epoch: 5 step: 112, loss is 1.560255527496338\n",
- "epoch: 5 step: 113, loss is 1.5404945611953735\n",
- "epoch: 5 step: 114, loss is 1.5259674787521362\n",
- "epoch: 5 step: 115, loss is 1.6100269556045532\n",
- "epoch: 5 step: 116, loss is 1.5952180624008179\n",
- "epoch: 5 step: 117, loss is 1.5212076902389526\n",
- "epoch: 5 step: 118, loss is 1.544267177581787\n",
- "epoch: 5 step: 119, loss is 1.515645980834961\n",
- "epoch: 5 step: 120, loss is 1.5478583574295044\n",
- "epoch: 5 step: 121, loss is 1.5606967210769653\n",
- "epoch: 5 step: 122, loss is 1.5228321552276611\n",
- "epoch: 5 step: 123, loss is 1.5908513069152832\n",
- "epoch: 5 step: 124, loss is 1.509644865989685\n",
- "epoch: 5 step: 125, loss is 1.482250452041626\n",
- "epoch: 5 step: 126, loss is 1.6022708415985107\n",
- "epoch: 5 step: 127, loss is 1.622236728668213\n",
- "epoch: 5 step: 128, loss is 1.6023094654083252\n",
- "epoch: 5 step: 129, loss is 1.5301949977874756\n",
- "epoch: 5 step: 130, loss is 1.5557873249053955\n",
- "epoch: 5 step: 131, loss is 1.5438777208328247\n",
- "epoch: 5 step: 132, loss is 1.580703616142273\n",
- "epoch: 5 step: 133, loss is 1.626776099205017\n",
- "epoch: 5 step: 134, loss is 1.5010910034179688\n",
- "epoch: 5 step: 135, loss is 1.659401535987854\n",
- "epoch: 5 step: 136, loss is 1.5865554809570312\n",
- "epoch: 5 step: 137, loss is 1.5445318222045898\n",
- "epoch: 5 step: 138, loss is 1.5331158638000488\n",
- "epoch: 5 step: 139, loss is 1.4952641725540161\n",
- "epoch: 5 step: 140, loss is 1.581543207168579\n",
- "epoch: 5 step: 141, loss is 1.5467302799224854\n",
- "epoch: 5 step: 142, loss is 1.5560073852539062\n",
- "epoch: 5 step: 143, loss is 1.5457018613815308\n",
- "epoch: 5 step: 144, loss is 1.6202428340911865\n",
- "epoch: 5 step: 145, loss is 1.5543478727340698\n",
- "epoch: 5 step: 146, loss is 1.6049385070800781\n",
- "epoch: 5 step: 147, loss is 1.525991678237915\n",
- "epoch: 5 step: 148, loss is 1.5845924615859985\n",
- "epoch: 5 step: 149, loss is 1.5389384031295776\n",
- "epoch: 5 step: 150, loss is 1.4576280117034912\n",
- "epoch: 5 step: 151, loss is 1.5723379850387573\n",
- "epoch: 5 step: 152, loss is 1.5660076141357422\n",
- "epoch: 5 step: 153, loss is 1.6097548007965088\n",
- "epoch: 5 step: 154, loss is 1.5270884037017822\n",
- "epoch: 5 step: 155, loss is 1.4979337453842163\n",
- "epoch: 5 step: 156, loss is 1.6203107833862305\n",
- "epoch: 5 step: 157, loss is 1.6619656085968018\n",
- "epoch: 5 step: 158, loss is 1.4955337047576904\n",
- "epoch: 5 step: 159, loss is 1.5828279256820679\n",
- "epoch: 5 step: 160, loss is 1.5385479927062988\n",
- "epoch: 5 step: 161, loss is 1.5685821771621704\n",
- "epoch: 5 step: 162, loss is 1.6465656757354736\n",
- "epoch: 5 step: 163, loss is 1.5739396810531616\n",
- "epoch: 5 step: 164, loss is 1.4910187721252441\n",
- "epoch: 5 step: 165, loss is 1.4646795988082886\n",
- "epoch: 5 step: 166, loss is 1.5939422845840454\n",
- "epoch: 5 step: 167, loss is 1.654055118560791\n",
- "epoch: 5 step: 168, loss is 1.5559473037719727\n",
- "epoch: 5 step: 169, loss is 1.6222816705703735\n",
- "epoch: 5 step: 170, loss is 1.539888620376587\n",
- "epoch: 5 step: 171, loss is 1.543352484703064\n",
- "epoch: 5 step: 172, loss is 1.651602864265442\n",
- "epoch: 5 step: 173, loss is 1.531855583190918\n",
- "epoch: 5 step: 174, loss is 1.5096299648284912\n",
- "epoch: 5 step: 175, loss is 1.5049216747283936\n",
- "epoch: 5 step: 176, loss is 1.5709919929504395\n",
- "epoch: 5 step: 177, loss is 1.4274080991744995\n",
- "epoch: 5 step: 178, loss is 1.6023424863815308\n",
- "epoch: 5 step: 179, loss is 1.5617828369140625\n",
- "epoch: 5 step: 180, loss is 1.600217342376709\n",
- "epoch: 5 step: 181, loss is 1.5970659255981445\n",
- "epoch: 5 step: 182, loss is 1.5027505159378052\n",
- "epoch: 5 step: 183, loss is 1.4966425895690918\n",
- "epoch: 5 step: 184, loss is 1.5915578603744507\n",
- "epoch: 5 step: 185, loss is 1.5784345865249634\n",
- "epoch: 5 step: 186, loss is 1.5959726572036743\n",
- "epoch: 5 step: 187, loss is 1.5866261720657349\n",
- "epoch: 5 step: 188, loss is 1.576472282409668\n",
- "epoch: 5 step: 189, loss is 1.5415232181549072\n",
- "epoch: 5 step: 190, loss is 1.5600171089172363\n",
- "epoch: 5 step: 191, loss is 1.50706946849823\n",
- "epoch: 5 step: 192, loss is 1.540470004081726\n",
- "epoch: 5 step: 193, loss is 1.5361647605895996\n",
- "epoch: 5 step: 194, loss is 1.6157336235046387\n",
- "epoch: 5 step: 195, loss is 1.5066640377044678\n",
- "Train epoch time: 108087.211 ms, per step time: 554.293 ms\n",
- "epoch: 6 step: 1, loss is 1.5168009996414185\n",
- "epoch: 6 step: 2, loss is 1.5963847637176514\n",
- "epoch: 6 step: 3, loss is 1.5281972885131836\n",
- "epoch: 6 step: 4, loss is 1.6191624402999878\n",
- "epoch: 6 step: 5, loss is 1.5344558954238892\n",
- "epoch: 6 step: 6, loss is 1.5129823684692383\n",
- "epoch: 6 step: 7, loss is 1.5464227199554443\n",
- "epoch: 6 step: 8, loss is 1.6063425540924072\n",
- "epoch: 6 step: 9, loss is 1.5158634185791016\n",
- "epoch: 6 step: 10, loss is 1.5139622688293457\n",
- "epoch: 6 step: 11, loss is 1.6050300598144531\n",
- "epoch: 6 step: 12, loss is 1.5366644859313965\n",
- "epoch: 6 step: 13, loss is 1.5967121124267578\n",
- "epoch: 6 step: 14, loss is 1.5981378555297852\n",
- "epoch: 6 step: 15, loss is 1.540015459060669\n",
- "epoch: 6 step: 16, loss is 1.492516040802002\n",
- "epoch: 6 step: 17, loss is 1.5513213872909546\n",
- "epoch: 6 step: 18, loss is 1.5504059791564941\n",
- "epoch: 6 step: 19, loss is 1.586832880973816\n",
- "epoch: 6 step: 20, loss is 1.482323169708252\n",
- "epoch: 6 step: 21, loss is 1.4803252220153809\n",
- "epoch: 6 step: 22, loss is 1.5392757654190063\n",
- "epoch: 6 step: 23, loss is 1.5714585781097412\n",
- "epoch: 6 step: 24, loss is 1.4917312860488892\n",
- "epoch: 6 step: 25, loss is 1.499375581741333\n",
- "epoch: 6 step: 26, loss is 1.5034757852554321\n",
- "epoch: 6 step: 27, loss is 1.5169413089752197\n",
- "epoch: 6 step: 28, loss is 1.5198606252670288\n",
- "epoch: 6 step: 29, loss is 1.5310466289520264\n",
- "epoch: 6 step: 30, loss is 1.5656919479370117\n",
- "epoch: 6 step: 31, loss is 1.4819889068603516\n",
- "epoch: 6 step: 32, loss is 1.5463405847549438\n",
- "epoch: 6 step: 33, loss is 1.5360537767410278\n",
- "epoch: 6 step: 34, loss is 1.4743027687072754\n",
- "epoch: 6 step: 35, loss is 1.4548977613449097\n",
- "epoch: 6 step: 36, loss is 1.5358030796051025\n",
- "epoch: 6 step: 37, loss is 1.4708020687103271\n",
- "epoch: 6 step: 38, loss is 1.579813838005066\n",
- "epoch: 6 step: 39, loss is 1.5433744192123413\n",
- "epoch: 6 step: 40, loss is 1.4907677173614502\n",
- "epoch: 6 step: 41, loss is 1.5300912857055664\n",
- "epoch: 6 step: 42, loss is 1.5930089950561523\n",
- "epoch: 6 step: 43, loss is 1.528731346130371\n",
- "epoch: 6 step: 44, loss is 1.6503602266311646\n",
- "epoch: 6 step: 45, loss is 1.5481113195419312\n",
- "epoch: 6 step: 46, loss is 1.5438824892044067\n",
- "epoch: 6 step: 47, loss is 1.4646594524383545\n",
- "epoch: 6 step: 48, loss is 1.5950512886047363\n",
- "epoch: 6 step: 49, loss is 1.5725396871566772\n",
- "epoch: 6 step: 50, loss is 1.6261200904846191\n",
- "epoch: 6 step: 51, loss is 1.5467002391815186\n",
- "epoch: 6 step: 52, loss is 1.6101902723312378\n",
- "epoch: 6 step: 53, loss is 1.5220361948013306\n",
- "epoch: 6 step: 54, loss is 1.4702224731445312\n",
- "epoch: 6 step: 55, loss is 1.5329726934432983\n",
- "epoch: 6 step: 56, loss is 1.640350341796875\n",
- "epoch: 6 step: 57, loss is 1.4936192035675049\n",
- "epoch: 6 step: 58, loss is 1.5358295440673828\n",
- "epoch: 6 step: 59, loss is 1.5270037651062012\n",
- "epoch: 6 step: 60, loss is 1.5093586444854736\n",
- "epoch: 6 step: 61, loss is 1.5998053550720215\n",
- "epoch: 6 step: 62, loss is 1.5315927267074585\n",
- "epoch: 6 step: 63, loss is 1.5140918493270874\n",
- "epoch: 6 step: 64, loss is 1.4735920429229736\n",
- "epoch: 6 step: 65, loss is 1.5319581031799316\n",
- "epoch: 6 step: 66, loss is 1.6074835062026978\n",
- "epoch: 6 step: 67, loss is 1.4713388681411743\n",
- "epoch: 6 step: 68, loss is 1.5030381679534912\n",
- "epoch: 6 step: 69, loss is 1.5320777893066406\n",
- "epoch: 6 step: 70, loss is 1.5278956890106201\n",
- "epoch: 6 step: 71, loss is 1.5255309343338013\n",
- "epoch: 6 step: 72, loss is 1.5454436540603638\n",
- "epoch: 6 step: 73, loss is 1.5482513904571533\n",
- "epoch: 6 step: 74, loss is 1.4984415769577026\n",
- "epoch: 6 step: 75, loss is 1.4952940940856934\n",
- "epoch: 6 step: 76, loss is 1.5711333751678467\n",
- "epoch: 6 step: 77, loss is 1.4789788722991943\n",
- "epoch: 6 step: 78, loss is 1.561328411102295\n",
- "epoch: 6 step: 79, loss is 1.5443943738937378\n",
- "epoch: 6 step: 80, loss is 1.5559606552124023\n",
- "epoch: 6 step: 81, loss is 1.5598878860473633\n",
- "epoch: 6 step: 82, loss is 1.5287787914276123\n",
- "epoch: 6 step: 83, loss is 1.5436670780181885\n",
- "epoch: 6 step: 84, loss is 1.5120441913604736\n",
- "epoch: 6 step: 85, loss is 1.592405080795288\n",
- "epoch: 6 step: 86, loss is 1.5054988861083984\n",
- "epoch: 6 step: 87, loss is 1.4739066362380981\n",
- "epoch: 6 step: 88, loss is 1.576535701751709\n",
- "epoch: 6 step: 89, loss is 1.5421173572540283\n",
- "epoch: 6 step: 90, loss is 1.5323903560638428\n",
- "epoch: 6 step: 91, loss is 1.549246072769165\n",
- "epoch: 6 step: 92, loss is 1.5238741636276245\n",
- "epoch: 6 step: 93, loss is 1.4108941555023193\n",
- "epoch: 6 step: 94, loss is 1.5807687044143677\n",
- "epoch: 6 step: 95, loss is 1.5101879835128784\n",
- "epoch: 6 step: 96, loss is 1.5076720714569092\n",
- "epoch: 6 step: 97, loss is 1.539828896522522\n",
- "epoch: 6 step: 98, loss is 1.5246250629425049\n",
- "epoch: 6 step: 99, loss is 1.5137839317321777\n",
- "epoch: 6 step: 100, loss is 1.5154650211334229\n",
- "epoch: 6 step: 101, loss is 1.4363713264465332\n",
- "epoch: 6 step: 102, loss is 1.5324684381484985\n",
- "epoch: 6 step: 103, loss is 1.4945255517959595\n",
- "epoch: 6 step: 104, loss is 1.5052132606506348\n",
- "epoch: 6 step: 105, loss is 1.4958027601242065\n",
- "epoch: 6 step: 106, loss is 1.536914587020874\n",
- "epoch: 6 step: 107, loss is 1.5131607055664062\n",
- "epoch: 6 step: 108, loss is 1.5171908140182495\n",
- "epoch: 6 step: 109, loss is 1.5488420724868774\n",
- "epoch: 6 step: 110, loss is 1.5417617559432983\n",
- "epoch: 6 step: 111, loss is 1.4130439758300781\n",
- "epoch: 6 step: 112, loss is 1.457828402519226\n",
- "epoch: 6 step: 113, loss is 1.4960986375808716\n",
- "epoch: 6 step: 114, loss is 1.5217095613479614\n",
- "epoch: 6 step: 115, loss is 1.4705275297164917\n",
- "epoch: 6 step: 116, loss is 1.5543395280838013\n",
- "epoch: 6 step: 117, loss is 1.4628500938415527\n",
- "epoch: 6 step: 118, loss is 1.618275761604309\n",
- "epoch: 6 step: 119, loss is 1.485256552696228\n",
- "epoch: 6 step: 120, loss is 1.494795560836792\n",
- "epoch: 6 step: 121, loss is 1.4875752925872803\n",
- "epoch: 6 step: 122, loss is 1.6517702341079712\n",
- "epoch: 6 step: 123, loss is 1.5723800659179688\n",
- "epoch: 6 step: 124, loss is 1.5000405311584473\n",
- "epoch: 6 step: 125, loss is 1.530178427696228\n",
- "epoch: 6 step: 126, loss is 1.4836000204086304\n",
- "epoch: 6 step: 127, loss is 1.5103240013122559\n",
- "epoch: 6 step: 128, loss is 1.5475642681121826\n",
- "epoch: 6 step: 129, loss is 1.6109751462936401\n",
- "epoch: 6 step: 130, loss is 1.5858711004257202\n",
- "epoch: 6 step: 131, loss is 1.5409538745880127\n",
- "epoch: 6 step: 132, loss is 1.4811959266662598\n",
- "epoch: 6 step: 133, loss is 1.421108365058899\n",
- "epoch: 6 step: 134, loss is 1.4793981313705444\n",
- "epoch: 6 step: 135, loss is 1.5129847526550293\n",
- "epoch: 6 step: 136, loss is 1.4404023885726929\n",
- "epoch: 6 step: 137, loss is 1.5967963933944702\n",
- "epoch: 6 step: 138, loss is 1.4657764434814453\n",
- "epoch: 6 step: 139, loss is 1.4295220375061035\n",
- "epoch: 6 step: 140, loss is 1.5097485780715942\n",
- "epoch: 6 step: 141, loss is 1.583897352218628\n",
- "epoch: 6 step: 142, loss is 1.4590997695922852\n",
- "epoch: 6 step: 143, loss is 1.4984616041183472\n",
- "epoch: 6 step: 144, loss is 1.5084997415542603\n",
- "epoch: 6 step: 145, loss is 1.4734172821044922\n",
- "epoch: 6 step: 146, loss is 1.4855918884277344\n",
- "epoch: 6 step: 147, loss is 1.4796168804168701\n",
- "epoch: 6 step: 148, loss is 1.4822638034820557\n",
- "epoch: 6 step: 149, loss is 1.4701366424560547\n",
- "epoch: 6 step: 150, loss is 1.4216171503067017\n",
- "epoch: 6 step: 151, loss is 1.595086693763733\n",
- "epoch: 6 step: 152, loss is 1.5976423025131226\n",
- "epoch: 6 step: 153, loss is 1.4181222915649414\n",
- "epoch: 6 step: 154, loss is 1.5427049398422241\n",
- "epoch: 6 step: 155, loss is 1.4240083694458008\n",
- "epoch: 6 step: 156, loss is 1.501006841659546\n",
- "epoch: 6 step: 157, loss is 1.4777637720108032\n",
- "epoch: 6 step: 158, loss is 1.4978241920471191\n",
- "epoch: 6 step: 159, loss is 1.6361052989959717\n",
- "epoch: 6 step: 160, loss is 1.5181944370269775\n",
- "epoch: 6 step: 161, loss is 1.5003464221954346\n",
- "epoch: 6 step: 162, loss is 1.4519720077514648\n",
- "epoch: 6 step: 163, loss is 1.5016770362854004\n",
- "epoch: 6 step: 164, loss is 1.428086280822754\n",
- "epoch: 6 step: 165, loss is 1.6404063701629639\n",
- "epoch: 6 step: 166, loss is 1.467785358428955\n",
- "epoch: 6 step: 167, loss is 1.508514165878296\n",
- "epoch: 6 step: 168, loss is 1.4996943473815918\n",
- "epoch: 6 step: 169, loss is 1.572036862373352\n",
- "epoch: 6 step: 170, loss is 1.5294147729873657\n",
- "epoch: 6 step: 171, loss is 1.5247507095336914\n",
- "epoch: 6 step: 172, loss is 1.5536715984344482\n",
- "epoch: 6 step: 173, loss is 1.5043799877166748\n",
- "epoch: 6 step: 174, loss is 1.438157320022583\n",
- "epoch: 6 step: 175, loss is 1.5259623527526855\n",
- "epoch: 6 step: 176, loss is 1.5832343101501465\n",
- "epoch: 6 step: 177, loss is 1.4981961250305176\n",
- "epoch: 6 step: 178, loss is 1.4782218933105469\n",
- "epoch: 6 step: 179, loss is 1.5882790088653564\n",
- "epoch: 6 step: 180, loss is 1.5630435943603516\n",
- "epoch: 6 step: 181, loss is 1.5255740880966187\n",
- "epoch: 6 step: 182, loss is 1.4995763301849365\n",
- "epoch: 6 step: 183, loss is 1.4683091640472412\n",
- "epoch: 6 step: 184, loss is 1.4638352394104004\n",
- "epoch: 6 step: 185, loss is 1.532323956489563\n",
- "epoch: 6 step: 186, loss is 1.633467674255371\n",
- "epoch: 6 step: 187, loss is 1.4564119577407837\n",
- "epoch: 6 step: 188, loss is 1.5319931507110596\n",
- "epoch: 6 step: 189, loss is 1.5097391605377197\n",
- "epoch: 6 step: 190, loss is 1.5650966167449951\n",
- "epoch: 6 step: 191, loss is 1.3985449075698853\n",
- "epoch: 6 step: 192, loss is 1.502357006072998\n",
- "epoch: 6 step: 193, loss is 1.5499777793884277\n",
- "epoch: 6 step: 194, loss is 1.598647117614746\n",
- "epoch: 6 step: 195, loss is 1.4927434921264648\n",
- "Train epoch time: 100865.807 ms, per step time: 517.261 ms\n",
- "epoch: 7 step: 1, loss is 1.5043296813964844\n",
- "epoch: 7 step: 2, loss is 1.3788352012634277\n",
- "epoch: 7 step: 3, loss is 1.424262523651123\n",
- "epoch: 7 step: 4, loss is 1.4881532192230225\n",
- "epoch: 7 step: 5, loss is 1.4929544925689697\n",
- "epoch: 7 step: 6, loss is 1.5428223609924316\n",
- "epoch: 7 step: 7, loss is 1.4219191074371338\n",
- "epoch: 7 step: 8, loss is 1.543452501296997\n",
- "epoch: 7 step: 9, loss is 1.4623894691467285\n",
- "epoch: 7 step: 10, loss is 1.41693913936615\n",
- "epoch: 7 step: 11, loss is 1.4937163591384888\n",
- "epoch: 7 step: 12, loss is 1.586480975151062\n",
- "epoch: 7 step: 13, loss is 1.4538681507110596\n",
- "epoch: 7 step: 14, loss is 1.3656944036483765\n",
- "epoch: 7 step: 15, loss is 1.4771169424057007\n",
- "epoch: 7 step: 16, loss is 1.5156288146972656\n",
- "epoch: 7 step: 17, loss is 1.5064911842346191\n",
- "epoch: 7 step: 18, loss is 1.5924088954925537\n",
- "epoch: 7 step: 19, loss is 1.4530917406082153\n",
- "epoch: 7 step: 20, loss is 1.491387128829956\n",
- "epoch: 7 step: 21, loss is 1.5176119804382324\n",
- "epoch: 7 step: 22, loss is 1.4657269716262817\n",
- "epoch: 7 step: 23, loss is 1.5061123371124268\n",
- "epoch: 7 step: 24, loss is 1.4878525733947754\n",
- "epoch: 7 step: 25, loss is 1.6137754917144775\n",
- "epoch: 7 step: 26, loss is 1.4848593473434448\n",
- "epoch: 7 step: 27, loss is 1.5650756359100342\n",
- "epoch: 7 step: 28, loss is 1.6011370420455933\n",
- "epoch: 7 step: 29, loss is 1.4152276515960693\n",
- "epoch: 7 step: 30, loss is 1.5913746356964111\n",
- "epoch: 7 step: 31, loss is 1.5784099102020264\n",
- "epoch: 7 step: 32, loss is 1.4640570878982544\n",
- "epoch: 7 step: 33, loss is 1.4940814971923828\n",
- "epoch: 7 step: 34, loss is 1.5079275369644165\n",
- "epoch: 7 step: 35, loss is 1.4612488746643066\n",
- "epoch: 7 step: 36, loss is 1.533675193786621\n",
- "epoch: 7 step: 37, loss is 1.45689058303833\n",
- "epoch: 7 step: 38, loss is 1.5214346647262573\n",
- "epoch: 7 step: 39, loss is 1.5260032415390015\n",
- "epoch: 7 step: 40, loss is 1.5860832929611206\n",
- "epoch: 7 step: 41, loss is 1.468464970588684\n",
- "epoch: 7 step: 42, loss is 1.5327972173690796\n",
- "epoch: 7 step: 43, loss is 1.4565191268920898\n",
- "epoch: 7 step: 44, loss is 1.5572458505630493\n",
- "epoch: 7 step: 45, loss is 1.5559360980987549\n",
- "epoch: 7 step: 46, loss is 1.5142409801483154\n",
- "epoch: 7 step: 47, loss is 1.523766279220581\n",
- "epoch: 7 step: 48, loss is 1.5186293125152588\n",
- "epoch: 7 step: 49, loss is 1.50870943069458\n",
- "epoch: 7 step: 50, loss is 1.4578818082809448\n",
- "epoch: 7 step: 51, loss is 1.5197813510894775\n",
- "epoch: 7 step: 52, loss is 1.502407431602478\n",
- "epoch: 7 step: 53, loss is 1.4740475416183472\n",
- "epoch: 7 step: 54, loss is 1.540830135345459\n",
- "epoch: 7 step: 55, loss is 1.3457492589950562\n",
- "epoch: 7 step: 56, loss is 1.4958750009536743\n",
- "epoch: 7 step: 57, loss is 1.5185296535491943\n",
- "epoch: 7 step: 58, loss is 1.5216048955917358\n",
- "epoch: 7 step: 59, loss is 1.5318355560302734\n",
- "epoch: 7 step: 60, loss is 1.5011483430862427\n",
- "epoch: 7 step: 61, loss is 1.515061378479004\n",
- "epoch: 7 step: 62, loss is 1.4643523693084717\n",
- "epoch: 7 step: 63, loss is 1.5048272609710693\n",
- "epoch: 7 step: 64, loss is 1.493390440940857\n",
- "epoch: 7 step: 65, loss is 1.4603462219238281\n",
- "epoch: 7 step: 66, loss is 1.482275366783142\n",
- "epoch: 7 step: 67, loss is 1.5105946063995361\n",
- "epoch: 7 step: 68, loss is 1.4726853370666504\n",
- "epoch: 7 step: 69, loss is 1.447388768196106\n",
- "epoch: 7 step: 70, loss is 1.4647923707962036\n",
- "epoch: 7 step: 71, loss is 1.5107338428497314\n",
- "epoch: 7 step: 72, loss is 1.6002007722854614\n",
- "epoch: 7 step: 73, loss is 1.4142224788665771\n",
- "epoch: 7 step: 74, loss is 1.4973994493484497\n",
- "epoch: 7 step: 75, loss is 1.5239574909210205\n",
- "epoch: 7 step: 76, loss is 1.4929814338684082\n",
- "epoch: 7 step: 77, loss is 1.4576858282089233\n",
- "epoch: 7 step: 78, loss is 1.4740468263626099\n",
- "epoch: 7 step: 79, loss is 1.4783765077590942\n",
- "epoch: 7 step: 80, loss is 1.4699275493621826\n",
- "epoch: 7 step: 81, loss is 1.446077823638916\n",
- "epoch: 7 step: 82, loss is 1.4819600582122803\n",
- "epoch: 7 step: 83, loss is 1.465059518814087\n",
- "epoch: 7 step: 84, loss is 1.4979264736175537\n",
- "epoch: 7 step: 85, loss is 1.4489562511444092\n",
- "epoch: 7 step: 86, loss is 1.5509796142578125\n",
- "epoch: 7 step: 87, loss is 1.4808306694030762\n",
- "epoch: 7 step: 88, loss is 1.5191899538040161\n",
- "epoch: 7 step: 89, loss is 1.4386074542999268\n",
- "epoch: 7 step: 90, loss is 1.5016305446624756\n",
- "epoch: 7 step: 91, loss is 1.4730781316757202\n",
- "epoch: 7 step: 92, loss is 1.4346343278884888\n",
- "epoch: 7 step: 93, loss is 1.4838359355926514\n",
- "epoch: 7 step: 94, loss is 1.4321085214614868\n",
- "epoch: 7 step: 95, loss is 1.4832935333251953\n",
- "epoch: 7 step: 96, loss is 1.3848750591278076\n",
- "epoch: 7 step: 97, loss is 1.458479642868042\n",
- "epoch: 7 step: 98, loss is 1.404242753982544\n",
- "epoch: 7 step: 99, loss is 1.4245388507843018\n",
- "epoch: 7 step: 100, loss is 1.4893617630004883\n",
- "epoch: 7 step: 101, loss is 1.4813257455825806\n",
- "epoch: 7 step: 102, loss is 1.479996681213379\n",
- "epoch: 7 step: 103, loss is 1.4750529527664185\n",
- "epoch: 7 step: 104, loss is 1.4361767768859863\n",
- "epoch: 7 step: 105, loss is 1.4210655689239502\n",
- "epoch: 7 step: 106, loss is 1.4760034084320068\n",
- "epoch: 7 step: 107, loss is 1.467147707939148\n",
- "epoch: 7 step: 108, loss is 1.4473330974578857\n",
- "epoch: 7 step: 109, loss is 1.4925254583358765\n",
- "epoch: 7 step: 110, loss is 1.540977954864502\n",
- "epoch: 7 step: 111, loss is 1.4327526092529297\n",
- "epoch: 7 step: 112, loss is 1.487854242324829\n",
- "epoch: 7 step: 113, loss is 1.372823715209961\n",
- "epoch: 7 step: 114, loss is 1.4697837829589844\n",
- "epoch: 7 step: 115, loss is 1.4933768510818481\n",
- "epoch: 7 step: 116, loss is 1.3966046571731567\n",
- "epoch: 7 step: 117, loss is 1.4160324335098267\n",
- "epoch: 7 step: 118, loss is 1.4595578908920288\n",
- "epoch: 7 step: 119, loss is 1.4743643999099731\n",
- "epoch: 7 step: 120, loss is 1.557667851448059\n",
- "epoch: 7 step: 121, loss is 1.4244754314422607\n",
- "epoch: 7 step: 122, loss is 1.494997501373291\n",
- "epoch: 7 step: 123, loss is 1.4864234924316406\n",
- "epoch: 7 step: 124, loss is 1.4721158742904663\n",
- "epoch: 7 step: 125, loss is 1.5518609285354614\n",
- "epoch: 7 step: 126, loss is 1.4957640171051025\n",
- "epoch: 7 step: 127, loss is 1.3156301975250244\n",
- "epoch: 7 step: 128, loss is 1.398167371749878\n",
- "epoch: 7 step: 129, loss is 1.4935675859451294\n",
- "epoch: 7 step: 130, loss is 1.508893609046936\n",
- "epoch: 7 step: 131, loss is 1.4556041955947876\n",
- "epoch: 7 step: 132, loss is 1.5139472484588623\n",
- "epoch: 7 step: 133, loss is 1.4905041456222534\n",
- "epoch: 7 step: 134, loss is 1.4743626117706299\n",
- "epoch: 7 step: 135, loss is 1.5177185535430908\n",
- "epoch: 7 step: 136, loss is 1.5296862125396729\n",
- "epoch: 7 step: 137, loss is 1.4775011539459229\n",
- "epoch: 7 step: 138, loss is 1.549059510231018\n",
- "epoch: 7 step: 139, loss is 1.4695754051208496\n",
- "epoch: 7 step: 140, loss is 1.484771966934204\n",
- "epoch: 7 step: 141, loss is 1.5034211874008179\n",
- "epoch: 7 step: 142, loss is 1.4984829425811768\n",
- "epoch: 7 step: 143, loss is 1.4896142482757568\n",
- "epoch: 7 step: 144, loss is 1.4848573207855225\n",
- "epoch: 7 step: 145, loss is 1.434865951538086\n",
- "epoch: 7 step: 146, loss is 1.4549081325531006\n",
- "epoch: 7 step: 147, loss is 1.4179425239562988\n",
- "epoch: 7 step: 148, loss is 1.547905445098877\n",
- "epoch: 7 step: 149, loss is 1.4736230373382568\n",
- "epoch: 7 step: 150, loss is 1.5593163967132568\n",
- "epoch: 7 step: 151, loss is 1.4970840215682983\n",
- "epoch: 7 step: 152, loss is 1.5117411613464355\n",
- "epoch: 7 step: 153, loss is 1.5070085525512695\n",
- "epoch: 7 step: 154, loss is 1.4941980838775635\n",
- "epoch: 7 step: 155, loss is 1.5356048345565796\n",
- "epoch: 7 step: 156, loss is 1.4605953693389893\n",
- "epoch: 7 step: 157, loss is 1.4507675170898438\n",
- "epoch: 7 step: 158, loss is 1.454154133796692\n",
- "epoch: 7 step: 159, loss is 1.508192539215088\n",
- "epoch: 7 step: 160, loss is 1.454262614250183\n",
- "epoch: 7 step: 161, loss is 1.5052950382232666\n",
- "epoch: 7 step: 162, loss is 1.5292794704437256\n",
- "epoch: 7 step: 163, loss is 1.4873976707458496\n",
- "epoch: 7 step: 164, loss is 1.4131702184677124\n",
- "epoch: 7 step: 165, loss is 1.4637771844863892\n",
- "epoch: 7 step: 166, loss is 1.408691644668579\n",
- "epoch: 7 step: 167, loss is 1.4266360998153687\n",
- "epoch: 7 step: 168, loss is 1.5367345809936523\n",
- "epoch: 7 step: 169, loss is 1.4338159561157227\n",
- "epoch: 7 step: 170, loss is 1.483839511871338\n",
- "epoch: 7 step: 171, loss is 1.4692538976669312\n",
- "epoch: 7 step: 172, loss is 1.4180325269699097\n",
- "epoch: 7 step: 173, loss is 1.4824738502502441\n",
- "epoch: 7 step: 174, loss is 1.4606093168258667\n",
- "epoch: 7 step: 175, loss is 1.5255937576293945\n",
- "epoch: 7 step: 176, loss is 1.3911335468292236\n",
- "epoch: 7 step: 177, loss is 1.4300789833068848\n",
- "epoch: 7 step: 178, loss is 1.4878897666931152\n",
- "epoch: 7 step: 179, loss is 1.4815349578857422\n",
- "epoch: 7 step: 180, loss is 1.4449535608291626\n",
- "epoch: 7 step: 181, loss is 1.4588613510131836\n",
- "epoch: 7 step: 182, loss is 1.5129939317703247\n",
- "epoch: 7 step: 183, loss is 1.4789873361587524\n",
- "epoch: 7 step: 184, loss is 1.4415959119796753\n",
- "epoch: 7 step: 185, loss is 1.445063829421997\n",
- "epoch: 7 step: 186, loss is 1.4950401782989502\n",
- "epoch: 7 step: 187, loss is 1.4018011093139648\n",
- "epoch: 7 step: 188, loss is 1.4623416662216187\n",
- "epoch: 7 step: 189, loss is 1.407805323600769\n",
- "epoch: 7 step: 190, loss is 1.5904037952423096\n",
- "epoch: 7 step: 191, loss is 1.520334005355835\n",
- "epoch: 7 step: 192, loss is 1.5010075569152832\n",
- "epoch: 7 step: 193, loss is 1.3924946784973145\n",
- "epoch: 7 step: 194, loss is 1.4323792457580566\n",
- "epoch: 7 step: 195, loss is 1.488898754119873\n",
- "Train epoch time: 105356.687 ms, per step time: 540.291 ms\n",
- "epoch: 8 step: 1, loss is 1.4853860139846802\n",
- "epoch: 8 step: 2, loss is 1.4470711946487427\n",
- "epoch: 8 step: 3, loss is 1.441148281097412\n",
- "epoch: 8 step: 4, loss is 1.4429980516433716\n",
- "epoch: 8 step: 5, loss is 1.4304293394088745\n",
- "epoch: 8 step: 6, loss is 1.4625797271728516\n",
- "epoch: 8 step: 7, loss is 1.483774185180664\n",
- "epoch: 8 step: 8, loss is 1.4424699544906616\n",
- "epoch: 8 step: 9, loss is 1.4378409385681152\n",
- "epoch: 8 step: 10, loss is 1.4000816345214844\n",
- "epoch: 8 step: 11, loss is 1.4254200458526611\n",
- "epoch: 8 step: 12, loss is 1.4616323709487915\n",
- "epoch: 8 step: 13, loss is 1.474768877029419\n",
- "epoch: 8 step: 14, loss is 1.3732140064239502\n",
- "epoch: 8 step: 15, loss is 1.5181782245635986\n",
- "epoch: 8 step: 16, loss is 1.4393178224563599\n",
- "epoch: 8 step: 17, loss is 1.382467269897461\n",
- "epoch: 8 step: 18, loss is 1.3791776895523071\n",
- "epoch: 8 step: 19, loss is 1.4564411640167236\n",
- "epoch: 8 step: 20, loss is 1.4218473434448242\n",
- "epoch: 8 step: 21, loss is 1.3829455375671387\n",
- "epoch: 8 step: 22, loss is 1.3811804056167603\n",
- "epoch: 8 step: 23, loss is 1.4496384859085083\n",
- "epoch: 8 step: 24, loss is 1.4368200302124023\n",
- "epoch: 8 step: 25, loss is 1.4838359355926514\n",
- "epoch: 8 step: 26, loss is 1.4819374084472656\n",
- "epoch: 8 step: 27, loss is 1.5077060461044312\n",
- "epoch: 8 step: 28, loss is 1.42545747756958\n",
- "epoch: 8 step: 29, loss is 1.4789379835128784\n",
- "epoch: 8 step: 30, loss is 1.480667233467102\n",
- "epoch: 8 step: 31, loss is 1.458118200302124\n",
- "epoch: 8 step: 32, loss is 1.5266969203948975\n",
- "epoch: 8 step: 33, loss is 1.3946259021759033\n",
- "epoch: 8 step: 34, loss is 1.4376158714294434\n",
- "epoch: 8 step: 35, loss is 1.5635749101638794\n",
- "epoch: 8 step: 36, loss is 1.517399787902832\n",
- "epoch: 8 step: 37, loss is 1.3861666917800903\n",
- "epoch: 8 step: 38, loss is 1.4951542615890503\n",
- "epoch: 8 step: 39, loss is 1.5694758892059326\n",
- "epoch: 8 step: 40, loss is 1.5099910497665405\n",
- "epoch: 8 step: 41, loss is 1.4824888706207275\n",
- "epoch: 8 step: 42, loss is 1.4218077659606934\n",
- "epoch: 8 step: 43, loss is 1.438224196434021\n",
- "epoch: 8 step: 44, loss is 1.4067015647888184\n",
- "epoch: 8 step: 45, loss is 1.5105013847351074\n",
- "epoch: 8 step: 46, loss is 1.4284451007843018\n",
- "epoch: 8 step: 47, loss is 1.5443179607391357\n",
- "epoch: 8 step: 48, loss is 1.4850034713745117\n",
- "epoch: 8 step: 49, loss is 1.3432358503341675\n",
- "epoch: 8 step: 50, loss is 1.3830974102020264\n",
- "epoch: 8 step: 51, loss is 1.440751075744629\n",
- "epoch: 8 step: 52, loss is 1.43281888961792\n",
- "epoch: 8 step: 53, loss is 1.4782578945159912\n",
- "epoch: 8 step: 54, loss is 1.5047858953475952\n",
- "epoch: 8 step: 55, loss is 1.4760655164718628\n",
- "epoch: 8 step: 56, loss is 1.3672726154327393\n",
- "epoch: 8 step: 57, loss is 1.4034481048583984\n",
- "epoch: 8 step: 58, loss is 1.3738510608673096\n",
- "epoch: 8 step: 59, loss is 1.4158509969711304\n",
- "epoch: 8 step: 60, loss is 1.5088627338409424\n",
- "epoch: 8 step: 61, loss is 1.4259867668151855\n",
- "epoch: 8 step: 62, loss is 1.4301403760910034\n",
- "epoch: 8 step: 63, loss is 1.5740902423858643\n",
- "epoch: 8 step: 64, loss is 1.4569450616836548\n",
- "epoch: 8 step: 65, loss is 1.4422351121902466\n",
- "epoch: 8 step: 66, loss is 1.505530595779419\n",
- "epoch: 8 step: 67, loss is 1.4461724758148193\n",
- "epoch: 8 step: 68, loss is 1.454694390296936\n",
- "epoch: 8 step: 69, loss is 1.4635491371154785\n",
- "epoch: 8 step: 70, loss is 1.441287875175476\n",
- "epoch: 8 step: 71, loss is 1.453078031539917\n",
- "epoch: 8 step: 72, loss is 1.5568044185638428\n",
- "epoch: 8 step: 73, loss is 1.4678857326507568\n",
- "epoch: 8 step: 74, loss is 1.512624979019165\n",
- "epoch: 8 step: 75, loss is 1.3334951400756836\n",
- "epoch: 8 step: 76, loss is 1.425999641418457\n",
- "epoch: 8 step: 77, loss is 1.3990145921707153\n",
- "epoch: 8 step: 78, loss is 1.461276888847351\n",
- "epoch: 8 step: 79, loss is 1.4124958515167236\n",
- "epoch: 8 step: 80, loss is 1.4877912998199463\n",
- "epoch: 8 step: 81, loss is 1.4394843578338623\n",
- "epoch: 8 step: 82, loss is 1.4359078407287598\n",
- "epoch: 8 step: 83, loss is 1.507434606552124\n",
- "epoch: 8 step: 84, loss is 1.4494572877883911\n",
- "epoch: 8 step: 85, loss is 1.526078224182129\n",
- "epoch: 8 step: 86, loss is 1.5779447555541992\n",
- "epoch: 8 step: 87, loss is 1.5267746448516846\n",
- "epoch: 8 step: 88, loss is 1.415459156036377\n",
- "epoch: 8 step: 89, loss is 1.4322260618209839\n",
- "epoch: 8 step: 90, loss is 1.566877841949463\n",
- "epoch: 8 step: 91, loss is 1.4789512157440186\n",
- "epoch: 8 step: 92, loss is 1.5568833351135254\n",
- "epoch: 8 step: 93, loss is 1.5022315979003906\n",
- "epoch: 8 step: 94, loss is 1.4006327390670776\n",
- "epoch: 8 step: 95, loss is 1.4552278518676758\n",
- "epoch: 8 step: 96, loss is 1.4713218212127686\n",
- "epoch: 8 step: 97, loss is 1.4800403118133545\n",
- "epoch: 8 step: 98, loss is 1.492903470993042\n",
- "epoch: 8 step: 99, loss is 1.5539541244506836\n",
- "epoch: 8 step: 100, loss is 1.4644291400909424\n",
- "epoch: 8 step: 101, loss is 1.4984171390533447\n",
- "epoch: 8 step: 102, loss is 1.3292292356491089\n",
- "epoch: 8 step: 103, loss is 1.4338009357452393\n",
- "epoch: 8 step: 104, loss is 1.5475879907608032\n",
- "epoch: 8 step: 105, loss is 1.542767882347107\n",
- "epoch: 8 step: 106, loss is 1.3752655982971191\n",
- "epoch: 8 step: 107, loss is 1.4356662034988403\n",
- "epoch: 8 step: 108, loss is 1.4400396347045898\n",
- "epoch: 8 step: 109, loss is 1.5020948648452759\n",
- "epoch: 8 step: 110, loss is 1.4970731735229492\n",
- "epoch: 8 step: 111, loss is 1.4158711433410645\n",
- "epoch: 8 step: 112, loss is 1.3296138048171997\n",
- "epoch: 8 step: 113, loss is 1.6084356307983398\n",
- "epoch: 8 step: 114, loss is 1.479214072227478\n",
- "epoch: 8 step: 115, loss is 1.3798211812973022\n",
- "epoch: 8 step: 116, loss is 1.4386321306228638\n",
- "epoch: 8 step: 117, loss is 1.410789966583252\n",
- "epoch: 8 step: 118, loss is 1.3517998456954956\n",
- "epoch: 8 step: 119, loss is 1.5129280090332031\n",
- "epoch: 8 step: 120, loss is 1.492523193359375\n",
- "epoch: 8 step: 121, loss is 1.603529453277588\n",
- "epoch: 8 step: 122, loss is 1.4350736141204834\n",
- "epoch: 8 step: 123, loss is 1.3458735942840576\n",
- "epoch: 8 step: 124, loss is 1.489173173904419\n",
- "epoch: 8 step: 125, loss is 1.5628888607025146\n",
- "epoch: 8 step: 126, loss is 1.4916396141052246\n",
- "epoch: 8 step: 127, loss is 1.3608587980270386\n",
- "epoch: 8 step: 128, loss is 1.3901667594909668\n",
- "epoch: 8 step: 129, loss is 1.3849161863327026\n",
- "epoch: 8 step: 130, loss is 1.4271172285079956\n",
- "epoch: 8 step: 131, loss is 1.4397755861282349\n",
- "epoch: 8 step: 132, loss is 1.4869177341461182\n",
- "epoch: 8 step: 133, loss is 1.5868098735809326\n",
- "epoch: 8 step: 134, loss is 1.4563021659851074\n",
- "epoch: 8 step: 135, loss is 1.3524556159973145\n",
- "epoch: 8 step: 136, loss is 1.4983081817626953\n",
- "epoch: 8 step: 137, loss is 1.4211821556091309\n",
- "epoch: 8 step: 138, loss is 1.419816255569458\n",
- "epoch: 8 step: 139, loss is 1.4573042392730713\n",
- "epoch: 8 step: 140, loss is 1.4487924575805664\n",
- "epoch: 8 step: 141, loss is 1.433356761932373\n",
- "epoch: 8 step: 142, loss is 1.4964767694473267\n",
- "epoch: 8 step: 143, loss is 1.5534299612045288\n",
- "epoch: 8 step: 144, loss is 1.4708095788955688\n",
- "epoch: 8 step: 145, loss is 1.5685863494873047\n",
- "epoch: 8 step: 146, loss is 1.4808427095413208\n",
- "epoch: 8 step: 147, loss is 1.4608464241027832\n",
- "epoch: 8 step: 148, loss is 1.494614601135254\n",
- "epoch: 8 step: 149, loss is 1.4873383045196533\n",
- "epoch: 8 step: 150, loss is 1.341841220855713\n",
- "epoch: 8 step: 151, loss is 1.3668982982635498\n",
- "epoch: 8 step: 152, loss is 1.4026339054107666\n",
- "epoch: 8 step: 153, loss is 1.5319308042526245\n",
- "epoch: 8 step: 154, loss is 1.3257153034210205\n",
- "epoch: 8 step: 155, loss is 1.42469322681427\n",
- "epoch: 8 step: 156, loss is 1.4665048122406006\n",
- "epoch: 8 step: 157, loss is 1.4799840450286865\n",
- "epoch: 8 step: 158, loss is 1.4337728023529053\n",
- "epoch: 8 step: 159, loss is 1.443000316619873\n",
- "epoch: 8 step: 160, loss is 1.3782110214233398\n",
- "epoch: 8 step: 161, loss is 1.4556231498718262\n",
- "epoch: 8 step: 162, loss is 1.425423264503479\n",
- "epoch: 8 step: 163, loss is 1.4370026588439941\n",
- "epoch: 8 step: 164, loss is 1.365470290184021\n",
- "epoch: 8 step: 165, loss is 1.410109043121338\n",
- "epoch: 8 step: 166, loss is 1.44974946975708\n",
- "epoch: 8 step: 167, loss is 1.3680527210235596\n",
- "epoch: 8 step: 168, loss is 1.3873088359832764\n",
- "epoch: 8 step: 169, loss is 1.5280447006225586\n",
- "epoch: 8 step: 170, loss is 1.5055896043777466\n",
- "epoch: 8 step: 171, loss is 1.432206153869629\n",
- "epoch: 8 step: 172, loss is 1.480765700340271\n",
- "epoch: 8 step: 173, loss is 1.5037331581115723\n",
- "epoch: 8 step: 174, loss is 1.4330967664718628\n",
- "epoch: 8 step: 175, loss is 1.4243203401565552\n",
- "epoch: 8 step: 176, loss is 1.3958309888839722\n",
- "epoch: 8 step: 177, loss is 1.5025379657745361\n",
- "epoch: 8 step: 178, loss is 1.4663933515548706\n",
- "epoch: 8 step: 179, loss is 1.452102780342102\n",
- "epoch: 8 step: 180, loss is 1.451858639717102\n",
- "epoch: 8 step: 181, loss is 1.3984813690185547\n",
- "epoch: 8 step: 182, loss is 1.4788213968276978\n",
- "epoch: 8 step: 183, loss is 1.3017902374267578\n",
- "epoch: 8 step: 184, loss is 1.4115046262741089\n",
- "epoch: 8 step: 185, loss is 1.436378002166748\n",
- "epoch: 8 step: 186, loss is 1.4421536922454834\n",
- "epoch: 8 step: 187, loss is 1.452845573425293\n",
- "epoch: 8 step: 188, loss is 1.434173345565796\n",
- "epoch: 8 step: 189, loss is 1.4310007095336914\n",
- "epoch: 8 step: 190, loss is 1.3160090446472168\n",
- "epoch: 8 step: 191, loss is 1.397233247756958\n",
- "epoch: 8 step: 192, loss is 1.4541261196136475\n",
- "epoch: 8 step: 193, loss is 1.4517838954925537\n",
- "epoch: 8 step: 194, loss is 1.4931917190551758\n",
- "epoch: 8 step: 195, loss is 1.5315526723861694\n",
- "Train epoch time: 102444.866 ms, per step time: 525.358 ms\n",
- "epoch: 9 step: 1, loss is 1.6003079414367676\n",
- "epoch: 9 step: 2, loss is 1.4922685623168945\n",
- "epoch: 9 step: 3, loss is 1.3885917663574219\n",
- "epoch: 9 step: 4, loss is 1.3959556818008423\n",
- "epoch: 9 step: 5, loss is 1.3999963998794556\n",
- "epoch: 9 step: 6, loss is 1.4670345783233643\n",
- "epoch: 9 step: 7, loss is 1.3973442316055298\n",
- "epoch: 9 step: 8, loss is 1.340246319770813\n",
- "epoch: 9 step: 9, loss is 1.4790980815887451\n",
- "epoch: 9 step: 10, loss is 1.3846538066864014\n",
- "epoch: 9 step: 11, loss is 1.3954954147338867\n",
- "epoch: 9 step: 12, loss is 1.4041377305984497\n",
- "epoch: 9 step: 13, loss is 1.4407566785812378\n",
- "epoch: 9 step: 14, loss is 1.4082683324813843\n",
- "epoch: 9 step: 15, loss is 1.4336481094360352\n",
- "epoch: 9 step: 16, loss is 1.4163028001785278\n",
- "epoch: 9 step: 17, loss is 1.4272379875183105\n",
- "epoch: 9 step: 18, loss is 1.4297065734863281\n",
- "epoch: 9 step: 19, loss is 1.422825574874878\n",
- "epoch: 9 step: 20, loss is 1.4385401010513306\n",
- "epoch: 9 step: 21, loss is 1.445806622505188\n",
- "epoch: 9 step: 22, loss is 1.419236421585083\n",
- "epoch: 9 step: 23, loss is 1.3894257545471191\n",
- "epoch: 9 step: 24, loss is 1.372558832168579\n",
- "epoch: 9 step: 25, loss is 1.4225895404815674\n",
- "epoch: 9 step: 26, loss is 1.4315637350082397\n",
- "epoch: 9 step: 27, loss is 1.396859884262085\n",
- "epoch: 9 step: 28, loss is 1.4430700540542603\n",
- "epoch: 9 step: 29, loss is 1.425110101699829\n",
- "epoch: 9 step: 30, loss is 1.340305209159851\n",
- "epoch: 9 step: 31, loss is 1.4256365299224854\n",
- "epoch: 9 step: 32, loss is 1.425264835357666\n",
- "epoch: 9 step: 33, loss is 1.3432583808898926\n",
- "epoch: 9 step: 34, loss is 1.4501047134399414\n",
- "epoch: 9 step: 35, loss is 1.4256477355957031\n",
- "epoch: 9 step: 36, loss is 1.3926483392715454\n",
- "epoch: 9 step: 37, loss is 1.467071771621704\n",
- "epoch: 9 step: 38, loss is 1.4511688947677612\n",
- "epoch: 9 step: 39, loss is 1.425896167755127\n",
- "epoch: 9 step: 40, loss is 1.39301598072052\n",
- "epoch: 9 step: 41, loss is 1.3640766143798828\n",
- "epoch: 9 step: 42, loss is 1.383095622062683\n",
- "epoch: 9 step: 43, loss is 1.3945188522338867\n",
- "epoch: 9 step: 44, loss is 1.3717586994171143\n",
- "epoch: 9 step: 45, loss is 1.4483091831207275\n",
- "epoch: 9 step: 46, loss is 1.4148410558700562\n",
- "epoch: 9 step: 47, loss is 1.4304040670394897\n",
- "epoch: 9 step: 48, loss is 1.3608626127243042\n",
- "epoch: 9 step: 49, loss is 1.42831289768219\n",
- "epoch: 9 step: 50, loss is 1.4228458404541016\n",
- "epoch: 9 step: 51, loss is 1.4425525665283203\n",
- "epoch: 9 step: 52, loss is 1.4267643690109253\n",
- "epoch: 9 step: 53, loss is 1.3897196054458618\n",
- "epoch: 9 step: 54, loss is 1.4612106084823608\n",
- "epoch: 9 step: 55, loss is 1.4505631923675537\n",
- "epoch: 9 step: 56, loss is 1.4501452445983887\n",
- "epoch: 9 step: 57, loss is 1.4348971843719482\n",
- "epoch: 9 step: 58, loss is 1.3447551727294922\n",
- "epoch: 9 step: 59, loss is 1.3725731372833252\n",
- "epoch: 9 step: 60, loss is 1.4050712585449219\n",
- "epoch: 9 step: 61, loss is 1.380196452140808\n",
- "epoch: 9 step: 62, loss is 1.5016015768051147\n",
- "epoch: 9 step: 63, loss is 1.3762125968933105\n",
- "epoch: 9 step: 64, loss is 1.400113821029663\n",
- "epoch: 9 step: 65, loss is 1.390522837638855\n",
- "epoch: 9 step: 66, loss is 1.436388373374939\n",
- "epoch: 9 step: 67, loss is 1.4666852951049805\n",
- "epoch: 9 step: 68, loss is 1.3964097499847412\n",
- "epoch: 9 step: 69, loss is 1.3992280960083008\n",
- "epoch: 9 step: 70, loss is 1.403984546661377\n",
- "epoch: 9 step: 71, loss is 1.5064489841461182\n",
- "epoch: 9 step: 72, loss is 1.4924342632293701\n",
- "epoch: 9 step: 73, loss is 1.4470736980438232\n",
- "epoch: 9 step: 74, loss is 1.4246807098388672\n",
- "epoch: 9 step: 75, loss is 1.4689629077911377\n",
- "epoch: 9 step: 76, loss is 1.4128447771072388\n",
- "epoch: 9 step: 77, loss is 1.4700579643249512\n",
- "epoch: 9 step: 78, loss is 1.3486058712005615\n",
- "epoch: 9 step: 79, loss is 1.4582267999649048\n",
- "epoch: 9 step: 80, loss is 1.396195650100708\n",
- "epoch: 9 step: 81, loss is 1.3688485622406006\n",
- "epoch: 9 step: 82, loss is 1.3706858158111572\n",
- "epoch: 9 step: 83, loss is 1.316467046737671\n",
- "epoch: 9 step: 84, loss is 1.5192853212356567\n",
- "epoch: 9 step: 85, loss is 1.459778904914856\n",
- "epoch: 9 step: 86, loss is 1.4018524885177612\n",
- "epoch: 9 step: 87, loss is 1.4267604351043701\n",
- "epoch: 9 step: 88, loss is 1.4821763038635254\n",
- "epoch: 9 step: 89, loss is 1.4102380275726318\n",
- "epoch: 9 step: 90, loss is 1.4617805480957031\n",
- "epoch: 9 step: 91, loss is 1.4174072742462158\n",
- "epoch: 9 step: 92, loss is 1.4345035552978516\n",
- "epoch: 9 step: 93, loss is 1.3794127702713013\n",
- "epoch: 9 step: 94, loss is 1.4041898250579834\n",
- "epoch: 9 step: 95, loss is 1.3837155103683472\n",
- "epoch: 9 step: 96, loss is 1.437793493270874\n",
- "epoch: 9 step: 97, loss is 1.4495553970336914\n",
- "epoch: 9 step: 98, loss is 1.4666194915771484\n",
- "epoch: 9 step: 99, loss is 1.3122203350067139\n",
- "epoch: 9 step: 100, loss is 1.4746571779251099\n",
- "epoch: 9 step: 101, loss is 1.3794174194335938\n",
- "epoch: 9 step: 102, loss is 1.467755675315857\n",
- "epoch: 9 step: 103, loss is 1.583702564239502\n",
- "epoch: 9 step: 104, loss is 1.4728593826293945\n",
- "epoch: 9 step: 105, loss is 1.447981834411621\n",
- "epoch: 9 step: 106, loss is 1.3983805179595947\n",
- "epoch: 9 step: 107, loss is 1.4462443590164185\n",
- "epoch: 9 step: 108, loss is 1.3800263404846191\n",
- "epoch: 9 step: 109, loss is 1.5332759618759155\n",
- "epoch: 9 step: 110, loss is 1.3966152667999268\n",
- "epoch: 9 step: 111, loss is 1.505787968635559\n",
- "epoch: 9 step: 112, loss is 1.5261991024017334\n",
- "epoch: 9 step: 113, loss is 1.4829952716827393\n",
- "epoch: 9 step: 114, loss is 1.4459309577941895\n",
- "epoch: 9 step: 115, loss is 1.4073562622070312\n",
- "epoch: 9 step: 116, loss is 1.4061671495437622\n",
- "epoch: 9 step: 117, loss is 1.4721447229385376\n",
- "epoch: 9 step: 118, loss is 1.361497163772583\n",
- "epoch: 9 step: 119, loss is 1.4536912441253662\n",
- "epoch: 9 step: 120, loss is 1.424666166305542\n",
- "epoch: 9 step: 121, loss is 1.4328957796096802\n",
- "epoch: 9 step: 122, loss is 1.334822654724121\n",
- "epoch: 9 step: 123, loss is 1.443067193031311\n",
- "epoch: 9 step: 124, loss is 1.3541892766952515\n",
- "epoch: 9 step: 125, loss is 1.3579010963439941\n",
- "epoch: 9 step: 126, loss is 1.3874437808990479\n",
- "epoch: 9 step: 127, loss is 1.4592578411102295\n",
- "epoch: 9 step: 128, loss is 1.5056045055389404\n",
- "epoch: 9 step: 129, loss is 1.4291508197784424\n",
- "epoch: 9 step: 130, loss is 1.4102530479431152\n",
- "epoch: 9 step: 131, loss is 1.4127767086029053\n",
- "epoch: 9 step: 132, loss is 1.44157874584198\n",
- "epoch: 9 step: 133, loss is 1.4844645261764526\n",
- "epoch: 9 step: 134, loss is 1.4196217060089111\n",
- "epoch: 9 step: 135, loss is 1.39158034324646\n",
- "epoch: 9 step: 136, loss is 1.4368102550506592\n",
- "epoch: 9 step: 137, loss is 1.420792579650879\n",
- "epoch: 9 step: 138, loss is 1.3750956058502197\n",
- "epoch: 9 step: 139, loss is 1.4317573308944702\n",
- "epoch: 9 step: 140, loss is 1.4562273025512695\n",
- "epoch: 9 step: 141, loss is 1.4701918363571167\n",
- "epoch: 9 step: 142, loss is 1.4579381942749023\n",
- "epoch: 9 step: 143, loss is 1.4216327667236328\n",
- "epoch: 9 step: 144, loss is 1.4019056558609009\n",
- "epoch: 9 step: 145, loss is 1.3909857273101807\n",
- "epoch: 9 step: 146, loss is 1.3865052461624146\n",
- "epoch: 9 step: 147, loss is 1.567305088043213\n",
- "epoch: 9 step: 148, loss is 1.3793929815292358\n",
- "epoch: 9 step: 149, loss is 1.3975459337234497\n",
- "epoch: 9 step: 150, loss is 1.3994706869125366\n",
- "epoch: 9 step: 151, loss is 1.4336097240447998\n",
- "epoch: 9 step: 152, loss is 1.4594308137893677\n",
- "epoch: 9 step: 153, loss is 1.402277946472168\n",
- "epoch: 9 step: 154, loss is 1.5039217472076416\n",
- "epoch: 9 step: 155, loss is 1.41551673412323\n",
- "epoch: 9 step: 156, loss is 1.4417976140975952\n",
- "epoch: 9 step: 157, loss is 1.4270507097244263\n",
- "epoch: 9 step: 158, loss is 1.406843900680542\n",
- "epoch: 9 step: 159, loss is 1.4105967283248901\n",
- "epoch: 9 step: 160, loss is 1.457517385482788\n",
- "epoch: 9 step: 161, loss is 1.4588218927383423\n",
- "epoch: 9 step: 162, loss is 1.3877910375595093\n",
- "epoch: 9 step: 163, loss is 1.4787626266479492\n",
- "epoch: 9 step: 164, loss is 1.3771215677261353\n",
- "epoch: 9 step: 165, loss is 1.405901312828064\n",
- "epoch: 9 step: 166, loss is 1.421569585800171\n",
- "epoch: 9 step: 167, loss is 1.460265874862671\n",
- "epoch: 9 step: 168, loss is 1.4700508117675781\n",
- "epoch: 9 step: 169, loss is 1.438446044921875\n",
- "epoch: 9 step: 170, loss is 1.4892833232879639\n",
- "epoch: 9 step: 171, loss is 1.4415148496627808\n",
- "epoch: 9 step: 172, loss is 1.4261375665664673\n",
- "epoch: 9 step: 173, loss is 1.4154267311096191\n",
- "epoch: 9 step: 174, loss is 1.4122343063354492\n",
- "epoch: 9 step: 175, loss is 1.4426662921905518\n",
- "epoch: 9 step: 176, loss is 1.4262408018112183\n",
- "epoch: 9 step: 177, loss is 1.4288458824157715\n",
- "epoch: 9 step: 178, loss is 1.3773396015167236\n",
- "epoch: 9 step: 179, loss is 1.4386996030807495\n",
- "epoch: 9 step: 180, loss is 1.5087385177612305\n",
- "epoch: 9 step: 181, loss is 1.4953683614730835\n",
- "epoch: 9 step: 182, loss is 1.3578590154647827\n",
- "epoch: 9 step: 183, loss is 1.4742990732192993\n",
- "epoch: 9 step: 184, loss is 1.3722326755523682\n",
- "epoch: 9 step: 185, loss is 1.3456703424453735\n",
- "epoch: 9 step: 186, loss is 1.4324419498443604\n",
- "epoch: 9 step: 187, loss is 1.3626792430877686\n",
- "epoch: 9 step: 188, loss is 1.382414698600769\n",
- "epoch: 9 step: 189, loss is 1.51063871383667\n",
- "epoch: 9 step: 190, loss is 1.3704649209976196\n",
- "epoch: 9 step: 191, loss is 1.4699370861053467\n",
- "epoch: 9 step: 192, loss is 1.370850682258606\n",
- "epoch: 9 step: 193, loss is 1.3789448738098145\n",
- "epoch: 9 step: 194, loss is 1.370216965675354\n",
- "epoch: 9 step: 195, loss is 1.3970491886138916\n",
- "Train epoch time: 107645.555 ms, per step time: 552.028 ms\n",
- "epoch: 10 step: 1, loss is 1.2965832948684692\n",
- "epoch: 10 step: 2, loss is 1.3624372482299805\n",
- "epoch: 10 step: 3, loss is 1.2861902713775635\n",
- "epoch: 10 step: 4, loss is 1.3241184949874878\n",
- "epoch: 10 step: 5, loss is 1.394718050956726\n",
- "epoch: 10 step: 6, loss is 1.3413889408111572\n",
- "epoch: 10 step: 7, loss is 1.4911961555480957\n",
- "epoch: 10 step: 8, loss is 1.417178750038147\n",
- "epoch: 10 step: 9, loss is 1.3227043151855469\n",
- "epoch: 10 step: 10, loss is 1.4835829734802246\n",
- "epoch: 10 step: 11, loss is 1.412089228630066\n",
- "epoch: 10 step: 12, loss is 1.40829598903656\n",
- "epoch: 10 step: 13, loss is 1.3629873991012573\n",
- "epoch: 10 step: 14, loss is 1.3833584785461426\n",
- "epoch: 10 step: 15, loss is 1.411811113357544\n",
- "epoch: 10 step: 16, loss is 1.398743748664856\n",
- "epoch: 10 step: 17, loss is 1.4473192691802979\n",
- "epoch: 10 step: 18, loss is 1.3827720880508423\n",
- "epoch: 10 step: 19, loss is 1.4063584804534912\n",
- "epoch: 10 step: 20, loss is 1.3422629833221436\n",
- "epoch: 10 step: 21, loss is 1.334032416343689\n",
- "epoch: 10 step: 22, loss is 1.414698600769043\n",
- "epoch: 10 step: 23, loss is 1.3855944871902466\n",
- "epoch: 10 step: 24, loss is 1.4665839672088623\n",
- "epoch: 10 step: 25, loss is 1.354512333869934\n",
- "epoch: 10 step: 26, loss is 1.3405847549438477\n",
- "epoch: 10 step: 27, loss is 1.297778844833374\n",
- "epoch: 10 step: 28, loss is 1.3773537874221802\n",
- "epoch: 10 step: 29, loss is 1.3269649744033813\n",
- "epoch: 10 step: 30, loss is 1.422094464302063\n",
- "epoch: 10 step: 31, loss is 1.4265559911727905\n",
- "epoch: 10 step: 32, loss is 1.418647289276123\n",
- "epoch: 10 step: 33, loss is 1.389244794845581\n",
- "epoch: 10 step: 34, loss is 1.3263553380966187\n",
- "epoch: 10 step: 35, loss is 1.275538444519043\n",
- "epoch: 10 step: 36, loss is 1.3983631134033203\n",
- "epoch: 10 step: 37, loss is 1.4519941806793213\n",
- "epoch: 10 step: 38, loss is 1.3014628887176514\n",
- "epoch: 10 step: 39, loss is 1.4144717454910278\n",
- "epoch: 10 step: 40, loss is 1.4499932527542114\n",
- "epoch: 10 step: 41, loss is 1.3236216306686401\n",
- "epoch: 10 step: 42, loss is 1.4025533199310303\n",
- "epoch: 10 step: 43, loss is 1.4357435703277588\n",
- "epoch: 10 step: 44, loss is 1.3669359683990479\n",
- "epoch: 10 step: 45, loss is 1.4060128927230835\n",
- "epoch: 10 step: 46, loss is 1.4033373594284058\n",
- "epoch: 10 step: 47, loss is 1.3929178714752197\n",
- "epoch: 10 step: 48, loss is 1.4031305313110352\n",
- "epoch: 10 step: 49, loss is 1.4559919834136963\n",
- "epoch: 10 step: 50, loss is 1.3836954832077026\n",
- "epoch: 10 step: 51, loss is 1.3887559175491333\n",
- "epoch: 10 step: 52, loss is 1.3818857669830322\n",
- "epoch: 10 step: 53, loss is 1.3133264780044556\n",
- "epoch: 10 step: 54, loss is 1.4239494800567627\n",
- "epoch: 10 step: 55, loss is 1.405240535736084\n",
- "epoch: 10 step: 56, loss is 1.3808413743972778\n",
- "epoch: 10 step: 57, loss is 1.4532716274261475\n",
- "epoch: 10 step: 58, loss is 1.3615643978118896\n",
- "epoch: 10 step: 59, loss is 1.3954668045043945\n",
- "epoch: 10 step: 60, loss is 1.4080253839492798\n",
- "epoch: 10 step: 61, loss is 1.5060691833496094\n",
- "epoch: 10 step: 62, loss is 1.3712656497955322\n",
- "epoch: 10 step: 63, loss is 1.4440624713897705\n",
- "epoch: 10 step: 64, loss is 1.4231438636779785\n",
- "epoch: 10 step: 65, loss is 1.4151415824890137\n",
- "epoch: 10 step: 66, loss is 1.4696968793869019\n",
- "epoch: 10 step: 67, loss is 1.3374946117401123\n",
- "epoch: 10 step: 68, loss is 1.447821021080017\n",
- "epoch: 10 step: 69, loss is 1.373509168624878\n",
- "epoch: 10 step: 70, loss is 1.3768022060394287\n",
- "epoch: 10 step: 71, loss is 1.4237534999847412\n",
- "epoch: 10 step: 72, loss is 1.3670027256011963\n",
- "epoch: 10 step: 73, loss is 1.3372024297714233\n",
- "epoch: 10 step: 74, loss is 1.3745112419128418\n",
- "epoch: 10 step: 75, loss is 1.3913434743881226\n",
- "epoch: 10 step: 76, loss is 1.50279700756073\n",
- "epoch: 10 step: 77, loss is 1.378105878829956\n",
- "epoch: 10 step: 78, loss is 1.4290138483047485\n",
- "epoch: 10 step: 79, loss is 1.3755422830581665\n",
- "epoch: 10 step: 80, loss is 1.3978270292282104\n",
- "epoch: 10 step: 81, loss is 1.418957233428955\n",
- "epoch: 10 step: 82, loss is 1.3231757879257202\n",
- "epoch: 10 step: 83, loss is 1.3601419925689697\n",
- "epoch: 10 step: 84, loss is 1.3891749382019043\n",
- "epoch: 10 step: 85, loss is 1.3336032629013062\n",
- "epoch: 10 step: 86, loss is 1.4387264251708984\n",
- "epoch: 10 step: 87, loss is 1.447472333908081\n",
- "epoch: 10 step: 88, loss is 1.3845824003219604\n",
- "epoch: 10 step: 89, loss is 1.3586456775665283\n",
- "epoch: 10 step: 90, loss is 1.4330099821090698\n",
- "epoch: 10 step: 91, loss is 1.4640119075775146\n",
- "epoch: 10 step: 92, loss is 1.4041026830673218\n",
- "epoch: 10 step: 93, loss is 1.4550449848175049\n",
- "epoch: 10 step: 94, loss is 1.5469350814819336\n",
- "epoch: 10 step: 95, loss is 1.3541643619537354\n",
- "epoch: 10 step: 96, loss is 1.3415396213531494\n",
- "epoch: 10 step: 97, loss is 1.3518762588500977\n",
- "epoch: 10 step: 98, loss is 1.360211730003357\n",
- "epoch: 10 step: 99, loss is 1.4328492879867554\n",
- "epoch: 10 step: 100, loss is 1.4450207948684692\n",
- "epoch: 10 step: 101, loss is 1.477220892906189\n",
- "epoch: 10 step: 102, loss is 1.3989790678024292\n",
- "epoch: 10 step: 103, loss is 1.4099704027175903\n",
- "epoch: 10 step: 104, loss is 1.3115266561508179\n",
- "epoch: 10 step: 105, loss is 1.3436390161514282\n",
- "epoch: 10 step: 106, loss is 1.3612253665924072\n",
- "epoch: 10 step: 107, loss is 1.4591314792633057\n",
- "epoch: 10 step: 108, loss is 1.4166926145553589\n",
- "epoch: 10 step: 109, loss is 1.3011889457702637\n",
- "epoch: 10 step: 110, loss is 1.4686541557312012\n",
- "epoch: 10 step: 111, loss is 1.3920936584472656\n",
- "epoch: 10 step: 112, loss is 1.4055709838867188\n",
- "epoch: 10 step: 113, loss is 1.4412797689437866\n",
- "epoch: 10 step: 114, loss is 1.4033015966415405\n",
- "epoch: 10 step: 115, loss is 1.3964070081710815\n",
- "epoch: 10 step: 116, loss is 1.3559627532958984\n",
- "epoch: 10 step: 117, loss is 1.3963572978973389\n",
- "epoch: 10 step: 118, loss is 1.349740982055664\n",
- "epoch: 10 step: 119, loss is 1.4372875690460205\n",
- "epoch: 10 step: 120, loss is 1.358196496963501\n",
- "epoch: 10 step: 121, loss is 1.3117228746414185\n",
- "epoch: 10 step: 122, loss is 1.3786026239395142\n",
- "epoch: 10 step: 123, loss is 1.3010280132293701\n",
- "epoch: 10 step: 124, loss is 1.4654299020767212\n",
- "epoch: 10 step: 125, loss is 1.3337533473968506\n",
- "epoch: 10 step: 126, loss is 1.364565372467041\n",
- "epoch: 10 step: 127, loss is 1.2704663276672363\n",
- "epoch: 10 step: 128, loss is 1.3564231395721436\n",
- "epoch: 10 step: 129, loss is 1.4180039167404175\n",
- "epoch: 10 step: 130, loss is 1.3639845848083496\n",
- "epoch: 10 step: 131, loss is 1.3803002834320068\n",
- "epoch: 10 step: 132, loss is 1.3628630638122559\n",
- "epoch: 10 step: 133, loss is 1.3558411598205566\n",
- "epoch: 10 step: 134, loss is 1.4883337020874023\n",
- "epoch: 10 step: 135, loss is 1.333411455154419\n",
- "epoch: 10 step: 136, loss is 1.3035935163497925\n",
- "epoch: 10 step: 137, loss is 1.3214057683944702\n",
- "epoch: 10 step: 138, loss is 1.3928450345993042\n",
- "epoch: 10 step: 139, loss is 1.3657970428466797\n",
- "epoch: 10 step: 140, loss is 1.3745687007904053\n",
- "epoch: 10 step: 141, loss is 1.4447153806686401\n",
- "epoch: 10 step: 142, loss is 1.2999922037124634\n",
- "epoch: 10 step: 143, loss is 1.3633801937103271\n",
- "epoch: 10 step: 144, loss is 1.3480429649353027\n",
- "epoch: 10 step: 145, loss is 1.3235867023468018\n",
- "epoch: 10 step: 146, loss is 1.3890784978866577\n",
- "epoch: 10 step: 147, loss is 1.4675740003585815\n",
- "epoch: 10 step: 148, loss is 1.4685134887695312\n",
- "epoch: 10 step: 149, loss is 1.377044916152954\n",
- "epoch: 10 step: 150, loss is 1.3216993808746338\n",
- "epoch: 10 step: 151, loss is 1.290349006652832\n",
- "epoch: 10 step: 152, loss is 1.413101315498352\n",
- "epoch: 10 step: 153, loss is 1.3955527544021606\n",
- "epoch: 10 step: 154, loss is 1.4087172746658325\n",
- "epoch: 10 step: 155, loss is 1.2923272848129272\n",
- "epoch: 10 step: 156, loss is 1.346842646598816\n",
- "epoch: 10 step: 157, loss is 1.3531287908554077\n",
- "epoch: 10 step: 158, loss is 1.3451437950134277\n",
- "epoch: 10 step: 159, loss is 1.4337797164916992\n",
- "epoch: 10 step: 160, loss is 1.475834846496582\n",
- "epoch: 10 step: 161, loss is 1.4216883182525635\n",
- "epoch: 10 step: 162, loss is 1.3326752185821533\n",
- "epoch: 10 step: 163, loss is 1.3601791858673096\n",
- "epoch: 10 step: 164, loss is 1.4948947429656982\n",
- "epoch: 10 step: 165, loss is 1.4416465759277344\n",
- "epoch: 10 step: 166, loss is 1.4442185163497925\n",
- "epoch: 10 step: 167, loss is 1.4152555465698242\n",
- "epoch: 10 step: 168, loss is 1.4029054641723633\n",
- "epoch: 10 step: 169, loss is 1.3682323694229126\n",
- "epoch: 10 step: 170, loss is 1.4172747135162354\n",
- "epoch: 10 step: 171, loss is 1.4432785511016846\n",
- "epoch: 10 step: 172, loss is 1.4246838092803955\n",
- "epoch: 10 step: 173, loss is 1.371138572692871\n",
- "epoch: 10 step: 174, loss is 1.3486088514328003\n",
- "epoch: 10 step: 175, loss is 1.4125900268554688\n",
- "epoch: 10 step: 176, loss is 1.3639887571334839\n",
- "epoch: 10 step: 177, loss is 1.3915724754333496\n",
- "epoch: 10 step: 178, loss is 1.3451502323150635\n",
- "epoch: 10 step: 179, loss is 1.3965051174163818\n",
- "epoch: 10 step: 180, loss is 1.380311369895935\n",
- "epoch: 10 step: 181, loss is 1.3846101760864258\n",
- "epoch: 10 step: 182, loss is 1.398587703704834\n",
- "epoch: 10 step: 183, loss is 1.3646464347839355\n",
- "epoch: 10 step: 184, loss is 1.4128984212875366\n",
- "epoch: 10 step: 185, loss is 1.369757890701294\n",
- "epoch: 10 step: 186, loss is 1.3501085042953491\n",
- "epoch: 10 step: 187, loss is 1.4274100065231323\n",
- "epoch: 10 step: 188, loss is 1.3888895511627197\n",
- "epoch: 10 step: 189, loss is 1.3530522584915161\n",
- "epoch: 10 step: 190, loss is 1.3565177917480469\n",
- "epoch: 10 step: 191, loss is 1.3507171869277954\n",
- "epoch: 10 step: 192, loss is 1.3254823684692383\n",
- "epoch: 10 step: 193, loss is 1.4154565334320068\n",
- "epoch: 10 step: 194, loss is 1.3216679096221924\n",
- "epoch: 10 step: 195, loss is 1.4296022653579712\n",
- "Train epoch time: 101595.825 ms, per step time: 521.004 ms\n",
- "epoch: 11 step: 1, loss is 1.3514986038208008\n",
- "epoch: 11 step: 2, loss is 1.3705165386199951\n",
- "epoch: 11 step: 3, loss is 1.3199777603149414\n",
- "epoch: 11 step: 4, loss is 1.3809438943862915\n",
- "epoch: 11 step: 5, loss is 1.2884817123413086\n",
- "epoch: 11 step: 6, loss is 1.4112142324447632\n",
- "epoch: 11 step: 7, loss is 1.355219841003418\n",
- "epoch: 11 step: 8, loss is 1.414138913154602\n",
- "epoch: 11 step: 9, loss is 1.4002182483673096\n",
- "epoch: 11 step: 10, loss is 1.3864917755126953\n",
- "epoch: 11 step: 11, loss is 1.3203208446502686\n",
- "epoch: 11 step: 12, loss is 1.3462626934051514\n",
- "epoch: 11 step: 13, loss is 1.2533496618270874\n",
- "epoch: 11 step: 14, loss is 1.40065598487854\n",
- "epoch: 11 step: 15, loss is 1.3974335193634033\n",
- "epoch: 11 step: 16, loss is 1.4740949869155884\n",
- "epoch: 11 step: 17, loss is 1.3100659847259521\n",
- "epoch: 11 step: 18, loss is 1.3775184154510498\n",
- "epoch: 11 step: 19, loss is 1.3206316232681274\n",
- "epoch: 11 step: 20, loss is 1.3319069147109985\n",
- "epoch: 11 step: 21, loss is 1.3000259399414062\n",
- "epoch: 11 step: 22, loss is 1.4466540813446045\n",
- "epoch: 11 step: 23, loss is 1.4565842151641846\n",
- "epoch: 11 step: 24, loss is 1.436469554901123\n",
- "epoch: 11 step: 25, loss is 1.3870550394058228\n",
- "epoch: 11 step: 26, loss is 1.4553287029266357\n",
- "epoch: 11 step: 27, loss is 1.2967276573181152\n",
- "epoch: 11 step: 28, loss is 1.3419265747070312\n",
- "epoch: 11 step: 29, loss is 1.367044448852539\n",
- "epoch: 11 step: 30, loss is 1.264862060546875\n",
- "epoch: 11 step: 31, loss is 1.411987543106079\n",
- "epoch: 11 step: 32, loss is 1.3183720111846924\n",
- "epoch: 11 step: 33, loss is 1.3933228254318237\n",
- "epoch: 11 step: 34, loss is 1.3272223472595215\n",
- "epoch: 11 step: 35, loss is 1.2883217334747314\n",
- "epoch: 11 step: 36, loss is 1.3552230596542358\n",
- "epoch: 11 step: 37, loss is 1.3874359130859375\n",
- "epoch: 11 step: 38, loss is 1.3859970569610596\n",
- "epoch: 11 step: 39, loss is 1.3702952861785889\n",
- "epoch: 11 step: 40, loss is 1.442229986190796\n",
- "epoch: 11 step: 41, loss is 1.2251743078231812\n",
- "epoch: 11 step: 42, loss is 1.365355134010315\n",
- "epoch: 11 step: 43, loss is 1.3616288900375366\n",
- "epoch: 11 step: 44, loss is 1.4360814094543457\n",
- "epoch: 11 step: 45, loss is 1.3755671977996826\n",
- "epoch: 11 step: 46, loss is 1.3499059677124023\n",
- "epoch: 11 step: 47, loss is 1.300149917602539\n",
- "epoch: 11 step: 48, loss is 1.3271315097808838\n",
- "epoch: 11 step: 49, loss is 1.3486077785491943\n",
- "epoch: 11 step: 50, loss is 1.4033631086349487\n",
- "epoch: 11 step: 51, loss is 1.3766133785247803\n",
- "epoch: 11 step: 52, loss is 1.3841084241867065\n",
- "epoch: 11 step: 53, loss is 1.4159090518951416\n",
- "epoch: 11 step: 54, loss is 1.4055582284927368\n",
- "epoch: 11 step: 55, loss is 1.3272042274475098\n",
- "epoch: 11 step: 56, loss is 1.2775148153305054\n",
- "epoch: 11 step: 57, loss is 1.3210208415985107\n",
- "epoch: 11 step: 58, loss is 1.4437336921691895\n",
- "epoch: 11 step: 59, loss is 1.2408883571624756\n",
- "epoch: 11 step: 60, loss is 1.3514443635940552\n",
- "epoch: 11 step: 61, loss is 1.3840934038162231\n",
- "epoch: 11 step: 62, loss is 1.415282964706421\n",
- "epoch: 11 step: 63, loss is 1.2683483362197876\n",
- "epoch: 11 step: 64, loss is 1.3667012453079224\n",
- "epoch: 11 step: 65, loss is 1.383507251739502\n",
- "epoch: 11 step: 66, loss is 1.3947486877441406\n",
- "epoch: 11 step: 67, loss is 1.3435380458831787\n",
- "epoch: 11 step: 68, loss is 1.353773832321167\n",
- "epoch: 11 step: 69, loss is 1.432517409324646\n",
- "epoch: 11 step: 70, loss is 1.3472764492034912\n",
- "epoch: 11 step: 71, loss is 1.4028894901275635\n",
- "epoch: 11 step: 72, loss is 1.3879528045654297\n",
- "epoch: 11 step: 73, loss is 1.3442697525024414\n",
- "epoch: 11 step: 74, loss is 1.4034984111785889\n",
- "epoch: 11 step: 75, loss is 1.3146501779556274\n",
- "epoch: 11 step: 76, loss is 1.3686045408248901\n",
- "epoch: 11 step: 77, loss is 1.3054349422454834\n",
- "epoch: 11 step: 78, loss is 1.4089261293411255\n",
- "epoch: 11 step: 79, loss is 1.4178318977355957\n",
- "epoch: 11 step: 80, loss is 1.380204439163208\n",
- "epoch: 11 step: 81, loss is 1.3763902187347412\n",
- "epoch: 11 step: 82, loss is 1.373510479927063\n",
- "epoch: 11 step: 83, loss is 1.365464448928833\n",
- "epoch: 11 step: 84, loss is 1.3540847301483154\n",
- "epoch: 11 step: 85, loss is 1.4299991130828857\n",
- "epoch: 11 step: 86, loss is 1.378877878189087\n",
- "epoch: 11 step: 87, loss is 1.3229223489761353\n",
- "epoch: 11 step: 88, loss is 1.3692700862884521\n",
- "epoch: 11 step: 89, loss is 1.2946447134017944\n",
- "epoch: 11 step: 90, loss is 1.3349860906600952\n",
- "epoch: 11 step: 91, loss is 1.3907686471939087\n",
- "epoch: 11 step: 92, loss is 1.3047585487365723\n",
- "epoch: 11 step: 93, loss is 1.4182707071304321\n",
- "epoch: 11 step: 94, loss is 1.4012025594711304\n",
- "epoch: 11 step: 95, loss is 1.4166676998138428\n",
- "epoch: 11 step: 96, loss is 1.3014649152755737\n",
- "epoch: 11 step: 97, loss is 1.308947205543518\n",
- "epoch: 11 step: 98, loss is 1.3489638566970825\n",
- "epoch: 11 step: 99, loss is 1.2714179754257202\n",
- "epoch: 11 step: 100, loss is 1.3834896087646484\n",
- "epoch: 11 step: 101, loss is 1.4287711381912231\n",
- "epoch: 11 step: 102, loss is 1.382741928100586\n",
- "epoch: 11 step: 103, loss is 1.3602871894836426\n",
- "epoch: 11 step: 104, loss is 1.3250287771224976\n",
- "epoch: 11 step: 105, loss is 1.3959355354309082\n",
- "epoch: 11 step: 106, loss is 1.3501150608062744\n",
- "epoch: 11 step: 107, loss is 1.3617260456085205\n",
- "epoch: 11 step: 108, loss is 1.3895246982574463\n",
- "epoch: 11 step: 109, loss is 1.2615770101547241\n",
- "epoch: 11 step: 110, loss is 1.2695530652999878\n",
- "epoch: 11 step: 111, loss is 1.3917005062103271\n",
- "epoch: 11 step: 112, loss is 1.3721950054168701\n",
- "epoch: 11 step: 113, loss is 1.3860143423080444\n",
- "epoch: 11 step: 114, loss is 1.3357609510421753\n",
- "epoch: 11 step: 115, loss is 1.266148567199707\n",
- "epoch: 11 step: 116, loss is 1.394500732421875\n",
- "epoch: 11 step: 117, loss is 1.374269723892212\n",
- "epoch: 11 step: 118, loss is 1.4328869581222534\n",
- "epoch: 11 step: 119, loss is 1.4372501373291016\n",
- "epoch: 11 step: 120, loss is 1.318766474723816\n",
- "epoch: 11 step: 121, loss is 1.2610046863555908\n",
- "epoch: 11 step: 122, loss is 1.3094037771224976\n",
- "epoch: 11 step: 123, loss is 1.3522298336029053\n",
- "epoch: 11 step: 124, loss is 1.3229259252548218\n",
- "epoch: 11 step: 125, loss is 1.4207537174224854\n",
- "epoch: 11 step: 126, loss is 1.42739737033844\n",
- "epoch: 11 step: 127, loss is 1.365236520767212\n",
- "epoch: 11 step: 128, loss is 1.4127171039581299\n",
- "epoch: 11 step: 129, loss is 1.2993857860565186\n",
- "epoch: 11 step: 130, loss is 1.300777792930603\n",
- "epoch: 11 step: 131, loss is 1.3890771865844727\n",
- "epoch: 11 step: 132, loss is 1.4688968658447266\n",
- "epoch: 11 step: 133, loss is 1.3597408533096313\n",
- "epoch: 11 step: 134, loss is 1.3276069164276123\n",
- "epoch: 11 step: 135, loss is 1.3636209964752197\n",
- "epoch: 11 step: 136, loss is 1.369603157043457\n",
- "epoch: 11 step: 137, loss is 1.375201940536499\n",
- "epoch: 11 step: 138, loss is 1.3906245231628418\n",
- "epoch: 11 step: 139, loss is 1.3657907247543335\n",
- "epoch: 11 step: 140, loss is 1.452655553817749\n",
- "epoch: 11 step: 141, loss is 1.3102095127105713\n",
- "epoch: 11 step: 142, loss is 1.2915419340133667\n",
- "epoch: 11 step: 143, loss is 1.3614193201065063\n",
- "epoch: 11 step: 144, loss is 1.2567229270935059\n",
- "epoch: 11 step: 145, loss is 1.4643816947937012\n",
- "epoch: 11 step: 146, loss is 1.3137043714523315\n",
- "epoch: 11 step: 147, loss is 1.2624988555908203\n",
- "epoch: 11 step: 148, loss is 1.3650047779083252\n",
- "epoch: 11 step: 149, loss is 1.36278235912323\n",
- "epoch: 11 step: 150, loss is 1.283724069595337\n",
- "epoch: 11 step: 151, loss is 1.3203036785125732\n",
- "epoch: 11 step: 152, loss is 1.361722707748413\n",
- "epoch: 11 step: 153, loss is 1.376830816268921\n",
- "epoch: 11 step: 154, loss is 1.3566585779190063\n",
- "epoch: 11 step: 155, loss is 1.3124173879623413\n",
- "epoch: 11 step: 156, loss is 1.2711949348449707\n",
- "epoch: 11 step: 157, loss is 1.2913358211517334\n",
- "epoch: 11 step: 158, loss is 1.4583773612976074\n",
- "epoch: 11 step: 159, loss is 1.2532050609588623\n",
- "epoch: 11 step: 160, loss is 1.4087457656860352\n",
- "epoch: 11 step: 161, loss is 1.3923335075378418\n",
- "epoch: 11 step: 162, loss is 1.2906339168548584\n",
- "epoch: 11 step: 163, loss is 1.3523333072662354\n",
- "epoch: 11 step: 164, loss is 1.3478566408157349\n",
- "epoch: 11 step: 165, loss is 1.3769158124923706\n",
- "epoch: 11 step: 166, loss is 1.3983933925628662\n",
- "epoch: 11 step: 167, loss is 1.3652666807174683\n",
- "epoch: 11 step: 168, loss is 1.354666829109192\n",
- "epoch: 11 step: 169, loss is 1.3988981246948242\n",
- "epoch: 11 step: 170, loss is 1.3378368616104126\n",
- "epoch: 11 step: 171, loss is 1.3551857471466064\n",
- "epoch: 11 step: 172, loss is 1.3677846193313599\n",
- "epoch: 11 step: 173, loss is 1.3591129779815674\n",
- "epoch: 11 step: 174, loss is 1.336830973625183\n",
- "epoch: 11 step: 175, loss is 1.294440507888794\n",
- "epoch: 11 step: 176, loss is 1.3856513500213623\n",
- "epoch: 11 step: 177, loss is 1.4490528106689453\n",
- "epoch: 11 step: 178, loss is 1.2735486030578613\n",
- "epoch: 11 step: 179, loss is 1.3973665237426758\n",
- "epoch: 11 step: 180, loss is 1.385074496269226\n",
- "epoch: 11 step: 181, loss is 1.2603427171707153\n",
- "epoch: 11 step: 182, loss is 1.4360918998718262\n",
- "epoch: 11 step: 183, loss is 1.4103286266326904\n",
- "epoch: 11 step: 184, loss is 1.3210636377334595\n",
- "epoch: 11 step: 185, loss is 1.289481520652771\n",
- "epoch: 11 step: 186, loss is 1.3785433769226074\n",
- "epoch: 11 step: 187, loss is 1.3512091636657715\n",
- "epoch: 11 step: 188, loss is 1.4189457893371582\n",
- "epoch: 11 step: 189, loss is 1.3827811479568481\n",
- "epoch: 11 step: 190, loss is 1.411993384361267\n",
- "epoch: 11 step: 191, loss is 1.4060397148132324\n",
- "epoch: 11 step: 192, loss is 1.2939680814743042\n",
- "epoch: 11 step: 193, loss is 1.387575626373291\n",
- "epoch: 11 step: 194, loss is 1.3169260025024414\n",
- "epoch: 11 step: 195, loss is 1.3644827604293823\n",
- "Train epoch time: 109156.335 ms, per step time: 559.776 ms\n",
- "epoch: 12 step: 1, loss is 1.3749120235443115\n",
- "epoch: 12 step: 2, loss is 1.3257428407669067\n",
- "epoch: 12 step: 3, loss is 1.3339729309082031\n",
- "epoch: 12 step: 4, loss is 1.345080852508545\n",
- "epoch: 12 step: 5, loss is 1.3282959461212158\n",
- "epoch: 12 step: 6, loss is 1.332105040550232\n",
- "epoch: 12 step: 7, loss is 1.4509965181350708\n",
- "epoch: 12 step: 8, loss is 1.3731828927993774\n",
- "epoch: 12 step: 9, loss is 1.3712350130081177\n",
- "epoch: 12 step: 10, loss is 1.2894232273101807\n",
- "epoch: 12 step: 11, loss is 1.3279643058776855\n",
- "epoch: 12 step: 12, loss is 1.3612538576126099\n",
- "epoch: 12 step: 13, loss is 1.3893709182739258\n",
- "epoch: 12 step: 14, loss is 1.5033447742462158\n",
- "epoch: 12 step: 15, loss is 1.3631224632263184\n",
- "epoch: 12 step: 16, loss is 1.346184492111206\n",
- "epoch: 12 step: 17, loss is 1.211869478225708\n",
- "epoch: 12 step: 18, loss is 1.3692021369934082\n",
- "epoch: 12 step: 19, loss is 1.315664529800415\n",
- "epoch: 12 step: 20, loss is 1.3213762044906616\n",
- "epoch: 12 step: 21, loss is 1.3617274761199951\n",
- "epoch: 12 step: 22, loss is 1.3757624626159668\n",
- "epoch: 12 step: 23, loss is 1.2932567596435547\n",
- "epoch: 12 step: 24, loss is 1.3488984107971191\n",
- "epoch: 12 step: 25, loss is 1.2407503128051758\n",
- "epoch: 12 step: 26, loss is 1.3898820877075195\n",
- "epoch: 12 step: 27, loss is 1.3436524868011475\n",
- "epoch: 12 step: 28, loss is 1.37770676612854\n",
- "epoch: 12 step: 29, loss is 1.2700433731079102\n",
- "epoch: 12 step: 30, loss is 1.370192050933838\n",
- "epoch: 12 step: 31, loss is 1.4042953252792358\n",
- "epoch: 12 step: 32, loss is 1.2976502180099487\n",
- "epoch: 12 step: 33, loss is 1.3905391693115234\n",
- "epoch: 12 step: 34, loss is 1.3600332736968994\n",
- "epoch: 12 step: 35, loss is 1.370139718055725\n",
- "epoch: 12 step: 36, loss is 1.3202131986618042\n",
- "epoch: 12 step: 37, loss is 1.3199766874313354\n",
- "epoch: 12 step: 38, loss is 1.3705322742462158\n",
- "epoch: 12 step: 39, loss is 1.4356493949890137\n",
- "epoch: 12 step: 40, loss is 1.3903864622116089\n",
- "epoch: 12 step: 41, loss is 1.4473252296447754\n",
- "epoch: 12 step: 42, loss is 1.4008510112762451\n",
- "epoch: 12 step: 43, loss is 1.212838888168335\n",
- "epoch: 12 step: 44, loss is 1.364315390586853\n",
- "epoch: 12 step: 45, loss is 1.406559944152832\n",
- "epoch: 12 step: 46, loss is 1.40316641330719\n",
- "epoch: 12 step: 47, loss is 1.389106035232544\n",
- "epoch: 12 step: 48, loss is 1.399122953414917\n",
- "epoch: 12 step: 49, loss is 1.399647831916809\n",
- "epoch: 12 step: 50, loss is 1.3538447618484497\n",
- "epoch: 12 step: 51, loss is 1.3019393682479858\n",
- "epoch: 12 step: 52, loss is 1.3091504573822021\n",
- "epoch: 12 step: 53, loss is 1.2999556064605713\n",
- "epoch: 12 step: 54, loss is 1.3275054693222046\n",
- "epoch: 12 step: 55, loss is 1.3532236814498901\n",
- "epoch: 12 step: 56, loss is 1.3464151620864868\n",
- "epoch: 12 step: 57, loss is 1.2939003705978394\n",
- "epoch: 12 step: 58, loss is 1.29934561252594\n",
- "epoch: 12 step: 59, loss is 1.2517552375793457\n",
- "epoch: 12 step: 60, loss is 1.2833586931228638\n",
- "epoch: 12 step: 61, loss is 1.3098225593566895\n",
- "epoch: 12 step: 62, loss is 1.342951774597168\n",
- "epoch: 12 step: 63, loss is 1.335723638534546\n",
- "epoch: 12 step: 64, loss is 1.4209569692611694\n",
- "epoch: 12 step: 65, loss is 1.3660608530044556\n",
- "epoch: 12 step: 66, loss is 1.3221166133880615\n",
- "epoch: 12 step: 67, loss is 1.3616020679473877\n",
- "epoch: 12 step: 68, loss is 1.4362266063690186\n",
- "epoch: 12 step: 69, loss is 1.3845769166946411\n",
- "epoch: 12 step: 70, loss is 1.3931061029434204\n",
- "epoch: 12 step: 71, loss is 1.3252878189086914\n",
- "epoch: 12 step: 72, loss is 1.335828185081482\n",
- "epoch: 12 step: 73, loss is 1.3358795642852783\n",
- "epoch: 12 step: 74, loss is 1.3375921249389648\n",
- "epoch: 12 step: 75, loss is 1.3766423463821411\n",
- "epoch: 12 step: 76, loss is 1.3925431966781616\n",
- "epoch: 12 step: 77, loss is 1.367783784866333\n",
- "epoch: 12 step: 78, loss is 1.3847731351852417\n",
- "epoch: 12 step: 79, loss is 1.327022910118103\n",
- "epoch: 12 step: 80, loss is 1.3467707633972168\n",
- "epoch: 12 step: 81, loss is 1.3389359712600708\n",
- "epoch: 12 step: 82, loss is 1.3532925844192505\n",
- "epoch: 12 step: 83, loss is 1.2030620574951172\n",
- "epoch: 12 step: 84, loss is 1.31825852394104\n",
- "epoch: 12 step: 85, loss is 1.3440210819244385\n",
- "epoch: 12 step: 86, loss is 1.3510026931762695\n",
- "epoch: 12 step: 87, loss is 1.317724347114563\n",
- "epoch: 12 step: 88, loss is 1.4584540128707886\n",
- "epoch: 12 step: 89, loss is 1.3655003309249878\n",
- "epoch: 12 step: 90, loss is 1.3314133882522583\n",
- "epoch: 12 step: 91, loss is 1.3347185850143433\n",
- "epoch: 12 step: 92, loss is 1.3305401802062988\n",
- "epoch: 12 step: 93, loss is 1.3862367868423462\n",
- "epoch: 12 step: 94, loss is 1.2733185291290283\n",
- "epoch: 12 step: 95, loss is 1.3003748655319214\n",
- "epoch: 12 step: 96, loss is 1.368822455406189\n",
- "epoch: 12 step: 97, loss is 1.361835241317749\n",
- "epoch: 12 step: 98, loss is 1.2483099699020386\n",
- "epoch: 12 step: 99, loss is 1.2921302318572998\n",
- "epoch: 12 step: 100, loss is 1.3071764707565308\n",
- "epoch: 12 step: 101, loss is 1.3578846454620361\n",
- "epoch: 12 step: 102, loss is 1.484748363494873\n",
- "epoch: 12 step: 103, loss is 1.4120935201644897\n",
- "epoch: 12 step: 104, loss is 1.2663170099258423\n",
- "epoch: 12 step: 105, loss is 1.310514211654663\n",
- "epoch: 12 step: 106, loss is 1.3853429555892944\n",
- "epoch: 12 step: 107, loss is 1.3467544317245483\n",
- "epoch: 12 step: 108, loss is 1.4428993463516235\n",
- "epoch: 12 step: 109, loss is 1.3221195936203003\n",
- "epoch: 12 step: 110, loss is 1.3741698265075684\n",
- "epoch: 12 step: 111, loss is 1.3167011737823486\n",
- "epoch: 12 step: 112, loss is 1.242370367050171\n",
- "epoch: 12 step: 113, loss is 1.3208401203155518\n",
- "epoch: 12 step: 114, loss is 1.283278226852417\n",
- "epoch: 12 step: 115, loss is 1.3911306858062744\n",
- "epoch: 12 step: 116, loss is 1.3273272514343262\n",
- "epoch: 12 step: 117, loss is 1.3542145490646362\n",
- "epoch: 12 step: 118, loss is 1.375185489654541\n",
- "epoch: 12 step: 119, loss is 1.3990886211395264\n",
- "epoch: 12 step: 120, loss is 1.397849678993225\n",
- "epoch: 12 step: 121, loss is 1.3174793720245361\n",
- "epoch: 12 step: 122, loss is 1.3419415950775146\n",
- "epoch: 12 step: 123, loss is 1.3498806953430176\n",
- "epoch: 12 step: 124, loss is 1.3221936225891113\n",
- "epoch: 12 step: 125, loss is 1.4351340532302856\n",
- "epoch: 12 step: 126, loss is 1.4098035097122192\n",
- "epoch: 12 step: 127, loss is 1.3253614902496338\n",
- "epoch: 12 step: 128, loss is 1.284562110900879\n",
- "epoch: 12 step: 129, loss is 1.3135451078414917\n",
- "epoch: 12 step: 130, loss is 1.3734666109085083\n",
- "epoch: 12 step: 131, loss is 1.2726982831954956\n",
- "epoch: 12 step: 132, loss is 1.3447588682174683\n",
- "epoch: 12 step: 133, loss is 1.3854541778564453\n",
- "epoch: 12 step: 134, loss is 1.3437473773956299\n",
- "epoch: 12 step: 135, loss is 1.3496053218841553\n",
- "epoch: 12 step: 136, loss is 1.3877677917480469\n",
- "epoch: 12 step: 137, loss is 1.3551610708236694\n",
- "epoch: 12 step: 138, loss is 1.3138344287872314\n",
- "epoch: 12 step: 139, loss is 1.3242584466934204\n",
- "epoch: 12 step: 140, loss is 1.3433794975280762\n",
- "epoch: 12 step: 141, loss is 1.36911141872406\n",
- "epoch: 12 step: 142, loss is 1.429419994354248\n",
- "epoch: 12 step: 143, loss is 1.324636459350586\n",
- "epoch: 12 step: 144, loss is 1.3358206748962402\n",
- "epoch: 12 step: 145, loss is 1.2827239036560059\n",
- "epoch: 12 step: 146, loss is 1.3973894119262695\n",
- "epoch: 12 step: 147, loss is 1.3126802444458008\n",
- "epoch: 12 step: 148, loss is 1.272353172302246\n",
- "epoch: 12 step: 149, loss is 1.263411283493042\n",
- "epoch: 12 step: 150, loss is 1.3647053241729736\n",
- "epoch: 12 step: 151, loss is 1.2865593433380127\n",
- "epoch: 12 step: 152, loss is 1.3357665538787842\n",
- "epoch: 12 step: 153, loss is 1.4210436344146729\n",
- "epoch: 12 step: 154, loss is 1.3121615648269653\n",
- "epoch: 12 step: 155, loss is 1.4346314668655396\n",
- "epoch: 12 step: 156, loss is 1.2400988340377808\n",
- "epoch: 12 step: 157, loss is 1.3275915384292603\n",
- "epoch: 12 step: 158, loss is 1.321425199508667\n",
- "epoch: 12 step: 159, loss is 1.355749249458313\n",
- "epoch: 12 step: 160, loss is 1.3264704942703247\n",
- "epoch: 12 step: 161, loss is 1.3915637731552124\n",
- "epoch: 12 step: 162, loss is 1.419718861579895\n",
- "epoch: 12 step: 163, loss is 1.4108872413635254\n",
- "epoch: 12 step: 164, loss is 1.2778005599975586\n",
- "epoch: 12 step: 165, loss is 1.278543472290039\n",
- "epoch: 12 step: 166, loss is 1.3421764373779297\n",
- "epoch: 12 step: 167, loss is 1.328843355178833\n",
- "epoch: 12 step: 168, loss is 1.3402674198150635\n",
- "epoch: 12 step: 169, loss is 1.3722070455551147\n",
- "epoch: 12 step: 170, loss is 1.2757922410964966\n",
- "epoch: 12 step: 171, loss is 1.254894495010376\n",
- "epoch: 12 step: 172, loss is 1.333903193473816\n",
- "epoch: 12 step: 173, loss is 1.3079614639282227\n",
- "epoch: 12 step: 174, loss is 1.2909159660339355\n",
- "epoch: 12 step: 175, loss is 1.309578537940979\n",
- "epoch: 12 step: 176, loss is 1.3100945949554443\n",
- "epoch: 12 step: 177, loss is 1.33547043800354\n",
- "epoch: 12 step: 178, loss is 1.3288025856018066\n",
- "epoch: 12 step: 179, loss is 1.3678605556488037\n",
- "epoch: 12 step: 180, loss is 1.4968376159667969\n",
- "epoch: 12 step: 181, loss is 1.3110452890396118\n",
- "epoch: 12 step: 182, loss is 1.28890061378479\n",
- "epoch: 12 step: 183, loss is 1.3732596635818481\n",
- "epoch: 12 step: 184, loss is 1.3541789054870605\n",
- "epoch: 12 step: 185, loss is 1.3579795360565186\n",
- "epoch: 12 step: 186, loss is 1.3036326169967651\n",
- "epoch: 12 step: 187, loss is 1.3820055723190308\n",
- "epoch: 12 step: 188, loss is 1.3236181735992432\n",
- "epoch: 12 step: 189, loss is 1.2932544946670532\n",
- "epoch: 12 step: 190, loss is 1.3079922199249268\n",
- "epoch: 12 step: 191, loss is 1.3040754795074463\n",
- "epoch: 12 step: 192, loss is 1.2884989976882935\n",
- "epoch: 12 step: 193, loss is 1.299836277961731\n",
- "epoch: 12 step: 194, loss is 1.3422300815582275\n",
- "epoch: 12 step: 195, loss is 1.275468349456787\n",
- "Train epoch time: 111763.841 ms, per step time: 573.148 ms\n",
- "epoch: 13 step: 1, loss is 1.3198258876800537\n",
- "epoch: 13 step: 2, loss is 1.267249584197998\n",
- "epoch: 13 step: 3, loss is 1.377860426902771\n",
- "epoch: 13 step: 4, loss is 1.2958390712738037\n",
- "epoch: 13 step: 5, loss is 1.3649100065231323\n",
- "epoch: 13 step: 6, loss is 1.2953672409057617\n",
- "epoch: 13 step: 7, loss is 1.2863819599151611\n",
- "epoch: 13 step: 8, loss is 1.3077056407928467\n",
- "epoch: 13 step: 9, loss is 1.2955645322799683\n",
- "epoch: 13 step: 10, loss is 1.2726750373840332\n",
- "epoch: 13 step: 11, loss is 1.3051942586898804\n",
- "epoch: 13 step: 12, loss is 1.3631467819213867\n",
- "epoch: 13 step: 13, loss is 1.332863211631775\n",
- "epoch: 13 step: 14, loss is 1.300406813621521\n",
- "epoch: 13 step: 15, loss is 1.4065595865249634\n",
- "epoch: 13 step: 16, loss is 1.3207926750183105\n",
- "epoch: 13 step: 17, loss is 1.4314912557601929\n",
- "epoch: 13 step: 18, loss is 1.2905689477920532\n",
- "epoch: 13 step: 19, loss is 1.3968850374221802\n",
- "epoch: 13 step: 20, loss is 1.3385591506958008\n",
- "epoch: 13 step: 21, loss is 1.3743515014648438\n",
- "epoch: 13 step: 22, loss is 1.3417283296585083\n",
- "epoch: 13 step: 23, loss is 1.2500780820846558\n",
- "epoch: 13 step: 24, loss is 1.3430250883102417\n",
- "epoch: 13 step: 25, loss is 1.2321382761001587\n",
- "epoch: 13 step: 26, loss is 1.3366892337799072\n",
- "epoch: 13 step: 27, loss is 1.2943620681762695\n",
- "epoch: 13 step: 28, loss is 1.2736753225326538\n",
- "epoch: 13 step: 29, loss is 1.3176244497299194\n",
- "epoch: 13 step: 30, loss is 1.2949817180633545\n",
- "epoch: 13 step: 31, loss is 1.3017407655715942\n",
- "epoch: 13 step: 32, loss is 1.250291109085083\n",
- "epoch: 13 step: 33, loss is 1.378483533859253\n",
- "epoch: 13 step: 34, loss is 1.325563669204712\n",
- "epoch: 13 step: 35, loss is 1.2774980068206787\n",
- "epoch: 13 step: 36, loss is 1.3602851629257202\n",
- "epoch: 13 step: 37, loss is 1.3271067142486572\n",
- "epoch: 13 step: 38, loss is 1.2774046659469604\n",
- "epoch: 13 step: 39, loss is 1.2986865043640137\n",
- "epoch: 13 step: 40, loss is 1.2404587268829346\n",
- "epoch: 13 step: 41, loss is 1.2723153829574585\n",
- "epoch: 13 step: 42, loss is 1.252101182937622\n",
- "epoch: 13 step: 43, loss is 1.3344852924346924\n",
- "epoch: 13 step: 44, loss is 1.2985411882400513\n",
- "epoch: 13 step: 45, loss is 1.3431930541992188\n",
- "epoch: 13 step: 46, loss is 1.2865036725997925\n",
- "epoch: 13 step: 47, loss is 1.321958065032959\n",
- "epoch: 13 step: 48, loss is 1.2221448421478271\n",
- "epoch: 13 step: 49, loss is 1.2524559497833252\n",
- "epoch: 13 step: 50, loss is 1.2174897193908691\n",
- "epoch: 13 step: 51, loss is 1.3686397075653076\n",
- "epoch: 13 step: 52, loss is 1.2955166101455688\n",
- "epoch: 13 step: 53, loss is 1.2829947471618652\n",
- "epoch: 13 step: 54, loss is 1.352844476699829\n",
- "epoch: 13 step: 55, loss is 1.3140009641647339\n",
- "epoch: 13 step: 56, loss is 1.3189575672149658\n",
- "epoch: 13 step: 57, loss is 1.332587718963623\n",
- "epoch: 13 step: 58, loss is 1.3261804580688477\n",
- "epoch: 13 step: 59, loss is 1.3275057077407837\n",
- "epoch: 13 step: 60, loss is 1.3038597106933594\n",
- "epoch: 13 step: 61, loss is 1.188060998916626\n",
- "epoch: 13 step: 62, loss is 1.327467918395996\n",
- "epoch: 13 step: 63, loss is 1.2759475708007812\n",
- "epoch: 13 step: 64, loss is 1.3519041538238525\n",
- "epoch: 13 step: 65, loss is 1.293632984161377\n",
- "epoch: 13 step: 66, loss is 1.3712116479873657\n",
- "epoch: 13 step: 67, loss is 1.3739862442016602\n",
- "epoch: 13 step: 68, loss is 1.2954466342926025\n",
- "epoch: 13 step: 69, loss is 1.2557052373886108\n",
- "epoch: 13 step: 70, loss is 1.2708330154418945\n",
- "epoch: 13 step: 71, loss is 1.3180299997329712\n",
- "epoch: 13 step: 72, loss is 1.324101448059082\n",
- "epoch: 13 step: 73, loss is 1.329204797744751\n",
- "epoch: 13 step: 74, loss is 1.3019959926605225\n",
- "epoch: 13 step: 75, loss is 1.2676588296890259\n",
- "epoch: 13 step: 76, loss is 1.325836420059204\n",
- "epoch: 13 step: 77, loss is 1.2323129177093506\n",
- "epoch: 13 step: 78, loss is 1.3478059768676758\n",
- "epoch: 13 step: 79, loss is 1.3038560152053833\n",
- "epoch: 13 step: 80, loss is 1.278468370437622\n",
- "epoch: 13 step: 81, loss is 1.2795864343643188\n",
- "epoch: 13 step: 82, loss is 1.2769668102264404\n",
- "epoch: 13 step: 83, loss is 1.326011061668396\n",
- "epoch: 13 step: 84, loss is 1.258583903312683\n",
- "epoch: 13 step: 85, loss is 1.3920756578445435\n",
- "epoch: 13 step: 86, loss is 1.2842274904251099\n",
- "epoch: 13 step: 87, loss is 1.2911574840545654\n",
- "epoch: 13 step: 88, loss is 1.253190279006958\n",
- "epoch: 13 step: 89, loss is 1.2638144493103027\n",
- "epoch: 13 step: 90, loss is 1.3445768356323242\n",
- "epoch: 13 step: 91, loss is 1.2812072038650513\n",
- "epoch: 13 step: 92, loss is 1.2581911087036133\n",
- "epoch: 13 step: 93, loss is 1.2116434574127197\n",
- "epoch: 13 step: 94, loss is 1.2935380935668945\n",
- "epoch: 13 step: 95, loss is 1.3030837774276733\n",
- "epoch: 13 step: 96, loss is 1.3300658464431763\n",
- "epoch: 13 step: 97, loss is 1.2988314628601074\n",
- "epoch: 13 step: 98, loss is 1.253922462463379\n",
- "epoch: 13 step: 99, loss is 1.387947916984558\n",
- "epoch: 13 step: 100, loss is 1.3204050064086914\n",
- "epoch: 13 step: 101, loss is 1.2914122343063354\n",
- "epoch: 13 step: 102, loss is 1.3566731214523315\n",
- "epoch: 13 step: 103, loss is 1.2503315210342407\n",
- "epoch: 13 step: 104, loss is 1.1947333812713623\n",
- "epoch: 13 step: 105, loss is 1.3553577661514282\n",
- "epoch: 13 step: 106, loss is 1.3109077215194702\n",
- "epoch: 13 step: 107, loss is 1.2634453773498535\n",
- "epoch: 13 step: 108, loss is 1.2581074237823486\n",
- "epoch: 13 step: 109, loss is 1.31442129611969\n",
- "epoch: 13 step: 110, loss is 1.2802975177764893\n",
- "epoch: 13 step: 111, loss is 1.346985101699829\n",
- "epoch: 13 step: 112, loss is 1.320293664932251\n",
- "epoch: 13 step: 113, loss is 1.2657285928726196\n",
- "epoch: 13 step: 114, loss is 1.3546600341796875\n",
- "epoch: 13 step: 115, loss is 1.3065539598464966\n",
- "epoch: 13 step: 116, loss is 1.3750945329666138\n",
- "epoch: 13 step: 117, loss is 1.3447623252868652\n",
- "epoch: 13 step: 118, loss is 1.4035773277282715\n",
- "epoch: 13 step: 119, loss is 1.3662588596343994\n",
- "epoch: 13 step: 120, loss is 1.3946096897125244\n",
- "epoch: 13 step: 121, loss is 1.3096232414245605\n",
- "epoch: 13 step: 122, loss is 1.369698166847229\n",
- "epoch: 13 step: 123, loss is 1.3456752300262451\n",
- "epoch: 13 step: 124, loss is 1.396632194519043\n",
- "epoch: 13 step: 125, loss is 1.38190758228302\n",
- "epoch: 13 step: 126, loss is 1.3114848136901855\n",
- "epoch: 13 step: 127, loss is 1.2863233089447021\n",
- "epoch: 13 step: 128, loss is 1.3047760725021362\n",
- "epoch: 13 step: 129, loss is 1.2533119916915894\n",
- "epoch: 13 step: 130, loss is 1.3993151187896729\n",
- "epoch: 13 step: 131, loss is 1.4202632904052734\n",
- "epoch: 13 step: 132, loss is 1.367031455039978\n",
- "epoch: 13 step: 133, loss is 1.2697088718414307\n",
- "epoch: 13 step: 134, loss is 1.2962384223937988\n",
- "epoch: 13 step: 135, loss is 1.289229154586792\n",
- "epoch: 13 step: 136, loss is 1.327449917793274\n",
- "epoch: 13 step: 137, loss is 1.2646713256835938\n",
- "epoch: 13 step: 138, loss is 1.3277664184570312\n",
- "epoch: 13 step: 139, loss is 1.3029582500457764\n",
- "epoch: 13 step: 140, loss is 1.2564985752105713\n",
- "epoch: 13 step: 141, loss is 1.362924575805664\n",
- "epoch: 13 step: 142, loss is 1.272240161895752\n",
- "epoch: 13 step: 143, loss is 1.4446988105773926\n",
- "epoch: 13 step: 144, loss is 1.3845510482788086\n",
- "epoch: 13 step: 145, loss is 1.186936378479004\n",
- "epoch: 13 step: 146, loss is 1.2852944135665894\n",
- "epoch: 13 step: 147, loss is 1.2454169988632202\n",
- "epoch: 13 step: 148, loss is 1.3380701541900635\n",
- "epoch: 13 step: 149, loss is 1.3749141693115234\n",
- "epoch: 13 step: 150, loss is 1.299337387084961\n",
- "epoch: 13 step: 151, loss is 1.2815678119659424\n",
- "epoch: 13 step: 152, loss is 1.365984559059143\n",
- "epoch: 13 step: 153, loss is 1.2224669456481934\n",
- "epoch: 13 step: 154, loss is 1.2980725765228271\n",
- "epoch: 13 step: 155, loss is 1.2019745111465454\n",
- "epoch: 13 step: 156, loss is 1.2537386417388916\n",
- "epoch: 13 step: 157, loss is 1.33438241481781\n",
- "epoch: 13 step: 158, loss is 1.3377866744995117\n",
- "epoch: 13 step: 159, loss is 1.3218154907226562\n",
- "epoch: 13 step: 160, loss is 1.2359482049942017\n",
- "epoch: 13 step: 161, loss is 1.2482713460922241\n",
- "epoch: 13 step: 162, loss is 1.2941745519638062\n",
- "epoch: 13 step: 163, loss is 1.3449593782424927\n",
- "epoch: 13 step: 164, loss is 1.3553290367126465\n",
- "epoch: 13 step: 165, loss is 1.3531560897827148\n",
- "epoch: 13 step: 166, loss is 1.2489161491394043\n",
- "epoch: 13 step: 167, loss is 1.2581281661987305\n",
- "epoch: 13 step: 168, loss is 1.2859731912612915\n",
- "epoch: 13 step: 169, loss is 1.3678596019744873\n",
- "epoch: 13 step: 170, loss is 1.2936376333236694\n",
- "epoch: 13 step: 171, loss is 1.3384499549865723\n",
- "epoch: 13 step: 172, loss is 1.2707794904708862\n",
- "epoch: 13 step: 173, loss is 1.3316196203231812\n",
- "epoch: 13 step: 174, loss is 1.3763166666030884\n",
- "epoch: 13 step: 175, loss is 1.2546569108963013\n",
- "epoch: 13 step: 176, loss is 1.350092887878418\n",
- "epoch: 13 step: 177, loss is 1.3350321054458618\n",
- "epoch: 13 step: 178, loss is 1.3616435527801514\n",
- "epoch: 13 step: 179, loss is 1.2652897834777832\n",
- "epoch: 13 step: 180, loss is 1.2306301593780518\n",
- "epoch: 13 step: 181, loss is 1.3009637594223022\n",
- "epoch: 13 step: 182, loss is 1.3185278177261353\n",
- "epoch: 13 step: 183, loss is 1.2985941171646118\n",
- "epoch: 13 step: 184, loss is 1.347240686416626\n",
- "epoch: 13 step: 185, loss is 1.2906683683395386\n",
- "epoch: 13 step: 186, loss is 1.2780156135559082\n",
- "epoch: 13 step: 187, loss is 1.3213268518447876\n",
- "epoch: 13 step: 188, loss is 1.2610639333724976\n",
- "epoch: 13 step: 189, loss is 1.2599551677703857\n",
- "epoch: 13 step: 190, loss is 1.1890722513198853\n",
- "epoch: 13 step: 191, loss is 1.3777897357940674\n",
- "epoch: 13 step: 192, loss is 1.2825472354888916\n",
- "epoch: 13 step: 193, loss is 1.3848485946655273\n",
- "epoch: 13 step: 194, loss is 1.276253342628479\n",
- "epoch: 13 step: 195, loss is 1.306337594985962\n",
- "Train epoch time: 106675.159 ms, per step time: 547.052 ms\n",
- "epoch: 14 step: 1, loss is 1.3450721502304077\n",
- "epoch: 14 step: 2, loss is 1.26054048538208\n",
- "epoch: 14 step: 3, loss is 1.332331895828247\n",
- "epoch: 14 step: 4, loss is 1.3339192867279053\n",
- "epoch: 14 step: 5, loss is 1.2595032453536987\n",
- "epoch: 14 step: 6, loss is 1.3470971584320068\n",
- "epoch: 14 step: 7, loss is 1.3395274877548218\n",
- "epoch: 14 step: 8, loss is 1.2648926973342896\n",
- "epoch: 14 step: 9, loss is 1.3262805938720703\n",
- "epoch: 14 step: 10, loss is 1.262170433998108\n",
- "epoch: 14 step: 11, loss is 1.3831127882003784\n",
- "epoch: 14 step: 12, loss is 1.2702398300170898\n",
- "epoch: 14 step: 13, loss is 1.2940846681594849\n",
- "epoch: 14 step: 14, loss is 1.3106650114059448\n",
- "epoch: 14 step: 15, loss is 1.2934616804122925\n",
- "epoch: 14 step: 16, loss is 1.2791800498962402\n",
- "epoch: 14 step: 17, loss is 1.2813217639923096\n",
- "epoch: 14 step: 18, loss is 1.2931361198425293\n",
- "epoch: 14 step: 19, loss is 1.2845699787139893\n",
- "epoch: 14 step: 20, loss is 1.3101274967193604\n",
- "epoch: 14 step: 21, loss is 1.2669780254364014\n",
- "epoch: 14 step: 22, loss is 1.2829197645187378\n",
- "epoch: 14 step: 23, loss is 1.2547887563705444\n",
- "epoch: 14 step: 24, loss is 1.2801023721694946\n",
- "epoch: 14 step: 25, loss is 1.3108901977539062\n",
- "epoch: 14 step: 26, loss is 1.3218908309936523\n",
- "epoch: 14 step: 27, loss is 1.2678565979003906\n",
- "epoch: 14 step: 28, loss is 1.285031795501709\n",
- "epoch: 14 step: 29, loss is 1.3031389713287354\n",
- "epoch: 14 step: 30, loss is 1.2870593070983887\n",
- "epoch: 14 step: 31, loss is 1.3253238201141357\n",
- "epoch: 14 step: 32, loss is 1.2040632963180542\n",
- "epoch: 14 step: 33, loss is 1.291879653930664\n",
- "epoch: 14 step: 34, loss is 1.1410378217697144\n",
- "epoch: 14 step: 35, loss is 1.2780314683914185\n",
- "epoch: 14 step: 36, loss is 1.3461428880691528\n",
- "epoch: 14 step: 37, loss is 1.2565832138061523\n",
- "epoch: 14 step: 38, loss is 1.2378966808319092\n",
- "epoch: 14 step: 39, loss is 1.2659832239151\n",
- "epoch: 14 step: 40, loss is 1.2419607639312744\n",
- "epoch: 14 step: 41, loss is 1.2162748575210571\n",
- "epoch: 14 step: 42, loss is 1.329022765159607\n",
- "epoch: 14 step: 43, loss is 1.3240052461624146\n",
- "epoch: 14 step: 44, loss is 1.2391873598098755\n",
- "epoch: 14 step: 45, loss is 1.1821134090423584\n",
- "epoch: 14 step: 46, loss is 1.2535078525543213\n",
- "epoch: 14 step: 47, loss is 1.3444068431854248\n",
- "epoch: 14 step: 48, loss is 1.3003418445587158\n",
- "epoch: 14 step: 49, loss is 1.2838214635849\n",
- "epoch: 14 step: 50, loss is 1.2410832643508911\n",
- "epoch: 14 step: 51, loss is 1.3129734992980957\n",
- "epoch: 14 step: 52, loss is 1.189102053642273\n",
- "epoch: 14 step: 53, loss is 1.2472763061523438\n",
- "epoch: 14 step: 54, loss is 1.2266480922698975\n",
- "epoch: 14 step: 55, loss is 1.2552400827407837\n",
- "epoch: 14 step: 56, loss is 1.2551482915878296\n",
- "epoch: 14 step: 57, loss is 1.289197325706482\n",
- "epoch: 14 step: 58, loss is 1.27436101436615\n",
- "epoch: 14 step: 59, loss is 1.3673739433288574\n",
- "epoch: 14 step: 60, loss is 1.3578227758407593\n",
- "epoch: 14 step: 61, loss is 1.2905035018920898\n",
- "epoch: 14 step: 62, loss is 1.2896229028701782\n",
- "epoch: 14 step: 63, loss is 1.2284538745880127\n",
- "epoch: 14 step: 64, loss is 1.4073352813720703\n",
- "epoch: 14 step: 65, loss is 1.2380218505859375\n",
- "epoch: 14 step: 66, loss is 1.3033117055892944\n",
- "epoch: 14 step: 67, loss is 1.2819499969482422\n",
- "epoch: 14 step: 68, loss is 1.3197319507598877\n",
- "epoch: 14 step: 69, loss is 1.24137544631958\n",
- "epoch: 14 step: 70, loss is 1.2013779878616333\n",
- "epoch: 14 step: 71, loss is 1.2777838706970215\n",
- "epoch: 14 step: 72, loss is 1.2335563898086548\n",
- "epoch: 14 step: 73, loss is 1.3552428483963013\n",
- "epoch: 14 step: 74, loss is 1.271492600440979\n",
- "epoch: 14 step: 75, loss is 1.340668797492981\n",
- "epoch: 14 step: 76, loss is 1.1586838960647583\n",
- "epoch: 14 step: 77, loss is 1.237300157546997\n",
- "epoch: 14 step: 78, loss is 1.3093725442886353\n",
- "epoch: 14 step: 79, loss is 1.251554012298584\n",
- "epoch: 14 step: 80, loss is 1.2711963653564453\n",
- "epoch: 14 step: 81, loss is 1.2684483528137207\n",
- "epoch: 14 step: 82, loss is 1.2832074165344238\n",
- "epoch: 14 step: 83, loss is 1.2819594144821167\n",
- "epoch: 14 step: 84, loss is 1.2772266864776611\n",
- "epoch: 14 step: 85, loss is 1.3087269067764282\n",
- "epoch: 14 step: 86, loss is 1.3176119327545166\n",
- "epoch: 14 step: 87, loss is 1.3215527534484863\n",
- "epoch: 14 step: 88, loss is 1.2157549858093262\n",
- "epoch: 14 step: 89, loss is 1.1872963905334473\n",
- "epoch: 14 step: 90, loss is 1.2838683128356934\n",
- "epoch: 14 step: 91, loss is 1.2362263202667236\n",
- "epoch: 14 step: 92, loss is 1.299850344657898\n",
- "epoch: 14 step: 93, loss is 1.3657714128494263\n",
- "epoch: 14 step: 94, loss is 1.3341724872589111\n",
- "epoch: 14 step: 95, loss is 1.292480707168579\n",
- "epoch: 14 step: 96, loss is 1.2726902961730957\n",
- "epoch: 14 step: 97, loss is 1.3455917835235596\n",
- "epoch: 14 step: 98, loss is 1.262060523033142\n",
- "epoch: 14 step: 99, loss is 1.2921147346496582\n",
- "epoch: 14 step: 100, loss is 1.3655706644058228\n",
- "epoch: 14 step: 101, loss is 1.2721261978149414\n",
- "epoch: 14 step: 102, loss is 1.3340201377868652\n",
- "epoch: 14 step: 103, loss is 1.3068904876708984\n",
- "epoch: 14 step: 104, loss is 1.3708817958831787\n",
- "epoch: 14 step: 105, loss is 1.3204104900360107\n",
- "epoch: 14 step: 106, loss is 1.3037351369857788\n",
- "epoch: 14 step: 107, loss is 1.2544282674789429\n",
- "epoch: 14 step: 108, loss is 1.2671258449554443\n",
- "epoch: 14 step: 109, loss is 1.2680531740188599\n",
- "epoch: 14 step: 110, loss is 1.3274598121643066\n",
- "epoch: 14 step: 111, loss is 1.310436487197876\n",
- "epoch: 14 step: 112, loss is 1.2762267589569092\n",
- "epoch: 14 step: 113, loss is 1.2986853122711182\n",
- "epoch: 14 step: 114, loss is 1.3329403400421143\n",
- "epoch: 14 step: 115, loss is 1.3247852325439453\n",
- "epoch: 14 step: 116, loss is 1.3527499437332153\n",
- "epoch: 14 step: 117, loss is 1.376613974571228\n",
- "epoch: 14 step: 118, loss is 1.3004509210586548\n",
- "epoch: 14 step: 119, loss is 1.3661621809005737\n",
- "epoch: 14 step: 120, loss is 1.276595950126648\n",
- "epoch: 14 step: 121, loss is 1.299191951751709\n",
- "epoch: 14 step: 122, loss is 1.2696219682693481\n",
- "epoch: 14 step: 123, loss is 1.3228065967559814\n",
- "epoch: 14 step: 124, loss is 1.2069807052612305\n",
- "epoch: 14 step: 125, loss is 1.3261442184448242\n",
- "epoch: 14 step: 126, loss is 1.3402016162872314\n",
- "epoch: 14 step: 127, loss is 1.2072007656097412\n",
- "epoch: 14 step: 128, loss is 1.254028558731079\n",
- "epoch: 14 step: 129, loss is 1.3093407154083252\n",
- "epoch: 14 step: 130, loss is 1.3113996982574463\n",
- "epoch: 14 step: 131, loss is 1.2001656293869019\n",
- "epoch: 14 step: 132, loss is 1.3733071088790894\n",
- "epoch: 14 step: 133, loss is 1.2782783508300781\n",
- "epoch: 14 step: 134, loss is 1.2694605588912964\n",
- "epoch: 14 step: 135, loss is 1.280264973640442\n",
- "epoch: 14 step: 136, loss is 1.2412729263305664\n",
- "epoch: 14 step: 137, loss is 1.259082317352295\n",
- "epoch: 14 step: 138, loss is 1.2584292888641357\n",
- "epoch: 14 step: 139, loss is 1.280179738998413\n",
- "epoch: 14 step: 140, loss is 1.4103319644927979\n",
- "epoch: 14 step: 141, loss is 1.2191039323806763\n",
- "epoch: 14 step: 142, loss is 1.1653329133987427\n",
- "epoch: 14 step: 143, loss is 1.2948228120803833\n",
- "epoch: 14 step: 144, loss is 1.3060729503631592\n",
- "epoch: 14 step: 145, loss is 1.3610427379608154\n",
- "epoch: 14 step: 146, loss is 1.3617124557495117\n",
- "epoch: 14 step: 147, loss is 1.3203850984573364\n",
- "epoch: 14 step: 148, loss is 1.1612622737884521\n",
- "epoch: 14 step: 149, loss is 1.263569712638855\n",
- "epoch: 14 step: 150, loss is 1.384065866470337\n",
- "epoch: 14 step: 151, loss is 1.3455137014389038\n",
- "epoch: 14 step: 152, loss is 1.1981256008148193\n",
- "epoch: 14 step: 153, loss is 1.3180670738220215\n",
- "epoch: 14 step: 154, loss is 1.280639410018921\n",
- "epoch: 14 step: 155, loss is 1.308270812034607\n",
- "epoch: 14 step: 156, loss is 1.27109694480896\n",
- "epoch: 14 step: 157, loss is 1.2448087930679321\n",
- "epoch: 14 step: 158, loss is 1.291178584098816\n",
- "epoch: 14 step: 159, loss is 1.297309398651123\n",
- "epoch: 14 step: 160, loss is 1.3218380212783813\n",
- "epoch: 14 step: 161, loss is 1.2794595956802368\n",
- "epoch: 14 step: 162, loss is 1.2610958814620972\n",
- "epoch: 14 step: 163, loss is 1.2549281120300293\n",
- "epoch: 14 step: 164, loss is 1.304896593093872\n",
- "epoch: 14 step: 165, loss is 1.2771575450897217\n",
- "epoch: 14 step: 166, loss is 1.3060591220855713\n",
- "epoch: 14 step: 167, loss is 1.2862894535064697\n",
- "epoch: 14 step: 168, loss is 1.2945486307144165\n",
- "epoch: 14 step: 169, loss is 1.317674160003662\n",
- "epoch: 14 step: 170, loss is 1.2964985370635986\n",
- "epoch: 14 step: 171, loss is 1.2186224460601807\n",
- "epoch: 14 step: 172, loss is 1.2307298183441162\n",
- "epoch: 14 step: 173, loss is 1.2826675176620483\n",
- "epoch: 14 step: 174, loss is 1.301631212234497\n",
- "epoch: 14 step: 175, loss is 1.2674206495285034\n",
- "epoch: 14 step: 176, loss is 1.3058898448944092\n",
- "epoch: 14 step: 177, loss is 1.3300780057907104\n",
- "epoch: 14 step: 178, loss is 1.2591716051101685\n",
- "epoch: 14 step: 179, loss is 1.2578480243682861\n",
- "epoch: 14 step: 180, loss is 1.3406051397323608\n",
- "epoch: 14 step: 181, loss is 1.3229111433029175\n",
- "epoch: 14 step: 182, loss is 1.4221268892288208\n",
- "epoch: 14 step: 183, loss is 1.274423360824585\n",
- "epoch: 14 step: 184, loss is 1.234600305557251\n",
- "epoch: 14 step: 185, loss is 1.2336413860321045\n",
- "epoch: 14 step: 186, loss is 1.2199461460113525\n",
- "epoch: 14 step: 187, loss is 1.3113847970962524\n",
- "epoch: 14 step: 188, loss is 1.306626796722412\n",
- "epoch: 14 step: 189, loss is 1.3919321298599243\n",
- "epoch: 14 step: 190, loss is 1.352609395980835\n",
- "epoch: 14 step: 191, loss is 1.2421857118606567\n",
- "epoch: 14 step: 192, loss is 1.3646414279937744\n",
- "epoch: 14 step: 193, loss is 1.2543110847473145\n",
- "epoch: 14 step: 194, loss is 1.3431118726730347\n",
- "epoch: 14 step: 195, loss is 1.3362916707992554\n",
- "Train epoch time: 106469.879 ms, per step time: 545.999 ms\n",
- "epoch: 15 step: 1, loss is 1.296970248222351\n",
- "epoch: 15 step: 2, loss is 1.3891500234603882\n",
- "epoch: 15 step: 3, loss is 1.3012473583221436\n",
- "epoch: 15 step: 4, loss is 1.3595901727676392\n",
- "epoch: 15 step: 5, loss is 1.2580602169036865\n",
- "epoch: 15 step: 6, loss is 1.3924059867858887\n",
- "epoch: 15 step: 7, loss is 1.2502483129501343\n",
- "epoch: 15 step: 8, loss is 1.178110122680664\n",
- "epoch: 15 step: 9, loss is 1.2280969619750977\n",
- "epoch: 15 step: 10, loss is 1.2612615823745728\n",
- "epoch: 15 step: 11, loss is 1.2883235216140747\n",
- "epoch: 15 step: 12, loss is 1.2603518962860107\n",
- "epoch: 15 step: 13, loss is 1.2760024070739746\n",
- "epoch: 15 step: 14, loss is 1.237297534942627\n",
- "epoch: 15 step: 15, loss is 1.252425193786621\n",
- "epoch: 15 step: 16, loss is 1.2893424034118652\n",
- "epoch: 15 step: 17, loss is 1.2927435636520386\n",
- "epoch: 15 step: 18, loss is 1.3022031784057617\n",
- "epoch: 15 step: 19, loss is 1.2355520725250244\n",
- "epoch: 15 step: 20, loss is 1.3219703435897827\n",
- "epoch: 15 step: 21, loss is 1.4020118713378906\n",
- "epoch: 15 step: 22, loss is 1.2556626796722412\n",
- "epoch: 15 step: 23, loss is 1.2248175144195557\n",
- "epoch: 15 step: 24, loss is 1.290246605873108\n",
- "epoch: 15 step: 25, loss is 1.2516376972198486\n",
- "epoch: 15 step: 26, loss is 1.3701214790344238\n",
- "epoch: 15 step: 27, loss is 1.3332924842834473\n",
- "epoch: 15 step: 28, loss is 1.269212245941162\n",
- "epoch: 15 step: 29, loss is 1.4096589088439941\n",
- "epoch: 15 step: 30, loss is 1.250321626663208\n",
- "epoch: 15 step: 31, loss is 1.2338142395019531\n",
- "epoch: 15 step: 32, loss is 1.2478784322738647\n",
- "epoch: 15 step: 33, loss is 1.3611595630645752\n",
- "epoch: 15 step: 34, loss is 1.3305891752243042\n",
- "epoch: 15 step: 35, loss is 1.2284741401672363\n",
- "epoch: 15 step: 36, loss is 1.3156623840332031\n",
- "epoch: 15 step: 37, loss is 1.2334249019622803\n",
- "epoch: 15 step: 38, loss is 1.2684279680252075\n",
- "epoch: 15 step: 39, loss is 1.2695095539093018\n",
- "epoch: 15 step: 40, loss is 1.2949273586273193\n",
- "epoch: 15 step: 41, loss is 1.2605711221694946\n",
- "epoch: 15 step: 42, loss is 1.350513219833374\n",
- "epoch: 15 step: 43, loss is 1.206851601600647\n",
- "epoch: 15 step: 44, loss is 1.276365876197815\n",
- "epoch: 15 step: 45, loss is 1.3064466714859009\n",
- "epoch: 15 step: 46, loss is 1.221441626548767\n",
- "epoch: 15 step: 47, loss is 1.2477819919586182\n",
- "epoch: 15 step: 48, loss is 1.2650346755981445\n",
- "epoch: 15 step: 49, loss is 1.283036470413208\n",
- "epoch: 15 step: 50, loss is 1.2574522495269775\n",
- "epoch: 15 step: 51, loss is 1.2101945877075195\n",
- "epoch: 15 step: 52, loss is 1.2609195709228516\n",
- "epoch: 15 step: 53, loss is 1.2427045106887817\n",
- "epoch: 15 step: 54, loss is 1.3135262727737427\n",
- "epoch: 15 step: 55, loss is 1.2119871377944946\n",
- "epoch: 15 step: 56, loss is 1.2429678440093994\n",
- "epoch: 15 step: 57, loss is 1.2644697427749634\n",
- "epoch: 15 step: 58, loss is 1.2958234548568726\n",
- "epoch: 15 step: 59, loss is 1.2616832256317139\n",
- "epoch: 15 step: 60, loss is 1.276987075805664\n",
- "epoch: 15 step: 61, loss is 1.2433191537857056\n",
- "epoch: 15 step: 62, loss is 1.3042113780975342\n",
- "epoch: 15 step: 63, loss is 1.2814455032348633\n",
- "epoch: 15 step: 64, loss is 1.3531595468521118\n",
- "epoch: 15 step: 65, loss is 1.2376521825790405\n",
- "epoch: 15 step: 66, loss is 1.2873739004135132\n",
- "epoch: 15 step: 67, loss is 1.2942878007888794\n",
- "epoch: 15 step: 68, loss is 1.2528331279754639\n",
- "epoch: 15 step: 69, loss is 1.2704265117645264\n",
- "epoch: 15 step: 70, loss is 1.3613746166229248\n",
- "epoch: 15 step: 71, loss is 1.177742600440979\n",
- "epoch: 15 step: 72, loss is 1.263636827468872\n",
- "epoch: 15 step: 73, loss is 1.2667920589447021\n",
- "epoch: 15 step: 74, loss is 1.2055697441101074\n",
- "epoch: 15 step: 75, loss is 1.260768175125122\n",
- "epoch: 15 step: 76, loss is 1.2534846067428589\n",
- "epoch: 15 step: 77, loss is 1.2048691511154175\n",
- "epoch: 15 step: 78, loss is 1.2284268140792847\n",
- "epoch: 15 step: 79, loss is 1.1797672510147095\n",
- "epoch: 15 step: 80, loss is 1.2382299900054932\n",
- "epoch: 15 step: 81, loss is 1.216615080833435\n",
- "epoch: 15 step: 82, loss is 1.2805240154266357\n",
- "epoch: 15 step: 83, loss is 1.1930930614471436\n",
- "epoch: 15 step: 84, loss is 1.140974521636963\n",
- "epoch: 15 step: 85, loss is 1.2331902980804443\n",
- "epoch: 15 step: 86, loss is 1.2514166831970215\n",
- "epoch: 15 step: 87, loss is 1.3294726610183716\n",
- "epoch: 15 step: 88, loss is 1.2701456546783447\n",
- "epoch: 15 step: 89, loss is 1.3149538040161133\n",
- "epoch: 15 step: 90, loss is 1.2158703804016113\n",
- "epoch: 15 step: 91, loss is 1.323461651802063\n",
- "epoch: 15 step: 92, loss is 1.273688793182373\n",
- "epoch: 15 step: 93, loss is 1.3216376304626465\n",
- "epoch: 15 step: 94, loss is 1.232588768005371\n",
- "epoch: 15 step: 95, loss is 1.2354586124420166\n",
- "epoch: 15 step: 96, loss is 1.3638391494750977\n",
- "epoch: 15 step: 97, loss is 1.3302446603775024\n",
- "epoch: 15 step: 98, loss is 1.2600990533828735\n",
- "epoch: 15 step: 99, loss is 1.1782952547073364\n",
- "epoch: 15 step: 100, loss is 1.2517387866973877\n",
- "epoch: 15 step: 101, loss is 1.2114851474761963\n",
- "epoch: 15 step: 102, loss is 1.3398654460906982\n",
- "epoch: 15 step: 103, loss is 1.3277544975280762\n",
- "epoch: 15 step: 104, loss is 1.3022119998931885\n",
- "epoch: 15 step: 105, loss is 1.2798925638198853\n",
- "epoch: 15 step: 106, loss is 1.1655162572860718\n",
- "epoch: 15 step: 107, loss is 1.3060060739517212\n",
- "epoch: 15 step: 108, loss is 1.2092158794403076\n",
- "epoch: 15 step: 109, loss is 1.216623306274414\n",
- "epoch: 15 step: 110, loss is 1.2886950969696045\n",
- "epoch: 15 step: 111, loss is 1.2351323366165161\n",
- "epoch: 15 step: 112, loss is 1.256291151046753\n",
- "epoch: 15 step: 113, loss is 1.2132823467254639\n",
- "epoch: 15 step: 114, loss is 1.209384799003601\n",
- "epoch: 15 step: 115, loss is 1.2400623559951782\n",
- "epoch: 15 step: 116, loss is 1.25479257106781\n",
- "epoch: 15 step: 117, loss is 1.3072277307510376\n",
- "epoch: 15 step: 118, loss is 1.225982666015625\n",
- "epoch: 15 step: 119, loss is 1.1993201971054077\n",
- "epoch: 15 step: 120, loss is 1.3242545127868652\n",
- "epoch: 15 step: 121, loss is 1.3091707229614258\n",
- "epoch: 15 step: 122, loss is 1.2741153240203857\n",
- "epoch: 15 step: 123, loss is 1.3180584907531738\n",
- "epoch: 15 step: 124, loss is 1.2477481365203857\n",
- "epoch: 15 step: 125, loss is 1.1647981405258179\n",
- "epoch: 15 step: 126, loss is 1.2373536825180054\n",
- "epoch: 15 step: 127, loss is 1.2171181440353394\n",
- "epoch: 15 step: 128, loss is 1.2576279640197754\n",
- "epoch: 15 step: 129, loss is 1.2510181665420532\n",
- "epoch: 15 step: 130, loss is 1.3157298564910889\n",
- "epoch: 15 step: 131, loss is 1.175681233406067\n",
- "epoch: 15 step: 132, loss is 1.2638832330703735\n",
- "epoch: 15 step: 133, loss is 1.193274736404419\n",
- "epoch: 15 step: 134, loss is 1.2021092176437378\n",
- "epoch: 15 step: 135, loss is 1.341567873954773\n",
- "epoch: 15 step: 136, loss is 1.3382102251052856\n",
- "epoch: 15 step: 137, loss is 1.2891346216201782\n",
- "epoch: 15 step: 138, loss is 1.2622382640838623\n",
- "epoch: 15 step: 139, loss is 1.222377896308899\n",
- "epoch: 15 step: 140, loss is 1.2877551317214966\n",
- "epoch: 15 step: 141, loss is 1.3113880157470703\n",
- "epoch: 15 step: 142, loss is 1.2723743915557861\n",
- "epoch: 15 step: 143, loss is 1.1897218227386475\n",
- "epoch: 15 step: 144, loss is 1.2809958457946777\n",
- "epoch: 15 step: 145, loss is 1.2903027534484863\n",
- "epoch: 15 step: 146, loss is 1.2597594261169434\n",
- "epoch: 15 step: 147, loss is 1.2228127717971802\n",
- "epoch: 15 step: 148, loss is 1.2712072134017944\n",
- "epoch: 15 step: 149, loss is 1.226621389389038\n",
- "epoch: 15 step: 150, loss is 1.2936750650405884\n",
- "epoch: 15 step: 151, loss is 1.286426067352295\n",
- "epoch: 15 step: 152, loss is 1.2377091646194458\n",
- "epoch: 15 step: 153, loss is 1.238861083984375\n",
- "epoch: 15 step: 154, loss is 1.315153956413269\n",
- "epoch: 15 step: 155, loss is 1.209810495376587\n",
- "epoch: 15 step: 156, loss is 1.2419583797454834\n",
- "epoch: 15 step: 157, loss is 1.243720293045044\n",
- "epoch: 15 step: 158, loss is 1.2803688049316406\n",
- "epoch: 15 step: 159, loss is 1.1976585388183594\n",
- "epoch: 15 step: 160, loss is 1.2582988739013672\n",
- "epoch: 15 step: 161, loss is 1.2500369548797607\n",
- "epoch: 15 step: 162, loss is 1.2557183504104614\n",
- "epoch: 15 step: 163, loss is 1.206310749053955\n",
- "epoch: 15 step: 164, loss is 1.3162862062454224\n",
- "epoch: 15 step: 165, loss is 1.3124909400939941\n",
- "epoch: 15 step: 166, loss is 1.2516766786575317\n",
- "epoch: 15 step: 167, loss is 1.3082057237625122\n",
- "epoch: 15 step: 168, loss is 1.2799891233444214\n",
- "epoch: 15 step: 169, loss is 1.3270244598388672\n",
- "epoch: 15 step: 170, loss is 1.197921633720398\n",
- "epoch: 15 step: 171, loss is 1.2444106340408325\n",
- "epoch: 15 step: 172, loss is 1.2946901321411133\n",
- "epoch: 15 step: 173, loss is 1.1840176582336426\n",
- "epoch: 15 step: 174, loss is 1.2681820392608643\n",
- "epoch: 15 step: 175, loss is 1.3110121488571167\n",
- "epoch: 15 step: 176, loss is 1.3127834796905518\n",
- "epoch: 15 step: 177, loss is 1.2900402545928955\n",
- "epoch: 15 step: 178, loss is 1.3088023662567139\n",
- "epoch: 15 step: 179, loss is 1.3023568391799927\n",
- "epoch: 15 step: 180, loss is 1.253270149230957\n",
- "epoch: 15 step: 181, loss is 1.2522461414337158\n",
- "epoch: 15 step: 182, loss is 1.1910359859466553\n",
- "epoch: 15 step: 183, loss is 1.2301628589630127\n",
- "epoch: 15 step: 184, loss is 1.3088245391845703\n",
- "epoch: 15 step: 185, loss is 1.2386564016342163\n",
- "epoch: 15 step: 186, loss is 1.240254521369934\n",
- "epoch: 15 step: 187, loss is 1.2634961605072021\n",
- "epoch: 15 step: 188, loss is 1.2595704793930054\n",
- "epoch: 15 step: 189, loss is 1.2507398128509521\n",
- "epoch: 15 step: 190, loss is 1.2307307720184326\n",
- "epoch: 15 step: 191, loss is 1.2575700283050537\n",
- "epoch: 15 step: 192, loss is 1.2463405132293701\n",
- "epoch: 15 step: 193, loss is 1.2091997861862183\n",
- "epoch: 15 step: 194, loss is 1.2385755777359009\n",
- "epoch: 15 step: 195, loss is 1.1925673484802246\n",
- "Train epoch time: 117850.298 ms, per step time: 604.361 ms\n",
- "epoch: 16 step: 1, loss is 1.2274730205535889\n",
- "epoch: 16 step: 2, loss is 1.2235838174819946\n",
- "epoch: 16 step: 3, loss is 1.2720590829849243\n",
- "epoch: 16 step: 4, loss is 1.148383617401123\n",
- "epoch: 16 step: 5, loss is 1.1968835592269897\n",
- "epoch: 16 step: 6, loss is 1.3378541469573975\n",
- "epoch: 16 step: 7, loss is 1.1924853324890137\n",
- "epoch: 16 step: 8, loss is 1.2511305809020996\n",
- "epoch: 16 step: 9, loss is 1.2012386322021484\n",
- "epoch: 16 step: 10, loss is 1.2189984321594238\n",
- "epoch: 16 step: 11, loss is 1.3680706024169922\n",
- "epoch: 16 step: 12, loss is 1.206792950630188\n",
- "epoch: 16 step: 13, loss is 1.1881461143493652\n",
- "epoch: 16 step: 14, loss is 1.2252566814422607\n",
- "epoch: 16 step: 15, loss is 1.2500965595245361\n",
- "epoch: 16 step: 16, loss is 1.237292766571045\n",
- "epoch: 16 step: 17, loss is 1.2820303440093994\n",
- "epoch: 16 step: 18, loss is 1.148396372795105\n",
- "epoch: 16 step: 19, loss is 1.246347427368164\n",
- "epoch: 16 step: 20, loss is 1.279171109199524\n",
- "epoch: 16 step: 21, loss is 1.359834909439087\n",
- "epoch: 16 step: 22, loss is 1.24973726272583\n",
- "epoch: 16 step: 23, loss is 1.1607933044433594\n",
- "epoch: 16 step: 24, loss is 1.1818289756774902\n",
- "epoch: 16 step: 25, loss is 1.3800182342529297\n",
- "epoch: 16 step: 26, loss is 1.2792166471481323\n",
- "epoch: 16 step: 27, loss is 1.2777669429779053\n",
- "epoch: 16 step: 28, loss is 1.2325360774993896\n",
- "epoch: 16 step: 29, loss is 1.2749779224395752\n",
- "epoch: 16 step: 30, loss is 1.1738426685333252\n",
- "epoch: 16 step: 31, loss is 1.2503318786621094\n",
- "epoch: 16 step: 32, loss is 1.2879382371902466\n",
- "epoch: 16 step: 33, loss is 1.323315143585205\n",
- "epoch: 16 step: 34, loss is 1.2160749435424805\n",
- "epoch: 16 step: 35, loss is 1.2592848539352417\n",
- "epoch: 16 step: 36, loss is 1.1310224533081055\n",
- "epoch: 16 step: 37, loss is 1.2857701778411865\n",
- "epoch: 16 step: 38, loss is 1.241631269454956\n",
- "epoch: 16 step: 39, loss is 1.290355920791626\n",
- "epoch: 16 step: 40, loss is 1.1943446397781372\n",
- "epoch: 16 step: 41, loss is 1.2451283931732178\n",
- "epoch: 16 step: 42, loss is 1.2322499752044678\n",
- "epoch: 16 step: 43, loss is 1.2564818859100342\n",
- "epoch: 16 step: 44, loss is 1.277268409729004\n",
- "epoch: 16 step: 45, loss is 1.2928087711334229\n",
- "epoch: 16 step: 46, loss is 1.2046185731887817\n",
- "epoch: 16 step: 47, loss is 1.138471007347107\n",
- "epoch: 16 step: 48, loss is 1.2224820852279663\n",
- "epoch: 16 step: 49, loss is 1.2109723091125488\n",
- "epoch: 16 step: 50, loss is 1.1801104545593262\n",
- "epoch: 16 step: 51, loss is 1.2766666412353516\n",
- "epoch: 16 step: 52, loss is 1.3233405351638794\n",
- "epoch: 16 step: 53, loss is 1.3630709648132324\n",
- "epoch: 16 step: 54, loss is 1.1460883617401123\n",
- "epoch: 16 step: 55, loss is 1.3325954675674438\n",
- "epoch: 16 step: 56, loss is 1.259045958518982\n",
- "epoch: 16 step: 57, loss is 1.1594128608703613\n",
- "epoch: 16 step: 58, loss is 1.2450932264328003\n",
- "epoch: 16 step: 59, loss is 1.275389313697815\n",
- "epoch: 16 step: 60, loss is 1.2404605150222778\n",
- "epoch: 16 step: 61, loss is 1.234778642654419\n",
- "epoch: 16 step: 62, loss is 1.2167614698410034\n",
- "epoch: 16 step: 63, loss is 1.2514312267303467\n",
- "epoch: 16 step: 64, loss is 1.2499357461929321\n",
- "epoch: 16 step: 65, loss is 1.2663588523864746\n",
- "epoch: 16 step: 66, loss is 1.231864333152771\n",
- "epoch: 16 step: 67, loss is 1.2194405794143677\n",
- "epoch: 16 step: 68, loss is 1.206528663635254\n",
- "epoch: 16 step: 69, loss is 1.101513147354126\n",
- "epoch: 16 step: 70, loss is 1.3908329010009766\n",
- "epoch: 16 step: 71, loss is 1.3055996894836426\n",
- "epoch: 16 step: 72, loss is 1.2141655683517456\n",
- "epoch: 16 step: 73, loss is 1.1887707710266113\n",
- "epoch: 16 step: 74, loss is 1.221242070198059\n",
- "epoch: 16 step: 75, loss is 1.1832038164138794\n",
- "epoch: 16 step: 76, loss is 1.2116243839263916\n",
- "epoch: 16 step: 77, loss is 1.2849528789520264\n",
- "epoch: 16 step: 78, loss is 1.2473610639572144\n",
- "epoch: 16 step: 79, loss is 1.3379954099655151\n",
- "epoch: 16 step: 80, loss is 1.1985424757003784\n",
- "epoch: 16 step: 81, loss is 1.2495958805084229\n",
- "epoch: 16 step: 82, loss is 1.2481029033660889\n",
- "epoch: 16 step: 83, loss is 1.2353349924087524\n",
- "epoch: 16 step: 84, loss is 1.2480812072753906\n",
- "epoch: 16 step: 85, loss is 1.3057825565338135\n",
- "epoch: 16 step: 86, loss is 1.1996017694473267\n",
- "epoch: 16 step: 87, loss is 1.2488617897033691\n",
- "epoch: 16 step: 88, loss is 1.212516188621521\n",
- "epoch: 16 step: 89, loss is 1.2438344955444336\n",
- "epoch: 16 step: 90, loss is 1.3710776567459106\n",
- "epoch: 16 step: 91, loss is 1.2144547700881958\n",
- "epoch: 16 step: 92, loss is 1.2171026468276978\n",
- "epoch: 16 step: 93, loss is 1.3089040517807007\n",
- "epoch: 16 step: 94, loss is 1.2570548057556152\n",
- "epoch: 16 step: 95, loss is 1.2542940378189087\n",
- "epoch: 16 step: 96, loss is 1.2019354104995728\n",
- "epoch: 16 step: 97, loss is 1.2220085859298706\n",
- "epoch: 16 step: 98, loss is 1.2381319999694824\n",
- "epoch: 16 step: 99, loss is 1.2278664112091064\n",
- "epoch: 16 step: 100, loss is 1.2042198181152344\n",
- "epoch: 16 step: 101, loss is 1.1821157932281494\n",
- "epoch: 16 step: 102, loss is 1.34200918674469\n",
- "epoch: 16 step: 103, loss is 1.195743203163147\n",
- "epoch: 16 step: 104, loss is 1.1882482767105103\n",
- "epoch: 16 step: 105, loss is 1.2385985851287842\n",
- "epoch: 16 step: 106, loss is 1.1501399278640747\n",
- "epoch: 16 step: 107, loss is 1.2187302112579346\n",
- "epoch: 16 step: 108, loss is 1.3155946731567383\n",
- "epoch: 16 step: 109, loss is 1.3305858373641968\n",
- "epoch: 16 step: 110, loss is 1.1908713579177856\n",
- "epoch: 16 step: 111, loss is 1.265093445777893\n",
- "epoch: 16 step: 112, loss is 1.283048391342163\n",
- "epoch: 16 step: 113, loss is 1.264970302581787\n",
- "epoch: 16 step: 114, loss is 1.2102863788604736\n",
- "epoch: 16 step: 115, loss is 1.247843861579895\n",
- "epoch: 16 step: 116, loss is 1.2801055908203125\n",
- "epoch: 16 step: 117, loss is 1.25144362449646\n",
- "epoch: 16 step: 118, loss is 1.223006010055542\n",
- "epoch: 16 step: 119, loss is 1.2393598556518555\n",
- "epoch: 16 step: 120, loss is 1.216909646987915\n",
- "epoch: 16 step: 121, loss is 1.1969853639602661\n",
- "epoch: 16 step: 122, loss is 1.1181695461273193\n",
- "epoch: 16 step: 123, loss is 1.272802710533142\n",
- "epoch: 16 step: 124, loss is 1.20206880569458\n",
- "epoch: 16 step: 125, loss is 1.1861366033554077\n",
- "epoch: 16 step: 126, loss is 1.1934534311294556\n",
- "epoch: 16 step: 127, loss is 1.2243807315826416\n",
- "epoch: 16 step: 128, loss is 1.2958638668060303\n",
- "epoch: 16 step: 129, loss is 1.2313928604125977\n",
- "epoch: 16 step: 130, loss is 1.285033106803894\n",
- "epoch: 16 step: 131, loss is 1.313225269317627\n",
- "epoch: 16 step: 132, loss is 1.2438418865203857\n",
- "epoch: 16 step: 133, loss is 1.2017525434494019\n",
- "epoch: 16 step: 134, loss is 1.2655237913131714\n",
- "epoch: 16 step: 135, loss is 1.3005032539367676\n",
- "epoch: 16 step: 136, loss is 1.244072437286377\n",
- "epoch: 16 step: 137, loss is 1.325725793838501\n",
- "epoch: 16 step: 138, loss is 1.247969388961792\n",
- "epoch: 16 step: 139, loss is 1.1887179613113403\n",
- "epoch: 16 step: 140, loss is 1.2735693454742432\n",
- "epoch: 16 step: 141, loss is 1.2422592639923096\n",
- "epoch: 16 step: 142, loss is 1.2461676597595215\n",
- "epoch: 16 step: 143, loss is 1.2246917486190796\n",
- "epoch: 16 step: 144, loss is 1.2958608865737915\n",
- "epoch: 16 step: 145, loss is 1.2488183975219727\n",
- "epoch: 16 step: 146, loss is 1.189430832862854\n",
- "epoch: 16 step: 147, loss is 1.2287399768829346\n",
- "epoch: 16 step: 148, loss is 1.252371072769165\n",
- "epoch: 16 step: 149, loss is 1.226349949836731\n",
- "epoch: 16 step: 150, loss is 1.1276710033416748\n",
- "epoch: 16 step: 151, loss is 1.286956548690796\n",
- "epoch: 16 step: 152, loss is 1.2623121738433838\n",
- "epoch: 16 step: 153, loss is 1.202656865119934\n",
- "epoch: 16 step: 154, loss is 1.2647936344146729\n",
- "epoch: 16 step: 155, loss is 1.3170263767242432\n",
- "epoch: 16 step: 156, loss is 1.1940571069717407\n",
- "epoch: 16 step: 157, loss is 1.1954822540283203\n",
- "epoch: 16 step: 158, loss is 1.2747403383255005\n",
- "epoch: 16 step: 159, loss is 1.249922752380371\n",
- "epoch: 16 step: 160, loss is 1.2010294198989868\n",
- "epoch: 16 step: 161, loss is 1.2432454824447632\n",
- "epoch: 16 step: 162, loss is 1.2505052089691162\n",
- "epoch: 16 step: 163, loss is 1.2072128057479858\n",
- "epoch: 16 step: 164, loss is 1.1469354629516602\n",
- "epoch: 16 step: 165, loss is 1.2632534503936768\n",
- "epoch: 16 step: 166, loss is 1.313177466392517\n",
- "epoch: 16 step: 167, loss is 1.2422597408294678\n",
- "epoch: 16 step: 168, loss is 1.2714320421218872\n",
- "epoch: 16 step: 169, loss is 1.2533972263336182\n",
- "epoch: 16 step: 170, loss is 1.1974824666976929\n",
- "epoch: 16 step: 171, loss is 1.176013708114624\n",
- "epoch: 16 step: 172, loss is 1.2280741930007935\n",
- "epoch: 16 step: 173, loss is 1.299800157546997\n",
- "epoch: 16 step: 174, loss is 1.2397340536117554\n",
- "epoch: 16 step: 175, loss is 1.32926344871521\n",
- "epoch: 16 step: 176, loss is 1.215296983718872\n",
- "epoch: 16 step: 177, loss is 1.270972490310669\n",
- "epoch: 16 step: 178, loss is 1.2527481317520142\n",
- "epoch: 16 step: 179, loss is 1.2844569683074951\n",
- "epoch: 16 step: 180, loss is 1.2906743288040161\n",
- "epoch: 16 step: 181, loss is 1.3145138025283813\n",
- "epoch: 16 step: 182, loss is 1.1955844163894653\n",
- "epoch: 16 step: 183, loss is 1.214430809020996\n",
- "epoch: 16 step: 184, loss is 1.257425308227539\n",
- "epoch: 16 step: 185, loss is 1.3365603685379028\n",
- "epoch: 16 step: 186, loss is 1.2331931591033936\n",
- "epoch: 16 step: 187, loss is 1.2885427474975586\n",
- "epoch: 16 step: 188, loss is 1.2363359928131104\n",
- "epoch: 16 step: 189, loss is 1.2828916311264038\n",
- "epoch: 16 step: 190, loss is 1.2008980512619019\n",
- "epoch: 16 step: 191, loss is 1.2487199306488037\n",
- "epoch: 16 step: 192, loss is 1.2396461963653564\n",
- "epoch: 16 step: 193, loss is 1.225866436958313\n",
- "epoch: 16 step: 194, loss is 1.2474937438964844\n",
- "epoch: 16 step: 195, loss is 1.2275688648223877\n",
- "Train epoch time: 117204.454 ms, per step time: 601.048 ms\n",
- "epoch: 17 step: 1, loss is 1.1368712186813354\n",
- "epoch: 17 step: 2, loss is 1.2154674530029297\n",
- "epoch: 17 step: 3, loss is 1.1783324480056763\n",
- "epoch: 17 step: 4, loss is 1.2023160457611084\n",
- "epoch: 17 step: 5, loss is 1.2588672637939453\n",
- "epoch: 17 step: 6, loss is 1.2113274335861206\n",
- "epoch: 17 step: 7, loss is 1.2011066675186157\n",
- "epoch: 17 step: 8, loss is 1.2339909076690674\n",
- "epoch: 17 step: 9, loss is 1.2601714134216309\n",
- "epoch: 17 step: 10, loss is 1.2264022827148438\n",
- "epoch: 17 step: 11, loss is 1.2261953353881836\n",
- "epoch: 17 step: 12, loss is 1.2412794828414917\n",
- "epoch: 17 step: 13, loss is 1.2002688646316528\n",
- "epoch: 17 step: 14, loss is 1.2177826166152954\n",
- "epoch: 17 step: 15, loss is 1.2441383600234985\n",
- "epoch: 17 step: 16, loss is 1.2624236345291138\n",
- "epoch: 17 step: 17, loss is 1.2081058025360107\n",
- "epoch: 17 step: 18, loss is 1.1600136756896973\n",
- "epoch: 17 step: 19, loss is 1.3263986110687256\n",
- "epoch: 17 step: 20, loss is 1.212758183479309\n",
- "epoch: 17 step: 21, loss is 1.2366949319839478\n",
- "epoch: 17 step: 22, loss is 1.2149782180786133\n",
- "epoch: 17 step: 23, loss is 1.1182140111923218\n",
- "epoch: 17 step: 24, loss is 1.2454135417938232\n",
- "epoch: 17 step: 25, loss is 1.2855679988861084\n",
- "epoch: 17 step: 26, loss is 1.180769443511963\n",
- "epoch: 17 step: 27, loss is 1.276991367340088\n",
- "epoch: 17 step: 28, loss is 1.2113182544708252\n",
- "epoch: 17 step: 29, loss is 1.1773923635482788\n",
- "epoch: 17 step: 30, loss is 1.2356983423233032\n",
- "epoch: 17 step: 31, loss is 1.2006123065948486\n",
- "epoch: 17 step: 32, loss is 1.2666823863983154\n",
- "epoch: 17 step: 33, loss is 1.1864118576049805\n",
- "epoch: 17 step: 34, loss is 1.2898330688476562\n",
- "epoch: 17 step: 35, loss is 1.2948942184448242\n",
- "epoch: 17 step: 36, loss is 1.2339624166488647\n",
- "epoch: 17 step: 37, loss is 1.207308292388916\n",
- "epoch: 17 step: 38, loss is 1.2334808111190796\n",
- "epoch: 17 step: 39, loss is 1.1876094341278076\n",
- "epoch: 17 step: 40, loss is 1.1989997625350952\n",
- "epoch: 17 step: 41, loss is 1.128523349761963\n",
- "epoch: 17 step: 42, loss is 1.2673076391220093\n",
- "epoch: 17 step: 43, loss is 1.432381272315979\n",
- "epoch: 17 step: 44, loss is 1.1828938722610474\n",
- "epoch: 17 step: 45, loss is 1.196916103363037\n",
- "epoch: 17 step: 46, loss is 1.1199086904525757\n",
- "epoch: 17 step: 47, loss is 1.173409342765808\n",
- "epoch: 17 step: 48, loss is 1.229339838027954\n",
- "epoch: 17 step: 49, loss is 1.2648639678955078\n",
- "epoch: 17 step: 50, loss is 1.1573368310928345\n",
- "epoch: 17 step: 51, loss is 1.252699851989746\n",
- "epoch: 17 step: 52, loss is 1.2679656744003296\n",
- "epoch: 17 step: 53, loss is 1.2478971481323242\n",
- "epoch: 17 step: 54, loss is 1.1537532806396484\n",
- "epoch: 17 step: 55, loss is 1.3024675846099854\n",
- "epoch: 17 step: 56, loss is 1.1944911479949951\n",
- "epoch: 17 step: 57, loss is 1.243715763092041\n",
- "epoch: 17 step: 58, loss is 1.2849395275115967\n",
- "epoch: 17 step: 59, loss is 1.1573431491851807\n",
- "epoch: 17 step: 60, loss is 1.2541215419769287\n",
- "epoch: 17 step: 61, loss is 1.193427562713623\n",
- "epoch: 17 step: 62, loss is 1.2838801145553589\n",
- "epoch: 17 step: 63, loss is 1.183005928993225\n",
- "epoch: 17 step: 64, loss is 1.2515697479248047\n",
- "epoch: 17 step: 65, loss is 1.171645164489746\n",
- "epoch: 17 step: 66, loss is 1.2654495239257812\n",
- "epoch: 17 step: 67, loss is 1.215116262435913\n",
- "epoch: 17 step: 68, loss is 1.2876511812210083\n",
- "epoch: 17 step: 69, loss is 1.2766550779342651\n",
- "epoch: 17 step: 70, loss is 1.2789809703826904\n",
- "epoch: 17 step: 71, loss is 1.21022629737854\n",
- "epoch: 17 step: 72, loss is 1.3506572246551514\n",
- "epoch: 17 step: 73, loss is 1.3019983768463135\n",
- "epoch: 17 step: 74, loss is 1.241420030593872\n",
- "epoch: 17 step: 75, loss is 1.2391926050186157\n",
- "epoch: 17 step: 76, loss is 1.2923179864883423\n",
- "epoch: 17 step: 77, loss is 1.2566075325012207\n",
- "epoch: 17 step: 78, loss is 1.2775304317474365\n",
- "epoch: 17 step: 79, loss is 1.2055257558822632\n",
- "epoch: 17 step: 80, loss is 1.2494230270385742\n",
- "epoch: 17 step: 81, loss is 1.1269831657409668\n",
- "epoch: 17 step: 82, loss is 1.2635886669158936\n",
- "epoch: 17 step: 83, loss is 1.1307318210601807\n",
- "epoch: 17 step: 84, loss is 1.2035168409347534\n",
- "epoch: 17 step: 85, loss is 1.198492407798767\n",
- "epoch: 17 step: 86, loss is 1.1858220100402832\n",
- "epoch: 17 step: 87, loss is 1.1978291273117065\n",
- "epoch: 17 step: 88, loss is 1.2211642265319824\n",
- "epoch: 17 step: 89, loss is 1.1992467641830444\n",
- "epoch: 17 step: 90, loss is 1.1408443450927734\n",
- "epoch: 17 step: 91, loss is 1.1738532781600952\n",
- "epoch: 17 step: 92, loss is 1.1387178897857666\n",
- "epoch: 17 step: 93, loss is 1.3576897382736206\n",
- "epoch: 17 step: 94, loss is 1.282267451286316\n",
- "epoch: 17 step: 95, loss is 1.2726104259490967\n",
- "epoch: 17 step: 96, loss is 1.2187788486480713\n",
- "epoch: 17 step: 97, loss is 1.225401520729065\n",
- "epoch: 17 step: 98, loss is 1.2436751127243042\n",
- "epoch: 17 step: 99, loss is 1.1683436632156372\n",
- "epoch: 17 step: 100, loss is 1.2353081703186035\n",
- "epoch: 17 step: 101, loss is 1.2216999530792236\n",
- "epoch: 17 step: 102, loss is 1.2683098316192627\n",
- "epoch: 17 step: 103, loss is 1.1910035610198975\n",
- "epoch: 17 step: 104, loss is 1.2748823165893555\n",
- "epoch: 17 step: 105, loss is 1.2288672924041748\n",
- "epoch: 17 step: 106, loss is 1.2370693683624268\n",
- "epoch: 17 step: 107, loss is 1.2189065217971802\n",
- "epoch: 17 step: 108, loss is 1.2345324754714966\n",
- "epoch: 17 step: 109, loss is 1.246821403503418\n",
- "epoch: 17 step: 110, loss is 1.35385262966156\n",
- "epoch: 17 step: 111, loss is 1.2852669954299927\n",
- "epoch: 17 step: 112, loss is 1.2824387550354004\n",
- "epoch: 17 step: 113, loss is 1.1660194396972656\n",
- "epoch: 17 step: 114, loss is 1.2597863674163818\n",
- "epoch: 17 step: 115, loss is 1.3324213027954102\n",
- "epoch: 17 step: 116, loss is 1.1363489627838135\n",
- "epoch: 17 step: 117, loss is 1.171670913696289\n",
- "epoch: 17 step: 118, loss is 1.1569430828094482\n",
- "epoch: 17 step: 119, loss is 1.1638708114624023\n",
- "epoch: 17 step: 120, loss is 1.1986749172210693\n",
- "epoch: 17 step: 121, loss is 1.2963933944702148\n",
- "epoch: 17 step: 122, loss is 1.2250511646270752\n",
- "epoch: 17 step: 123, loss is 1.1643753051757812\n",
- "epoch: 17 step: 124, loss is 1.2131401300430298\n",
- "epoch: 17 step: 125, loss is 1.2659035921096802\n",
- "epoch: 17 step: 126, loss is 1.2510257959365845\n",
- "epoch: 17 step: 127, loss is 1.1570096015930176\n",
- "epoch: 17 step: 128, loss is 1.2065162658691406\n",
- "epoch: 17 step: 129, loss is 1.2328345775604248\n",
- "epoch: 17 step: 130, loss is 1.1409492492675781\n",
- "epoch: 17 step: 131, loss is 1.207078456878662\n",
- "epoch: 17 step: 132, loss is 1.3251025676727295\n",
- "epoch: 17 step: 133, loss is 1.2847282886505127\n",
- "epoch: 17 step: 134, loss is 1.2583389282226562\n",
- "epoch: 17 step: 135, loss is 1.1629046201705933\n",
- "epoch: 17 step: 136, loss is 1.2359191179275513\n",
- "epoch: 17 step: 137, loss is 1.1721794605255127\n",
- "epoch: 17 step: 138, loss is 1.2206753492355347\n",
- "epoch: 17 step: 139, loss is 1.1739181280136108\n",
- "epoch: 17 step: 140, loss is 1.245823860168457\n",
- "epoch: 17 step: 141, loss is 1.2040901184082031\n",
- "epoch: 17 step: 142, loss is 1.2917197942733765\n",
- "epoch: 17 step: 143, loss is 1.2295960187911987\n",
- "epoch: 17 step: 144, loss is 1.2142951488494873\n",
- "epoch: 17 step: 145, loss is 1.2301418781280518\n",
- "epoch: 17 step: 146, loss is 1.2273237705230713\n",
- "epoch: 17 step: 147, loss is 1.1696877479553223\n",
- "epoch: 17 step: 148, loss is 1.2237462997436523\n",
- "epoch: 17 step: 149, loss is 1.270733118057251\n",
- "epoch: 17 step: 150, loss is 1.2302684783935547\n",
- "epoch: 17 step: 151, loss is 1.1912108659744263\n",
- "epoch: 17 step: 152, loss is 1.2522850036621094\n",
- "epoch: 17 step: 153, loss is 1.2047255039215088\n",
- "epoch: 17 step: 154, loss is 1.139001488685608\n",
- "epoch: 17 step: 155, loss is 1.2501187324523926\n",
- "epoch: 17 step: 156, loss is 1.2116199731826782\n",
- "epoch: 17 step: 157, loss is 1.257354974746704\n",
- "epoch: 17 step: 158, loss is 1.1789766550064087\n",
- "epoch: 17 step: 159, loss is 1.2003939151763916\n",
- "epoch: 17 step: 160, loss is 1.2342777252197266\n",
- "epoch: 17 step: 161, loss is 1.2099637985229492\n",
- "epoch: 17 step: 162, loss is 1.2957016229629517\n",
- "epoch: 17 step: 163, loss is 1.2251198291778564\n",
- "epoch: 17 step: 164, loss is 1.2255970239639282\n",
- "epoch: 17 step: 165, loss is 1.1516563892364502\n",
- "epoch: 17 step: 166, loss is 1.1545898914337158\n",
- "epoch: 17 step: 167, loss is 1.182161569595337\n",
- "epoch: 17 step: 168, loss is 1.2883062362670898\n",
- "epoch: 17 step: 169, loss is 1.2371444702148438\n",
- "epoch: 17 step: 170, loss is 1.243492603302002\n",
- "epoch: 17 step: 171, loss is 1.2206103801727295\n",
- "epoch: 17 step: 172, loss is 1.2447007894515991\n",
- "epoch: 17 step: 173, loss is 1.1164084672927856\n",
- "epoch: 17 step: 174, loss is 1.2386415004730225\n",
- "epoch: 17 step: 175, loss is 1.2308399677276611\n",
- "epoch: 17 step: 176, loss is 1.2692515850067139\n",
- "epoch: 17 step: 177, loss is 1.2574223279953003\n",
- "epoch: 17 step: 178, loss is 1.1886930465698242\n",
- "epoch: 17 step: 179, loss is 1.2658964395523071\n",
- "epoch: 17 step: 180, loss is 1.1521846055984497\n",
- "epoch: 17 step: 181, loss is 1.2420017719268799\n",
- "epoch: 17 step: 182, loss is 1.2170312404632568\n",
- "epoch: 17 step: 183, loss is 1.2561466693878174\n",
- "epoch: 17 step: 184, loss is 1.1954855918884277\n",
- "epoch: 17 step: 185, loss is 1.185873031616211\n",
- "epoch: 17 step: 186, loss is 1.2515869140625\n",
- "epoch: 17 step: 187, loss is 1.2171010971069336\n",
- "epoch: 17 step: 188, loss is 1.2851717472076416\n",
- "epoch: 17 step: 189, loss is 1.2497345209121704\n",
- "epoch: 17 step: 190, loss is 1.2024574279785156\n",
- "epoch: 17 step: 191, loss is 1.2836174964904785\n",
- "epoch: 17 step: 192, loss is 1.1394550800323486\n",
- "epoch: 17 step: 193, loss is 1.2260174751281738\n",
- "epoch: 17 step: 194, loss is 1.2440799474716187\n",
- "epoch: 17 step: 195, loss is 1.2714698314666748\n",
- "Train epoch time: 111485.809 ms, per step time: 571.722 ms\n",
- "epoch: 18 step: 1, loss is 1.1941851377487183\n",
- "epoch: 18 step: 2, loss is 1.2028131484985352\n",
- "epoch: 18 step: 3, loss is 1.2496981620788574\n",
- "epoch: 18 step: 4, loss is 1.2141849994659424\n",
- "epoch: 18 step: 5, loss is 1.2137805223464966\n",
- "epoch: 18 step: 6, loss is 1.141650915145874\n",
- "epoch: 18 step: 7, loss is 1.2860140800476074\n",
- "epoch: 18 step: 8, loss is 1.112280011177063\n",
- "epoch: 18 step: 9, loss is 1.0993003845214844\n",
- "epoch: 18 step: 10, loss is 1.2823307514190674\n",
- "epoch: 18 step: 11, loss is 1.114200472831726\n",
- "epoch: 18 step: 12, loss is 1.19282066822052\n",
- "epoch: 18 step: 13, loss is 1.2437809705734253\n",
- "epoch: 18 step: 14, loss is 1.171976089477539\n",
- "epoch: 18 step: 15, loss is 1.2106871604919434\n",
- "epoch: 18 step: 16, loss is 1.150513768196106\n",
- "epoch: 18 step: 17, loss is 1.207829236984253\n",
- "epoch: 18 step: 18, loss is 1.2873139381408691\n",
- "epoch: 18 step: 19, loss is 1.2626097202301025\n",
- "epoch: 18 step: 20, loss is 1.201612949371338\n",
- "epoch: 18 step: 21, loss is 1.1613235473632812\n",
- "epoch: 18 step: 22, loss is 1.2292171716690063\n",
- "epoch: 18 step: 23, loss is 1.2623361349105835\n",
- "epoch: 18 step: 24, loss is 1.2793309688568115\n",
- "epoch: 18 step: 25, loss is 1.1512037515640259\n",
- "epoch: 18 step: 26, loss is 1.1728259325027466\n",
- "epoch: 18 step: 27, loss is 1.2383413314819336\n",
- "epoch: 18 step: 28, loss is 1.2949329614639282\n",
- "epoch: 18 step: 29, loss is 1.1898664236068726\n",
- "epoch: 18 step: 30, loss is 1.2148301601409912\n",
- "epoch: 18 step: 31, loss is 1.2653827667236328\n",
- "epoch: 18 step: 32, loss is 1.179175615310669\n",
- "epoch: 18 step: 33, loss is 1.2242895364761353\n",
- "epoch: 18 step: 34, loss is 1.2023117542266846\n",
- "epoch: 18 step: 35, loss is 1.2255192995071411\n",
- "epoch: 18 step: 36, loss is 1.1922492980957031\n",
- "epoch: 18 step: 37, loss is 1.2294403314590454\n",
- "epoch: 18 step: 38, loss is 1.1799476146697998\n",
- "epoch: 18 step: 39, loss is 1.2683058977127075\n",
- "epoch: 18 step: 40, loss is 1.2300208806991577\n",
- "epoch: 18 step: 41, loss is 1.2252845764160156\n",
- "epoch: 18 step: 42, loss is 1.2440800666809082\n",
- "epoch: 18 step: 43, loss is 1.2073389291763306\n",
- "epoch: 18 step: 44, loss is 1.1610219478607178\n",
- "epoch: 18 step: 45, loss is 1.1392560005187988\n",
- "epoch: 18 step: 46, loss is 1.2460569143295288\n",
- "epoch: 18 step: 47, loss is 1.160309076309204\n",
- "epoch: 18 step: 48, loss is 1.3352422714233398\n",
- "epoch: 18 step: 49, loss is 1.1999168395996094\n",
- "epoch: 18 step: 50, loss is 1.2260346412658691\n",
- "epoch: 18 step: 51, loss is 1.2744680643081665\n",
- "epoch: 18 step: 52, loss is 1.274109959602356\n",
- "epoch: 18 step: 53, loss is 1.248002052307129\n",
- "epoch: 18 step: 54, loss is 1.173185110092163\n",
- "epoch: 18 step: 55, loss is 1.2562493085861206\n",
- "epoch: 18 step: 56, loss is 1.228978157043457\n",
- "epoch: 18 step: 57, loss is 1.2579305171966553\n",
- "epoch: 18 step: 58, loss is 1.2552387714385986\n",
- "epoch: 18 step: 59, loss is 1.2264227867126465\n",
- "epoch: 18 step: 60, loss is 1.1449203491210938\n",
- "epoch: 18 step: 61, loss is 1.1107535362243652\n",
- "epoch: 18 step: 62, loss is 1.1920360326766968\n",
- "epoch: 18 step: 63, loss is 1.1535569429397583\n",
- "epoch: 18 step: 64, loss is 1.2798761129379272\n",
- "epoch: 18 step: 65, loss is 1.2738579511642456\n",
- "epoch: 18 step: 66, loss is 1.1850402355194092\n",
- "epoch: 18 step: 67, loss is 1.343055009841919\n",
- "epoch: 18 step: 68, loss is 1.1570680141448975\n",
- "epoch: 18 step: 69, loss is 1.2671403884887695\n",
- "epoch: 18 step: 70, loss is 1.248884677886963\n",
- "epoch: 18 step: 71, loss is 1.2503913640975952\n",
- "epoch: 18 step: 72, loss is 1.2419198751449585\n",
- "epoch: 18 step: 73, loss is 1.2132318019866943\n",
- "epoch: 18 step: 74, loss is 1.1276620626449585\n",
- "epoch: 18 step: 75, loss is 1.2323704957962036\n",
- "epoch: 18 step: 76, loss is 1.1730008125305176\n",
- "epoch: 18 step: 77, loss is 1.1981604099273682\n",
- "epoch: 18 step: 78, loss is 1.0911144018173218\n",
- "epoch: 18 step: 79, loss is 1.153266191482544\n",
- "epoch: 18 step: 80, loss is 1.2160675525665283\n",
- "epoch: 18 step: 81, loss is 1.3494268655776978\n",
- "epoch: 18 step: 82, loss is 1.145481824874878\n",
- "epoch: 18 step: 83, loss is 1.157247543334961\n",
- "epoch: 18 step: 84, loss is 1.2162913084030151\n",
- "epoch: 18 step: 85, loss is 1.1883059740066528\n",
- "epoch: 18 step: 86, loss is 1.1511805057525635\n",
- "epoch: 18 step: 87, loss is 1.206876277923584\n",
- "epoch: 18 step: 88, loss is 1.2243187427520752\n",
- "epoch: 18 step: 89, loss is 1.2137902975082397\n",
- "epoch: 18 step: 90, loss is 1.1670256853103638\n",
- "epoch: 18 step: 91, loss is 1.2616569995880127\n",
- "epoch: 18 step: 92, loss is 1.2407196760177612\n",
- "epoch: 18 step: 93, loss is 1.244102120399475\n",
- "epoch: 18 step: 94, loss is 1.2041553258895874\n",
- "epoch: 18 step: 95, loss is 1.2186359167099\n",
- "epoch: 18 step: 96, loss is 1.2334771156311035\n",
- "epoch: 18 step: 97, loss is 1.240622639656067\n",
- "epoch: 18 step: 98, loss is 1.2455791234970093\n",
- "epoch: 18 step: 99, loss is 1.1406259536743164\n",
- "epoch: 18 step: 100, loss is 1.2416211366653442\n",
- "epoch: 18 step: 101, loss is 1.2567397356033325\n",
- "epoch: 18 step: 102, loss is 1.1658239364624023\n",
- "epoch: 18 step: 103, loss is 1.144645094871521\n",
- "epoch: 18 step: 104, loss is 1.1704614162445068\n",
- "epoch: 18 step: 105, loss is 1.1572633981704712\n",
- "epoch: 18 step: 106, loss is 1.2049450874328613\n",
- "epoch: 18 step: 107, loss is 1.2221810817718506\n",
- "epoch: 18 step: 108, loss is 1.1628081798553467\n",
- "epoch: 18 step: 109, loss is 1.1648123264312744\n",
- "epoch: 18 step: 110, loss is 1.1515204906463623\n",
- "epoch: 18 step: 111, loss is 1.2167949676513672\n",
- "epoch: 18 step: 112, loss is 1.1637673377990723\n",
- "epoch: 18 step: 113, loss is 1.2031941413879395\n",
- "epoch: 18 step: 114, loss is 1.2180062532424927\n",
- "epoch: 18 step: 115, loss is 1.1394615173339844\n",
- "epoch: 18 step: 116, loss is 1.157581090927124\n",
- "epoch: 18 step: 117, loss is 1.352529764175415\n",
- "epoch: 18 step: 118, loss is 1.170993447303772\n",
- "epoch: 18 step: 119, loss is 1.2439546585083008\n",
- "epoch: 18 step: 120, loss is 1.1533629894256592\n",
- "epoch: 18 step: 121, loss is 1.261382818222046\n",
- "epoch: 18 step: 122, loss is 1.2457956075668335\n",
- "epoch: 18 step: 123, loss is 1.1532824039459229\n",
- "epoch: 18 step: 124, loss is 1.1916731595993042\n",
- "epoch: 18 step: 125, loss is 1.1527515649795532\n",
- "epoch: 18 step: 126, loss is 1.2504023313522339\n",
- "epoch: 18 step: 127, loss is 1.1447643041610718\n",
- "epoch: 18 step: 128, loss is 1.1363916397094727\n",
- "epoch: 18 step: 129, loss is 1.1095026731491089\n",
- "epoch: 18 step: 130, loss is 1.1948131322860718\n",
- "epoch: 18 step: 131, loss is 1.1443809270858765\n",
- "epoch: 18 step: 132, loss is 1.1425096988677979\n",
- "epoch: 18 step: 133, loss is 1.193054437637329\n",
- "epoch: 18 step: 134, loss is 1.168875813484192\n",
- "epoch: 18 step: 135, loss is 1.272268533706665\n",
- "epoch: 18 step: 136, loss is 1.2539029121398926\n",
- "epoch: 18 step: 137, loss is 1.1655241250991821\n",
- "epoch: 18 step: 138, loss is 1.119997262954712\n",
- "epoch: 18 step: 139, loss is 1.2378826141357422\n",
- "epoch: 18 step: 140, loss is 1.1714905500411987\n",
- "epoch: 18 step: 141, loss is 1.1801395416259766\n",
- "epoch: 18 step: 142, loss is 1.2726768255233765\n",
- "epoch: 18 step: 143, loss is 1.2565748691558838\n",
- "epoch: 18 step: 144, loss is 1.2353582382202148\n",
- "epoch: 18 step: 145, loss is 1.170344352722168\n",
- "epoch: 18 step: 146, loss is 1.1527581214904785\n",
- "epoch: 18 step: 147, loss is 1.242505431175232\n",
- "epoch: 18 step: 148, loss is 1.171144962310791\n",
- "epoch: 18 step: 149, loss is 1.1803925037384033\n",
- "epoch: 18 step: 150, loss is 1.295773983001709\n",
- "epoch: 18 step: 151, loss is 1.1560053825378418\n",
- "epoch: 18 step: 152, loss is 1.2248835563659668\n",
- "epoch: 18 step: 153, loss is 1.1852574348449707\n",
- "epoch: 18 step: 154, loss is 1.21501624584198\n",
- "epoch: 18 step: 155, loss is 1.1819690465927124\n",
- "epoch: 18 step: 156, loss is 1.1577649116516113\n",
- "epoch: 18 step: 157, loss is 1.2680764198303223\n",
- "epoch: 18 step: 158, loss is 1.1996455192565918\n",
- "epoch: 18 step: 159, loss is 1.2540663480758667\n",
- "epoch: 18 step: 160, loss is 1.1555793285369873\n",
- "epoch: 18 step: 161, loss is 1.2591450214385986\n",
- "epoch: 18 step: 162, loss is 1.2213314771652222\n",
- "epoch: 18 step: 163, loss is 1.2003898620605469\n",
- "epoch: 18 step: 164, loss is 1.2005459070205688\n",
- "epoch: 18 step: 165, loss is 1.1493195295333862\n",
- "epoch: 18 step: 166, loss is 1.2018680572509766\n",
- "epoch: 18 step: 167, loss is 1.1550521850585938\n",
- "epoch: 18 step: 168, loss is 1.2333717346191406\n",
- "epoch: 18 step: 169, loss is 1.187947154045105\n",
- "epoch: 18 step: 170, loss is 1.198265790939331\n",
- "epoch: 18 step: 171, loss is 1.2679691314697266\n",
- "epoch: 18 step: 172, loss is 1.1474546194076538\n",
- "epoch: 18 step: 173, loss is 1.1561428308486938\n",
- "epoch: 18 step: 174, loss is 1.2829787731170654\n",
- "epoch: 18 step: 175, loss is 1.2815979719161987\n",
- "epoch: 18 step: 176, loss is 1.1637556552886963\n",
- "epoch: 18 step: 177, loss is 1.1640303134918213\n",
- "epoch: 18 step: 178, loss is 1.1799880266189575\n",
- "epoch: 18 step: 179, loss is 1.276066780090332\n",
- "epoch: 18 step: 180, loss is 1.18852961063385\n",
- "epoch: 18 step: 181, loss is 1.2134523391723633\n",
- "epoch: 18 step: 182, loss is 1.2392854690551758\n",
- "epoch: 18 step: 183, loss is 1.1859794855117798\n",
- "epoch: 18 step: 184, loss is 1.1036103963851929\n",
- "epoch: 18 step: 185, loss is 1.2156715393066406\n",
- "epoch: 18 step: 186, loss is 1.2863353490829468\n",
- "epoch: 18 step: 187, loss is 1.265312671661377\n",
- "epoch: 18 step: 188, loss is 1.1463671922683716\n",
- "epoch: 18 step: 189, loss is 1.2023648023605347\n",
- "epoch: 18 step: 190, loss is 1.1772598028182983\n",
- "epoch: 18 step: 191, loss is 1.2374480962753296\n",
- "epoch: 18 step: 192, loss is 1.1654703617095947\n",
- "epoch: 18 step: 193, loss is 1.21602463722229\n",
- "epoch: 18 step: 194, loss is 1.1927094459533691\n",
- "epoch: 18 step: 195, loss is 1.1512067317962646\n",
- "Train epoch time: 108420.523 ms, per step time: 556.003 ms\n",
- "epoch: 19 step: 1, loss is 1.2158865928649902\n",
- "epoch: 19 step: 2, loss is 1.1795833110809326\n",
- "epoch: 19 step: 3, loss is 1.1759073734283447\n",
- "epoch: 19 step: 4, loss is 1.104797124862671\n",
- "epoch: 19 step: 5, loss is 1.1199524402618408\n",
- "epoch: 19 step: 6, loss is 1.242564082145691\n",
- "epoch: 19 step: 7, loss is 1.1528247594833374\n",
- "epoch: 19 step: 8, loss is 1.1600167751312256\n",
- "epoch: 19 step: 9, loss is 1.1698222160339355\n",
- "epoch: 19 step: 10, loss is 1.2170498371124268\n",
- "epoch: 19 step: 11, loss is 1.170514702796936\n",
- "epoch: 19 step: 12, loss is 1.204442024230957\n",
- "epoch: 19 step: 13, loss is 1.2059317827224731\n",
- "epoch: 19 step: 14, loss is 1.3091166019439697\n",
- "epoch: 19 step: 15, loss is 1.1550259590148926\n",
- "epoch: 19 step: 16, loss is 1.1570837497711182\n",
- "epoch: 19 step: 17, loss is 1.1377938985824585\n",
- "epoch: 19 step: 18, loss is 1.1683560609817505\n",
- "epoch: 19 step: 19, loss is 1.1535415649414062\n",
- "epoch: 19 step: 20, loss is 1.1659129858016968\n",
- "epoch: 19 step: 21, loss is 1.207434058189392\n",
- "epoch: 19 step: 22, loss is 1.2297946214675903\n",
- "epoch: 19 step: 23, loss is 1.2652627229690552\n",
- "epoch: 19 step: 24, loss is 1.1405130624771118\n",
- "epoch: 19 step: 25, loss is 1.1643458604812622\n",
- "epoch: 19 step: 26, loss is 1.2033896446228027\n",
- "epoch: 19 step: 27, loss is 1.1991820335388184\n",
- "epoch: 19 step: 28, loss is 1.2071975469589233\n",
- "epoch: 19 step: 29, loss is 1.2128506898880005\n",
- "epoch: 19 step: 30, loss is 1.2495732307434082\n",
- "epoch: 19 step: 31, loss is 1.1125600337982178\n",
- "epoch: 19 step: 32, loss is 1.1209043264389038\n",
- "epoch: 19 step: 33, loss is 1.2268168926239014\n",
- "epoch: 19 step: 34, loss is 1.1992316246032715\n",
- "epoch: 19 step: 35, loss is 1.1904911994934082\n",
- "epoch: 19 step: 36, loss is 1.1848461627960205\n",
- "epoch: 19 step: 37, loss is 1.1708191633224487\n",
- "epoch: 19 step: 38, loss is 1.2114357948303223\n",
- "epoch: 19 step: 39, loss is 1.1971246004104614\n",
- "epoch: 19 step: 40, loss is 1.0913617610931396\n",
- "epoch: 19 step: 41, loss is 1.2132728099822998\n",
- "epoch: 19 step: 42, loss is 1.1176247596740723\n",
- "epoch: 19 step: 43, loss is 1.1774775981903076\n",
- "epoch: 19 step: 44, loss is 1.1832551956176758\n",
- "epoch: 19 step: 45, loss is 1.1002973318099976\n",
- "epoch: 19 step: 46, loss is 1.102927803993225\n",
- "epoch: 19 step: 47, loss is 1.137946605682373\n",
- "epoch: 19 step: 48, loss is 1.162173867225647\n",
- "epoch: 19 step: 49, loss is 1.1722908020019531\n",
- "epoch: 19 step: 50, loss is 1.2202272415161133\n",
- "epoch: 19 step: 51, loss is 1.1781983375549316\n",
- "epoch: 19 step: 52, loss is 1.1630905866622925\n",
- "epoch: 19 step: 53, loss is 1.1649562120437622\n",
- "epoch: 19 step: 54, loss is 1.2033534049987793\n",
- "epoch: 19 step: 55, loss is 1.164754867553711\n",
- "epoch: 19 step: 56, loss is 1.1836471557617188\n",
- "epoch: 19 step: 57, loss is 1.2081130743026733\n",
- "epoch: 19 step: 58, loss is 1.1663734912872314\n",
- "epoch: 19 step: 59, loss is 1.1560461521148682\n",
- "epoch: 19 step: 60, loss is 1.155867099761963\n",
- "epoch: 19 step: 61, loss is 1.131630539894104\n",
- "epoch: 19 step: 62, loss is 1.2716447114944458\n",
- "epoch: 19 step: 63, loss is 1.1954071521759033\n",
- "epoch: 19 step: 64, loss is 1.237220287322998\n",
- "epoch: 19 step: 65, loss is 1.1483888626098633\n",
- "epoch: 19 step: 66, loss is 1.222702980041504\n",
- "epoch: 19 step: 67, loss is 1.166438102722168\n",
- "epoch: 19 step: 68, loss is 1.168308138847351\n",
- "epoch: 19 step: 69, loss is 1.206650733947754\n",
- "epoch: 19 step: 70, loss is 1.2176928520202637\n",
- "epoch: 19 step: 71, loss is 1.2175028324127197\n",
- "epoch: 19 step: 72, loss is 1.1140520572662354\n",
- "epoch: 19 step: 73, loss is 1.2784779071807861\n",
- "epoch: 19 step: 74, loss is 1.1805301904678345\n",
- "epoch: 19 step: 75, loss is 1.1798899173736572\n",
- "epoch: 19 step: 76, loss is 1.1518090963363647\n",
- "epoch: 19 step: 77, loss is 1.2364120483398438\n",
- "epoch: 19 step: 78, loss is 1.1737169027328491\n",
- "epoch: 19 step: 79, loss is 1.1684293746948242\n",
- "epoch: 19 step: 80, loss is 1.220693588256836\n",
- "epoch: 19 step: 81, loss is 1.2503461837768555\n",
- "epoch: 19 step: 82, loss is 1.1905885934829712\n",
- "epoch: 19 step: 83, loss is 1.1822084188461304\n",
- "epoch: 19 step: 84, loss is 1.1553031206130981\n",
- "epoch: 19 step: 85, loss is 1.1825361251831055\n",
- "epoch: 19 step: 86, loss is 1.2044317722320557\n",
- "epoch: 19 step: 87, loss is 1.1627497673034668\n",
- "epoch: 19 step: 88, loss is 1.1464035511016846\n",
- "epoch: 19 step: 89, loss is 1.1276562213897705\n",
- "epoch: 19 step: 90, loss is 1.146213173866272\n",
- "epoch: 19 step: 91, loss is 1.2221035957336426\n",
- "epoch: 19 step: 92, loss is 1.1247589588165283\n",
- "epoch: 19 step: 93, loss is 1.0513951778411865\n",
- "epoch: 19 step: 94, loss is 1.1292215585708618\n",
- "epoch: 19 step: 95, loss is 1.1044636964797974\n",
- "epoch: 19 step: 96, loss is 1.2208478450775146\n",
- "epoch: 19 step: 97, loss is 1.2209758758544922\n",
- "epoch: 19 step: 98, loss is 1.1648083925247192\n",
- "epoch: 19 step: 99, loss is 1.2027801275253296\n",
- "epoch: 19 step: 100, loss is 1.0905022621154785\n",
- "epoch: 19 step: 101, loss is 1.2712833881378174\n",
- "epoch: 19 step: 102, loss is 1.140062689781189\n",
- "epoch: 19 step: 103, loss is 1.176724910736084\n",
- "epoch: 19 step: 104, loss is 1.2077751159667969\n",
- "epoch: 19 step: 105, loss is 1.1957037448883057\n",
- "epoch: 19 step: 106, loss is 1.1538515090942383\n",
- "epoch: 19 step: 107, loss is 1.1439682245254517\n",
- "epoch: 19 step: 108, loss is 1.2080341577529907\n",
- "epoch: 19 step: 109, loss is 1.251025915145874\n",
- "epoch: 19 step: 110, loss is 1.1654433012008667\n",
- "epoch: 19 step: 111, loss is 1.191925287246704\n",
- "epoch: 19 step: 112, loss is 1.1319026947021484\n",
- "epoch: 19 step: 113, loss is 1.131664752960205\n",
- "epoch: 19 step: 114, loss is 1.204467535018921\n",
- "epoch: 19 step: 115, loss is 1.1303737163543701\n",
- "epoch: 19 step: 116, loss is 1.0802013874053955\n",
- "epoch: 19 step: 117, loss is 1.1376874446868896\n",
- "epoch: 19 step: 118, loss is 1.1150307655334473\n",
- "epoch: 19 step: 119, loss is 1.098187804222107\n",
- "epoch: 19 step: 120, loss is 1.2336392402648926\n",
- "epoch: 19 step: 121, loss is 1.1172149181365967\n",
- "epoch: 19 step: 122, loss is 1.0610930919647217\n",
- "epoch: 19 step: 123, loss is 1.1428275108337402\n",
- "epoch: 19 step: 124, loss is 1.1310787200927734\n",
- "epoch: 19 step: 125, loss is 1.2308604717254639\n",
- "epoch: 19 step: 126, loss is 1.1751352548599243\n",
- "epoch: 19 step: 127, loss is 1.1423704624176025\n",
- "epoch: 19 step: 128, loss is 1.119938611984253\n",
- "epoch: 19 step: 129, loss is 1.1247596740722656\n",
- "epoch: 19 step: 130, loss is 1.1425809860229492\n",
- "epoch: 19 step: 131, loss is 1.1298408508300781\n",
- "epoch: 19 step: 132, loss is 1.1456996202468872\n",
- "epoch: 19 step: 133, loss is 1.1238517761230469\n",
- "epoch: 19 step: 134, loss is 1.223686695098877\n",
- "epoch: 19 step: 135, loss is 1.192700982093811\n",
- "epoch: 19 step: 136, loss is 1.1626219749450684\n",
- "epoch: 19 step: 137, loss is 1.1465332508087158\n",
- "epoch: 19 step: 138, loss is 1.280716896057129\n",
- "epoch: 19 step: 139, loss is 1.1475489139556885\n",
- "epoch: 19 step: 140, loss is 1.121297001838684\n",
- "epoch: 19 step: 141, loss is 1.2081031799316406\n",
- "epoch: 19 step: 142, loss is 1.164485216140747\n",
- "epoch: 19 step: 143, loss is 1.2223079204559326\n",
- "epoch: 19 step: 144, loss is 1.110025405883789\n",
- "epoch: 19 step: 145, loss is 1.1975003480911255\n",
- "epoch: 19 step: 146, loss is 1.1731890439987183\n",
- "epoch: 19 step: 147, loss is 1.1980198621749878\n",
- "epoch: 19 step: 148, loss is 1.2624881267547607\n",
- "epoch: 19 step: 149, loss is 1.1154556274414062\n",
- "epoch: 19 step: 150, loss is 1.273077368736267\n",
- "epoch: 19 step: 151, loss is 1.2191673517227173\n",
- "epoch: 19 step: 152, loss is 1.1788913011550903\n",
- "epoch: 19 step: 153, loss is 1.1982306241989136\n",
- "epoch: 19 step: 154, loss is 1.2329857349395752\n",
- "epoch: 19 step: 155, loss is 1.2030599117279053\n",
- "epoch: 19 step: 156, loss is 1.171222448348999\n",
- "epoch: 19 step: 157, loss is 1.1812434196472168\n",
- "epoch: 19 step: 158, loss is 1.1659244298934937\n",
- "epoch: 19 step: 159, loss is 1.2471730709075928\n",
- "epoch: 19 step: 160, loss is 1.151676893234253\n",
- "epoch: 19 step: 161, loss is 1.1584725379943848\n",
- "epoch: 19 step: 162, loss is 1.1268924474716187\n",
- "epoch: 19 step: 163, loss is 1.2236961126327515\n",
- "epoch: 19 step: 164, loss is 1.1283540725708008\n",
- "epoch: 19 step: 165, loss is 1.240992784500122\n",
- "epoch: 19 step: 166, loss is 1.2408446073532104\n",
- "epoch: 19 step: 167, loss is 1.1732596158981323\n",
- "epoch: 19 step: 168, loss is 1.1039268970489502\n",
- "epoch: 19 step: 169, loss is 1.1480611562728882\n",
- "epoch: 19 step: 170, loss is 1.1516188383102417\n",
- "epoch: 19 step: 171, loss is 1.2218103408813477\n",
- "epoch: 19 step: 172, loss is 1.1308624744415283\n",
- "epoch: 19 step: 173, loss is 1.2465323209762573\n",
- "epoch: 19 step: 174, loss is 1.2284690141677856\n",
- "epoch: 19 step: 175, loss is 1.2370326519012451\n",
- "epoch: 19 step: 176, loss is 1.1059259176254272\n",
- "epoch: 19 step: 177, loss is 1.0924415588378906\n",
- "epoch: 19 step: 178, loss is 1.2758101224899292\n",
- "epoch: 19 step: 179, loss is 1.1968563795089722\n",
- "epoch: 19 step: 180, loss is 1.1242156028747559\n",
- "epoch: 19 step: 181, loss is 1.1839299201965332\n",
- "epoch: 19 step: 182, loss is 1.1490572690963745\n",
- "epoch: 19 step: 183, loss is 1.2114624977111816\n",
- "epoch: 19 step: 184, loss is 1.193393349647522\n",
- "epoch: 19 step: 185, loss is 1.2279844284057617\n",
- "epoch: 19 step: 186, loss is 1.2572314739227295\n",
- "epoch: 19 step: 187, loss is 1.2032257318496704\n",
- "epoch: 19 step: 188, loss is 1.2652177810668945\n",
- "epoch: 19 step: 189, loss is 1.1150282621383667\n",
- "epoch: 19 step: 190, loss is 1.1851208209991455\n",
- "epoch: 19 step: 191, loss is 1.241652011871338\n",
- "epoch: 19 step: 192, loss is 1.1418536901474\n",
- "epoch: 19 step: 193, loss is 1.1578309535980225\n",
- "epoch: 19 step: 194, loss is 1.187867522239685\n",
- "epoch: 19 step: 195, loss is 1.191091537475586\n",
- "Train epoch time: 101225.978 ms, per step time: 519.108 ms\n",
- "epoch: 20 step: 1, loss is 1.1884959936141968\n",
- "epoch: 20 step: 2, loss is 1.169702172279358\n",
- "epoch: 20 step: 3, loss is 1.1824917793273926\n",
- "epoch: 20 step: 4, loss is 1.1418648958206177\n",
- "epoch: 20 step: 5, loss is 1.111312985420227\n",
- "epoch: 20 step: 6, loss is 1.1644928455352783\n",
- "epoch: 20 step: 7, loss is 1.2055418491363525\n",
- "epoch: 20 step: 8, loss is 1.1967711448669434\n",
- "epoch: 20 step: 9, loss is 1.1894081830978394\n",
- "epoch: 20 step: 10, loss is 1.2084699869155884\n",
- "epoch: 20 step: 11, loss is 1.1871449947357178\n",
- "epoch: 20 step: 12, loss is 1.1377928256988525\n",
- "epoch: 20 step: 13, loss is 1.1205573081970215\n",
- "epoch: 20 step: 14, loss is 1.1700925827026367\n",
- "epoch: 20 step: 15, loss is 1.1846368312835693\n",
- "epoch: 20 step: 16, loss is 1.1964526176452637\n",
- "epoch: 20 step: 17, loss is 1.196950912475586\n",
- "epoch: 20 step: 18, loss is 1.1034574508666992\n",
- "epoch: 20 step: 19, loss is 1.1812515258789062\n",
- "epoch: 20 step: 20, loss is 1.1493072509765625\n",
- "epoch: 20 step: 21, loss is 1.2408857345581055\n",
- "epoch: 20 step: 22, loss is 1.1612850427627563\n",
- "epoch: 20 step: 23, loss is 1.1766201257705688\n",
- "epoch: 20 step: 24, loss is 1.1008280515670776\n",
- "epoch: 20 step: 25, loss is 1.189718246459961\n",
- "epoch: 20 step: 26, loss is 1.1815381050109863\n",
- "epoch: 20 step: 27, loss is 1.1030932664871216\n",
- "epoch: 20 step: 28, loss is 1.1545801162719727\n",
- "epoch: 20 step: 29, loss is 1.2081575393676758\n",
- "epoch: 20 step: 30, loss is 1.1865613460540771\n",
- "epoch: 20 step: 31, loss is 1.173910140991211\n",
- "epoch: 20 step: 32, loss is 1.1752045154571533\n",
- "epoch: 20 step: 33, loss is 1.126667857170105\n",
- "epoch: 20 step: 34, loss is 1.21254563331604\n",
- "epoch: 20 step: 35, loss is 1.139557957649231\n",
- "epoch: 20 step: 36, loss is 1.1633224487304688\n",
- "epoch: 20 step: 37, loss is 1.1809897422790527\n",
- "epoch: 20 step: 38, loss is 1.2004567384719849\n",
- "epoch: 20 step: 39, loss is 1.2216883897781372\n",
- "epoch: 20 step: 40, loss is 1.0829761028289795\n",
- "epoch: 20 step: 41, loss is 1.140751600265503\n",
- "epoch: 20 step: 42, loss is 1.0880619287490845\n",
- "epoch: 20 step: 43, loss is 1.092458963394165\n",
- "epoch: 20 step: 44, loss is 1.1524646282196045\n",
- "epoch: 20 step: 45, loss is 1.1959562301635742\n",
- "epoch: 20 step: 46, loss is 1.179836392402649\n",
- "epoch: 20 step: 47, loss is 1.298679232597351\n",
- "epoch: 20 step: 48, loss is 1.1264419555664062\n",
- "epoch: 20 step: 49, loss is 1.181549310684204\n",
- "epoch: 20 step: 50, loss is 1.176405429840088\n",
- "epoch: 20 step: 51, loss is 1.1321160793304443\n",
- "epoch: 20 step: 52, loss is 1.2022438049316406\n",
- "epoch: 20 step: 53, loss is 1.1068779230117798\n",
- "epoch: 20 step: 54, loss is 1.1815742254257202\n",
- "epoch: 20 step: 55, loss is 1.1763145923614502\n",
- "epoch: 20 step: 56, loss is 1.1767460107803345\n",
- "epoch: 20 step: 57, loss is 1.1193408966064453\n",
- "epoch: 20 step: 58, loss is 1.195792555809021\n",
- "epoch: 20 step: 59, loss is 1.1495978832244873\n",
- "epoch: 20 step: 60, loss is 1.1685905456542969\n",
- "epoch: 20 step: 61, loss is 1.094054937362671\n",
- "epoch: 20 step: 62, loss is 1.1738637685775757\n",
- "epoch: 20 step: 63, loss is 1.1835284233093262\n",
- "epoch: 20 step: 64, loss is 1.1255600452423096\n",
- "epoch: 20 step: 65, loss is 1.1245646476745605\n",
- "epoch: 20 step: 66, loss is 1.1844677925109863\n",
- "epoch: 20 step: 67, loss is 1.1718621253967285\n",
- "epoch: 20 step: 68, loss is 1.128265619277954\n",
- "epoch: 20 step: 69, loss is 1.0809264183044434\n",
- "epoch: 20 step: 70, loss is 1.2144455909729004\n",
- "epoch: 20 step: 71, loss is 1.1149961948394775\n",
- "epoch: 20 step: 72, loss is 1.2265506982803345\n",
- "epoch: 20 step: 73, loss is 1.2164801359176636\n",
- "epoch: 20 step: 74, loss is 1.2198541164398193\n",
- "epoch: 20 step: 75, loss is 1.1712840795516968\n",
- "epoch: 20 step: 76, loss is 1.1442028284072876\n",
- "epoch: 20 step: 77, loss is 1.1682544946670532\n",
- "epoch: 20 step: 78, loss is 1.1639868021011353\n",
- "epoch: 20 step: 79, loss is 1.1521660089492798\n",
- "epoch: 20 step: 80, loss is 1.1231502294540405\n",
- "epoch: 20 step: 81, loss is 1.1953973770141602\n",
- "epoch: 20 step: 82, loss is 1.0986353158950806\n",
- "epoch: 20 step: 83, loss is 1.128723382949829\n",
- "epoch: 20 step: 84, loss is 1.2741785049438477\n",
- "epoch: 20 step: 85, loss is 1.1714131832122803\n",
- "epoch: 20 step: 86, loss is 1.1416068077087402\n",
- "epoch: 20 step: 87, loss is 1.1887511014938354\n",
- "epoch: 20 step: 88, loss is 1.264005422592163\n",
- "epoch: 20 step: 89, loss is 1.1490142345428467\n",
- "epoch: 20 step: 90, loss is 1.103130578994751\n",
- "epoch: 20 step: 91, loss is 1.132491946220398\n",
- "epoch: 20 step: 92, loss is 1.1292037963867188\n",
- "epoch: 20 step: 93, loss is 1.1700360774993896\n",
- "epoch: 20 step: 94, loss is 1.2154004573822021\n",
- "epoch: 20 step: 95, loss is 1.1379494667053223\n",
- "epoch: 20 step: 96, loss is 1.2294211387634277\n",
- "epoch: 20 step: 97, loss is 1.1140503883361816\n",
- "epoch: 20 step: 98, loss is 1.127234935760498\n",
- "epoch: 20 step: 99, loss is 1.23896062374115\n",
- "epoch: 20 step: 100, loss is 1.207397222518921\n",
- "epoch: 20 step: 101, loss is 1.2409323453903198\n",
- "epoch: 20 step: 102, loss is 1.2327001094818115\n",
- "epoch: 20 step: 103, loss is 1.2188626527786255\n",
- "epoch: 20 step: 104, loss is 1.183905839920044\n",
- "epoch: 20 step: 105, loss is 1.2116985321044922\n",
- "epoch: 20 step: 106, loss is 1.235504388809204\n",
- "epoch: 20 step: 107, loss is 1.2356436252593994\n",
- "epoch: 20 step: 108, loss is 1.1722736358642578\n",
- "epoch: 20 step: 109, loss is 1.195304274559021\n",
- "epoch: 20 step: 110, loss is 1.0994288921356201\n",
- "epoch: 20 step: 111, loss is 1.1854407787322998\n",
- "epoch: 20 step: 112, loss is 1.176624059677124\n",
- "epoch: 20 step: 113, loss is 1.1966036558151245\n",
- "epoch: 20 step: 114, loss is 1.1827623844146729\n",
- "epoch: 20 step: 115, loss is 1.166933298110962\n",
- "epoch: 20 step: 116, loss is 1.167234182357788\n",
- "epoch: 20 step: 117, loss is 1.2020326852798462\n",
- "epoch: 20 step: 118, loss is 1.1630098819732666\n",
- "epoch: 20 step: 119, loss is 1.2292473316192627\n",
- "epoch: 20 step: 120, loss is 1.2145514488220215\n",
- "epoch: 20 step: 121, loss is 1.2117414474487305\n",
- "epoch: 20 step: 122, loss is 1.0981587171554565\n",
- "epoch: 20 step: 123, loss is 1.1341443061828613\n",
- "epoch: 20 step: 124, loss is 1.1793553829193115\n",
- "epoch: 20 step: 125, loss is 1.2287479639053345\n",
- "epoch: 20 step: 126, loss is 1.1621183156967163\n",
- "epoch: 20 step: 127, loss is 1.2383694648742676\n",
- "epoch: 20 step: 128, loss is 1.2216033935546875\n",
- "epoch: 20 step: 129, loss is 1.1626207828521729\n",
- "epoch: 20 step: 130, loss is 1.156031847000122\n",
- "epoch: 20 step: 131, loss is 1.1981768608093262\n",
- "epoch: 20 step: 132, loss is 1.1635631322860718\n",
- "epoch: 20 step: 133, loss is 1.0717275142669678\n",
- "epoch: 20 step: 134, loss is 1.0868492126464844\n",
- "epoch: 20 step: 135, loss is 1.0917433500289917\n",
- "epoch: 20 step: 136, loss is 1.1549983024597168\n",
- "epoch: 20 step: 137, loss is 1.2115200757980347\n",
- "epoch: 20 step: 138, loss is 1.11542546749115\n",
- "epoch: 20 step: 139, loss is 1.0827593803405762\n",
- "epoch: 20 step: 140, loss is 1.121527075767517\n",
- "epoch: 20 step: 141, loss is 1.2241697311401367\n",
- "epoch: 20 step: 142, loss is 1.1186481714248657\n",
- "epoch: 20 step: 143, loss is 1.2423193454742432\n",
- "epoch: 20 step: 144, loss is 1.0573540925979614\n",
- "epoch: 20 step: 145, loss is 1.202405571937561\n",
- "epoch: 20 step: 146, loss is 1.1307504177093506\n",
- "epoch: 20 step: 147, loss is 1.1758272647857666\n",
- "epoch: 20 step: 148, loss is 1.224853515625\n",
- "epoch: 20 step: 149, loss is 1.1400787830352783\n",
- "epoch: 20 step: 150, loss is 1.1569344997406006\n",
- "epoch: 20 step: 151, loss is 1.0623440742492676\n",
- "epoch: 20 step: 152, loss is 1.1460214853286743\n",
- "epoch: 20 step: 153, loss is 1.1157258749008179\n",
- "epoch: 20 step: 154, loss is 1.1768310070037842\n",
- "epoch: 20 step: 155, loss is 1.1178369522094727\n",
- "epoch: 20 step: 156, loss is 1.2091405391693115\n",
- "epoch: 20 step: 157, loss is 1.1431701183319092\n",
- "epoch: 20 step: 158, loss is 1.2164804935455322\n",
- "epoch: 20 step: 159, loss is 1.197888731956482\n",
- "epoch: 20 step: 160, loss is 1.150985598564148\n",
- "epoch: 20 step: 161, loss is 1.1827526092529297\n",
- "epoch: 20 step: 162, loss is 1.161781668663025\n",
- "epoch: 20 step: 163, loss is 1.2553699016571045\n",
- "epoch: 20 step: 164, loss is 1.1375584602355957\n",
- "epoch: 20 step: 165, loss is 1.0914632081985474\n",
- "epoch: 20 step: 166, loss is 1.1240148544311523\n",
- "epoch: 20 step: 167, loss is 1.1193705797195435\n",
- "epoch: 20 step: 168, loss is 1.1332859992980957\n",
- "epoch: 20 step: 169, loss is 1.1567590236663818\n",
- "epoch: 20 step: 170, loss is 1.1976574659347534\n",
- "epoch: 20 step: 171, loss is 1.2124419212341309\n",
- "epoch: 20 step: 172, loss is 1.2483980655670166\n",
- "epoch: 20 step: 173, loss is 1.0864322185516357\n",
- "epoch: 20 step: 174, loss is 1.1615091562271118\n",
- "epoch: 20 step: 175, loss is 1.0698835849761963\n",
- "epoch: 20 step: 176, loss is 1.1791949272155762\n",
- "epoch: 20 step: 177, loss is 1.0985698699951172\n",
- "epoch: 20 step: 178, loss is 1.1923370361328125\n",
- "epoch: 20 step: 179, loss is 1.1227954626083374\n",
- "epoch: 20 step: 180, loss is 1.1542936563491821\n",
- "epoch: 20 step: 181, loss is 1.1436656713485718\n",
- "epoch: 20 step: 182, loss is 1.1351163387298584\n",
- "epoch: 20 step: 183, loss is 1.1072967052459717\n",
- "epoch: 20 step: 184, loss is 1.1524864435195923\n",
- "epoch: 20 step: 185, loss is 1.189321756362915\n",
- "epoch: 20 step: 186, loss is 1.158830165863037\n",
- "epoch: 20 step: 187, loss is 1.1509073972702026\n",
- "epoch: 20 step: 188, loss is 1.2126588821411133\n",
- "epoch: 20 step: 189, loss is 1.1379395723342896\n",
- "epoch: 20 step: 190, loss is 1.1415488719940186\n",
- "epoch: 20 step: 191, loss is 1.13690185546875\n",
- "epoch: 20 step: 192, loss is 1.1400315761566162\n",
- "epoch: 20 step: 193, loss is 1.068132758140564\n",
- "epoch: 20 step: 194, loss is 1.19902503490448\n",
- "epoch: 20 step: 195, loss is 1.1567087173461914\n",
- "Train epoch time: 104173.424 ms, per step time: 534.223 ms\n",
- "epoch: 21 step: 1, loss is 1.1921052932739258\n",
- "epoch: 21 step: 2, loss is 1.0701342821121216\n",
- "epoch: 21 step: 3, loss is 1.1753308773040771\n",
- "epoch: 21 step: 4, loss is 1.1313111782073975\n",
- "epoch: 21 step: 5, loss is 1.1417230367660522\n",
- "epoch: 21 step: 6, loss is 1.0305631160736084\n",
- "epoch: 21 step: 7, loss is 1.1922510862350464\n",
- "epoch: 21 step: 8, loss is 1.1823357343673706\n",
- "epoch: 21 step: 9, loss is 1.129448413848877\n",
- "epoch: 21 step: 10, loss is 1.1250107288360596\n",
- "epoch: 21 step: 11, loss is 1.1208312511444092\n",
- "epoch: 21 step: 12, loss is 1.1533703804016113\n",
- "epoch: 21 step: 13, loss is 1.0750772953033447\n",
- "epoch: 21 step: 14, loss is 1.0881654024124146\n",
- "epoch: 21 step: 15, loss is 1.1426184177398682\n",
- "epoch: 21 step: 16, loss is 1.2459871768951416\n",
- "epoch: 21 step: 17, loss is 1.072798728942871\n",
- "epoch: 21 step: 18, loss is 1.0991919040679932\n",
- "epoch: 21 step: 19, loss is 1.1213173866271973\n",
- "epoch: 21 step: 20, loss is 1.0883537530899048\n",
- "epoch: 21 step: 21, loss is 1.1365002393722534\n",
- "epoch: 21 step: 22, loss is 1.104675531387329\n",
- "epoch: 21 step: 23, loss is 1.1440393924713135\n",
- "epoch: 21 step: 24, loss is 1.1484761238098145\n",
- "epoch: 21 step: 25, loss is 1.1014875173568726\n",
- "epoch: 21 step: 26, loss is 1.118294358253479\n",
- "epoch: 21 step: 27, loss is 1.1814875602722168\n",
- "epoch: 21 step: 28, loss is 1.1103239059448242\n",
- "epoch: 21 step: 29, loss is 1.1203694343566895\n",
- "epoch: 21 step: 30, loss is 1.1217091083526611\n",
- "epoch: 21 step: 31, loss is 1.2158026695251465\n",
- "epoch: 21 step: 32, loss is 1.1644526720046997\n",
- "epoch: 21 step: 33, loss is 1.1890766620635986\n",
- "epoch: 21 step: 34, loss is 1.122287631034851\n",
- "epoch: 21 step: 35, loss is 1.121174931526184\n",
- "epoch: 21 step: 36, loss is 1.1157550811767578\n",
- "epoch: 21 step: 37, loss is 1.128007411956787\n",
- "epoch: 21 step: 38, loss is 1.1591732501983643\n",
- "epoch: 21 step: 39, loss is 1.118435025215149\n",
- "epoch: 21 step: 40, loss is 1.1228094100952148\n",
- "epoch: 21 step: 41, loss is 1.1012872457504272\n",
- "epoch: 21 step: 42, loss is 1.2191131114959717\n",
- "epoch: 21 step: 43, loss is 1.1286933422088623\n",
- "epoch: 21 step: 44, loss is 1.1683429479599\n",
- "epoch: 21 step: 45, loss is 1.1217944622039795\n",
- "epoch: 21 step: 46, loss is 1.1995563507080078\n",
- "epoch: 21 step: 47, loss is 1.0857417583465576\n",
- "epoch: 21 step: 48, loss is 1.1569418907165527\n",
- "epoch: 21 step: 49, loss is 1.2251319885253906\n",
- "epoch: 21 step: 50, loss is 1.1091125011444092\n",
- "epoch: 21 step: 51, loss is 1.1549124717712402\n",
- "epoch: 21 step: 52, loss is 1.1356117725372314\n",
- "epoch: 21 step: 53, loss is 1.1109840869903564\n",
- "epoch: 21 step: 54, loss is 1.1460250616073608\n",
- "epoch: 21 step: 55, loss is 1.1362437009811401\n",
- "epoch: 21 step: 56, loss is 1.1517187356948853\n",
- "epoch: 21 step: 57, loss is 1.0988221168518066\n",
- "epoch: 21 step: 58, loss is 1.1581555604934692\n",
- "epoch: 21 step: 59, loss is 1.169415831565857\n",
- "epoch: 21 step: 60, loss is 1.1740953922271729\n",
- "epoch: 21 step: 61, loss is 1.1024632453918457\n",
- "epoch: 21 step: 62, loss is 1.0984084606170654\n",
- "epoch: 21 step: 63, loss is 1.2059848308563232\n",
- "epoch: 21 step: 64, loss is 1.145885944366455\n",
- "epoch: 21 step: 65, loss is 1.2163082361221313\n",
- "epoch: 21 step: 66, loss is 1.108540415763855\n",
- "epoch: 21 step: 67, loss is 1.1952319145202637\n",
- "epoch: 21 step: 68, loss is 1.1441410779953003\n",
- "epoch: 21 step: 69, loss is 1.1583361625671387\n",
- "epoch: 21 step: 70, loss is 1.102898120880127\n",
- "epoch: 21 step: 71, loss is 1.125910758972168\n",
- "epoch: 21 step: 72, loss is 1.1942943334579468\n",
- "epoch: 21 step: 73, loss is 1.2117856740951538\n",
- "epoch: 21 step: 74, loss is 1.1190205812454224\n",
- "epoch: 21 step: 75, loss is 1.107731580734253\n",
- "epoch: 21 step: 76, loss is 1.1000752449035645\n",
- "epoch: 21 step: 77, loss is 1.1882604360580444\n",
- "epoch: 21 step: 78, loss is 1.1377122402191162\n",
- "epoch: 21 step: 79, loss is 1.1691741943359375\n",
- "epoch: 21 step: 80, loss is 1.2381455898284912\n",
- "epoch: 21 step: 81, loss is 1.1835287809371948\n",
- "epoch: 21 step: 82, loss is 1.136803150177002\n",
- "epoch: 21 step: 83, loss is 1.193105936050415\n",
- "epoch: 21 step: 84, loss is 1.1319094896316528\n",
- "epoch: 21 step: 85, loss is 1.134192705154419\n",
- "epoch: 21 step: 86, loss is 1.0962910652160645\n",
- "epoch: 21 step: 87, loss is 1.1167593002319336\n",
- "epoch: 21 step: 88, loss is 1.124763011932373\n",
- "epoch: 21 step: 89, loss is 1.1915029287338257\n",
- "epoch: 21 step: 90, loss is 1.154558539390564\n",
- "epoch: 21 step: 91, loss is 1.1266372203826904\n",
- "epoch: 21 step: 92, loss is 1.1204588413238525\n",
- "epoch: 21 step: 93, loss is 1.0840075016021729\n",
- "epoch: 21 step: 94, loss is 1.1026766300201416\n",
- "epoch: 21 step: 95, loss is 1.1278811693191528\n",
- "epoch: 21 step: 96, loss is 1.109001874923706\n",
- "epoch: 21 step: 97, loss is 1.2332653999328613\n",
- "epoch: 21 step: 98, loss is 1.0993515253067017\n",
- "epoch: 21 step: 99, loss is 1.1307837963104248\n",
- "epoch: 21 step: 100, loss is 1.1563172340393066\n",
- "epoch: 21 step: 101, loss is 1.15267014503479\n",
- "epoch: 21 step: 102, loss is 1.136658787727356\n",
- "epoch: 21 step: 103, loss is 1.1215237379074097\n",
- "epoch: 21 step: 104, loss is 1.1939799785614014\n",
- "epoch: 21 step: 105, loss is 1.2076579332351685\n",
- "epoch: 21 step: 106, loss is 1.1646722555160522\n",
- "epoch: 21 step: 107, loss is 1.2286417484283447\n",
- "epoch: 21 step: 108, loss is 1.0636025667190552\n",
- "epoch: 21 step: 109, loss is 1.1365132331848145\n",
- "epoch: 21 step: 110, loss is 1.1064388751983643\n",
- "epoch: 21 step: 111, loss is 1.1925089359283447\n",
- "epoch: 21 step: 112, loss is 1.1692545413970947\n",
- "epoch: 21 step: 113, loss is 1.012389063835144\n",
- "epoch: 21 step: 114, loss is 1.2235348224639893\n",
- "epoch: 21 step: 115, loss is 1.161221981048584\n",
- "epoch: 21 step: 116, loss is 1.0941426753997803\n",
- "epoch: 21 step: 117, loss is 1.1226434707641602\n",
- "epoch: 21 step: 118, loss is 1.1540415287017822\n",
- "epoch: 21 step: 119, loss is 1.1769740581512451\n",
- "epoch: 21 step: 120, loss is 1.2211434841156006\n",
- "epoch: 21 step: 121, loss is 1.1179429292678833\n",
- "epoch: 21 step: 122, loss is 1.1711430549621582\n",
- "epoch: 21 step: 123, loss is 1.0949711799621582\n",
- "epoch: 21 step: 124, loss is 1.1699912548065186\n",
- "epoch: 21 step: 125, loss is 1.0529214143753052\n",
- "epoch: 21 step: 126, loss is 1.1035442352294922\n",
- "epoch: 21 step: 127, loss is 1.1384224891662598\n",
- "epoch: 21 step: 128, loss is 1.1493457555770874\n",
- "epoch: 21 step: 129, loss is 1.1306800842285156\n",
- "epoch: 21 step: 130, loss is 1.1158616542816162\n",
- "epoch: 21 step: 131, loss is 1.1646543741226196\n",
- "epoch: 21 step: 132, loss is 1.1338950395584106\n",
- "epoch: 21 step: 133, loss is 1.0740561485290527\n",
- "epoch: 21 step: 134, loss is 1.1639001369476318\n",
- "epoch: 21 step: 135, loss is 1.1926583051681519\n",
- "epoch: 21 step: 136, loss is 1.137130856513977\n",
- "epoch: 21 step: 137, loss is 1.1674678325653076\n",
- "epoch: 21 step: 138, loss is 1.0838972330093384\n",
- "epoch: 21 step: 139, loss is 1.1713426113128662\n",
- "epoch: 21 step: 140, loss is 1.172694444656372\n",
- "epoch: 21 step: 141, loss is 1.1743769645690918\n",
- "epoch: 21 step: 142, loss is 1.1856400966644287\n",
- "epoch: 21 step: 143, loss is 1.1878764629364014\n",
- "epoch: 21 step: 144, loss is 1.1903069019317627\n",
- "epoch: 21 step: 145, loss is 1.1692390441894531\n",
- "epoch: 21 step: 146, loss is 1.124283790588379\n",
- "epoch: 21 step: 147, loss is 1.1382466554641724\n",
- "epoch: 21 step: 148, loss is 1.1935675144195557\n",
- "epoch: 21 step: 149, loss is 1.1120277643203735\n",
- "epoch: 21 step: 150, loss is 1.147344946861267\n",
- "epoch: 21 step: 151, loss is 1.1530892848968506\n",
- "epoch: 21 step: 152, loss is 1.098280429840088\n",
- "epoch: 21 step: 153, loss is 1.2179057598114014\n",
- "epoch: 21 step: 154, loss is 1.2466373443603516\n",
- "epoch: 21 step: 155, loss is 1.1421725749969482\n",
- "epoch: 21 step: 156, loss is 1.0607844591140747\n",
- "epoch: 21 step: 157, loss is 1.1394695043563843\n",
- "epoch: 21 step: 158, loss is 1.1770168542861938\n",
- "epoch: 21 step: 159, loss is 1.0940386056900024\n",
- "epoch: 21 step: 160, loss is 1.1483757495880127\n",
- "epoch: 21 step: 161, loss is 1.1882250308990479\n",
- "epoch: 21 step: 162, loss is 1.1590632200241089\n",
- "epoch: 21 step: 163, loss is 1.1781816482543945\n",
- "epoch: 21 step: 164, loss is 1.0744845867156982\n",
- "epoch: 21 step: 165, loss is 1.1325417757034302\n",
- "epoch: 21 step: 166, loss is 1.089174747467041\n",
- "epoch: 21 step: 167, loss is 1.1512054204940796\n",
- "epoch: 21 step: 168, loss is 1.1409275531768799\n",
- "epoch: 21 step: 169, loss is 1.201310396194458\n",
- "epoch: 21 step: 170, loss is 1.169210433959961\n",
- "epoch: 21 step: 171, loss is 1.2410035133361816\n",
- "epoch: 21 step: 172, loss is 1.028815507888794\n",
- "epoch: 21 step: 173, loss is 1.1066675186157227\n",
- "epoch: 21 step: 174, loss is 1.1109777688980103\n",
- "epoch: 21 step: 175, loss is 1.1665771007537842\n",
- "epoch: 21 step: 176, loss is 1.148111343383789\n",
- "epoch: 21 step: 177, loss is 1.0802497863769531\n",
- "epoch: 21 step: 178, loss is 1.1739122867584229\n",
- "epoch: 21 step: 179, loss is 1.1767234802246094\n",
- "epoch: 21 step: 180, loss is 1.1092647314071655\n",
- "epoch: 21 step: 181, loss is 1.2105249166488647\n",
- "epoch: 21 step: 182, loss is 1.1116437911987305\n",
- "epoch: 21 step: 183, loss is 1.1619771718978882\n",
- "epoch: 21 step: 184, loss is 1.1229248046875\n",
- "epoch: 21 step: 185, loss is 1.154275894165039\n",
- "epoch: 21 step: 186, loss is 1.114675760269165\n",
- "epoch: 21 step: 187, loss is 1.1923682689666748\n",
- "epoch: 21 step: 188, loss is 1.1858384609222412\n",
- "epoch: 21 step: 189, loss is 1.162807822227478\n",
- "epoch: 21 step: 190, loss is 1.0937739610671997\n",
- "epoch: 21 step: 191, loss is 1.1718971729278564\n",
- "epoch: 21 step: 192, loss is 1.2204475402832031\n",
- "epoch: 21 step: 193, loss is 1.0986087322235107\n",
- "epoch: 21 step: 194, loss is 1.129512071609497\n",
- "epoch: 21 step: 195, loss is 1.2134814262390137\n",
- "Train epoch time: 96557.791 ms, per step time: 495.168 ms\n",
- "epoch: 22 step: 1, loss is 1.1057870388031006\n",
- "epoch: 22 step: 2, loss is 1.1139236688613892\n",
- "epoch: 22 step: 3, loss is 1.1555999517440796\n",
- "epoch: 22 step: 4, loss is 1.0924568176269531\n",
- "epoch: 22 step: 5, loss is 1.1187453269958496\n",
- "epoch: 22 step: 6, loss is 1.133613109588623\n",
- "epoch: 22 step: 7, loss is 1.1318658590316772\n",
- "epoch: 22 step: 8, loss is 1.192131519317627\n",
- "epoch: 22 step: 9, loss is 1.1278152465820312\n",
- "epoch: 22 step: 10, loss is 1.202744960784912\n",
- "epoch: 22 step: 11, loss is 1.1721439361572266\n",
- "epoch: 22 step: 12, loss is 1.0863008499145508\n",
- "epoch: 22 step: 13, loss is 1.1525710821151733\n",
- "epoch: 22 step: 14, loss is 1.1658072471618652\n",
- "epoch: 22 step: 15, loss is 1.136847972869873\n",
- "epoch: 22 step: 16, loss is 1.0486916303634644\n",
- "epoch: 22 step: 17, loss is 1.0813196897506714\n",
- "epoch: 22 step: 18, loss is 1.1514248847961426\n",
- "epoch: 22 step: 19, loss is 1.0714279413223267\n",
- "epoch: 22 step: 20, loss is 1.0280711650848389\n",
- "epoch: 22 step: 21, loss is 1.0710278749465942\n",
- "epoch: 22 step: 22, loss is 1.1394612789154053\n",
- "epoch: 22 step: 23, loss is 1.0616064071655273\n",
- "epoch: 22 step: 24, loss is 1.100270390510559\n",
- "epoch: 22 step: 25, loss is 1.067994475364685\n",
- "epoch: 22 step: 26, loss is 1.1554644107818604\n",
- "epoch: 22 step: 27, loss is 1.132413625717163\n",
- "epoch: 22 step: 28, loss is 1.1626719236373901\n",
- "epoch: 22 step: 29, loss is 1.1925325393676758\n",
- "epoch: 22 step: 30, loss is 1.189226508140564\n",
- "epoch: 22 step: 31, loss is 1.2117999792099\n",
- "epoch: 22 step: 32, loss is 1.1735248565673828\n",
- "epoch: 22 step: 33, loss is 1.1339526176452637\n",
- "epoch: 22 step: 34, loss is 1.1265913248062134\n",
- "epoch: 22 step: 35, loss is 1.083516240119934\n",
- "epoch: 22 step: 36, loss is 1.186711072921753\n",
- "epoch: 22 step: 37, loss is 1.0917110443115234\n",
- "epoch: 22 step: 38, loss is 1.122393250465393\n",
- "epoch: 22 step: 39, loss is 1.0775220394134521\n",
- "epoch: 22 step: 40, loss is 1.114711046218872\n",
- "epoch: 22 step: 41, loss is 1.0672664642333984\n",
- "epoch: 22 step: 42, loss is 1.0923773050308228\n",
- "epoch: 22 step: 43, loss is 1.1840053796768188\n",
- "epoch: 22 step: 44, loss is 1.138547420501709\n",
- "epoch: 22 step: 45, loss is 1.0909572839736938\n",
- "epoch: 22 step: 46, loss is 1.1297260522842407\n",
- "epoch: 22 step: 47, loss is 1.1536083221435547\n",
- "epoch: 22 step: 48, loss is 1.1982747316360474\n",
- "epoch: 22 step: 49, loss is 1.0661267042160034\n",
- "epoch: 22 step: 50, loss is 1.216001272201538\n",
- "epoch: 22 step: 51, loss is 1.195881962776184\n",
- "epoch: 22 step: 52, loss is 1.1459851264953613\n",
- "epoch: 22 step: 53, loss is 1.1505540609359741\n",
- "epoch: 22 step: 54, loss is 1.0748066902160645\n",
- "epoch: 22 step: 55, loss is 1.1084421873092651\n",
- "epoch: 22 step: 56, loss is 1.127742052078247\n",
- "epoch: 22 step: 57, loss is 0.9987824559211731\n",
- "epoch: 22 step: 58, loss is 1.0742061138153076\n",
- "epoch: 22 step: 59, loss is 1.1558446884155273\n",
- "epoch: 22 step: 60, loss is 1.2418932914733887\n",
- "epoch: 22 step: 61, loss is 1.1512435674667358\n",
- "epoch: 22 step: 62, loss is 1.18963623046875\n",
- "epoch: 22 step: 63, loss is 1.1356805562973022\n",
- "epoch: 22 step: 64, loss is 1.0749949216842651\n",
- "epoch: 22 step: 65, loss is 1.1138627529144287\n",
- "epoch: 22 step: 66, loss is 1.0608296394348145\n",
- "epoch: 22 step: 67, loss is 1.1862590312957764\n",
- "epoch: 22 step: 68, loss is 1.1027181148529053\n",
- "epoch: 22 step: 69, loss is 1.0789560079574585\n",
- "epoch: 22 step: 70, loss is 1.196028709411621\n",
- "epoch: 22 step: 71, loss is 1.1457781791687012\n",
- "epoch: 22 step: 72, loss is 1.184518575668335\n",
- "epoch: 22 step: 73, loss is 1.1258783340454102\n",
- "epoch: 22 step: 74, loss is 1.1965044736862183\n",
- "epoch: 22 step: 75, loss is 1.1160832643508911\n",
- "epoch: 22 step: 76, loss is 1.0849354267120361\n",
- "epoch: 22 step: 77, loss is 1.1233752965927124\n",
- "epoch: 22 step: 78, loss is 1.082011342048645\n",
- "epoch: 22 step: 79, loss is 1.0701531171798706\n",
- "epoch: 22 step: 80, loss is 1.1088016033172607\n",
- "epoch: 22 step: 81, loss is 1.1289912462234497\n",
- "epoch: 22 step: 82, loss is 1.1551800966262817\n",
- "epoch: 22 step: 83, loss is 1.1657989025115967\n",
- "epoch: 22 step: 84, loss is 1.0940277576446533\n",
- "epoch: 22 step: 85, loss is 1.2021234035491943\n",
- "epoch: 22 step: 86, loss is 1.1075375080108643\n",
- "epoch: 22 step: 87, loss is 1.1424462795257568\n",
- "epoch: 22 step: 88, loss is 1.126102089881897\n",
- "epoch: 22 step: 89, loss is 1.1145858764648438\n",
- "epoch: 22 step: 90, loss is 1.1827151775360107\n",
- "epoch: 22 step: 91, loss is 1.1285420656204224\n",
- "epoch: 22 step: 92, loss is 1.1281323432922363\n",
- "epoch: 22 step: 93, loss is 1.083482265472412\n",
- "epoch: 22 step: 94, loss is 1.0388284921646118\n",
- "epoch: 22 step: 95, loss is 1.0472513437271118\n",
- "epoch: 22 step: 96, loss is 1.0967636108398438\n",
- "epoch: 22 step: 97, loss is 1.1034371852874756\n",
- "epoch: 22 step: 98, loss is 1.1421582698822021\n",
- "epoch: 22 step: 99, loss is 1.1247735023498535\n",
- "epoch: 22 step: 100, loss is 1.1255205869674683\n",
- "epoch: 22 step: 101, loss is 1.066077709197998\n",
- "epoch: 22 step: 102, loss is 1.1157441139221191\n",
- "epoch: 22 step: 103, loss is 1.0566856861114502\n",
- "epoch: 22 step: 104, loss is 1.1286683082580566\n",
- "epoch: 22 step: 105, loss is 1.0926494598388672\n",
- "epoch: 22 step: 106, loss is 1.1775054931640625\n",
- "epoch: 22 step: 107, loss is 1.141067385673523\n",
- "epoch: 22 step: 108, loss is 1.1127513647079468\n",
- "epoch: 22 step: 109, loss is 1.120466947555542\n",
- "epoch: 22 step: 110, loss is 1.0674927234649658\n",
- "epoch: 22 step: 111, loss is 1.1168016195297241\n",
- "epoch: 22 step: 112, loss is 1.0601282119750977\n",
- "epoch: 22 step: 113, loss is 1.2126147747039795\n",
- "epoch: 22 step: 114, loss is 1.0950136184692383\n",
- "epoch: 22 step: 115, loss is 1.1604738235473633\n",
- "epoch: 22 step: 116, loss is 1.0633180141448975\n",
- "epoch: 22 step: 117, loss is 1.0476927757263184\n",
- "epoch: 22 step: 118, loss is 1.2187708616256714\n",
- "epoch: 22 step: 119, loss is 1.2101118564605713\n",
- "epoch: 22 step: 120, loss is 1.0943667888641357\n",
- "epoch: 22 step: 121, loss is 1.0570751428604126\n",
- "epoch: 22 step: 122, loss is 1.0902503728866577\n",
- "epoch: 22 step: 123, loss is 1.1060099601745605\n",
- "epoch: 22 step: 124, loss is 1.1245768070220947\n",
- "epoch: 22 step: 125, loss is 1.0946764945983887\n",
- "epoch: 22 step: 126, loss is 1.2332159280776978\n",
- "epoch: 22 step: 127, loss is 1.0753830671310425\n",
- "epoch: 22 step: 128, loss is 1.1343789100646973\n",
- "epoch: 22 step: 129, loss is 1.1489059925079346\n",
- "epoch: 22 step: 130, loss is 1.0653080940246582\n",
- "epoch: 22 step: 131, loss is 1.1134395599365234\n",
- "epoch: 22 step: 132, loss is 1.1181024312973022\n",
- "epoch: 22 step: 133, loss is 1.1542857885360718\n",
- "epoch: 22 step: 134, loss is 1.0399237871170044\n",
- "epoch: 22 step: 135, loss is 1.0861629247665405\n",
- "epoch: 22 step: 136, loss is 1.127682089805603\n",
- "epoch: 22 step: 137, loss is 1.196089506149292\n",
- "epoch: 22 step: 138, loss is 1.1673725843429565\n",
- "epoch: 22 step: 139, loss is 1.1664581298828125\n",
- "epoch: 22 step: 140, loss is 1.0579397678375244\n",
- "epoch: 22 step: 141, loss is 1.099616527557373\n",
- "epoch: 22 step: 142, loss is 1.1683763265609741\n",
- "epoch: 22 step: 143, loss is 1.1020599603652954\n",
- "epoch: 22 step: 144, loss is 1.055849552154541\n",
- "epoch: 22 step: 145, loss is 1.1096962690353394\n",
- "epoch: 22 step: 146, loss is 1.1060367822647095\n",
- "epoch: 22 step: 147, loss is 1.0919804573059082\n",
- "epoch: 22 step: 148, loss is 1.0732414722442627\n",
- "epoch: 22 step: 149, loss is 1.0836870670318604\n",
- "epoch: 22 step: 150, loss is 1.2175854444503784\n",
- "epoch: 22 step: 151, loss is 1.1793617010116577\n",
- "epoch: 22 step: 152, loss is 1.0995378494262695\n",
- "epoch: 22 step: 153, loss is 1.1928123235702515\n",
- "epoch: 22 step: 154, loss is 1.124531865119934\n",
- "epoch: 22 step: 155, loss is 1.1263102293014526\n",
- "epoch: 22 step: 156, loss is 1.1295742988586426\n",
- "epoch: 22 step: 157, loss is 1.0764509439468384\n",
- "epoch: 22 step: 158, loss is 1.132375955581665\n",
- "epoch: 22 step: 159, loss is 1.1854095458984375\n",
- "epoch: 22 step: 160, loss is 1.1245477199554443\n",
- "epoch: 22 step: 161, loss is 1.187173843383789\n",
- "epoch: 22 step: 162, loss is 1.0998836755752563\n",
- "epoch: 22 step: 163, loss is 1.1183044910430908\n",
- "epoch: 22 step: 164, loss is 1.087443232536316\n",
- "epoch: 22 step: 165, loss is 1.1431686878204346\n",
- "epoch: 22 step: 166, loss is 1.150266408920288\n",
- "epoch: 22 step: 167, loss is 1.1101069450378418\n",
- "epoch: 22 step: 168, loss is 1.1075210571289062\n",
- "epoch: 22 step: 169, loss is 1.106501579284668\n",
- "epoch: 22 step: 170, loss is 1.1325280666351318\n",
- "epoch: 22 step: 171, loss is 1.1748698949813843\n",
- "epoch: 22 step: 172, loss is 1.109532356262207\n",
- "epoch: 22 step: 173, loss is 1.0745608806610107\n",
- "epoch: 22 step: 174, loss is 1.1903640031814575\n",
- "epoch: 22 step: 175, loss is 1.1700621843338013\n",
- "epoch: 22 step: 176, loss is 1.2008390426635742\n",
- "epoch: 22 step: 177, loss is 1.2198768854141235\n",
- "epoch: 22 step: 178, loss is 1.138572096824646\n",
- "epoch: 22 step: 179, loss is 1.1092687845230103\n",
- "epoch: 22 step: 180, loss is 1.2139312028884888\n",
- "epoch: 22 step: 181, loss is 1.055828332901001\n",
- "epoch: 22 step: 182, loss is 1.091160535812378\n",
- "epoch: 22 step: 183, loss is 1.106805443763733\n",
- "epoch: 22 step: 184, loss is 1.1469414234161377\n",
- "epoch: 22 step: 185, loss is 1.1037912368774414\n",
- "epoch: 22 step: 186, loss is 1.1567729711532593\n",
- "epoch: 22 step: 187, loss is 1.1527526378631592\n",
- "epoch: 22 step: 188, loss is 1.0447196960449219\n",
- "epoch: 22 step: 189, loss is 1.055253505706787\n",
- "epoch: 22 step: 190, loss is 1.1102721691131592\n",
- "epoch: 22 step: 191, loss is 1.1446545124053955\n",
- "epoch: 22 step: 192, loss is 1.1523252725601196\n",
- "epoch: 22 step: 193, loss is 1.1921484470367432\n",
- "epoch: 22 step: 194, loss is 1.065596103668213\n",
- "epoch: 22 step: 195, loss is 1.1077330112457275\n",
- "Train epoch time: 96550.665 ms, per step time: 495.132 ms\n",
- "epoch: 23 step: 1, loss is 1.0420126914978027\n",
- "epoch: 23 step: 2, loss is 1.099735975265503\n",
- "epoch: 23 step: 3, loss is 1.1271454095840454\n",
- "epoch: 23 step: 4, loss is 1.079667329788208\n",
- "epoch: 23 step: 5, loss is 1.074260950088501\n",
- "epoch: 23 step: 6, loss is 1.0702893733978271\n",
- "epoch: 23 step: 7, loss is 1.0628925561904907\n",
- "epoch: 23 step: 8, loss is 1.109250545501709\n",
- "epoch: 23 step: 9, loss is 1.108660340309143\n",
- "epoch: 23 step: 10, loss is 1.081648349761963\n",
- "epoch: 23 step: 11, loss is 1.071412205696106\n",
- "epoch: 23 step: 12, loss is 1.1206388473510742\n",
- "epoch: 23 step: 13, loss is 1.0619468688964844\n",
- "epoch: 23 step: 14, loss is 1.1640396118164062\n",
- "epoch: 23 step: 15, loss is 1.0815362930297852\n",
- "epoch: 23 step: 16, loss is 1.1246254444122314\n",
- "epoch: 23 step: 17, loss is 1.148111343383789\n",
- "epoch: 23 step: 18, loss is 1.0939370393753052\n",
- "epoch: 23 step: 19, loss is 1.1357307434082031\n",
- "epoch: 23 step: 20, loss is 1.1537823677062988\n",
- "epoch: 23 step: 21, loss is 1.1099159717559814\n",
- "epoch: 23 step: 22, loss is 1.0810271501541138\n",
- "epoch: 23 step: 23, loss is 1.1312618255615234\n",
- "epoch: 23 step: 24, loss is 1.096649169921875\n",
- "epoch: 23 step: 25, loss is 1.1591715812683105\n",
- "epoch: 23 step: 26, loss is 1.0770912170410156\n",
- "epoch: 23 step: 27, loss is 1.0089478492736816\n",
- "epoch: 23 step: 28, loss is 1.1134425401687622\n",
- "epoch: 23 step: 29, loss is 1.1362148523330688\n",
- "epoch: 23 step: 30, loss is 1.1841790676116943\n",
- "epoch: 23 step: 31, loss is 1.0730592012405396\n",
- "epoch: 23 step: 32, loss is 1.105896234512329\n",
- "epoch: 23 step: 33, loss is 1.0915123224258423\n",
- "epoch: 23 step: 34, loss is 1.244390845298767\n",
- "epoch: 23 step: 35, loss is 1.1465954780578613\n",
- "epoch: 23 step: 36, loss is 1.2488198280334473\n",
- "epoch: 23 step: 37, loss is 1.1303648948669434\n",
- "epoch: 23 step: 38, loss is 1.06625497341156\n",
- "epoch: 23 step: 39, loss is 1.1351871490478516\n",
- "epoch: 23 step: 40, loss is 1.143106460571289\n",
- "epoch: 23 step: 41, loss is 1.0997296571731567\n",
- "epoch: 23 step: 42, loss is 1.1801092624664307\n",
- "epoch: 23 step: 43, loss is 1.1338733434677124\n",
- "epoch: 23 step: 44, loss is 1.1757233142852783\n",
- "epoch: 23 step: 45, loss is 1.132099986076355\n",
- "epoch: 23 step: 46, loss is 1.059287428855896\n",
- "epoch: 23 step: 47, loss is 1.1602349281311035\n",
- "epoch: 23 step: 48, loss is 1.1087274551391602\n",
- "epoch: 23 step: 49, loss is 1.058919906616211\n",
- "epoch: 23 step: 50, loss is 1.1383061408996582\n",
- "epoch: 23 step: 51, loss is 1.058732509613037\n",
- "epoch: 23 step: 52, loss is 1.1311895847320557\n",
- "epoch: 23 step: 53, loss is 1.0651788711547852\n",
- "epoch: 23 step: 54, loss is 1.0933306217193604\n",
- "epoch: 23 step: 55, loss is 1.0521669387817383\n",
- "epoch: 23 step: 56, loss is 1.0857175588607788\n",
- "epoch: 23 step: 57, loss is 1.126347541809082\n",
- "epoch: 23 step: 58, loss is 1.0909123420715332\n",
- "epoch: 23 step: 59, loss is 1.138649582862854\n",
- "epoch: 23 step: 60, loss is 1.0849061012268066\n",
- "epoch: 23 step: 61, loss is 1.1380014419555664\n",
- "epoch: 23 step: 62, loss is 1.0749741792678833\n",
- "epoch: 23 step: 63, loss is 1.0596951246261597\n",
- "epoch: 23 step: 64, loss is 1.0243406295776367\n",
- "epoch: 23 step: 65, loss is 1.170853853225708\n",
- "epoch: 23 step: 66, loss is 1.0925712585449219\n",
- "epoch: 23 step: 67, loss is 1.1108038425445557\n",
- "epoch: 23 step: 68, loss is 1.1158647537231445\n",
- "epoch: 23 step: 69, loss is 1.0916780233383179\n",
- "epoch: 23 step: 70, loss is 1.1739258766174316\n",
- "epoch: 23 step: 71, loss is 1.0683262348175049\n",
- "epoch: 23 step: 72, loss is 1.214130163192749\n",
- "epoch: 23 step: 73, loss is 1.0012922286987305\n",
- "epoch: 23 step: 74, loss is 1.090229868888855\n",
- "epoch: 23 step: 75, loss is 1.0642163753509521\n",
- "epoch: 23 step: 76, loss is 1.133148431777954\n",
- "epoch: 23 step: 77, loss is 1.0365712642669678\n",
- "epoch: 23 step: 78, loss is 1.134724497795105\n",
- "epoch: 23 step: 79, loss is 1.050230622291565\n",
- "epoch: 23 step: 80, loss is 1.1680033206939697\n",
- "epoch: 23 step: 81, loss is 1.077506184577942\n",
- "epoch: 23 step: 82, loss is 1.2005258798599243\n",
- "epoch: 23 step: 83, loss is 1.070518136024475\n",
- "epoch: 23 step: 84, loss is 1.1651355028152466\n",
- "epoch: 23 step: 85, loss is 1.187951922416687\n",
- "epoch: 23 step: 86, loss is 1.1330618858337402\n",
- "epoch: 23 step: 87, loss is 1.1270604133605957\n",
- "epoch: 23 step: 88, loss is 1.1675716638565063\n",
- "epoch: 23 step: 89, loss is 1.0827915668487549\n",
- "epoch: 23 step: 90, loss is 1.1031270027160645\n",
- "epoch: 23 step: 91, loss is 1.1060575246810913\n",
- "epoch: 23 step: 92, loss is 1.1283595561981201\n",
- "epoch: 23 step: 93, loss is 1.1641638278961182\n",
- "epoch: 23 step: 94, loss is 1.121991515159607\n",
- "epoch: 23 step: 95, loss is 1.193777322769165\n",
- "epoch: 23 step: 96, loss is 1.154201626777649\n",
- "epoch: 23 step: 97, loss is 1.0031192302703857\n",
- "epoch: 23 step: 98, loss is 1.1418803930282593\n",
- "epoch: 23 step: 99, loss is 1.0654265880584717\n",
- "epoch: 23 step: 100, loss is 1.1046638488769531\n",
- "epoch: 23 step: 101, loss is 1.116844654083252\n",
- "epoch: 23 step: 102, loss is 1.0737988948822021\n",
- "epoch: 23 step: 103, loss is 1.1782712936401367\n",
- "epoch: 23 step: 104, loss is 1.1282520294189453\n",
- "epoch: 23 step: 105, loss is 1.0460577011108398\n",
- "epoch: 23 step: 106, loss is 1.1524302959442139\n",
- "epoch: 23 step: 107, loss is 1.152945876121521\n",
- "epoch: 23 step: 108, loss is 1.102074146270752\n",
- "epoch: 23 step: 109, loss is 1.1422843933105469\n",
- "epoch: 23 step: 110, loss is 1.1201359033584595\n",
- "epoch: 23 step: 111, loss is 1.112854242324829\n",
- "epoch: 23 step: 112, loss is 1.1151319742202759\n",
- "epoch: 23 step: 113, loss is 1.0872212648391724\n",
- "epoch: 23 step: 114, loss is 1.0612903833389282\n",
- "epoch: 23 step: 115, loss is 1.026918649673462\n",
- "epoch: 23 step: 116, loss is 1.0927183628082275\n",
- "epoch: 23 step: 117, loss is 1.131216287612915\n",
- "epoch: 23 step: 118, loss is 1.0949969291687012\n",
- "epoch: 23 step: 119, loss is 1.0931265354156494\n",
- "epoch: 23 step: 120, loss is 1.1404997110366821\n",
- "epoch: 23 step: 121, loss is 1.053472876548767\n",
- "epoch: 23 step: 122, loss is 1.1262367963790894\n",
- "epoch: 23 step: 123, loss is 1.150343418121338\n",
- "epoch: 23 step: 124, loss is 1.0660480260849\n",
- "epoch: 23 step: 125, loss is 1.033414602279663\n",
- "epoch: 23 step: 126, loss is 1.109561800956726\n",
- "epoch: 23 step: 127, loss is 1.0779948234558105\n",
- "epoch: 23 step: 128, loss is 1.0923174619674683\n",
- "epoch: 23 step: 129, loss is 1.1790454387664795\n",
- "epoch: 23 step: 130, loss is 1.1247092485427856\n",
- "epoch: 23 step: 131, loss is 1.1069467067718506\n",
- "epoch: 23 step: 132, loss is 1.178035020828247\n",
- "epoch: 23 step: 133, loss is 1.0654507875442505\n",
- "epoch: 23 step: 134, loss is 1.137501835823059\n",
- "epoch: 23 step: 135, loss is 1.1127469539642334\n",
- "epoch: 23 step: 136, loss is 1.1050828695297241\n",
- "epoch: 23 step: 137, loss is 0.9895503520965576\n",
- "epoch: 23 step: 138, loss is 1.1231327056884766\n",
- "epoch: 23 step: 139, loss is 1.072704792022705\n",
- "epoch: 23 step: 140, loss is 1.140213966369629\n",
- "epoch: 23 step: 141, loss is 1.1909414529800415\n",
- "epoch: 23 step: 142, loss is 1.1219518184661865\n",
- "epoch: 23 step: 143, loss is 1.0941047668457031\n",
- "epoch: 23 step: 144, loss is 1.0998458862304688\n",
- "epoch: 23 step: 145, loss is 1.0940742492675781\n",
- "epoch: 23 step: 146, loss is 1.095496416091919\n",
- "epoch: 23 step: 147, loss is 1.1275544166564941\n",
- "epoch: 23 step: 148, loss is 1.1048732995986938\n",
- "epoch: 23 step: 149, loss is 1.0835894346237183\n",
- "epoch: 23 step: 150, loss is 1.1628206968307495\n",
- "epoch: 23 step: 151, loss is 1.0395472049713135\n",
- "epoch: 23 step: 152, loss is 1.1257904767990112\n",
- "epoch: 23 step: 153, loss is 1.0448265075683594\n",
- "epoch: 23 step: 154, loss is 1.168929100036621\n",
- "epoch: 23 step: 155, loss is 1.1050912141799927\n",
- "epoch: 23 step: 156, loss is 1.0998780727386475\n",
- "epoch: 23 step: 157, loss is 1.0974781513214111\n",
- "epoch: 23 step: 158, loss is 1.0884851217269897\n",
- "epoch: 23 step: 159, loss is 1.0380859375\n",
- "epoch: 23 step: 160, loss is 1.2068121433258057\n",
- "epoch: 23 step: 161, loss is 1.0829228162765503\n",
- "epoch: 23 step: 162, loss is 1.1500890254974365\n",
- "epoch: 23 step: 163, loss is 1.165330171585083\n",
- "epoch: 23 step: 164, loss is 1.1311683654785156\n",
- "epoch: 23 step: 165, loss is 1.0441009998321533\n",
- "epoch: 23 step: 166, loss is 1.1290067434310913\n",
- "epoch: 23 step: 167, loss is 1.108944058418274\n",
- "epoch: 23 step: 168, loss is 1.107635498046875\n",
- "epoch: 23 step: 169, loss is 1.1310901641845703\n",
- "epoch: 23 step: 170, loss is 1.0751266479492188\n",
- "epoch: 23 step: 171, loss is 1.0947020053863525\n",
- "epoch: 23 step: 172, loss is 1.019446849822998\n",
- "epoch: 23 step: 173, loss is 1.132136583328247\n",
- "epoch: 23 step: 174, loss is 1.0757756233215332\n",
- "epoch: 23 step: 175, loss is 1.0834013223648071\n",
- "epoch: 23 step: 176, loss is 1.0895262956619263\n",
- "epoch: 23 step: 177, loss is 1.0929279327392578\n",
- "epoch: 23 step: 178, loss is 1.1086838245391846\n",
- "epoch: 23 step: 179, loss is 1.0466564893722534\n",
- "epoch: 23 step: 180, loss is 1.111632227897644\n",
- "epoch: 23 step: 181, loss is 1.1164880990982056\n",
- "epoch: 23 step: 182, loss is 1.1129474639892578\n",
- "epoch: 23 step: 183, loss is 1.1050301790237427\n",
- "epoch: 23 step: 184, loss is 1.1336846351623535\n",
- "epoch: 23 step: 185, loss is 1.1323282718658447\n",
- "epoch: 23 step: 186, loss is 1.0980340242385864\n",
- "epoch: 23 step: 187, loss is 1.121384859085083\n",
- "epoch: 23 step: 188, loss is 1.1679719686508179\n",
- "epoch: 23 step: 189, loss is 1.085845708847046\n",
- "epoch: 23 step: 190, loss is 1.0491199493408203\n",
- "epoch: 23 step: 191, loss is 1.1239583492279053\n",
- "epoch: 23 step: 192, loss is 1.0570039749145508\n",
- "epoch: 23 step: 193, loss is 1.1567015647888184\n",
- "epoch: 23 step: 194, loss is 1.0626479387283325\n",
- "epoch: 23 step: 195, loss is 1.0094729661941528\n",
- "Train epoch time: 101013.625 ms, per step time: 518.019 ms\n",
- "epoch: 24 step: 1, loss is 1.0149340629577637\n",
- "epoch: 24 step: 2, loss is 1.0656733512878418\n",
- "epoch: 24 step: 3, loss is 1.0988367795944214\n",
- "epoch: 24 step: 4, loss is 1.0419820547103882\n",
- "epoch: 24 step: 5, loss is 1.0940383672714233\n",
- "epoch: 24 step: 6, loss is 1.0750219821929932\n",
- "epoch: 24 step: 7, loss is 1.066772699356079\n",
- "epoch: 24 step: 8, loss is 1.1340692043304443\n",
- "epoch: 24 step: 9, loss is 1.207837462425232\n",
- "epoch: 24 step: 10, loss is 1.0940717458724976\n",
- "epoch: 24 step: 11, loss is 1.101741909980774\n",
- "epoch: 24 step: 12, loss is 1.0705571174621582\n",
- "epoch: 24 step: 13, loss is 1.0340397357940674\n",
- "epoch: 24 step: 14, loss is 1.1341054439544678\n",
- "epoch: 24 step: 15, loss is 1.0972232818603516\n",
- "epoch: 24 step: 16, loss is 1.1218732595443726\n",
- "epoch: 24 step: 17, loss is 1.0522446632385254\n",
- "epoch: 24 step: 18, loss is 1.0363849401474\n",
- "epoch: 24 step: 19, loss is 1.0300065279006958\n",
- "epoch: 24 step: 20, loss is 1.0871447324752808\n",
- "epoch: 24 step: 21, loss is 1.0412099361419678\n",
- "epoch: 24 step: 22, loss is 1.088841438293457\n",
- "epoch: 24 step: 23, loss is 1.041816234588623\n",
- "epoch: 24 step: 24, loss is 1.1186373233795166\n",
- "epoch: 24 step: 25, loss is 1.1210126876831055\n",
- "epoch: 24 step: 26, loss is 1.0748430490493774\n",
- "epoch: 24 step: 27, loss is 1.082032561302185\n",
- "epoch: 24 step: 28, loss is 1.1616694927215576\n",
- "epoch: 24 step: 29, loss is 1.0672612190246582\n",
- "epoch: 24 step: 30, loss is 1.0976974964141846\n",
- "epoch: 24 step: 31, loss is 1.0183546543121338\n",
- "epoch: 24 step: 32, loss is 1.1253126859664917\n",
- "epoch: 24 step: 33, loss is 1.0805137157440186\n",
- "epoch: 24 step: 34, loss is 1.0839871168136597\n",
- "epoch: 24 step: 35, loss is 1.0788066387176514\n",
- "epoch: 24 step: 36, loss is 1.1135940551757812\n",
- "epoch: 24 step: 37, loss is 1.100695013999939\n",
- "epoch: 24 step: 38, loss is 1.0564568042755127\n",
- "epoch: 24 step: 39, loss is 1.0432438850402832\n",
- "epoch: 24 step: 40, loss is 1.0497615337371826\n",
- "epoch: 24 step: 41, loss is 1.1052402257919312\n",
- "epoch: 24 step: 42, loss is 1.074357509613037\n",
- "epoch: 24 step: 43, loss is 1.0754345655441284\n",
- "epoch: 24 step: 44, loss is 1.1187794208526611\n",
- "epoch: 24 step: 45, loss is 1.158486247062683\n",
- "epoch: 24 step: 46, loss is 1.1193733215332031\n",
- "epoch: 24 step: 47, loss is 1.1252005100250244\n",
- "epoch: 24 step: 48, loss is 1.1686315536499023\n",
- "epoch: 24 step: 49, loss is 1.077506184577942\n",
- "epoch: 24 step: 50, loss is 0.9955160617828369\n",
- "epoch: 24 step: 51, loss is 1.0416629314422607\n",
- "epoch: 24 step: 52, loss is 1.0476529598236084\n",
- "epoch: 24 step: 53, loss is 1.1165244579315186\n",
- "epoch: 24 step: 54, loss is 1.1126850843429565\n",
- "epoch: 24 step: 55, loss is 1.1327506303787231\n",
- "epoch: 24 step: 56, loss is 1.1535394191741943\n",
- "epoch: 24 step: 57, loss is 1.0998996496200562\n",
- "epoch: 24 step: 58, loss is 1.2009762525558472\n",
- "epoch: 24 step: 59, loss is 1.1290614604949951\n",
- "epoch: 24 step: 60, loss is 1.0846294164657593\n",
- "epoch: 24 step: 61, loss is 1.1018847227096558\n",
- "epoch: 24 step: 62, loss is 1.0555287599563599\n",
- "epoch: 24 step: 63, loss is 1.0728873014450073\n",
- "epoch: 24 step: 64, loss is 1.0869959592819214\n",
- "epoch: 24 step: 65, loss is 1.0526306629180908\n",
- "epoch: 24 step: 66, loss is 1.0938445329666138\n",
- "epoch: 24 step: 67, loss is 1.0982022285461426\n",
- "epoch: 24 step: 68, loss is 1.0820813179016113\n",
- "epoch: 24 step: 69, loss is 1.1439049243927002\n",
- "epoch: 24 step: 70, loss is 1.106379747390747\n",
- "epoch: 24 step: 71, loss is 1.0735957622528076\n",
- "epoch: 24 step: 72, loss is 1.0705339908599854\n",
- "epoch: 24 step: 73, loss is 0.9821990132331848\n",
- "epoch: 24 step: 74, loss is 1.10223388671875\n",
- "epoch: 24 step: 75, loss is 1.1412644386291504\n",
- "epoch: 24 step: 76, loss is 1.083353042602539\n",
- "epoch: 24 step: 77, loss is 1.0805102586746216\n",
- "epoch: 24 step: 78, loss is 1.0857373476028442\n",
- "epoch: 24 step: 79, loss is 1.1129400730133057\n",
- "epoch: 24 step: 80, loss is 1.129321813583374\n",
- "epoch: 24 step: 81, loss is 1.1183065176010132\n",
- "epoch: 24 step: 82, loss is 1.158447265625\n",
- "epoch: 24 step: 83, loss is 1.059683084487915\n",
- "epoch: 24 step: 84, loss is 1.0833324193954468\n",
- "epoch: 24 step: 85, loss is 1.0802512168884277\n",
- "epoch: 24 step: 86, loss is 1.0950815677642822\n",
- "epoch: 24 step: 87, loss is 1.1294218301773071\n",
- "epoch: 24 step: 88, loss is 1.1059508323669434\n",
- "epoch: 24 step: 89, loss is 1.1759282350540161\n",
- "epoch: 24 step: 90, loss is 1.0779974460601807\n",
- "epoch: 24 step: 91, loss is 1.0733767747879028\n",
- "epoch: 24 step: 92, loss is 1.1614344120025635\n",
- "epoch: 24 step: 93, loss is 1.0910868644714355\n",
- "epoch: 24 step: 94, loss is 1.054944634437561\n",
- "epoch: 24 step: 95, loss is 1.1366803646087646\n",
- "epoch: 24 step: 96, loss is 1.13693106174469\n",
- "epoch: 24 step: 97, loss is 1.0923651456832886\n",
- "epoch: 24 step: 98, loss is 1.0509752035140991\n",
- "epoch: 24 step: 99, loss is 1.1433801651000977\n",
- "epoch: 24 step: 100, loss is 1.1243809461593628\n",
- "epoch: 24 step: 101, loss is 1.1028223037719727\n",
- "epoch: 24 step: 102, loss is 1.1130242347717285\n",
- "epoch: 24 step: 103, loss is 1.151925802230835\n",
- "epoch: 24 step: 104, loss is 1.0777122974395752\n",
- "epoch: 24 step: 105, loss is 1.119873046875\n",
- "epoch: 24 step: 106, loss is 1.1358789205551147\n",
- "epoch: 24 step: 107, loss is 1.0719413757324219\n",
- "epoch: 24 step: 108, loss is 1.0628635883331299\n",
- "epoch: 24 step: 109, loss is 1.0503345727920532\n",
- "epoch: 24 step: 110, loss is 1.1274672746658325\n",
- "epoch: 24 step: 111, loss is 1.0830402374267578\n",
- "epoch: 24 step: 112, loss is 1.1192857027053833\n",
- "epoch: 24 step: 113, loss is 1.070591688156128\n",
- "epoch: 24 step: 114, loss is 1.1368317604064941\n",
- "epoch: 24 step: 115, loss is 1.0880318880081177\n",
- "epoch: 24 step: 116, loss is 1.1302921772003174\n",
- "epoch: 24 step: 117, loss is 1.145160436630249\n",
- "epoch: 24 step: 118, loss is 1.1119775772094727\n",
- "epoch: 24 step: 119, loss is 1.0518125295639038\n",
- "epoch: 24 step: 120, loss is 1.1172714233398438\n",
- "epoch: 24 step: 121, loss is 1.1207104921340942\n",
- "epoch: 24 step: 122, loss is 1.052086353302002\n",
- "epoch: 24 step: 123, loss is 1.1225634813308716\n",
- "epoch: 24 step: 124, loss is 1.1011667251586914\n",
- "epoch: 24 step: 125, loss is 1.112138032913208\n",
- "epoch: 24 step: 126, loss is 1.1802303791046143\n",
- "epoch: 24 step: 127, loss is 1.1204378604888916\n",
- "epoch: 24 step: 128, loss is 1.1151847839355469\n",
- "epoch: 24 step: 129, loss is 1.0922772884368896\n",
- "epoch: 24 step: 130, loss is 1.0205130577087402\n",
- "epoch: 24 step: 131, loss is 1.089955449104309\n",
- "epoch: 24 step: 132, loss is 1.0827082395553589\n",
- "epoch: 24 step: 133, loss is 1.1208171844482422\n",
- "epoch: 24 step: 134, loss is 1.1053398847579956\n",
- "epoch: 24 step: 135, loss is 1.0449259281158447\n",
- "epoch: 24 step: 136, loss is 1.074751615524292\n",
- "epoch: 24 step: 137, loss is 1.1305283308029175\n",
- "epoch: 24 step: 138, loss is 1.1261173486709595\n",
- "epoch: 24 step: 139, loss is 1.0394558906555176\n",
- "epoch: 24 step: 140, loss is 1.1261268854141235\n",
- "epoch: 24 step: 141, loss is 1.0963863134384155\n",
- "epoch: 24 step: 142, loss is 1.045979619026184\n",
- "epoch: 24 step: 143, loss is 1.0496078729629517\n",
- "epoch: 24 step: 144, loss is 1.1875709295272827\n",
- "epoch: 24 step: 145, loss is 1.0643904209136963\n",
- "epoch: 24 step: 146, loss is 1.0871621370315552\n",
- "epoch: 24 step: 147, loss is 1.1478910446166992\n",
- "epoch: 24 step: 148, loss is 1.1920757293701172\n",
- "epoch: 24 step: 149, loss is 1.1328034400939941\n",
- "epoch: 24 step: 150, loss is 1.0893347263336182\n",
- "epoch: 24 step: 151, loss is 1.1048067808151245\n",
- "epoch: 24 step: 152, loss is 1.0077087879180908\n",
- "epoch: 24 step: 153, loss is 1.0549124479293823\n",
- "epoch: 24 step: 154, loss is 1.152020812034607\n",
- "epoch: 24 step: 155, loss is 1.1228123903274536\n",
- "epoch: 24 step: 156, loss is 1.1045303344726562\n",
- "epoch: 24 step: 157, loss is 1.084133267402649\n",
- "epoch: 24 step: 158, loss is 1.09710693359375\n",
- "epoch: 24 step: 159, loss is 1.074958324432373\n",
- "epoch: 24 step: 160, loss is 1.033774971961975\n",
- "epoch: 24 step: 161, loss is 1.0859473943710327\n",
- "epoch: 24 step: 162, loss is 1.1589056253433228\n",
- "epoch: 24 step: 163, loss is 1.2113087177276611\n",
- "epoch: 24 step: 164, loss is 1.1745445728302002\n",
- "epoch: 24 step: 165, loss is 1.1192365884780884\n",
- "epoch: 24 step: 166, loss is 1.068882703781128\n",
- "epoch: 24 step: 167, loss is 1.0761008262634277\n",
- "epoch: 24 step: 168, loss is 1.0699995756149292\n",
- "epoch: 24 step: 169, loss is 1.1537774801254272\n",
- "epoch: 24 step: 170, loss is 1.1350986957550049\n",
- "epoch: 24 step: 171, loss is 1.0868403911590576\n",
- "epoch: 24 step: 172, loss is 1.0896763801574707\n",
- "epoch: 24 step: 173, loss is 1.1454657316207886\n",
- "epoch: 24 step: 174, loss is 1.1377419233322144\n",
- "epoch: 24 step: 175, loss is 1.0885043144226074\n",
- "epoch: 24 step: 176, loss is 1.1249531507492065\n",
- "epoch: 24 step: 177, loss is 1.1522539854049683\n",
- "epoch: 24 step: 178, loss is 1.0993684530258179\n",
- "epoch: 24 step: 179, loss is 1.1670578718185425\n",
- "epoch: 24 step: 180, loss is 1.035400152206421\n",
- "epoch: 24 step: 181, loss is 1.1165781021118164\n",
- "epoch: 24 step: 182, loss is 1.075137972831726\n",
- "epoch: 24 step: 183, loss is 1.0986744165420532\n",
- "epoch: 24 step: 184, loss is 1.1392841339111328\n",
- "epoch: 24 step: 185, loss is 1.0902831554412842\n",
- "epoch: 24 step: 186, loss is 1.0261082649230957\n",
- "epoch: 24 step: 187, loss is 1.0156962871551514\n",
- "epoch: 24 step: 188, loss is 1.0787601470947266\n",
- "epoch: 24 step: 189, loss is 1.0511951446533203\n",
- "epoch: 24 step: 190, loss is 1.0000669956207275\n",
- "epoch: 24 step: 191, loss is 1.1091296672821045\n",
- "epoch: 24 step: 192, loss is 1.113128900527954\n",
- "epoch: 24 step: 193, loss is 1.0678154230117798\n",
- "epoch: 24 step: 194, loss is 1.1033992767333984\n",
- "epoch: 24 step: 195, loss is 1.0996067523956299\n",
- "Train epoch time: 92146.717 ms, per step time: 472.547 ms\n",
- "epoch: 25 step: 1, loss is 1.0944640636444092\n",
- "epoch: 25 step: 2, loss is 1.1537492275238037\n",
- "epoch: 25 step: 3, loss is 1.0278011560440063\n",
- "epoch: 25 step: 4, loss is 1.0667750835418701\n",
- "epoch: 25 step: 5, loss is 1.0738204717636108\n",
- "epoch: 25 step: 6, loss is 1.0765408277511597\n",
- "epoch: 25 step: 7, loss is 1.1048355102539062\n",
- "epoch: 25 step: 8, loss is 1.0568161010742188\n",
- "epoch: 25 step: 9, loss is 1.065824270248413\n",
- "epoch: 25 step: 10, loss is 1.1337116956710815\n",
- "epoch: 25 step: 11, loss is 1.0800821781158447\n",
- "epoch: 25 step: 12, loss is 1.0967190265655518\n",
- "epoch: 25 step: 13, loss is 1.097056269645691\n",
- "epoch: 25 step: 14, loss is 1.0970062017440796\n",
- "epoch: 25 step: 15, loss is 1.130616307258606\n",
- "epoch: 25 step: 16, loss is 1.0671025514602661\n",
- "epoch: 25 step: 17, loss is 0.995775043964386\n",
- "epoch: 25 step: 18, loss is 1.0410147905349731\n",
- "epoch: 25 step: 19, loss is 1.0764706134796143\n",
- "epoch: 25 step: 20, loss is 1.086004376411438\n",
- "epoch: 25 step: 21, loss is 1.176888346672058\n",
- "epoch: 25 step: 22, loss is 1.1183147430419922\n",
- "epoch: 25 step: 23, loss is 1.0882411003112793\n",
- "epoch: 25 step: 24, loss is 1.1074618101119995\n",
- "epoch: 25 step: 25, loss is 1.048006296157837\n",
- "epoch: 25 step: 26, loss is 1.0748313665390015\n",
- "epoch: 25 step: 27, loss is 0.9693728685379028\n",
- "epoch: 25 step: 28, loss is 1.1275076866149902\n",
- "epoch: 25 step: 29, loss is 1.00841224193573\n",
- "epoch: 25 step: 30, loss is 1.0752159357070923\n",
- "epoch: 25 step: 31, loss is 1.0895309448242188\n",
- "epoch: 25 step: 32, loss is 1.0762090682983398\n",
- "epoch: 25 step: 33, loss is 1.0111603736877441\n",
- "epoch: 25 step: 34, loss is 1.07645583152771\n",
- "epoch: 25 step: 35, loss is 1.150286316871643\n",
- "epoch: 25 step: 36, loss is 1.0705536603927612\n",
- "epoch: 25 step: 37, loss is 1.0057810544967651\n",
- "epoch: 25 step: 38, loss is 0.9676169157028198\n",
- "epoch: 25 step: 39, loss is 1.1130061149597168\n",
- "epoch: 25 step: 40, loss is 1.109873652458191\n",
- "epoch: 25 step: 41, loss is 1.090269684791565\n",
- "epoch: 25 step: 42, loss is 1.0881240367889404\n",
- "epoch: 25 step: 43, loss is 1.1059993505477905\n",
- "epoch: 25 step: 44, loss is 1.137759804725647\n",
- "epoch: 25 step: 45, loss is 1.131312608718872\n",
- "epoch: 25 step: 46, loss is 1.0295906066894531\n",
- "epoch: 25 step: 47, loss is 1.0685251951217651\n",
- "epoch: 25 step: 48, loss is 1.1225147247314453\n",
- "epoch: 25 step: 49, loss is 1.0938369035720825\n",
- "epoch: 25 step: 50, loss is 1.1687977313995361\n",
- "epoch: 25 step: 51, loss is 1.0433377027511597\n",
- "epoch: 25 step: 52, loss is 1.0630183219909668\n",
- "epoch: 25 step: 53, loss is 1.106493353843689\n",
- "epoch: 25 step: 54, loss is 1.1200652122497559\n",
- "epoch: 25 step: 55, loss is 1.0635850429534912\n",
- "epoch: 25 step: 56, loss is 1.1189876794815063\n",
- "epoch: 25 step: 57, loss is 1.0621880292892456\n",
- "epoch: 25 step: 58, loss is 1.05171537399292\n",
- "epoch: 25 step: 59, loss is 1.1661138534545898\n",
- "epoch: 25 step: 60, loss is 1.106707215309143\n",
- "epoch: 25 step: 61, loss is 1.061164140701294\n",
- "epoch: 25 step: 62, loss is 1.1553099155426025\n",
- "epoch: 25 step: 63, loss is 1.0260666608810425\n",
- "epoch: 25 step: 64, loss is 1.132649540901184\n",
- "epoch: 25 step: 65, loss is 1.0889328718185425\n",
- "epoch: 25 step: 66, loss is 1.1044869422912598\n",
- "epoch: 25 step: 67, loss is 1.1112422943115234\n",
- "epoch: 25 step: 68, loss is 1.0697600841522217\n",
- "epoch: 25 step: 69, loss is 1.0266914367675781\n",
- "epoch: 25 step: 70, loss is 1.1367233991622925\n",
- "epoch: 25 step: 71, loss is 1.1762535572052002\n",
- "epoch: 25 step: 72, loss is 0.9579718112945557\n",
- "epoch: 25 step: 73, loss is 1.080369472503662\n",
- "epoch: 25 step: 74, loss is 1.0514192581176758\n",
- "epoch: 25 step: 75, loss is 1.0466524362564087\n",
- "epoch: 25 step: 76, loss is 1.0832782983779907\n",
- "epoch: 25 step: 77, loss is 1.0952484607696533\n",
- "epoch: 25 step: 78, loss is 1.0719014406204224\n",
- "epoch: 25 step: 79, loss is 0.999049186706543\n",
- "epoch: 25 step: 80, loss is 1.0770364999771118\n",
- "epoch: 25 step: 81, loss is 1.0887103080749512\n",
- "epoch: 25 step: 82, loss is 1.1109684705734253\n",
- "epoch: 25 step: 83, loss is 1.0503671169281006\n",
- "epoch: 25 step: 84, loss is 1.1708521842956543\n",
- "epoch: 25 step: 85, loss is 1.105607271194458\n",
- "epoch: 25 step: 86, loss is 1.1338499784469604\n",
- "epoch: 25 step: 87, loss is 1.1106376647949219\n",
- "epoch: 25 step: 88, loss is 1.0791434049606323\n",
- "epoch: 25 step: 89, loss is 1.0062893629074097\n",
- "epoch: 25 step: 90, loss is 1.019977331161499\n",
- "epoch: 25 step: 91, loss is 1.0760611295700073\n",
- "epoch: 25 step: 92, loss is 1.0790257453918457\n",
- "epoch: 25 step: 93, loss is 1.0402240753173828\n",
- "epoch: 25 step: 94, loss is 1.1342862844467163\n",
- "epoch: 25 step: 95, loss is 1.0273258686065674\n",
- "epoch: 25 step: 96, loss is 1.1025688648223877\n",
- "epoch: 25 step: 97, loss is 1.1238374710083008\n",
- "epoch: 25 step: 98, loss is 1.0744726657867432\n",
- "epoch: 25 step: 99, loss is 1.1032700538635254\n",
- "epoch: 25 step: 100, loss is 1.137713074684143\n",
- "epoch: 25 step: 101, loss is 1.0966110229492188\n",
- "epoch: 25 step: 102, loss is 1.1041685342788696\n",
- "epoch: 25 step: 103, loss is 1.0489667654037476\n",
- "epoch: 25 step: 104, loss is 1.0010182857513428\n",
- "epoch: 25 step: 105, loss is 1.0343749523162842\n",
- "epoch: 25 step: 106, loss is 1.0772194862365723\n",
- "epoch: 25 step: 107, loss is 0.999282956123352\n",
- "epoch: 25 step: 108, loss is 1.1229469776153564\n",
- "epoch: 25 step: 109, loss is 1.0480936765670776\n",
- "epoch: 25 step: 110, loss is 1.0306779146194458\n",
- "epoch: 25 step: 111, loss is 1.0049049854278564\n",
- "epoch: 25 step: 112, loss is 1.0112063884735107\n",
- "epoch: 25 step: 113, loss is 1.0822912454605103\n",
- "epoch: 25 step: 114, loss is 1.0411224365234375\n",
- "epoch: 25 step: 115, loss is 1.0773202180862427\n",
- "epoch: 25 step: 116, loss is 1.0551668405532837\n",
- "epoch: 25 step: 117, loss is 1.1168681383132935\n",
- "epoch: 25 step: 118, loss is 0.9704387187957764\n",
- "epoch: 25 step: 119, loss is 1.134149432182312\n",
- "epoch: 25 step: 120, loss is 0.9871140718460083\n",
- "epoch: 25 step: 121, loss is 1.0210661888122559\n",
- "epoch: 25 step: 122, loss is 1.1468297243118286\n",
- "epoch: 25 step: 123, loss is 1.1028860807418823\n",
- "epoch: 25 step: 124, loss is 1.1045527458190918\n",
- "epoch: 25 step: 125, loss is 1.0534635782241821\n",
- "epoch: 25 step: 126, loss is 1.0983967781066895\n",
- "epoch: 25 step: 127, loss is 1.0373344421386719\n",
- "epoch: 25 step: 128, loss is 1.1219136714935303\n",
- "epoch: 25 step: 129, loss is 1.068048357963562\n",
- "epoch: 25 step: 130, loss is 1.091484785079956\n",
- "epoch: 25 step: 131, loss is 1.032631278038025\n",
- "epoch: 25 step: 132, loss is 1.1128851175308228\n",
- "epoch: 25 step: 133, loss is 1.087246060371399\n",
- "epoch: 25 step: 134, loss is 1.124280333518982\n",
- "epoch: 25 step: 135, loss is 1.1236577033996582\n",
- "epoch: 25 step: 136, loss is 1.0672986507415771\n",
- "epoch: 25 step: 137, loss is 1.0534167289733887\n",
- "epoch: 25 step: 138, loss is 1.1626495122909546\n",
- "epoch: 25 step: 139, loss is 1.0787688493728638\n",
- "epoch: 25 step: 140, loss is 1.0058670043945312\n",
- "epoch: 25 step: 141, loss is 1.118138074874878\n",
- "epoch: 25 step: 142, loss is 1.1579453945159912\n",
- "epoch: 25 step: 143, loss is 0.9916603565216064\n",
- "epoch: 25 step: 144, loss is 1.0520808696746826\n",
- "epoch: 25 step: 145, loss is 1.0431550741195679\n",
- "epoch: 25 step: 146, loss is 1.1541956663131714\n",
- "epoch: 25 step: 147, loss is 1.105986475944519\n",
- "epoch: 25 step: 148, loss is 1.0831660032272339\n",
- "epoch: 25 step: 149, loss is 1.1066980361938477\n",
- "epoch: 25 step: 150, loss is 1.0333201885223389\n",
- "epoch: 25 step: 151, loss is 1.0604230165481567\n",
- "epoch: 25 step: 152, loss is 1.0225627422332764\n",
- "epoch: 25 step: 153, loss is 1.0901498794555664\n",
- "epoch: 25 step: 154, loss is 1.0770379304885864\n",
- "epoch: 25 step: 155, loss is 1.0785655975341797\n",
- "epoch: 25 step: 156, loss is 1.092533826828003\n",
- "epoch: 25 step: 157, loss is 1.080465316772461\n",
- "epoch: 25 step: 158, loss is 1.0412288904190063\n",
- "epoch: 25 step: 159, loss is 1.1183334589004517\n",
- "epoch: 25 step: 160, loss is 1.1458343267440796\n",
- "epoch: 25 step: 161, loss is 1.0706539154052734\n",
- "epoch: 25 step: 162, loss is 1.157791018486023\n",
- "epoch: 25 step: 163, loss is 1.092441201210022\n",
- "epoch: 25 step: 164, loss is 1.073870062828064\n",
- "epoch: 25 step: 165, loss is 1.0526149272918701\n",
- "epoch: 25 step: 166, loss is 1.1032319068908691\n",
- "epoch: 25 step: 167, loss is 1.0222210884094238\n",
- "epoch: 25 step: 168, loss is 1.135607361793518\n",
- "epoch: 25 step: 169, loss is 1.1079177856445312\n",
- "epoch: 25 step: 170, loss is 1.1704673767089844\n",
- "epoch: 25 step: 171, loss is 1.1687424182891846\n",
- "epoch: 25 step: 172, loss is 1.0616486072540283\n",
- "epoch: 25 step: 173, loss is 1.079866647720337\n",
- "epoch: 25 step: 174, loss is 1.057521104812622\n",
- "epoch: 25 step: 175, loss is 1.0851926803588867\n",
- "epoch: 25 step: 176, loss is 1.0408588647842407\n",
- "epoch: 25 step: 177, loss is 1.158246636390686\n",
- "epoch: 25 step: 178, loss is 1.0870460271835327\n",
- "epoch: 25 step: 179, loss is 1.0948772430419922\n",
- "epoch: 25 step: 180, loss is 0.9931520223617554\n",
- "epoch: 25 step: 181, loss is 1.0503507852554321\n",
- "epoch: 25 step: 182, loss is 1.0508701801300049\n",
- "epoch: 25 step: 183, loss is 1.0698341131210327\n",
- "epoch: 25 step: 184, loss is 1.082878828048706\n",
- "epoch: 25 step: 185, loss is 1.141692876815796\n",
- "epoch: 25 step: 186, loss is 1.0640296936035156\n",
- "epoch: 25 step: 187, loss is 1.0724351406097412\n",
- "epoch: 25 step: 188, loss is 1.1006282567977905\n",
- "epoch: 25 step: 189, loss is 1.093940019607544\n",
- "epoch: 25 step: 190, loss is 1.0338797569274902\n",
- "epoch: 25 step: 191, loss is 1.0126454830169678\n",
- "epoch: 25 step: 192, loss is 1.049782395362854\n",
- "epoch: 25 step: 193, loss is 1.0432065725326538\n",
- "epoch: 25 step: 194, loss is 1.0758951902389526\n",
- "epoch: 25 step: 195, loss is 1.0382393598556519\n",
- "Train epoch time: 99232.283 ms, per step time: 508.884 ms\n",
- "epoch: 26 step: 1, loss is 1.0517640113830566\n",
- "epoch: 26 step: 2, loss is 1.034106731414795\n",
- "epoch: 26 step: 3, loss is 1.1050300598144531\n",
- "epoch: 26 step: 4, loss is 1.0493968725204468\n",
- "epoch: 26 step: 5, loss is 1.0649911165237427\n",
- "epoch: 26 step: 6, loss is 1.105018973350525\n",
- "epoch: 26 step: 7, loss is 1.0444979667663574\n",
- "epoch: 26 step: 8, loss is 1.1349263191223145\n",
- "epoch: 26 step: 9, loss is 1.0790820121765137\n",
- "epoch: 26 step: 10, loss is 1.0510661602020264\n",
- "epoch: 26 step: 11, loss is 1.1816296577453613\n",
- "epoch: 26 step: 12, loss is 1.0029466152191162\n",
- "epoch: 26 step: 13, loss is 1.0195821523666382\n",
- "epoch: 26 step: 14, loss is 1.0374330282211304\n",
- "epoch: 26 step: 15, loss is 1.079158902168274\n",
- "epoch: 26 step: 16, loss is 1.0664851665496826\n",
- "epoch: 26 step: 17, loss is 1.0550463199615479\n",
- "epoch: 26 step: 18, loss is 1.0381886959075928\n",
- "epoch: 26 step: 19, loss is 1.0533243417739868\n",
- "epoch: 26 step: 20, loss is 1.0075640678405762\n",
- "epoch: 26 step: 21, loss is 1.0217363834381104\n",
- "epoch: 26 step: 22, loss is 1.0725574493408203\n",
- "epoch: 26 step: 23, loss is 1.0504868030548096\n",
- "epoch: 26 step: 24, loss is 1.011362075805664\n",
- "epoch: 26 step: 25, loss is 1.0163311958312988\n",
- "epoch: 26 step: 26, loss is 1.0692439079284668\n",
- "epoch: 26 step: 27, loss is 1.1008000373840332\n",
- "epoch: 26 step: 28, loss is 1.0959250926971436\n",
- "epoch: 26 step: 29, loss is 1.0228633880615234\n",
- "epoch: 26 step: 30, loss is 1.0511887073516846\n",
- "epoch: 26 step: 31, loss is 1.0608770847320557\n",
- "epoch: 26 step: 32, loss is 1.0528080463409424\n",
- "epoch: 26 step: 33, loss is 1.140068769454956\n",
- "epoch: 26 step: 34, loss is 1.0786501169204712\n",
- "epoch: 26 step: 35, loss is 1.0421595573425293\n",
- "epoch: 26 step: 36, loss is 1.0266063213348389\n",
- "epoch: 26 step: 37, loss is 1.0157393217086792\n",
- "epoch: 26 step: 38, loss is 0.9573328495025635\n",
- "epoch: 26 step: 39, loss is 1.0755560398101807\n",
- "epoch: 26 step: 40, loss is 1.1283622980117798\n",
- "epoch: 26 step: 41, loss is 1.1111503839492798\n",
- "epoch: 26 step: 42, loss is 0.9759970307350159\n",
- "epoch: 26 step: 43, loss is 1.0019840002059937\n",
- "epoch: 26 step: 44, loss is 1.0777231454849243\n",
- "epoch: 26 step: 45, loss is 1.0543546676635742\n",
- "epoch: 26 step: 46, loss is 1.092705249786377\n",
- "epoch: 26 step: 47, loss is 1.0773663520812988\n",
- "epoch: 26 step: 48, loss is 1.0804762840270996\n",
- "epoch: 26 step: 49, loss is 0.9640929698944092\n",
- "epoch: 26 step: 50, loss is 1.1404153108596802\n",
- "epoch: 26 step: 51, loss is 1.1303207874298096\n",
- "epoch: 26 step: 52, loss is 1.0307775735855103\n",
- "epoch: 26 step: 53, loss is 1.0385438203811646\n",
- "epoch: 26 step: 54, loss is 1.020154595375061\n",
- "epoch: 26 step: 55, loss is 1.0177607536315918\n",
- "epoch: 26 step: 56, loss is 1.1031110286712646\n",
- "epoch: 26 step: 57, loss is 1.0564035177230835\n",
- "epoch: 26 step: 58, loss is 1.103069543838501\n",
- "epoch: 26 step: 59, loss is 1.0753121376037598\n",
- "epoch: 26 step: 60, loss is 1.086449384689331\n",
- "epoch: 26 step: 61, loss is 1.093638300895691\n",
- "epoch: 26 step: 62, loss is 1.0846304893493652\n",
- "epoch: 26 step: 63, loss is 1.0204472541809082\n",
- "epoch: 26 step: 64, loss is 1.0205191373825073\n",
- "epoch: 26 step: 65, loss is 1.0733025074005127\n",
- "epoch: 26 step: 66, loss is 1.0562231540679932\n",
- "epoch: 26 step: 67, loss is 1.0363019704818726\n",
- "epoch: 26 step: 68, loss is 1.0184295177459717\n",
- "epoch: 26 step: 69, loss is 1.1273438930511475\n",
- "epoch: 26 step: 70, loss is 1.063193678855896\n",
- "epoch: 26 step: 71, loss is 1.092448115348816\n",
- "epoch: 26 step: 72, loss is 1.0181409120559692\n",
- "epoch: 26 step: 73, loss is 1.1541016101837158\n",
- "epoch: 26 step: 74, loss is 1.0397893190383911\n",
- "epoch: 26 step: 75, loss is 1.0326511859893799\n",
- "epoch: 26 step: 76, loss is 1.1474494934082031\n",
- "epoch: 26 step: 77, loss is 1.1063835620880127\n",
- "epoch: 26 step: 78, loss is 1.1577624082565308\n",
- "epoch: 26 step: 79, loss is 1.1082344055175781\n",
- "epoch: 26 step: 80, loss is 1.0959268808364868\n",
- "epoch: 26 step: 81, loss is 1.0803630352020264\n",
- "epoch: 26 step: 82, loss is 1.042537808418274\n",
- "epoch: 26 step: 83, loss is 1.0456452369689941\n",
- "epoch: 26 step: 84, loss is 1.0787311792373657\n",
- "epoch: 26 step: 85, loss is 1.1113595962524414\n",
- "epoch: 26 step: 86, loss is 1.0774568319320679\n",
- "epoch: 26 step: 87, loss is 1.05318284034729\n",
- "epoch: 26 step: 88, loss is 1.121375322341919\n",
- "epoch: 26 step: 89, loss is 1.0215983390808105\n",
- "epoch: 26 step: 90, loss is 0.9743614196777344\n",
- "epoch: 26 step: 91, loss is 1.1169620752334595\n",
- "epoch: 26 step: 92, loss is 1.050586223602295\n",
- "epoch: 26 step: 93, loss is 1.048630714416504\n",
- "epoch: 26 step: 94, loss is 1.0937471389770508\n",
- "epoch: 26 step: 95, loss is 1.026048183441162\n",
- "epoch: 26 step: 96, loss is 1.0549015998840332\n",
- "epoch: 26 step: 97, loss is 1.0495948791503906\n",
- "epoch: 26 step: 98, loss is 1.0430347919464111\n",
- "epoch: 26 step: 99, loss is 1.045041561126709\n",
- "epoch: 26 step: 100, loss is 0.9819204807281494\n",
- "epoch: 26 step: 101, loss is 1.0283970832824707\n",
- "epoch: 26 step: 102, loss is 1.0337718725204468\n",
- "epoch: 26 step: 103, loss is 1.094991683959961\n",
- "epoch: 26 step: 104, loss is 1.064126968383789\n",
- "epoch: 26 step: 105, loss is 1.0757126808166504\n",
- "epoch: 26 step: 106, loss is 1.02644944190979\n",
- "epoch: 26 step: 107, loss is 0.9997298121452332\n",
- "epoch: 26 step: 108, loss is 1.055686116218567\n",
- "epoch: 26 step: 109, loss is 1.0563688278198242\n",
- "epoch: 26 step: 110, loss is 1.0874462127685547\n",
- "epoch: 26 step: 111, loss is 1.0292081832885742\n",
- "epoch: 26 step: 112, loss is 1.1482970714569092\n",
- "epoch: 26 step: 113, loss is 1.0572491884231567\n",
- "epoch: 26 step: 114, loss is 1.0562753677368164\n",
- "epoch: 26 step: 115, loss is 1.0584640502929688\n",
- "epoch: 26 step: 116, loss is 1.0785645246505737\n",
- "epoch: 26 step: 117, loss is 1.0729360580444336\n",
- "epoch: 26 step: 118, loss is 0.9676029086112976\n",
- "epoch: 26 step: 119, loss is 1.0841299295425415\n",
- "epoch: 26 step: 120, loss is 1.072570562362671\n",
- "epoch: 26 step: 121, loss is 1.1914576292037964\n",
- "epoch: 26 step: 122, loss is 0.9901759028434753\n",
- "epoch: 26 step: 123, loss is 1.0641156435012817\n",
- "epoch: 26 step: 124, loss is 0.9963059425354004\n",
- "epoch: 26 step: 125, loss is 0.985388994216919\n",
- "epoch: 26 step: 126, loss is 1.1377520561218262\n",
- "epoch: 26 step: 127, loss is 1.0856072902679443\n",
- "epoch: 26 step: 128, loss is 1.0533015727996826\n",
- "epoch: 26 step: 129, loss is 1.015711784362793\n",
- "epoch: 26 step: 130, loss is 1.0190331935882568\n",
- "epoch: 26 step: 131, loss is 1.1201162338256836\n",
- "epoch: 26 step: 132, loss is 1.0186271667480469\n",
- "epoch: 26 step: 133, loss is 1.0069947242736816\n",
- "epoch: 26 step: 134, loss is 1.0293490886688232\n",
- "epoch: 26 step: 135, loss is 1.0155060291290283\n",
- "epoch: 26 step: 136, loss is 1.0905357599258423\n",
- "epoch: 26 step: 137, loss is 1.0570062398910522\n",
- "epoch: 26 step: 138, loss is 1.1058920621871948\n",
- "epoch: 26 step: 139, loss is 1.0636885166168213\n",
- "epoch: 26 step: 140, loss is 1.0073214769363403\n",
- "epoch: 26 step: 141, loss is 1.0989006757736206\n",
- "epoch: 26 step: 142, loss is 1.0409773588180542\n",
- "epoch: 26 step: 143, loss is 1.1236248016357422\n",
- "epoch: 26 step: 144, loss is 1.1278859376907349\n",
- "epoch: 26 step: 145, loss is 1.127524971961975\n",
- "epoch: 26 step: 146, loss is 1.0904924869537354\n",
- "epoch: 26 step: 147, loss is 1.0627973079681396\n",
- "epoch: 26 step: 148, loss is 1.025049090385437\n",
- "epoch: 26 step: 149, loss is 1.144707202911377\n",
- "epoch: 26 step: 150, loss is 0.9949439764022827\n",
- "epoch: 26 step: 151, loss is 1.0586516857147217\n",
- "epoch: 26 step: 152, loss is 1.1403663158416748\n",
- "epoch: 26 step: 153, loss is 1.013765811920166\n",
- "epoch: 26 step: 154, loss is 1.0705132484436035\n",
- "epoch: 26 step: 155, loss is 1.0457738637924194\n",
- "epoch: 26 step: 156, loss is 1.1553254127502441\n",
- "epoch: 26 step: 157, loss is 1.1338465213775635\n",
- "epoch: 26 step: 158, loss is 1.0925546884536743\n",
- "epoch: 26 step: 159, loss is 1.039358139038086\n",
- "epoch: 26 step: 160, loss is 1.0264304876327515\n",
- "epoch: 26 step: 161, loss is 1.0180381536483765\n",
- "epoch: 26 step: 162, loss is 1.0640860795974731\n",
- "epoch: 26 step: 163, loss is 1.1145057678222656\n",
- "epoch: 26 step: 164, loss is 1.052668571472168\n",
- "epoch: 26 step: 165, loss is 1.0262118577957153\n",
- "epoch: 26 step: 166, loss is 1.0479339361190796\n",
- "epoch: 26 step: 167, loss is 1.0635230541229248\n",
- "epoch: 26 step: 168, loss is 1.0503597259521484\n",
- "epoch: 26 step: 169, loss is 1.0509954690933228\n",
- "epoch: 26 step: 170, loss is 1.0316325426101685\n",
- "epoch: 26 step: 171, loss is 1.0291749238967896\n",
- "epoch: 26 step: 172, loss is 0.9605768918991089\n",
- "epoch: 26 step: 173, loss is 1.0807660818099976\n",
- "epoch: 26 step: 174, loss is 1.0707502365112305\n",
- "epoch: 26 step: 175, loss is 1.0711973905563354\n",
- "epoch: 26 step: 176, loss is 1.0418204069137573\n",
- "epoch: 26 step: 177, loss is 1.1052236557006836\n",
- "epoch: 26 step: 178, loss is 1.0412814617156982\n",
- "epoch: 26 step: 179, loss is 1.115617275238037\n",
- "epoch: 26 step: 180, loss is 1.015880823135376\n",
- "epoch: 26 step: 181, loss is 1.1110204458236694\n",
- "epoch: 26 step: 182, loss is 1.1573785543441772\n",
- "epoch: 26 step: 183, loss is 1.0637462139129639\n",
- "epoch: 26 step: 184, loss is 1.077017068862915\n",
- "epoch: 26 step: 185, loss is 0.9998891949653625\n",
- "epoch: 26 step: 186, loss is 1.0074355602264404\n",
- "epoch: 26 step: 187, loss is 1.10640287399292\n",
- "epoch: 26 step: 188, loss is 0.9725328087806702\n",
- "epoch: 26 step: 189, loss is 1.0363848209381104\n",
- "epoch: 26 step: 190, loss is 1.0673935413360596\n",
- "epoch: 26 step: 191, loss is 1.0101263523101807\n",
- "epoch: 26 step: 192, loss is 1.0690515041351318\n",
- "epoch: 26 step: 193, loss is 1.0714102983474731\n",
- "epoch: 26 step: 194, loss is 0.9500989317893982\n",
- "epoch: 26 step: 195, loss is 1.0447680950164795\n",
- "Train epoch time: 95797.186 ms, per step time: 491.268 ms\n",
- "epoch: 27 step: 1, loss is 1.031938076019287\n",
- "epoch: 27 step: 2, loss is 1.0668877363204956\n",
- "epoch: 27 step: 3, loss is 0.9860163331031799\n",
- "epoch: 27 step: 4, loss is 1.0331521034240723\n",
- "epoch: 27 step: 5, loss is 1.060064435005188\n",
- "epoch: 27 step: 6, loss is 1.0411007404327393\n",
- "epoch: 27 step: 7, loss is 1.0935925245285034\n",
- "epoch: 27 step: 8, loss is 1.0122017860412598\n",
- "epoch: 27 step: 9, loss is 0.9699509143829346\n",
- "epoch: 27 step: 10, loss is 1.0239531993865967\n",
- "epoch: 27 step: 11, loss is 1.0220377445220947\n",
- "epoch: 27 step: 12, loss is 1.0477886199951172\n",
- "epoch: 27 step: 13, loss is 1.059556245803833\n",
- "epoch: 27 step: 14, loss is 1.021897554397583\n",
- "epoch: 27 step: 15, loss is 1.0930849313735962\n",
- "epoch: 27 step: 16, loss is 1.0485190153121948\n",
- "epoch: 27 step: 17, loss is 0.998543381690979\n",
- "epoch: 27 step: 18, loss is 1.0500601530075073\n",
- "epoch: 27 step: 19, loss is 1.1116565465927124\n",
- "epoch: 27 step: 20, loss is 1.0387561321258545\n",
- "epoch: 27 step: 21, loss is 1.0739219188690186\n",
- "epoch: 27 step: 22, loss is 1.0172758102416992\n",
- "epoch: 27 step: 23, loss is 1.0142052173614502\n",
- "epoch: 27 step: 24, loss is 1.0664150714874268\n",
- "epoch: 27 step: 25, loss is 1.0585476160049438\n",
- "epoch: 27 step: 26, loss is 1.0972603559494019\n",
- "epoch: 27 step: 27, loss is 1.1184229850769043\n",
- "epoch: 27 step: 28, loss is 0.9801948070526123\n",
- "epoch: 27 step: 29, loss is 1.0599758625030518\n",
- "epoch: 27 step: 30, loss is 1.0749592781066895\n",
- "epoch: 27 step: 31, loss is 1.012206792831421\n",
- "epoch: 27 step: 32, loss is 1.0299081802368164\n",
- "epoch: 27 step: 33, loss is 1.0116221904754639\n",
- "epoch: 27 step: 34, loss is 1.0666142702102661\n",
- "epoch: 27 step: 35, loss is 0.9941093921661377\n",
- "epoch: 27 step: 36, loss is 1.0543272495269775\n",
- "epoch: 27 step: 37, loss is 1.0386252403259277\n",
- "epoch: 27 step: 38, loss is 1.0291391611099243\n",
- "epoch: 27 step: 39, loss is 1.0993064641952515\n",
- "epoch: 27 step: 40, loss is 1.0329136848449707\n",
- "epoch: 27 step: 41, loss is 1.0471508502960205\n",
- "epoch: 27 step: 42, loss is 0.9570472836494446\n",
- "epoch: 27 step: 43, loss is 1.1126043796539307\n",
- "epoch: 27 step: 44, loss is 1.0687880516052246\n",
- "epoch: 27 step: 45, loss is 1.0175225734710693\n",
- "epoch: 27 step: 46, loss is 1.0748958587646484\n",
- "epoch: 27 step: 47, loss is 1.036515712738037\n",
- "epoch: 27 step: 48, loss is 0.9884911775588989\n",
- "epoch: 27 step: 49, loss is 1.0220438241958618\n",
- "epoch: 27 step: 50, loss is 1.0583467483520508\n",
- "epoch: 27 step: 51, loss is 1.0183724164962769\n",
- "epoch: 27 step: 52, loss is 1.0568006038665771\n",
- "epoch: 27 step: 53, loss is 1.0342612266540527\n",
- "epoch: 27 step: 54, loss is 1.0179940462112427\n",
- "epoch: 27 step: 55, loss is 1.0346248149871826\n",
- "epoch: 27 step: 56, loss is 1.0310218334197998\n",
- "epoch: 27 step: 57, loss is 1.0720340013504028\n",
- "epoch: 27 step: 58, loss is 1.1268504858016968\n",
- "epoch: 27 step: 59, loss is 1.0168635845184326\n",
- "epoch: 27 step: 60, loss is 1.0409904718399048\n",
- "epoch: 27 step: 61, loss is 1.0128271579742432\n",
- "epoch: 27 step: 62, loss is 1.0853266716003418\n",
- "epoch: 27 step: 63, loss is 0.9940942525863647\n",
- "epoch: 27 step: 64, loss is 1.0802412033081055\n",
- "epoch: 27 step: 65, loss is 1.0525023937225342\n",
- "epoch: 27 step: 66, loss is 1.0741641521453857\n",
- "epoch: 27 step: 67, loss is 1.0447280406951904\n",
- "epoch: 27 step: 68, loss is 1.0534757375717163\n",
- "epoch: 27 step: 69, loss is 1.0584118366241455\n",
- "epoch: 27 step: 70, loss is 1.0397610664367676\n",
- "epoch: 27 step: 71, loss is 1.027557373046875\n",
- "epoch: 27 step: 72, loss is 1.07358980178833\n",
- "epoch: 27 step: 73, loss is 1.0978827476501465\n",
- "epoch: 27 step: 74, loss is 1.0359325408935547\n",
- "epoch: 27 step: 75, loss is 1.1403580904006958\n",
- "epoch: 27 step: 76, loss is 1.0549849271774292\n",
- "epoch: 27 step: 77, loss is 1.0214375257492065\n",
- "epoch: 27 step: 78, loss is 0.9793615341186523\n",
- "epoch: 27 step: 79, loss is 0.9985888004302979\n",
- "epoch: 27 step: 80, loss is 1.0429975986480713\n",
- "epoch: 27 step: 81, loss is 1.0607985258102417\n",
- "epoch: 27 step: 82, loss is 1.0195157527923584\n",
- "epoch: 27 step: 83, loss is 1.032827377319336\n",
- "epoch: 27 step: 84, loss is 1.0506346225738525\n",
- "epoch: 27 step: 85, loss is 1.0550663471221924\n",
- "epoch: 27 step: 86, loss is 1.014336347579956\n",
- "epoch: 27 step: 87, loss is 1.024290680885315\n",
- "epoch: 27 step: 88, loss is 1.053837776184082\n",
- "epoch: 27 step: 89, loss is 1.1035176515579224\n",
- "epoch: 27 step: 90, loss is 1.0343066453933716\n",
- "epoch: 27 step: 91, loss is 1.0723637342453003\n",
- "epoch: 27 step: 92, loss is 1.046098232269287\n",
- "epoch: 27 step: 93, loss is 1.1159708499908447\n",
- "epoch: 27 step: 94, loss is 1.1092207431793213\n",
- "epoch: 27 step: 95, loss is 1.028820276260376\n",
- "epoch: 27 step: 96, loss is 0.9988867044448853\n",
- "epoch: 27 step: 97, loss is 1.0653789043426514\n",
- "epoch: 27 step: 98, loss is 1.021823525428772\n",
- "epoch: 27 step: 99, loss is 1.1179784536361694\n",
- "epoch: 27 step: 100, loss is 0.9874042272567749\n",
- "epoch: 27 step: 101, loss is 1.0595815181732178\n",
- "epoch: 27 step: 102, loss is 1.009967565536499\n",
- "epoch: 27 step: 103, loss is 1.0396479368209839\n",
- "epoch: 27 step: 104, loss is 1.1013263463974\n",
- "epoch: 27 step: 105, loss is 1.05772864818573\n",
- "epoch: 27 step: 106, loss is 1.0566017627716064\n",
- "epoch: 27 step: 107, loss is 1.0697084665298462\n",
- "epoch: 27 step: 108, loss is 1.1415010690689087\n",
- "epoch: 27 step: 109, loss is 1.092660903930664\n",
- "epoch: 27 step: 110, loss is 1.0666115283966064\n",
- "epoch: 27 step: 111, loss is 0.9677072763442993\n",
- "epoch: 27 step: 112, loss is 0.9994451999664307\n",
- "epoch: 27 step: 113, loss is 1.0586915016174316\n",
- "epoch: 27 step: 114, loss is 1.028842806816101\n",
- "epoch: 27 step: 115, loss is 1.028630018234253\n",
- "epoch: 27 step: 116, loss is 0.9947841167449951\n",
- "epoch: 27 step: 117, loss is 1.0322678089141846\n",
- "epoch: 27 step: 118, loss is 1.1226840019226074\n",
- "epoch: 27 step: 119, loss is 1.0896713733673096\n",
- "epoch: 27 step: 120, loss is 1.1376898288726807\n",
- "epoch: 27 step: 121, loss is 0.9801294803619385\n",
- "epoch: 27 step: 122, loss is 1.063185214996338\n",
- "epoch: 27 step: 123, loss is 1.0831260681152344\n",
- "epoch: 27 step: 124, loss is 1.030491828918457\n",
- "epoch: 27 step: 125, loss is 0.9727450013160706\n",
- "epoch: 27 step: 126, loss is 0.9762457609176636\n",
- "epoch: 27 step: 127, loss is 1.01838219165802\n",
- "epoch: 27 step: 128, loss is 1.0679218769073486\n",
- "epoch: 27 step: 129, loss is 1.0443129539489746\n",
- "epoch: 27 step: 130, loss is 1.0435552597045898\n",
- "epoch: 27 step: 131, loss is 0.9975802898406982\n",
- "epoch: 27 step: 132, loss is 0.9979383945465088\n",
- "epoch: 27 step: 133, loss is 1.0742639303207397\n",
- "epoch: 27 step: 134, loss is 1.0108975172042847\n",
- "epoch: 27 step: 135, loss is 0.9972212314605713\n",
- "epoch: 27 step: 136, loss is 0.9738519787788391\n",
- "epoch: 27 step: 137, loss is 1.0242283344268799\n",
- "epoch: 27 step: 138, loss is 1.031661033630371\n",
- "epoch: 27 step: 139, loss is 1.0496327877044678\n",
- "epoch: 27 step: 140, loss is 0.9991055727005005\n",
- "epoch: 27 step: 141, loss is 1.050097107887268\n",
- "epoch: 27 step: 142, loss is 1.1076414585113525\n",
- "epoch: 27 step: 143, loss is 1.0060323476791382\n",
- "epoch: 27 step: 144, loss is 1.009609341621399\n",
- "epoch: 27 step: 145, loss is 1.0796658992767334\n",
- "epoch: 27 step: 146, loss is 1.1502337455749512\n",
- "epoch: 27 step: 147, loss is 1.1472514867782593\n",
- "epoch: 27 step: 148, loss is 1.029049277305603\n",
- "epoch: 27 step: 149, loss is 1.0642590522766113\n",
- "epoch: 27 step: 150, loss is 1.123306155204773\n",
- "epoch: 27 step: 151, loss is 1.0015729665756226\n",
- "epoch: 27 step: 152, loss is 1.0918514728546143\n",
- "epoch: 27 step: 153, loss is 1.1430081129074097\n",
- "epoch: 27 step: 154, loss is 1.0776640176773071\n",
- "epoch: 27 step: 155, loss is 0.9962928295135498\n",
- "epoch: 27 step: 156, loss is 1.065542221069336\n",
- "epoch: 27 step: 157, loss is 0.974758505821228\n",
- "epoch: 27 step: 158, loss is 1.0509774684906006\n",
- "epoch: 27 step: 159, loss is 1.0239585638046265\n",
- "epoch: 27 step: 160, loss is 1.0769890546798706\n",
- "epoch: 27 step: 161, loss is 1.085533857345581\n",
- "epoch: 27 step: 162, loss is 1.130881667137146\n",
- "epoch: 27 step: 163, loss is 1.0892539024353027\n",
- "epoch: 27 step: 164, loss is 1.0556637048721313\n",
- "epoch: 27 step: 165, loss is 1.0475176572799683\n",
- "epoch: 27 step: 166, loss is 0.9629400968551636\n",
- "epoch: 27 step: 167, loss is 1.0016729831695557\n",
- "epoch: 27 step: 168, loss is 1.0096464157104492\n",
- "epoch: 27 step: 169, loss is 1.0475547313690186\n",
- "epoch: 27 step: 170, loss is 1.0397958755493164\n",
- "epoch: 27 step: 171, loss is 1.0928940773010254\n",
- "epoch: 27 step: 172, loss is 1.0203711986541748\n",
- "epoch: 27 step: 173, loss is 1.1169898509979248\n",
- "epoch: 27 step: 174, loss is 1.0201783180236816\n",
- "epoch: 27 step: 175, loss is 1.051028847694397\n",
- "epoch: 27 step: 176, loss is 1.0660400390625\n",
- "epoch: 27 step: 177, loss is 1.073883056640625\n",
- "epoch: 27 step: 178, loss is 1.0735760927200317\n",
- "epoch: 27 step: 179, loss is 1.0890427827835083\n",
- "epoch: 27 step: 180, loss is 1.0405343770980835\n",
- "epoch: 27 step: 181, loss is 1.0182738304138184\n",
- "epoch: 27 step: 182, loss is 1.1307508945465088\n",
- "epoch: 27 step: 183, loss is 1.092827558517456\n",
- "epoch: 27 step: 184, loss is 1.081020712852478\n",
- "epoch: 27 step: 185, loss is 1.046826958656311\n",
- "epoch: 27 step: 186, loss is 1.1096196174621582\n",
- "epoch: 27 step: 187, loss is 1.065929889678955\n",
- "epoch: 27 step: 188, loss is 1.066022515296936\n",
- "epoch: 27 step: 189, loss is 1.0617411136627197\n",
- "epoch: 27 step: 190, loss is 1.0043805837631226\n",
- "epoch: 27 step: 191, loss is 1.0108695030212402\n",
- "epoch: 27 step: 192, loss is 1.0749719142913818\n",
- "epoch: 27 step: 193, loss is 1.0734087228775024\n",
- "epoch: 27 step: 194, loss is 1.1229863166809082\n",
- "epoch: 27 step: 195, loss is 1.0395349264144897\n",
- "Train epoch time: 94002.492 ms, per step time: 482.064 ms\n",
- "epoch: 28 step: 1, loss is 1.0224573612213135\n",
- "epoch: 28 step: 2, loss is 1.0593703985214233\n",
- "epoch: 28 step: 3, loss is 1.0230135917663574\n",
- "epoch: 28 step: 4, loss is 1.0694102048873901\n",
- "epoch: 28 step: 5, loss is 1.1540521383285522\n",
- "epoch: 28 step: 6, loss is 1.0666083097457886\n",
- "epoch: 28 step: 7, loss is 1.0635886192321777\n",
- "epoch: 28 step: 8, loss is 0.9830084443092346\n",
- "epoch: 28 step: 9, loss is 1.0175553560256958\n",
- "epoch: 28 step: 10, loss is 0.9548657536506653\n",
- "epoch: 28 step: 11, loss is 1.08663809299469\n",
- "epoch: 28 step: 12, loss is 1.076303482055664\n",
- "epoch: 28 step: 13, loss is 0.9986739158630371\n",
- "epoch: 28 step: 14, loss is 1.0483555793762207\n",
- "epoch: 28 step: 15, loss is 1.0853404998779297\n",
- "epoch: 28 step: 16, loss is 0.9979759454727173\n",
- "epoch: 28 step: 17, loss is 0.9494763612747192\n",
- "epoch: 28 step: 18, loss is 1.0613871812820435\n",
- "epoch: 28 step: 19, loss is 1.085707187652588\n",
- "epoch: 28 step: 20, loss is 1.054244041442871\n",
- "epoch: 28 step: 21, loss is 1.0656378269195557\n",
- "epoch: 28 step: 22, loss is 1.0790541172027588\n",
- "epoch: 28 step: 23, loss is 1.0171475410461426\n",
- "epoch: 28 step: 24, loss is 0.9682968854904175\n",
- "epoch: 28 step: 25, loss is 1.0082801580429077\n",
- "epoch: 28 step: 26, loss is 1.0530638694763184\n",
- "epoch: 28 step: 27, loss is 1.0116281509399414\n",
- "epoch: 28 step: 28, loss is 1.042952299118042\n",
- "epoch: 28 step: 29, loss is 1.0154204368591309\n",
- "epoch: 28 step: 30, loss is 0.9193597435951233\n",
- "epoch: 28 step: 31, loss is 1.0131980180740356\n",
- "epoch: 28 step: 32, loss is 1.0264443159103394\n",
- "epoch: 28 step: 33, loss is 1.0679888725280762\n",
- "epoch: 28 step: 34, loss is 1.0144927501678467\n",
- "epoch: 28 step: 35, loss is 1.1293317079544067\n",
- "epoch: 28 step: 36, loss is 1.0371441841125488\n",
- "epoch: 28 step: 37, loss is 0.9944879412651062\n",
- "epoch: 28 step: 38, loss is 1.056294560432434\n",
- "epoch: 28 step: 39, loss is 0.995818018913269\n",
- "epoch: 28 step: 40, loss is 1.031392216682434\n",
- "epoch: 28 step: 41, loss is 1.1294634342193604\n",
- "epoch: 28 step: 42, loss is 1.034539818763733\n",
- "epoch: 28 step: 43, loss is 1.0686429738998413\n",
- "epoch: 28 step: 44, loss is 1.011942982673645\n",
- "epoch: 28 step: 45, loss is 1.0349501371383667\n",
- "epoch: 28 step: 46, loss is 1.0007424354553223\n",
- "epoch: 28 step: 47, loss is 0.9678168296813965\n",
- "epoch: 28 step: 48, loss is 1.0319151878356934\n",
- "epoch: 28 step: 49, loss is 1.0856274366378784\n",
- "epoch: 28 step: 50, loss is 1.073692798614502\n",
- "epoch: 28 step: 51, loss is 1.056383490562439\n",
- "epoch: 28 step: 52, loss is 1.0075013637542725\n",
- "epoch: 28 step: 53, loss is 1.0419431924819946\n",
- "epoch: 28 step: 54, loss is 0.9617053270339966\n",
- "epoch: 28 step: 55, loss is 1.0600147247314453\n",
- "epoch: 28 step: 56, loss is 1.0252337455749512\n",
- "epoch: 28 step: 57, loss is 0.9948336482048035\n",
- "epoch: 28 step: 58, loss is 1.0613398551940918\n",
- "epoch: 28 step: 59, loss is 1.0164568424224854\n",
- "epoch: 28 step: 60, loss is 1.04026460647583\n",
- "epoch: 28 step: 61, loss is 0.9468145370483398\n",
- "epoch: 28 step: 62, loss is 1.0781135559082031\n",
- "epoch: 28 step: 63, loss is 1.1466772556304932\n",
- "epoch: 28 step: 64, loss is 0.9822742938995361\n",
- "epoch: 28 step: 65, loss is 1.011114478111267\n",
- "epoch: 28 step: 66, loss is 1.037644863128662\n",
- "epoch: 28 step: 67, loss is 1.114798665046692\n",
- "epoch: 28 step: 68, loss is 1.0587235689163208\n",
- "epoch: 28 step: 69, loss is 1.0594000816345215\n",
- "epoch: 28 step: 70, loss is 1.028313159942627\n",
- "epoch: 28 step: 71, loss is 0.9560521841049194\n",
- "epoch: 28 step: 72, loss is 1.067679762840271\n",
- "epoch: 28 step: 73, loss is 1.0169572830200195\n",
- "epoch: 28 step: 74, loss is 1.074602723121643\n",
- "epoch: 28 step: 75, loss is 1.0533905029296875\n",
- "epoch: 28 step: 76, loss is 1.0343904495239258\n",
- "epoch: 28 step: 77, loss is 1.0418795347213745\n",
- "epoch: 28 step: 78, loss is 0.9515565037727356\n",
- "epoch: 28 step: 79, loss is 0.9629123210906982\n",
- "epoch: 28 step: 80, loss is 0.9854238033294678\n",
- "epoch: 28 step: 81, loss is 0.9541388750076294\n",
- "epoch: 28 step: 82, loss is 1.0120108127593994\n",
- "epoch: 28 step: 83, loss is 0.9861869812011719\n",
- "epoch: 28 step: 84, loss is 1.1027255058288574\n",
- "epoch: 28 step: 85, loss is 1.0651925802230835\n",
- "epoch: 28 step: 86, loss is 1.0357418060302734\n",
- "epoch: 28 step: 87, loss is 1.034630298614502\n",
- "epoch: 28 step: 88, loss is 0.9883968830108643\n",
- "epoch: 28 step: 89, loss is 1.07198166847229\n",
- "epoch: 28 step: 90, loss is 1.0301835536956787\n",
- "epoch: 28 step: 91, loss is 1.0371626615524292\n",
- "epoch: 28 step: 92, loss is 1.0124101638793945\n",
- "epoch: 28 step: 93, loss is 1.028367280960083\n",
- "epoch: 28 step: 94, loss is 1.0403815507888794\n",
- "epoch: 28 step: 95, loss is 1.011099934577942\n",
- "epoch: 28 step: 96, loss is 1.0704402923583984\n",
- "epoch: 28 step: 97, loss is 1.0807019472122192\n",
- "epoch: 28 step: 98, loss is 1.0018218755722046\n",
- "epoch: 28 step: 99, loss is 1.0705413818359375\n",
- "epoch: 28 step: 100, loss is 1.0765767097473145\n",
- "epoch: 28 step: 101, loss is 0.9827833771705627\n",
- "epoch: 28 step: 102, loss is 1.0617852210998535\n",
- "epoch: 28 step: 103, loss is 1.0776385068893433\n",
- "epoch: 28 step: 104, loss is 1.0300766229629517\n",
- "epoch: 28 step: 105, loss is 0.9887511134147644\n",
- "epoch: 28 step: 106, loss is 0.9741336703300476\n",
- "epoch: 28 step: 107, loss is 1.0468299388885498\n",
- "epoch: 28 step: 108, loss is 0.9974187016487122\n",
- "epoch: 28 step: 109, loss is 1.0514752864837646\n",
- "epoch: 28 step: 110, loss is 1.013406753540039\n",
- "epoch: 28 step: 111, loss is 1.0026271343231201\n",
- "epoch: 28 step: 112, loss is 1.06780207157135\n",
- "epoch: 28 step: 113, loss is 1.040790319442749\n",
- "epoch: 28 step: 114, loss is 1.023992657661438\n",
- "epoch: 28 step: 115, loss is 1.0324180126190186\n",
- "epoch: 28 step: 116, loss is 0.9735078811645508\n",
- "epoch: 28 step: 117, loss is 1.080316424369812\n",
- "epoch: 28 step: 118, loss is 1.0619475841522217\n",
- "epoch: 28 step: 119, loss is 1.0990608930587769\n",
- "epoch: 28 step: 120, loss is 1.0390394926071167\n",
- "epoch: 28 step: 121, loss is 1.0258711576461792\n",
- "epoch: 28 step: 122, loss is 1.0874381065368652\n",
- "epoch: 28 step: 123, loss is 1.047053575515747\n",
- "epoch: 28 step: 124, loss is 1.0236473083496094\n",
- "epoch: 28 step: 125, loss is 1.050206184387207\n",
- "epoch: 28 step: 126, loss is 1.1069732904434204\n",
- "epoch: 28 step: 127, loss is 1.0576605796813965\n",
- "epoch: 28 step: 128, loss is 1.0175132751464844\n",
- "epoch: 28 step: 129, loss is 0.987375020980835\n",
- "epoch: 28 step: 130, loss is 1.0320420265197754\n",
- "epoch: 28 step: 131, loss is 0.9382754564285278\n",
- "epoch: 28 step: 132, loss is 1.026329755783081\n",
- "epoch: 28 step: 133, loss is 1.0330300331115723\n",
- "epoch: 28 step: 134, loss is 0.9924443364143372\n",
- "epoch: 28 step: 135, loss is 1.1003553867340088\n",
- "epoch: 28 step: 136, loss is 0.9750040769577026\n",
- "epoch: 28 step: 137, loss is 1.0107910633087158\n",
- "epoch: 28 step: 138, loss is 0.9466937780380249\n",
- "epoch: 28 step: 139, loss is 1.050576090812683\n",
- "epoch: 28 step: 140, loss is 1.0581032037734985\n",
- "epoch: 28 step: 141, loss is 1.0400702953338623\n",
- "epoch: 28 step: 142, loss is 1.0018815994262695\n",
- "epoch: 28 step: 143, loss is 1.027859091758728\n",
- "epoch: 28 step: 144, loss is 1.0933524370193481\n",
- "epoch: 28 step: 145, loss is 0.937736988067627\n",
- "epoch: 28 step: 146, loss is 1.0411815643310547\n",
- "epoch: 28 step: 147, loss is 1.032793641090393\n",
- "epoch: 28 step: 148, loss is 1.008480429649353\n",
- "epoch: 28 step: 149, loss is 1.0352234840393066\n",
- "epoch: 28 step: 150, loss is 1.0340938568115234\n",
- "epoch: 28 step: 151, loss is 1.0069482326507568\n",
- "epoch: 28 step: 152, loss is 1.1067968606948853\n",
- "epoch: 28 step: 153, loss is 1.085538625717163\n",
- "epoch: 28 step: 154, loss is 1.0101405382156372\n",
- "epoch: 28 step: 155, loss is 1.076969861984253\n",
- "epoch: 28 step: 156, loss is 1.0146191120147705\n",
- "epoch: 28 step: 157, loss is 1.0597333908081055\n",
- "epoch: 28 step: 158, loss is 0.9432191848754883\n",
- "epoch: 28 step: 159, loss is 1.0018564462661743\n",
- "epoch: 28 step: 160, loss is 0.9409213066101074\n",
- "epoch: 28 step: 161, loss is 1.031328797340393\n",
- "epoch: 28 step: 162, loss is 1.0136876106262207\n",
- "epoch: 28 step: 163, loss is 0.9601335525512695\n",
- "epoch: 28 step: 164, loss is 1.0553933382034302\n",
- "epoch: 28 step: 165, loss is 1.0746946334838867\n",
- "epoch: 28 step: 166, loss is 1.0633537769317627\n",
- "epoch: 28 step: 167, loss is 1.036028504371643\n",
- "epoch: 28 step: 168, loss is 1.080066204071045\n",
- "epoch: 28 step: 169, loss is 0.9953891038894653\n",
- "epoch: 28 step: 170, loss is 1.0530810356140137\n",
- "epoch: 28 step: 171, loss is 1.0139000415802002\n",
- "epoch: 28 step: 172, loss is 1.0373109579086304\n",
- "epoch: 28 step: 173, loss is 0.9882632493972778\n",
- "epoch: 28 step: 174, loss is 1.0238440036773682\n",
- "epoch: 28 step: 175, loss is 1.0995649099349976\n",
- "epoch: 28 step: 176, loss is 1.0362210273742676\n",
- "epoch: 28 step: 177, loss is 1.0361888408660889\n",
- "epoch: 28 step: 178, loss is 0.9864203333854675\n",
- "epoch: 28 step: 179, loss is 1.0440664291381836\n",
- "epoch: 28 step: 180, loss is 1.0287063121795654\n",
- "epoch: 28 step: 181, loss is 1.000828742980957\n",
- "epoch: 28 step: 182, loss is 1.011562705039978\n",
- "epoch: 28 step: 183, loss is 1.0436192750930786\n",
- "epoch: 28 step: 184, loss is 0.9986384510993958\n",
- "epoch: 28 step: 185, loss is 1.014258861541748\n",
- "epoch: 28 step: 186, loss is 1.016108512878418\n",
- "epoch: 28 step: 187, loss is 1.049915075302124\n",
- "epoch: 28 step: 188, loss is 1.0017075538635254\n",
- "epoch: 28 step: 189, loss is 1.1211209297180176\n",
- "epoch: 28 step: 190, loss is 1.0556925535202026\n",
- "epoch: 28 step: 191, loss is 0.9730790853500366\n",
- "epoch: 28 step: 192, loss is 1.1281460523605347\n",
- "epoch: 28 step: 193, loss is 0.9577211141586304\n",
- "epoch: 28 step: 194, loss is 1.0304639339447021\n",
- "epoch: 28 step: 195, loss is 0.9898112416267395\n",
- "Train epoch time: 103366.918 ms, per step time: 530.087 ms\n",
- "epoch: 29 step: 1, loss is 1.0468782186508179\n",
- "epoch: 29 step: 2, loss is 1.1114580631256104\n",
- "epoch: 29 step: 3, loss is 0.9974887371063232\n",
- "epoch: 29 step: 4, loss is 1.0087288618087769\n",
- "epoch: 29 step: 5, loss is 1.0508573055267334\n",
- "epoch: 29 step: 6, loss is 1.0497238636016846\n",
- "epoch: 29 step: 7, loss is 1.0038063526153564\n",
- "epoch: 29 step: 8, loss is 1.0369718074798584\n",
- "epoch: 29 step: 9, loss is 1.0110067129135132\n",
- "epoch: 29 step: 10, loss is 0.9671221971511841\n",
- "epoch: 29 step: 11, loss is 0.9799602031707764\n",
- "epoch: 29 step: 12, loss is 1.0456115007400513\n",
- "epoch: 29 step: 13, loss is 1.0065470933914185\n",
- "epoch: 29 step: 14, loss is 1.0598971843719482\n",
- "epoch: 29 step: 15, loss is 1.0293662548065186\n",
- "epoch: 29 step: 16, loss is 1.006454348564148\n",
- "epoch: 29 step: 17, loss is 1.0159281492233276\n",
- "epoch: 29 step: 18, loss is 0.982795238494873\n",
- "epoch: 29 step: 19, loss is 0.9600620865821838\n",
- "epoch: 29 step: 20, loss is 0.9918646812438965\n",
- "epoch: 29 step: 21, loss is 1.088813304901123\n",
- "epoch: 29 step: 22, loss is 0.9976871013641357\n",
- "epoch: 29 step: 23, loss is 1.0144503116607666\n",
- "epoch: 29 step: 24, loss is 0.9566434025764465\n",
- "epoch: 29 step: 25, loss is 1.1109318733215332\n",
- "epoch: 29 step: 26, loss is 1.0574815273284912\n",
- "epoch: 29 step: 27, loss is 0.9989632368087769\n",
- "epoch: 29 step: 28, loss is 1.028912901878357\n",
- "epoch: 29 step: 29, loss is 0.98712158203125\n",
- "epoch: 29 step: 30, loss is 1.0440857410430908\n",
- "epoch: 29 step: 31, loss is 1.0611263513565063\n",
- "epoch: 29 step: 32, loss is 1.023278832435608\n",
- "epoch: 29 step: 33, loss is 1.0410950183868408\n",
- "epoch: 29 step: 34, loss is 1.0239065885543823\n",
- "epoch: 29 step: 35, loss is 1.0066754817962646\n",
- "epoch: 29 step: 36, loss is 0.97225022315979\n",
- "epoch: 29 step: 37, loss is 1.0251888036727905\n",
- "epoch: 29 step: 38, loss is 0.95610511302948\n",
- "epoch: 29 step: 39, loss is 0.9716606140136719\n",
- "epoch: 29 step: 40, loss is 1.0700957775115967\n",
- "epoch: 29 step: 41, loss is 1.1364301443099976\n",
- "epoch: 29 step: 42, loss is 0.9981712102890015\n",
- "epoch: 29 step: 43, loss is 0.9684491157531738\n",
- "epoch: 29 step: 44, loss is 1.0047703981399536\n",
- "epoch: 29 step: 45, loss is 0.9766335487365723\n",
- "epoch: 29 step: 46, loss is 0.932518482208252\n",
- "epoch: 29 step: 47, loss is 1.0822333097457886\n",
- "epoch: 29 step: 48, loss is 1.0352964401245117\n",
- "epoch: 29 step: 49, loss is 0.9819753170013428\n",
- "epoch: 29 step: 50, loss is 1.0501552820205688\n",
- "epoch: 29 step: 51, loss is 1.0353647470474243\n",
- "epoch: 29 step: 52, loss is 0.9929361343383789\n",
- "epoch: 29 step: 53, loss is 1.0061821937561035\n",
- "epoch: 29 step: 54, loss is 1.1126571893692017\n",
- "epoch: 29 step: 55, loss is 1.0520261526107788\n",
- "epoch: 29 step: 56, loss is 0.9950947761535645\n",
- "epoch: 29 step: 57, loss is 0.9885305762290955\n",
- "epoch: 29 step: 58, loss is 1.0212897062301636\n",
- "epoch: 29 step: 59, loss is 1.034184455871582\n",
- "epoch: 29 step: 60, loss is 1.111081838607788\n",
- "epoch: 29 step: 61, loss is 1.0557329654693604\n",
- "epoch: 29 step: 62, loss is 1.0087419748306274\n",
- "epoch: 29 step: 63, loss is 1.0626472234725952\n",
- "epoch: 29 step: 64, loss is 1.0498045682907104\n",
- "epoch: 29 step: 65, loss is 1.0589845180511475\n",
- "epoch: 29 step: 66, loss is 0.9372965097427368\n",
- "epoch: 29 step: 67, loss is 0.9701070189476013\n",
- "epoch: 29 step: 68, loss is 0.9552212953567505\n",
- "epoch: 29 step: 69, loss is 1.0222499370574951\n",
- "epoch: 29 step: 70, loss is 1.0246927738189697\n",
- "epoch: 29 step: 71, loss is 1.0318398475646973\n",
- "epoch: 29 step: 72, loss is 1.0820567607879639\n",
- "epoch: 29 step: 73, loss is 1.0294506549835205\n",
- "epoch: 29 step: 74, loss is 0.9955751895904541\n",
- "epoch: 29 step: 75, loss is 1.0224685668945312\n",
- "epoch: 29 step: 76, loss is 1.0156131982803345\n",
- "epoch: 29 step: 77, loss is 1.0381712913513184\n",
- "epoch: 29 step: 78, loss is 0.9809007048606873\n",
- "epoch: 29 step: 79, loss is 0.9801890850067139\n",
- "epoch: 29 step: 80, loss is 1.0247673988342285\n",
- "epoch: 29 step: 81, loss is 1.0815829038619995\n",
- "epoch: 29 step: 82, loss is 1.0255171060562134\n",
- "epoch: 29 step: 83, loss is 1.03031587600708\n",
- "epoch: 29 step: 84, loss is 1.0341095924377441\n",
- "epoch: 29 step: 85, loss is 1.0145692825317383\n",
- "epoch: 29 step: 86, loss is 1.036602258682251\n",
- "epoch: 29 step: 87, loss is 1.0225090980529785\n",
- "epoch: 29 step: 88, loss is 1.0101361274719238\n",
- "epoch: 29 step: 89, loss is 0.9694252014160156\n",
- "epoch: 29 step: 90, loss is 1.0625033378601074\n",
- "epoch: 29 step: 91, loss is 1.0637246370315552\n",
- "epoch: 29 step: 92, loss is 1.0185613632202148\n",
- "epoch: 29 step: 93, loss is 1.0635919570922852\n",
- "epoch: 29 step: 94, loss is 0.9301564693450928\n",
- "epoch: 29 step: 95, loss is 0.9594549536705017\n",
- "epoch: 29 step: 96, loss is 1.0666102170944214\n",
- "epoch: 29 step: 97, loss is 0.9226194620132446\n",
- "epoch: 29 step: 98, loss is 1.116838812828064\n",
- "epoch: 29 step: 99, loss is 1.0751320123672485\n",
- "epoch: 29 step: 100, loss is 1.0321955680847168\n",
- "epoch: 29 step: 101, loss is 1.0163720846176147\n",
- "epoch: 29 step: 102, loss is 1.0581685304641724\n",
- "epoch: 29 step: 103, loss is 1.0705480575561523\n",
- "epoch: 29 step: 104, loss is 1.0577776432037354\n",
- "epoch: 29 step: 105, loss is 0.9995126128196716\n",
- "epoch: 29 step: 106, loss is 1.0135539770126343\n",
- "epoch: 29 step: 107, loss is 1.0571461915969849\n",
- "epoch: 29 step: 108, loss is 0.9922029972076416\n",
- "epoch: 29 step: 109, loss is 1.026610255241394\n",
- "epoch: 29 step: 110, loss is 1.0091841220855713\n",
- "epoch: 29 step: 111, loss is 1.0650935173034668\n",
- "epoch: 29 step: 112, loss is 1.0530184507369995\n",
- "epoch: 29 step: 113, loss is 1.13038969039917\n",
- "epoch: 29 step: 114, loss is 1.147161602973938\n",
- "epoch: 29 step: 115, loss is 1.0174176692962646\n",
- "epoch: 29 step: 116, loss is 1.057715892791748\n",
- "epoch: 29 step: 117, loss is 0.9989342093467712\n",
- "epoch: 29 step: 118, loss is 1.023415446281433\n",
- "epoch: 29 step: 119, loss is 0.9874597787857056\n",
- "epoch: 29 step: 120, loss is 0.9887452125549316\n",
- "epoch: 29 step: 121, loss is 0.9960627555847168\n",
- "epoch: 29 step: 122, loss is 0.9821981191635132\n",
- "epoch: 29 step: 123, loss is 1.0175116062164307\n",
- "epoch: 29 step: 124, loss is 1.0257840156555176\n",
- "epoch: 29 step: 125, loss is 1.043405294418335\n",
- "epoch: 29 step: 126, loss is 1.0201870203018188\n",
- "epoch: 29 step: 127, loss is 0.9205362796783447\n",
- "epoch: 29 step: 128, loss is 0.9780855774879456\n",
- "epoch: 29 step: 129, loss is 1.005314826965332\n",
- "epoch: 29 step: 130, loss is 1.0223867893218994\n",
- "epoch: 29 step: 131, loss is 0.9808804988861084\n",
- "epoch: 29 step: 132, loss is 0.9813784956932068\n",
- "epoch: 29 step: 133, loss is 0.9696794748306274\n",
- "epoch: 29 step: 134, loss is 0.9754354953765869\n",
- "epoch: 29 step: 135, loss is 0.974109947681427\n",
- "epoch: 29 step: 136, loss is 1.0608673095703125\n",
- "epoch: 29 step: 137, loss is 0.9931883811950684\n",
- "epoch: 29 step: 138, loss is 1.0107691287994385\n",
- "epoch: 29 step: 139, loss is 0.9858195781707764\n",
- "epoch: 29 step: 140, loss is 0.9933394193649292\n",
- "epoch: 29 step: 141, loss is 1.0132172107696533\n",
- "epoch: 29 step: 142, loss is 1.0576889514923096\n",
- "epoch: 29 step: 143, loss is 1.0245912075042725\n",
- "epoch: 29 step: 144, loss is 0.9679259061813354\n",
- "epoch: 29 step: 145, loss is 1.016594409942627\n",
- "epoch: 29 step: 146, loss is 1.0025317668914795\n",
- "epoch: 29 step: 147, loss is 1.1219913959503174\n",
- "epoch: 29 step: 148, loss is 1.0062578916549683\n",
- "epoch: 29 step: 149, loss is 0.97377610206604\n",
- "epoch: 29 step: 150, loss is 0.9701975584030151\n",
- "epoch: 29 step: 151, loss is 1.0079452991485596\n",
- "epoch: 29 step: 152, loss is 1.004092812538147\n",
- "epoch: 29 step: 153, loss is 0.9536013007164001\n",
- "epoch: 29 step: 154, loss is 1.0270766019821167\n",
- "epoch: 29 step: 155, loss is 1.0396745204925537\n",
- "epoch: 29 step: 156, loss is 1.0492552518844604\n",
- "epoch: 29 step: 157, loss is 0.9613434076309204\n",
- "epoch: 29 step: 158, loss is 0.9539674520492554\n",
- "epoch: 29 step: 159, loss is 1.02286958694458\n",
- "epoch: 29 step: 160, loss is 0.9810786843299866\n",
- "epoch: 29 step: 161, loss is 1.0697016716003418\n",
- "epoch: 29 step: 162, loss is 1.0303078889846802\n",
- "epoch: 29 step: 163, loss is 0.9976806640625\n",
- "epoch: 29 step: 164, loss is 0.9207897186279297\n",
- "epoch: 29 step: 165, loss is 1.004880428314209\n",
- "epoch: 29 step: 166, loss is 1.1212025880813599\n",
- "epoch: 29 step: 167, loss is 0.9979523420333862\n",
- "epoch: 29 step: 168, loss is 1.0089640617370605\n",
- "epoch: 29 step: 169, loss is 1.0139131546020508\n",
- "epoch: 29 step: 170, loss is 1.0088622570037842\n",
- "epoch: 29 step: 171, loss is 1.0422072410583496\n",
- "epoch: 29 step: 172, loss is 1.0290746688842773\n",
- "epoch: 29 step: 173, loss is 1.001901626586914\n",
- "epoch: 29 step: 174, loss is 1.006287693977356\n",
- "epoch: 29 step: 175, loss is 0.9630842208862305\n",
- "epoch: 29 step: 176, loss is 0.9964714646339417\n",
- "epoch: 29 step: 177, loss is 0.97801673412323\n",
- "epoch: 29 step: 178, loss is 1.006201982498169\n",
- "epoch: 29 step: 179, loss is 1.0179517269134521\n",
- "epoch: 29 step: 180, loss is 0.9447048902511597\n",
- "epoch: 29 step: 181, loss is 1.0067222118377686\n",
- "epoch: 29 step: 182, loss is 1.024523377418518\n",
- "epoch: 29 step: 183, loss is 1.054722785949707\n",
- "epoch: 29 step: 184, loss is 1.0778229236602783\n",
- "epoch: 29 step: 185, loss is 1.0047988891601562\n",
- "epoch: 29 step: 186, loss is 0.974716067314148\n",
- "epoch: 29 step: 187, loss is 1.012957215309143\n",
- "epoch: 29 step: 188, loss is 0.9775729179382324\n",
- "epoch: 29 step: 189, loss is 0.9560549855232239\n",
- "epoch: 29 step: 190, loss is 1.0296050310134888\n",
- "epoch: 29 step: 191, loss is 0.9596776962280273\n",
- "epoch: 29 step: 192, loss is 1.0023820400238037\n",
- "epoch: 29 step: 193, loss is 1.0386229753494263\n",
- "epoch: 29 step: 194, loss is 1.0490339994430542\n",
- "epoch: 29 step: 195, loss is 1.0020995140075684\n",
- "Train epoch time: 105074.946 ms, per step time: 538.846 ms\n",
- "epoch: 30 step: 1, loss is 1.0172988176345825\n",
- "epoch: 30 step: 2, loss is 0.9978479146957397\n",
- "epoch: 30 step: 3, loss is 0.9232980608940125\n",
- "epoch: 30 step: 4, loss is 1.024475336074829\n",
- "epoch: 30 step: 5, loss is 1.0558017492294312\n",
- "epoch: 30 step: 6, loss is 1.0460145473480225\n",
- "epoch: 30 step: 7, loss is 1.0038814544677734\n",
- "epoch: 30 step: 8, loss is 0.9660797119140625\n",
- "epoch: 30 step: 9, loss is 0.9223390817642212\n",
- "epoch: 30 step: 10, loss is 1.0001401901245117\n",
- "epoch: 30 step: 11, loss is 1.0292820930480957\n",
- "epoch: 30 step: 12, loss is 0.9943158626556396\n",
- "epoch: 30 step: 13, loss is 0.9613432288169861\n",
- "epoch: 30 step: 14, loss is 1.0332069396972656\n",
- "epoch: 30 step: 15, loss is 0.9474068880081177\n",
- "epoch: 30 step: 16, loss is 1.000193476676941\n",
- "epoch: 30 step: 17, loss is 0.9948122501373291\n",
- "epoch: 30 step: 18, loss is 0.9685449600219727\n",
- "epoch: 30 step: 19, loss is 0.9701645970344543\n",
- "epoch: 30 step: 20, loss is 1.0843373537063599\n",
- "epoch: 30 step: 21, loss is 1.0845476388931274\n",
- "epoch: 30 step: 22, loss is 1.0493748188018799\n",
- "epoch: 30 step: 23, loss is 0.9608330726623535\n",
- "epoch: 30 step: 24, loss is 0.9862468242645264\n",
- "epoch: 30 step: 25, loss is 0.9543552398681641\n",
- "epoch: 30 step: 26, loss is 1.023703932762146\n",
- "epoch: 30 step: 27, loss is 0.949988842010498\n",
- "epoch: 30 step: 28, loss is 1.0160926580429077\n",
- "epoch: 30 step: 29, loss is 0.989760160446167\n",
- "epoch: 30 step: 30, loss is 0.9852887988090515\n",
- "epoch: 30 step: 31, loss is 0.9792947173118591\n",
- "epoch: 30 step: 32, loss is 1.006422758102417\n",
- "epoch: 30 step: 33, loss is 0.9817548990249634\n",
- "epoch: 30 step: 34, loss is 1.0385549068450928\n",
- "epoch: 30 step: 35, loss is 1.0086264610290527\n",
- "epoch: 30 step: 36, loss is 0.9951794147491455\n",
- "epoch: 30 step: 37, loss is 1.0878492593765259\n",
- "epoch: 30 step: 38, loss is 0.9851903915405273\n",
- "epoch: 30 step: 39, loss is 1.0581046342849731\n",
- "epoch: 30 step: 40, loss is 1.0027531385421753\n",
- "epoch: 30 step: 41, loss is 0.989090085029602\n",
- "epoch: 30 step: 42, loss is 1.0432558059692383\n",
- "epoch: 30 step: 43, loss is 1.0111894607543945\n",
- "epoch: 30 step: 44, loss is 1.0049055814743042\n",
- "epoch: 30 step: 45, loss is 1.0024769306182861\n",
- "epoch: 30 step: 46, loss is 0.9750916957855225\n",
- "epoch: 30 step: 47, loss is 0.9988186955451965\n",
- "epoch: 30 step: 48, loss is 1.0124378204345703\n",
- "epoch: 30 step: 49, loss is 1.0005998611450195\n",
- "epoch: 30 step: 50, loss is 0.9383172988891602\n",
- "epoch: 30 step: 51, loss is 1.0558233261108398\n",
- "epoch: 30 step: 52, loss is 0.9960495233535767\n",
- "epoch: 30 step: 53, loss is 1.0060667991638184\n",
- "epoch: 30 step: 54, loss is 1.120069980621338\n",
- "epoch: 30 step: 55, loss is 0.9867266416549683\n",
- "epoch: 30 step: 56, loss is 1.096801519393921\n",
- "epoch: 30 step: 57, loss is 0.958141565322876\n",
- "epoch: 30 step: 58, loss is 0.9496285319328308\n",
- "epoch: 30 step: 59, loss is 0.9993870258331299\n",
- "epoch: 30 step: 60, loss is 0.9899442195892334\n",
- "epoch: 30 step: 61, loss is 0.9559552073478699\n",
- "epoch: 30 step: 62, loss is 0.9925178289413452\n",
- "epoch: 30 step: 63, loss is 1.0151617527008057\n",
- "epoch: 30 step: 64, loss is 0.9675788283348083\n",
- "epoch: 30 step: 65, loss is 0.995648980140686\n",
- "epoch: 30 step: 66, loss is 1.0137782096862793\n",
- "epoch: 30 step: 67, loss is 0.951514482498169\n",
- "epoch: 30 step: 68, loss is 1.0109165906906128\n",
- "epoch: 30 step: 69, loss is 0.9793285131454468\n",
- "epoch: 30 step: 70, loss is 1.0325415134429932\n",
- "epoch: 30 step: 71, loss is 1.1178629398345947\n",
- "epoch: 30 step: 72, loss is 1.0602610111236572\n",
- "epoch: 30 step: 73, loss is 1.019181728363037\n",
- "epoch: 30 step: 74, loss is 0.9899566173553467\n",
- "epoch: 30 step: 75, loss is 1.0226943492889404\n",
- "epoch: 30 step: 76, loss is 1.005814552307129\n",
- "epoch: 30 step: 77, loss is 0.9855093955993652\n",
- "epoch: 30 step: 78, loss is 0.9942237138748169\n",
- "epoch: 30 step: 79, loss is 1.0322569608688354\n",
- "epoch: 30 step: 80, loss is 0.9907108545303345\n",
- "epoch: 30 step: 81, loss is 0.9839298725128174\n",
- "epoch: 30 step: 82, loss is 0.9938308000564575\n",
- "epoch: 30 step: 83, loss is 0.9922456741333008\n",
- "epoch: 30 step: 84, loss is 1.0004441738128662\n",
- "epoch: 30 step: 85, loss is 0.958836019039154\n",
- "epoch: 30 step: 86, loss is 1.018061876296997\n",
- "epoch: 30 step: 87, loss is 1.022291898727417\n",
- "epoch: 30 step: 88, loss is 0.9958430528640747\n",
- "epoch: 30 step: 89, loss is 0.9830487966537476\n",
- "epoch: 30 step: 90, loss is 0.9965581893920898\n",
- "epoch: 30 step: 91, loss is 1.053378701210022\n",
- "epoch: 30 step: 92, loss is 1.0521657466888428\n",
- "epoch: 30 step: 93, loss is 1.1420154571533203\n",
- "epoch: 30 step: 94, loss is 0.9486621022224426\n",
- "epoch: 30 step: 95, loss is 1.0100445747375488\n",
- "epoch: 30 step: 96, loss is 0.978706955909729\n",
- "epoch: 30 step: 97, loss is 0.9665364623069763\n",
- "epoch: 30 step: 98, loss is 0.9955102205276489\n",
- "epoch: 30 step: 99, loss is 1.0059199333190918\n",
- "epoch: 30 step: 100, loss is 0.906088650226593\n",
- "epoch: 30 step: 101, loss is 1.1209841966629028\n",
- "epoch: 30 step: 102, loss is 1.0130696296691895\n",
- "epoch: 30 step: 103, loss is 0.9959266185760498\n",
- "epoch: 30 step: 104, loss is 1.0754750967025757\n",
- "epoch: 30 step: 105, loss is 0.9853157997131348\n",
- "epoch: 30 step: 106, loss is 0.9844763278961182\n",
- "epoch: 30 step: 107, loss is 1.031693935394287\n",
- "epoch: 30 step: 108, loss is 1.0734367370605469\n",
- "epoch: 30 step: 109, loss is 1.0848641395568848\n",
- "epoch: 30 step: 110, loss is 1.0457128286361694\n",
- "epoch: 30 step: 111, loss is 0.967503011226654\n",
- "epoch: 30 step: 112, loss is 1.005852460861206\n",
- "epoch: 30 step: 113, loss is 0.9747357368469238\n",
- "epoch: 30 step: 114, loss is 0.9861372709274292\n",
- "epoch: 30 step: 115, loss is 0.9562469720840454\n",
- "epoch: 30 step: 116, loss is 0.9760577082633972\n",
- "epoch: 30 step: 117, loss is 1.0128352642059326\n",
- "epoch: 30 step: 118, loss is 1.079046607017517\n",
- "epoch: 30 step: 119, loss is 1.0906426906585693\n",
- "epoch: 30 step: 120, loss is 0.9780118465423584\n",
- "epoch: 30 step: 121, loss is 1.0054688453674316\n",
- "epoch: 30 step: 122, loss is 1.0219289064407349\n",
- "epoch: 30 step: 123, loss is 1.065068244934082\n",
- "epoch: 30 step: 124, loss is 1.0039622783660889\n",
- "epoch: 30 step: 125, loss is 1.0498899221420288\n",
- "epoch: 30 step: 126, loss is 1.0741740465164185\n",
- "epoch: 30 step: 127, loss is 1.038702130317688\n",
- "epoch: 30 step: 128, loss is 0.9786372184753418\n",
- "epoch: 30 step: 129, loss is 0.9668365716934204\n",
- "epoch: 30 step: 130, loss is 1.0485410690307617\n",
- "epoch: 30 step: 131, loss is 0.9999215602874756\n",
- "epoch: 30 step: 132, loss is 1.0152955055236816\n",
- "epoch: 30 step: 133, loss is 1.0984938144683838\n",
- "epoch: 30 step: 134, loss is 0.9925455451011658\n",
- "epoch: 30 step: 135, loss is 0.9964651465415955\n",
- "epoch: 30 step: 136, loss is 1.0162088871002197\n",
- "epoch: 30 step: 137, loss is 0.9848556518554688\n",
- "epoch: 30 step: 138, loss is 0.989091157913208\n",
- "epoch: 30 step: 139, loss is 0.9646084308624268\n",
- "epoch: 30 step: 140, loss is 0.9500323534011841\n",
- "epoch: 30 step: 141, loss is 0.9863404631614685\n",
- "epoch: 30 step: 142, loss is 1.040480375289917\n",
- "epoch: 30 step: 143, loss is 0.9839382767677307\n",
- "epoch: 30 step: 144, loss is 1.041243076324463\n",
- "epoch: 30 step: 145, loss is 1.0417735576629639\n",
- "epoch: 30 step: 146, loss is 0.981896162033081\n",
- "epoch: 30 step: 147, loss is 1.0009806156158447\n",
- "epoch: 30 step: 148, loss is 1.0087807178497314\n",
- "epoch: 30 step: 149, loss is 1.0064959526062012\n",
- "epoch: 30 step: 150, loss is 1.019162654876709\n",
- "epoch: 30 step: 151, loss is 1.0246968269348145\n",
- "epoch: 30 step: 152, loss is 0.9720010161399841\n",
- "epoch: 30 step: 153, loss is 0.9670285582542419\n",
- "epoch: 30 step: 154, loss is 0.9997091889381409\n",
- "epoch: 30 step: 155, loss is 0.9936108589172363\n",
- "epoch: 30 step: 156, loss is 1.0761771202087402\n",
- "epoch: 30 step: 157, loss is 1.0168907642364502\n",
- "epoch: 30 step: 158, loss is 0.989546537399292\n",
- "epoch: 30 step: 159, loss is 0.980770468711853\n",
- "epoch: 30 step: 160, loss is 1.0305657386779785\n",
- "epoch: 30 step: 161, loss is 1.096156120300293\n",
- "epoch: 30 step: 162, loss is 1.0098059177398682\n",
- "epoch: 30 step: 163, loss is 1.0632041692733765\n",
- "epoch: 30 step: 164, loss is 1.0073914527893066\n",
- "epoch: 30 step: 165, loss is 0.9745742082595825\n",
- "epoch: 30 step: 166, loss is 1.001832127571106\n",
- "epoch: 30 step: 167, loss is 0.970117449760437\n",
- "epoch: 30 step: 168, loss is 1.0338062047958374\n",
- "epoch: 30 step: 169, loss is 0.9741246104240417\n",
- "epoch: 30 step: 170, loss is 0.9390353560447693\n",
- "epoch: 30 step: 171, loss is 0.9777118563652039\n",
- "epoch: 30 step: 172, loss is 0.9743375778198242\n",
- "epoch: 30 step: 173, loss is 0.9726730585098267\n",
- "epoch: 30 step: 174, loss is 0.9522745609283447\n",
- "epoch: 30 step: 175, loss is 1.091088056564331\n",
- "epoch: 30 step: 176, loss is 1.0843918323516846\n",
- "epoch: 30 step: 177, loss is 0.9116156101226807\n",
- "epoch: 30 step: 178, loss is 0.9912928342819214\n",
- "epoch: 30 step: 179, loss is 1.0160400867462158\n",
- "epoch: 30 step: 180, loss is 0.9484577178955078\n",
- "epoch: 30 step: 181, loss is 1.0433039665222168\n",
- "epoch: 30 step: 182, loss is 0.9789596796035767\n",
- "epoch: 30 step: 183, loss is 0.9463712573051453\n",
- "epoch: 30 step: 184, loss is 1.0079463720321655\n",
- "epoch: 30 step: 185, loss is 1.0893367528915405\n",
- "epoch: 30 step: 186, loss is 1.0241955518722534\n",
- "epoch: 30 step: 187, loss is 1.0297592878341675\n",
- "epoch: 30 step: 188, loss is 0.9507424831390381\n",
- "epoch: 30 step: 189, loss is 1.0168551206588745\n",
- "epoch: 30 step: 190, loss is 1.0782127380371094\n",
- "epoch: 30 step: 191, loss is 0.9931322336196899\n",
- "epoch: 30 step: 192, loss is 0.9793469905853271\n",
- "epoch: 30 step: 193, loss is 0.9780886173248291\n",
- "epoch: 30 step: 194, loss is 0.9820125102996826\n",
- "epoch: 30 step: 195, loss is 0.9826734066009521\n",
- "Train epoch time: 103353.865 ms, per step time: 530.020 ms\n",
- "epoch: 31 step: 1, loss is 0.9838765859603882\n",
- "epoch: 31 step: 2, loss is 0.9676800966262817\n",
- "epoch: 31 step: 3, loss is 1.0030035972595215\n",
- "epoch: 31 step: 4, loss is 1.0132195949554443\n",
- "epoch: 31 step: 5, loss is 0.9448614716529846\n",
- "epoch: 31 step: 6, loss is 0.9858396053314209\n",
- "epoch: 31 step: 7, loss is 1.032362699508667\n",
- "epoch: 31 step: 8, loss is 0.9368622303009033\n",
- "epoch: 31 step: 9, loss is 1.0144985914230347\n",
- "epoch: 31 step: 10, loss is 0.9951866865158081\n",
- "epoch: 31 step: 11, loss is 0.9697293639183044\n",
- "epoch: 31 step: 12, loss is 0.9011222124099731\n",
- "epoch: 31 step: 13, loss is 0.9866967797279358\n",
- "epoch: 31 step: 14, loss is 1.0454449653625488\n",
- "epoch: 31 step: 15, loss is 0.9706379175186157\n",
- "epoch: 31 step: 16, loss is 0.971888542175293\n",
- "epoch: 31 step: 17, loss is 1.0615586042404175\n",
- "epoch: 31 step: 18, loss is 0.9128535389900208\n",
- "epoch: 31 step: 19, loss is 0.9617781639099121\n",
- "epoch: 31 step: 20, loss is 0.9871184229850769\n",
- "epoch: 31 step: 21, loss is 0.975204348564148\n",
- "epoch: 31 step: 22, loss is 1.041196584701538\n",
- "epoch: 31 step: 23, loss is 0.9909880757331848\n",
- "epoch: 31 step: 24, loss is 1.058127760887146\n",
- "epoch: 31 step: 25, loss is 0.9973526000976562\n",
- "epoch: 31 step: 26, loss is 0.9670200347900391\n",
- "epoch: 31 step: 27, loss is 0.9696930646896362\n",
- "epoch: 31 step: 28, loss is 0.985702633857727\n",
- "epoch: 31 step: 29, loss is 0.9834610223770142\n",
- "epoch: 31 step: 30, loss is 0.9319219589233398\n",
- "epoch: 31 step: 31, loss is 1.0667709112167358\n",
- "epoch: 31 step: 32, loss is 0.9856438636779785\n",
- "epoch: 31 step: 33, loss is 0.9819819927215576\n",
- "epoch: 31 step: 34, loss is 0.9654231667518616\n",
- "epoch: 31 step: 35, loss is 1.0442924499511719\n",
- "epoch: 31 step: 36, loss is 0.9580166935920715\n",
- "epoch: 31 step: 37, loss is 0.9236143827438354\n",
- "epoch: 31 step: 38, loss is 0.9605481624603271\n",
- "epoch: 31 step: 39, loss is 0.9396443367004395\n",
- "epoch: 31 step: 40, loss is 0.9862281084060669\n",
- "epoch: 31 step: 41, loss is 1.0652704238891602\n",
- "epoch: 31 step: 42, loss is 0.9577304124832153\n",
- "epoch: 31 step: 43, loss is 0.9629460573196411\n",
- "epoch: 31 step: 44, loss is 1.001137137413025\n",
- "epoch: 31 step: 45, loss is 0.9882875680923462\n",
- "epoch: 31 step: 46, loss is 1.020888328552246\n",
- "epoch: 31 step: 47, loss is 1.0081356763839722\n",
- "epoch: 31 step: 48, loss is 1.0572824478149414\n",
- "epoch: 31 step: 49, loss is 1.0539854764938354\n",
- "epoch: 31 step: 50, loss is 1.033347487449646\n",
- "epoch: 31 step: 51, loss is 0.9682328701019287\n",
- "epoch: 31 step: 52, loss is 1.0219882726669312\n",
- "epoch: 31 step: 53, loss is 0.9995028376579285\n",
- "epoch: 31 step: 54, loss is 1.0134258270263672\n",
- "epoch: 31 step: 55, loss is 0.9565858244895935\n",
- "epoch: 31 step: 56, loss is 0.9971498250961304\n",
- "epoch: 31 step: 57, loss is 0.99558424949646\n",
- "epoch: 31 step: 58, loss is 0.9927089214324951\n",
- "epoch: 31 step: 59, loss is 1.0176172256469727\n",
- "epoch: 31 step: 60, loss is 0.998472273349762\n",
- "epoch: 31 step: 61, loss is 0.9748069643974304\n",
- "epoch: 31 step: 62, loss is 1.0151033401489258\n",
- "epoch: 31 step: 63, loss is 1.0012116432189941\n",
- "epoch: 31 step: 64, loss is 1.0647461414337158\n",
- "epoch: 31 step: 65, loss is 0.9739506244659424\n",
- "epoch: 31 step: 66, loss is 0.9405533075332642\n",
- "epoch: 31 step: 67, loss is 0.9269188642501831\n",
- "epoch: 31 step: 68, loss is 0.984155535697937\n",
- "epoch: 31 step: 69, loss is 1.0550984144210815\n",
- "epoch: 31 step: 70, loss is 0.9486294984817505\n",
- "epoch: 31 step: 71, loss is 0.9794533252716064\n",
- "epoch: 31 step: 72, loss is 1.012418270111084\n",
- "epoch: 31 step: 73, loss is 1.0919561386108398\n",
- "epoch: 31 step: 74, loss is 0.9477542638778687\n",
- "epoch: 31 step: 75, loss is 1.0176360607147217\n",
- "epoch: 31 step: 76, loss is 0.9217453002929688\n",
- "epoch: 31 step: 77, loss is 0.9346352219581604\n",
- "epoch: 31 step: 78, loss is 0.9667227268218994\n",
- "epoch: 31 step: 79, loss is 1.0304807424545288\n",
- "epoch: 31 step: 80, loss is 1.0767525434494019\n",
- "epoch: 31 step: 81, loss is 1.0629236698150635\n",
- "epoch: 31 step: 82, loss is 1.0283372402191162\n",
- "epoch: 31 step: 83, loss is 0.9429781436920166\n",
- "epoch: 31 step: 84, loss is 0.9525980949401855\n",
- "epoch: 31 step: 85, loss is 1.0775288343429565\n",
- "epoch: 31 step: 86, loss is 1.0258862972259521\n",
- "epoch: 31 step: 87, loss is 0.9991978406906128\n",
- "epoch: 31 step: 88, loss is 0.979305624961853\n",
- "epoch: 31 step: 89, loss is 0.9347435235977173\n",
- "epoch: 31 step: 90, loss is 0.9757965803146362\n",
- "epoch: 31 step: 91, loss is 1.0024724006652832\n",
- "epoch: 31 step: 92, loss is 1.0095936059951782\n",
- "epoch: 31 step: 93, loss is 1.066152811050415\n",
- "epoch: 31 step: 94, loss is 1.0411654710769653\n",
- "epoch: 31 step: 95, loss is 0.8960299491882324\n",
- "epoch: 31 step: 96, loss is 1.0025594234466553\n",
- "epoch: 31 step: 97, loss is 0.9422812461853027\n",
- "epoch: 31 step: 98, loss is 0.9677152633666992\n",
- "epoch: 31 step: 99, loss is 1.01357901096344\n",
- "epoch: 31 step: 100, loss is 0.9906042218208313\n",
- "epoch: 31 step: 101, loss is 1.0029058456420898\n",
- "epoch: 31 step: 102, loss is 0.9850889444351196\n",
- "epoch: 31 step: 103, loss is 0.9020586609840393\n",
- "epoch: 31 step: 104, loss is 0.9287134408950806\n",
- "epoch: 31 step: 105, loss is 0.9898317456245422\n",
- "epoch: 31 step: 106, loss is 0.9492436051368713\n",
- "epoch: 31 step: 107, loss is 0.9706342816352844\n",
- "epoch: 31 step: 108, loss is 0.9345952272415161\n",
- "epoch: 31 step: 109, loss is 0.9485852718353271\n",
- "epoch: 31 step: 110, loss is 0.9597136974334717\n",
- "epoch: 31 step: 111, loss is 0.9993665218353271\n",
- "epoch: 31 step: 112, loss is 0.9757802486419678\n",
- "epoch: 31 step: 113, loss is 0.9277070164680481\n",
- "epoch: 31 step: 114, loss is 0.9923455715179443\n",
- "epoch: 31 step: 115, loss is 0.962706446647644\n",
- "epoch: 31 step: 116, loss is 0.9658639430999756\n",
- "epoch: 31 step: 117, loss is 1.044129729270935\n",
- "epoch: 31 step: 118, loss is 0.9740756750106812\n",
- "epoch: 31 step: 119, loss is 1.0178630352020264\n",
- "epoch: 31 step: 120, loss is 0.9592282772064209\n",
- "epoch: 31 step: 121, loss is 0.9215011596679688\n",
- "epoch: 31 step: 122, loss is 0.9697255492210388\n",
- "epoch: 31 step: 123, loss is 0.9495692253112793\n",
- "epoch: 31 step: 124, loss is 0.9186446666717529\n",
- "epoch: 31 step: 125, loss is 0.9934295415878296\n",
- "epoch: 31 step: 126, loss is 0.955391526222229\n",
- "epoch: 31 step: 127, loss is 1.087010145187378\n",
- "epoch: 31 step: 128, loss is 1.0100611448287964\n",
- "epoch: 31 step: 129, loss is 0.9919818639755249\n",
- "epoch: 31 step: 130, loss is 0.971847414970398\n",
- "epoch: 31 step: 131, loss is 0.931140661239624\n",
- "epoch: 31 step: 132, loss is 0.9993005990982056\n",
- "epoch: 31 step: 133, loss is 0.9818227291107178\n",
- "epoch: 31 step: 134, loss is 1.0026576519012451\n",
- "epoch: 31 step: 135, loss is 0.9029465317726135\n",
- "epoch: 31 step: 136, loss is 0.9101250171661377\n",
- "epoch: 31 step: 137, loss is 0.8914403915405273\n",
- "epoch: 31 step: 138, loss is 0.9563717246055603\n",
- "epoch: 31 step: 139, loss is 0.9786385893821716\n",
- "epoch: 31 step: 140, loss is 1.0017088651657104\n",
- "epoch: 31 step: 141, loss is 1.061335802078247\n",
- "epoch: 31 step: 142, loss is 0.991165041923523\n",
- "epoch: 31 step: 143, loss is 0.919896125793457\n",
- "epoch: 31 step: 144, loss is 0.9997259378433228\n",
- "epoch: 31 step: 145, loss is 0.9948645830154419\n",
- "epoch: 31 step: 146, loss is 0.9947822690010071\n",
- "epoch: 31 step: 147, loss is 0.9673951864242554\n",
- "epoch: 31 step: 148, loss is 0.9747024774551392\n",
- "epoch: 31 step: 149, loss is 1.0629842281341553\n",
- "epoch: 31 step: 150, loss is 1.0618189573287964\n",
- "epoch: 31 step: 151, loss is 0.8964056968688965\n",
- "epoch: 31 step: 152, loss is 0.9454790353775024\n",
- "epoch: 31 step: 153, loss is 1.0446432828903198\n",
- "epoch: 31 step: 154, loss is 0.9705399870872498\n",
- "epoch: 31 step: 155, loss is 1.0141222476959229\n",
- "epoch: 31 step: 156, loss is 0.9858977198600769\n",
- "epoch: 31 step: 157, loss is 1.0714173316955566\n",
- "epoch: 31 step: 158, loss is 0.9159303307533264\n",
- "epoch: 31 step: 159, loss is 0.9912005662918091\n",
- "epoch: 31 step: 160, loss is 1.0138263702392578\n",
- "epoch: 31 step: 161, loss is 0.9641917943954468\n",
- "epoch: 31 step: 162, loss is 0.985386073589325\n",
- "epoch: 31 step: 163, loss is 1.0194075107574463\n",
- "epoch: 31 step: 164, loss is 1.0490658283233643\n",
- "epoch: 31 step: 165, loss is 1.0196973085403442\n",
- "epoch: 31 step: 166, loss is 0.986809492111206\n",
- "epoch: 31 step: 167, loss is 0.9480140805244446\n",
- "epoch: 31 step: 168, loss is 1.0087449550628662\n",
- "epoch: 31 step: 169, loss is 0.977230966091156\n",
- "epoch: 31 step: 170, loss is 0.9360880851745605\n",
- "epoch: 31 step: 171, loss is 1.029245376586914\n",
- "epoch: 31 step: 172, loss is 0.9766701459884644\n",
- "epoch: 31 step: 173, loss is 0.9146973490715027\n",
- "epoch: 31 step: 174, loss is 0.9630000591278076\n",
- "epoch: 31 step: 175, loss is 1.0156733989715576\n",
- "epoch: 31 step: 176, loss is 0.9603570699691772\n",
- "epoch: 31 step: 177, loss is 1.0052415132522583\n",
- "epoch: 31 step: 178, loss is 0.9530224800109863\n",
- "epoch: 31 step: 179, loss is 1.0084125995635986\n",
- "epoch: 31 step: 180, loss is 0.993372917175293\n",
- "epoch: 31 step: 181, loss is 1.0019429922103882\n",
- "epoch: 31 step: 182, loss is 0.9175456762313843\n",
- "epoch: 31 step: 183, loss is 0.9294122457504272\n",
- "epoch: 31 step: 184, loss is 1.0594414472579956\n",
- "epoch: 31 step: 185, loss is 0.9580499529838562\n",
- "epoch: 31 step: 186, loss is 1.0653116703033447\n",
- "epoch: 31 step: 187, loss is 1.0048925876617432\n",
- "epoch: 31 step: 188, loss is 0.9477293491363525\n",
- "epoch: 31 step: 189, loss is 1.0387351512908936\n",
- "epoch: 31 step: 190, loss is 0.980130672454834\n",
- "epoch: 31 step: 191, loss is 0.975700855255127\n",
- "epoch: 31 step: 192, loss is 1.0259079933166504\n",
- "epoch: 31 step: 193, loss is 1.0097182989120483\n",
- "epoch: 31 step: 194, loss is 1.0132098197937012\n",
- "epoch: 31 step: 195, loss is 0.9720735549926758\n",
- "Train epoch time: 118272.225 ms, per step time: 606.524 ms\n",
- "epoch: 32 step: 1, loss is 0.9967446327209473\n",
- "epoch: 32 step: 2, loss is 0.9975539445877075\n",
- "epoch: 32 step: 3, loss is 0.9803944230079651\n",
- "epoch: 32 step: 4, loss is 0.9979706406593323\n",
- "epoch: 32 step: 5, loss is 0.9878783226013184\n",
- "epoch: 32 step: 6, loss is 0.9467536211013794\n",
- "epoch: 32 step: 7, loss is 0.9642983675003052\n",
- "epoch: 32 step: 8, loss is 1.0154898166656494\n",
- "epoch: 32 step: 9, loss is 0.9270303845405579\n",
- "epoch: 32 step: 10, loss is 0.9303413033485413\n",
- "epoch: 32 step: 11, loss is 0.9342100620269775\n",
- "epoch: 32 step: 12, loss is 0.9710267186164856\n",
- "epoch: 32 step: 13, loss is 0.9070530533790588\n",
- "epoch: 32 step: 14, loss is 0.963059663772583\n",
- "epoch: 32 step: 15, loss is 1.009734869003296\n",
- "epoch: 32 step: 16, loss is 1.04564368724823\n",
- "epoch: 32 step: 17, loss is 0.873187780380249\n",
- "epoch: 32 step: 18, loss is 0.9555357098579407\n",
- "epoch: 32 step: 19, loss is 0.949906587600708\n",
- "epoch: 32 step: 20, loss is 0.9908300042152405\n",
- "epoch: 32 step: 21, loss is 1.0064014196395874\n",
- "epoch: 32 step: 22, loss is 1.033950686454773\n",
- "epoch: 32 step: 23, loss is 0.9408246278762817\n",
- "epoch: 32 step: 24, loss is 0.9503474235534668\n",
- "epoch: 32 step: 25, loss is 0.9832029342651367\n",
- "epoch: 32 step: 26, loss is 1.0594415664672852\n",
- "epoch: 32 step: 27, loss is 0.9694714546203613\n",
- "epoch: 32 step: 28, loss is 0.9576462507247925\n",
- "epoch: 32 step: 29, loss is 0.9352479577064514\n",
- "epoch: 32 step: 30, loss is 0.8866993188858032\n",
- "epoch: 32 step: 31, loss is 0.993394136428833\n",
- "epoch: 32 step: 32, loss is 1.0037065744400024\n",
- "epoch: 32 step: 33, loss is 1.030024766921997\n",
- "epoch: 32 step: 34, loss is 0.9296109080314636\n",
- "epoch: 32 step: 35, loss is 1.001490592956543\n",
- "epoch: 32 step: 36, loss is 0.9830491542816162\n",
- "epoch: 32 step: 37, loss is 0.931323766708374\n",
- "epoch: 32 step: 38, loss is 1.0032286643981934\n",
- "epoch: 32 step: 39, loss is 0.934146523475647\n",
- "epoch: 32 step: 40, loss is 0.9692342281341553\n",
- "epoch: 32 step: 41, loss is 0.9654061198234558\n",
- "epoch: 32 step: 42, loss is 0.9554896354675293\n",
- "epoch: 32 step: 43, loss is 1.0171631574630737\n",
- "epoch: 32 step: 44, loss is 1.050271987915039\n",
- "epoch: 32 step: 45, loss is 0.9823942184448242\n",
- "epoch: 32 step: 46, loss is 0.9229292869567871\n",
- "epoch: 32 step: 47, loss is 0.9187092781066895\n",
- "epoch: 32 step: 48, loss is 0.9608958959579468\n",
- "epoch: 32 step: 49, loss is 0.9240633845329285\n",
- "epoch: 32 step: 50, loss is 1.0269956588745117\n",
- "epoch: 32 step: 51, loss is 1.0255138874053955\n",
- "epoch: 32 step: 52, loss is 0.995145320892334\n",
- "epoch: 32 step: 53, loss is 0.968718945980072\n",
- "epoch: 32 step: 54, loss is 0.9610665440559387\n",
- "epoch: 32 step: 55, loss is 0.9250697493553162\n",
- "epoch: 32 step: 56, loss is 0.9754111766815186\n",
- "epoch: 32 step: 57, loss is 1.0011793375015259\n",
- "epoch: 32 step: 58, loss is 0.9802669882774353\n",
- "epoch: 32 step: 59, loss is 1.0454319715499878\n",
- "epoch: 32 step: 60, loss is 1.0050814151763916\n",
- "epoch: 32 step: 61, loss is 0.9290096759796143\n",
- "epoch: 32 step: 62, loss is 1.021238088607788\n",
- "epoch: 32 step: 63, loss is 0.9674769043922424\n",
- "epoch: 32 step: 64, loss is 0.992426872253418\n",
- "epoch: 32 step: 65, loss is 1.0265958309173584\n",
- "epoch: 32 step: 66, loss is 0.9413033723831177\n",
- "epoch: 32 step: 67, loss is 0.9368441104888916\n",
- "epoch: 32 step: 68, loss is 0.9719508290290833\n",
- "epoch: 32 step: 69, loss is 0.9945214986801147\n",
- "epoch: 32 step: 70, loss is 0.925213098526001\n",
- "epoch: 32 step: 71, loss is 0.9439241886138916\n",
- "epoch: 32 step: 72, loss is 0.9603148698806763\n",
- "epoch: 32 step: 73, loss is 0.9954200983047485\n",
- "epoch: 32 step: 74, loss is 0.8978986144065857\n",
- "epoch: 32 step: 75, loss is 1.0424926280975342\n",
- "epoch: 32 step: 76, loss is 0.966179609298706\n",
- "epoch: 32 step: 77, loss is 1.0188401937484741\n",
- "epoch: 32 step: 78, loss is 0.9219791889190674\n",
- "epoch: 32 step: 79, loss is 0.9908080101013184\n",
- "epoch: 32 step: 80, loss is 0.9278836846351624\n",
- "epoch: 32 step: 81, loss is 1.1501719951629639\n",
- "epoch: 32 step: 82, loss is 1.0275460481643677\n",
- "epoch: 32 step: 83, loss is 0.9667668342590332\n",
- "epoch: 32 step: 84, loss is 0.9274128079414368\n",
- "epoch: 32 step: 85, loss is 0.9597902297973633\n",
- "epoch: 32 step: 86, loss is 0.9425499439239502\n",
- "epoch: 32 step: 87, loss is 0.9447070360183716\n",
- "epoch: 32 step: 88, loss is 1.0165438652038574\n",
- "epoch: 32 step: 89, loss is 0.9973222613334656\n",
- "epoch: 32 step: 90, loss is 0.9558272361755371\n",
- "epoch: 32 step: 91, loss is 0.9056956768035889\n",
- "epoch: 32 step: 92, loss is 0.9276437163352966\n",
- "epoch: 32 step: 93, loss is 0.9099143147468567\n",
- "epoch: 32 step: 94, loss is 0.9536274671554565\n",
- "epoch: 32 step: 95, loss is 1.0016417503356934\n",
- "epoch: 32 step: 96, loss is 1.020653247833252\n",
- "epoch: 32 step: 97, loss is 0.8585014939308167\n",
- "epoch: 32 step: 98, loss is 0.9623339176177979\n",
- "epoch: 32 step: 99, loss is 0.9274699687957764\n",
- "epoch: 32 step: 100, loss is 0.9118982553482056\n",
- "epoch: 32 step: 101, loss is 1.0120506286621094\n",
- "epoch: 32 step: 102, loss is 0.9841887950897217\n",
- "epoch: 32 step: 103, loss is 0.9888389110565186\n",
- "epoch: 32 step: 104, loss is 0.9532955884933472\n",
- "epoch: 32 step: 105, loss is 1.0041470527648926\n",
- "epoch: 32 step: 106, loss is 0.9545668363571167\n",
- "epoch: 32 step: 107, loss is 1.002959966659546\n",
- "epoch: 32 step: 108, loss is 1.0464038848876953\n",
- "epoch: 32 step: 109, loss is 0.8906322717666626\n",
- "epoch: 32 step: 110, loss is 1.0393657684326172\n",
- "epoch: 32 step: 111, loss is 0.9836310148239136\n",
- "epoch: 32 step: 112, loss is 0.9498323202133179\n",
- "epoch: 32 step: 113, loss is 0.930293619632721\n",
- "epoch: 32 step: 114, loss is 1.0118987560272217\n",
- "epoch: 32 step: 115, loss is 0.901387095451355\n",
- "epoch: 32 step: 116, loss is 0.9259582757949829\n",
- "epoch: 32 step: 117, loss is 1.0150636434555054\n",
- "epoch: 32 step: 118, loss is 0.9279121160507202\n",
- "epoch: 32 step: 119, loss is 0.9991668462753296\n",
- "epoch: 32 step: 120, loss is 0.9698737263679504\n",
- "epoch: 32 step: 121, loss is 1.0576320886611938\n",
- "epoch: 32 step: 122, loss is 0.9925229549407959\n",
- "epoch: 32 step: 123, loss is 1.014662265777588\n",
- "epoch: 32 step: 124, loss is 0.9706726670265198\n",
- "epoch: 32 step: 125, loss is 1.0026535987854004\n",
- "epoch: 32 step: 126, loss is 0.9783889055252075\n",
- "epoch: 32 step: 127, loss is 1.03402578830719\n",
- "epoch: 32 step: 128, loss is 1.0233118534088135\n",
- "epoch: 32 step: 129, loss is 0.9969748854637146\n",
- "epoch: 32 step: 130, loss is 0.9340372085571289\n",
- "epoch: 32 step: 131, loss is 0.9221502542495728\n",
- "epoch: 32 step: 132, loss is 0.9947479963302612\n",
- "epoch: 32 step: 133, loss is 0.9428037405014038\n",
- "epoch: 32 step: 134, loss is 0.9762688279151917\n",
- "epoch: 32 step: 135, loss is 1.014094591140747\n",
- "epoch: 32 step: 136, loss is 0.9966780543327332\n",
- "epoch: 32 step: 137, loss is 0.9831628799438477\n",
- "epoch: 32 step: 138, loss is 0.9889219999313354\n",
- "epoch: 32 step: 139, loss is 0.9779709577560425\n",
- "epoch: 32 step: 140, loss is 0.928521990776062\n",
- "epoch: 32 step: 141, loss is 0.966339111328125\n",
- "epoch: 32 step: 142, loss is 0.9465529322624207\n",
- "epoch: 32 step: 143, loss is 0.8974637985229492\n",
- "epoch: 32 step: 144, loss is 0.9706141948699951\n",
- "epoch: 32 step: 145, loss is 0.9656973481178284\n",
- "epoch: 32 step: 146, loss is 0.9407874941825867\n",
- "epoch: 32 step: 147, loss is 0.959028959274292\n",
- "epoch: 32 step: 148, loss is 0.9964733123779297\n",
- "epoch: 32 step: 149, loss is 0.9901953935623169\n",
- "epoch: 32 step: 150, loss is 0.9520010948181152\n",
- "epoch: 32 step: 151, loss is 0.9164900183677673\n",
- "epoch: 32 step: 152, loss is 1.028070092201233\n",
- "epoch: 32 step: 153, loss is 0.8941402435302734\n",
- "epoch: 32 step: 154, loss is 1.0651249885559082\n",
- "epoch: 32 step: 155, loss is 1.0015056133270264\n",
- "epoch: 32 step: 156, loss is 0.9744718074798584\n",
- "epoch: 32 step: 157, loss is 0.9472004175186157\n",
- "epoch: 32 step: 158, loss is 1.0122981071472168\n",
- "epoch: 32 step: 159, loss is 1.0072392225265503\n",
- "epoch: 32 step: 160, loss is 0.9154157638549805\n",
- "epoch: 32 step: 161, loss is 1.011389970779419\n",
- "epoch: 32 step: 162, loss is 0.9131314754486084\n",
- "epoch: 32 step: 163, loss is 0.9688203930854797\n",
- "epoch: 32 step: 164, loss is 0.9930955171585083\n",
- "epoch: 32 step: 165, loss is 0.9361259937286377\n",
- "epoch: 32 step: 166, loss is 0.9103786945343018\n",
- "epoch: 32 step: 167, loss is 0.9677947759628296\n",
- "epoch: 32 step: 168, loss is 1.0035138130187988\n",
- "epoch: 32 step: 169, loss is 0.9622212648391724\n",
- "epoch: 32 step: 170, loss is 0.9800490140914917\n",
- "epoch: 32 step: 171, loss is 1.0072228908538818\n",
- "epoch: 32 step: 172, loss is 0.9820506572723389\n",
- "epoch: 32 step: 173, loss is 0.9584174752235413\n",
- "epoch: 32 step: 174, loss is 1.0656081438064575\n",
- "epoch: 32 step: 175, loss is 1.059253215789795\n",
- "epoch: 32 step: 176, loss is 1.0160908699035645\n",
- "epoch: 32 step: 177, loss is 0.9740145206451416\n",
- "epoch: 32 step: 178, loss is 0.9020475149154663\n",
- "epoch: 32 step: 179, loss is 0.9617655873298645\n",
- "epoch: 32 step: 180, loss is 0.9968571662902832\n",
- "epoch: 32 step: 181, loss is 0.9769738912582397\n",
- "epoch: 32 step: 182, loss is 0.959153413772583\n",
- "epoch: 32 step: 183, loss is 0.9622974395751953\n",
- "epoch: 32 step: 184, loss is 1.0063745975494385\n",
- "epoch: 32 step: 185, loss is 1.0031746625900269\n",
- "epoch: 32 step: 186, loss is 0.9887227416038513\n",
- "epoch: 32 step: 187, loss is 1.0121935606002808\n",
- "epoch: 32 step: 188, loss is 1.021625280380249\n",
- "epoch: 32 step: 189, loss is 0.9291588068008423\n",
- "epoch: 32 step: 190, loss is 0.9910972118377686\n",
- "epoch: 32 step: 191, loss is 1.0003994703292847\n",
- "epoch: 32 step: 192, loss is 0.986520528793335\n",
- "epoch: 32 step: 193, loss is 0.9855494499206543\n",
- "epoch: 32 step: 194, loss is 0.9918218851089478\n",
- "epoch: 32 step: 195, loss is 1.0259497165679932\n",
- "Train epoch time: 113439.024 ms, per step time: 581.739 ms\n",
- "epoch: 33 step: 1, loss is 0.972176730632782\n",
- "epoch: 33 step: 2, loss is 0.9647098779678345\n",
- "epoch: 33 step: 3, loss is 0.916054368019104\n",
- "epoch: 33 step: 4, loss is 0.9119017124176025\n",
- "epoch: 33 step: 5, loss is 0.9944983720779419\n",
- "epoch: 33 step: 6, loss is 0.9288936853408813\n",
- "epoch: 33 step: 7, loss is 0.8737387657165527\n",
- "epoch: 33 step: 8, loss is 0.9890267848968506\n",
- "epoch: 33 step: 9, loss is 0.9501098394393921\n",
- "epoch: 33 step: 10, loss is 0.9130431413650513\n",
- "epoch: 33 step: 11, loss is 0.8931370973587036\n",
- "epoch: 33 step: 12, loss is 0.9170550107955933\n",
- "epoch: 33 step: 13, loss is 0.8986920118331909\n",
- "epoch: 33 step: 14, loss is 0.9364569187164307\n",
- "epoch: 33 step: 15, loss is 0.9464807510375977\n",
- "epoch: 33 step: 16, loss is 0.9326199889183044\n",
- "epoch: 33 step: 17, loss is 0.9244019985198975\n",
- "epoch: 33 step: 18, loss is 0.8999835252761841\n",
- "epoch: 33 step: 19, loss is 0.8907067179679871\n",
- "epoch: 33 step: 20, loss is 0.9408332109451294\n",
- "epoch: 33 step: 21, loss is 0.9335184097290039\n",
- "epoch: 33 step: 22, loss is 0.9489995241165161\n",
- "epoch: 33 step: 23, loss is 0.9366046190261841\n",
- "epoch: 33 step: 24, loss is 0.939805269241333\n",
- "epoch: 33 step: 25, loss is 0.9253400564193726\n",
- "epoch: 33 step: 26, loss is 1.0302006006240845\n",
- "epoch: 33 step: 27, loss is 0.9690253734588623\n",
- "epoch: 33 step: 28, loss is 0.921459436416626\n",
- "epoch: 33 step: 29, loss is 0.9174401760101318\n",
- "epoch: 33 step: 30, loss is 0.9065608978271484\n",
- "epoch: 33 step: 31, loss is 0.9953237175941467\n",
- "epoch: 33 step: 32, loss is 0.9813719391822815\n",
- "epoch: 33 step: 33, loss is 0.9210784435272217\n",
- "epoch: 33 step: 34, loss is 0.9304892420768738\n",
- "epoch: 33 step: 35, loss is 0.9749086499214172\n",
- "epoch: 33 step: 36, loss is 0.9353979825973511\n",
- "epoch: 33 step: 37, loss is 0.9581946134567261\n",
- "epoch: 33 step: 38, loss is 0.9708186984062195\n",
- "epoch: 33 step: 39, loss is 0.9135340452194214\n",
- "epoch: 33 step: 40, loss is 0.8874043226242065\n",
- "epoch: 33 step: 41, loss is 0.9527324438095093\n",
- "epoch: 33 step: 42, loss is 0.9566214084625244\n",
- "epoch: 33 step: 43, loss is 0.8656256198883057\n",
- "epoch: 33 step: 44, loss is 1.1020617485046387\n",
- "epoch: 33 step: 45, loss is 0.9758085012435913\n",
- "epoch: 33 step: 46, loss is 0.9685569405555725\n",
- "epoch: 33 step: 47, loss is 0.9804575443267822\n",
- "epoch: 33 step: 48, loss is 0.8939063549041748\n",
- "epoch: 33 step: 49, loss is 0.9209359884262085\n",
- "epoch: 33 step: 50, loss is 0.9096759557723999\n",
- "epoch: 33 step: 51, loss is 1.022656798362732\n",
- "epoch: 33 step: 52, loss is 0.9809627532958984\n",
- "epoch: 33 step: 53, loss is 0.9726012945175171\n",
- "epoch: 33 step: 54, loss is 0.9015921950340271\n",
- "epoch: 33 step: 55, loss is 1.021711826324463\n",
- "epoch: 33 step: 56, loss is 0.9236119985580444\n",
- "epoch: 33 step: 57, loss is 0.9972453713417053\n",
- "epoch: 33 step: 58, loss is 0.9518496990203857\n",
- "epoch: 33 step: 59, loss is 0.9164246320724487\n",
- "epoch: 33 step: 60, loss is 0.9575086236000061\n",
- "epoch: 33 step: 61, loss is 0.8775957822799683\n",
- "epoch: 33 step: 62, loss is 0.9270531535148621\n",
- "epoch: 33 step: 63, loss is 0.9527212381362915\n",
- "epoch: 33 step: 64, loss is 1.0476192235946655\n",
- "epoch: 33 step: 65, loss is 0.9870452880859375\n",
- "epoch: 33 step: 66, loss is 0.9403674602508545\n",
- "epoch: 33 step: 67, loss is 1.0003372430801392\n",
- "epoch: 33 step: 68, loss is 0.9533125162124634\n",
- "epoch: 33 step: 69, loss is 0.9758104085922241\n",
- "epoch: 33 step: 70, loss is 0.9470967650413513\n",
- "epoch: 33 step: 71, loss is 0.93449467420578\n",
- "epoch: 33 step: 72, loss is 0.9770816564559937\n",
- "epoch: 33 step: 73, loss is 0.9332225918769836\n",
- "epoch: 33 step: 74, loss is 0.9649097919464111\n",
- "epoch: 33 step: 75, loss is 0.9458310604095459\n",
- "epoch: 33 step: 76, loss is 0.9841179847717285\n",
- "epoch: 33 step: 77, loss is 0.9203859567642212\n",
- "epoch: 33 step: 78, loss is 0.9566868543624878\n",
- "epoch: 33 step: 79, loss is 1.0033209323883057\n",
- "epoch: 33 step: 80, loss is 0.982210636138916\n",
- "epoch: 33 step: 81, loss is 0.9556820392608643\n",
- "epoch: 33 step: 82, loss is 0.9283323287963867\n",
- "epoch: 33 step: 83, loss is 0.9442602396011353\n",
- "epoch: 33 step: 84, loss is 0.9323667883872986\n",
- "epoch: 33 step: 85, loss is 0.9618833065032959\n",
- "epoch: 33 step: 86, loss is 0.9919984340667725\n",
- "epoch: 33 step: 87, loss is 0.963414192199707\n",
- "epoch: 33 step: 88, loss is 0.9294227957725525\n",
- "epoch: 33 step: 89, loss is 0.9657580852508545\n",
- "epoch: 33 step: 90, loss is 0.9258193969726562\n",
- "epoch: 33 step: 91, loss is 0.9991023540496826\n",
- "epoch: 33 step: 92, loss is 0.9860532283782959\n",
- "epoch: 33 step: 93, loss is 1.021698236465454\n",
- "epoch: 33 step: 94, loss is 0.9310401678085327\n",
- "epoch: 33 step: 95, loss is 0.9799342155456543\n",
- "epoch: 33 step: 96, loss is 0.9793753623962402\n",
- "epoch: 33 step: 97, loss is 0.8856238126754761\n",
- "epoch: 33 step: 98, loss is 0.9771213531494141\n",
- "epoch: 33 step: 99, loss is 0.9536637663841248\n",
- "epoch: 33 step: 100, loss is 1.0226426124572754\n",
- "epoch: 33 step: 101, loss is 1.0137053728103638\n",
- "epoch: 33 step: 102, loss is 0.9649891257286072\n",
- "epoch: 33 step: 103, loss is 0.9115580320358276\n",
- "epoch: 33 step: 104, loss is 1.0780785083770752\n",
- "epoch: 33 step: 105, loss is 1.0131902694702148\n",
- "epoch: 33 step: 106, loss is 0.9218496084213257\n",
- "epoch: 33 step: 107, loss is 1.0345942974090576\n",
- "epoch: 33 step: 108, loss is 1.0418907403945923\n",
- "epoch: 33 step: 109, loss is 0.9648298025131226\n",
- "epoch: 33 step: 110, loss is 0.9000749588012695\n",
- "epoch: 33 step: 111, loss is 1.093456506729126\n",
- "epoch: 33 step: 112, loss is 0.9261119961738586\n",
- "epoch: 33 step: 113, loss is 0.9823330640792847\n",
- "epoch: 33 step: 114, loss is 0.9650970697402954\n",
- "epoch: 33 step: 115, loss is 1.0126458406448364\n",
- "epoch: 33 step: 116, loss is 0.9840356707572937\n",
- "epoch: 33 step: 117, loss is 0.9778417348861694\n",
- "epoch: 33 step: 118, loss is 0.94410240650177\n",
- "epoch: 33 step: 119, loss is 1.0173594951629639\n",
- "epoch: 33 step: 120, loss is 0.9679955840110779\n",
- "epoch: 33 step: 121, loss is 1.0188758373260498\n",
- "epoch: 33 step: 122, loss is 0.9154094457626343\n",
- "epoch: 33 step: 123, loss is 1.002791404724121\n",
- "epoch: 33 step: 124, loss is 1.006293773651123\n",
- "epoch: 33 step: 125, loss is 1.007016658782959\n",
- "epoch: 33 step: 126, loss is 1.0260813236236572\n",
- "epoch: 33 step: 127, loss is 0.9723199605941772\n",
- "epoch: 33 step: 128, loss is 0.9928407073020935\n",
- "epoch: 33 step: 129, loss is 0.9961979389190674\n",
- "epoch: 33 step: 130, loss is 0.9842190742492676\n",
- "epoch: 33 step: 131, loss is 1.0594377517700195\n",
- "epoch: 33 step: 132, loss is 0.969925045967102\n",
- "epoch: 33 step: 133, loss is 0.9857386350631714\n",
- "epoch: 33 step: 134, loss is 0.9550771117210388\n",
- "epoch: 33 step: 135, loss is 0.9595305919647217\n",
- "epoch: 33 step: 136, loss is 0.9798208475112915\n",
- "epoch: 33 step: 137, loss is 1.0429097414016724\n",
- "epoch: 33 step: 138, loss is 0.9756332635879517\n",
- "epoch: 33 step: 139, loss is 1.0421208143234253\n",
- "epoch: 33 step: 140, loss is 1.055605411529541\n",
- "epoch: 33 step: 141, loss is 1.0591111183166504\n",
- "epoch: 33 step: 142, loss is 0.9941151142120361\n",
- "epoch: 33 step: 143, loss is 0.9986432790756226\n",
- "epoch: 33 step: 144, loss is 0.9531167149543762\n",
- "epoch: 33 step: 145, loss is 0.9759238958358765\n",
- "epoch: 33 step: 146, loss is 0.9562721252441406\n",
- "epoch: 33 step: 147, loss is 0.9446579217910767\n",
- "epoch: 33 step: 148, loss is 0.9611296653747559\n",
- "epoch: 33 step: 149, loss is 0.9357078671455383\n",
- "epoch: 33 step: 150, loss is 0.8983238935470581\n",
- "epoch: 33 step: 151, loss is 0.9335033893585205\n",
- "epoch: 33 step: 152, loss is 0.9647693634033203\n",
- "epoch: 33 step: 153, loss is 0.9338184595108032\n",
- "epoch: 33 step: 154, loss is 0.934909462928772\n",
- "epoch: 33 step: 155, loss is 0.9669569134712219\n",
- "epoch: 33 step: 156, loss is 0.9536868333816528\n",
- "epoch: 33 step: 157, loss is 0.9431536793708801\n",
- "epoch: 33 step: 158, loss is 0.9445674419403076\n",
- "epoch: 33 step: 159, loss is 0.9923531413078308\n",
- "epoch: 33 step: 160, loss is 0.9583009481430054\n",
- "epoch: 33 step: 161, loss is 1.0236531496047974\n",
- "epoch: 33 step: 162, loss is 1.017923355102539\n",
- "epoch: 33 step: 163, loss is 1.0092699527740479\n",
- "epoch: 33 step: 164, loss is 0.9135686159133911\n",
- "epoch: 33 step: 165, loss is 1.0051112174987793\n",
- "epoch: 33 step: 166, loss is 0.9855773448944092\n",
- "epoch: 33 step: 167, loss is 0.9204099774360657\n",
- "epoch: 33 step: 168, loss is 0.9891406297683716\n",
- "epoch: 33 step: 169, loss is 1.0182404518127441\n",
- "epoch: 33 step: 170, loss is 0.9533469676971436\n",
- "epoch: 33 step: 171, loss is 0.9587410688400269\n",
- "epoch: 33 step: 172, loss is 0.9662201404571533\n",
- "epoch: 33 step: 173, loss is 0.9143804311752319\n",
- "epoch: 33 step: 174, loss is 0.970787525177002\n",
- "epoch: 33 step: 175, loss is 0.9179912209510803\n",
- "epoch: 33 step: 176, loss is 0.922834038734436\n",
- "epoch: 33 step: 177, loss is 0.9413474798202515\n",
- "epoch: 33 step: 178, loss is 0.953830897808075\n",
- "epoch: 33 step: 179, loss is 0.9036558866500854\n",
- "epoch: 33 step: 180, loss is 0.9865437746047974\n",
- "epoch: 33 step: 181, loss is 0.90086430311203\n",
- "epoch: 33 step: 182, loss is 0.854681134223938\n",
- "epoch: 33 step: 183, loss is 0.9300872087478638\n",
- "epoch: 33 step: 184, loss is 0.874895453453064\n",
- "epoch: 33 step: 185, loss is 1.0436989068984985\n",
- "epoch: 33 step: 186, loss is 0.9987715482711792\n",
- "epoch: 33 step: 187, loss is 0.9680948853492737\n",
- "epoch: 33 step: 188, loss is 0.891126275062561\n",
- "epoch: 33 step: 189, loss is 0.9234379529953003\n",
- "epoch: 33 step: 190, loss is 0.9447418451309204\n",
- "epoch: 33 step: 191, loss is 0.9901825189590454\n",
- "epoch: 33 step: 192, loss is 0.951102614402771\n",
- "epoch: 33 step: 193, loss is 0.9049558043479919\n",
- "epoch: 33 step: 194, loss is 0.916175365447998\n",
- "epoch: 33 step: 195, loss is 0.9999237656593323\n",
- "Train epoch time: 105732.515 ms, per step time: 542.218 ms\n",
- "epoch: 34 step: 1, loss is 0.9014315009117126\n",
- "epoch: 34 step: 2, loss is 1.0061246156692505\n",
- "epoch: 34 step: 3, loss is 0.9278513193130493\n",
- "epoch: 34 step: 4, loss is 0.9681090116500854\n",
- "epoch: 34 step: 5, loss is 0.9338939189910889\n",
- "epoch: 34 step: 6, loss is 0.9414672255516052\n",
- "epoch: 34 step: 7, loss is 0.9171125888824463\n",
- "epoch: 34 step: 8, loss is 0.9877579808235168\n",
- "epoch: 34 step: 9, loss is 0.9676296710968018\n",
- "epoch: 34 step: 10, loss is 0.9511964917182922\n",
- "epoch: 34 step: 11, loss is 0.9489525556564331\n",
- "epoch: 34 step: 12, loss is 0.8902410268783569\n",
- "epoch: 34 step: 13, loss is 0.9067836403846741\n",
- "epoch: 34 step: 14, loss is 0.8833621144294739\n",
- "epoch: 34 step: 15, loss is 0.9010988473892212\n",
- "epoch: 34 step: 16, loss is 0.9346631765365601\n",
- "epoch: 34 step: 17, loss is 0.9013309478759766\n",
- "epoch: 34 step: 18, loss is 0.9403157234191895\n",
- "epoch: 34 step: 19, loss is 0.9549760818481445\n",
- "epoch: 34 step: 20, loss is 0.9385412931442261\n",
- "epoch: 34 step: 21, loss is 0.9539570212364197\n",
- "epoch: 34 step: 22, loss is 0.9806356430053711\n",
- "epoch: 34 step: 23, loss is 0.9956022500991821\n",
- "epoch: 34 step: 24, loss is 0.9359166622161865\n",
- "epoch: 34 step: 25, loss is 0.8807121515274048\n",
- "epoch: 34 step: 26, loss is 0.9323121905326843\n",
- "epoch: 34 step: 27, loss is 0.9165089130401611\n",
- "epoch: 34 step: 28, loss is 1.0007545948028564\n",
- "epoch: 34 step: 29, loss is 0.992508590221405\n",
- "epoch: 34 step: 30, loss is 0.9108644127845764\n",
- "epoch: 34 step: 31, loss is 0.9335404634475708\n",
- "epoch: 34 step: 32, loss is 0.8934336304664612\n",
- "epoch: 34 step: 33, loss is 0.9304132461547852\n",
- "epoch: 34 step: 34, loss is 0.9634863138198853\n",
- "epoch: 34 step: 35, loss is 0.9104371070861816\n",
- "epoch: 34 step: 36, loss is 0.9406634569168091\n",
- "epoch: 34 step: 37, loss is 1.0494654178619385\n",
- "epoch: 34 step: 38, loss is 1.0364055633544922\n",
- "epoch: 34 step: 39, loss is 0.9982168674468994\n",
- "epoch: 34 step: 40, loss is 0.9110483527183533\n",
- "epoch: 34 step: 41, loss is 0.9448615312576294\n",
- "epoch: 34 step: 42, loss is 0.9037631750106812\n",
- "epoch: 34 step: 43, loss is 0.8959715366363525\n",
- "epoch: 34 step: 44, loss is 0.9400544166564941\n",
- "epoch: 34 step: 45, loss is 0.8632012605667114\n",
- "epoch: 34 step: 46, loss is 1.0307023525238037\n",
- "epoch: 34 step: 47, loss is 0.964219331741333\n",
- "epoch: 34 step: 48, loss is 0.9474425315856934\n",
- "epoch: 34 step: 49, loss is 0.9032085537910461\n",
- "epoch: 34 step: 50, loss is 0.9863803386688232\n",
- "epoch: 34 step: 51, loss is 0.9763869047164917\n",
- "epoch: 34 step: 52, loss is 0.8791936635971069\n",
- "epoch: 34 step: 53, loss is 0.9551576375961304\n",
- "epoch: 34 step: 54, loss is 1.037739872932434\n",
- "epoch: 34 step: 55, loss is 0.9513261318206787\n",
- "epoch: 34 step: 56, loss is 0.928236722946167\n",
- "epoch: 34 step: 57, loss is 0.916535496711731\n",
- "epoch: 34 step: 58, loss is 0.9475514888763428\n",
- "epoch: 34 step: 59, loss is 1.02689528465271\n",
- "epoch: 34 step: 60, loss is 0.9856384992599487\n",
- "epoch: 34 step: 61, loss is 1.020219326019287\n",
- "epoch: 34 step: 62, loss is 0.9119340181350708\n",
- "epoch: 34 step: 63, loss is 0.9119802713394165\n",
- "epoch: 34 step: 64, loss is 0.9378088712692261\n",
- "epoch: 34 step: 65, loss is 0.9115553498268127\n",
- "epoch: 34 step: 66, loss is 1.001633644104004\n",
- "epoch: 34 step: 67, loss is 0.8776998519897461\n",
- "epoch: 34 step: 68, loss is 0.9740617275238037\n",
- "epoch: 34 step: 69, loss is 0.930700421333313\n",
- "epoch: 34 step: 70, loss is 0.9697713851928711\n",
- "epoch: 34 step: 71, loss is 0.9253783822059631\n",
- "epoch: 34 step: 72, loss is 0.8965550661087036\n",
- "epoch: 34 step: 73, loss is 0.946887731552124\n",
- "epoch: 34 step: 74, loss is 0.9209814667701721\n",
- "epoch: 34 step: 75, loss is 0.9002019166946411\n",
- "epoch: 34 step: 76, loss is 1.070088267326355\n",
- "epoch: 34 step: 77, loss is 0.8834725618362427\n",
- "epoch: 34 step: 78, loss is 0.9126980900764465\n",
- "epoch: 34 step: 79, loss is 0.9756837487220764\n",
- "epoch: 34 step: 80, loss is 0.9624533653259277\n",
- "epoch: 34 step: 81, loss is 0.9520150423049927\n",
- "epoch: 34 step: 82, loss is 0.9528704881668091\n",
- "epoch: 34 step: 83, loss is 0.8787263035774231\n",
- "epoch: 34 step: 84, loss is 0.9074934720993042\n",
- "epoch: 34 step: 85, loss is 0.8870270848274231\n",
- "epoch: 34 step: 86, loss is 0.9672122597694397\n",
- "epoch: 34 step: 87, loss is 0.9973835945129395\n",
- "epoch: 34 step: 88, loss is 0.9536515474319458\n",
- "epoch: 34 step: 89, loss is 0.9830984473228455\n",
- "epoch: 34 step: 90, loss is 0.9154214859008789\n",
- "epoch: 34 step: 91, loss is 0.9034596681594849\n",
- "epoch: 34 step: 92, loss is 0.9284597635269165\n",
- "epoch: 34 step: 93, loss is 0.9021449685096741\n",
- "epoch: 34 step: 94, loss is 0.8861116170883179\n",
- "epoch: 34 step: 95, loss is 0.9342606663703918\n",
- "epoch: 34 step: 96, loss is 1.0601040124893188\n",
- "epoch: 34 step: 97, loss is 0.9759514331817627\n",
- "epoch: 34 step: 98, loss is 0.9432640075683594\n",
- "epoch: 34 step: 99, loss is 0.9687386751174927\n",
- "epoch: 34 step: 100, loss is 0.9362058043479919\n",
- "epoch: 34 step: 101, loss is 0.9157013893127441\n",
- "epoch: 34 step: 102, loss is 0.9615666270256042\n",
- "epoch: 34 step: 103, loss is 0.9762511253356934\n",
- "epoch: 34 step: 104, loss is 0.9799898862838745\n",
- "epoch: 34 step: 105, loss is 0.9388425350189209\n",
- "epoch: 34 step: 106, loss is 0.9910931587219238\n",
- "epoch: 34 step: 107, loss is 0.9737606644630432\n",
- "epoch: 34 step: 108, loss is 0.9557483196258545\n",
- "epoch: 34 step: 109, loss is 0.893720269203186\n",
- "epoch: 34 step: 110, loss is 0.919302225112915\n",
- "epoch: 34 step: 111, loss is 0.925922691822052\n",
- "epoch: 34 step: 112, loss is 0.8252326250076294\n",
- "epoch: 34 step: 113, loss is 1.1018568277359009\n",
- "epoch: 34 step: 114, loss is 0.9709291458129883\n",
- "epoch: 34 step: 115, loss is 1.008709192276001\n",
- "epoch: 34 step: 116, loss is 0.9278504848480225\n",
- "epoch: 34 step: 117, loss is 0.9925538301467896\n",
- "epoch: 34 step: 118, loss is 0.9473333358764648\n",
- "epoch: 34 step: 119, loss is 0.8593403100967407\n",
- "epoch: 34 step: 120, loss is 0.9009590744972229\n",
- "epoch: 34 step: 121, loss is 0.9907059073448181\n",
- "epoch: 34 step: 122, loss is 0.8917592763900757\n",
- "epoch: 34 step: 123, loss is 0.9693436622619629\n",
- "epoch: 34 step: 124, loss is 0.9636246562004089\n",
- "epoch: 34 step: 125, loss is 1.0571426153182983\n",
- "epoch: 34 step: 126, loss is 0.9221630096435547\n",
- "epoch: 34 step: 127, loss is 0.9444491267204285\n",
- "epoch: 34 step: 128, loss is 0.92763352394104\n",
- "epoch: 34 step: 129, loss is 0.9797393083572388\n",
- "epoch: 34 step: 130, loss is 0.8912967443466187\n",
- "epoch: 34 step: 131, loss is 0.9313188195228577\n",
- "epoch: 34 step: 132, loss is 0.9189953804016113\n",
- "epoch: 34 step: 133, loss is 0.9340605735778809\n",
- "epoch: 34 step: 134, loss is 0.9475011825561523\n",
- "epoch: 34 step: 135, loss is 0.970293402671814\n",
- "epoch: 34 step: 136, loss is 0.9611556529998779\n",
- "epoch: 34 step: 137, loss is 0.9226872324943542\n",
- "epoch: 34 step: 138, loss is 0.8941627740859985\n",
- "epoch: 34 step: 139, loss is 0.9701416492462158\n",
- "epoch: 34 step: 140, loss is 0.9955623149871826\n",
- "epoch: 34 step: 141, loss is 0.9524980783462524\n",
- "epoch: 34 step: 142, loss is 0.9889296293258667\n",
- "epoch: 34 step: 143, loss is 0.9423254728317261\n",
- "epoch: 34 step: 144, loss is 0.9051668643951416\n",
- "epoch: 34 step: 145, loss is 0.88808274269104\n",
- "epoch: 34 step: 146, loss is 0.9182569980621338\n",
- "epoch: 34 step: 147, loss is 0.9885237216949463\n",
- "epoch: 34 step: 148, loss is 0.9808858633041382\n",
- "epoch: 34 step: 149, loss is 1.0045175552368164\n",
- "epoch: 34 step: 150, loss is 0.9291503429412842\n",
- "epoch: 34 step: 151, loss is 0.8854019641876221\n",
- "epoch: 34 step: 152, loss is 0.971072793006897\n",
- "epoch: 34 step: 153, loss is 0.9808249473571777\n",
- "epoch: 34 step: 154, loss is 0.9965280294418335\n",
- "epoch: 34 step: 155, loss is 0.9373445510864258\n",
- "epoch: 34 step: 156, loss is 0.9657478332519531\n",
- "epoch: 34 step: 157, loss is 0.9578162431716919\n",
- "epoch: 34 step: 158, loss is 0.9662688970565796\n",
- "epoch: 34 step: 159, loss is 0.9597685933113098\n",
- "epoch: 34 step: 160, loss is 0.9286093711853027\n",
- "epoch: 34 step: 161, loss is 0.9306361675262451\n",
- "epoch: 34 step: 162, loss is 0.9791843295097351\n",
- "epoch: 34 step: 163, loss is 1.0070964097976685\n",
- "epoch: 34 step: 164, loss is 0.9057208299636841\n",
- "epoch: 34 step: 165, loss is 0.8771458864212036\n",
- "epoch: 34 step: 166, loss is 0.9728949069976807\n",
- "epoch: 34 step: 167, loss is 0.9206799268722534\n",
- "epoch: 34 step: 168, loss is 0.9634367227554321\n",
- "epoch: 34 step: 169, loss is 0.9787682294845581\n",
- "epoch: 34 step: 170, loss is 0.9422827363014221\n",
- "epoch: 34 step: 171, loss is 0.8634648323059082\n",
- "epoch: 34 step: 172, loss is 0.9658458232879639\n",
- "epoch: 34 step: 173, loss is 0.8860664367675781\n",
- "epoch: 34 step: 174, loss is 0.999804675579071\n",
- "epoch: 34 step: 175, loss is 0.9213178753852844\n",
- "epoch: 34 step: 176, loss is 0.9172133207321167\n",
- "epoch: 34 step: 177, loss is 0.9587059020996094\n",
- "epoch: 34 step: 178, loss is 0.9470864534378052\n",
- "epoch: 34 step: 179, loss is 0.942177951335907\n",
- "epoch: 34 step: 180, loss is 0.953234076499939\n",
- "epoch: 34 step: 181, loss is 0.9524900317192078\n",
- "epoch: 34 step: 182, loss is 0.9437451362609863\n",
- "epoch: 34 step: 183, loss is 0.9110795855522156\n",
- "epoch: 34 step: 184, loss is 0.9684717655181885\n",
- "epoch: 34 step: 185, loss is 1.0281192064285278\n",
- "epoch: 34 step: 186, loss is 1.0017304420471191\n",
- "epoch: 34 step: 187, loss is 0.9481175541877747\n",
- "epoch: 34 step: 188, loss is 0.9608588218688965\n",
- "epoch: 34 step: 189, loss is 0.8498528003692627\n",
- "epoch: 34 step: 190, loss is 0.9759148359298706\n",
- "epoch: 34 step: 191, loss is 0.8954848051071167\n",
- "epoch: 34 step: 192, loss is 0.92084801197052\n",
- "epoch: 34 step: 193, loss is 0.9808803796768188\n",
- "epoch: 34 step: 194, loss is 0.8957556486129761\n",
- "epoch: 34 step: 195, loss is 0.8824705481529236\n",
- "Train epoch time: 103377.454 ms, per step time: 530.141 ms\n",
- "epoch: 35 step: 1, loss is 0.9321742057800293\n",
- "epoch: 35 step: 2, loss is 0.9236174821853638\n",
- "epoch: 35 step: 3, loss is 0.9671396017074585\n",
- "epoch: 35 step: 4, loss is 0.9441525340080261\n",
- "epoch: 35 step: 5, loss is 0.9191724061965942\n",
- "epoch: 35 step: 6, loss is 0.9428202509880066\n",
- "epoch: 35 step: 7, loss is 0.9427393674850464\n",
- "epoch: 35 step: 8, loss is 0.9015364646911621\n",
- "epoch: 35 step: 9, loss is 1.0081089735031128\n",
- "epoch: 35 step: 10, loss is 0.9762673377990723\n",
- "epoch: 35 step: 11, loss is 0.8611786365509033\n",
- "epoch: 35 step: 12, loss is 0.9344070553779602\n",
- "epoch: 35 step: 13, loss is 0.9475448727607727\n",
- "epoch: 35 step: 14, loss is 0.9237775206565857\n",
- "epoch: 35 step: 15, loss is 0.9103908538818359\n",
- "epoch: 35 step: 16, loss is 0.9516251087188721\n",
- "epoch: 35 step: 17, loss is 0.8770326375961304\n",
- "epoch: 35 step: 18, loss is 0.9662160873413086\n",
- "epoch: 35 step: 19, loss is 0.9176384210586548\n",
- "epoch: 35 step: 20, loss is 0.9855346083641052\n",
- "epoch: 35 step: 21, loss is 0.9981141090393066\n",
- "epoch: 35 step: 22, loss is 0.897175669670105\n",
- "epoch: 35 step: 23, loss is 0.9855985641479492\n",
- "epoch: 35 step: 24, loss is 0.9216829538345337\n",
- "epoch: 35 step: 25, loss is 0.9321513772010803\n",
- "epoch: 35 step: 26, loss is 0.910799503326416\n",
- "epoch: 35 step: 27, loss is 0.9253268241882324\n",
- "epoch: 35 step: 28, loss is 0.9137090444564819\n",
- "epoch: 35 step: 29, loss is 0.9389795064926147\n",
- "epoch: 35 step: 30, loss is 0.9452539682388306\n",
- "epoch: 35 step: 31, loss is 0.9086108207702637\n",
- "epoch: 35 step: 32, loss is 0.9284298419952393\n",
- "epoch: 35 step: 33, loss is 0.9007588028907776\n",
- "epoch: 35 step: 34, loss is 0.9066742658615112\n",
- "epoch: 35 step: 35, loss is 0.9004108905792236\n",
- "epoch: 35 step: 36, loss is 0.9152095913887024\n",
- "epoch: 35 step: 37, loss is 0.9811350107192993\n",
- "epoch: 35 step: 38, loss is 0.8799799084663391\n",
- "epoch: 35 step: 39, loss is 0.9755699634552002\n",
- "epoch: 35 step: 40, loss is 0.8910683989524841\n",
- "epoch: 35 step: 41, loss is 0.90812748670578\n",
- "epoch: 35 step: 42, loss is 0.9333764314651489\n",
- "epoch: 35 step: 43, loss is 0.9187864065170288\n",
- "epoch: 35 step: 44, loss is 0.976913571357727\n",
- "epoch: 35 step: 45, loss is 1.0174815654754639\n",
- "epoch: 35 step: 46, loss is 0.883173942565918\n",
- "epoch: 35 step: 47, loss is 0.9620487689971924\n",
- "epoch: 35 step: 48, loss is 0.9159752130508423\n",
- "epoch: 35 step: 49, loss is 0.9220020771026611\n",
- "epoch: 35 step: 50, loss is 0.8688544034957886\n",
- "epoch: 35 step: 51, loss is 0.8959513902664185\n",
- "epoch: 35 step: 52, loss is 0.8978442549705505\n",
- "epoch: 35 step: 53, loss is 0.9398765563964844\n",
- "epoch: 35 step: 54, loss is 0.9128605127334595\n",
- "epoch: 35 step: 55, loss is 0.9327958822250366\n",
- "epoch: 35 step: 56, loss is 0.8748239278793335\n",
- "epoch: 35 step: 57, loss is 0.9932176470756531\n",
- "epoch: 35 step: 58, loss is 0.898052990436554\n",
- "epoch: 35 step: 59, loss is 0.9831613302230835\n",
- "epoch: 35 step: 60, loss is 0.9090197682380676\n",
- "epoch: 35 step: 61, loss is 0.9187009930610657\n",
- "epoch: 35 step: 62, loss is 0.9349439740180969\n",
- "epoch: 35 step: 63, loss is 0.952746570110321\n",
- "epoch: 35 step: 64, loss is 0.8808339834213257\n",
- "epoch: 35 step: 65, loss is 0.9279297590255737\n",
- "epoch: 35 step: 66, loss is 0.8854906558990479\n",
- "epoch: 35 step: 67, loss is 0.8512426018714905\n",
- "epoch: 35 step: 68, loss is 0.9746465682983398\n",
- "epoch: 35 step: 69, loss is 0.9441372156143188\n",
- "epoch: 35 step: 70, loss is 0.928647518157959\n",
- "epoch: 35 step: 71, loss is 0.8696870803833008\n",
- "epoch: 35 step: 72, loss is 0.9274473786354065\n",
- "epoch: 35 step: 73, loss is 0.8742825984954834\n",
- "epoch: 35 step: 74, loss is 0.9772400259971619\n",
- "epoch: 35 step: 75, loss is 0.9277609586715698\n",
- "epoch: 35 step: 76, loss is 0.872089147567749\n",
- "epoch: 35 step: 77, loss is 0.9477022886276245\n",
- "epoch: 35 step: 78, loss is 0.9068365097045898\n",
- "epoch: 35 step: 79, loss is 0.8722138404846191\n",
- "epoch: 35 step: 80, loss is 0.8726453185081482\n",
- "epoch: 35 step: 81, loss is 0.9412095546722412\n",
- "epoch: 35 step: 82, loss is 0.8479371070861816\n",
- "epoch: 35 step: 83, loss is 0.9269524812698364\n",
- "epoch: 35 step: 84, loss is 0.9299825429916382\n",
- "epoch: 35 step: 85, loss is 0.8902825713157654\n",
- "epoch: 35 step: 86, loss is 0.8793601393699646\n",
- "epoch: 35 step: 87, loss is 0.9258752465248108\n",
- "epoch: 35 step: 88, loss is 0.8696000576019287\n",
- "epoch: 35 step: 89, loss is 0.9275202751159668\n",
- "epoch: 35 step: 90, loss is 0.9502071142196655\n",
- "epoch: 35 step: 91, loss is 0.8755085468292236\n",
- "epoch: 35 step: 92, loss is 0.9016488790512085\n",
- "epoch: 35 step: 93, loss is 0.9853478670120239\n",
- "epoch: 35 step: 94, loss is 0.8782252669334412\n",
- "epoch: 35 step: 95, loss is 0.8758950233459473\n",
- "epoch: 35 step: 96, loss is 0.9374468326568604\n",
- "epoch: 35 step: 97, loss is 0.9172608852386475\n",
- "epoch: 35 step: 98, loss is 0.9012348651885986\n",
- "epoch: 35 step: 99, loss is 0.9184340834617615\n",
- "epoch: 35 step: 100, loss is 1.0300002098083496\n",
- "epoch: 35 step: 101, loss is 0.9288413524627686\n",
- "epoch: 35 step: 102, loss is 0.9546959400177002\n",
- "epoch: 35 step: 103, loss is 0.9805189371109009\n",
- "epoch: 35 step: 104, loss is 0.9015235900878906\n",
- "epoch: 35 step: 105, loss is 0.9263312816619873\n",
- "epoch: 35 step: 106, loss is 0.9821997880935669\n",
- "epoch: 35 step: 107, loss is 0.9396763443946838\n",
- "epoch: 35 step: 108, loss is 0.9329175353050232\n",
- "epoch: 35 step: 109, loss is 0.8895686864852905\n",
- "epoch: 35 step: 110, loss is 0.8698145151138306\n",
- "epoch: 35 step: 111, loss is 0.9032471179962158\n",
- "epoch: 35 step: 112, loss is 0.8536380529403687\n",
- "epoch: 35 step: 113, loss is 0.9940599203109741\n",
- "epoch: 35 step: 114, loss is 0.9198892116546631\n",
- "epoch: 35 step: 115, loss is 0.9054993391036987\n",
- "epoch: 35 step: 116, loss is 0.8404321670532227\n",
- "epoch: 35 step: 117, loss is 0.982492983341217\n",
- "epoch: 35 step: 118, loss is 0.9637353420257568\n",
- "epoch: 35 step: 119, loss is 0.9241425395011902\n",
- "epoch: 35 step: 120, loss is 0.9453873634338379\n",
- "epoch: 35 step: 121, loss is 0.9492310285568237\n",
- "epoch: 35 step: 122, loss is 0.9081125259399414\n",
- "epoch: 35 step: 123, loss is 0.941939115524292\n",
- "epoch: 35 step: 124, loss is 0.9207726716995239\n",
- "epoch: 35 step: 125, loss is 0.971773624420166\n",
- "epoch: 35 step: 126, loss is 0.9954080581665039\n",
- "epoch: 35 step: 127, loss is 0.9029237031936646\n",
- "epoch: 35 step: 128, loss is 0.9804610013961792\n",
- "epoch: 35 step: 129, loss is 1.0099862813949585\n",
- "epoch: 35 step: 130, loss is 0.9276174306869507\n",
- "epoch: 35 step: 131, loss is 0.9244399070739746\n",
- "epoch: 35 step: 132, loss is 0.9592991471290588\n",
- "epoch: 35 step: 133, loss is 0.9252265691757202\n",
- "epoch: 35 step: 134, loss is 0.9535772800445557\n",
- "epoch: 35 step: 135, loss is 0.966822624206543\n",
- "epoch: 35 step: 136, loss is 0.9317789077758789\n",
- "epoch: 35 step: 137, loss is 0.8959453105926514\n",
- "epoch: 35 step: 138, loss is 0.892573356628418\n",
- "epoch: 35 step: 139, loss is 0.9602587819099426\n",
- "epoch: 35 step: 140, loss is 0.9565356969833374\n",
- "epoch: 35 step: 141, loss is 0.9129329323768616\n",
- "epoch: 35 step: 142, loss is 0.9529698491096497\n",
- "epoch: 35 step: 143, loss is 0.9550875425338745\n",
- "epoch: 35 step: 144, loss is 0.832931399345398\n",
- "epoch: 35 step: 145, loss is 0.8912063241004944\n",
- "epoch: 35 step: 146, loss is 0.9463378190994263\n",
- "epoch: 35 step: 147, loss is 0.92389976978302\n",
- "epoch: 35 step: 148, loss is 0.959328293800354\n",
- "epoch: 35 step: 149, loss is 0.9341170787811279\n",
- "epoch: 35 step: 150, loss is 0.9353057742118835\n",
- "epoch: 35 step: 151, loss is 0.962594211101532\n",
- "epoch: 35 step: 152, loss is 0.9945852756500244\n",
- "epoch: 35 step: 153, loss is 0.910730242729187\n",
- "epoch: 35 step: 154, loss is 0.9615596532821655\n",
- "epoch: 35 step: 155, loss is 0.9791237711906433\n",
- "epoch: 35 step: 156, loss is 0.9064930081367493\n",
- "epoch: 35 step: 157, loss is 0.9724091291427612\n",
- "epoch: 35 step: 158, loss is 0.9107381105422974\n",
- "epoch: 35 step: 159, loss is 0.943078875541687\n",
- "epoch: 35 step: 160, loss is 0.958893358707428\n",
- "epoch: 35 step: 161, loss is 0.9211525917053223\n",
- "epoch: 35 step: 162, loss is 0.9644378423690796\n",
- "epoch: 35 step: 163, loss is 0.9776133298873901\n",
- "epoch: 35 step: 164, loss is 0.91977858543396\n",
- "epoch: 35 step: 165, loss is 0.8582698106765747\n",
- "epoch: 35 step: 166, loss is 0.9591565132141113\n",
- "epoch: 35 step: 167, loss is 0.9640787839889526\n",
- "epoch: 35 step: 168, loss is 0.9366103410720825\n",
- "epoch: 35 step: 169, loss is 0.8446204662322998\n",
- "epoch: 35 step: 170, loss is 0.9548232555389404\n",
- "epoch: 35 step: 171, loss is 0.9619027376174927\n",
- "epoch: 35 step: 172, loss is 0.9666999578475952\n",
- "epoch: 35 step: 173, loss is 0.9886733889579773\n",
- "epoch: 35 step: 174, loss is 0.9800610542297363\n",
- "epoch: 35 step: 175, loss is 0.9355350732803345\n",
- "epoch: 35 step: 176, loss is 0.9134535789489746\n",
- "epoch: 35 step: 177, loss is 0.9251669645309448\n",
- "epoch: 35 step: 178, loss is 1.0481984615325928\n",
- "epoch: 35 step: 179, loss is 0.9496559500694275\n",
- "epoch: 35 step: 180, loss is 0.9258530735969543\n",
- "epoch: 35 step: 181, loss is 0.930387020111084\n",
- "epoch: 35 step: 182, loss is 0.9492547512054443\n",
- "epoch: 35 step: 183, loss is 0.903343915939331\n",
- "epoch: 35 step: 184, loss is 0.942166268825531\n",
- "epoch: 35 step: 185, loss is 0.8993254899978638\n",
- "epoch: 35 step: 186, loss is 0.9340779185295105\n",
- "epoch: 35 step: 187, loss is 0.9205582141876221\n",
- "epoch: 35 step: 188, loss is 0.8929234147071838\n",
- "epoch: 35 step: 189, loss is 0.9511979818344116\n",
- "epoch: 35 step: 190, loss is 0.94832444190979\n",
- "epoch: 35 step: 191, loss is 0.95477294921875\n",
- "epoch: 35 step: 192, loss is 0.988754153251648\n",
- "epoch: 35 step: 193, loss is 0.9798315763473511\n",
- "epoch: 35 step: 194, loss is 0.9027866125106812\n",
- "epoch: 35 step: 195, loss is 0.913625955581665\n",
- "Train epoch time: 101863.854 ms, per step time: 522.379 ms\n",
- "epoch: 36 step: 1, loss is 0.9511114358901978\n",
- "epoch: 36 step: 2, loss is 0.8820651769638062\n",
- "epoch: 36 step: 3, loss is 0.8757919073104858\n",
- "epoch: 36 step: 4, loss is 0.9131102561950684\n",
- "epoch: 36 step: 5, loss is 0.8579142093658447\n",
- "epoch: 36 step: 6, loss is 0.8764615058898926\n",
- "epoch: 36 step: 7, loss is 0.944739043712616\n",
- "epoch: 36 step: 8, loss is 0.8983330130577087\n",
- "epoch: 36 step: 9, loss is 0.8726266622543335\n",
- "epoch: 36 step: 10, loss is 0.9318898916244507\n",
- "epoch: 36 step: 11, loss is 0.9268391132354736\n",
- "epoch: 36 step: 12, loss is 0.9383611083030701\n",
- "epoch: 36 step: 13, loss is 0.9060500264167786\n",
- "epoch: 36 step: 14, loss is 0.9363413453102112\n",
- "epoch: 36 step: 15, loss is 0.9189547896385193\n",
- "epoch: 36 step: 16, loss is 0.8941370248794556\n",
- "epoch: 36 step: 17, loss is 0.8806160688400269\n",
- "epoch: 36 step: 18, loss is 0.9247094392776489\n",
- "epoch: 36 step: 19, loss is 0.9538742303848267\n",
- "epoch: 36 step: 20, loss is 0.9682211875915527\n",
- "epoch: 36 step: 21, loss is 0.9127041101455688\n",
- "epoch: 36 step: 22, loss is 0.9629229307174683\n",
- "epoch: 36 step: 23, loss is 0.9864892959594727\n",
- "epoch: 36 step: 24, loss is 0.9209844470024109\n",
- "epoch: 36 step: 25, loss is 0.8738136887550354\n",
- "epoch: 36 step: 26, loss is 0.9286003112792969\n",
- "epoch: 36 step: 27, loss is 0.862468421459198\n",
- "epoch: 36 step: 28, loss is 0.8981037735939026\n",
- "epoch: 36 step: 29, loss is 0.9616064429283142\n",
- "epoch: 36 step: 30, loss is 0.8877047896385193\n",
- "epoch: 36 step: 31, loss is 0.8780917525291443\n",
- "epoch: 36 step: 32, loss is 0.9018476009368896\n",
- "epoch: 36 step: 33, loss is 0.9169036149978638\n",
- "epoch: 36 step: 34, loss is 0.9199008941650391\n",
- "epoch: 36 step: 35, loss is 0.8600500822067261\n",
- "epoch: 36 step: 36, loss is 0.914757251739502\n",
- "epoch: 36 step: 37, loss is 0.9269331693649292\n",
- "epoch: 36 step: 38, loss is 0.9137508869171143\n",
- "epoch: 36 step: 39, loss is 0.9179561138153076\n",
- "epoch: 36 step: 40, loss is 0.9651851654052734\n",
- "epoch: 36 step: 41, loss is 0.8911492824554443\n",
- "epoch: 36 step: 42, loss is 0.8767808079719543\n",
- "epoch: 36 step: 43, loss is 0.9578814506530762\n",
- "epoch: 36 step: 44, loss is 0.9101676940917969\n",
- "epoch: 36 step: 45, loss is 1.0200754404067993\n",
- "epoch: 36 step: 46, loss is 0.924929141998291\n",
- "epoch: 36 step: 47, loss is 0.8957664966583252\n",
- "epoch: 36 step: 48, loss is 0.9265422821044922\n",
- "epoch: 36 step: 49, loss is 0.9253946542739868\n",
- "epoch: 36 step: 50, loss is 0.9065577983856201\n",
- "epoch: 36 step: 51, loss is 0.8680866956710815\n",
- "epoch: 36 step: 52, loss is 0.9180309772491455\n",
- "epoch: 36 step: 53, loss is 0.9542644023895264\n",
- "epoch: 36 step: 54, loss is 0.915028989315033\n",
- "epoch: 36 step: 55, loss is 0.9158083200454712\n",
- "epoch: 36 step: 56, loss is 0.8948043584823608\n",
- "epoch: 36 step: 57, loss is 0.9329050779342651\n",
- "epoch: 36 step: 58, loss is 0.9433001279830933\n",
- "epoch: 36 step: 59, loss is 0.8732025623321533\n",
- "epoch: 36 step: 60, loss is 0.9161126613616943\n",
- "epoch: 36 step: 61, loss is 0.996979296207428\n",
- "epoch: 36 step: 62, loss is 0.9671070575714111\n",
- "epoch: 36 step: 63, loss is 0.8891600370407104\n",
- "epoch: 36 step: 64, loss is 0.9511172771453857\n",
- "epoch: 36 step: 65, loss is 0.9074980616569519\n",
- "epoch: 36 step: 66, loss is 0.8948079943656921\n",
- "epoch: 36 step: 67, loss is 0.8720858693122864\n",
- "epoch: 36 step: 68, loss is 0.9487940073013306\n",
- "epoch: 36 step: 69, loss is 0.9481832981109619\n",
- "epoch: 36 step: 70, loss is 0.974111795425415\n",
- "epoch: 36 step: 71, loss is 0.8999603986740112\n",
- "epoch: 36 step: 72, loss is 0.9744691252708435\n",
- "epoch: 36 step: 73, loss is 0.8973945379257202\n",
- "epoch: 36 step: 74, loss is 0.9349753856658936\n",
- "epoch: 36 step: 75, loss is 1.0110183954238892\n",
- "epoch: 36 step: 76, loss is 0.8624833822250366\n",
- "epoch: 36 step: 77, loss is 0.9465134143829346\n",
- "epoch: 36 step: 78, loss is 0.905829668045044\n",
- "epoch: 36 step: 79, loss is 0.902802050113678\n",
- "epoch: 36 step: 80, loss is 0.8999656438827515\n",
- "epoch: 36 step: 81, loss is 0.9165370464324951\n",
- "epoch: 36 step: 82, loss is 0.9923079013824463\n",
- "epoch: 36 step: 83, loss is 0.9337673187255859\n",
- "epoch: 36 step: 84, loss is 0.8686660528182983\n",
- "epoch: 36 step: 85, loss is 0.9309631586074829\n",
- "epoch: 36 step: 86, loss is 0.9067419171333313\n",
- "epoch: 36 step: 87, loss is 0.8585471510887146\n",
- "epoch: 36 step: 88, loss is 0.9299182891845703\n",
- "epoch: 36 step: 89, loss is 0.9427148699760437\n",
- "epoch: 36 step: 90, loss is 0.9346275329589844\n",
- "epoch: 36 step: 91, loss is 0.9057897329330444\n",
- "epoch: 36 step: 92, loss is 0.9160224199295044\n",
- "epoch: 36 step: 93, loss is 0.9715698957443237\n",
- "epoch: 36 step: 94, loss is 0.8405822515487671\n",
- "epoch: 36 step: 95, loss is 0.9172334671020508\n",
- "epoch: 36 step: 96, loss is 0.8985906839370728\n",
- "epoch: 36 step: 97, loss is 0.8991680145263672\n",
- "epoch: 36 step: 98, loss is 1.0034575462341309\n",
- "epoch: 36 step: 99, loss is 0.8843522667884827\n",
- "epoch: 36 step: 100, loss is 0.9316062331199646\n",
- "epoch: 36 step: 101, loss is 0.9076073169708252\n",
- "epoch: 36 step: 102, loss is 0.9219316840171814\n",
- "epoch: 36 step: 103, loss is 0.9326494932174683\n",
- "epoch: 36 step: 104, loss is 1.0392043590545654\n",
- "epoch: 36 step: 105, loss is 0.9003927111625671\n",
- "epoch: 36 step: 106, loss is 0.9573104381561279\n",
- "epoch: 36 step: 107, loss is 0.9353528618812561\n",
- "epoch: 36 step: 108, loss is 0.8893758654594421\n",
- "epoch: 36 step: 109, loss is 0.9438529014587402\n",
- "epoch: 36 step: 110, loss is 0.9243344664573669\n",
- "epoch: 36 step: 111, loss is 0.9173280000686646\n",
- "epoch: 36 step: 112, loss is 0.9954172968864441\n",
- "epoch: 36 step: 113, loss is 0.9105629920959473\n",
- "epoch: 36 step: 114, loss is 0.9432250261306763\n",
- "epoch: 36 step: 115, loss is 0.919873833656311\n",
- "epoch: 36 step: 116, loss is 0.861253559589386\n",
- "epoch: 36 step: 117, loss is 0.8716777563095093\n",
- "epoch: 36 step: 118, loss is 0.9125101566314697\n",
- "epoch: 36 step: 119, loss is 1.029720425605774\n",
- "epoch: 36 step: 120, loss is 0.8700671195983887\n",
- "epoch: 36 step: 121, loss is 0.9026073217391968\n",
- "epoch: 36 step: 122, loss is 0.8827033042907715\n",
- "epoch: 36 step: 123, loss is 0.936974287033081\n",
- "epoch: 36 step: 124, loss is 0.9659726619720459\n",
- "epoch: 36 step: 125, loss is 0.9615401029586792\n",
- "epoch: 36 step: 126, loss is 0.9210689067840576\n",
- "epoch: 36 step: 127, loss is 0.9252169132232666\n",
- "epoch: 36 step: 128, loss is 0.9700291156768799\n",
- "epoch: 36 step: 129, loss is 0.8892269134521484\n",
- "epoch: 36 step: 130, loss is 0.9737898707389832\n",
- "epoch: 36 step: 131, loss is 0.9449940919876099\n",
- "epoch: 36 step: 132, loss is 0.9097625017166138\n",
- "epoch: 36 step: 133, loss is 1.0079271793365479\n",
- "epoch: 36 step: 134, loss is 0.8816779851913452\n",
- "epoch: 36 step: 135, loss is 0.856360912322998\n",
- "epoch: 36 step: 136, loss is 0.94142746925354\n",
- "epoch: 36 step: 137, loss is 0.8603662252426147\n",
- "epoch: 36 step: 138, loss is 0.877038300037384\n",
- "epoch: 36 step: 139, loss is 0.8284332156181335\n",
- "epoch: 36 step: 140, loss is 0.893687903881073\n",
- "epoch: 36 step: 141, loss is 0.8579614758491516\n",
- "epoch: 36 step: 142, loss is 0.9196799993515015\n",
- "epoch: 36 step: 143, loss is 0.9048046469688416\n",
- "epoch: 36 step: 144, loss is 0.9042797088623047\n",
- "epoch: 36 step: 145, loss is 0.947884202003479\n",
- "epoch: 36 step: 146, loss is 0.9408677816390991\n",
- "epoch: 36 step: 147, loss is 0.9618299007415771\n",
- "epoch: 36 step: 148, loss is 0.966949462890625\n",
- "epoch: 36 step: 149, loss is 0.9515199661254883\n",
- "epoch: 36 step: 150, loss is 0.9123204350471497\n",
- "epoch: 36 step: 151, loss is 0.9099253416061401\n",
- "epoch: 36 step: 152, loss is 0.9778099656105042\n",
- "epoch: 36 step: 153, loss is 0.9020297527313232\n",
- "epoch: 36 step: 154, loss is 0.9614829421043396\n",
- "epoch: 36 step: 155, loss is 0.9339619874954224\n",
- "epoch: 36 step: 156, loss is 0.9075723886489868\n",
- "epoch: 36 step: 157, loss is 0.942044198513031\n",
- "epoch: 36 step: 158, loss is 0.9637919068336487\n",
- "epoch: 36 step: 159, loss is 0.8919879198074341\n",
- "epoch: 36 step: 160, loss is 0.9097334146499634\n",
- "epoch: 36 step: 161, loss is 0.8562881946563721\n",
- "epoch: 36 step: 162, loss is 0.9017192125320435\n",
- "epoch: 36 step: 163, loss is 0.9753199815750122\n",
- "epoch: 36 step: 164, loss is 0.9602100253105164\n",
- "epoch: 36 step: 165, loss is 0.9270866513252258\n",
- "epoch: 36 step: 166, loss is 0.9203907251358032\n",
- "epoch: 36 step: 167, loss is 0.9183560609817505\n",
- "epoch: 36 step: 168, loss is 0.9253696799278259\n",
- "epoch: 36 step: 169, loss is 0.8949852585792542\n",
- "epoch: 36 step: 170, loss is 0.9825663566589355\n",
- "epoch: 36 step: 171, loss is 0.9700595140457153\n",
- "epoch: 36 step: 172, loss is 0.8886866569519043\n",
- "epoch: 36 step: 173, loss is 0.945530354976654\n",
- "epoch: 36 step: 174, loss is 0.8619333505630493\n",
- "epoch: 36 step: 175, loss is 0.8980259895324707\n",
- "epoch: 36 step: 176, loss is 1.0327401161193848\n",
- "epoch: 36 step: 177, loss is 0.9125475287437439\n",
- "epoch: 36 step: 178, loss is 0.9125925302505493\n",
- "epoch: 36 step: 179, loss is 0.9102511405944824\n",
- "epoch: 36 step: 180, loss is 0.8687487840652466\n",
- "epoch: 36 step: 181, loss is 0.9413164854049683\n",
- "epoch: 36 step: 182, loss is 0.9617743492126465\n",
- "epoch: 36 step: 183, loss is 0.978722333908081\n",
- "epoch: 36 step: 184, loss is 0.9441840052604675\n",
- "epoch: 36 step: 185, loss is 0.8997694253921509\n",
- "epoch: 36 step: 186, loss is 0.9212102890014648\n",
- "epoch: 36 step: 187, loss is 0.8969366550445557\n",
- "epoch: 36 step: 188, loss is 0.9276988506317139\n",
- "epoch: 36 step: 189, loss is 0.9104682803153992\n",
- "epoch: 36 step: 190, loss is 0.9014007449150085\n",
- "epoch: 36 step: 191, loss is 0.9425451755523682\n",
- "epoch: 36 step: 192, loss is 0.9638112783432007\n",
- "epoch: 36 step: 193, loss is 0.8806350231170654\n",
- "epoch: 36 step: 194, loss is 0.9568960666656494\n",
- "epoch: 36 step: 195, loss is 0.8563429117202759\n",
- "Train epoch time: 108856.610 ms, per step time: 558.239 ms\n",
- "epoch: 37 step: 1, loss is 0.9095693826675415\n",
- "epoch: 37 step: 2, loss is 0.8946912288665771\n",
- "epoch: 37 step: 3, loss is 0.9607112407684326\n",
- "epoch: 37 step: 4, loss is 0.8844408392906189\n",
- "epoch: 37 step: 5, loss is 0.8561139106750488\n",
- "epoch: 37 step: 6, loss is 0.9027576446533203\n",
- "epoch: 37 step: 7, loss is 0.9514608383178711\n",
- "epoch: 37 step: 8, loss is 0.8566349744796753\n",
- "epoch: 37 step: 9, loss is 0.8834377527236938\n",
- "epoch: 37 step: 10, loss is 0.8629799485206604\n",
- "epoch: 37 step: 11, loss is 0.8858155012130737\n",
- "epoch: 37 step: 12, loss is 1.0256205797195435\n",
- "epoch: 37 step: 13, loss is 0.8840547800064087\n",
- "epoch: 37 step: 14, loss is 0.9267905950546265\n",
- "epoch: 37 step: 15, loss is 0.8789230585098267\n",
- "epoch: 37 step: 16, loss is 0.8886498212814331\n",
- "epoch: 37 step: 17, loss is 0.9076045751571655\n",
- "epoch: 37 step: 18, loss is 0.9312620162963867\n",
- "epoch: 37 step: 19, loss is 0.8945556879043579\n",
- "epoch: 37 step: 20, loss is 0.8946502208709717\n",
- "epoch: 37 step: 21, loss is 0.9535974264144897\n",
- "epoch: 37 step: 22, loss is 0.9202501773834229\n",
- "epoch: 37 step: 23, loss is 0.9378794431686401\n",
- "epoch: 37 step: 24, loss is 0.8477007150650024\n",
- "epoch: 37 step: 25, loss is 0.8897684812545776\n",
- "epoch: 37 step: 26, loss is 0.8801710605621338\n",
- "epoch: 37 step: 27, loss is 0.8462725877761841\n",
- "epoch: 37 step: 28, loss is 0.9476919770240784\n",
- "epoch: 37 step: 29, loss is 0.9024091362953186\n",
- "epoch: 37 step: 30, loss is 1.0029257535934448\n",
- "epoch: 37 step: 31, loss is 0.9247019290924072\n",
- "epoch: 37 step: 32, loss is 0.8742460608482361\n",
- "epoch: 37 step: 33, loss is 0.932390570640564\n",
- "epoch: 37 step: 34, loss is 0.9470775723457336\n",
- "epoch: 37 step: 35, loss is 0.9477649927139282\n",
- "epoch: 37 step: 36, loss is 0.8816271424293518\n",
- "epoch: 37 step: 37, loss is 0.8295816779136658\n",
- "epoch: 37 step: 38, loss is 0.8644704818725586\n",
- "epoch: 37 step: 39, loss is 0.8904820680618286\n",
- "epoch: 37 step: 40, loss is 0.9007257223129272\n",
- "epoch: 37 step: 41, loss is 0.8873854875564575\n",
- "epoch: 37 step: 42, loss is 0.9405839443206787\n",
- "epoch: 37 step: 43, loss is 0.9524333477020264\n",
- "epoch: 37 step: 44, loss is 0.8904541730880737\n",
- "epoch: 37 step: 45, loss is 0.9166953563690186\n",
- "epoch: 37 step: 46, loss is 0.9196785688400269\n",
- "epoch: 37 step: 47, loss is 0.8488792181015015\n",
- "epoch: 37 step: 48, loss is 0.8882365226745605\n",
- "epoch: 37 step: 49, loss is 0.8854421377182007\n",
- "epoch: 37 step: 50, loss is 0.8858281970024109\n",
- "epoch: 37 step: 51, loss is 0.918373703956604\n",
- "epoch: 37 step: 52, loss is 0.9284631609916687\n",
- "epoch: 37 step: 53, loss is 0.9077353477478027\n",
- "epoch: 37 step: 54, loss is 0.9255558252334595\n",
- "epoch: 37 step: 55, loss is 0.8999374508857727\n",
- "epoch: 37 step: 56, loss is 0.9208312034606934\n",
- "epoch: 37 step: 57, loss is 0.9783368706703186\n",
- "epoch: 37 step: 58, loss is 0.9398857951164246\n",
- "epoch: 37 step: 59, loss is 0.9164717197418213\n",
- "epoch: 37 step: 60, loss is 0.9155617952346802\n",
- "epoch: 37 step: 61, loss is 0.8569964170455933\n",
- "epoch: 37 step: 62, loss is 0.8832811117172241\n",
- "epoch: 37 step: 63, loss is 0.9266475439071655\n",
- "epoch: 37 step: 64, loss is 0.8678780794143677\n",
- "epoch: 37 step: 65, loss is 0.8706825971603394\n",
- "epoch: 37 step: 66, loss is 0.8773397207260132\n",
- "epoch: 37 step: 67, loss is 0.8799891471862793\n",
- "epoch: 37 step: 68, loss is 0.918915867805481\n",
- "epoch: 37 step: 69, loss is 0.9259086847305298\n",
- "epoch: 37 step: 70, loss is 0.9032549858093262\n",
- "epoch: 37 step: 71, loss is 0.9046151638031006\n",
- "epoch: 37 step: 72, loss is 0.9039967060089111\n",
- "epoch: 37 step: 73, loss is 0.879581868648529\n",
- "epoch: 37 step: 74, loss is 0.8996313810348511\n",
- "epoch: 37 step: 75, loss is 0.8648873567581177\n",
- "epoch: 37 step: 76, loss is 0.92645263671875\n",
- "epoch: 37 step: 77, loss is 0.9248169660568237\n",
- "epoch: 37 step: 78, loss is 0.9261072278022766\n",
- "epoch: 37 step: 79, loss is 0.9547272324562073\n",
- "epoch: 37 step: 80, loss is 0.8744072914123535\n",
- "epoch: 37 step: 81, loss is 0.8622870445251465\n",
- "epoch: 37 step: 82, loss is 0.8943405151367188\n",
- "epoch: 37 step: 83, loss is 0.943012535572052\n",
- "epoch: 37 step: 84, loss is 0.9002180099487305\n",
- "epoch: 37 step: 85, loss is 0.8930972218513489\n",
- "epoch: 37 step: 86, loss is 0.9000710248947144\n",
- "epoch: 37 step: 87, loss is 0.8691052794456482\n",
- "epoch: 37 step: 88, loss is 0.9682796001434326\n",
- "epoch: 37 step: 89, loss is 0.9430465698242188\n",
- "epoch: 37 step: 90, loss is 0.9295761585235596\n",
- "epoch: 37 step: 91, loss is 0.917506992816925\n",
- "epoch: 37 step: 92, loss is 0.9550882577896118\n",
- "epoch: 37 step: 93, loss is 0.8888190984725952\n",
- "epoch: 37 step: 94, loss is 0.8763753175735474\n",
- "epoch: 37 step: 95, loss is 0.8857315182685852\n",
- "epoch: 37 step: 96, loss is 0.8951612710952759\n",
- "epoch: 37 step: 97, loss is 0.8715394735336304\n",
- "epoch: 37 step: 98, loss is 0.8762496709823608\n",
- "epoch: 37 step: 99, loss is 0.8873938918113708\n",
- "epoch: 37 step: 100, loss is 0.9221780896186829\n",
- "epoch: 37 step: 101, loss is 0.9156415462493896\n",
- "epoch: 37 step: 102, loss is 0.9138498306274414\n",
- "epoch: 37 step: 103, loss is 0.847792387008667\n",
- "epoch: 37 step: 104, loss is 0.8919596672058105\n",
- "epoch: 37 step: 105, loss is 0.8871064186096191\n",
- "epoch: 37 step: 106, loss is 0.9727333784103394\n",
- "epoch: 37 step: 107, loss is 0.8804023265838623\n",
- "epoch: 37 step: 108, loss is 0.964381217956543\n",
- "epoch: 37 step: 109, loss is 0.9517145156860352\n",
- "epoch: 37 step: 110, loss is 0.8701875805854797\n",
- "epoch: 37 step: 111, loss is 0.9295189380645752\n",
- "epoch: 37 step: 112, loss is 0.9024710655212402\n",
- "epoch: 37 step: 113, loss is 0.9419503808021545\n",
- "epoch: 37 step: 114, loss is 0.8932934403419495\n",
- "epoch: 37 step: 115, loss is 0.976038932800293\n",
- "epoch: 37 step: 116, loss is 0.9735438227653503\n",
- "epoch: 37 step: 117, loss is 0.9143580794334412\n",
- "epoch: 37 step: 118, loss is 0.8848608732223511\n",
- "epoch: 37 step: 119, loss is 0.9654664993286133\n",
- "epoch: 37 step: 120, loss is 0.9997798204421997\n",
- "epoch: 37 step: 121, loss is 0.8861947059631348\n",
- "epoch: 37 step: 122, loss is 0.9138003587722778\n",
- "epoch: 37 step: 123, loss is 0.9221610426902771\n",
- "epoch: 37 step: 124, loss is 0.9483324289321899\n",
- "epoch: 37 step: 125, loss is 0.8758765459060669\n",
- "epoch: 37 step: 126, loss is 0.8642892837524414\n",
- "epoch: 37 step: 127, loss is 0.9475138187408447\n",
- "epoch: 37 step: 128, loss is 0.9165822267532349\n",
- "epoch: 37 step: 129, loss is 0.9635480642318726\n",
- "epoch: 37 step: 130, loss is 0.9449419975280762\n",
- "epoch: 37 step: 131, loss is 0.9008090496063232\n",
- "epoch: 37 step: 132, loss is 0.9334031343460083\n",
- "epoch: 37 step: 133, loss is 0.9084657430648804\n",
- "epoch: 37 step: 134, loss is 0.9120792746543884\n",
- "epoch: 37 step: 135, loss is 0.9041306972503662\n",
- "epoch: 37 step: 136, loss is 0.9069194793701172\n",
- "epoch: 37 step: 137, loss is 0.8848313093185425\n",
- "epoch: 37 step: 138, loss is 0.9334437847137451\n",
- "epoch: 37 step: 139, loss is 0.9345941543579102\n",
- "epoch: 37 step: 140, loss is 0.8847604990005493\n",
- "epoch: 37 step: 141, loss is 0.9489641785621643\n",
- "epoch: 37 step: 142, loss is 0.9251959323883057\n",
- "epoch: 37 step: 143, loss is 0.9147162437438965\n",
- "epoch: 37 step: 144, loss is 0.8704555034637451\n",
- "epoch: 37 step: 145, loss is 0.9113723039627075\n",
- "epoch: 37 step: 146, loss is 0.9305154085159302\n",
- "epoch: 37 step: 147, loss is 0.9621871709823608\n",
- "epoch: 37 step: 148, loss is 0.9747596979141235\n",
- "epoch: 37 step: 149, loss is 0.9222574234008789\n",
- "epoch: 37 step: 150, loss is 0.9117982387542725\n",
- "epoch: 37 step: 151, loss is 0.932183027267456\n",
- "epoch: 37 step: 152, loss is 0.9411630630493164\n",
- "epoch: 37 step: 153, loss is 0.8826325535774231\n",
- "epoch: 37 step: 154, loss is 0.8335169553756714\n",
- "epoch: 37 step: 155, loss is 0.879940390586853\n",
- "epoch: 37 step: 156, loss is 0.9017760157585144\n",
- "epoch: 37 step: 157, loss is 0.9525506496429443\n",
- "epoch: 37 step: 158, loss is 0.9248814582824707\n",
- "epoch: 37 step: 159, loss is 0.9696816205978394\n",
- "epoch: 37 step: 160, loss is 0.9233083128929138\n",
- "epoch: 37 step: 161, loss is 0.8645829558372498\n",
- "epoch: 37 step: 162, loss is 0.8845789432525635\n",
- "epoch: 37 step: 163, loss is 0.9117435216903687\n",
- "epoch: 37 step: 164, loss is 0.9252498149871826\n",
- "epoch: 37 step: 165, loss is 0.9188104867935181\n",
- "epoch: 37 step: 166, loss is 0.945136547088623\n",
- "epoch: 37 step: 167, loss is 0.9285410642623901\n",
- "epoch: 37 step: 168, loss is 0.9242152571678162\n",
- "epoch: 37 step: 169, loss is 0.8969123363494873\n",
- "epoch: 37 step: 170, loss is 0.8918085098266602\n",
- "epoch: 37 step: 171, loss is 0.9288882613182068\n",
- "epoch: 37 step: 172, loss is 0.856635332107544\n",
- "epoch: 37 step: 173, loss is 1.0146739482879639\n",
- "epoch: 37 step: 174, loss is 0.9491211175918579\n",
- "epoch: 37 step: 175, loss is 0.9513903260231018\n",
- "epoch: 37 step: 176, loss is 0.888302743434906\n",
- "epoch: 37 step: 177, loss is 0.9066162109375\n",
- "epoch: 37 step: 178, loss is 0.9833958148956299\n",
- "epoch: 37 step: 179, loss is 0.8735227584838867\n",
- "epoch: 37 step: 180, loss is 0.8965466022491455\n",
- "epoch: 37 step: 181, loss is 0.95020991563797\n",
- "epoch: 37 step: 182, loss is 0.9149634838104248\n",
- "epoch: 37 step: 183, loss is 0.9083482027053833\n",
- "epoch: 37 step: 184, loss is 0.9381321668624878\n",
- "epoch: 37 step: 185, loss is 0.8965525031089783\n",
- "epoch: 37 step: 186, loss is 0.939672589302063\n",
- "epoch: 37 step: 187, loss is 0.9746996164321899\n",
- "epoch: 37 step: 188, loss is 0.8830556273460388\n",
- "epoch: 37 step: 189, loss is 0.8871192932128906\n",
- "epoch: 37 step: 190, loss is 0.9128410816192627\n",
- "epoch: 37 step: 191, loss is 0.9288946390151978\n",
- "epoch: 37 step: 192, loss is 0.9417617917060852\n",
- "epoch: 37 step: 193, loss is 0.9260659217834473\n",
- "epoch: 37 step: 194, loss is 0.8889296054840088\n",
- "epoch: 37 step: 195, loss is 0.9149488210678101\n",
- "Train epoch time: 107045.336 ms, per step time: 548.950 ms\n",
- "epoch: 38 step: 1, loss is 0.947847843170166\n",
- "epoch: 38 step: 2, loss is 0.9036130309104919\n",
- "epoch: 38 step: 3, loss is 0.9203881025314331\n",
- "epoch: 38 step: 4, loss is 0.9586063623428345\n",
- "epoch: 38 step: 5, loss is 0.8763056993484497\n",
- "epoch: 38 step: 6, loss is 0.9351648092269897\n",
- "epoch: 38 step: 7, loss is 0.8595874309539795\n",
- "epoch: 38 step: 8, loss is 0.8193209171295166\n",
- "epoch: 38 step: 9, loss is 0.9091926217079163\n",
- "epoch: 38 step: 10, loss is 0.9313424825668335\n",
- "epoch: 38 step: 11, loss is 0.834667980670929\n",
- "epoch: 38 step: 12, loss is 0.9018085598945618\n",
- "epoch: 38 step: 13, loss is 0.9431716203689575\n",
- "epoch: 38 step: 14, loss is 0.8693892955780029\n",
- "epoch: 38 step: 15, loss is 0.8874005079269409\n",
- "epoch: 38 step: 16, loss is 0.9221977591514587\n",
- "epoch: 38 step: 17, loss is 0.8751132488250732\n",
- "epoch: 38 step: 18, loss is 0.9085422158241272\n",
- "epoch: 38 step: 19, loss is 0.9187201261520386\n",
- "epoch: 38 step: 20, loss is 0.8881237506866455\n",
- "epoch: 38 step: 21, loss is 0.9519144296646118\n",
- "epoch: 38 step: 22, loss is 0.8437051177024841\n",
- "epoch: 38 step: 23, loss is 0.8905713558197021\n",
- "epoch: 38 step: 24, loss is 0.9040060639381409\n",
- "epoch: 38 step: 25, loss is 0.867322564125061\n",
- "epoch: 38 step: 26, loss is 0.8954888582229614\n",
- "epoch: 38 step: 27, loss is 0.8696068525314331\n",
- "epoch: 38 step: 28, loss is 0.9193589687347412\n",
- "epoch: 38 step: 29, loss is 0.941120982170105\n",
- "epoch: 38 step: 30, loss is 0.9101242423057556\n",
- "epoch: 38 step: 31, loss is 0.8599692583084106\n",
- "epoch: 38 step: 32, loss is 0.9321194291114807\n",
- "epoch: 38 step: 33, loss is 0.8576308488845825\n",
- "epoch: 38 step: 34, loss is 0.8774663209915161\n",
- "epoch: 38 step: 35, loss is 0.9292721152305603\n",
- "epoch: 38 step: 36, loss is 0.8979128003120422\n",
- "epoch: 38 step: 37, loss is 0.9194566011428833\n",
- "epoch: 38 step: 38, loss is 0.9248204827308655\n",
- "epoch: 38 step: 39, loss is 0.9248582124710083\n",
- "epoch: 38 step: 40, loss is 0.8664373159408569\n",
- "epoch: 38 step: 41, loss is 0.9020886421203613\n",
- "epoch: 38 step: 42, loss is 0.860755205154419\n",
- "epoch: 38 step: 43, loss is 0.9270052313804626\n",
- "epoch: 38 step: 44, loss is 0.8871346116065979\n",
- "epoch: 38 step: 45, loss is 0.8886119723320007\n",
- "epoch: 38 step: 46, loss is 0.8505973815917969\n",
- "epoch: 38 step: 47, loss is 0.8892645835876465\n",
- "epoch: 38 step: 48, loss is 0.86323082447052\n",
- "epoch: 38 step: 49, loss is 0.9010361433029175\n",
- "epoch: 38 step: 50, loss is 0.843924880027771\n",
- "epoch: 38 step: 51, loss is 0.8683522343635559\n",
- "epoch: 38 step: 52, loss is 0.8686975240707397\n",
- "epoch: 38 step: 53, loss is 0.9005516767501831\n",
- "epoch: 38 step: 54, loss is 0.9049634337425232\n",
- "epoch: 38 step: 55, loss is 0.9569082856178284\n",
- "epoch: 38 step: 56, loss is 0.8220974206924438\n",
- "epoch: 38 step: 57, loss is 0.9223048686981201\n",
- "epoch: 38 step: 58, loss is 0.9032471179962158\n",
- "epoch: 38 step: 59, loss is 0.8873544931411743\n",
- "epoch: 38 step: 60, loss is 0.8571626543998718\n",
- "epoch: 38 step: 61, loss is 0.8502246737480164\n",
- "epoch: 38 step: 62, loss is 0.8953334093093872\n",
- "epoch: 38 step: 63, loss is 0.914796769618988\n",
- "epoch: 38 step: 64, loss is 0.870197594165802\n",
- "epoch: 38 step: 65, loss is 0.9589412212371826\n",
- "epoch: 38 step: 66, loss is 0.8871922492980957\n",
- "epoch: 38 step: 67, loss is 0.9411270618438721\n",
- "epoch: 38 step: 68, loss is 0.94203782081604\n",
- "epoch: 38 step: 69, loss is 0.9277908802032471\n",
- "epoch: 38 step: 70, loss is 0.9426909685134888\n",
- "epoch: 38 step: 71, loss is 0.8083962202072144\n",
- "epoch: 38 step: 72, loss is 0.9525151252746582\n",
- "epoch: 38 step: 73, loss is 0.8909167051315308\n",
- "epoch: 38 step: 74, loss is 0.9480742812156677\n",
- "epoch: 38 step: 75, loss is 0.949823260307312\n",
- "epoch: 38 step: 76, loss is 0.8933626413345337\n",
- "epoch: 38 step: 77, loss is 0.9051081538200378\n",
- "epoch: 38 step: 78, loss is 0.9268642663955688\n",
- "epoch: 38 step: 79, loss is 0.8704352378845215\n",
- "epoch: 38 step: 80, loss is 0.870558500289917\n",
- "epoch: 38 step: 81, loss is 0.9185476899147034\n",
- "epoch: 38 step: 82, loss is 0.9534422755241394\n",
- "epoch: 38 step: 83, loss is 0.9293580055236816\n",
- "epoch: 38 step: 84, loss is 0.8900469541549683\n",
- "epoch: 38 step: 85, loss is 0.8934859037399292\n",
- "epoch: 38 step: 86, loss is 0.8404178619384766\n",
- "epoch: 38 step: 87, loss is 0.8620786666870117\n",
- "epoch: 38 step: 88, loss is 0.9202302098274231\n",
- "epoch: 38 step: 89, loss is 0.9322894811630249\n",
- "epoch: 38 step: 90, loss is 0.9785972833633423\n",
- "epoch: 38 step: 91, loss is 0.9096835255622864\n",
- "epoch: 38 step: 92, loss is 0.9075576066970825\n",
- "epoch: 38 step: 93, loss is 0.8538344502449036\n",
- "epoch: 38 step: 94, loss is 0.9607840776443481\n",
- "epoch: 38 step: 95, loss is 0.8489265441894531\n",
- "epoch: 38 step: 96, loss is 0.8865064978599548\n",
- "epoch: 38 step: 97, loss is 0.8839545249938965\n",
- "epoch: 38 step: 98, loss is 0.8950871229171753\n",
- "epoch: 38 step: 99, loss is 0.8523801565170288\n",
- "epoch: 38 step: 100, loss is 0.91000896692276\n",
- "epoch: 38 step: 101, loss is 0.8992164134979248\n",
- "epoch: 38 step: 102, loss is 0.8698062896728516\n",
- "epoch: 38 step: 103, loss is 0.8935478925704956\n",
- "epoch: 38 step: 104, loss is 0.8873968124389648\n",
- "epoch: 38 step: 105, loss is 0.8724759221076965\n",
- "epoch: 38 step: 106, loss is 0.8088217973709106\n",
- "epoch: 38 step: 107, loss is 0.8925939798355103\n",
- "epoch: 38 step: 108, loss is 0.8947848677635193\n",
- "epoch: 38 step: 109, loss is 0.8637481331825256\n",
- "epoch: 38 step: 110, loss is 0.9278912544250488\n",
- "epoch: 38 step: 111, loss is 0.8799326419830322\n",
- "epoch: 38 step: 112, loss is 0.8360252380371094\n",
- "epoch: 38 step: 113, loss is 0.9224178791046143\n",
- "epoch: 38 step: 114, loss is 0.869588315486908\n",
- "epoch: 38 step: 115, loss is 0.9459971189498901\n",
- "epoch: 38 step: 116, loss is 0.8672783374786377\n",
- "epoch: 38 step: 117, loss is 0.9090829491615295\n",
- "epoch: 38 step: 118, loss is 0.912348747253418\n",
- "epoch: 38 step: 119, loss is 0.9361091256141663\n",
- "epoch: 38 step: 120, loss is 0.9081732034683228\n",
- "epoch: 38 step: 121, loss is 0.8662216663360596\n",
- "epoch: 38 step: 122, loss is 0.9041109085083008\n",
- "epoch: 38 step: 123, loss is 0.8519059419631958\n",
- "epoch: 38 step: 124, loss is 0.9198229312896729\n",
- "epoch: 38 step: 125, loss is 0.8815104961395264\n",
- "epoch: 38 step: 126, loss is 0.9001454710960388\n",
- "epoch: 38 step: 127, loss is 0.846196174621582\n",
- "epoch: 38 step: 128, loss is 0.9075549244880676\n",
- "epoch: 38 step: 129, loss is 0.8884953260421753\n",
- "epoch: 38 step: 130, loss is 0.927135705947876\n",
- "epoch: 38 step: 131, loss is 0.903639554977417\n",
- "epoch: 38 step: 132, loss is 0.845154881477356\n",
- "epoch: 38 step: 133, loss is 0.9414812922477722\n",
- "epoch: 38 step: 134, loss is 0.9627749919891357\n",
- "epoch: 38 step: 135, loss is 0.955998957157135\n",
- "epoch: 38 step: 136, loss is 0.9396650791168213\n",
- "epoch: 38 step: 137, loss is 0.8558158874511719\n",
- "epoch: 38 step: 138, loss is 0.8120497465133667\n",
- "epoch: 38 step: 139, loss is 0.8849430084228516\n",
- "epoch: 38 step: 140, loss is 0.8937509059906006\n",
- "epoch: 38 step: 141, loss is 0.9384996891021729\n",
- "epoch: 38 step: 142, loss is 0.9275363087654114\n",
- "epoch: 38 step: 143, loss is 0.8800232410430908\n",
- "epoch: 38 step: 144, loss is 0.8448448181152344\n",
- "epoch: 38 step: 145, loss is 0.9709151387214661\n",
- "epoch: 38 step: 146, loss is 0.9415827393531799\n",
- "epoch: 38 step: 147, loss is 0.9436516761779785\n",
- "epoch: 38 step: 148, loss is 0.8596976399421692\n",
- "epoch: 38 step: 149, loss is 0.8585245609283447\n",
- "epoch: 38 step: 150, loss is 0.8733130097389221\n",
- "epoch: 38 step: 151, loss is 0.8337608575820923\n",
- "epoch: 38 step: 152, loss is 0.8533034324645996\n",
- "epoch: 38 step: 153, loss is 0.880772590637207\n",
- "epoch: 38 step: 154, loss is 0.8903640508651733\n",
- "epoch: 38 step: 155, loss is 0.9234060049057007\n",
- "epoch: 38 step: 156, loss is 0.9079392552375793\n",
- "epoch: 38 step: 157, loss is 0.8524980545043945\n",
- "epoch: 38 step: 158, loss is 0.8755015134811401\n",
- "epoch: 38 step: 159, loss is 0.9232819080352783\n",
- "epoch: 38 step: 160, loss is 0.9043335318565369\n",
- "epoch: 38 step: 161, loss is 0.8350585699081421\n",
- "epoch: 38 step: 162, loss is 0.9647220373153687\n",
- "epoch: 38 step: 163, loss is 0.9131554365158081\n",
- "epoch: 38 step: 164, loss is 0.8664733171463013\n",
- "epoch: 38 step: 165, loss is 0.9109227061271667\n",
- "epoch: 38 step: 166, loss is 0.876860499382019\n",
- "epoch: 38 step: 167, loss is 0.9606586694717407\n",
- "epoch: 38 step: 168, loss is 0.900281548500061\n",
- "epoch: 38 step: 169, loss is 0.869691014289856\n",
- "epoch: 38 step: 170, loss is 0.8674145936965942\n",
- "epoch: 38 step: 171, loss is 0.990574300289154\n",
- "epoch: 38 step: 172, loss is 0.8615909814834595\n",
- "epoch: 38 step: 173, loss is 0.8992669582366943\n",
- "epoch: 38 step: 174, loss is 0.9122153520584106\n",
- "epoch: 38 step: 175, loss is 0.9545267820358276\n",
- "epoch: 38 step: 176, loss is 0.8446837663650513\n",
- "epoch: 38 step: 177, loss is 0.8934757709503174\n",
- "epoch: 38 step: 178, loss is 0.8827760815620422\n",
- "epoch: 38 step: 179, loss is 0.9718413352966309\n",
- "epoch: 38 step: 180, loss is 0.8779993653297424\n",
- "epoch: 38 step: 181, loss is 0.8366880416870117\n",
- "epoch: 38 step: 182, loss is 0.8814271688461304\n",
- "epoch: 38 step: 183, loss is 0.9178680181503296\n",
- "epoch: 38 step: 184, loss is 0.9376236796379089\n",
- "epoch: 38 step: 185, loss is 0.9903892278671265\n",
- "epoch: 38 step: 186, loss is 0.9410778880119324\n",
- "epoch: 38 step: 187, loss is 0.8669420480728149\n",
- "epoch: 38 step: 188, loss is 0.9013009071350098\n",
- "epoch: 38 step: 189, loss is 0.9106388688087463\n",
- "epoch: 38 step: 190, loss is 0.9394299983978271\n",
- "epoch: 38 step: 191, loss is 0.8580970764160156\n",
- "epoch: 38 step: 192, loss is 0.9121018648147583\n",
- "epoch: 38 step: 193, loss is 0.9768623113632202\n",
- "epoch: 38 step: 194, loss is 0.8774149417877197\n",
- "epoch: 38 step: 195, loss is 0.9149966239929199\n",
- "Train epoch time: 103473.682 ms, per step time: 530.634 ms\n",
- "epoch: 39 step: 1, loss is 0.8645210266113281\n",
- "epoch: 39 step: 2, loss is 0.8713115453720093\n",
- "epoch: 39 step: 3, loss is 0.9012945890426636\n",
- "epoch: 39 step: 4, loss is 0.9290074706077576\n",
- "epoch: 39 step: 5, loss is 0.8034458160400391\n",
- "epoch: 39 step: 6, loss is 0.8567114472389221\n",
- "epoch: 39 step: 7, loss is 0.8933814764022827\n",
- "epoch: 39 step: 8, loss is 0.8883970379829407\n",
- "epoch: 39 step: 9, loss is 0.8710887432098389\n",
- "epoch: 39 step: 10, loss is 0.8551831841468811\n",
- "epoch: 39 step: 11, loss is 0.8131341934204102\n",
- "epoch: 39 step: 12, loss is 0.8605275750160217\n",
- "epoch: 39 step: 13, loss is 0.876175045967102\n",
- "epoch: 39 step: 14, loss is 0.8787935972213745\n",
- "epoch: 39 step: 15, loss is 0.8959838151931763\n",
- "epoch: 39 step: 16, loss is 0.9015324115753174\n",
- "epoch: 39 step: 17, loss is 0.8644980192184448\n",
- "epoch: 39 step: 18, loss is 0.8720925450325012\n",
- "epoch: 39 step: 19, loss is 0.9267992973327637\n",
- "epoch: 39 step: 20, loss is 0.8648815155029297\n",
- "epoch: 39 step: 21, loss is 0.8689542412757874\n",
- "epoch: 39 step: 22, loss is 0.8740376234054565\n",
- "epoch: 39 step: 23, loss is 0.8852134346961975\n",
- "epoch: 39 step: 24, loss is 0.8897039890289307\n",
- "epoch: 39 step: 25, loss is 0.9486417770385742\n",
- "epoch: 39 step: 26, loss is 0.877617359161377\n",
- "epoch: 39 step: 27, loss is 0.883049726486206\n",
- "epoch: 39 step: 28, loss is 0.8394241333007812\n",
- "epoch: 39 step: 29, loss is 0.8442683219909668\n",
- "epoch: 39 step: 30, loss is 0.9370942711830139\n",
- "epoch: 39 step: 31, loss is 0.8539810180664062\n",
- "epoch: 39 step: 32, loss is 0.9304419755935669\n",
- "epoch: 39 step: 33, loss is 0.8801469206809998\n",
- "epoch: 39 step: 34, loss is 0.8570430278778076\n",
- "epoch: 39 step: 35, loss is 0.868891716003418\n",
- "epoch: 39 step: 36, loss is 0.9339327812194824\n",
- "epoch: 39 step: 37, loss is 0.850347101688385\n",
- "epoch: 39 step: 38, loss is 0.9007909297943115\n",
- "epoch: 39 step: 39, loss is 0.9255921244621277\n",
- "epoch: 39 step: 40, loss is 0.8538328409194946\n",
- "epoch: 39 step: 41, loss is 0.8878750801086426\n",
- "epoch: 39 step: 42, loss is 0.817216157913208\n",
- "epoch: 39 step: 43, loss is 0.8102796077728271\n",
- "epoch: 39 step: 44, loss is 0.8087482452392578\n",
- "epoch: 39 step: 45, loss is 0.9019378423690796\n",
- "epoch: 39 step: 46, loss is 0.9162269830703735\n",
- "epoch: 39 step: 47, loss is 0.8876538276672363\n",
- "epoch: 39 step: 48, loss is 0.9473833441734314\n",
- "epoch: 39 step: 49, loss is 0.8457210659980774\n",
- "epoch: 39 step: 50, loss is 0.8684884309768677\n",
- "epoch: 39 step: 51, loss is 0.8881251811981201\n",
- "epoch: 39 step: 52, loss is 0.8807567358016968\n",
- "epoch: 39 step: 53, loss is 0.8468639850616455\n",
- "epoch: 39 step: 54, loss is 0.9167661070823669\n",
- "epoch: 39 step: 55, loss is 0.905544102191925\n",
- "epoch: 39 step: 56, loss is 0.8458351492881775\n",
- "epoch: 39 step: 57, loss is 0.8897790908813477\n",
- "epoch: 39 step: 58, loss is 0.8934326171875\n",
- "epoch: 39 step: 59, loss is 0.8582804203033447\n",
- "epoch: 39 step: 60, loss is 0.8497823476791382\n",
- "epoch: 39 step: 61, loss is 0.8500289916992188\n",
- "epoch: 39 step: 62, loss is 0.8354147672653198\n",
- "epoch: 39 step: 63, loss is 0.8814513683319092\n",
- "epoch: 39 step: 64, loss is 0.9449700713157654\n",
- "epoch: 39 step: 65, loss is 0.8670333623886108\n",
- "epoch: 39 step: 66, loss is 0.8952335119247437\n",
- "epoch: 39 step: 67, loss is 0.9354361891746521\n",
- "epoch: 39 step: 68, loss is 0.8359534740447998\n",
- "epoch: 39 step: 69, loss is 0.8228244781494141\n",
- "epoch: 39 step: 70, loss is 0.9506558179855347\n",
- "epoch: 39 step: 71, loss is 0.9115484356880188\n",
- "epoch: 39 step: 72, loss is 0.8385354280471802\n",
- "epoch: 39 step: 73, loss is 0.8614368438720703\n",
- "epoch: 39 step: 74, loss is 0.9093254804611206\n",
- "epoch: 39 step: 75, loss is 0.8994498252868652\n",
- "epoch: 39 step: 76, loss is 0.8284345269203186\n",
- "epoch: 39 step: 77, loss is 0.8665653467178345\n",
- "epoch: 39 step: 78, loss is 0.9472671747207642\n",
- "epoch: 39 step: 79, loss is 0.8840035796165466\n",
- "epoch: 39 step: 80, loss is 0.8521105051040649\n",
- "epoch: 39 step: 81, loss is 0.896456241607666\n",
- "epoch: 39 step: 82, loss is 0.8790334463119507\n",
- "epoch: 39 step: 83, loss is 0.8255720138549805\n",
- "epoch: 39 step: 84, loss is 0.8690876960754395\n",
- "epoch: 39 step: 85, loss is 0.9144492149353027\n",
- "epoch: 39 step: 86, loss is 0.9540635347366333\n",
- "epoch: 39 step: 87, loss is 0.8606998920440674\n",
- "epoch: 39 step: 88, loss is 0.8322345018386841\n",
- "epoch: 39 step: 89, loss is 0.8087448477745056\n",
- "epoch: 39 step: 90, loss is 0.9061346054077148\n",
- "epoch: 39 step: 91, loss is 0.8814910650253296\n",
- "epoch: 39 step: 92, loss is 0.9104195237159729\n",
- "epoch: 39 step: 93, loss is 0.806530237197876\n",
- "epoch: 39 step: 94, loss is 0.8854644894599915\n",
- "epoch: 39 step: 95, loss is 0.9003764390945435\n",
- "epoch: 39 step: 96, loss is 0.9119036197662354\n",
- "epoch: 39 step: 97, loss is 0.8539155721664429\n",
- "epoch: 39 step: 98, loss is 0.966382622718811\n",
- "epoch: 39 step: 99, loss is 0.9003664255142212\n",
- "epoch: 39 step: 100, loss is 0.874913215637207\n",
- "epoch: 39 step: 101, loss is 0.8580418229103088\n",
- "epoch: 39 step: 102, loss is 0.878940999507904\n",
- "epoch: 39 step: 103, loss is 0.8316534757614136\n",
- "epoch: 39 step: 104, loss is 0.9011969566345215\n",
- "epoch: 39 step: 105, loss is 0.8512711524963379\n",
- "epoch: 39 step: 106, loss is 0.9250340461730957\n",
- "epoch: 39 step: 107, loss is 0.8459631204605103\n",
- "epoch: 39 step: 108, loss is 0.8526691198348999\n",
- "epoch: 39 step: 109, loss is 0.8753492832183838\n",
- "epoch: 39 step: 110, loss is 0.8582953214645386\n",
- "epoch: 39 step: 111, loss is 0.8176575899124146\n",
- "epoch: 39 step: 112, loss is 0.8801053166389465\n",
- "epoch: 39 step: 113, loss is 0.8328306674957275\n",
- "epoch: 39 step: 114, loss is 0.9638676643371582\n",
- "epoch: 39 step: 115, loss is 0.9101030826568604\n",
- "epoch: 39 step: 116, loss is 0.8906930088996887\n",
- "epoch: 39 step: 117, loss is 0.8933236598968506\n",
- "epoch: 39 step: 118, loss is 0.8549261093139648\n",
- "epoch: 39 step: 119, loss is 0.8882817029953003\n",
- "epoch: 39 step: 120, loss is 0.8730419874191284\n",
- "epoch: 39 step: 121, loss is 0.8845840692520142\n",
- "epoch: 39 step: 122, loss is 0.9062395095825195\n",
- "epoch: 39 step: 123, loss is 0.9084655046463013\n",
- "epoch: 39 step: 124, loss is 0.8796606063842773\n",
- "epoch: 39 step: 125, loss is 0.9037388563156128\n",
- "epoch: 39 step: 126, loss is 0.8589247465133667\n",
- "epoch: 39 step: 127, loss is 0.8514553308486938\n",
- "epoch: 39 step: 128, loss is 0.8845252990722656\n",
- "epoch: 39 step: 129, loss is 0.8582234382629395\n",
- "epoch: 39 step: 130, loss is 0.8410537838935852\n",
- "epoch: 39 step: 131, loss is 0.9522879123687744\n",
- "epoch: 39 step: 132, loss is 0.9310232996940613\n",
- "epoch: 39 step: 133, loss is 0.8724864721298218\n",
- "epoch: 39 step: 134, loss is 0.8914147615432739\n",
- "epoch: 39 step: 135, loss is 0.8486027717590332\n",
- "epoch: 39 step: 136, loss is 0.8653729557991028\n",
- "epoch: 39 step: 137, loss is 0.8387752175331116\n",
- "epoch: 39 step: 138, loss is 0.9586123824119568\n",
- "epoch: 39 step: 139, loss is 0.9123362898826599\n",
- "epoch: 39 step: 140, loss is 0.9376376867294312\n",
- "epoch: 39 step: 141, loss is 0.8917154669761658\n",
- "epoch: 39 step: 142, loss is 0.85279381275177\n",
- "epoch: 39 step: 143, loss is 0.8488315939903259\n",
- "epoch: 39 step: 144, loss is 0.8892083168029785\n",
- "epoch: 39 step: 145, loss is 0.8788743615150452\n",
- "epoch: 39 step: 146, loss is 0.9256724715232849\n",
- "epoch: 39 step: 147, loss is 0.8653937578201294\n",
- "epoch: 39 step: 148, loss is 0.9412431120872498\n",
- "epoch: 39 step: 149, loss is 0.9005237221717834\n",
- "epoch: 39 step: 150, loss is 0.8837241530418396\n",
- "epoch: 39 step: 151, loss is 0.9084970951080322\n",
- "epoch: 39 step: 152, loss is 0.933533251285553\n",
- "epoch: 39 step: 153, loss is 0.8947114944458008\n",
- "epoch: 39 step: 154, loss is 0.8302844166755676\n",
- "epoch: 39 step: 155, loss is 0.8581252098083496\n",
- "epoch: 39 step: 156, loss is 0.8931020498275757\n",
- "epoch: 39 step: 157, loss is 0.8387654423713684\n",
- "epoch: 39 step: 158, loss is 0.8659118413925171\n",
- "epoch: 39 step: 159, loss is 0.9112050533294678\n",
- "epoch: 39 step: 160, loss is 0.8774600028991699\n",
- "epoch: 39 step: 161, loss is 0.9333910942077637\n",
- "epoch: 39 step: 162, loss is 0.807689368724823\n",
- "epoch: 39 step: 163, loss is 0.8876700401306152\n",
- "epoch: 39 step: 164, loss is 0.9277569055557251\n",
- "epoch: 39 step: 165, loss is 0.8392190933227539\n",
- "epoch: 39 step: 166, loss is 0.9012026190757751\n",
- "epoch: 39 step: 167, loss is 0.8890141248703003\n",
- "epoch: 39 step: 168, loss is 0.8833734393119812\n",
- "epoch: 39 step: 169, loss is 0.9492493271827698\n",
- "epoch: 39 step: 170, loss is 0.908758282661438\n",
- "epoch: 39 step: 171, loss is 0.9744986891746521\n",
- "epoch: 39 step: 172, loss is 0.8908541202545166\n",
- "epoch: 39 step: 173, loss is 0.89945387840271\n",
- "epoch: 39 step: 174, loss is 0.8402144908905029\n",
- "epoch: 39 step: 175, loss is 0.9068995714187622\n",
- "epoch: 39 step: 176, loss is 0.8955084085464478\n",
- "epoch: 39 step: 177, loss is 0.8400992155075073\n",
- "epoch: 39 step: 178, loss is 0.9114003777503967\n",
- "epoch: 39 step: 179, loss is 0.9817430377006531\n",
- "epoch: 39 step: 180, loss is 0.8850396871566772\n",
- "epoch: 39 step: 181, loss is 0.8664795160293579\n",
- "epoch: 39 step: 182, loss is 0.8601346015930176\n",
- "epoch: 39 step: 183, loss is 0.9466091394424438\n",
- "epoch: 39 step: 184, loss is 0.8960914611816406\n",
- "epoch: 39 step: 185, loss is 0.9314067959785461\n",
- "epoch: 39 step: 186, loss is 0.9052322506904602\n",
- "epoch: 39 step: 187, loss is 0.9361927509307861\n",
- "epoch: 39 step: 188, loss is 0.8847562670707703\n",
- "epoch: 39 step: 189, loss is 0.9764125347137451\n",
- "epoch: 39 step: 190, loss is 0.8880001902580261\n",
- "epoch: 39 step: 191, loss is 0.8959442377090454\n",
- "epoch: 39 step: 192, loss is 0.8160576820373535\n",
- "epoch: 39 step: 193, loss is 0.8572779297828674\n",
- "epoch: 39 step: 194, loss is 0.870726466178894\n",
- "epoch: 39 step: 195, loss is 0.9026192426681519\n",
- "Train epoch time: 104825.320 ms, per step time: 537.566 ms\n",
- "epoch: 40 step: 1, loss is 0.8851234912872314\n",
- "epoch: 40 step: 2, loss is 0.8387653827667236\n",
- "epoch: 40 step: 3, loss is 0.8830152750015259\n",
- "epoch: 40 step: 4, loss is 0.8329616785049438\n",
- "epoch: 40 step: 5, loss is 0.8500375747680664\n",
- "epoch: 40 step: 6, loss is 0.8733106851577759\n",
- "epoch: 40 step: 7, loss is 0.8880319595336914\n",
- "epoch: 40 step: 8, loss is 0.8699027299880981\n",
- "epoch: 40 step: 9, loss is 0.9004031419754028\n",
- "epoch: 40 step: 10, loss is 0.8964098691940308\n",
- "epoch: 40 step: 11, loss is 0.899456262588501\n",
- "epoch: 40 step: 12, loss is 0.8893042802810669\n",
- "epoch: 40 step: 13, loss is 0.8464663028717041\n",
- "epoch: 40 step: 14, loss is 0.8593541979789734\n",
- "epoch: 40 step: 15, loss is 0.904763400554657\n",
- "epoch: 40 step: 16, loss is 0.8689329624176025\n",
- "epoch: 40 step: 17, loss is 0.8954069018363953\n",
- "epoch: 40 step: 18, loss is 0.8645673990249634\n",
- "epoch: 40 step: 19, loss is 0.8800634145736694\n",
- "epoch: 40 step: 20, loss is 0.9918292760848999\n",
- "epoch: 40 step: 21, loss is 0.8588066101074219\n",
- "epoch: 40 step: 22, loss is 0.821401834487915\n",
- "epoch: 40 step: 23, loss is 0.8418498039245605\n",
- "epoch: 40 step: 24, loss is 0.9312494397163391\n",
- "epoch: 40 step: 25, loss is 0.8298090100288391\n",
- "epoch: 40 step: 26, loss is 0.8266054391860962\n",
- "epoch: 40 step: 27, loss is 0.8716622591018677\n",
- "epoch: 40 step: 28, loss is 0.8610857725143433\n",
- "epoch: 40 step: 29, loss is 0.8384156227111816\n",
- "epoch: 40 step: 30, loss is 0.8949705362319946\n",
- "epoch: 40 step: 31, loss is 0.9197995662689209\n",
- "epoch: 40 step: 32, loss is 0.8539305925369263\n",
- "epoch: 40 step: 33, loss is 0.9472203254699707\n",
- "epoch: 40 step: 34, loss is 0.8451520204544067\n",
- "epoch: 40 step: 35, loss is 0.8517283797264099\n",
- "epoch: 40 step: 36, loss is 0.80213463306427\n",
- "epoch: 40 step: 37, loss is 0.8429053425788879\n",
- "epoch: 40 step: 38, loss is 0.8992063999176025\n",
- "epoch: 40 step: 39, loss is 0.8799428939819336\n",
- "epoch: 40 step: 40, loss is 0.859926700592041\n",
- "epoch: 40 step: 41, loss is 0.8412423133850098\n",
- "epoch: 40 step: 42, loss is 0.9253013730049133\n",
- "epoch: 40 step: 43, loss is 0.833931028842926\n",
- "epoch: 40 step: 44, loss is 0.8247307538986206\n",
- "epoch: 40 step: 45, loss is 0.9064934253692627\n",
- "epoch: 40 step: 46, loss is 0.8344542384147644\n",
- "epoch: 40 step: 47, loss is 0.8230990171432495\n",
- "epoch: 40 step: 48, loss is 0.8442429304122925\n",
- "epoch: 40 step: 49, loss is 0.9023276567459106\n",
- "epoch: 40 step: 50, loss is 0.8159782290458679\n",
- "epoch: 40 step: 51, loss is 0.7803122401237488\n",
- "epoch: 40 step: 52, loss is 0.899043619632721\n",
- "epoch: 40 step: 53, loss is 0.8936437368392944\n",
- "epoch: 40 step: 54, loss is 0.8918968439102173\n",
- "epoch: 40 step: 55, loss is 0.8967644572257996\n",
- "epoch: 40 step: 56, loss is 0.8742477893829346\n",
- "epoch: 40 step: 57, loss is 0.8631412982940674\n",
- "epoch: 40 step: 58, loss is 0.8607645034790039\n",
- "epoch: 40 step: 59, loss is 0.9121779799461365\n",
- "epoch: 40 step: 60, loss is 0.8896794319152832\n",
- "epoch: 40 step: 61, loss is 0.9428945183753967\n",
- "epoch: 40 step: 62, loss is 0.883753776550293\n",
- "epoch: 40 step: 63, loss is 0.9169254899024963\n",
- "epoch: 40 step: 64, loss is 0.9192215204238892\n",
- "epoch: 40 step: 65, loss is 0.8570241928100586\n",
- "epoch: 40 step: 66, loss is 0.8706960678100586\n",
- "epoch: 40 step: 67, loss is 0.9097570180892944\n",
- "epoch: 40 step: 68, loss is 0.8814102411270142\n",
- "epoch: 40 step: 69, loss is 0.8036127686500549\n",
- "epoch: 40 step: 70, loss is 0.9094939231872559\n",
- "epoch: 40 step: 71, loss is 0.8332775831222534\n",
- "epoch: 40 step: 72, loss is 0.9041279554367065\n",
- "epoch: 40 step: 73, loss is 0.8735212087631226\n",
- "epoch: 40 step: 74, loss is 0.825016975402832\n",
- "epoch: 40 step: 75, loss is 0.9236082434654236\n",
- "epoch: 40 step: 76, loss is 0.8707889318466187\n",
- "epoch: 40 step: 77, loss is 0.9323348999023438\n",
- "epoch: 40 step: 78, loss is 0.9359569549560547\n",
- "epoch: 40 step: 79, loss is 0.8720421195030212\n",
- "epoch: 40 step: 80, loss is 0.9097332954406738\n",
- "epoch: 40 step: 81, loss is 0.8492221832275391\n",
- "epoch: 40 step: 82, loss is 0.8324311971664429\n",
- "epoch: 40 step: 83, loss is 0.8753854632377625\n",
- "epoch: 40 step: 84, loss is 0.8173515796661377\n",
- "epoch: 40 step: 85, loss is 0.8949519395828247\n",
- "epoch: 40 step: 86, loss is 0.8931065797805786\n",
- "epoch: 40 step: 87, loss is 0.8364624977111816\n",
- "epoch: 40 step: 88, loss is 0.8630421757698059\n",
- "epoch: 40 step: 89, loss is 0.8318980932235718\n",
- "epoch: 40 step: 90, loss is 0.8778986930847168\n",
- "epoch: 40 step: 91, loss is 0.8972828388214111\n",
- "epoch: 40 step: 92, loss is 0.8785991072654724\n",
- "epoch: 40 step: 93, loss is 0.907089352607727\n",
- "epoch: 40 step: 94, loss is 0.8727007508277893\n",
- "epoch: 40 step: 95, loss is 0.9328292608261108\n",
- "epoch: 40 step: 96, loss is 0.8604423999786377\n",
- "epoch: 40 step: 97, loss is 0.8766709566116333\n",
- "epoch: 40 step: 98, loss is 0.9485180377960205\n",
- "epoch: 40 step: 99, loss is 0.9245548844337463\n",
- "epoch: 40 step: 100, loss is 0.875493049621582\n",
- "epoch: 40 step: 101, loss is 0.8908942937850952\n",
- "epoch: 40 step: 102, loss is 0.8791377544403076\n",
- "epoch: 40 step: 103, loss is 0.8919621706008911\n",
- "epoch: 40 step: 104, loss is 0.8836909532546997\n",
- "epoch: 40 step: 105, loss is 0.8924317955970764\n",
- "epoch: 40 step: 106, loss is 0.9419810175895691\n",
- "epoch: 40 step: 107, loss is 0.9120110869407654\n",
- "epoch: 40 step: 108, loss is 0.8465275764465332\n",
- "epoch: 40 step: 109, loss is 0.8785563707351685\n",
- "epoch: 40 step: 110, loss is 0.9054582118988037\n",
- "epoch: 40 step: 111, loss is 0.8577967882156372\n",
- "epoch: 40 step: 112, loss is 0.8663351535797119\n",
- "epoch: 40 step: 113, loss is 0.8312288522720337\n",
- "epoch: 40 step: 114, loss is 0.904059648513794\n",
- "epoch: 40 step: 115, loss is 0.877544641494751\n",
- "epoch: 40 step: 116, loss is 0.8869988918304443\n",
- "epoch: 40 step: 117, loss is 0.903724730014801\n",
- "epoch: 40 step: 118, loss is 0.8916617035865784\n",
- "epoch: 40 step: 119, loss is 0.8024028539657593\n",
- "epoch: 40 step: 120, loss is 0.9454323053359985\n",
- "epoch: 40 step: 121, loss is 0.8825303316116333\n",
- "epoch: 40 step: 122, loss is 0.9104115962982178\n",
- "epoch: 40 step: 123, loss is 0.8717929124832153\n",
- "epoch: 40 step: 124, loss is 0.8908679485321045\n",
- "epoch: 40 step: 125, loss is 0.8974992036819458\n",
- "epoch: 40 step: 126, loss is 0.8960497379302979\n",
- "epoch: 40 step: 127, loss is 0.8568652868270874\n",
- "epoch: 40 step: 128, loss is 0.8469300270080566\n",
- "epoch: 40 step: 129, loss is 0.8961756229400635\n",
- "epoch: 40 step: 130, loss is 0.8992486000061035\n",
- "epoch: 40 step: 131, loss is 0.8704785108566284\n",
- "epoch: 40 step: 132, loss is 0.902604341506958\n",
- "epoch: 40 step: 133, loss is 0.8849173784255981\n",
- "epoch: 40 step: 134, loss is 0.8849829435348511\n",
- "epoch: 40 step: 135, loss is 0.9028277397155762\n",
- "epoch: 40 step: 136, loss is 0.9375927448272705\n",
- "epoch: 40 step: 137, loss is 0.9122540950775146\n",
- "epoch: 40 step: 138, loss is 0.8627878427505493\n",
- "epoch: 40 step: 139, loss is 0.9118070602416992\n",
- "epoch: 40 step: 140, loss is 0.8616949915885925\n",
- "epoch: 40 step: 141, loss is 0.8577849268913269\n",
- "epoch: 40 step: 142, loss is 0.9246078729629517\n",
- "epoch: 40 step: 143, loss is 0.866975724697113\n",
- "epoch: 40 step: 144, loss is 0.8619215488433838\n",
- "epoch: 40 step: 145, loss is 0.9103195667266846\n",
- "epoch: 40 step: 146, loss is 0.9210906028747559\n",
- "epoch: 40 step: 147, loss is 0.8680026531219482\n",
- "epoch: 40 step: 148, loss is 0.8251380920410156\n",
- "epoch: 40 step: 149, loss is 0.8463174700737\n",
- "epoch: 40 step: 150, loss is 0.9118173122406006\n",
- "epoch: 40 step: 151, loss is 0.9314653277397156\n",
- "epoch: 40 step: 152, loss is 0.9237564206123352\n",
- "epoch: 40 step: 153, loss is 0.8302289247512817\n",
- "epoch: 40 step: 154, loss is 0.835802435874939\n",
- "epoch: 40 step: 155, loss is 0.8791258335113525\n",
- "epoch: 40 step: 156, loss is 0.9399016499519348\n",
- "epoch: 40 step: 157, loss is 0.8605079054832458\n",
- "epoch: 40 step: 158, loss is 0.9036983847618103\n",
- "epoch: 40 step: 159, loss is 0.8914352059364319\n",
- "epoch: 40 step: 160, loss is 0.9488334655761719\n",
- "epoch: 40 step: 161, loss is 0.9103049039840698\n",
- "epoch: 40 step: 162, loss is 0.8704754114151001\n",
- "epoch: 40 step: 163, loss is 0.8842976093292236\n",
- "epoch: 40 step: 164, loss is 0.8546466827392578\n",
- "epoch: 40 step: 165, loss is 0.8507143259048462\n",
- "epoch: 40 step: 166, loss is 0.8573259711265564\n",
- "epoch: 40 step: 167, loss is 0.8737185001373291\n",
- "epoch: 40 step: 168, loss is 0.8979017734527588\n",
- "epoch: 40 step: 169, loss is 0.8496789932250977\n",
- "epoch: 40 step: 170, loss is 0.8904184103012085\n",
- "epoch: 40 step: 171, loss is 0.8918924331665039\n",
- "epoch: 40 step: 172, loss is 0.8876844644546509\n",
- "epoch: 40 step: 173, loss is 0.8999760150909424\n",
- "epoch: 40 step: 174, loss is 0.895128071308136\n",
- "epoch: 40 step: 175, loss is 0.8505512475967407\n",
- "epoch: 40 step: 176, loss is 0.9484850168228149\n",
- "epoch: 40 step: 177, loss is 0.930647611618042\n",
- "epoch: 40 step: 178, loss is 0.8815802335739136\n",
- "epoch: 40 step: 179, loss is 0.8763477802276611\n",
- "epoch: 40 step: 180, loss is 0.891345202922821\n",
- "epoch: 40 step: 181, loss is 0.8182728290557861\n",
- "epoch: 40 step: 182, loss is 0.8512617349624634\n",
- "epoch: 40 step: 183, loss is 0.949865460395813\n",
- "epoch: 40 step: 184, loss is 0.821356475353241\n",
- "epoch: 40 step: 185, loss is 0.8953803181648254\n",
- "epoch: 40 step: 186, loss is 0.911920428276062\n",
- "epoch: 40 step: 187, loss is 0.9853698015213013\n",
- "epoch: 40 step: 188, loss is 0.8613886833190918\n",
- "epoch: 40 step: 189, loss is 0.8839408159255981\n",
- "epoch: 40 step: 190, loss is 0.8179978728294373\n",
- "epoch: 40 step: 191, loss is 0.9102081060409546\n",
- "epoch: 40 step: 192, loss is 0.8488866090774536\n",
- "epoch: 40 step: 193, loss is 0.8513681888580322\n",
- "epoch: 40 step: 194, loss is 0.8531274199485779\n",
- "epoch: 40 step: 195, loss is 0.842171311378479\n",
- "Train epoch time: 109661.694 ms, per step time: 562.368 ms\n",
- "epoch: 41 step: 1, loss is 0.8618067502975464\n",
- "epoch: 41 step: 2, loss is 0.878968358039856\n",
- "epoch: 41 step: 3, loss is 0.859882116317749\n",
- "epoch: 41 step: 4, loss is 0.8857802152633667\n",
- "epoch: 41 step: 5, loss is 0.8492990136146545\n",
- "epoch: 41 step: 6, loss is 0.8154758214950562\n",
- "epoch: 41 step: 7, loss is 0.8833035826683044\n",
- "epoch: 41 step: 8, loss is 0.8062804937362671\n",
- "epoch: 41 step: 9, loss is 0.8593360781669617\n",
- "epoch: 41 step: 10, loss is 0.8572665452957153\n",
- "epoch: 41 step: 11, loss is 0.8745375275611877\n",
- "epoch: 41 step: 12, loss is 0.789219856262207\n",
- "epoch: 41 step: 13, loss is 0.8631721138954163\n",
- "epoch: 41 step: 14, loss is 0.832859992980957\n",
- "epoch: 41 step: 15, loss is 0.8729110956192017\n",
- "epoch: 41 step: 16, loss is 0.8440735340118408\n",
- "epoch: 41 step: 17, loss is 0.8444580435752869\n",
- "epoch: 41 step: 18, loss is 0.903781533241272\n",
- "epoch: 41 step: 19, loss is 0.82032310962677\n",
- "epoch: 41 step: 20, loss is 0.8752762675285339\n",
- "epoch: 41 step: 21, loss is 0.8854423761367798\n",
- "epoch: 41 step: 22, loss is 0.8759193420410156\n",
- "epoch: 41 step: 23, loss is 0.9510802030563354\n",
- "epoch: 41 step: 24, loss is 0.8492807149887085\n",
- "epoch: 41 step: 25, loss is 0.999866247177124\n",
- "epoch: 41 step: 26, loss is 0.8750281929969788\n",
- "epoch: 41 step: 27, loss is 0.886038601398468\n",
- "epoch: 41 step: 28, loss is 0.8495041728019714\n",
- "epoch: 41 step: 29, loss is 0.9202085733413696\n",
- "epoch: 41 step: 30, loss is 0.8238973617553711\n",
- "epoch: 41 step: 31, loss is 0.8590933084487915\n",
- "epoch: 41 step: 32, loss is 0.8466448783874512\n",
- "epoch: 41 step: 33, loss is 0.8425939083099365\n",
- "epoch: 41 step: 34, loss is 0.810389518737793\n",
- "epoch: 41 step: 35, loss is 0.9089317917823792\n",
- "epoch: 41 step: 36, loss is 0.8546086549758911\n",
- "epoch: 41 step: 37, loss is 0.8167605400085449\n",
- "epoch: 41 step: 38, loss is 0.8202768564224243\n",
- "epoch: 41 step: 39, loss is 0.8257353901863098\n",
- "epoch: 41 step: 40, loss is 0.8367618322372437\n",
- "epoch: 41 step: 41, loss is 0.8686001300811768\n",
- "epoch: 41 step: 42, loss is 0.8135358095169067\n",
- "epoch: 41 step: 43, loss is 0.8717283010482788\n",
- "epoch: 41 step: 44, loss is 0.8612308502197266\n",
- "epoch: 41 step: 45, loss is 0.8421732783317566\n",
- "epoch: 41 step: 46, loss is 0.8343643546104431\n",
- "epoch: 41 step: 47, loss is 0.8678110241889954\n",
- "epoch: 41 step: 48, loss is 0.8955135345458984\n",
- "epoch: 41 step: 49, loss is 0.8342581391334534\n",
- "epoch: 41 step: 50, loss is 0.8171234726905823\n",
- "epoch: 41 step: 51, loss is 0.8400593400001526\n",
- "epoch: 41 step: 52, loss is 0.8905632495880127\n",
- "epoch: 41 step: 53, loss is 0.8648943901062012\n",
- "epoch: 41 step: 54, loss is 0.8463799953460693\n",
- "epoch: 41 step: 55, loss is 0.9434037804603577\n",
- "epoch: 41 step: 56, loss is 0.8762432336807251\n",
- "epoch: 41 step: 57, loss is 0.8036152124404907\n",
- "epoch: 41 step: 58, loss is 0.8987679481506348\n",
- "epoch: 41 step: 59, loss is 0.8129253387451172\n",
- "epoch: 41 step: 60, loss is 0.8400129675865173\n",
- "epoch: 41 step: 61, loss is 0.8241201043128967\n",
- "epoch: 41 step: 62, loss is 0.9228696227073669\n",
- "epoch: 41 step: 63, loss is 0.9398709535598755\n",
- "epoch: 41 step: 64, loss is 0.9271838665008545\n",
- "epoch: 41 step: 65, loss is 0.8938474655151367\n",
- "epoch: 41 step: 66, loss is 0.8989920020103455\n",
- "epoch: 41 step: 67, loss is 0.8572782278060913\n",
- "epoch: 41 step: 68, loss is 0.8624463081359863\n",
- "epoch: 41 step: 69, loss is 0.8770366907119751\n",
- "epoch: 41 step: 70, loss is 0.856779932975769\n",
- "epoch: 41 step: 71, loss is 0.8851869106292725\n",
- "epoch: 41 step: 72, loss is 0.9122754335403442\n",
- "epoch: 41 step: 73, loss is 0.9410349130630493\n",
- "epoch: 41 step: 74, loss is 0.847427248954773\n",
- "epoch: 41 step: 75, loss is 0.9520801305770874\n",
- "epoch: 41 step: 76, loss is 0.8619092702865601\n",
- "epoch: 41 step: 77, loss is 0.9065008163452148\n",
- "epoch: 41 step: 78, loss is 0.8984924554824829\n",
- "epoch: 41 step: 79, loss is 0.9368110299110413\n",
- "epoch: 41 step: 80, loss is 0.8906735777854919\n",
- "epoch: 41 step: 81, loss is 0.8947526812553406\n",
- "epoch: 41 step: 82, loss is 0.8208470344543457\n",
- "epoch: 41 step: 83, loss is 0.8920199871063232\n",
- "epoch: 41 step: 84, loss is 0.8303755521774292\n",
- "epoch: 41 step: 85, loss is 0.8802638053894043\n",
- "epoch: 41 step: 86, loss is 0.8867618441581726\n",
- "epoch: 41 step: 87, loss is 0.8940666317939758\n",
- "epoch: 41 step: 88, loss is 0.8446831703186035\n",
- "epoch: 41 step: 89, loss is 0.8172906637191772\n",
- "epoch: 41 step: 90, loss is 0.8237570524215698\n",
- "epoch: 41 step: 91, loss is 0.8549254536628723\n",
- "epoch: 41 step: 92, loss is 0.8722318410873413\n",
- "epoch: 41 step: 93, loss is 0.8188673257827759\n",
- "epoch: 41 step: 94, loss is 0.8566056489944458\n",
- "epoch: 41 step: 95, loss is 0.8834047317504883\n",
- "epoch: 41 step: 96, loss is 0.9314032196998596\n",
- "epoch: 41 step: 97, loss is 0.896205484867096\n",
- "epoch: 41 step: 98, loss is 0.8750560283660889\n",
- "epoch: 41 step: 99, loss is 0.8571526408195496\n",
- "epoch: 41 step: 100, loss is 0.8289397954940796\n",
- "epoch: 41 step: 101, loss is 0.8239650130271912\n",
- "epoch: 41 step: 102, loss is 0.8106339573860168\n",
- "epoch: 41 step: 103, loss is 0.8450162410736084\n",
- "epoch: 41 step: 104, loss is 0.8610562086105347\n",
- "epoch: 41 step: 105, loss is 0.8680316805839539\n",
- "epoch: 41 step: 106, loss is 0.8439693450927734\n",
- "epoch: 41 step: 107, loss is 0.8370149731636047\n",
- "epoch: 41 step: 108, loss is 0.7954291701316833\n",
- "epoch: 41 step: 109, loss is 0.8636958599090576\n",
- "epoch: 41 step: 110, loss is 0.9023556113243103\n",
- "epoch: 41 step: 111, loss is 0.9075411558151245\n",
- "epoch: 41 step: 112, loss is 0.8832035064697266\n",
- "epoch: 41 step: 113, loss is 0.8567056655883789\n",
- "epoch: 41 step: 114, loss is 0.8847880959510803\n",
- "epoch: 41 step: 115, loss is 0.8463848829269409\n",
- "epoch: 41 step: 116, loss is 0.9032496213912964\n",
- "epoch: 41 step: 117, loss is 0.8129565715789795\n",
- "epoch: 41 step: 118, loss is 0.8356386423110962\n",
- "epoch: 41 step: 119, loss is 0.845257043838501\n",
- "epoch: 41 step: 120, loss is 0.8531070947647095\n",
- "epoch: 41 step: 121, loss is 0.8797612190246582\n",
- "epoch: 41 step: 122, loss is 0.8757193088531494\n",
- "epoch: 41 step: 123, loss is 0.8673896789550781\n",
- "epoch: 41 step: 124, loss is 0.8790965676307678\n",
- "epoch: 41 step: 125, loss is 0.9141356945037842\n",
- "epoch: 41 step: 126, loss is 0.85257887840271\n",
- "epoch: 41 step: 127, loss is 0.9249833226203918\n",
- "epoch: 41 step: 128, loss is 0.843304455280304\n",
- "epoch: 41 step: 129, loss is 0.8694417476654053\n",
- "epoch: 41 step: 130, loss is 0.9708907604217529\n",
- "epoch: 41 step: 131, loss is 0.8083999156951904\n",
- "epoch: 41 step: 132, loss is 0.8010560274124146\n",
- "epoch: 41 step: 133, loss is 0.8959842920303345\n",
- "epoch: 41 step: 134, loss is 0.9247763156890869\n",
- "epoch: 41 step: 135, loss is 0.885239839553833\n",
- "epoch: 41 step: 136, loss is 0.9220145344734192\n",
- "epoch: 41 step: 137, loss is 0.8627980947494507\n",
- "epoch: 41 step: 138, loss is 0.8013051152229309\n",
- "epoch: 41 step: 139, loss is 0.8849483728408813\n",
- "epoch: 41 step: 140, loss is 0.9494187831878662\n",
- "epoch: 41 step: 141, loss is 0.8294709920883179\n",
- "epoch: 41 step: 142, loss is 0.8639086484909058\n",
- "epoch: 41 step: 143, loss is 0.9001109600067139\n",
- "epoch: 41 step: 144, loss is 0.8381350040435791\n",
- "epoch: 41 step: 145, loss is 0.8885253667831421\n",
- "epoch: 41 step: 146, loss is 0.846118152141571\n",
- "epoch: 41 step: 147, loss is 0.8563376665115356\n",
- "epoch: 41 step: 148, loss is 0.8879783153533936\n",
- "epoch: 41 step: 149, loss is 0.877179741859436\n",
- "epoch: 41 step: 150, loss is 0.9107189774513245\n",
- "epoch: 41 step: 151, loss is 0.9207987785339355\n",
- "epoch: 41 step: 152, loss is 0.8938964605331421\n",
- "epoch: 41 step: 153, loss is 0.8833598494529724\n",
- "epoch: 41 step: 154, loss is 0.8983395099639893\n",
- "epoch: 41 step: 155, loss is 0.9261085987091064\n",
- "epoch: 41 step: 156, loss is 0.9456740021705627\n",
- "epoch: 41 step: 157, loss is 0.9052423238754272\n",
- "epoch: 41 step: 158, loss is 0.8480076789855957\n",
- "epoch: 41 step: 159, loss is 0.8339735865592957\n",
- "epoch: 41 step: 160, loss is 0.8606916666030884\n",
- "epoch: 41 step: 161, loss is 0.880690336227417\n",
- "epoch: 41 step: 162, loss is 0.8791908025741577\n",
- "epoch: 41 step: 163, loss is 0.8408814668655396\n",
- "epoch: 41 step: 164, loss is 0.8652082085609436\n",
- "epoch: 41 step: 165, loss is 0.8883305191993713\n",
- "epoch: 41 step: 166, loss is 0.8621140718460083\n",
- "epoch: 41 step: 167, loss is 0.869258463382721\n",
- "epoch: 41 step: 168, loss is 0.8321027755737305\n",
- "epoch: 41 step: 169, loss is 0.8394078016281128\n",
- "epoch: 41 step: 170, loss is 0.8942273855209351\n",
- "epoch: 41 step: 171, loss is 0.8461000919342041\n",
- "epoch: 41 step: 172, loss is 0.8614010810852051\n",
- "epoch: 41 step: 173, loss is 0.8483925461769104\n",
- "epoch: 41 step: 174, loss is 0.8731878399848938\n",
- "epoch: 41 step: 175, loss is 0.8125861883163452\n",
- "epoch: 41 step: 176, loss is 0.7947521209716797\n",
- "epoch: 41 step: 177, loss is 0.9045981168746948\n",
- "epoch: 41 step: 178, loss is 0.9216893911361694\n",
- "epoch: 41 step: 179, loss is 0.9175727367401123\n",
- "epoch: 41 step: 180, loss is 0.8301849365234375\n",
- "epoch: 41 step: 181, loss is 0.873075008392334\n",
- "epoch: 41 step: 182, loss is 0.8370826244354248\n",
- "epoch: 41 step: 183, loss is 0.8435347676277161\n",
- "epoch: 41 step: 184, loss is 0.9307310581207275\n",
- "epoch: 41 step: 185, loss is 0.916243314743042\n",
- "epoch: 41 step: 186, loss is 0.8576066493988037\n",
- "epoch: 41 step: 187, loss is 0.927433967590332\n",
- "epoch: 41 step: 188, loss is 0.8260948061943054\n",
- "epoch: 41 step: 189, loss is 0.9360485076904297\n",
- "epoch: 41 step: 190, loss is 0.8575282692909241\n",
- "epoch: 41 step: 191, loss is 0.8777022361755371\n",
- "epoch: 41 step: 192, loss is 0.9341365098953247\n",
- "epoch: 41 step: 193, loss is 0.8951187133789062\n",
- "epoch: 41 step: 194, loss is 0.9154071807861328\n",
- "epoch: 41 step: 195, loss is 0.9125281572341919\n",
- "Train epoch time: 101076.283 ms, per step time: 518.340 ms\n",
- "epoch: 42 step: 1, loss is 0.8089779615402222\n",
- "epoch: 42 step: 2, loss is 0.8644869923591614\n",
- "epoch: 42 step: 3, loss is 0.8119103312492371\n",
- "epoch: 42 step: 4, loss is 0.8407332897186279\n",
- "epoch: 42 step: 5, loss is 0.878099799156189\n",
- "epoch: 42 step: 6, loss is 0.8315229415893555\n",
- "epoch: 42 step: 7, loss is 0.8036289811134338\n",
- "epoch: 42 step: 8, loss is 0.8257417678833008\n",
- "epoch: 42 step: 9, loss is 0.8769088387489319\n",
- "epoch: 42 step: 10, loss is 0.8532992005348206\n",
- "epoch: 42 step: 11, loss is 0.8349636793136597\n",
- "epoch: 42 step: 12, loss is 0.8228226900100708\n",
- "epoch: 42 step: 13, loss is 0.8221296072006226\n",
- "epoch: 42 step: 14, loss is 0.8070749044418335\n",
- "epoch: 42 step: 15, loss is 0.8150159120559692\n",
- "epoch: 42 step: 16, loss is 0.8096538782119751\n",
- "epoch: 42 step: 17, loss is 0.7774046063423157\n",
- "epoch: 42 step: 18, loss is 0.8697662353515625\n",
- "epoch: 42 step: 19, loss is 0.8677603602409363\n",
- "epoch: 42 step: 20, loss is 0.8983956575393677\n",
- "epoch: 42 step: 21, loss is 0.861465573310852\n",
- "epoch: 42 step: 22, loss is 0.8955117464065552\n",
- "epoch: 42 step: 23, loss is 0.8678150177001953\n",
- "epoch: 42 step: 24, loss is 0.8251582384109497\n",
- "epoch: 42 step: 25, loss is 0.8551746606826782\n",
- "epoch: 42 step: 26, loss is 0.8440577983856201\n",
- "epoch: 42 step: 27, loss is 0.8638566732406616\n",
- "epoch: 42 step: 28, loss is 0.8645436763763428\n",
- "epoch: 42 step: 29, loss is 0.8609243631362915\n",
- "epoch: 42 step: 30, loss is 0.8043273687362671\n",
- "epoch: 42 step: 31, loss is 0.8528478145599365\n",
- "epoch: 42 step: 32, loss is 0.838059663772583\n",
- "epoch: 42 step: 33, loss is 0.9104222655296326\n",
- "epoch: 42 step: 34, loss is 0.8785349130630493\n",
- "epoch: 42 step: 35, loss is 0.8559966087341309\n",
- "epoch: 42 step: 36, loss is 0.8767120838165283\n",
- "epoch: 42 step: 37, loss is 0.811253547668457\n",
- "epoch: 42 step: 38, loss is 0.8244295120239258\n",
- "epoch: 42 step: 39, loss is 0.8432196378707886\n",
- "epoch: 42 step: 40, loss is 0.8452286720275879\n",
- "epoch: 42 step: 41, loss is 0.8515384197235107\n",
- "epoch: 42 step: 42, loss is 0.8795911073684692\n",
- "epoch: 42 step: 43, loss is 0.8898458480834961\n",
- "epoch: 42 step: 44, loss is 0.8207236528396606\n",
- "epoch: 42 step: 45, loss is 0.8984067440032959\n",
- "epoch: 42 step: 46, loss is 0.8878769278526306\n",
- "epoch: 42 step: 47, loss is 0.8230024576187134\n",
- "epoch: 42 step: 48, loss is 0.8531795740127563\n",
- "epoch: 42 step: 49, loss is 0.8085325956344604\n",
- "epoch: 42 step: 50, loss is 0.8255131244659424\n",
- "epoch: 42 step: 51, loss is 0.8654004335403442\n",
- "epoch: 42 step: 52, loss is 0.8093442916870117\n",
- "epoch: 42 step: 53, loss is 0.8567377328872681\n",
- "epoch: 42 step: 54, loss is 0.9493138790130615\n",
- "epoch: 42 step: 55, loss is 0.8640762567520142\n",
- "epoch: 42 step: 56, loss is 0.8181732892990112\n",
- "epoch: 42 step: 57, loss is 0.849233090877533\n",
- "epoch: 42 step: 58, loss is 0.8435302376747131\n",
- "epoch: 42 step: 59, loss is 0.8764400482177734\n",
- "epoch: 42 step: 60, loss is 0.8560871481895447\n",
- "epoch: 42 step: 61, loss is 0.8245770931243896\n",
- "epoch: 42 step: 62, loss is 0.8457933664321899\n",
- "epoch: 42 step: 63, loss is 0.8329942226409912\n",
- "epoch: 42 step: 64, loss is 0.8670783042907715\n",
- "epoch: 42 step: 65, loss is 0.8092839121818542\n",
- "epoch: 42 step: 66, loss is 0.8762713670730591\n",
- "epoch: 42 step: 67, loss is 0.8721253871917725\n",
- "epoch: 42 step: 68, loss is 0.8670223951339722\n",
- "epoch: 42 step: 69, loss is 0.8507710695266724\n",
- "epoch: 42 step: 70, loss is 0.8344552516937256\n",
- "epoch: 42 step: 71, loss is 0.8241802453994751\n",
- "epoch: 42 step: 72, loss is 0.8111439347267151\n",
- "epoch: 42 step: 73, loss is 0.8438748121261597\n",
- "epoch: 42 step: 74, loss is 0.8742424249649048\n",
- "epoch: 42 step: 75, loss is 0.8726904392242432\n",
- "epoch: 42 step: 76, loss is 0.850218653678894\n",
- "epoch: 42 step: 77, loss is 0.8470457792282104\n",
- "epoch: 42 step: 78, loss is 0.8624528050422668\n",
- "epoch: 42 step: 79, loss is 0.834343433380127\n",
- "epoch: 42 step: 80, loss is 0.8489726185798645\n",
- "epoch: 42 step: 81, loss is 0.8357803821563721\n",
- "epoch: 42 step: 82, loss is 0.8839561939239502\n",
- "epoch: 42 step: 83, loss is 0.8739861249923706\n",
- "epoch: 42 step: 84, loss is 0.8605704307556152\n",
- "epoch: 42 step: 85, loss is 0.8114489912986755\n",
- "epoch: 42 step: 86, loss is 0.8859652280807495\n",
- "epoch: 42 step: 87, loss is 0.8449142575263977\n",
- "epoch: 42 step: 88, loss is 0.830005407333374\n",
- "epoch: 42 step: 89, loss is 0.868400514125824\n",
- "epoch: 42 step: 90, loss is 0.885135293006897\n",
- "epoch: 42 step: 91, loss is 0.8562017679214478\n",
- "epoch: 42 step: 92, loss is 0.8647804260253906\n",
- "epoch: 42 step: 93, loss is 0.8739472031593323\n",
- "epoch: 42 step: 94, loss is 0.8252691030502319\n",
- "epoch: 42 step: 95, loss is 0.8628320693969727\n",
- "epoch: 42 step: 96, loss is 0.8924381732940674\n",
- "epoch: 42 step: 97, loss is 0.8443622589111328\n",
- "epoch: 42 step: 98, loss is 0.8117328882217407\n",
- "epoch: 42 step: 99, loss is 0.8545185327529907\n",
- "epoch: 42 step: 100, loss is 0.8547579050064087\n",
- "epoch: 42 step: 101, loss is 0.8376301527023315\n",
- "epoch: 42 step: 102, loss is 0.8713126182556152\n",
- "epoch: 42 step: 103, loss is 0.8685401678085327\n",
- "epoch: 42 step: 104, loss is 0.8923622369766235\n",
- "epoch: 42 step: 105, loss is 0.8097153306007385\n",
- "epoch: 42 step: 106, loss is 0.8733646273612976\n",
- "epoch: 42 step: 107, loss is 0.8296031355857849\n",
- "epoch: 42 step: 108, loss is 0.8327970504760742\n",
- "epoch: 42 step: 109, loss is 0.8926116228103638\n",
- "epoch: 42 step: 110, loss is 0.8671724200248718\n",
- "epoch: 42 step: 111, loss is 0.8336038589477539\n",
- "epoch: 42 step: 112, loss is 0.9052085876464844\n",
- "epoch: 42 step: 113, loss is 0.8344736099243164\n",
- "epoch: 42 step: 114, loss is 0.8146159648895264\n",
- "epoch: 42 step: 115, loss is 0.8312100172042847\n",
- "epoch: 42 step: 116, loss is 0.9117698669433594\n",
- "epoch: 42 step: 117, loss is 0.8652361631393433\n",
- "epoch: 42 step: 118, loss is 0.8404426574707031\n",
- "epoch: 42 step: 119, loss is 0.837387204170227\n",
- "epoch: 42 step: 120, loss is 0.9015281200408936\n",
- "epoch: 42 step: 121, loss is 0.9084380269050598\n",
- "epoch: 42 step: 122, loss is 0.8683476448059082\n",
- "epoch: 42 step: 123, loss is 0.8659813404083252\n",
- "epoch: 42 step: 124, loss is 0.8215182423591614\n",
- "epoch: 42 step: 125, loss is 0.8680877685546875\n",
- "epoch: 42 step: 126, loss is 0.7969065308570862\n",
- "epoch: 42 step: 127, loss is 0.8423664569854736\n",
- "epoch: 42 step: 128, loss is 0.8767988085746765\n",
- "epoch: 42 step: 129, loss is 0.8997753858566284\n",
- "epoch: 42 step: 130, loss is 0.8332815170288086\n",
- "epoch: 42 step: 131, loss is 0.8471370935440063\n",
- "epoch: 42 step: 132, loss is 0.8557276725769043\n",
- "epoch: 42 step: 133, loss is 0.8950415849685669\n",
- "epoch: 42 step: 134, loss is 0.84333336353302\n",
- "epoch: 42 step: 135, loss is 0.8616927266120911\n",
- "epoch: 42 step: 136, loss is 0.8685221672058105\n",
- "epoch: 42 step: 137, loss is 0.8692147731781006\n",
- "epoch: 42 step: 138, loss is 0.8464861512184143\n",
- "epoch: 42 step: 139, loss is 0.8693275451660156\n",
- "epoch: 42 step: 140, loss is 0.8784058690071106\n",
- "epoch: 42 step: 141, loss is 0.8476649522781372\n",
- "epoch: 42 step: 142, loss is 0.8064063787460327\n",
- "epoch: 42 step: 143, loss is 0.9054412841796875\n",
- "epoch: 42 step: 144, loss is 0.8571453094482422\n",
- "epoch: 42 step: 145, loss is 0.9321569204330444\n",
- "epoch: 42 step: 146, loss is 0.8750998973846436\n",
- "epoch: 42 step: 147, loss is 0.907139778137207\n",
- "epoch: 42 step: 148, loss is 0.8659070134162903\n",
- "epoch: 42 step: 149, loss is 0.8510759472846985\n",
- "epoch: 42 step: 150, loss is 0.8502603769302368\n",
- "epoch: 42 step: 151, loss is 0.8500804901123047\n",
- "epoch: 42 step: 152, loss is 0.8156150579452515\n",
- "epoch: 42 step: 153, loss is 0.8733172416687012\n",
- "epoch: 42 step: 154, loss is 0.850848913192749\n",
- "epoch: 42 step: 155, loss is 0.8791963458061218\n",
- "epoch: 42 step: 156, loss is 0.8015874028205872\n",
- "epoch: 42 step: 157, loss is 0.8600988388061523\n",
- "epoch: 42 step: 158, loss is 0.8457437753677368\n",
- "epoch: 42 step: 159, loss is 0.8352266550064087\n",
- "epoch: 42 step: 160, loss is 0.9183065891265869\n",
- "epoch: 42 step: 161, loss is 0.8726166486740112\n",
- "epoch: 42 step: 162, loss is 0.8349156975746155\n",
- "epoch: 42 step: 163, loss is 0.8438750505447388\n",
- "epoch: 42 step: 164, loss is 0.7972323894500732\n",
- "epoch: 42 step: 165, loss is 0.8881043791770935\n",
- "epoch: 42 step: 166, loss is 0.7695393562316895\n",
- "epoch: 42 step: 167, loss is 0.9118347764015198\n",
- "epoch: 42 step: 168, loss is 0.8156653642654419\n",
- "epoch: 42 step: 169, loss is 0.8408712148666382\n",
- "epoch: 42 step: 170, loss is 0.8774926662445068\n",
- "epoch: 42 step: 171, loss is 0.8023203611373901\n",
- "epoch: 42 step: 172, loss is 0.8694781064987183\n",
- "epoch: 42 step: 173, loss is 0.8406541347503662\n",
- "epoch: 42 step: 174, loss is 0.8344810009002686\n",
- "epoch: 42 step: 175, loss is 0.8771547079086304\n",
- "epoch: 42 step: 176, loss is 0.8694907426834106\n",
- "epoch: 42 step: 177, loss is 0.8860297203063965\n",
- "epoch: 42 step: 178, loss is 0.8535282611846924\n",
- "epoch: 42 step: 179, loss is 0.8784891963005066\n",
- "epoch: 42 step: 180, loss is 0.8673667907714844\n",
- "epoch: 42 step: 181, loss is 0.885998010635376\n",
- "epoch: 42 step: 182, loss is 0.8101425170898438\n",
- "epoch: 42 step: 183, loss is 0.8581392765045166\n",
- "epoch: 42 step: 184, loss is 0.8515086770057678\n",
- "epoch: 42 step: 185, loss is 0.9192506074905396\n",
- "epoch: 42 step: 186, loss is 0.813150942325592\n",
- "epoch: 42 step: 187, loss is 0.8777002096176147\n",
- "epoch: 42 step: 188, loss is 0.8682333827018738\n",
- "epoch: 42 step: 189, loss is 0.8502902388572693\n",
- "epoch: 42 step: 190, loss is 0.8853510022163391\n",
- "epoch: 42 step: 191, loss is 0.8542659282684326\n",
- "epoch: 42 step: 192, loss is 0.7935245037078857\n",
- "epoch: 42 step: 193, loss is 0.849128007888794\n",
- "epoch: 42 step: 194, loss is 0.8718112111091614\n",
- "epoch: 42 step: 195, loss is 0.7927903532981873\n",
- "Train epoch time: 104393.616 ms, per step time: 535.352 ms\n",
- "epoch: 43 step: 1, loss is 0.8294597864151001\n",
- "epoch: 43 step: 2, loss is 0.8970947265625\n",
- "epoch: 43 step: 3, loss is 0.8604476451873779\n",
- "epoch: 43 step: 4, loss is 0.8271983861923218\n",
- "epoch: 43 step: 5, loss is 0.7679990530014038\n",
- "epoch: 43 step: 6, loss is 0.814246654510498\n",
- "epoch: 43 step: 7, loss is 0.7870493531227112\n",
- "epoch: 43 step: 8, loss is 0.7868152856826782\n",
- "epoch: 43 step: 9, loss is 0.8285168409347534\n",
- "epoch: 43 step: 10, loss is 0.8607795238494873\n",
- "epoch: 43 step: 11, loss is 0.8177116513252258\n",
- "epoch: 43 step: 12, loss is 0.7858068346977234\n",
- "epoch: 43 step: 13, loss is 0.8965579271316528\n",
- "epoch: 43 step: 14, loss is 0.8615819215774536\n",
- "epoch: 43 step: 15, loss is 0.8327744007110596\n",
- "epoch: 43 step: 16, loss is 0.8430631756782532\n",
- "epoch: 43 step: 17, loss is 0.8059245944023132\n",
- "epoch: 43 step: 18, loss is 0.9019784927368164\n",
- "epoch: 43 step: 19, loss is 0.8373185992240906\n",
- "epoch: 43 step: 20, loss is 0.8920520544052124\n",
- "epoch: 43 step: 21, loss is 0.8596215844154358\n",
- "epoch: 43 step: 22, loss is 0.8344764113426208\n",
- "epoch: 43 step: 23, loss is 0.8371864557266235\n",
- "epoch: 43 step: 24, loss is 0.8886958360671997\n",
- "epoch: 43 step: 25, loss is 0.8028319478034973\n",
- "epoch: 43 step: 26, loss is 0.8226444721221924\n",
- "epoch: 43 step: 27, loss is 0.8300784826278687\n",
- "epoch: 43 step: 28, loss is 0.7710871696472168\n",
- "epoch: 43 step: 29, loss is 0.8353962898254395\n",
- "epoch: 43 step: 30, loss is 0.7986444234848022\n",
- "epoch: 43 step: 31, loss is 0.8214825391769409\n",
- "epoch: 43 step: 32, loss is 0.7964630126953125\n",
- "epoch: 43 step: 33, loss is 0.8764124512672424\n",
- "epoch: 43 step: 34, loss is 0.7796955704689026\n",
- "epoch: 43 step: 35, loss is 0.8275998830795288\n",
- "epoch: 43 step: 36, loss is 0.8654944896697998\n",
- "epoch: 43 step: 37, loss is 0.8556229472160339\n",
- "epoch: 43 step: 38, loss is 0.8409806489944458\n",
- "epoch: 43 step: 39, loss is 0.8394410610198975\n",
- "epoch: 43 step: 40, loss is 0.8231090903282166\n",
- "epoch: 43 step: 41, loss is 0.8441316485404968\n",
- "epoch: 43 step: 42, loss is 0.8980637788772583\n",
- "epoch: 43 step: 43, loss is 0.8046373128890991\n",
- "epoch: 43 step: 44, loss is 0.8214818835258484\n",
- "epoch: 43 step: 45, loss is 0.8548122644424438\n",
- "epoch: 43 step: 46, loss is 0.8148654699325562\n",
- "epoch: 43 step: 47, loss is 0.8201409578323364\n",
- "epoch: 43 step: 48, loss is 0.8499758839607239\n",
- "epoch: 43 step: 49, loss is 0.8358092308044434\n",
- "epoch: 43 step: 50, loss is 0.8226796388626099\n",
- "epoch: 43 step: 51, loss is 0.8605965375900269\n",
- "epoch: 43 step: 52, loss is 0.8365210294723511\n",
- "epoch: 43 step: 53, loss is 0.759890079498291\n",
- "epoch: 43 step: 54, loss is 0.8327456712722778\n",
- "epoch: 43 step: 55, loss is 0.8741596341133118\n",
- "epoch: 43 step: 56, loss is 0.9026631116867065\n",
- "epoch: 43 step: 57, loss is 0.8553040623664856\n",
- "epoch: 43 step: 58, loss is 0.9060505628585815\n",
- "epoch: 43 step: 59, loss is 0.857209324836731\n",
- "epoch: 43 step: 60, loss is 0.7948429584503174\n",
- "epoch: 43 step: 61, loss is 0.7962688207626343\n",
- "epoch: 43 step: 62, loss is 0.8637653589248657\n",
- "epoch: 43 step: 63, loss is 0.8078010082244873\n",
- "epoch: 43 step: 64, loss is 0.8711192011833191\n",
- "epoch: 43 step: 65, loss is 0.7712925672531128\n",
- "epoch: 43 step: 66, loss is 0.7980602979660034\n",
- "epoch: 43 step: 67, loss is 0.8307641744613647\n",
- "epoch: 43 step: 68, loss is 0.8084980249404907\n",
- "epoch: 43 step: 69, loss is 0.9210799336433411\n",
- "epoch: 43 step: 70, loss is 0.8832650184631348\n",
- "epoch: 43 step: 71, loss is 0.873507022857666\n",
- "epoch: 43 step: 72, loss is 0.8338415026664734\n",
- "epoch: 43 step: 73, loss is 0.8717669248580933\n",
- "epoch: 43 step: 74, loss is 0.7991918921470642\n",
- "epoch: 43 step: 75, loss is 0.840673565864563\n",
- "epoch: 43 step: 76, loss is 0.7988643646240234\n",
- "epoch: 43 step: 77, loss is 0.8677003383636475\n",
- "epoch: 43 step: 78, loss is 0.7734363079071045\n",
- "epoch: 43 step: 79, loss is 0.7846817970275879\n",
- "epoch: 43 step: 80, loss is 0.7889673709869385\n",
- "epoch: 43 step: 81, loss is 0.8030487298965454\n",
- "epoch: 43 step: 82, loss is 0.8372325301170349\n",
- "epoch: 43 step: 83, loss is 0.7864566445350647\n",
- "epoch: 43 step: 84, loss is 0.8571981191635132\n",
- "epoch: 43 step: 85, loss is 0.8592720627784729\n",
- "epoch: 43 step: 86, loss is 0.834925651550293\n",
- "epoch: 43 step: 87, loss is 0.8302255868911743\n",
- "epoch: 43 step: 88, loss is 0.806150496006012\n",
- "epoch: 43 step: 89, loss is 0.8232361078262329\n",
- "epoch: 43 step: 90, loss is 0.8831214904785156\n",
- "epoch: 43 step: 91, loss is 0.8150962591171265\n",
- "epoch: 43 step: 92, loss is 0.8546246886253357\n",
- "epoch: 43 step: 93, loss is 0.8501337170600891\n",
- "epoch: 43 step: 94, loss is 0.8255654573440552\n",
- "epoch: 43 step: 95, loss is 0.8462241888046265\n",
- "epoch: 43 step: 96, loss is 0.8206239938735962\n",
- "epoch: 43 step: 97, loss is 0.8344476222991943\n",
- "epoch: 43 step: 98, loss is 0.8239794969558716\n",
- "epoch: 43 step: 99, loss is 0.8198047876358032\n",
- "epoch: 43 step: 100, loss is 0.8275083303451538\n",
- "epoch: 43 step: 101, loss is 0.8346121907234192\n",
- "epoch: 43 step: 102, loss is 0.9012043476104736\n",
- "epoch: 43 step: 103, loss is 0.8496511578559875\n",
- "epoch: 43 step: 104, loss is 0.8193620443344116\n",
- "epoch: 43 step: 105, loss is 0.8473909497261047\n",
- "epoch: 43 step: 106, loss is 0.8486902713775635\n",
- "epoch: 43 step: 107, loss is 0.8898446559906006\n",
- "epoch: 43 step: 108, loss is 0.7972216606140137\n",
- "epoch: 43 step: 109, loss is 0.8071879148483276\n",
- "epoch: 43 step: 110, loss is 0.8307573795318604\n",
- "epoch: 43 step: 111, loss is 0.8682498931884766\n",
- "epoch: 43 step: 112, loss is 0.8632298707962036\n",
- "epoch: 43 step: 113, loss is 0.8534456491470337\n",
- "epoch: 43 step: 114, loss is 0.8309627771377563\n",
- "epoch: 43 step: 115, loss is 0.8819482326507568\n",
- "epoch: 43 step: 116, loss is 0.8594818115234375\n",
- "epoch: 43 step: 117, loss is 0.8103858232498169\n",
- "epoch: 43 step: 118, loss is 0.8514858484268188\n",
- "epoch: 43 step: 119, loss is 0.8288900852203369\n",
- "epoch: 43 step: 120, loss is 0.8233085870742798\n",
- "epoch: 43 step: 121, loss is 0.8544740676879883\n",
- "epoch: 43 step: 122, loss is 0.8414467573165894\n",
- "epoch: 43 step: 123, loss is 0.8041509389877319\n",
- "epoch: 43 step: 124, loss is 0.8492350578308105\n",
- "epoch: 43 step: 125, loss is 0.8789879083633423\n",
- "epoch: 43 step: 126, loss is 0.8492079377174377\n",
- "epoch: 43 step: 127, loss is 0.8372697830200195\n",
- "epoch: 43 step: 128, loss is 0.8588001132011414\n",
- "epoch: 43 step: 129, loss is 0.8964120149612427\n",
- "epoch: 43 step: 130, loss is 0.9201116561889648\n",
- "epoch: 43 step: 131, loss is 0.8233623504638672\n",
- "epoch: 43 step: 132, loss is 0.9195619821548462\n",
- "epoch: 43 step: 133, loss is 0.8373682498931885\n",
- "epoch: 43 step: 134, loss is 0.8882352113723755\n",
- "epoch: 43 step: 135, loss is 0.8993968963623047\n",
- "epoch: 43 step: 136, loss is 0.8546263575553894\n",
- "epoch: 43 step: 137, loss is 0.7936971783638\n",
- "epoch: 43 step: 138, loss is 0.8531118631362915\n",
- "epoch: 43 step: 139, loss is 0.8156453371047974\n",
- "epoch: 43 step: 140, loss is 0.8670303821563721\n",
- "epoch: 43 step: 141, loss is 0.8854354023933411\n",
- "epoch: 43 step: 142, loss is 0.9623984098434448\n",
- "epoch: 43 step: 143, loss is 0.8263896703720093\n",
- "epoch: 43 step: 144, loss is 0.8571993112564087\n",
- "epoch: 43 step: 145, loss is 0.8731168508529663\n",
- "epoch: 43 step: 146, loss is 0.8626257181167603\n",
- "epoch: 43 step: 147, loss is 0.8558142185211182\n",
- "epoch: 43 step: 148, loss is 0.8371372818946838\n",
- "epoch: 43 step: 149, loss is 0.9152108430862427\n",
- "epoch: 43 step: 150, loss is 0.8388125896453857\n",
- "epoch: 43 step: 151, loss is 0.8111461997032166\n",
- "epoch: 43 step: 152, loss is 0.8510836362838745\n",
- "epoch: 43 step: 153, loss is 0.8323482275009155\n",
- "epoch: 43 step: 154, loss is 0.8657610416412354\n",
- "epoch: 43 step: 155, loss is 0.8141871094703674\n",
- "epoch: 43 step: 156, loss is 0.8288489580154419\n",
- "epoch: 43 step: 157, loss is 0.8409020900726318\n",
- "epoch: 43 step: 158, loss is 0.9119324684143066\n",
- "epoch: 43 step: 159, loss is 0.838637113571167\n",
- "epoch: 43 step: 160, loss is 0.8470293283462524\n",
- "epoch: 43 step: 161, loss is 0.9204859733581543\n",
- "epoch: 43 step: 162, loss is 0.8028141260147095\n",
- "epoch: 43 step: 163, loss is 0.888090193271637\n",
- "epoch: 43 step: 164, loss is 0.908576488494873\n",
- "epoch: 43 step: 165, loss is 0.8349628448486328\n",
- "epoch: 43 step: 166, loss is 0.8642609715461731\n",
- "epoch: 43 step: 167, loss is 0.8975907564163208\n",
- "epoch: 43 step: 168, loss is 0.8330146670341492\n",
- "epoch: 43 step: 169, loss is 0.8396173119544983\n",
- "epoch: 43 step: 170, loss is 0.8458009362220764\n",
- "epoch: 43 step: 171, loss is 0.8068820238113403\n",
- "epoch: 43 step: 172, loss is 0.8205819129943848\n",
- "epoch: 43 step: 173, loss is 0.8182896375656128\n",
- "epoch: 43 step: 174, loss is 0.8649743795394897\n",
- "epoch: 43 step: 175, loss is 0.8158557415008545\n",
- "epoch: 43 step: 176, loss is 0.8410488367080688\n",
- "epoch: 43 step: 177, loss is 0.8997222185134888\n",
- "epoch: 43 step: 178, loss is 0.7878800630569458\n",
- "epoch: 43 step: 179, loss is 0.8774538040161133\n",
- "epoch: 43 step: 180, loss is 0.8969354629516602\n",
- "epoch: 43 step: 181, loss is 0.8670445680618286\n",
- "epoch: 43 step: 182, loss is 0.8310904502868652\n",
- "epoch: 43 step: 183, loss is 0.8269047737121582\n",
- "epoch: 43 step: 184, loss is 0.8661604523658752\n",
- "epoch: 43 step: 185, loss is 0.8083995580673218\n",
- "epoch: 43 step: 186, loss is 0.8497345447540283\n",
- "epoch: 43 step: 187, loss is 0.7652710676193237\n",
- "epoch: 43 step: 188, loss is 0.8509536981582642\n",
- "epoch: 43 step: 189, loss is 0.7898473739624023\n",
- "epoch: 43 step: 190, loss is 0.8304072618484497\n",
- "epoch: 43 step: 191, loss is 0.8282390832901001\n",
- "epoch: 43 step: 192, loss is 0.8815032243728638\n",
- "epoch: 43 step: 193, loss is 0.8743302822113037\n",
- "epoch: 43 step: 194, loss is 0.8324047327041626\n",
- "epoch: 43 step: 195, loss is 0.8523470163345337\n",
- "Train epoch time: 103265.899 ms, per step time: 529.569 ms\n",
- "epoch: 44 step: 1, loss is 0.8453022241592407\n",
- "epoch: 44 step: 2, loss is 0.7907478213310242\n",
- "epoch: 44 step: 3, loss is 0.8016879558563232\n",
- "epoch: 44 step: 4, loss is 0.8263792991638184\n",
- "epoch: 44 step: 5, loss is 0.7857260704040527\n",
- "epoch: 44 step: 6, loss is 0.8573659658432007\n",
- "epoch: 44 step: 7, loss is 0.8057029247283936\n",
- "epoch: 44 step: 8, loss is 0.8325988054275513\n",
- "epoch: 44 step: 9, loss is 0.8090107440948486\n",
- "epoch: 44 step: 10, loss is 0.8518710732460022\n",
- "epoch: 44 step: 11, loss is 0.7683022022247314\n",
- "epoch: 44 step: 12, loss is 0.8241764307022095\n",
- "epoch: 44 step: 13, loss is 0.8171102404594421\n",
- "epoch: 44 step: 14, loss is 0.7979844808578491\n",
- "epoch: 44 step: 15, loss is 0.8109622001647949\n",
- "epoch: 44 step: 16, loss is 0.8302081823348999\n",
- "epoch: 44 step: 17, loss is 0.886076807975769\n",
- "epoch: 44 step: 18, loss is 0.8752480745315552\n",
- "epoch: 44 step: 19, loss is 0.826755166053772\n",
- "epoch: 44 step: 20, loss is 0.9024949669837952\n",
- "epoch: 44 step: 21, loss is 0.8768868446350098\n",
- "epoch: 44 step: 22, loss is 0.7816983461380005\n",
- "epoch: 44 step: 23, loss is 0.8135099411010742\n",
- "epoch: 44 step: 24, loss is 0.7959494590759277\n",
- "epoch: 44 step: 25, loss is 0.8701900243759155\n",
- "epoch: 44 step: 26, loss is 0.8962787389755249\n",
- "epoch: 44 step: 27, loss is 0.8122208118438721\n",
- "epoch: 44 step: 28, loss is 0.8318886756896973\n",
- "epoch: 44 step: 29, loss is 0.8071174621582031\n",
- "epoch: 44 step: 30, loss is 0.7998003959655762\n",
- "epoch: 44 step: 31, loss is 0.8052625060081482\n",
- "epoch: 44 step: 32, loss is 0.8384972810745239\n",
- "epoch: 44 step: 33, loss is 0.8433929681777954\n",
- "epoch: 44 step: 34, loss is 0.8473092317581177\n",
- "epoch: 44 step: 35, loss is 0.7479420900344849\n",
- "epoch: 44 step: 36, loss is 0.8552576303482056\n",
- "epoch: 44 step: 37, loss is 0.8296571969985962\n",
- "epoch: 44 step: 38, loss is 0.8225266337394714\n",
- "epoch: 44 step: 39, loss is 0.8398158550262451\n",
- "epoch: 44 step: 40, loss is 0.810224175453186\n",
- "epoch: 44 step: 41, loss is 0.8907671570777893\n",
- "epoch: 44 step: 42, loss is 0.8192901015281677\n",
- "epoch: 44 step: 43, loss is 0.8924587965011597\n",
- "epoch: 44 step: 44, loss is 0.8292673826217651\n",
- "epoch: 44 step: 45, loss is 0.771535336971283\n",
- "epoch: 44 step: 46, loss is 0.836926281452179\n",
- "epoch: 44 step: 47, loss is 0.7787238359451294\n",
- "epoch: 44 step: 48, loss is 0.8849904537200928\n",
- "epoch: 44 step: 49, loss is 0.7986758351325989\n",
- "epoch: 44 step: 50, loss is 0.8151330947875977\n",
- "epoch: 44 step: 51, loss is 0.827986478805542\n",
- "epoch: 44 step: 52, loss is 0.8659918904304504\n",
- "epoch: 44 step: 53, loss is 0.8116614818572998\n",
- "epoch: 44 step: 54, loss is 0.7926613092422485\n",
- "epoch: 44 step: 55, loss is 0.7859510183334351\n",
- "epoch: 44 step: 56, loss is 0.8311823606491089\n",
- "epoch: 44 step: 57, loss is 0.8313575387001038\n",
- "epoch: 44 step: 58, loss is 0.8747384548187256\n",
- "epoch: 44 step: 59, loss is 0.8423038721084595\n",
- "epoch: 44 step: 60, loss is 0.7769363522529602\n",
- "epoch: 44 step: 61, loss is 0.8134062886238098\n",
- "epoch: 44 step: 62, loss is 0.7958183884620667\n",
- "epoch: 44 step: 63, loss is 0.8659431338310242\n",
- "epoch: 44 step: 64, loss is 0.8552248477935791\n",
- "epoch: 44 step: 65, loss is 0.8095966577529907\n",
- "epoch: 44 step: 66, loss is 0.8902565240859985\n",
- "epoch: 44 step: 67, loss is 0.8342934846878052\n",
- "epoch: 44 step: 68, loss is 0.8365081548690796\n",
- "epoch: 44 step: 69, loss is 0.7752741575241089\n",
- "epoch: 44 step: 70, loss is 0.8244410157203674\n",
- "epoch: 44 step: 71, loss is 0.8486750721931458\n",
- "epoch: 44 step: 72, loss is 0.8318091630935669\n",
- "epoch: 44 step: 73, loss is 0.8393651247024536\n",
- "epoch: 44 step: 74, loss is 0.8115312457084656\n",
- "epoch: 44 step: 75, loss is 0.8164188861846924\n",
- "epoch: 44 step: 76, loss is 0.8508647680282593\n",
- "epoch: 44 step: 77, loss is 0.8699759840965271\n",
- "epoch: 44 step: 78, loss is 0.8322898149490356\n",
- "epoch: 44 step: 79, loss is 0.8376330137252808\n",
- "epoch: 44 step: 80, loss is 0.8160139322280884\n",
- "epoch: 44 step: 81, loss is 0.8363475799560547\n",
- "epoch: 44 step: 82, loss is 0.8166965246200562\n",
- "epoch: 44 step: 83, loss is 0.8335794806480408\n",
- "epoch: 44 step: 84, loss is 0.8391317129135132\n",
- "epoch: 44 step: 85, loss is 0.7605409622192383\n",
- "epoch: 44 step: 86, loss is 0.8214500546455383\n",
- "epoch: 44 step: 87, loss is 0.9058740139007568\n",
- "epoch: 44 step: 88, loss is 0.8651093244552612\n",
- "epoch: 44 step: 89, loss is 0.8033688068389893\n",
- "epoch: 44 step: 90, loss is 0.8479012250900269\n",
- "epoch: 44 step: 91, loss is 0.8389463424682617\n",
- "epoch: 44 step: 92, loss is 0.7884944677352905\n",
- "epoch: 44 step: 93, loss is 0.833466649055481\n",
- "epoch: 44 step: 94, loss is 0.8223673701286316\n",
- "epoch: 44 step: 95, loss is 0.8585664629936218\n",
- "epoch: 44 step: 96, loss is 0.8613909482955933\n",
- "epoch: 44 step: 97, loss is 0.8217692375183105\n",
- "epoch: 44 step: 98, loss is 0.77707439661026\n",
- "epoch: 44 step: 99, loss is 0.8251650929450989\n",
- "epoch: 44 step: 100, loss is 0.8254645466804504\n",
- "epoch: 44 step: 101, loss is 0.801839292049408\n",
- "epoch: 44 step: 102, loss is 0.8903477191925049\n",
- "epoch: 44 step: 103, loss is 0.846129298210144\n",
- "epoch: 44 step: 104, loss is 0.8039761781692505\n",
- "epoch: 44 step: 105, loss is 0.8283898234367371\n",
- "epoch: 44 step: 106, loss is 0.8672746419906616\n",
- "epoch: 44 step: 107, loss is 0.839009165763855\n",
- "epoch: 44 step: 108, loss is 0.7480974197387695\n",
- "epoch: 44 step: 109, loss is 0.8659617304801941\n",
- "epoch: 44 step: 110, loss is 0.9020228981971741\n",
- "epoch: 44 step: 111, loss is 0.843647837638855\n",
- "epoch: 44 step: 112, loss is 0.7947038412094116\n",
- "epoch: 44 step: 113, loss is 0.8495566844940186\n",
- "epoch: 44 step: 114, loss is 0.8038637638092041\n",
- "epoch: 44 step: 115, loss is 0.8976993560791016\n",
- "epoch: 44 step: 116, loss is 0.8217252492904663\n",
- "epoch: 44 step: 117, loss is 0.8445823788642883\n",
- "epoch: 44 step: 118, loss is 0.848206639289856\n",
- "epoch: 44 step: 119, loss is 0.8971410393714905\n",
- "epoch: 44 step: 120, loss is 0.7785561084747314\n",
- "epoch: 44 step: 121, loss is 0.8077627420425415\n",
- "epoch: 44 step: 122, loss is 0.8520123362541199\n",
- "epoch: 44 step: 123, loss is 0.7765213251113892\n",
- "epoch: 44 step: 124, loss is 0.8805909752845764\n",
- "epoch: 44 step: 125, loss is 0.7757835388183594\n",
- "epoch: 44 step: 126, loss is 0.8509600758552551\n",
- "epoch: 44 step: 127, loss is 0.8228942155838013\n",
- "epoch: 44 step: 128, loss is 0.8111655712127686\n",
- "epoch: 44 step: 129, loss is 0.8631141781806946\n",
- "epoch: 44 step: 130, loss is 0.8184478282928467\n",
- "epoch: 44 step: 131, loss is 0.7894569039344788\n",
- "epoch: 44 step: 132, loss is 0.8719875812530518\n",
- "epoch: 44 step: 133, loss is 0.8447509407997131\n",
- "epoch: 44 step: 134, loss is 0.8809040784835815\n",
- "epoch: 44 step: 135, loss is 0.8311432600021362\n",
- "epoch: 44 step: 136, loss is 0.8442236185073853\n",
- "epoch: 44 step: 137, loss is 0.7761156558990479\n",
- "epoch: 44 step: 138, loss is 0.8501737117767334\n",
- "epoch: 44 step: 139, loss is 0.8985190391540527\n",
- "epoch: 44 step: 140, loss is 0.8687268495559692\n",
- "epoch: 44 step: 141, loss is 0.8174731731414795\n",
- "epoch: 44 step: 142, loss is 0.832199215888977\n",
- "epoch: 44 step: 143, loss is 0.8185088634490967\n",
- "epoch: 44 step: 144, loss is 0.7955659627914429\n",
- "epoch: 44 step: 145, loss is 0.8968285322189331\n",
- "epoch: 44 step: 146, loss is 0.8759627342224121\n",
- "epoch: 44 step: 147, loss is 0.867445707321167\n",
- "epoch: 44 step: 148, loss is 0.8908854722976685\n",
- "epoch: 44 step: 149, loss is 0.8264645338058472\n",
- "epoch: 44 step: 150, loss is 0.7830431461334229\n",
- "epoch: 44 step: 151, loss is 0.8348606824874878\n",
- "epoch: 44 step: 152, loss is 0.8119888305664062\n",
- "epoch: 44 step: 153, loss is 0.8212461471557617\n",
- "epoch: 44 step: 154, loss is 0.9734259843826294\n",
- "epoch: 44 step: 155, loss is 0.8453748822212219\n",
- "epoch: 44 step: 156, loss is 0.88047856092453\n",
- "epoch: 44 step: 157, loss is 0.8310037851333618\n",
- "epoch: 44 step: 158, loss is 0.8443740606307983\n",
- "epoch: 44 step: 159, loss is 0.7672539949417114\n",
- "epoch: 44 step: 160, loss is 0.8437290191650391\n",
- "epoch: 44 step: 161, loss is 0.7949817776679993\n",
- "epoch: 44 step: 162, loss is 0.845282256603241\n",
- "epoch: 44 step: 163, loss is 0.7958941459655762\n",
- "epoch: 44 step: 164, loss is 0.8234926462173462\n",
- "epoch: 44 step: 165, loss is 0.8065224885940552\n",
- "epoch: 44 step: 166, loss is 0.8482771515846252\n",
- "epoch: 44 step: 167, loss is 0.8111386299133301\n",
- "epoch: 44 step: 168, loss is 0.776309609413147\n",
- "epoch: 44 step: 169, loss is 0.8399442434310913\n",
- "epoch: 44 step: 170, loss is 0.8336600065231323\n",
- "epoch: 44 step: 171, loss is 0.9151747226715088\n",
- "epoch: 44 step: 172, loss is 0.8099561929702759\n",
- "epoch: 44 step: 173, loss is 0.807794451713562\n",
- "epoch: 44 step: 174, loss is 0.8684530258178711\n",
- "epoch: 44 step: 175, loss is 0.8516542911529541\n",
- "epoch: 44 step: 176, loss is 0.8287756443023682\n",
- "epoch: 44 step: 177, loss is 0.8382424116134644\n",
- "epoch: 44 step: 178, loss is 0.7728651165962219\n",
- "epoch: 44 step: 179, loss is 0.8073314428329468\n",
- "epoch: 44 step: 180, loss is 0.848498523235321\n",
- "epoch: 44 step: 181, loss is 0.9014191627502441\n",
- "epoch: 44 step: 182, loss is 0.8897876739501953\n",
- "epoch: 44 step: 183, loss is 0.8118309378623962\n",
- "epoch: 44 step: 184, loss is 0.7635383605957031\n",
- "epoch: 44 step: 185, loss is 0.8467649221420288\n",
- "epoch: 44 step: 186, loss is 0.8409745693206787\n",
- "epoch: 44 step: 187, loss is 0.7921956777572632\n",
- "epoch: 44 step: 188, loss is 0.8431222438812256\n",
- "epoch: 44 step: 189, loss is 0.8319634199142456\n",
- "epoch: 44 step: 190, loss is 0.8678156137466431\n",
- "epoch: 44 step: 191, loss is 0.8332831859588623\n",
- "epoch: 44 step: 192, loss is 0.8472182154655457\n",
- "epoch: 44 step: 193, loss is 0.8923056125640869\n",
- "epoch: 44 step: 194, loss is 0.8984596133232117\n",
- "epoch: 44 step: 195, loss is 0.8531150221824646\n",
- "Train epoch time: 105868.401 ms, per step time: 542.915 ms\n",
- "epoch: 45 step: 1, loss is 0.797378420829773\n",
- "epoch: 45 step: 2, loss is 0.8434414863586426\n",
- "epoch: 45 step: 3, loss is 0.8462778329849243\n",
- "epoch: 45 step: 4, loss is 0.8658885955810547\n",
- "epoch: 45 step: 5, loss is 0.8098921775817871\n",
- "epoch: 45 step: 6, loss is 0.8026620149612427\n",
- "epoch: 45 step: 7, loss is 0.8996759653091431\n",
- "epoch: 45 step: 8, loss is 0.8386918306350708\n",
- "epoch: 45 step: 9, loss is 0.8338483572006226\n",
- "epoch: 45 step: 10, loss is 0.9263638257980347\n",
- "epoch: 45 step: 11, loss is 0.8632202744483948\n",
- "epoch: 45 step: 12, loss is 0.8471955060958862\n",
- "epoch: 45 step: 13, loss is 0.8372879028320312\n",
- "epoch: 45 step: 14, loss is 0.8255120515823364\n",
- "epoch: 45 step: 15, loss is 0.8737128973007202\n",
- "epoch: 45 step: 16, loss is 0.8354191780090332\n",
- "epoch: 45 step: 17, loss is 0.7987959384918213\n",
- "epoch: 45 step: 18, loss is 0.8505175113677979\n",
- "epoch: 45 step: 19, loss is 0.8368593454360962\n",
- "epoch: 45 step: 20, loss is 0.784697413444519\n",
- "epoch: 45 step: 21, loss is 0.8348579406738281\n",
- "epoch: 45 step: 22, loss is 0.8364343643188477\n",
- "epoch: 45 step: 23, loss is 0.8612481355667114\n",
- "epoch: 45 step: 24, loss is 0.7814860343933105\n",
- "epoch: 45 step: 25, loss is 0.8684799671173096\n",
- "epoch: 45 step: 26, loss is 0.8997472524642944\n",
- "epoch: 45 step: 27, loss is 0.8619316816329956\n",
- "epoch: 45 step: 28, loss is 0.817363977432251\n",
- "epoch: 45 step: 29, loss is 0.7749216556549072\n",
- "epoch: 45 step: 30, loss is 0.8594024181365967\n",
- "epoch: 45 step: 31, loss is 0.8051797747612\n",
- "epoch: 45 step: 32, loss is 0.808334231376648\n",
- "epoch: 45 step: 33, loss is 0.816953718662262\n",
- "epoch: 45 step: 34, loss is 0.8255509734153748\n",
- "epoch: 45 step: 35, loss is 0.8560952544212341\n",
- "epoch: 45 step: 36, loss is 0.85727459192276\n",
- "epoch: 45 step: 37, loss is 0.7978469133377075\n",
- "epoch: 45 step: 38, loss is 0.827349066734314\n",
- "epoch: 45 step: 39, loss is 0.812595546245575\n",
- "epoch: 45 step: 40, loss is 0.8315937519073486\n",
- "epoch: 45 step: 41, loss is 0.8432806730270386\n",
- "epoch: 45 step: 42, loss is 0.8510632514953613\n",
- "epoch: 45 step: 43, loss is 0.8693996667861938\n",
- "epoch: 45 step: 44, loss is 0.8253210783004761\n",
- "epoch: 45 step: 45, loss is 0.8483833074569702\n",
- "epoch: 45 step: 46, loss is 0.8250950574874878\n",
- "epoch: 45 step: 47, loss is 0.81036776304245\n",
- "epoch: 45 step: 48, loss is 0.7913225889205933\n",
- "epoch: 45 step: 49, loss is 0.849341630935669\n",
- "epoch: 45 step: 50, loss is 0.8297770023345947\n",
- "epoch: 45 step: 51, loss is 0.820899248123169\n",
- "epoch: 45 step: 52, loss is 0.7853142619132996\n",
- "epoch: 45 step: 53, loss is 0.8117645382881165\n",
- "epoch: 45 step: 54, loss is 0.7955257296562195\n",
- "epoch: 45 step: 55, loss is 0.8264058828353882\n",
- "epoch: 45 step: 56, loss is 0.7929840087890625\n",
- "epoch: 45 step: 57, loss is 0.7925326824188232\n",
- "epoch: 45 step: 58, loss is 0.8115711808204651\n",
- "epoch: 45 step: 59, loss is 0.884651780128479\n",
- "epoch: 45 step: 60, loss is 0.7932153940200806\n",
- "epoch: 45 step: 61, loss is 0.8263003826141357\n",
- "epoch: 45 step: 62, loss is 0.8249435424804688\n",
- "epoch: 45 step: 63, loss is 0.824442446231842\n",
- "epoch: 45 step: 64, loss is 0.8158690929412842\n",
- "epoch: 45 step: 65, loss is 0.7852048277854919\n",
- "epoch: 45 step: 66, loss is 0.7816163301467896\n",
- "epoch: 45 step: 67, loss is 0.8764089941978455\n",
- "epoch: 45 step: 68, loss is 0.8593099117279053\n",
- "epoch: 45 step: 69, loss is 0.866447925567627\n",
- "epoch: 45 step: 70, loss is 0.8498247861862183\n",
- "epoch: 45 step: 71, loss is 0.8391462564468384\n",
- "epoch: 45 step: 72, loss is 0.8566574454307556\n",
- "epoch: 45 step: 73, loss is 0.8557162284851074\n",
- "epoch: 45 step: 74, loss is 0.8707220554351807\n",
- "epoch: 45 step: 75, loss is 0.8360041379928589\n",
- "epoch: 45 step: 76, loss is 0.8407829999923706\n",
- "epoch: 45 step: 77, loss is 0.8129657506942749\n",
- "epoch: 45 step: 78, loss is 0.8092179894447327\n",
- "epoch: 45 step: 79, loss is 0.8521150350570679\n",
- "epoch: 45 step: 80, loss is 0.8713109493255615\n",
- "epoch: 45 step: 81, loss is 0.8957943916320801\n",
- "epoch: 45 step: 82, loss is 0.8533645868301392\n",
- "epoch: 45 step: 83, loss is 0.912147045135498\n",
- "epoch: 45 step: 84, loss is 0.7805302143096924\n",
- "epoch: 45 step: 85, loss is 0.8388156890869141\n",
- "epoch: 45 step: 86, loss is 0.8268339037895203\n",
- "epoch: 45 step: 87, loss is 0.9514163732528687\n",
- "epoch: 45 step: 88, loss is 0.829018235206604\n",
- "epoch: 45 step: 89, loss is 0.8328359127044678\n",
- "epoch: 45 step: 90, loss is 0.7594138383865356\n",
- "epoch: 45 step: 91, loss is 0.8835211992263794\n",
- "epoch: 45 step: 92, loss is 0.7978073358535767\n",
- "epoch: 45 step: 93, loss is 0.7841440439224243\n",
- "epoch: 45 step: 94, loss is 0.8134328722953796\n",
- "epoch: 45 step: 95, loss is 0.8328547477722168\n",
- "epoch: 45 step: 96, loss is 0.8723311424255371\n",
- "epoch: 45 step: 97, loss is 0.8953766822814941\n",
- "epoch: 45 step: 98, loss is 0.782135546207428\n",
- "epoch: 45 step: 99, loss is 0.8980734348297119\n",
- "epoch: 45 step: 100, loss is 0.8931200504302979\n",
- "epoch: 45 step: 101, loss is 0.8560555577278137\n",
- "epoch: 45 step: 102, loss is 0.8412013053894043\n",
- "epoch: 45 step: 103, loss is 0.7824513912200928\n",
- "epoch: 45 step: 104, loss is 0.818356990814209\n",
- "epoch: 45 step: 105, loss is 0.8363431692123413\n",
- "epoch: 45 step: 106, loss is 0.8344317078590393\n",
- "epoch: 45 step: 107, loss is 0.8848496675491333\n",
- "epoch: 45 step: 108, loss is 0.8350567817687988\n",
- "epoch: 45 step: 109, loss is 0.8348894119262695\n",
- "epoch: 45 step: 110, loss is 0.8175472617149353\n",
- "epoch: 45 step: 111, loss is 0.8738548159599304\n",
- "epoch: 45 step: 112, loss is 0.8716980218887329\n",
- "epoch: 45 step: 113, loss is 0.8722313642501831\n",
- "epoch: 45 step: 114, loss is 0.827862024307251\n",
- "epoch: 45 step: 115, loss is 0.8458893299102783\n",
- "epoch: 45 step: 116, loss is 0.8171547651290894\n",
- "epoch: 45 step: 117, loss is 0.8268876075744629\n",
- "epoch: 45 step: 118, loss is 0.8999385833740234\n",
- "epoch: 45 step: 119, loss is 0.7990801334381104\n",
- "epoch: 45 step: 120, loss is 0.8432843685150146\n",
- "epoch: 45 step: 121, loss is 0.7690677642822266\n",
- "epoch: 45 step: 122, loss is 0.7851119041442871\n",
- "epoch: 45 step: 123, loss is 0.7990196943283081\n",
- "epoch: 45 step: 124, loss is 0.8134939670562744\n",
- "epoch: 45 step: 125, loss is 0.8478057384490967\n",
- "epoch: 45 step: 126, loss is 0.835658073425293\n",
- "epoch: 45 step: 127, loss is 0.8786047697067261\n",
- "epoch: 45 step: 128, loss is 0.853824257850647\n",
- "epoch: 45 step: 129, loss is 0.7791602611541748\n",
- "epoch: 45 step: 130, loss is 0.8465268611907959\n",
- "epoch: 45 step: 131, loss is 0.817635178565979\n",
- "epoch: 45 step: 132, loss is 0.8957144618034363\n",
- "epoch: 45 step: 133, loss is 0.7893065214157104\n",
- "epoch: 45 step: 134, loss is 0.8525814414024353\n",
- "epoch: 45 step: 135, loss is 0.9079052209854126\n",
- "epoch: 45 step: 136, loss is 0.8197199702262878\n",
- "epoch: 45 step: 137, loss is 0.8526945114135742\n",
- "epoch: 45 step: 138, loss is 0.8059414625167847\n",
- "epoch: 45 step: 139, loss is 0.9117308855056763\n",
- "epoch: 45 step: 140, loss is 0.8042845726013184\n",
- "epoch: 45 step: 141, loss is 0.7515856623649597\n",
- "epoch: 45 step: 142, loss is 0.8385648727416992\n",
- "epoch: 45 step: 143, loss is 0.8327391147613525\n",
- "epoch: 45 step: 144, loss is 0.8003973364830017\n",
- "epoch: 45 step: 145, loss is 0.8098223209381104\n",
- "epoch: 45 step: 146, loss is 0.8295820951461792\n",
- "epoch: 45 step: 147, loss is 0.8350188732147217\n",
- "epoch: 45 step: 148, loss is 0.8676146268844604\n",
- "epoch: 45 step: 149, loss is 0.9002435207366943\n",
- "epoch: 45 step: 150, loss is 0.8670786619186401\n",
- "epoch: 45 step: 151, loss is 0.8624051809310913\n",
- "epoch: 45 step: 152, loss is 0.8451559543609619\n",
- "epoch: 45 step: 153, loss is 0.8103901147842407\n",
- "epoch: 45 step: 154, loss is 0.878807783126831\n",
- "epoch: 45 step: 155, loss is 0.8267253041267395\n",
- "epoch: 45 step: 156, loss is 0.8838249444961548\n",
- "epoch: 45 step: 157, loss is 0.8725638389587402\n",
- "epoch: 45 step: 158, loss is 0.8776443004608154\n",
- "epoch: 45 step: 159, loss is 0.8134714365005493\n",
- "epoch: 45 step: 160, loss is 0.8230506181716919\n",
- "epoch: 45 step: 161, loss is 0.8746716976165771\n",
- "epoch: 45 step: 162, loss is 0.8307143449783325\n",
- "epoch: 45 step: 163, loss is 0.8589231967926025\n",
- "epoch: 45 step: 164, loss is 0.8498011827468872\n",
- "epoch: 45 step: 165, loss is 0.832342267036438\n",
- "epoch: 45 step: 166, loss is 0.7678655385971069\n",
- "epoch: 45 step: 167, loss is 0.8398581743240356\n",
- "epoch: 45 step: 168, loss is 0.8458168506622314\n",
- "epoch: 45 step: 169, loss is 0.7884650230407715\n",
- "epoch: 45 step: 170, loss is 0.8584935069084167\n",
- "epoch: 45 step: 171, loss is 0.8416811227798462\n",
- "epoch: 45 step: 172, loss is 0.8532075881958008\n",
- "epoch: 45 step: 173, loss is 0.814327597618103\n",
- "epoch: 45 step: 174, loss is 0.8263550996780396\n",
- "epoch: 45 step: 175, loss is 0.8444576263427734\n",
- "epoch: 45 step: 176, loss is 0.8330240249633789\n",
- "epoch: 45 step: 177, loss is 0.818058967590332\n",
- "epoch: 45 step: 178, loss is 0.8668172955513\n",
- "epoch: 45 step: 179, loss is 0.8916217088699341\n",
- "epoch: 45 step: 180, loss is 0.8691087365150452\n",
- "epoch: 45 step: 181, loss is 0.8513957262039185\n",
- "epoch: 45 step: 182, loss is 0.7577865123748779\n",
- "epoch: 45 step: 183, loss is 0.8647889494895935\n",
- "epoch: 45 step: 184, loss is 0.8602781295776367\n",
- "epoch: 45 step: 185, loss is 0.8313045501708984\n",
- "epoch: 45 step: 186, loss is 0.8350428342819214\n",
- "epoch: 45 step: 187, loss is 0.9122365713119507\n",
- "epoch: 45 step: 188, loss is 0.889366090297699\n",
- "epoch: 45 step: 189, loss is 0.8846367597579956\n",
- "epoch: 45 step: 190, loss is 0.8638669848442078\n",
- "epoch: 45 step: 191, loss is 0.8321487903594971\n",
- "epoch: 45 step: 192, loss is 0.8331589698791504\n",
- "epoch: 45 step: 193, loss is 0.8638803958892822\n",
- "epoch: 45 step: 194, loss is 0.8489837646484375\n",
- "epoch: 45 step: 195, loss is 0.8395015001296997\n",
- "Train epoch time: 114752.062 ms, per step time: 588.472 ms\n",
- "epoch: 46 step: 1, loss is 0.8241428136825562\n",
- "epoch: 46 step: 2, loss is 0.8198268413543701\n",
- "epoch: 46 step: 3, loss is 0.8129709362983704\n",
- "epoch: 46 step: 4, loss is 0.8201661109924316\n",
- "epoch: 46 step: 5, loss is 0.8342757225036621\n",
- "epoch: 46 step: 6, loss is 0.8319631814956665\n",
- "epoch: 46 step: 7, loss is 0.881583571434021\n",
- "epoch: 46 step: 8, loss is 0.8755643367767334\n",
- "epoch: 46 step: 9, loss is 0.835669755935669\n",
- "epoch: 46 step: 10, loss is 0.8311923146247864\n",
- "epoch: 46 step: 11, loss is 0.8169000148773193\n",
- "epoch: 46 step: 12, loss is 0.7972627878189087\n",
- "epoch: 46 step: 13, loss is 0.831824004650116\n",
- "epoch: 46 step: 14, loss is 0.8250946998596191\n",
- "epoch: 46 step: 15, loss is 0.8427072763442993\n",
- "epoch: 46 step: 16, loss is 0.8215987682342529\n",
- "epoch: 46 step: 17, loss is 0.8460427522659302\n",
- "epoch: 46 step: 18, loss is 0.7887213230133057\n",
- "epoch: 46 step: 19, loss is 0.7746330499649048\n",
- "epoch: 46 step: 20, loss is 0.7785488367080688\n",
- "epoch: 46 step: 21, loss is 0.8420257568359375\n",
- "epoch: 46 step: 22, loss is 0.8168672323226929\n",
- "epoch: 46 step: 23, loss is 0.8602473139762878\n",
- "epoch: 46 step: 24, loss is 0.8273557424545288\n",
- "epoch: 46 step: 25, loss is 0.7976227402687073\n",
- "epoch: 46 step: 26, loss is 0.8435715436935425\n",
- "epoch: 46 step: 27, loss is 0.7444930076599121\n",
- "epoch: 46 step: 28, loss is 0.7639228105545044\n",
- "epoch: 46 step: 29, loss is 0.7700619697570801\n",
- "epoch: 46 step: 30, loss is 0.7767044305801392\n",
- "epoch: 46 step: 31, loss is 0.8928658962249756\n",
- "epoch: 46 step: 32, loss is 0.8092775344848633\n",
- "epoch: 46 step: 33, loss is 0.817742645740509\n",
- "epoch: 46 step: 34, loss is 0.7949438691139221\n",
- "epoch: 46 step: 35, loss is 0.7891939878463745\n",
- "epoch: 46 step: 36, loss is 0.8418062925338745\n",
- "epoch: 46 step: 37, loss is 0.8259104490280151\n",
- "epoch: 46 step: 38, loss is 0.822014331817627\n",
- "epoch: 46 step: 39, loss is 0.8292301297187805\n",
- "epoch: 46 step: 40, loss is 0.8203307390213013\n",
- "epoch: 46 step: 41, loss is 0.8033885955810547\n",
- "epoch: 46 step: 42, loss is 0.7611885666847229\n",
- "epoch: 46 step: 43, loss is 0.790657103061676\n",
- "epoch: 46 step: 44, loss is 0.8673189878463745\n",
- "epoch: 46 step: 45, loss is 0.8155452609062195\n",
- "epoch: 46 step: 46, loss is 0.7793391942977905\n",
- "epoch: 46 step: 47, loss is 0.8320930600166321\n",
- "epoch: 46 step: 48, loss is 0.83961421251297\n",
- "epoch: 46 step: 49, loss is 0.8510888814926147\n",
- "epoch: 46 step: 50, loss is 0.8384056091308594\n",
- "epoch: 46 step: 51, loss is 0.7854084372520447\n",
- "epoch: 46 step: 52, loss is 0.8357799053192139\n",
- "epoch: 46 step: 53, loss is 0.8482872247695923\n",
- "epoch: 46 step: 54, loss is 0.8354528546333313\n",
- "epoch: 46 step: 55, loss is 0.8168013095855713\n",
- "epoch: 46 step: 56, loss is 0.8158823251724243\n",
- "epoch: 46 step: 57, loss is 0.8118408918380737\n",
- "epoch: 46 step: 58, loss is 0.7957957983016968\n",
- "epoch: 46 step: 59, loss is 0.8076456785202026\n",
- "epoch: 46 step: 60, loss is 0.8619415760040283\n",
- "epoch: 46 step: 61, loss is 0.7997012138366699\n",
- "epoch: 46 step: 62, loss is 0.8699153661727905\n",
- "epoch: 46 step: 63, loss is 0.8166255354881287\n",
- "epoch: 46 step: 64, loss is 0.7943860292434692\n",
- "epoch: 46 step: 65, loss is 0.8302253484725952\n",
- "epoch: 46 step: 66, loss is 0.8435865640640259\n",
- "epoch: 46 step: 67, loss is 0.8516188859939575\n",
- "epoch: 46 step: 68, loss is 0.814971923828125\n",
- "epoch: 46 step: 69, loss is 0.8109402656555176\n",
- "epoch: 46 step: 70, loss is 0.7735173106193542\n",
- "epoch: 46 step: 71, loss is 0.761288046836853\n",
- "epoch: 46 step: 72, loss is 0.7574002742767334\n",
- "epoch: 46 step: 73, loss is 0.7842967510223389\n",
- "epoch: 46 step: 74, loss is 0.8089268207550049\n",
- "epoch: 46 step: 75, loss is 0.8627971410751343\n",
- "epoch: 46 step: 76, loss is 0.8655576705932617\n",
- "epoch: 46 step: 77, loss is 0.7533696889877319\n",
- "epoch: 46 step: 78, loss is 0.8612561225891113\n",
- "epoch: 46 step: 79, loss is 0.7615969181060791\n",
- "epoch: 46 step: 80, loss is 0.8821630477905273\n",
- "epoch: 46 step: 81, loss is 0.7837828397750854\n",
- "epoch: 46 step: 82, loss is 0.7969744801521301\n",
- "epoch: 46 step: 83, loss is 0.7795194387435913\n",
- "epoch: 46 step: 84, loss is 0.8275541067123413\n",
- "epoch: 46 step: 85, loss is 0.7891772985458374\n",
- "epoch: 46 step: 86, loss is 0.8247214555740356\n",
- "epoch: 46 step: 87, loss is 0.865561842918396\n",
- "epoch: 46 step: 88, loss is 0.7688478231430054\n",
- "epoch: 46 step: 89, loss is 0.802191972732544\n",
- "epoch: 46 step: 90, loss is 0.8483977317810059\n",
- "epoch: 46 step: 91, loss is 0.8808273673057556\n",
- "epoch: 46 step: 92, loss is 0.826119601726532\n",
- "epoch: 46 step: 93, loss is 0.8446128368377686\n",
- "epoch: 46 step: 94, loss is 0.7945296168327332\n",
- "epoch: 46 step: 95, loss is 0.8301156759262085\n",
- "epoch: 46 step: 96, loss is 0.8345024585723877\n",
- "epoch: 46 step: 97, loss is 0.8405659198760986\n",
- "epoch: 46 step: 98, loss is 0.8060035109519958\n",
- "epoch: 46 step: 99, loss is 0.8336965441703796\n",
- "epoch: 46 step: 100, loss is 0.8295565843582153\n",
- "epoch: 46 step: 101, loss is 0.8482775688171387\n",
- "epoch: 46 step: 102, loss is 0.8425776958465576\n",
- "epoch: 46 step: 103, loss is 0.7583234906196594\n",
- "epoch: 46 step: 104, loss is 0.8163668513298035\n",
- "epoch: 46 step: 105, loss is 0.7805321216583252\n",
- "epoch: 46 step: 106, loss is 0.87967449426651\n",
- "epoch: 46 step: 107, loss is 0.7966701984405518\n",
- "epoch: 46 step: 108, loss is 0.8330563306808472\n",
- "epoch: 46 step: 109, loss is 0.8039921522140503\n",
- "epoch: 46 step: 110, loss is 0.825942873954773\n",
- "epoch: 46 step: 111, loss is 0.8071377277374268\n",
- "epoch: 46 step: 112, loss is 0.8056633472442627\n",
- "epoch: 46 step: 113, loss is 0.8058628439903259\n",
- "epoch: 46 step: 114, loss is 0.8430216312408447\n",
- "epoch: 46 step: 115, loss is 0.835838794708252\n",
- "epoch: 46 step: 116, loss is 0.9042809009552002\n",
- "epoch: 46 step: 117, loss is 0.8359941244125366\n",
- "epoch: 46 step: 118, loss is 0.8480358719825745\n",
- "epoch: 46 step: 119, loss is 0.7780492901802063\n",
- "epoch: 46 step: 120, loss is 0.7874987125396729\n",
- "epoch: 46 step: 121, loss is 0.8154670000076294\n",
- "epoch: 46 step: 122, loss is 0.8486837148666382\n",
- "epoch: 46 step: 123, loss is 0.8206446170806885\n",
- "epoch: 46 step: 124, loss is 0.7668036818504333\n",
- "epoch: 46 step: 125, loss is 0.8983955383300781\n",
- "epoch: 46 step: 126, loss is 0.8270624876022339\n",
- "epoch: 46 step: 127, loss is 0.8639649152755737\n",
- "epoch: 46 step: 128, loss is 0.8789225816726685\n",
- "epoch: 46 step: 129, loss is 0.8909988403320312\n",
- "epoch: 46 step: 130, loss is 0.7931268215179443\n",
- "epoch: 46 step: 131, loss is 0.7770794034004211\n",
- "epoch: 46 step: 132, loss is 0.8237321972846985\n",
- "epoch: 46 step: 133, loss is 0.7815769910812378\n",
- "epoch: 46 step: 134, loss is 0.8146185278892517\n",
- "epoch: 46 step: 135, loss is 0.8281830549240112\n",
- "epoch: 46 step: 136, loss is 0.780537486076355\n",
- "epoch: 46 step: 137, loss is 0.8505522608757019\n",
- "epoch: 46 step: 138, loss is 0.8142297267913818\n",
- "epoch: 46 step: 139, loss is 0.8095492124557495\n",
- "epoch: 46 step: 140, loss is 0.7869609594345093\n",
- "epoch: 46 step: 141, loss is 0.77549147605896\n",
- "epoch: 46 step: 142, loss is 0.8502395153045654\n",
- "epoch: 46 step: 143, loss is 0.8290643095970154\n",
- "epoch: 46 step: 144, loss is 0.8618435859680176\n",
- "epoch: 46 step: 145, loss is 0.8417675495147705\n",
- "epoch: 46 step: 146, loss is 0.8477214574813843\n",
- "epoch: 46 step: 147, loss is 0.835898756980896\n",
- "epoch: 46 step: 148, loss is 0.829328715801239\n",
- "epoch: 46 step: 149, loss is 0.841103196144104\n",
- "epoch: 46 step: 150, loss is 0.8395781517028809\n",
- "epoch: 46 step: 151, loss is 0.8519724607467651\n",
- "epoch: 46 step: 152, loss is 0.8676567673683167\n",
- "epoch: 46 step: 153, loss is 0.7732604146003723\n",
- "epoch: 46 step: 154, loss is 0.8139134645462036\n",
- "epoch: 46 step: 155, loss is 0.7969661951065063\n",
- "epoch: 46 step: 156, loss is 0.800744354724884\n",
- "epoch: 46 step: 157, loss is 0.8469538688659668\n",
- "epoch: 46 step: 158, loss is 0.917851448059082\n",
- "epoch: 46 step: 159, loss is 0.8033638000488281\n",
- "epoch: 46 step: 160, loss is 0.7875678539276123\n",
- "epoch: 46 step: 161, loss is 0.7906544208526611\n",
- "epoch: 46 step: 162, loss is 0.8086165189743042\n",
- "epoch: 46 step: 163, loss is 0.7941075563430786\n",
- "epoch: 46 step: 164, loss is 0.8072389960289001\n",
- "epoch: 46 step: 165, loss is 0.8204647302627563\n",
- "epoch: 46 step: 166, loss is 0.8305543661117554\n",
- "epoch: 46 step: 167, loss is 0.8164989948272705\n",
- "epoch: 46 step: 168, loss is 0.8476718664169312\n",
- "epoch: 46 step: 169, loss is 0.8033667802810669\n",
- "epoch: 46 step: 170, loss is 0.7796691060066223\n",
- "epoch: 46 step: 171, loss is 0.8332198858261108\n",
- "epoch: 46 step: 172, loss is 0.8674505949020386\n",
- "epoch: 46 step: 173, loss is 0.8543125987052917\n",
- "epoch: 46 step: 174, loss is 0.7897580862045288\n",
- "epoch: 46 step: 175, loss is 0.7825151681900024\n",
- "epoch: 46 step: 176, loss is 0.7727033495903015\n",
- "epoch: 46 step: 177, loss is 0.8895996809005737\n",
- "epoch: 46 step: 178, loss is 0.8177825212478638\n",
- "epoch: 46 step: 179, loss is 0.8484655618667603\n",
- "epoch: 46 step: 180, loss is 0.8740428686141968\n",
- "epoch: 46 step: 181, loss is 0.8240212202072144\n",
- "epoch: 46 step: 182, loss is 0.8600034713745117\n",
- "epoch: 46 step: 183, loss is 0.8790847659111023\n",
- "epoch: 46 step: 184, loss is 0.8532842397689819\n",
- "epoch: 46 step: 185, loss is 0.8142194151878357\n",
- "epoch: 46 step: 186, loss is 0.7789756655693054\n",
- "epoch: 46 step: 187, loss is 0.7541089057922363\n",
- "epoch: 46 step: 188, loss is 0.8007475137710571\n",
- "epoch: 46 step: 189, loss is 0.8353444337844849\n",
- "epoch: 46 step: 190, loss is 0.8356935381889343\n",
- "epoch: 46 step: 191, loss is 0.8688722848892212\n",
- "epoch: 46 step: 192, loss is 0.8129825592041016\n",
- "epoch: 46 step: 193, loss is 0.8500024676322937\n",
- "epoch: 46 step: 194, loss is 0.8285856246948242\n",
- "epoch: 46 step: 195, loss is 0.8185120820999146\n",
- "Train epoch time: 111264.102 ms, per step time: 570.585 ms\n",
- "epoch: 47 step: 1, loss is 0.741552472114563\n",
- "epoch: 47 step: 2, loss is 0.7869369983673096\n",
- "epoch: 47 step: 3, loss is 0.7670413255691528\n",
- "epoch: 47 step: 4, loss is 0.786548912525177\n",
- "epoch: 47 step: 5, loss is 0.783910870552063\n",
- "epoch: 47 step: 6, loss is 0.7992252707481384\n",
- "epoch: 47 step: 7, loss is 0.833053469657898\n",
- "epoch: 47 step: 8, loss is 0.8502484560012817\n",
- "epoch: 47 step: 9, loss is 0.7930958867073059\n",
- "epoch: 47 step: 10, loss is 0.7828489542007446\n",
- "epoch: 47 step: 11, loss is 0.7718036770820618\n",
- "epoch: 47 step: 12, loss is 0.8859713077545166\n",
- "epoch: 47 step: 13, loss is 0.8423645496368408\n",
- "epoch: 47 step: 14, loss is 0.8093716502189636\n",
- "epoch: 47 step: 15, loss is 0.7629830837249756\n",
- "epoch: 47 step: 16, loss is 0.7908875942230225\n",
- "epoch: 47 step: 17, loss is 0.8388998508453369\n",
- "epoch: 47 step: 18, loss is 0.8233922123908997\n",
- "epoch: 47 step: 19, loss is 0.7927170991897583\n",
- "epoch: 47 step: 20, loss is 0.7859585285186768\n",
- "epoch: 47 step: 21, loss is 0.753327488899231\n",
- "epoch: 47 step: 22, loss is 0.7685935497283936\n",
- "epoch: 47 step: 23, loss is 0.781694769859314\n",
- "epoch: 47 step: 24, loss is 0.804739236831665\n",
- "epoch: 47 step: 25, loss is 0.8146156668663025\n",
- "epoch: 47 step: 26, loss is 0.8600995540618896\n",
- "epoch: 47 step: 27, loss is 0.8308267593383789\n",
- "epoch: 47 step: 28, loss is 0.8322280645370483\n",
- "epoch: 47 step: 29, loss is 0.7741639018058777\n",
- "epoch: 47 step: 30, loss is 0.8213191032409668\n",
- "epoch: 47 step: 31, loss is 0.7831569314002991\n",
- "epoch: 47 step: 32, loss is 0.7681152820587158\n",
- "epoch: 47 step: 33, loss is 0.824280321598053\n",
- "epoch: 47 step: 34, loss is 0.8093822002410889\n",
- "epoch: 47 step: 35, loss is 0.830852746963501\n",
- "epoch: 47 step: 36, loss is 0.826646089553833\n",
- "epoch: 47 step: 37, loss is 0.7619863152503967\n",
- "epoch: 47 step: 38, loss is 0.8023829460144043\n",
- "epoch: 47 step: 39, loss is 0.8096007108688354\n",
- "epoch: 47 step: 40, loss is 0.7708150148391724\n",
- "epoch: 47 step: 41, loss is 0.7820541858673096\n",
- "epoch: 47 step: 42, loss is 0.8145972490310669\n",
- "epoch: 47 step: 43, loss is 0.7995203733444214\n",
- "epoch: 47 step: 44, loss is 0.8055315017700195\n",
- "epoch: 47 step: 45, loss is 0.7588891983032227\n",
- "epoch: 47 step: 46, loss is 0.8128566145896912\n",
- "epoch: 47 step: 47, loss is 0.7844560146331787\n",
- "epoch: 47 step: 48, loss is 0.7878127098083496\n",
- "epoch: 47 step: 49, loss is 0.7575433254241943\n",
- "epoch: 47 step: 50, loss is 0.7710021734237671\n",
- "epoch: 47 step: 51, loss is 0.7984703779220581\n",
- "epoch: 47 step: 52, loss is 0.8164563775062561\n",
- "epoch: 47 step: 53, loss is 0.7953324317932129\n",
- "epoch: 47 step: 54, loss is 0.763611376285553\n",
- "epoch: 47 step: 55, loss is 0.8312032222747803\n",
- "epoch: 47 step: 56, loss is 0.8389297723770142\n",
- "epoch: 47 step: 57, loss is 0.7681288719177246\n",
- "epoch: 47 step: 58, loss is 0.7997048497200012\n",
- "epoch: 47 step: 59, loss is 0.7894763946533203\n",
- "epoch: 47 step: 60, loss is 0.8447983264923096\n",
- "epoch: 47 step: 61, loss is 0.7990909814834595\n",
- "epoch: 47 step: 62, loss is 0.8265284299850464\n",
- "epoch: 47 step: 63, loss is 0.7807724475860596\n",
- "epoch: 47 step: 64, loss is 0.8012140393257141\n",
- "epoch: 47 step: 65, loss is 0.847800612449646\n",
- "epoch: 47 step: 66, loss is 0.8159493207931519\n",
- "epoch: 47 step: 67, loss is 0.7848581075668335\n",
- "epoch: 47 step: 68, loss is 0.8169198036193848\n",
- "epoch: 47 step: 69, loss is 0.8213446140289307\n",
- "epoch: 47 step: 70, loss is 0.7913756370544434\n",
- "epoch: 47 step: 71, loss is 0.8364079594612122\n",
- "epoch: 47 step: 72, loss is 0.8319885730743408\n",
- "epoch: 47 step: 73, loss is 0.7899740934371948\n",
- "epoch: 47 step: 74, loss is 0.7718700170516968\n",
- "epoch: 47 step: 75, loss is 0.7948117852210999\n",
- "epoch: 47 step: 76, loss is 0.8256717324256897\n",
- "epoch: 47 step: 77, loss is 0.7930840253829956\n",
- "epoch: 47 step: 78, loss is 0.8517683744430542\n",
- "epoch: 47 step: 79, loss is 0.8413327932357788\n",
- "epoch: 47 step: 80, loss is 0.8484016060829163\n",
- "epoch: 47 step: 81, loss is 0.8393490314483643\n",
- "epoch: 47 step: 82, loss is 0.8126164674758911\n",
- "epoch: 47 step: 83, loss is 0.8387781381607056\n",
- "epoch: 47 step: 84, loss is 0.7694931030273438\n",
- "epoch: 47 step: 85, loss is 0.7488237619400024\n",
- "epoch: 47 step: 86, loss is 0.8365889191627502\n",
- "epoch: 47 step: 87, loss is 0.8496346473693848\n",
- "epoch: 47 step: 88, loss is 0.8019750118255615\n",
- "epoch: 47 step: 89, loss is 0.8621324896812439\n",
- "epoch: 47 step: 90, loss is 0.7956498861312866\n",
- "epoch: 47 step: 91, loss is 0.8049017190933228\n",
- "epoch: 47 step: 92, loss is 0.8429933190345764\n",
- "epoch: 47 step: 93, loss is 0.8153611421585083\n",
- "epoch: 47 step: 94, loss is 0.8012315630912781\n",
- "epoch: 47 step: 95, loss is 0.7995126247406006\n",
- "epoch: 47 step: 96, loss is 0.9002833366394043\n",
- "epoch: 47 step: 97, loss is 0.8137738704681396\n",
- "epoch: 47 step: 98, loss is 0.8340169191360474\n",
- "epoch: 47 step: 99, loss is 0.8763140439987183\n",
- "epoch: 47 step: 100, loss is 0.8086587190628052\n",
- "epoch: 47 step: 101, loss is 0.8279298543930054\n",
- "epoch: 47 step: 102, loss is 0.8052487969398499\n",
- "epoch: 47 step: 103, loss is 0.7765262126922607\n",
- "epoch: 47 step: 104, loss is 0.8090825080871582\n",
- "epoch: 47 step: 105, loss is 0.834517240524292\n",
- "epoch: 47 step: 106, loss is 0.8045772910118103\n",
- "epoch: 47 step: 107, loss is 0.7957711219787598\n",
- "epoch: 47 step: 108, loss is 0.8495107293128967\n",
- "epoch: 47 step: 109, loss is 0.8085159659385681\n",
- "epoch: 47 step: 110, loss is 0.7983773350715637\n",
- "epoch: 47 step: 111, loss is 0.7545939683914185\n",
- "epoch: 47 step: 112, loss is 0.8663461804389954\n",
- "epoch: 47 step: 113, loss is 0.8471894860267639\n",
- "epoch: 47 step: 114, loss is 0.8013104796409607\n",
- "epoch: 47 step: 115, loss is 0.799373984336853\n",
- "epoch: 47 step: 116, loss is 0.7965735197067261\n",
- "epoch: 47 step: 117, loss is 0.8104082345962524\n",
- "epoch: 47 step: 118, loss is 0.8343092203140259\n",
- "epoch: 47 step: 119, loss is 0.8118151426315308\n",
- "epoch: 47 step: 120, loss is 0.8478751182556152\n",
- "epoch: 47 step: 121, loss is 0.8315154314041138\n",
- "epoch: 47 step: 122, loss is 0.8308762907981873\n",
- "epoch: 47 step: 123, loss is 0.8416837453842163\n",
- "epoch: 47 step: 124, loss is 0.8177800178527832\n",
- "epoch: 47 step: 125, loss is 0.8980522155761719\n",
- "epoch: 47 step: 126, loss is 0.7803118228912354\n",
- "epoch: 47 step: 127, loss is 0.8042851686477661\n",
- "epoch: 47 step: 128, loss is 0.8006830215454102\n",
- "epoch: 47 step: 129, loss is 0.8073627948760986\n",
- "epoch: 47 step: 130, loss is 0.8098573684692383\n",
- "epoch: 47 step: 131, loss is 0.7812566161155701\n",
- "epoch: 47 step: 132, loss is 0.8760423064231873\n",
- "epoch: 47 step: 133, loss is 0.8098917007446289\n",
- "epoch: 47 step: 134, loss is 0.7880294322967529\n",
- "epoch: 47 step: 135, loss is 0.8070981502532959\n",
- "epoch: 47 step: 136, loss is 0.8566524982452393\n",
- "epoch: 47 step: 137, loss is 0.8180603981018066\n",
- "epoch: 47 step: 138, loss is 0.8448362350463867\n",
- "epoch: 47 step: 139, loss is 0.8345110416412354\n",
- "epoch: 47 step: 140, loss is 0.817063570022583\n",
- "epoch: 47 step: 141, loss is 0.8985965847969055\n",
- "epoch: 47 step: 142, loss is 0.8288454413414001\n",
- "epoch: 47 step: 143, loss is 0.7888994812965393\n",
- "epoch: 47 step: 144, loss is 0.7951934337615967\n",
- "epoch: 47 step: 145, loss is 0.8227888345718384\n",
- "epoch: 47 step: 146, loss is 0.7408844232559204\n",
- "epoch: 47 step: 147, loss is 0.8490642309188843\n",
- "epoch: 47 step: 148, loss is 0.803614616394043\n",
- "epoch: 47 step: 149, loss is 0.8783717155456543\n",
- "epoch: 47 step: 150, loss is 0.7888124585151672\n",
- "epoch: 47 step: 151, loss is 0.7704468965530396\n",
- "epoch: 47 step: 152, loss is 0.8534597158432007\n",
- "epoch: 47 step: 153, loss is 0.7592794299125671\n",
- "epoch: 47 step: 154, loss is 0.850061297416687\n",
- "epoch: 47 step: 155, loss is 0.8231570720672607\n",
- "epoch: 47 step: 156, loss is 0.795661449432373\n",
- "epoch: 47 step: 157, loss is 0.7892980575561523\n",
- "epoch: 47 step: 158, loss is 0.773695707321167\n",
- "epoch: 47 step: 159, loss is 0.850645899772644\n",
- "epoch: 47 step: 160, loss is 0.797680139541626\n",
- "epoch: 47 step: 161, loss is 0.7559200525283813\n",
- "epoch: 47 step: 162, loss is 0.8073853850364685\n",
- "epoch: 47 step: 163, loss is 0.7921529412269592\n",
- "epoch: 47 step: 164, loss is 0.8541891574859619\n",
- "epoch: 47 step: 165, loss is 0.863169252872467\n",
- "epoch: 47 step: 166, loss is 0.8390312790870667\n",
- "epoch: 47 step: 167, loss is 0.8027635812759399\n",
- "epoch: 47 step: 168, loss is 0.7743616700172424\n",
- "epoch: 47 step: 169, loss is 0.782721996307373\n",
- "epoch: 47 step: 170, loss is 0.7950056791305542\n",
- "epoch: 47 step: 171, loss is 0.8015437126159668\n",
- "epoch: 47 step: 172, loss is 0.7673452496528625\n",
- "epoch: 47 step: 173, loss is 0.9026637673377991\n",
- "epoch: 47 step: 174, loss is 0.7537099123001099\n",
- "epoch: 47 step: 175, loss is 0.7923679351806641\n",
- "epoch: 47 step: 176, loss is 0.7599753141403198\n",
- "epoch: 47 step: 177, loss is 0.8260632157325745\n",
- "epoch: 47 step: 178, loss is 0.834107518196106\n",
- "epoch: 47 step: 179, loss is 0.8202983140945435\n",
- "epoch: 47 step: 180, loss is 0.8250386118888855\n",
- "epoch: 47 step: 181, loss is 0.775850772857666\n",
- "epoch: 47 step: 182, loss is 0.8187068700790405\n",
- "epoch: 47 step: 183, loss is 0.8338702321052551\n",
- "epoch: 47 step: 184, loss is 0.8149653673171997\n",
- "epoch: 47 step: 185, loss is 0.788771390914917\n",
- "epoch: 47 step: 186, loss is 0.8771972060203552\n",
- "epoch: 47 step: 187, loss is 0.7369555234909058\n",
- "epoch: 47 step: 188, loss is 0.8002363443374634\n",
- "epoch: 47 step: 189, loss is 0.7842756509780884\n",
- "epoch: 47 step: 190, loss is 0.7500882148742676\n",
- "epoch: 47 step: 191, loss is 0.7606333494186401\n",
- "epoch: 47 step: 192, loss is 0.8267337083816528\n",
- "epoch: 47 step: 193, loss is 0.8365844488143921\n",
- "epoch: 47 step: 194, loss is 0.8187090158462524\n",
- "epoch: 47 step: 195, loss is 0.794952929019928\n",
- "Train epoch time: 105697.900 ms, per step time: 542.041 ms\n",
- "epoch: 48 step: 1, loss is 0.8252642154693604\n",
- "epoch: 48 step: 2, loss is 0.7846331000328064\n",
- "epoch: 48 step: 3, loss is 0.7627409100532532\n",
- "epoch: 48 step: 4, loss is 0.7874749898910522\n",
- "epoch: 48 step: 5, loss is 0.7671093940734863\n",
- "epoch: 48 step: 6, loss is 0.7325209975242615\n",
- "epoch: 48 step: 7, loss is 0.8216731548309326\n",
- "epoch: 48 step: 8, loss is 0.8236619234085083\n",
- "epoch: 48 step: 9, loss is 0.7570247650146484\n",
- "epoch: 48 step: 10, loss is 0.7512523531913757\n",
- "epoch: 48 step: 11, loss is 0.7422149181365967\n",
- "epoch: 48 step: 12, loss is 0.7971491813659668\n",
- "epoch: 48 step: 13, loss is 0.7920883297920227\n",
- "epoch: 48 step: 14, loss is 0.8135398626327515\n",
- "epoch: 48 step: 15, loss is 0.7504023313522339\n",
- "epoch: 48 step: 16, loss is 0.7809324264526367\n",
- "epoch: 48 step: 17, loss is 0.8135817050933838\n",
- "epoch: 48 step: 18, loss is 0.7787463068962097\n",
- "epoch: 48 step: 19, loss is 0.7101670503616333\n",
- "epoch: 48 step: 20, loss is 0.7973510026931763\n",
- "epoch: 48 step: 21, loss is 0.7758889198303223\n",
- "epoch: 48 step: 22, loss is 0.7448439598083496\n",
- "epoch: 48 step: 23, loss is 0.8042567372322083\n",
- "epoch: 48 step: 24, loss is 0.7750134468078613\n",
- "epoch: 48 step: 25, loss is 0.7835952639579773\n",
- "epoch: 48 step: 26, loss is 0.8140444755554199\n",
- "epoch: 48 step: 27, loss is 0.8123120665550232\n",
- "epoch: 48 step: 28, loss is 0.7777227759361267\n",
- "epoch: 48 step: 29, loss is 0.791978657245636\n",
- "epoch: 48 step: 30, loss is 0.7723613977432251\n",
- "epoch: 48 step: 31, loss is 0.770689845085144\n",
- "epoch: 48 step: 32, loss is 0.7872849702835083\n",
- "epoch: 48 step: 33, loss is 0.8119267821311951\n",
- "epoch: 48 step: 34, loss is 0.8017038106918335\n",
- "epoch: 48 step: 35, loss is 0.8050541877746582\n",
- "epoch: 48 step: 36, loss is 0.7787994146347046\n",
- "epoch: 48 step: 37, loss is 0.7455751895904541\n",
- "epoch: 48 step: 38, loss is 0.8420274257659912\n",
- "epoch: 48 step: 39, loss is 0.7522145509719849\n",
- "epoch: 48 step: 40, loss is 0.7932430505752563\n",
- "epoch: 48 step: 41, loss is 0.7832766175270081\n",
- "epoch: 48 step: 42, loss is 0.8193838596343994\n",
- "epoch: 48 step: 43, loss is 0.7878310680389404\n",
- "epoch: 48 step: 44, loss is 0.7560722827911377\n",
- "epoch: 48 step: 45, loss is 0.754957914352417\n",
- "epoch: 48 step: 46, loss is 0.834762454032898\n",
- "epoch: 48 step: 47, loss is 0.8015562295913696\n",
- "epoch: 48 step: 48, loss is 0.7719260454177856\n",
- "epoch: 48 step: 49, loss is 0.7946747541427612\n",
- "epoch: 48 step: 50, loss is 0.7476240396499634\n",
- "epoch: 48 step: 51, loss is 0.7706553339958191\n",
- "epoch: 48 step: 52, loss is 0.7806861400604248\n",
- "epoch: 48 step: 53, loss is 0.7911163568496704\n",
- "epoch: 48 step: 54, loss is 0.7617675065994263\n",
- "epoch: 48 step: 55, loss is 0.7908929586410522\n",
- "epoch: 48 step: 56, loss is 0.8148800134658813\n",
- "epoch: 48 step: 57, loss is 0.8009278774261475\n",
- "epoch: 48 step: 58, loss is 0.7801589965820312\n",
- "epoch: 48 step: 59, loss is 0.7940460443496704\n",
- "epoch: 48 step: 60, loss is 0.7626351714134216\n",
- "epoch: 48 step: 61, loss is 0.7989853620529175\n",
- "epoch: 48 step: 62, loss is 0.7799445390701294\n",
- "epoch: 48 step: 63, loss is 0.7848852872848511\n",
- "epoch: 48 step: 64, loss is 0.7382599711418152\n",
- "epoch: 48 step: 65, loss is 0.775367021560669\n",
- "epoch: 48 step: 66, loss is 0.8026669025421143\n",
- "epoch: 48 step: 67, loss is 0.7997349500656128\n",
- "epoch: 48 step: 68, loss is 0.8699275255203247\n",
- "epoch: 48 step: 69, loss is 0.781948447227478\n",
- "epoch: 48 step: 70, loss is 0.8102300763130188\n",
- "epoch: 48 step: 71, loss is 0.8048820495605469\n",
- "epoch: 48 step: 72, loss is 0.8408288955688477\n",
- "epoch: 48 step: 73, loss is 0.8065498471260071\n",
- "epoch: 48 step: 74, loss is 0.7943682670593262\n",
- "epoch: 48 step: 75, loss is 0.8081449270248413\n",
- "epoch: 48 step: 76, loss is 0.7582502365112305\n",
- "epoch: 48 step: 77, loss is 0.7979034185409546\n",
- "epoch: 48 step: 78, loss is 0.7846277356147766\n",
- "epoch: 48 step: 79, loss is 0.7651919722557068\n",
- "epoch: 48 step: 80, loss is 0.774290919303894\n",
- "epoch: 48 step: 81, loss is 0.7797107696533203\n",
- "epoch: 48 step: 82, loss is 0.79066002368927\n",
- "epoch: 48 step: 83, loss is 0.788832426071167\n",
- "epoch: 48 step: 84, loss is 0.7935502529144287\n",
- "epoch: 48 step: 85, loss is 0.8166543245315552\n",
- "epoch: 48 step: 86, loss is 0.810423731803894\n",
- "epoch: 48 step: 87, loss is 0.802788257598877\n",
- "epoch: 48 step: 88, loss is 0.806795597076416\n",
- "epoch: 48 step: 89, loss is 0.7810733318328857\n",
- "epoch: 48 step: 90, loss is 0.8100214004516602\n",
- "epoch: 48 step: 91, loss is 0.8145033121109009\n",
- "epoch: 48 step: 92, loss is 0.7571572661399841\n",
- "epoch: 48 step: 93, loss is 0.8138021230697632\n",
- "epoch: 48 step: 94, loss is 0.7865696549415588\n",
- "epoch: 48 step: 95, loss is 0.7822436094284058\n",
- "epoch: 48 step: 96, loss is 0.8231836557388306\n",
- "epoch: 48 step: 97, loss is 0.8345212936401367\n",
- "epoch: 48 step: 98, loss is 0.7939504981040955\n",
- "epoch: 48 step: 99, loss is 0.7969664335250854\n",
- "epoch: 48 step: 100, loss is 0.8337759971618652\n",
- "epoch: 48 step: 101, loss is 0.7979365587234497\n",
- "epoch: 48 step: 102, loss is 0.8203608989715576\n",
- "epoch: 48 step: 103, loss is 0.8300102949142456\n",
- "epoch: 48 step: 104, loss is 0.7686358690261841\n",
- "epoch: 48 step: 105, loss is 0.8536856174468994\n",
- "epoch: 48 step: 106, loss is 0.8485356569290161\n",
- "epoch: 48 step: 107, loss is 0.7963102459907532\n",
- "epoch: 48 step: 108, loss is 0.7817773222923279\n",
- "epoch: 48 step: 109, loss is 0.7513248920440674\n",
- "epoch: 48 step: 110, loss is 0.8003104329109192\n",
- "epoch: 48 step: 111, loss is 0.7924702167510986\n",
- "epoch: 48 step: 112, loss is 0.8472844362258911\n",
- "epoch: 48 step: 113, loss is 0.7717529535293579\n",
- "epoch: 48 step: 114, loss is 0.8512321710586548\n",
- "epoch: 48 step: 115, loss is 0.826546311378479\n",
- "epoch: 48 step: 116, loss is 0.7678852081298828\n",
- "epoch: 48 step: 117, loss is 0.8522099256515503\n",
- "epoch: 48 step: 118, loss is 0.8004857301712036\n",
- "epoch: 48 step: 119, loss is 0.7410879731178284\n",
- "epoch: 48 step: 120, loss is 0.7845205664634705\n",
- "epoch: 48 step: 121, loss is 0.778408408164978\n",
- "epoch: 48 step: 122, loss is 0.867497980594635\n",
- "epoch: 48 step: 123, loss is 0.771753191947937\n",
- "epoch: 48 step: 124, loss is 0.7742478251457214\n",
- "epoch: 48 step: 125, loss is 0.8009547591209412\n",
- "epoch: 48 step: 126, loss is 0.76050865650177\n",
- "epoch: 48 step: 127, loss is 0.8306655883789062\n",
- "epoch: 48 step: 128, loss is 0.7917838096618652\n",
- "epoch: 48 step: 129, loss is 0.8127344846725464\n",
- "epoch: 48 step: 130, loss is 0.821445882320404\n",
- "epoch: 48 step: 131, loss is 0.823959231376648\n",
- "epoch: 48 step: 132, loss is 0.8723894357681274\n",
- "epoch: 48 step: 133, loss is 0.8379552364349365\n",
- "epoch: 48 step: 134, loss is 0.8205667734146118\n",
- "epoch: 48 step: 135, loss is 0.7530902624130249\n",
- "epoch: 48 step: 136, loss is 0.7990720272064209\n",
- "epoch: 48 step: 137, loss is 0.7934009432792664\n",
- "epoch: 48 step: 138, loss is 0.8206827640533447\n",
- "epoch: 48 step: 139, loss is 0.8163573741912842\n",
- "epoch: 48 step: 140, loss is 0.838467001914978\n",
- "epoch: 48 step: 141, loss is 0.8516031503677368\n",
- "epoch: 48 step: 142, loss is 0.7780231237411499\n",
- "epoch: 48 step: 143, loss is 0.7560743093490601\n",
- "epoch: 48 step: 144, loss is 0.8164941072463989\n",
- "epoch: 48 step: 145, loss is 0.8088443875312805\n",
- "epoch: 48 step: 146, loss is 0.7626193761825562\n",
- "epoch: 48 step: 147, loss is 0.776249885559082\n",
- "epoch: 48 step: 148, loss is 0.7884475588798523\n",
- "epoch: 48 step: 149, loss is 0.7949196100234985\n",
- "epoch: 48 step: 150, loss is 0.839379072189331\n",
- "epoch: 48 step: 151, loss is 0.8444326519966125\n",
- "epoch: 48 step: 152, loss is 0.794615626335144\n",
- "epoch: 48 step: 153, loss is 0.8015128374099731\n",
- "epoch: 48 step: 154, loss is 0.8122559785842896\n",
- "epoch: 48 step: 155, loss is 0.7777997255325317\n",
- "epoch: 48 step: 156, loss is 0.7934497594833374\n",
- "epoch: 48 step: 157, loss is 0.7735564112663269\n",
- "epoch: 48 step: 158, loss is 0.8185248374938965\n",
- "epoch: 48 step: 159, loss is 0.8267778158187866\n",
- "epoch: 48 step: 160, loss is 0.7741972208023071\n",
- "epoch: 48 step: 161, loss is 0.8254348039627075\n",
- "epoch: 48 step: 162, loss is 0.8229646682739258\n",
- "epoch: 48 step: 163, loss is 0.8060611486434937\n",
- "epoch: 48 step: 164, loss is 0.8187951445579529\n",
- "epoch: 48 step: 165, loss is 0.7873944044113159\n",
- "epoch: 48 step: 166, loss is 0.82916659116745\n",
- "epoch: 48 step: 167, loss is 0.8049300312995911\n",
- "epoch: 48 step: 168, loss is 0.8202552795410156\n",
- "epoch: 48 step: 169, loss is 0.7610690593719482\n",
- "epoch: 48 step: 170, loss is 0.7952737808227539\n",
- "epoch: 48 step: 171, loss is 0.8008180856704712\n",
- "epoch: 48 step: 172, loss is 0.7652289867401123\n",
- "epoch: 48 step: 173, loss is 0.8047548532485962\n",
- "epoch: 48 step: 174, loss is 0.7387188673019409\n",
- "epoch: 48 step: 175, loss is 0.812306821346283\n",
- "epoch: 48 step: 176, loss is 0.7933809757232666\n",
- "epoch: 48 step: 177, loss is 0.8117033243179321\n",
- "epoch: 48 step: 178, loss is 0.8230520486831665\n",
- "epoch: 48 step: 179, loss is 0.8238486051559448\n",
- "epoch: 48 step: 180, loss is 0.793167233467102\n",
- "epoch: 48 step: 181, loss is 0.7981551289558411\n",
- "epoch: 48 step: 182, loss is 0.7721530795097351\n",
- "epoch: 48 step: 183, loss is 0.8216645121574402\n",
- "epoch: 48 step: 184, loss is 0.8020264506340027\n",
- "epoch: 48 step: 185, loss is 0.8105981349945068\n",
- "epoch: 48 step: 186, loss is 0.7390283346176147\n",
- "epoch: 48 step: 187, loss is 0.8725963830947876\n",
- "epoch: 48 step: 188, loss is 0.7743350863456726\n",
- "epoch: 48 step: 189, loss is 0.8417801856994629\n",
- "epoch: 48 step: 190, loss is 0.8000257015228271\n",
- "epoch: 48 step: 191, loss is 0.7969749569892883\n",
- "epoch: 48 step: 192, loss is 0.8321455717086792\n",
- "epoch: 48 step: 193, loss is 0.8362094163894653\n",
- "epoch: 48 step: 194, loss is 0.7986562252044678\n",
- "epoch: 48 step: 195, loss is 0.7951048612594604\n",
- "Train epoch time: 105944.219 ms, per step time: 543.304 ms\n",
- "epoch: 49 step: 1, loss is 0.7474855184555054\n",
- "epoch: 49 step: 2, loss is 0.7554413080215454\n",
- "epoch: 49 step: 3, loss is 0.7626525163650513\n",
- "epoch: 49 step: 4, loss is 0.7984957098960876\n",
- "epoch: 49 step: 5, loss is 0.7519217133522034\n",
- "epoch: 49 step: 6, loss is 0.7466658353805542\n",
- "epoch: 49 step: 7, loss is 0.7688969373703003\n",
- "epoch: 49 step: 8, loss is 0.7932398915290833\n",
- "epoch: 49 step: 9, loss is 0.7910264730453491\n",
- "epoch: 49 step: 10, loss is 0.7722512483596802\n",
- "epoch: 49 step: 11, loss is 0.7694035768508911\n",
- "epoch: 49 step: 12, loss is 0.7862279415130615\n",
- "epoch: 49 step: 13, loss is 0.7968816757202148\n",
- "epoch: 49 step: 14, loss is 0.7573424577713013\n",
- "epoch: 49 step: 15, loss is 0.7916443943977356\n",
- "epoch: 49 step: 16, loss is 0.7331437468528748\n",
- "epoch: 49 step: 17, loss is 0.7709574103355408\n",
- "epoch: 49 step: 18, loss is 0.7906079292297363\n",
- "epoch: 49 step: 19, loss is 0.7682799696922302\n",
- "epoch: 49 step: 20, loss is 0.8010478019714355\n",
- "epoch: 49 step: 21, loss is 0.773858368396759\n",
- "epoch: 49 step: 22, loss is 0.7452703714370728\n",
- "epoch: 49 step: 23, loss is 0.8269109129905701\n",
- "epoch: 49 step: 24, loss is 0.7589935064315796\n",
- "epoch: 49 step: 25, loss is 0.79229736328125\n",
- "epoch: 49 step: 26, loss is 0.7595837116241455\n",
- "epoch: 49 step: 27, loss is 0.7790958881378174\n",
- "epoch: 49 step: 28, loss is 0.8197448253631592\n",
- "epoch: 49 step: 29, loss is 0.7496641278266907\n",
- "epoch: 49 step: 30, loss is 0.8050153255462646\n",
- "epoch: 49 step: 31, loss is 0.8073294162750244\n",
- "epoch: 49 step: 32, loss is 0.7981759309768677\n",
- "epoch: 49 step: 33, loss is 0.7715888023376465\n",
- "epoch: 49 step: 34, loss is 0.7878152132034302\n",
- "epoch: 49 step: 35, loss is 0.7643104791641235\n",
- "epoch: 49 step: 36, loss is 0.7838542461395264\n",
- "epoch: 49 step: 37, loss is 0.7966660261154175\n",
- "epoch: 49 step: 38, loss is 0.7848427295684814\n",
- "epoch: 49 step: 39, loss is 0.7410179972648621\n",
- "epoch: 49 step: 40, loss is 0.7847524881362915\n",
- "epoch: 49 step: 41, loss is 0.7892673015594482\n",
- "epoch: 49 step: 42, loss is 0.7674024105072021\n",
- "epoch: 49 step: 43, loss is 0.7687370777130127\n",
- "epoch: 49 step: 44, loss is 0.7798919081687927\n",
- "epoch: 49 step: 45, loss is 0.7786242365837097\n",
- "epoch: 49 step: 46, loss is 0.8034029603004456\n",
- "epoch: 49 step: 47, loss is 0.8314440846443176\n",
- "epoch: 49 step: 48, loss is 0.7291785478591919\n",
- "epoch: 49 step: 49, loss is 0.7359766960144043\n",
- "epoch: 49 step: 50, loss is 0.7356237173080444\n",
- "epoch: 49 step: 51, loss is 0.7716754674911499\n",
- "epoch: 49 step: 52, loss is 0.7936745285987854\n",
- "epoch: 49 step: 53, loss is 0.8178622722625732\n",
- "epoch: 49 step: 54, loss is 0.7448766231536865\n",
- "epoch: 49 step: 55, loss is 0.7648531198501587\n",
- "epoch: 49 step: 56, loss is 0.7474914193153381\n",
- "epoch: 49 step: 57, loss is 0.8393149375915527\n",
- "epoch: 49 step: 58, loss is 0.7431994676589966\n",
- "epoch: 49 step: 59, loss is 0.7995795011520386\n",
- "epoch: 49 step: 60, loss is 0.7663533687591553\n",
- "epoch: 49 step: 61, loss is 0.7868015170097351\n",
- "epoch: 49 step: 62, loss is 0.8144644498825073\n",
- "epoch: 49 step: 63, loss is 0.7292894124984741\n",
- "epoch: 49 step: 64, loss is 0.7749843001365662\n",
- "epoch: 49 step: 65, loss is 0.7751369476318359\n",
- "epoch: 49 step: 66, loss is 0.7851287126541138\n",
- "epoch: 49 step: 67, loss is 0.7768024206161499\n",
- "epoch: 49 step: 68, loss is 0.7923818826675415\n",
- "epoch: 49 step: 69, loss is 0.7657811641693115\n",
- "epoch: 49 step: 70, loss is 0.7764246463775635\n",
- "epoch: 49 step: 71, loss is 0.7763193249702454\n",
- "epoch: 49 step: 72, loss is 0.7649475336074829\n",
- "epoch: 49 step: 73, loss is 0.7994956970214844\n",
- "epoch: 49 step: 74, loss is 0.7806899547576904\n",
- "epoch: 49 step: 75, loss is 0.8170067071914673\n",
- "epoch: 49 step: 76, loss is 0.8295549154281616\n",
- "epoch: 49 step: 77, loss is 0.7846189737319946\n",
- "epoch: 49 step: 78, loss is 0.8127977848052979\n",
- "epoch: 49 step: 79, loss is 0.7666932344436646\n",
- "epoch: 49 step: 80, loss is 0.8099918365478516\n",
- "epoch: 49 step: 81, loss is 0.7591879367828369\n",
- "epoch: 49 step: 82, loss is 0.8109831809997559\n",
- "epoch: 49 step: 83, loss is 0.795573890209198\n",
- "epoch: 49 step: 84, loss is 0.8494633436203003\n",
- "epoch: 49 step: 85, loss is 0.8163701295852661\n",
- "epoch: 49 step: 86, loss is 0.8191530704498291\n",
- "epoch: 49 step: 87, loss is 0.7566444277763367\n",
- "epoch: 49 step: 88, loss is 0.7639744877815247\n",
- "epoch: 49 step: 89, loss is 0.8149380683898926\n",
- "epoch: 49 step: 90, loss is 0.7706125974655151\n",
- "epoch: 49 step: 91, loss is 0.813895583152771\n",
- "epoch: 49 step: 92, loss is 0.8559594750404358\n",
- "epoch: 49 step: 93, loss is 0.8276405930519104\n",
- "epoch: 49 step: 94, loss is 0.8072350025177002\n",
- "epoch: 49 step: 95, loss is 0.8047367334365845\n",
- "epoch: 49 step: 96, loss is 0.7500251531600952\n",
- "epoch: 49 step: 97, loss is 0.7780362367630005\n",
- "epoch: 49 step: 98, loss is 0.765553891658783\n",
- "epoch: 49 step: 99, loss is 0.7548193335533142\n",
- "epoch: 49 step: 100, loss is 0.7291454076766968\n",
- "epoch: 49 step: 101, loss is 0.825963020324707\n",
- "epoch: 49 step: 102, loss is 0.8251543045043945\n",
- "epoch: 49 step: 103, loss is 0.7915137410163879\n",
- "epoch: 49 step: 104, loss is 0.7403810024261475\n",
- "epoch: 49 step: 105, loss is 0.7919790744781494\n",
- "epoch: 49 step: 106, loss is 0.7666395902633667\n",
- "epoch: 49 step: 107, loss is 0.8282239437103271\n",
- "epoch: 49 step: 108, loss is 0.8074923753738403\n",
- "epoch: 49 step: 109, loss is 0.8358535766601562\n",
- "epoch: 49 step: 110, loss is 0.8195568323135376\n",
- "epoch: 49 step: 111, loss is 0.8383195996284485\n",
- "epoch: 49 step: 112, loss is 0.7909601330757141\n",
- "epoch: 49 step: 113, loss is 0.7730705738067627\n",
- "epoch: 49 step: 114, loss is 0.8017328977584839\n",
- "epoch: 49 step: 115, loss is 0.7961600422859192\n",
- "epoch: 49 step: 116, loss is 0.7793943881988525\n",
- "epoch: 49 step: 117, loss is 0.8248316049575806\n",
- "epoch: 49 step: 118, loss is 0.7936378717422485\n",
- "epoch: 49 step: 119, loss is 0.8629387617111206\n",
- "epoch: 49 step: 120, loss is 0.8050061464309692\n",
- "epoch: 49 step: 121, loss is 0.8020141124725342\n",
- "epoch: 49 step: 122, loss is 0.7881861925125122\n",
- "epoch: 49 step: 123, loss is 0.7941316366195679\n",
- "epoch: 49 step: 124, loss is 0.7949413657188416\n",
- "epoch: 49 step: 125, loss is 0.752636194229126\n",
- "epoch: 49 step: 126, loss is 0.7947443723678589\n",
- "epoch: 49 step: 127, loss is 0.7749506235122681\n",
- "epoch: 49 step: 128, loss is 0.8439511060714722\n",
- "epoch: 49 step: 129, loss is 0.749794602394104\n",
- "epoch: 49 step: 130, loss is 0.8645422458648682\n",
- "epoch: 49 step: 131, loss is 0.7738044261932373\n",
- "epoch: 49 step: 132, loss is 0.7980045676231384\n",
- "epoch: 49 step: 133, loss is 0.8118914365768433\n",
- "epoch: 49 step: 134, loss is 0.8130654096603394\n",
- "epoch: 49 step: 135, loss is 0.7552171945571899\n",
- "epoch: 49 step: 136, loss is 0.8086338043212891\n",
- "epoch: 49 step: 137, loss is 0.7789323329925537\n",
- "epoch: 49 step: 138, loss is 0.87713623046875\n",
- "epoch: 49 step: 139, loss is 0.788098931312561\n",
- "epoch: 49 step: 140, loss is 0.7871702909469604\n",
- "epoch: 49 step: 141, loss is 0.7906486392021179\n",
- "epoch: 49 step: 142, loss is 0.7599376440048218\n",
- "epoch: 49 step: 143, loss is 0.7541152834892273\n",
- "epoch: 49 step: 144, loss is 0.7779464721679688\n",
- "epoch: 49 step: 145, loss is 0.8201999664306641\n",
- "epoch: 49 step: 146, loss is 0.8153160810470581\n",
- "epoch: 49 step: 147, loss is 0.8511422872543335\n",
- "epoch: 49 step: 148, loss is 0.7591521739959717\n",
- "epoch: 49 step: 149, loss is 0.7936468720436096\n",
- "epoch: 49 step: 150, loss is 0.7542546987533569\n",
- "epoch: 49 step: 151, loss is 0.787798285484314\n",
- "epoch: 49 step: 152, loss is 0.7628979682922363\n",
- "epoch: 49 step: 153, loss is 0.8427466750144958\n",
- "epoch: 49 step: 154, loss is 0.7713915705680847\n",
- "epoch: 49 step: 155, loss is 0.8218947649002075\n",
- "epoch: 49 step: 156, loss is 0.7897173762321472\n",
- "epoch: 49 step: 157, loss is 0.7629675269126892\n",
- "epoch: 49 step: 158, loss is 0.787702202796936\n",
- "epoch: 49 step: 159, loss is 0.8200827836990356\n",
- "epoch: 49 step: 160, loss is 0.821740448474884\n",
- "epoch: 49 step: 161, loss is 0.7424212694168091\n",
- "epoch: 49 step: 162, loss is 0.8110157251358032\n",
- "epoch: 49 step: 163, loss is 0.7846983075141907\n",
- "epoch: 49 step: 164, loss is 0.8021287322044373\n",
- "epoch: 49 step: 165, loss is 0.7915834188461304\n",
- "epoch: 49 step: 166, loss is 0.8582480549812317\n",
- "epoch: 49 step: 167, loss is 0.835322380065918\n",
- "epoch: 49 step: 168, loss is 0.7697802782058716\n",
- "epoch: 49 step: 169, loss is 0.7804192304611206\n",
- "epoch: 49 step: 170, loss is 0.790429949760437\n",
- "epoch: 49 step: 171, loss is 0.7891809940338135\n",
- "epoch: 49 step: 172, loss is 0.805351197719574\n",
- "epoch: 49 step: 173, loss is 0.804185152053833\n",
- "epoch: 49 step: 174, loss is 0.7713534832000732\n",
- "epoch: 49 step: 175, loss is 0.8341310024261475\n",
- "epoch: 49 step: 176, loss is 0.8138383626937866\n",
- "epoch: 49 step: 177, loss is 0.7346597909927368\n",
- "epoch: 49 step: 178, loss is 0.790809154510498\n",
- "epoch: 49 step: 179, loss is 0.8158509135246277\n",
- "epoch: 49 step: 180, loss is 0.7741419076919556\n",
- "epoch: 49 step: 181, loss is 0.8178799152374268\n",
- "epoch: 49 step: 182, loss is 0.7746651768684387\n",
- "epoch: 49 step: 183, loss is 0.7272830605506897\n",
- "epoch: 49 step: 184, loss is 0.7682174444198608\n",
- "epoch: 49 step: 185, loss is 0.7859704494476318\n",
- "epoch: 49 step: 186, loss is 0.7947738170623779\n",
- "epoch: 49 step: 187, loss is 0.8164531588554382\n",
- "epoch: 49 step: 188, loss is 0.8137848377227783\n",
- "epoch: 49 step: 189, loss is 0.7600142955780029\n",
- "epoch: 49 step: 190, loss is 0.7909482717514038\n",
- "epoch: 49 step: 191, loss is 0.7888385057449341\n",
- "epoch: 49 step: 192, loss is 0.7625305652618408\n",
- "epoch: 49 step: 193, loss is 0.8482733368873596\n",
- "epoch: 49 step: 194, loss is 0.7858377695083618\n",
- "epoch: 49 step: 195, loss is 0.7894809246063232\n",
- "Train epoch time: 105988.249 ms, per step time: 543.529 ms\n",
- "epoch: 50 step: 1, loss is 0.7802066802978516\n",
- "epoch: 50 step: 2, loss is 0.8158935308456421\n",
- "epoch: 50 step: 3, loss is 0.7644997835159302\n",
- "epoch: 50 step: 4, loss is 0.7955084443092346\n",
- "epoch: 50 step: 5, loss is 0.7448071241378784\n",
- "epoch: 50 step: 6, loss is 0.7629739046096802\n",
- "epoch: 50 step: 7, loss is 0.7969454526901245\n",
- "epoch: 50 step: 8, loss is 0.7565621733665466\n",
- "epoch: 50 step: 9, loss is 0.7852126359939575\n",
- "epoch: 50 step: 10, loss is 0.8052510023117065\n",
- "epoch: 50 step: 11, loss is 0.7628653049468994\n",
- "epoch: 50 step: 12, loss is 0.7715508937835693\n",
- "epoch: 50 step: 13, loss is 0.7526652812957764\n",
- "epoch: 50 step: 14, loss is 0.7467508316040039\n",
- "epoch: 50 step: 15, loss is 0.7383567690849304\n",
- "epoch: 50 step: 16, loss is 0.6938237547874451\n",
- "epoch: 50 step: 17, loss is 0.7300999164581299\n",
- "epoch: 50 step: 18, loss is 0.7443526983261108\n",
- "epoch: 50 step: 19, loss is 0.7856084108352661\n",
- "epoch: 50 step: 20, loss is 0.7771008014678955\n",
- "epoch: 50 step: 21, loss is 0.7702484726905823\n",
- "epoch: 50 step: 22, loss is 0.766179084777832\n",
- "epoch: 50 step: 23, loss is 0.7603368759155273\n",
- "epoch: 50 step: 24, loss is 0.8527711629867554\n",
- "epoch: 50 step: 25, loss is 0.7504369020462036\n",
- "epoch: 50 step: 26, loss is 0.7563770413398743\n",
- "epoch: 50 step: 27, loss is 0.8033452033996582\n",
- "epoch: 50 step: 28, loss is 0.7848401665687561\n",
- "epoch: 50 step: 29, loss is 0.7955296039581299\n",
- "epoch: 50 step: 30, loss is 0.7846652269363403\n",
- "epoch: 50 step: 31, loss is 0.8232280015945435\n",
- "epoch: 50 step: 32, loss is 0.7746000289916992\n",
- "epoch: 50 step: 33, loss is 0.7539740204811096\n",
- "epoch: 50 step: 34, loss is 0.7519662380218506\n",
- "epoch: 50 step: 35, loss is 0.7946498990058899\n",
- "epoch: 50 step: 36, loss is 0.7660290002822876\n",
- "epoch: 50 step: 37, loss is 0.7935041189193726\n",
- "epoch: 50 step: 38, loss is 0.7729010581970215\n",
- "epoch: 50 step: 39, loss is 0.7572159171104431\n",
- "epoch: 50 step: 40, loss is 0.7402242422103882\n",
- "epoch: 50 step: 41, loss is 0.7734825611114502\n",
- "epoch: 50 step: 42, loss is 0.7434002161026001\n",
- "epoch: 50 step: 43, loss is 0.7792245149612427\n",
- "epoch: 50 step: 44, loss is 0.7526705265045166\n",
- "epoch: 50 step: 45, loss is 0.7489557266235352\n",
- "epoch: 50 step: 46, loss is 0.823969841003418\n",
- "epoch: 50 step: 47, loss is 0.7713980078697205\n",
- "epoch: 50 step: 48, loss is 0.7927367687225342\n",
- "epoch: 50 step: 49, loss is 0.7652636766433716\n",
- "epoch: 50 step: 50, loss is 0.7508813738822937\n",
- "epoch: 50 step: 51, loss is 0.7696555256843567\n",
- "epoch: 50 step: 52, loss is 0.8084716200828552\n",
- "epoch: 50 step: 53, loss is 0.7491806149482727\n",
- "epoch: 50 step: 54, loss is 0.758628249168396\n",
- "epoch: 50 step: 55, loss is 0.7774040102958679\n",
- "epoch: 50 step: 56, loss is 0.757311224937439\n",
- "epoch: 50 step: 57, loss is 0.7130249738693237\n",
- "epoch: 50 step: 58, loss is 0.7959308624267578\n",
- "epoch: 50 step: 59, loss is 0.7907053232192993\n",
- "epoch: 50 step: 60, loss is 0.7715981006622314\n",
- "epoch: 50 step: 61, loss is 0.7525125741958618\n",
- "epoch: 50 step: 62, loss is 0.7828436493873596\n",
- "epoch: 50 step: 63, loss is 0.7406209707260132\n",
- "epoch: 50 step: 64, loss is 0.8018389344215393\n",
- "epoch: 50 step: 65, loss is 0.7422670722007751\n",
- "epoch: 50 step: 66, loss is 0.773597240447998\n",
- "epoch: 50 step: 67, loss is 0.7702914476394653\n",
- "epoch: 50 step: 68, loss is 0.7826281785964966\n",
- "epoch: 50 step: 69, loss is 0.7465894222259521\n",
- "epoch: 50 step: 70, loss is 0.7769197225570679\n",
- "epoch: 50 step: 71, loss is 0.7516205310821533\n",
- "epoch: 50 step: 72, loss is 0.786666989326477\n",
- "epoch: 50 step: 73, loss is 0.786081850528717\n",
- "epoch: 50 step: 74, loss is 0.7419713735580444\n",
- "epoch: 50 step: 75, loss is 0.7913058996200562\n",
- "epoch: 50 step: 76, loss is 0.7525515556335449\n",
- "epoch: 50 step: 77, loss is 0.8237977027893066\n",
- "epoch: 50 step: 78, loss is 0.710051953792572\n",
- "epoch: 50 step: 79, loss is 0.7696235775947571\n",
- "epoch: 50 step: 80, loss is 0.7754746079444885\n",
- "epoch: 50 step: 81, loss is 0.8062629699707031\n",
- "epoch: 50 step: 82, loss is 0.7503039240837097\n",
- "epoch: 50 step: 83, loss is 0.8364999890327454\n",
- "epoch: 50 step: 84, loss is 0.7519097328186035\n",
- "epoch: 50 step: 85, loss is 0.8097488284111023\n",
- "epoch: 50 step: 86, loss is 0.7733085751533508\n",
- "epoch: 50 step: 87, loss is 0.7943763732910156\n",
- "epoch: 50 step: 88, loss is 0.8017860651016235\n",
- "epoch: 50 step: 89, loss is 0.7503619194030762\n",
- "epoch: 50 step: 90, loss is 0.7689992189407349\n",
- "epoch: 50 step: 91, loss is 0.8445016741752625\n",
- "epoch: 50 step: 92, loss is 0.7536423802375793\n",
- "epoch: 50 step: 93, loss is 0.7786149978637695\n",
- "epoch: 50 step: 94, loss is 0.8036640882492065\n",
- "epoch: 50 step: 95, loss is 0.755380392074585\n",
- "epoch: 50 step: 96, loss is 0.7683913707733154\n",
- "epoch: 50 step: 97, loss is 0.7809499502182007\n",
- "epoch: 50 step: 98, loss is 0.743462324142456\n",
- "epoch: 50 step: 99, loss is 0.7978581190109253\n",
- "epoch: 50 step: 100, loss is 0.8087695240974426\n",
- "epoch: 50 step: 101, loss is 0.7854674458503723\n",
- "epoch: 50 step: 102, loss is 0.8454350233078003\n",
- "epoch: 50 step: 103, loss is 0.8055614233016968\n",
- "epoch: 50 step: 104, loss is 0.7752905488014221\n",
- "epoch: 50 step: 105, loss is 0.8072637319564819\n",
- "epoch: 50 step: 106, loss is 0.7843447327613831\n",
- "epoch: 50 step: 107, loss is 0.7667314410209656\n",
- "epoch: 50 step: 108, loss is 0.8206599950790405\n",
- "epoch: 50 step: 109, loss is 0.7495514750480652\n",
- "epoch: 50 step: 110, loss is 0.7722309231758118\n",
- "epoch: 50 step: 111, loss is 0.7730912566184998\n",
- "epoch: 50 step: 112, loss is 0.7769516706466675\n",
- "epoch: 50 step: 113, loss is 0.7311548590660095\n",
- "epoch: 50 step: 114, loss is 0.7196918725967407\n",
- "epoch: 50 step: 115, loss is 0.8131150007247925\n",
- "epoch: 50 step: 116, loss is 0.8293939828872681\n",
- "epoch: 50 step: 117, loss is 0.844794511795044\n",
- "epoch: 50 step: 118, loss is 0.8097021579742432\n",
- "epoch: 50 step: 119, loss is 0.8067548274993896\n",
- "epoch: 50 step: 120, loss is 0.7451876401901245\n",
- "epoch: 50 step: 121, loss is 0.7942838668823242\n",
- "epoch: 50 step: 122, loss is 0.7816265821456909\n",
- "epoch: 50 step: 123, loss is 0.7714554071426392\n",
- "epoch: 50 step: 124, loss is 0.7801728248596191\n",
- "epoch: 50 step: 125, loss is 0.7892995476722717\n",
- "epoch: 50 step: 126, loss is 0.8033266067504883\n",
- "epoch: 50 step: 127, loss is 0.7724478840827942\n",
- "epoch: 50 step: 128, loss is 0.7689555883407593\n",
- "epoch: 50 step: 129, loss is 0.7624392509460449\n",
- "epoch: 50 step: 130, loss is 0.7530295848846436\n",
- "epoch: 50 step: 131, loss is 0.7497451305389404\n",
- "epoch: 50 step: 132, loss is 0.7675462961196899\n",
- "epoch: 50 step: 133, loss is 0.7926802635192871\n",
- "epoch: 50 step: 134, loss is 0.8272131681442261\n",
- "epoch: 50 step: 135, loss is 0.8109605312347412\n",
- "epoch: 50 step: 136, loss is 0.8057304620742798\n",
- "epoch: 50 step: 137, loss is 0.7566056251525879\n",
- "epoch: 50 step: 138, loss is 0.8100849390029907\n",
- "epoch: 50 step: 139, loss is 0.7956655621528625\n",
- "epoch: 50 step: 140, loss is 0.8203774690628052\n",
- "epoch: 50 step: 141, loss is 0.7864224910736084\n",
- "epoch: 50 step: 142, loss is 0.7455155849456787\n",
- "epoch: 50 step: 143, loss is 0.7382572889328003\n",
- "epoch: 50 step: 144, loss is 0.7661005258560181\n",
- "epoch: 50 step: 145, loss is 0.8068943023681641\n",
- "epoch: 50 step: 146, loss is 0.7878588438034058\n",
- "epoch: 50 step: 147, loss is 0.8080874681472778\n",
- "epoch: 50 step: 148, loss is 0.776960015296936\n",
- "epoch: 50 step: 149, loss is 0.7400027513504028\n",
- "epoch: 50 step: 150, loss is 0.7906967401504517\n",
- "epoch: 50 step: 151, loss is 0.7190502882003784\n",
- "epoch: 50 step: 152, loss is 0.7657128572463989\n",
- "epoch: 50 step: 153, loss is 0.7764486074447632\n",
- "epoch: 50 step: 154, loss is 0.829918384552002\n",
- "epoch: 50 step: 155, loss is 0.7433205842971802\n",
- "epoch: 50 step: 156, loss is 0.797990083694458\n",
- "epoch: 50 step: 157, loss is 0.7626293897628784\n",
- "epoch: 50 step: 158, loss is 0.7843010425567627\n",
- "epoch: 50 step: 159, loss is 0.7543965578079224\n",
- "epoch: 50 step: 160, loss is 0.7702991962432861\n",
- "epoch: 50 step: 161, loss is 0.7387254238128662\n",
- "epoch: 50 step: 162, loss is 0.8245499134063721\n",
- "epoch: 50 step: 163, loss is 0.8047354221343994\n",
- "epoch: 50 step: 164, loss is 0.7772183418273926\n",
- "epoch: 50 step: 165, loss is 0.8162798881530762\n",
- "epoch: 50 step: 166, loss is 0.7937183380126953\n",
- "epoch: 50 step: 167, loss is 0.8447754383087158\n",
- "epoch: 50 step: 168, loss is 0.7309650182723999\n",
- "epoch: 50 step: 169, loss is 0.7304731011390686\n",
- "epoch: 50 step: 170, loss is 0.8367864489555359\n",
- "epoch: 50 step: 171, loss is 0.7436604499816895\n",
- "epoch: 50 step: 172, loss is 0.8774688243865967\n",
- "epoch: 50 step: 173, loss is 0.775653600692749\n",
- "epoch: 50 step: 174, loss is 0.7849935293197632\n",
- "epoch: 50 step: 175, loss is 0.755415678024292\n",
- "epoch: 50 step: 176, loss is 0.7601606845855713\n",
- "epoch: 50 step: 177, loss is 0.7827877402305603\n",
- "epoch: 50 step: 178, loss is 0.785349428653717\n",
- "epoch: 50 step: 179, loss is 0.7730883359909058\n",
- "epoch: 50 step: 180, loss is 0.7766386270523071\n",
- "epoch: 50 step: 181, loss is 0.7792547941207886\n",
- "epoch: 50 step: 182, loss is 0.7630850672721863\n",
- "epoch: 50 step: 183, loss is 0.7395979166030884\n",
- "epoch: 50 step: 184, loss is 0.8013859987258911\n",
- "epoch: 50 step: 185, loss is 0.8058763742446899\n",
- "epoch: 50 step: 186, loss is 0.8001610040664673\n",
- "epoch: 50 step: 187, loss is 0.7663059234619141\n",
- "epoch: 50 step: 188, loss is 0.769565224647522\n",
- "epoch: 50 step: 189, loss is 0.7952616810798645\n",
- "epoch: 50 step: 190, loss is 0.8387209177017212\n",
- "epoch: 50 step: 191, loss is 0.7682342529296875\n",
- "epoch: 50 step: 192, loss is 0.772983729839325\n",
- "epoch: 50 step: 193, loss is 0.7586737275123596\n",
- "epoch: 50 step: 194, loss is 0.738025963306427\n",
- "epoch: 50 step: 195, loss is 0.7450219392776489\n",
- "Train epoch time: 104200.438 ms, per step time: 534.361 ms\n",
- "epoch: 51 step: 1, loss is 0.7127658724784851\n",
- "epoch: 51 step: 2, loss is 0.7525131702423096\n",
- "epoch: 51 step: 3, loss is 0.7650803327560425\n",
- "epoch: 51 step: 4, loss is 0.7396030426025391\n",
- "epoch: 51 step: 5, loss is 0.7432870268821716\n",
- "epoch: 51 step: 6, loss is 0.7518507242202759\n",
- "epoch: 51 step: 7, loss is 0.7713302373886108\n",
- "epoch: 51 step: 8, loss is 0.7250156402587891\n",
- "epoch: 51 step: 9, loss is 0.7508498430252075\n",
- "epoch: 51 step: 10, loss is 0.7378017902374268\n",
- "epoch: 51 step: 11, loss is 0.7797620296478271\n",
- "epoch: 51 step: 12, loss is 0.8774091005325317\n",
- "epoch: 51 step: 13, loss is 0.7689456939697266\n",
- "epoch: 51 step: 14, loss is 0.748863935470581\n",
- "epoch: 51 step: 15, loss is 0.7871088981628418\n",
- "epoch: 51 step: 16, loss is 0.7642532587051392\n",
- "epoch: 51 step: 17, loss is 0.7468241453170776\n",
- "epoch: 51 step: 18, loss is 0.7388325929641724\n",
- "epoch: 51 step: 19, loss is 0.7790994048118591\n",
- "epoch: 51 step: 20, loss is 0.7604823112487793\n",
- "epoch: 51 step: 21, loss is 0.8115692138671875\n",
- "epoch: 51 step: 22, loss is 0.7392019629478455\n",
- "epoch: 51 step: 23, loss is 0.746444582939148\n",
- "epoch: 51 step: 24, loss is 0.7668007612228394\n",
- "epoch: 51 step: 25, loss is 0.7720839977264404\n",
- "epoch: 51 step: 26, loss is 0.7280883193016052\n",
- "epoch: 51 step: 27, loss is 0.769680380821228\n",
- "epoch: 51 step: 28, loss is 0.7526214122772217\n",
- "epoch: 51 step: 29, loss is 0.7811195850372314\n",
- "epoch: 51 step: 30, loss is 0.7703922986984253\n",
- "epoch: 51 step: 31, loss is 0.7603752613067627\n",
- "epoch: 51 step: 32, loss is 0.7431195378303528\n",
- "epoch: 51 step: 33, loss is 0.7410872578620911\n",
- "epoch: 51 step: 34, loss is 0.749547004699707\n",
- "epoch: 51 step: 35, loss is 0.7891870737075806\n",
- "epoch: 51 step: 36, loss is 0.7648804187774658\n",
- "epoch: 51 step: 37, loss is 0.8084181547164917\n",
- "epoch: 51 step: 38, loss is 0.7439834475517273\n",
- "epoch: 51 step: 39, loss is 0.74545818567276\n",
- "epoch: 51 step: 40, loss is 0.7496793270111084\n",
- "epoch: 51 step: 41, loss is 0.7657278776168823\n",
- "epoch: 51 step: 42, loss is 0.7244853973388672\n",
- "epoch: 51 step: 43, loss is 0.7605078220367432\n",
- "epoch: 51 step: 44, loss is 0.7777740955352783\n",
- "epoch: 51 step: 45, loss is 0.7483956813812256\n",
- "epoch: 51 step: 46, loss is 0.8061268925666809\n",
- "epoch: 51 step: 47, loss is 0.7469605207443237\n",
- "epoch: 51 step: 48, loss is 0.7621632218360901\n",
- "epoch: 51 step: 49, loss is 0.7748622894287109\n",
- "epoch: 51 step: 50, loss is 0.782288134098053\n",
- "epoch: 51 step: 51, loss is 0.7466800212860107\n",
- "epoch: 51 step: 52, loss is 0.7720746994018555\n",
- "epoch: 51 step: 53, loss is 0.8019874095916748\n",
- "epoch: 51 step: 54, loss is 0.7637181878089905\n",
- "epoch: 51 step: 55, loss is 0.7649544477462769\n",
- "epoch: 51 step: 56, loss is 0.8419444561004639\n",
- "epoch: 51 step: 57, loss is 0.7405215501785278\n",
- "epoch: 51 step: 58, loss is 0.7835460901260376\n",
- "epoch: 51 step: 59, loss is 0.7488666772842407\n",
- "epoch: 51 step: 60, loss is 0.7705710530281067\n",
- "epoch: 51 step: 61, loss is 0.8128464818000793\n",
- "epoch: 51 step: 62, loss is 0.7886109352111816\n",
- "epoch: 51 step: 63, loss is 0.797203779220581\n",
- "epoch: 51 step: 64, loss is 0.7576704025268555\n",
- "epoch: 51 step: 65, loss is 0.7174893021583557\n",
- "epoch: 51 step: 66, loss is 0.7788109183311462\n",
- "epoch: 51 step: 67, loss is 0.7986986637115479\n",
- "epoch: 51 step: 68, loss is 0.7810406684875488\n",
- "epoch: 51 step: 69, loss is 0.7389135956764221\n",
- "epoch: 51 step: 70, loss is 0.7036351561546326\n",
- "epoch: 51 step: 71, loss is 0.798374354839325\n",
- "epoch: 51 step: 72, loss is 0.7760833501815796\n",
- "epoch: 51 step: 73, loss is 0.7864766120910645\n",
- "epoch: 51 step: 74, loss is 0.7776474952697754\n",
- "epoch: 51 step: 75, loss is 0.7284588813781738\n",
- "epoch: 51 step: 76, loss is 0.7835901975631714\n",
- "epoch: 51 step: 77, loss is 0.8169816136360168\n",
- "epoch: 51 step: 78, loss is 0.7176551222801208\n",
- "epoch: 51 step: 79, loss is 0.7850744724273682\n",
- "epoch: 51 step: 80, loss is 0.8125274777412415\n",
- "epoch: 51 step: 81, loss is 0.7326189875602722\n",
- "epoch: 51 step: 82, loss is 0.7908948659896851\n",
- "epoch: 51 step: 83, loss is 0.7501875758171082\n",
- "epoch: 51 step: 84, loss is 0.7747730016708374\n",
- "epoch: 51 step: 85, loss is 0.7624555230140686\n",
- "epoch: 51 step: 86, loss is 0.7588902711868286\n",
- "epoch: 51 step: 87, loss is 0.7848199605941772\n",
- "epoch: 51 step: 88, loss is 0.7944551706314087\n",
- "epoch: 51 step: 89, loss is 0.7779529094696045\n",
- "epoch: 51 step: 90, loss is 0.7726327776908875\n",
- "epoch: 51 step: 91, loss is 0.7434247732162476\n",
- "epoch: 51 step: 92, loss is 0.753853440284729\n",
- "epoch: 51 step: 93, loss is 0.7727560997009277\n",
- "epoch: 51 step: 94, loss is 0.8118842840194702\n",
- "epoch: 51 step: 95, loss is 0.708669900894165\n",
- "epoch: 51 step: 96, loss is 0.7835653424263\n",
- "epoch: 51 step: 97, loss is 0.7835577726364136\n",
- "epoch: 51 step: 98, loss is 0.7509108781814575\n",
- "epoch: 51 step: 99, loss is 0.7754564881324768\n",
- "epoch: 51 step: 100, loss is 0.8136333227157593\n",
- "epoch: 51 step: 101, loss is 0.7317966818809509\n",
- "epoch: 51 step: 102, loss is 0.7739089727401733\n",
- "epoch: 51 step: 103, loss is 0.7911791801452637\n",
- "epoch: 51 step: 104, loss is 0.7707613110542297\n",
- "epoch: 51 step: 105, loss is 0.8094954490661621\n",
- "epoch: 51 step: 106, loss is 0.7213757038116455\n",
- "epoch: 51 step: 107, loss is 0.7850294709205627\n",
- "epoch: 51 step: 108, loss is 0.8264412879943848\n",
- "epoch: 51 step: 109, loss is 0.7776114344596863\n",
- "epoch: 51 step: 110, loss is 0.7412658333778381\n",
- "epoch: 51 step: 111, loss is 0.7742754220962524\n",
- "epoch: 51 step: 112, loss is 0.8313534259796143\n",
- "epoch: 51 step: 113, loss is 0.7464664578437805\n",
- "epoch: 51 step: 114, loss is 0.802405595779419\n",
- "epoch: 51 step: 115, loss is 0.7652677297592163\n",
- "epoch: 51 step: 116, loss is 0.7501987218856812\n",
- "epoch: 51 step: 117, loss is 0.7817049026489258\n",
- "epoch: 51 step: 118, loss is 0.7619132995605469\n",
- "epoch: 51 step: 119, loss is 0.761806845664978\n",
- "epoch: 51 step: 120, loss is 0.8153101205825806\n",
- "epoch: 51 step: 121, loss is 0.738982081413269\n",
- "epoch: 51 step: 122, loss is 0.7805833220481873\n",
- "epoch: 51 step: 123, loss is 0.7610634565353394\n",
- "epoch: 51 step: 124, loss is 0.7832593321800232\n",
- "epoch: 51 step: 125, loss is 0.7634925246238708\n",
- "epoch: 51 step: 126, loss is 0.7431166172027588\n",
- "epoch: 51 step: 127, loss is 0.7651649117469788\n",
- "epoch: 51 step: 128, loss is 0.8076580166816711\n",
- "epoch: 51 step: 129, loss is 0.7732875347137451\n",
- "epoch: 51 step: 130, loss is 0.7844958901405334\n",
- "epoch: 51 step: 131, loss is 0.750457763671875\n",
- "epoch: 51 step: 132, loss is 0.7433779239654541\n",
- "epoch: 51 step: 133, loss is 0.7661430239677429\n",
- "epoch: 51 step: 134, loss is 0.7537803053855896\n",
- "epoch: 51 step: 135, loss is 0.7477529048919678\n",
- "epoch: 51 step: 136, loss is 0.8021606206893921\n",
- "epoch: 51 step: 137, loss is 0.7597280740737915\n",
- "epoch: 51 step: 138, loss is 0.747283935546875\n",
- "epoch: 51 step: 139, loss is 0.7839834690093994\n",
- "epoch: 51 step: 140, loss is 0.7966628074645996\n",
- "epoch: 51 step: 141, loss is 0.8159871101379395\n",
- "epoch: 51 step: 142, loss is 0.783802330493927\n",
- "epoch: 51 step: 143, loss is 0.7079719305038452\n",
- "epoch: 51 step: 144, loss is 0.7701084017753601\n",
- "epoch: 51 step: 145, loss is 0.7423214912414551\n",
- "epoch: 51 step: 146, loss is 0.7296830415725708\n",
- "epoch: 51 step: 147, loss is 0.7885416746139526\n",
- "epoch: 51 step: 148, loss is 0.7704241275787354\n",
- "epoch: 51 step: 149, loss is 0.7362068891525269\n",
- "epoch: 51 step: 150, loss is 0.7220796346664429\n",
- "epoch: 51 step: 151, loss is 0.7163593769073486\n",
- "epoch: 51 step: 152, loss is 0.7799816727638245\n",
- "epoch: 51 step: 153, loss is 0.8441452980041504\n",
- "epoch: 51 step: 154, loss is 0.7525169849395752\n",
- "epoch: 51 step: 155, loss is 0.7980644106864929\n",
- "epoch: 51 step: 156, loss is 0.7558544874191284\n",
- "epoch: 51 step: 157, loss is 0.7281650900840759\n",
- "epoch: 51 step: 158, loss is 0.776863157749176\n",
- "epoch: 51 step: 159, loss is 0.7516960501670837\n",
- "epoch: 51 step: 160, loss is 0.7773051857948303\n",
- "epoch: 51 step: 161, loss is 0.7648395299911499\n",
- "epoch: 51 step: 162, loss is 0.8116007447242737\n",
- "epoch: 51 step: 163, loss is 0.7319633960723877\n",
- "epoch: 51 step: 164, loss is 0.7862023115158081\n",
- "epoch: 51 step: 165, loss is 0.7634849548339844\n",
- "epoch: 51 step: 166, loss is 0.7841250896453857\n",
- "epoch: 51 step: 167, loss is 0.8194866180419922\n",
- "epoch: 51 step: 168, loss is 0.768380343914032\n",
- "epoch: 51 step: 169, loss is 0.8089847564697266\n",
- "epoch: 51 step: 170, loss is 0.7286646366119385\n",
- "epoch: 51 step: 171, loss is 0.7401659488677979\n",
- "epoch: 51 step: 172, loss is 0.7706607580184937\n",
- "epoch: 51 step: 173, loss is 0.7353518009185791\n",
- "epoch: 51 step: 174, loss is 0.7514238357543945\n",
- "epoch: 51 step: 175, loss is 0.7638115882873535\n",
- "epoch: 51 step: 176, loss is 0.7566566467285156\n",
- "epoch: 51 step: 177, loss is 0.7689902782440186\n",
- "epoch: 51 step: 178, loss is 0.762540876865387\n",
- "epoch: 51 step: 179, loss is 0.8596534132957458\n",
- "epoch: 51 step: 180, loss is 0.761650562286377\n",
- "epoch: 51 step: 181, loss is 0.820151686668396\n",
- "epoch: 51 step: 182, loss is 0.7691572904586792\n",
- "epoch: 51 step: 183, loss is 0.7595763206481934\n",
- "epoch: 51 step: 184, loss is 0.7404129505157471\n",
- "epoch: 51 step: 185, loss is 0.7587924599647522\n",
- "epoch: 51 step: 186, loss is 0.772550642490387\n",
- "epoch: 51 step: 187, loss is 0.761353611946106\n",
- "epoch: 51 step: 188, loss is 0.7576625943183899\n",
- "epoch: 51 step: 189, loss is 0.8490115404129028\n",
- "epoch: 51 step: 190, loss is 0.7551292181015015\n",
- "epoch: 51 step: 191, loss is 0.7356715798377991\n",
- "epoch: 51 step: 192, loss is 0.7816735506057739\n",
- "epoch: 51 step: 193, loss is 0.7799474596977234\n",
- "epoch: 51 step: 194, loss is 0.7315225005149841\n",
- "epoch: 51 step: 195, loss is 0.8464182615280151\n",
- "Train epoch time: 109124.733 ms, per step time: 559.614 ms\n",
- "epoch: 52 step: 1, loss is 0.7237507104873657\n",
- "epoch: 52 step: 2, loss is 0.7205532789230347\n",
- "epoch: 52 step: 3, loss is 0.8071622252464294\n",
- "epoch: 52 step: 4, loss is 0.741265594959259\n",
- "epoch: 52 step: 5, loss is 0.7746148109436035\n",
- "epoch: 52 step: 6, loss is 0.7444890737533569\n",
- "epoch: 52 step: 7, loss is 0.7293844223022461\n",
- "epoch: 52 step: 8, loss is 0.7480308413505554\n",
- "epoch: 52 step: 9, loss is 0.7517484426498413\n",
- "epoch: 52 step: 10, loss is 0.726035475730896\n",
- "epoch: 52 step: 11, loss is 0.778565526008606\n",
- "epoch: 52 step: 12, loss is 0.718412458896637\n",
- "epoch: 52 step: 13, loss is 0.7599987387657166\n",
- "epoch: 52 step: 14, loss is 0.7636425495147705\n",
- "epoch: 52 step: 15, loss is 0.7087388038635254\n",
- "epoch: 52 step: 16, loss is 0.7806265950202942\n",
- "epoch: 52 step: 17, loss is 0.7335832118988037\n",
- "epoch: 52 step: 18, loss is 0.7266861200332642\n",
- "epoch: 52 step: 19, loss is 0.7294358611106873\n",
- "epoch: 52 step: 20, loss is 0.7528926134109497\n",
- "epoch: 52 step: 21, loss is 0.7243163585662842\n",
- "epoch: 52 step: 22, loss is 0.7174777984619141\n",
- "epoch: 52 step: 23, loss is 0.7128415107727051\n",
- "epoch: 52 step: 24, loss is 0.7517701387405396\n",
- "epoch: 52 step: 25, loss is 0.7569383978843689\n",
- "epoch: 52 step: 26, loss is 0.7723703384399414\n",
- "epoch: 52 step: 27, loss is 0.7549576759338379\n",
- "epoch: 52 step: 28, loss is 0.7578855752944946\n",
- "epoch: 52 step: 29, loss is 0.814480185508728\n",
- "epoch: 52 step: 30, loss is 0.7381181716918945\n",
- "epoch: 52 step: 31, loss is 0.7099692821502686\n",
- "epoch: 52 step: 32, loss is 0.7362306714057922\n",
- "epoch: 52 step: 33, loss is 0.7346323132514954\n",
- "epoch: 52 step: 34, loss is 0.7914421558380127\n",
- "epoch: 52 step: 35, loss is 0.7378039956092834\n",
- "epoch: 52 step: 36, loss is 0.7863876223564148\n",
- "epoch: 52 step: 37, loss is 0.7144011855125427\n",
- "epoch: 52 step: 38, loss is 0.7149479985237122\n",
- "epoch: 52 step: 39, loss is 0.7533828020095825\n",
- "epoch: 52 step: 40, loss is 0.7164735794067383\n",
- "epoch: 52 step: 41, loss is 0.7641370296478271\n",
- "epoch: 52 step: 42, loss is 0.7775751352310181\n",
- "epoch: 52 step: 43, loss is 0.7493149042129517\n",
- "epoch: 52 step: 44, loss is 0.729965329170227\n",
- "epoch: 52 step: 45, loss is 0.713408350944519\n",
- "epoch: 52 step: 46, loss is 0.7059417963027954\n",
- "epoch: 52 step: 47, loss is 0.7202169299125671\n",
- "epoch: 52 step: 48, loss is 0.7584760785102844\n",
- "epoch: 52 step: 49, loss is 0.7468349933624268\n",
- "epoch: 52 step: 50, loss is 0.7310805320739746\n",
- "epoch: 52 step: 51, loss is 0.72611403465271\n",
- "epoch: 52 step: 52, loss is 0.7282006740570068\n",
- "epoch: 52 step: 53, loss is 0.7801165580749512\n",
- "epoch: 52 step: 54, loss is 0.7690773010253906\n",
- "epoch: 52 step: 55, loss is 0.7466640472412109\n",
- "epoch: 52 step: 56, loss is 0.7575427293777466\n",
- "epoch: 52 step: 57, loss is 0.7473092079162598\n",
- "epoch: 52 step: 58, loss is 0.7716274261474609\n",
- "epoch: 52 step: 59, loss is 0.7699079513549805\n",
- "epoch: 52 step: 60, loss is 0.7655402421951294\n",
- "epoch: 52 step: 61, loss is 0.7438780069351196\n",
- "epoch: 52 step: 62, loss is 0.7624803781509399\n",
- "epoch: 52 step: 63, loss is 0.7648270130157471\n",
- "epoch: 52 step: 64, loss is 0.7593474388122559\n",
- "epoch: 52 step: 65, loss is 0.7308676242828369\n",
- "epoch: 52 step: 66, loss is 0.7604267597198486\n",
- "epoch: 52 step: 67, loss is 0.7411351203918457\n",
- "epoch: 52 step: 68, loss is 0.7379381656646729\n",
- "epoch: 52 step: 69, loss is 0.7681666612625122\n",
- "epoch: 52 step: 70, loss is 0.788827657699585\n",
- "epoch: 52 step: 71, loss is 0.7026586532592773\n",
- "epoch: 52 step: 72, loss is 0.7977089881896973\n",
- "epoch: 52 step: 73, loss is 0.7567089796066284\n",
- "epoch: 52 step: 74, loss is 0.7211205959320068\n",
- "epoch: 52 step: 75, loss is 0.769801139831543\n",
- "epoch: 52 step: 76, loss is 0.7555128335952759\n",
- "epoch: 52 step: 77, loss is 0.7387851476669312\n",
- "epoch: 52 step: 78, loss is 0.7286485433578491\n",
- "epoch: 52 step: 79, loss is 0.7403643131256104\n",
- "epoch: 52 step: 80, loss is 0.7305927276611328\n",
- "epoch: 52 step: 81, loss is 0.7350622415542603\n",
- "epoch: 52 step: 82, loss is 0.753395676612854\n",
- "epoch: 52 step: 83, loss is 0.7631814479827881\n",
- "epoch: 52 step: 84, loss is 0.7930261492729187\n",
- "epoch: 52 step: 85, loss is 0.7467182874679565\n",
- "epoch: 52 step: 86, loss is 0.7452768087387085\n",
- "epoch: 52 step: 87, loss is 0.7621490955352783\n",
- "epoch: 52 step: 88, loss is 0.799854040145874\n",
- "epoch: 52 step: 89, loss is 0.7455629110336304\n",
- "epoch: 52 step: 90, loss is 0.8005139827728271\n",
- "epoch: 52 step: 91, loss is 0.7672126889228821\n",
- "epoch: 52 step: 92, loss is 0.7397708892822266\n",
- "epoch: 52 step: 93, loss is 0.7564449310302734\n",
- "epoch: 52 step: 94, loss is 0.8015995621681213\n",
- "epoch: 52 step: 95, loss is 0.7834384441375732\n",
- "epoch: 52 step: 96, loss is 0.7492989301681519\n",
- "epoch: 52 step: 97, loss is 0.7958290576934814\n",
- "epoch: 52 step: 98, loss is 0.7990648150444031\n",
- "epoch: 52 step: 99, loss is 0.8202942609786987\n",
- "epoch: 52 step: 100, loss is 0.7845600247383118\n",
- "epoch: 52 step: 101, loss is 0.7387982606887817\n",
- "epoch: 52 step: 102, loss is 0.768934965133667\n",
- "epoch: 52 step: 103, loss is 0.763335108757019\n",
- "epoch: 52 step: 104, loss is 0.7692549228668213\n",
- "epoch: 52 step: 105, loss is 0.7130553722381592\n",
- "epoch: 52 step: 106, loss is 0.8097378015518188\n",
- "epoch: 52 step: 107, loss is 0.8266847729682922\n",
- "epoch: 52 step: 108, loss is 0.8026797771453857\n",
- "epoch: 52 step: 109, loss is 0.7485285997390747\n",
- "epoch: 52 step: 110, loss is 0.788648784160614\n",
- "epoch: 52 step: 111, loss is 0.7271437644958496\n",
- "epoch: 52 step: 112, loss is 0.7399160861968994\n",
- "epoch: 52 step: 113, loss is 0.7678052186965942\n",
- "epoch: 52 step: 114, loss is 0.777267575263977\n",
- "epoch: 52 step: 115, loss is 0.8275370001792908\n",
- "epoch: 52 step: 116, loss is 0.7496453523635864\n",
- "epoch: 52 step: 117, loss is 0.7804430723190308\n",
- "epoch: 52 step: 118, loss is 0.7585937976837158\n",
- "epoch: 52 step: 119, loss is 0.7894551753997803\n",
- "epoch: 52 step: 120, loss is 0.73940110206604\n",
- "epoch: 52 step: 121, loss is 0.7449439764022827\n",
- "epoch: 52 step: 122, loss is 0.7929477095603943\n",
- "epoch: 52 step: 123, loss is 0.7425300478935242\n",
- "epoch: 52 step: 124, loss is 0.8194437026977539\n",
- "epoch: 52 step: 125, loss is 0.7628844380378723\n",
- "epoch: 52 step: 126, loss is 0.7711507081985474\n",
- "epoch: 52 step: 127, loss is 0.7821146249771118\n",
- "epoch: 52 step: 128, loss is 0.7881607413291931\n",
- "epoch: 52 step: 129, loss is 0.7612645626068115\n",
- "epoch: 52 step: 130, loss is 0.7549643516540527\n",
- "epoch: 52 step: 131, loss is 0.8177905082702637\n",
- "epoch: 52 step: 132, loss is 0.809404194355011\n",
- "epoch: 52 step: 133, loss is 0.7244337797164917\n",
- "epoch: 52 step: 134, loss is 0.7772903442382812\n",
- "epoch: 52 step: 135, loss is 0.8083624839782715\n",
- "epoch: 52 step: 136, loss is 0.7536703944206238\n",
- "epoch: 52 step: 137, loss is 0.7519947290420532\n",
- "epoch: 52 step: 138, loss is 0.7664327621459961\n",
- "epoch: 52 step: 139, loss is 0.7935937643051147\n",
- "epoch: 52 step: 140, loss is 0.7848483324050903\n",
- "epoch: 52 step: 141, loss is 0.7091739773750305\n",
- "epoch: 52 step: 142, loss is 0.7917645573616028\n",
- "epoch: 52 step: 143, loss is 0.7789062261581421\n",
- "epoch: 52 step: 144, loss is 0.7541940808296204\n",
- "epoch: 52 step: 145, loss is 0.7768668532371521\n",
- "epoch: 52 step: 146, loss is 0.7654355764389038\n",
- "epoch: 52 step: 147, loss is 0.7951533794403076\n",
- "epoch: 52 step: 148, loss is 0.772946834564209\n",
- "epoch: 52 step: 149, loss is 0.7534056901931763\n",
- "epoch: 52 step: 150, loss is 0.7249675393104553\n",
- "epoch: 52 step: 151, loss is 0.7385531663894653\n",
- "epoch: 52 step: 152, loss is 0.7756916284561157\n",
- "epoch: 52 step: 153, loss is 0.7675639390945435\n",
- "epoch: 52 step: 154, loss is 0.7033215761184692\n",
- "epoch: 52 step: 155, loss is 0.795699417591095\n",
- "epoch: 52 step: 156, loss is 0.81412672996521\n",
- "epoch: 52 step: 157, loss is 0.7636189460754395\n",
- "epoch: 52 step: 158, loss is 0.793228268623352\n",
- "epoch: 52 step: 159, loss is 0.7766045331954956\n",
- "epoch: 52 step: 160, loss is 0.766132116317749\n",
- "epoch: 52 step: 161, loss is 0.7687993049621582\n",
- "epoch: 52 step: 162, loss is 0.781251072883606\n",
- "epoch: 52 step: 163, loss is 0.8399323225021362\n",
- "epoch: 52 step: 164, loss is 0.742940366268158\n",
- "epoch: 52 step: 165, loss is 0.8020011186599731\n",
- "epoch: 52 step: 166, loss is 0.7560544013977051\n",
- "epoch: 52 step: 167, loss is 0.7643052339553833\n",
- "epoch: 52 step: 168, loss is 0.7376540899276733\n",
- "epoch: 52 step: 169, loss is 0.7556971311569214\n",
- "epoch: 52 step: 170, loss is 0.7848159670829773\n",
- "epoch: 52 step: 171, loss is 0.719372034072876\n",
- "epoch: 52 step: 172, loss is 0.7569981217384338\n",
- "epoch: 52 step: 173, loss is 0.7398255467414856\n",
- "epoch: 52 step: 174, loss is 0.7781835198402405\n",
- "epoch: 52 step: 175, loss is 0.750700056552887\n",
- "epoch: 52 step: 176, loss is 0.7795656323432922\n",
- "epoch: 52 step: 177, loss is 0.7786036133766174\n",
- "epoch: 52 step: 178, loss is 0.8127820491790771\n",
- "epoch: 52 step: 179, loss is 0.8024686574935913\n",
- "epoch: 52 step: 180, loss is 0.7406350374221802\n",
- "epoch: 52 step: 181, loss is 0.8004850745201111\n",
- "epoch: 52 step: 182, loss is 0.7902394533157349\n",
- "epoch: 52 step: 183, loss is 0.7333025932312012\n",
- "epoch: 52 step: 184, loss is 0.8184046745300293\n",
- "epoch: 52 step: 185, loss is 0.7648668885231018\n",
- "epoch: 52 step: 186, loss is 0.746066153049469\n",
- "epoch: 52 step: 187, loss is 0.7810167074203491\n",
- "epoch: 52 step: 188, loss is 0.8257111310958862\n",
- "epoch: 52 step: 189, loss is 0.8096011281013489\n",
- "epoch: 52 step: 190, loss is 0.766956090927124\n",
- "epoch: 52 step: 191, loss is 0.7744662761688232\n",
- "epoch: 52 step: 192, loss is 0.7553519010543823\n",
- "epoch: 52 step: 193, loss is 0.8144704103469849\n",
- "epoch: 52 step: 194, loss is 0.7532559633255005\n",
- "epoch: 52 step: 195, loss is 0.8063337206840515\n",
- "Train epoch time: 108694.718 ms, per step time: 557.409 ms\n",
- "epoch: 53 step: 1, loss is 0.7500209808349609\n",
- "epoch: 53 step: 2, loss is 0.7467270493507385\n",
- "epoch: 53 step: 3, loss is 0.75927734375\n",
- "epoch: 53 step: 4, loss is 0.7659368515014648\n",
- "epoch: 53 step: 5, loss is 0.7466236352920532\n",
- "epoch: 53 step: 6, loss is 0.75738525390625\n",
- "epoch: 53 step: 7, loss is 0.6892359852790833\n",
- "epoch: 53 step: 8, loss is 0.7542592287063599\n",
- "epoch: 53 step: 9, loss is 0.7519485950469971\n",
- "epoch: 53 step: 10, loss is 0.7212932109832764\n",
- "epoch: 53 step: 11, loss is 0.7168842554092407\n",
- "epoch: 53 step: 12, loss is 0.7416212558746338\n",
- "epoch: 53 step: 13, loss is 0.7490566372871399\n",
- "epoch: 53 step: 14, loss is 0.7451211214065552\n",
- "epoch: 53 step: 15, loss is 0.7452759742736816\n",
- "epoch: 53 step: 16, loss is 0.7458174228668213\n",
- "epoch: 53 step: 17, loss is 0.7457907199859619\n",
- "epoch: 53 step: 18, loss is 0.7160977125167847\n",
- "epoch: 53 step: 19, loss is 0.7072196006774902\n",
- "epoch: 53 step: 20, loss is 0.7525694966316223\n",
- "epoch: 53 step: 21, loss is 0.761174201965332\n",
- "epoch: 53 step: 22, loss is 0.7387212514877319\n",
- "epoch: 53 step: 23, loss is 0.7277069091796875\n",
- "epoch: 53 step: 24, loss is 0.7699098587036133\n",
- "epoch: 53 step: 25, loss is 0.7390406131744385\n",
- "epoch: 53 step: 26, loss is 0.7414827346801758\n",
- "epoch: 53 step: 27, loss is 0.7728409767150879\n",
- "epoch: 53 step: 28, loss is 0.7129389047622681\n",
- "epoch: 53 step: 29, loss is 0.7603026628494263\n",
- "epoch: 53 step: 30, loss is 0.713713526725769\n",
- "epoch: 53 step: 31, loss is 0.7287588119506836\n",
- "epoch: 53 step: 32, loss is 0.8140697479248047\n",
- "epoch: 53 step: 33, loss is 0.7393417954444885\n",
- "epoch: 53 step: 34, loss is 0.737850546836853\n",
- "epoch: 53 step: 35, loss is 0.7361228466033936\n",
- "epoch: 53 step: 36, loss is 0.749570906162262\n",
- "epoch: 53 step: 37, loss is 0.7559493780136108\n",
- "epoch: 53 step: 38, loss is 0.7264422178268433\n",
- "epoch: 53 step: 39, loss is 0.7156509160995483\n",
- "epoch: 53 step: 40, loss is 0.7469439506530762\n",
- "epoch: 53 step: 41, loss is 0.750981330871582\n",
- "epoch: 53 step: 42, loss is 0.7791249752044678\n",
- "epoch: 53 step: 43, loss is 0.779373288154602\n",
- "epoch: 53 step: 44, loss is 0.710938572883606\n",
- "epoch: 53 step: 45, loss is 0.7452494502067566\n",
- "epoch: 53 step: 46, loss is 0.7114530205726624\n",
- "epoch: 53 step: 47, loss is 0.7834138870239258\n",
- "epoch: 53 step: 48, loss is 0.7266097068786621\n",
- "epoch: 53 step: 49, loss is 0.7368125319480896\n",
- "epoch: 53 step: 50, loss is 0.77834552526474\n",
- "epoch: 53 step: 51, loss is 0.8421415686607361\n",
- "epoch: 53 step: 52, loss is 0.7480530142784119\n",
- "epoch: 53 step: 53, loss is 0.7690051794052124\n",
- "epoch: 53 step: 54, loss is 0.7389063835144043\n",
- "epoch: 53 step: 55, loss is 0.7824430465698242\n",
- "epoch: 53 step: 56, loss is 0.7503558397293091\n",
- "epoch: 53 step: 57, loss is 0.8129368424415588\n",
- "epoch: 53 step: 58, loss is 0.7774947881698608\n",
- "epoch: 53 step: 59, loss is 0.7319918870925903\n",
- "epoch: 53 step: 60, loss is 0.7464447617530823\n",
- "epoch: 53 step: 61, loss is 0.7171962261199951\n",
- "epoch: 53 step: 62, loss is 0.7247670888900757\n",
- "epoch: 53 step: 63, loss is 0.7707715630531311\n",
- "epoch: 53 step: 64, loss is 0.787301242351532\n",
- "epoch: 53 step: 65, loss is 0.7492901086807251\n",
- "epoch: 53 step: 66, loss is 0.725997269153595\n",
- "epoch: 53 step: 67, loss is 0.748086154460907\n",
- "epoch: 53 step: 68, loss is 0.7362990975379944\n",
- "epoch: 53 step: 69, loss is 0.7885322570800781\n",
- "epoch: 53 step: 70, loss is 0.7696475982666016\n",
- "epoch: 53 step: 71, loss is 0.7926758527755737\n",
- "epoch: 53 step: 72, loss is 0.787043571472168\n",
- "epoch: 53 step: 73, loss is 0.7333463430404663\n",
- "epoch: 53 step: 74, loss is 0.7788268327713013\n",
- "epoch: 53 step: 75, loss is 0.7439805269241333\n",
- "epoch: 53 step: 76, loss is 0.7463969588279724\n",
- "epoch: 53 step: 77, loss is 0.7507326602935791\n",
- "epoch: 53 step: 78, loss is 0.7579741477966309\n",
- "epoch: 53 step: 79, loss is 0.7475249767303467\n",
- "epoch: 53 step: 80, loss is 0.7456820011138916\n",
- "epoch: 53 step: 81, loss is 0.7280092835426331\n",
- "epoch: 53 step: 82, loss is 0.7140530347824097\n",
- "epoch: 53 step: 83, loss is 0.7463144659996033\n",
- "epoch: 53 step: 84, loss is 0.7169508934020996\n",
- "epoch: 53 step: 85, loss is 0.7434486150741577\n",
- "epoch: 53 step: 86, loss is 0.7139694690704346\n",
- "epoch: 53 step: 87, loss is 0.7232010364532471\n",
- "epoch: 53 step: 88, loss is 0.7720944881439209\n",
- "epoch: 53 step: 89, loss is 0.7757639288902283\n",
- "epoch: 53 step: 90, loss is 0.7018445730209351\n",
- "epoch: 53 step: 91, loss is 0.7927099466323853\n",
- "epoch: 53 step: 92, loss is 0.7350521087646484\n",
- "epoch: 53 step: 93, loss is 0.7524237036705017\n",
- "epoch: 53 step: 94, loss is 0.7354158163070679\n",
- "epoch: 53 step: 95, loss is 0.7233775854110718\n",
- "epoch: 53 step: 96, loss is 0.745295524597168\n",
- "epoch: 53 step: 97, loss is 0.7490715980529785\n",
- "epoch: 53 step: 98, loss is 0.7399924993515015\n",
- "epoch: 53 step: 99, loss is 0.7267537117004395\n",
- "epoch: 53 step: 100, loss is 0.7782707214355469\n",
- "epoch: 53 step: 101, loss is 0.770723283290863\n",
- "epoch: 53 step: 102, loss is 0.7729467749595642\n",
- "epoch: 53 step: 103, loss is 0.7696723341941833\n",
- "epoch: 53 step: 104, loss is 0.7105939388275146\n",
- "epoch: 53 step: 105, loss is 0.7165085077285767\n",
- "epoch: 53 step: 106, loss is 0.7689510583877563\n",
- "epoch: 53 step: 107, loss is 0.7937767505645752\n",
- "epoch: 53 step: 108, loss is 0.7529879808425903\n",
- "epoch: 53 step: 109, loss is 0.7714258432388306\n",
- "epoch: 53 step: 110, loss is 0.824413537979126\n",
- "epoch: 53 step: 111, loss is 0.7632749080657959\n",
- "epoch: 53 step: 112, loss is 0.7888000011444092\n",
- "epoch: 53 step: 113, loss is 0.8106561899185181\n",
- "epoch: 53 step: 114, loss is 0.7466120719909668\n",
- "epoch: 53 step: 115, loss is 0.751723051071167\n",
- "epoch: 53 step: 116, loss is 0.735780656337738\n",
- "epoch: 53 step: 117, loss is 0.8043343424797058\n",
- "epoch: 53 step: 118, loss is 0.743895947933197\n",
- "epoch: 53 step: 119, loss is 0.73650723695755\n",
- "epoch: 53 step: 120, loss is 0.709223747253418\n",
- "epoch: 53 step: 121, loss is 0.7556557655334473\n",
- "epoch: 53 step: 122, loss is 0.728112518787384\n",
- "epoch: 53 step: 123, loss is 0.7267941236495972\n",
- "epoch: 53 step: 124, loss is 0.7535509467124939\n",
- "epoch: 53 step: 125, loss is 0.7727494239807129\n",
- "epoch: 53 step: 126, loss is 0.7751871347427368\n",
- "epoch: 53 step: 127, loss is 0.8032330870628357\n",
- "epoch: 53 step: 128, loss is 0.7599368691444397\n",
- "epoch: 53 step: 129, loss is 0.8154371976852417\n",
- "epoch: 53 step: 130, loss is 0.7534074783325195\n",
- "epoch: 53 step: 131, loss is 0.7141103148460388\n",
- "epoch: 53 step: 132, loss is 0.7176271677017212\n",
- "epoch: 53 step: 133, loss is 0.7566998600959778\n",
- "epoch: 53 step: 134, loss is 0.7405641078948975\n",
- "epoch: 53 step: 135, loss is 0.7781600952148438\n",
- "epoch: 53 step: 136, loss is 0.7720069885253906\n",
- "epoch: 53 step: 137, loss is 0.719613790512085\n",
- "epoch: 53 step: 138, loss is 0.7210479974746704\n",
- "epoch: 53 step: 139, loss is 0.808986246585846\n",
- "epoch: 53 step: 140, loss is 0.788841962814331\n",
- "epoch: 53 step: 141, loss is 0.7690080404281616\n",
- "epoch: 53 step: 142, loss is 0.8168197870254517\n",
- "epoch: 53 step: 143, loss is 0.7603106498718262\n",
- "epoch: 53 step: 144, loss is 0.740598201751709\n",
- "epoch: 53 step: 145, loss is 0.7679888010025024\n",
- "epoch: 53 step: 146, loss is 0.7148758172988892\n",
- "epoch: 53 step: 147, loss is 0.7595497369766235\n",
- "epoch: 53 step: 148, loss is 0.7679424285888672\n",
- "epoch: 53 step: 149, loss is 0.8097102642059326\n",
- "epoch: 53 step: 150, loss is 0.7641118764877319\n",
- "epoch: 53 step: 151, loss is 0.7704870104789734\n",
- "epoch: 53 step: 152, loss is 0.7517968416213989\n",
- "epoch: 53 step: 153, loss is 0.8034548759460449\n",
- "epoch: 53 step: 154, loss is 0.7359227538108826\n",
- "epoch: 53 step: 155, loss is 0.781670331954956\n",
- "epoch: 53 step: 156, loss is 0.7458946704864502\n",
- "epoch: 53 step: 157, loss is 0.7879830002784729\n",
- "epoch: 53 step: 158, loss is 0.7548004388809204\n",
- "epoch: 53 step: 159, loss is 0.7684754133224487\n",
- "epoch: 53 step: 160, loss is 0.8089704513549805\n",
- "epoch: 53 step: 161, loss is 0.7638421058654785\n",
- "epoch: 53 step: 162, loss is 0.7455356121063232\n",
- "epoch: 53 step: 163, loss is 0.7628594040870667\n",
- "epoch: 53 step: 164, loss is 0.767367959022522\n",
- "epoch: 53 step: 165, loss is 0.7827467918395996\n",
- "epoch: 53 step: 166, loss is 0.7819128036499023\n",
- "epoch: 53 step: 167, loss is 0.7710360288619995\n",
- "epoch: 53 step: 168, loss is 0.7814900279045105\n",
- "epoch: 53 step: 169, loss is 0.7141121625900269\n",
- "epoch: 53 step: 170, loss is 0.7374953031539917\n",
- "epoch: 53 step: 171, loss is 0.7819555997848511\n",
- "epoch: 53 step: 172, loss is 0.7101056575775146\n",
- "epoch: 53 step: 173, loss is 0.772534966468811\n",
- "epoch: 53 step: 174, loss is 0.8179224729537964\n",
- "epoch: 53 step: 175, loss is 0.728415846824646\n",
- "epoch: 53 step: 176, loss is 0.7604031562805176\n",
- "epoch: 53 step: 177, loss is 0.7305001020431519\n",
- "epoch: 53 step: 178, loss is 0.7464556097984314\n",
- "epoch: 53 step: 179, loss is 0.779193639755249\n",
- "epoch: 53 step: 180, loss is 0.7490922808647156\n",
- "epoch: 53 step: 181, loss is 0.7686058282852173\n",
- "epoch: 53 step: 182, loss is 0.7863794565200806\n",
- "epoch: 53 step: 183, loss is 0.7736130952835083\n",
- "epoch: 53 step: 184, loss is 0.7619942426681519\n",
- "epoch: 53 step: 185, loss is 0.7964603900909424\n",
- "epoch: 53 step: 186, loss is 0.7618675231933594\n",
- "epoch: 53 step: 187, loss is 0.7607605457305908\n",
- "epoch: 53 step: 188, loss is 0.7574695944786072\n",
- "epoch: 53 step: 189, loss is 0.8425401449203491\n",
- "epoch: 53 step: 190, loss is 0.7625440359115601\n",
- "epoch: 53 step: 191, loss is 0.7400980591773987\n",
- "epoch: 53 step: 192, loss is 0.7028496265411377\n",
- "epoch: 53 step: 193, loss is 0.7878526449203491\n",
- "epoch: 53 step: 194, loss is 0.7359610199928284\n",
- "epoch: 53 step: 195, loss is 0.7948102951049805\n",
- "Train epoch time: 110477.204 ms, per step time: 566.550 ms\n",
- "epoch: 54 step: 1, loss is 0.7541799545288086\n",
- "epoch: 54 step: 2, loss is 0.7337019443511963\n",
- "epoch: 54 step: 3, loss is 0.7299398183822632\n",
- "epoch: 54 step: 4, loss is 0.7510303258895874\n",
- "epoch: 54 step: 5, loss is 0.7197021245956421\n",
- "epoch: 54 step: 6, loss is 0.7509708404541016\n",
- "epoch: 54 step: 7, loss is 0.7345867156982422\n",
- "epoch: 54 step: 8, loss is 0.725814700126648\n",
- "epoch: 54 step: 9, loss is 0.7599236369132996\n",
- "epoch: 54 step: 10, loss is 0.7361415028572083\n",
- "epoch: 54 step: 11, loss is 0.7698123455047607\n",
- "epoch: 54 step: 12, loss is 0.7233853340148926\n",
- "epoch: 54 step: 13, loss is 0.7654253244400024\n",
- "epoch: 54 step: 14, loss is 0.7545778751373291\n",
- "epoch: 54 step: 15, loss is 0.7837658524513245\n",
- "epoch: 54 step: 16, loss is 0.7558947801589966\n",
- "epoch: 54 step: 17, loss is 0.7312799692153931\n",
- "epoch: 54 step: 18, loss is 0.718626856803894\n",
- "epoch: 54 step: 19, loss is 0.7159774303436279\n",
- "epoch: 54 step: 20, loss is 0.7009605169296265\n",
- "epoch: 54 step: 21, loss is 0.7420499324798584\n",
- "epoch: 54 step: 22, loss is 0.7563588619232178\n",
- "epoch: 54 step: 23, loss is 0.7516261339187622\n",
- "epoch: 54 step: 24, loss is 0.7275060415267944\n",
- "epoch: 54 step: 25, loss is 0.6901177763938904\n",
- "epoch: 54 step: 26, loss is 0.7574909925460815\n",
- "epoch: 54 step: 27, loss is 0.8043515682220459\n",
- "epoch: 54 step: 28, loss is 0.7236243486404419\n",
- "epoch: 54 step: 29, loss is 0.7325580716133118\n",
- "epoch: 54 step: 30, loss is 0.7318954467773438\n",
- "epoch: 54 step: 31, loss is 0.7882870435714722\n",
- "epoch: 54 step: 32, loss is 0.7557847499847412\n",
- "epoch: 54 step: 33, loss is 0.723382830619812\n",
- "epoch: 54 step: 34, loss is 0.7487095594406128\n",
- "epoch: 54 step: 35, loss is 0.7597826719284058\n",
- "epoch: 54 step: 36, loss is 0.7986350059509277\n",
- "epoch: 54 step: 37, loss is 0.7197121381759644\n",
- "epoch: 54 step: 38, loss is 0.7237682342529297\n",
- "epoch: 54 step: 39, loss is 0.6924357414245605\n",
- "epoch: 54 step: 40, loss is 0.7305189967155457\n",
- "epoch: 54 step: 41, loss is 0.7423522472381592\n",
- "epoch: 54 step: 42, loss is 0.7294976711273193\n",
- "epoch: 54 step: 43, loss is 0.7265321016311646\n",
- "epoch: 54 step: 44, loss is 0.7738445997238159\n",
- "epoch: 54 step: 45, loss is 0.7417761087417603\n",
- "epoch: 54 step: 46, loss is 0.7337515950202942\n",
- "epoch: 54 step: 47, loss is 0.7158221006393433\n",
- "epoch: 54 step: 48, loss is 0.7415804266929626\n",
- "epoch: 54 step: 49, loss is 0.7707773447036743\n",
- "epoch: 54 step: 50, loss is 0.7458369731903076\n",
- "epoch: 54 step: 51, loss is 0.7439395189285278\n",
- "epoch: 54 step: 52, loss is 0.7504356503486633\n",
- "epoch: 54 step: 53, loss is 0.7271573543548584\n",
- "epoch: 54 step: 54, loss is 0.7263691425323486\n",
- "epoch: 54 step: 55, loss is 0.7322994470596313\n",
- "epoch: 54 step: 56, loss is 0.731638491153717\n",
- "epoch: 54 step: 57, loss is 0.7607872486114502\n",
- "epoch: 54 step: 58, loss is 0.7385143637657166\n",
- "epoch: 54 step: 59, loss is 0.7565065622329712\n",
- "epoch: 54 step: 60, loss is 0.7223849296569824\n",
- "epoch: 54 step: 61, loss is 0.7290220260620117\n",
- "epoch: 54 step: 62, loss is 0.7081509828567505\n",
- "epoch: 54 step: 63, loss is 0.7626541256904602\n",
- "epoch: 54 step: 64, loss is 0.7654244899749756\n",
- "epoch: 54 step: 65, loss is 0.7653444409370422\n",
- "epoch: 54 step: 66, loss is 0.760387659072876\n",
- "epoch: 54 step: 67, loss is 0.7472813725471497\n",
- "epoch: 54 step: 68, loss is 0.7141896486282349\n",
- "epoch: 54 step: 69, loss is 0.746383786201477\n",
- "epoch: 54 step: 70, loss is 0.7493718862533569\n",
- "epoch: 54 step: 71, loss is 0.7681102752685547\n",
- "epoch: 54 step: 72, loss is 0.7416931986808777\n",
- "epoch: 54 step: 73, loss is 0.7065954208374023\n",
- "epoch: 54 step: 74, loss is 0.7480291128158569\n",
- "epoch: 54 step: 75, loss is 0.7770567536354065\n",
- "epoch: 54 step: 76, loss is 0.7952818870544434\n",
- "epoch: 54 step: 77, loss is 0.7983008623123169\n",
- "epoch: 54 step: 78, loss is 0.7558801174163818\n",
- "epoch: 54 step: 79, loss is 0.7203941345214844\n",
- "epoch: 54 step: 80, loss is 0.7246007919311523\n",
- "epoch: 54 step: 81, loss is 0.7673553228378296\n",
- "epoch: 54 step: 82, loss is 0.7812671661376953\n",
- "epoch: 54 step: 83, loss is 0.7313001751899719\n",
- "epoch: 54 step: 84, loss is 0.7276346683502197\n",
- "epoch: 54 step: 85, loss is 0.7108947038650513\n",
- "epoch: 54 step: 86, loss is 0.7738375663757324\n",
- "epoch: 54 step: 87, loss is 0.7338845729827881\n",
- "epoch: 54 step: 88, loss is 0.814232587814331\n",
- "epoch: 54 step: 89, loss is 0.7387315630912781\n",
- "epoch: 54 step: 90, loss is 0.7484081983566284\n",
- "epoch: 54 step: 91, loss is 0.7564253211021423\n",
- "epoch: 54 step: 92, loss is 0.7670139074325562\n",
- "epoch: 54 step: 93, loss is 0.755821704864502\n",
- "epoch: 54 step: 94, loss is 0.7833334803581238\n",
- "epoch: 54 step: 95, loss is 0.7665554285049438\n",
- "epoch: 54 step: 96, loss is 0.7675753235816956\n",
- "epoch: 54 step: 97, loss is 0.7377117276191711\n",
- "epoch: 54 step: 98, loss is 0.7363862991333008\n",
- "epoch: 54 step: 99, loss is 0.7812254428863525\n",
- "epoch: 54 step: 100, loss is 0.7952500581741333\n",
- "epoch: 54 step: 101, loss is 0.7169637680053711\n",
- "epoch: 54 step: 102, loss is 0.7211380004882812\n",
- "epoch: 54 step: 103, loss is 0.7168134450912476\n",
- "epoch: 54 step: 104, loss is 0.7754094004631042\n",
- "epoch: 54 step: 105, loss is 0.7297463417053223\n",
- "epoch: 54 step: 106, loss is 0.7191413640975952\n",
- "epoch: 54 step: 107, loss is 0.7724271416664124\n",
- "epoch: 54 step: 108, loss is 0.7343404293060303\n",
- "epoch: 54 step: 109, loss is 0.7264528274536133\n",
- "epoch: 54 step: 110, loss is 0.7644981145858765\n",
- "epoch: 54 step: 111, loss is 0.790616512298584\n",
- "epoch: 54 step: 112, loss is 0.776673436164856\n",
- "epoch: 54 step: 113, loss is 0.7522897720336914\n",
- "epoch: 54 step: 114, loss is 0.6739146709442139\n",
- "epoch: 54 step: 115, loss is 0.7514182329177856\n",
- "epoch: 54 step: 116, loss is 0.7457122802734375\n",
- "epoch: 54 step: 117, loss is 0.7181903123855591\n",
- "epoch: 54 step: 118, loss is 0.7044118642807007\n",
- "epoch: 54 step: 119, loss is 0.7699830532073975\n",
- "epoch: 54 step: 120, loss is 0.7391380071640015\n",
- "epoch: 54 step: 121, loss is 0.7953115701675415\n",
- "epoch: 54 step: 122, loss is 0.7866383194923401\n",
- "epoch: 54 step: 123, loss is 0.7408630847930908\n",
- "epoch: 54 step: 124, loss is 0.783271074295044\n",
- "epoch: 54 step: 125, loss is 0.7475206851959229\n",
- "epoch: 54 step: 126, loss is 0.738511323928833\n",
- "epoch: 54 step: 127, loss is 0.7573363184928894\n",
- "epoch: 54 step: 128, loss is 0.755993127822876\n",
- "epoch: 54 step: 129, loss is 0.7700057029724121\n",
- "epoch: 54 step: 130, loss is 0.7661925554275513\n",
- "epoch: 54 step: 131, loss is 0.7119203209877014\n",
- "epoch: 54 step: 132, loss is 0.7729599475860596\n",
- "epoch: 54 step: 133, loss is 0.7674583196640015\n",
- "epoch: 54 step: 134, loss is 0.7573413848876953\n",
- "epoch: 54 step: 135, loss is 0.7746201157569885\n",
- "epoch: 54 step: 136, loss is 0.7438004016876221\n",
- "epoch: 54 step: 137, loss is 0.7321425080299377\n",
- "epoch: 54 step: 138, loss is 0.7572171688079834\n",
- "epoch: 54 step: 139, loss is 0.7575472593307495\n",
- "epoch: 54 step: 140, loss is 0.7502453327178955\n",
- "epoch: 54 step: 141, loss is 0.7555367946624756\n",
- "epoch: 54 step: 142, loss is 0.7287209033966064\n",
- "epoch: 54 step: 143, loss is 0.7316848039627075\n",
- "epoch: 54 step: 144, loss is 0.748663604259491\n",
- "epoch: 54 step: 145, loss is 0.6767247915267944\n",
- "epoch: 54 step: 146, loss is 0.7249683141708374\n",
- "epoch: 54 step: 147, loss is 0.7552636861801147\n",
- "epoch: 54 step: 148, loss is 0.7152411937713623\n",
- "epoch: 54 step: 149, loss is 0.6876088976860046\n",
- "epoch: 54 step: 150, loss is 0.7704192996025085\n",
- "epoch: 54 step: 151, loss is 0.7437937259674072\n",
- "epoch: 54 step: 152, loss is 0.7584824562072754\n",
- "epoch: 54 step: 153, loss is 0.7430762052536011\n",
- "epoch: 54 step: 154, loss is 0.7273309230804443\n",
- "epoch: 54 step: 155, loss is 0.7476761341094971\n",
- "epoch: 54 step: 156, loss is 0.7825077772140503\n",
- "epoch: 54 step: 157, loss is 0.7951003313064575\n",
- "epoch: 54 step: 158, loss is 0.7270292043685913\n",
- "epoch: 54 step: 159, loss is 0.7613527774810791\n",
- "epoch: 54 step: 160, loss is 0.7755423784255981\n",
- "epoch: 54 step: 161, loss is 0.7348408699035645\n",
- "epoch: 54 step: 162, loss is 0.7177440524101257\n",
- "epoch: 54 step: 163, loss is 0.7837967872619629\n",
- "epoch: 54 step: 164, loss is 0.76091468334198\n",
- "epoch: 54 step: 165, loss is 0.7560702562332153\n",
- "epoch: 54 step: 166, loss is 0.7678524255752563\n",
- "epoch: 54 step: 167, loss is 0.7723098993301392\n",
- "epoch: 54 step: 168, loss is 0.7421074509620667\n",
- "epoch: 54 step: 169, loss is 0.7724562883377075\n",
- "epoch: 54 step: 170, loss is 0.7641831636428833\n",
- "epoch: 54 step: 171, loss is 0.7909409999847412\n",
- "epoch: 54 step: 172, loss is 0.7446756362915039\n",
- "epoch: 54 step: 173, loss is 0.727199375629425\n",
- "epoch: 54 step: 174, loss is 0.8046799898147583\n",
- "epoch: 54 step: 175, loss is 0.7564865350723267\n",
- "epoch: 54 step: 176, loss is 0.7449790835380554\n",
- "epoch: 54 step: 177, loss is 0.7786581516265869\n",
- "epoch: 54 step: 178, loss is 0.7472392320632935\n",
- "epoch: 54 step: 179, loss is 0.7383459806442261\n",
- "epoch: 54 step: 180, loss is 0.7299227714538574\n",
- "epoch: 54 step: 181, loss is 0.7417009472846985\n",
- "epoch: 54 step: 182, loss is 0.7536630034446716\n",
- "epoch: 54 step: 183, loss is 0.8001237511634827\n",
- "epoch: 54 step: 184, loss is 0.7870405912399292\n",
- "epoch: 54 step: 185, loss is 0.7591056823730469\n",
- "epoch: 54 step: 186, loss is 0.7271779775619507\n",
- "epoch: 54 step: 187, loss is 0.7362672686576843\n",
- "epoch: 54 step: 188, loss is 0.7715362310409546\n",
- "epoch: 54 step: 189, loss is 0.7378365993499756\n",
- "epoch: 54 step: 190, loss is 0.685612142086029\n",
- "epoch: 54 step: 191, loss is 0.7172574996948242\n",
- "epoch: 54 step: 192, loss is 0.776557207107544\n",
- "epoch: 54 step: 193, loss is 0.7957172989845276\n",
- "epoch: 54 step: 194, loss is 0.7354265451431274\n",
- "epoch: 54 step: 195, loss is 0.7489856481552124\n",
- "Train epoch time: 112734.780 ms, per step time: 578.127 ms\n",
- "epoch: 55 step: 1, loss is 0.744275689125061\n",
- "epoch: 55 step: 2, loss is 0.7038910388946533\n",
- "epoch: 55 step: 3, loss is 0.6882286667823792\n",
- "epoch: 55 step: 4, loss is 0.7866321206092834\n",
- "epoch: 55 step: 5, loss is 0.7007147669792175\n",
- "epoch: 55 step: 6, loss is 0.7042255401611328\n",
- "epoch: 55 step: 7, loss is 0.7378193736076355\n",
- "epoch: 55 step: 8, loss is 0.7591078281402588\n",
- "epoch: 55 step: 9, loss is 0.7172237634658813\n",
- "epoch: 55 step: 10, loss is 0.7517695426940918\n",
- "epoch: 55 step: 11, loss is 0.7702610492706299\n",
- "epoch: 55 step: 12, loss is 0.7580333352088928\n",
- "epoch: 55 step: 13, loss is 0.7520982623100281\n",
- "epoch: 55 step: 14, loss is 0.7355461716651917\n",
- "epoch: 55 step: 15, loss is 0.7338203191757202\n",
- "epoch: 55 step: 16, loss is 0.7597132921218872\n",
- "epoch: 55 step: 17, loss is 0.7511581182479858\n",
- "epoch: 55 step: 18, loss is 0.7844325304031372\n",
- "epoch: 55 step: 19, loss is 0.7535659074783325\n",
- "epoch: 55 step: 20, loss is 0.7130852937698364\n",
- "epoch: 55 step: 21, loss is 0.7166057825088501\n",
- "epoch: 55 step: 22, loss is 0.7339085340499878\n",
- "epoch: 55 step: 23, loss is 0.677399754524231\n",
- "epoch: 55 step: 24, loss is 0.7447442412376404\n",
- "epoch: 55 step: 25, loss is 0.6997517347335815\n",
- "epoch: 55 step: 26, loss is 0.7391203045845032\n",
- "epoch: 55 step: 27, loss is 0.773114800453186\n",
- "epoch: 55 step: 28, loss is 0.7541046142578125\n",
- "epoch: 55 step: 29, loss is 0.7303310632705688\n",
- "epoch: 55 step: 30, loss is 0.7417986392974854\n",
- "epoch: 55 step: 31, loss is 0.6984444856643677\n",
- "epoch: 55 step: 32, loss is 0.7298721671104431\n",
- "epoch: 55 step: 33, loss is 0.7427204847335815\n",
- "epoch: 55 step: 34, loss is 0.7060085535049438\n",
- "epoch: 55 step: 35, loss is 0.7307683229446411\n",
- "epoch: 55 step: 36, loss is 0.7617698907852173\n",
- "epoch: 55 step: 37, loss is 0.6857370138168335\n",
- "epoch: 55 step: 38, loss is 0.7156643867492676\n",
- "epoch: 55 step: 39, loss is 0.7336837649345398\n",
- "epoch: 55 step: 40, loss is 0.7335735559463501\n",
- "epoch: 55 step: 41, loss is 0.7490066885948181\n",
- "epoch: 55 step: 42, loss is 0.7337225675582886\n",
- "epoch: 55 step: 43, loss is 0.7216358780860901\n",
- "epoch: 55 step: 44, loss is 0.7226842641830444\n",
- "epoch: 55 step: 45, loss is 0.7380735874176025\n",
- "epoch: 55 step: 46, loss is 0.8030295372009277\n",
- "epoch: 55 step: 47, loss is 0.750422477722168\n",
- "epoch: 55 step: 48, loss is 0.7096849679946899\n",
- "epoch: 55 step: 49, loss is 0.7561691999435425\n",
- "epoch: 55 step: 50, loss is 0.7495482563972473\n",
- "epoch: 55 step: 51, loss is 0.7428330183029175\n",
- "epoch: 55 step: 52, loss is 0.7190721035003662\n",
- "epoch: 55 step: 53, loss is 0.745968222618103\n",
- "epoch: 55 step: 54, loss is 0.7170397043228149\n",
- "epoch: 55 step: 55, loss is 0.7815959453582764\n",
- "epoch: 55 step: 56, loss is 0.7834920883178711\n",
- "epoch: 55 step: 57, loss is 0.7659237384796143\n",
- "epoch: 55 step: 58, loss is 0.7417773604393005\n",
- "epoch: 55 step: 59, loss is 0.757443904876709\n",
- "epoch: 55 step: 60, loss is 0.6910176277160645\n",
- "epoch: 55 step: 61, loss is 0.7310269474983215\n",
- "epoch: 55 step: 62, loss is 0.7495406866073608\n",
- "epoch: 55 step: 63, loss is 0.7034529447555542\n",
- "epoch: 55 step: 64, loss is 0.723935067653656\n",
- "epoch: 55 step: 65, loss is 0.7491556406021118\n",
- "epoch: 55 step: 66, loss is 0.6997479200363159\n",
- "epoch: 55 step: 67, loss is 0.7111839056015015\n",
- "epoch: 55 step: 68, loss is 0.7310456037521362\n",
- "epoch: 55 step: 69, loss is 0.7571691274642944\n",
- "epoch: 55 step: 70, loss is 0.7079789638519287\n",
- "epoch: 55 step: 71, loss is 0.7275900840759277\n",
- "epoch: 55 step: 72, loss is 0.7407675981521606\n",
- "epoch: 55 step: 73, loss is 0.7183035016059875\n",
- "epoch: 55 step: 74, loss is 0.7393774390220642\n",
- "epoch: 55 step: 75, loss is 0.712228536605835\n",
- "epoch: 55 step: 76, loss is 0.775634765625\n",
- "epoch: 55 step: 77, loss is 0.7496112585067749\n",
- "epoch: 55 step: 78, loss is 0.749141275882721\n",
- "epoch: 55 step: 79, loss is 0.746747612953186\n",
- "epoch: 55 step: 80, loss is 0.70037841796875\n",
- "epoch: 55 step: 81, loss is 0.7143192291259766\n",
- "epoch: 55 step: 82, loss is 0.750150203704834\n",
- "epoch: 55 step: 83, loss is 0.7737506628036499\n",
- "epoch: 55 step: 84, loss is 0.7171932458877563\n",
- "epoch: 55 step: 85, loss is 0.7532806396484375\n",
- "epoch: 55 step: 86, loss is 0.7723277807235718\n",
- "epoch: 55 step: 87, loss is 0.7289742231369019\n",
- "epoch: 55 step: 88, loss is 0.7107532620429993\n",
- "epoch: 55 step: 89, loss is 0.7122771739959717\n",
- "epoch: 55 step: 90, loss is 0.7294716238975525\n",
- "epoch: 55 step: 91, loss is 0.7449286580085754\n",
- "epoch: 55 step: 92, loss is 0.7512769103050232\n",
- "epoch: 55 step: 93, loss is 0.6922203302383423\n",
- "epoch: 55 step: 94, loss is 0.7573877573013306\n",
- "epoch: 55 step: 95, loss is 0.7619054317474365\n",
- "epoch: 55 step: 96, loss is 0.7789785861968994\n",
- "epoch: 55 step: 97, loss is 0.7423627376556396\n",
- "epoch: 55 step: 98, loss is 0.7708364725112915\n",
- "epoch: 55 step: 99, loss is 0.7475329637527466\n",
- "epoch: 55 step: 100, loss is 0.6854932308197021\n",
- "epoch: 55 step: 101, loss is 0.6960785388946533\n",
- "epoch: 55 step: 102, loss is 0.7220172882080078\n",
- "epoch: 55 step: 103, loss is 0.7396911978721619\n",
- "epoch: 55 step: 104, loss is 0.7481573224067688\n",
- "epoch: 55 step: 105, loss is 0.7013437747955322\n",
- "epoch: 55 step: 106, loss is 0.7170718908309937\n",
- "epoch: 55 step: 107, loss is 0.7182402610778809\n",
- "epoch: 55 step: 108, loss is 0.7258366346359253\n",
- "epoch: 55 step: 109, loss is 0.7338352203369141\n",
- "epoch: 55 step: 110, loss is 0.7683756947517395\n",
- "epoch: 55 step: 111, loss is 0.7408244609832764\n",
- "epoch: 55 step: 112, loss is 0.7270534038543701\n",
- "epoch: 55 step: 113, loss is 0.742049515247345\n",
- "epoch: 55 step: 114, loss is 0.72972571849823\n",
- "epoch: 55 step: 115, loss is 0.7034549117088318\n",
- "epoch: 55 step: 116, loss is 0.7003132104873657\n",
- "epoch: 55 step: 117, loss is 0.722968339920044\n",
- "epoch: 55 step: 118, loss is 0.7479698657989502\n",
- "epoch: 55 step: 119, loss is 0.7531453967094421\n",
- "epoch: 55 step: 120, loss is 0.727893054485321\n",
- "epoch: 55 step: 121, loss is 0.7445448637008667\n",
- "epoch: 55 step: 122, loss is 0.7122910022735596\n",
- "epoch: 55 step: 123, loss is 0.7443070411682129\n",
- "epoch: 55 step: 124, loss is 0.7298433780670166\n",
- "epoch: 55 step: 125, loss is 0.7234458923339844\n",
- "epoch: 55 step: 126, loss is 0.8009555339813232\n",
- "epoch: 55 step: 127, loss is 0.7044442892074585\n",
- "epoch: 55 step: 128, loss is 0.7753439545631409\n",
- "epoch: 55 step: 129, loss is 0.6885216236114502\n",
- "epoch: 55 step: 130, loss is 0.7310723066329956\n",
- "epoch: 55 step: 131, loss is 0.7252342700958252\n",
- "epoch: 55 step: 132, loss is 0.7497819662094116\n",
- "epoch: 55 step: 133, loss is 0.7822544574737549\n",
- "epoch: 55 step: 134, loss is 0.7890368700027466\n",
- "epoch: 55 step: 135, loss is 0.7503283023834229\n",
- "epoch: 55 step: 136, loss is 0.7194048166275024\n",
- "epoch: 55 step: 137, loss is 0.6863012909889221\n",
- "epoch: 55 step: 138, loss is 0.7515264749526978\n",
- "epoch: 55 step: 139, loss is 0.7841272354125977\n",
- "epoch: 55 step: 140, loss is 0.7787648439407349\n",
- "epoch: 55 step: 141, loss is 0.7027889490127563\n",
- "epoch: 55 step: 142, loss is 0.7284849882125854\n",
- "epoch: 55 step: 143, loss is 0.7433218359947205\n",
- "epoch: 55 step: 144, loss is 0.7432136535644531\n",
- "epoch: 55 step: 145, loss is 0.7335867881774902\n",
- "epoch: 55 step: 146, loss is 0.7527831792831421\n",
- "epoch: 55 step: 147, loss is 0.7496621012687683\n",
- "epoch: 55 step: 148, loss is 0.7479175329208374\n",
- "epoch: 55 step: 149, loss is 0.7389644384384155\n",
- "epoch: 55 step: 150, loss is 0.7516632676124573\n",
- "epoch: 55 step: 151, loss is 0.7238610982894897\n",
- "epoch: 55 step: 152, loss is 0.736897349357605\n",
- "epoch: 55 step: 153, loss is 0.7705087661743164\n",
- "epoch: 55 step: 154, loss is 0.7149750590324402\n",
- "epoch: 55 step: 155, loss is 0.7272302508354187\n",
- "epoch: 55 step: 156, loss is 0.7419195175170898\n",
- "epoch: 55 step: 157, loss is 0.7760586142539978\n",
- "epoch: 55 step: 158, loss is 0.7338032126426697\n",
- "epoch: 55 step: 159, loss is 0.7698612213134766\n",
- "epoch: 55 step: 160, loss is 0.7154054641723633\n",
- "epoch: 55 step: 161, loss is 0.7244197726249695\n",
- "epoch: 55 step: 162, loss is 0.7362625598907471\n",
- "epoch: 55 step: 163, loss is 0.72906893491745\n",
- "epoch: 55 step: 164, loss is 0.7270680069923401\n",
- "epoch: 55 step: 165, loss is 0.7562347054481506\n",
- "epoch: 55 step: 166, loss is 0.7544159889221191\n",
- "epoch: 55 step: 167, loss is 0.789046049118042\n",
- "epoch: 55 step: 168, loss is 0.7636502385139465\n",
- "epoch: 55 step: 169, loss is 0.8119328618049622\n",
- "epoch: 55 step: 170, loss is 0.743886411190033\n",
- "epoch: 55 step: 171, loss is 0.7024474143981934\n",
- "epoch: 55 step: 172, loss is 0.7490172386169434\n",
- "epoch: 55 step: 173, loss is 0.7480899691581726\n",
- "epoch: 55 step: 174, loss is 0.7499377727508545\n",
- "epoch: 55 step: 175, loss is 0.7528517246246338\n",
- "epoch: 55 step: 176, loss is 0.7139164805412292\n",
- "epoch: 55 step: 177, loss is 0.7293939590454102\n",
- "epoch: 55 step: 178, loss is 0.7589470148086548\n",
- "epoch: 55 step: 179, loss is 0.7250729203224182\n",
- "epoch: 55 step: 180, loss is 0.8480008244514465\n",
- "epoch: 55 step: 181, loss is 0.7570416331291199\n",
- "epoch: 55 step: 182, loss is 0.7542234659194946\n",
- "epoch: 55 step: 183, loss is 0.7431902289390564\n",
- "epoch: 55 step: 184, loss is 0.7533789873123169\n",
- "epoch: 55 step: 185, loss is 0.7397176027297974\n",
- "epoch: 55 step: 186, loss is 0.753251314163208\n",
- "epoch: 55 step: 187, loss is 0.7259076833724976\n",
- "epoch: 55 step: 188, loss is 0.7928569912910461\n",
- "epoch: 55 step: 189, loss is 0.7570458650588989\n",
- "epoch: 55 step: 190, loss is 0.790752649307251\n",
- "epoch: 55 step: 191, loss is 0.763931393623352\n",
- "epoch: 55 step: 192, loss is 0.7105399370193481\n",
- "epoch: 55 step: 193, loss is 0.783504843711853\n",
- "epoch: 55 step: 194, loss is 0.7484074831008911\n",
- "epoch: 55 step: 195, loss is 0.7609691619873047\n",
- "Train epoch time: 112069.891 ms, per step time: 574.717 ms\n",
- "total time:1h 39m 16s\n",
- "============== Train Success ==============\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"import time\n",
"import mindspore\n",
@@ -11282,103 +388,9 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(168277:281473695031312,MainProcess):2024-12-19-18:00:03.691.248 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] ME(168277:281473695031312,MainProcess):2024-12-19-18:00:03.693.637 [mindspore/run_check/_check_version.py:396] Can not find the tbe operator implementation(need by mindspore-ascend). Please check whether the Environment Variable PYTHONPATH is set. For details, refer to the installation guidelines: https://www.mindspore.cn/install\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:03.698.450 [mindspore/core/utils/ms_context.cc:530] GetJitLevel] Set jit level to O2 for rank table startup method.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model size is 2.0x\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.897.329 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.897.376 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.897.481 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.897.493 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.897.742 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.897.754 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.034 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.046 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.261 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.271 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.427 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.439 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.648 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.659 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.787 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.798 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.933 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.898.944 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.076 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.086 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.270 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.281 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.431 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.442 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.622 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.632 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.902 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.912 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.970 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.899.980 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.376 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.388 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.448 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.459 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.612 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.622 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.874 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.885 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.941 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.900.951 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.191 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.202 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.311 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.321 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.532 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.542 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.673 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.683 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.975 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.901.986 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.105 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.114 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.258 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.268 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.611 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.622 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.804 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.815 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.907 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.902.917 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.903.057 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.903.067 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.903.249 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:00:17.903.259 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "result:{'Loss': 1.0264258415271075, 'Top_1_Acc': 0.8084935897435898, 'Top_5_Acc': 0.9829727564102564}, ckpt:'./shufflenetv1-55_195.ckpt', time: 0h 0m 50s\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindspore import load_checkpoint, load_param_into_net\n",
"\n",
@@ -11421,112 +433,9 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model size is 2.0x\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.709.415 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/1681751341.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.709.461 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/1681751341.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.711.990 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.006 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.089 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.100 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.265 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/778396864.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.276 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/778396864.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.356 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.366 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.641 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.653 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.868 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.712.879 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.049 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.061 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.273 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.284 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.409 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.419 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.552 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.562 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.692 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.702 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.888 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.713.898 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.046 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.057 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.240 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.251 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.455 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/778396864.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.467 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/778396864.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.557 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.566 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.624 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.714.633 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.024 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.035 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.094 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.104 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.258 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.267 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.516 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.526 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.580 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.590 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.809 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.819 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.927 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.715.936 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.028 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/778396864.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.038 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/778396864.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.173 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.183 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.308 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.318 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.608 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.619 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.735 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.745 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.888 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.716.898 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.256 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.268 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.450 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.460 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.552 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.562 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.701 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.711 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n",
- "[ERROR] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.892 [mindspore/core/utils/file_utils.cc:253] GetRealPath] Get realpath failed, path[/tmp/ipykernel_168277/3162391481.py]\n",
- "[WARNING] CORE(168277,ffffb39b2010,python):2024-12-19-18:01:14.717.903 [mindspore/core/utils/info.cc:121] ToString] The file '/tmp/ipykernel_168277/3162391481.py' may not exists.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-\r"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAGACAYAAAAeS/0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhdZZnvjd9r7XmqvWueUklVKgMhTBImEQhDK6JIo0Ja7WODimDj0JxW+/XorwWcON32aTxNH9tGu3F8+21H2hEEmUcRCAQyJ5Wpkppr156HNfz+4Eodv/ezhaCksiXfz3V5yb2HtZ/1rPu5n2et1Posy/d9XwghhBBCCCGEEEIIIU2BfaQbQAghhBBCCCGEEEII+b/wgh0hhBBCCCGEEEIIIU0EL9gRQgghhBBCCCGEENJE8IIdIYQQQgghhBBCCCFNBC/YEUIIIYQQQgghhBDSRPCCHSGEEEIIIYQQQgghTQQv2BFCCCGEEEIIIYQQ0kTwgh0hhBBCCCGEEEIIIU0EL9gRQgghhBBCCCGEENJEHLUX7J544gk588wzJZFIiGVZsn79+iPdJEJeMW644QaxLEumpqaOdFPIUQZzj/wuDuYGIa92BgcH5eKLL37Jz913331iWZbcd999869deeWVMjg4ePgaR17VMPeOPg513TU4OChXXnnlH/Rb5557rpx77rl/0DbIHw9c0zcHR+UFu3q9LpdffrnMzMzIzTffLN/61rdkyZIlR7pZ5FXEI488IjfccINks9kj3RRylMHcI4S8Gvnyl78sX//61490M8hRCHOPEELIkSJ4pBtwJNixY4fs3r1bvvrVr8pVV111pJtDXoU88sgjcuONN8qVV14pmUzmSDeHHEUw9wghr0a+/OUvS0dHxx/8FyLNxDnnnCPlclnC4fCRbgp5EZh75NXAli1bxLaPyr/VIeSPmqNy1E5MTIiIvOTJbLFYXIDWkKMZz/OkUqkc6WaQoxDmHjka4DxOmhnbtiUajfIkmiw4zL2jj0gkIqFQ6EU/wzmTLCS+70u5XD7SzWh6jroqfeWVV8ratWtFROTyyy8Xy7Lk3HPPlSuvvFKSyaTs2LFD3vSmN0kqlZI///M/F5EXitdHP/pRGRgYkEgkIitXrpR/+Id/EN/3Ydvlclk+8pGPSEdHh6RSKbnkkktkdHRULMuSG264YaF3lRwhbrjhBvn4xz8uIiJDQ0NiWZZYliW7du0Sy7LkQx/6kHznO9+R1atXSyQSkTvuuKOhS0RE5r+jb8XYvHmzrFu3Tjo7OyUWi8nKlSvlU5/61Iu2a/fu3bJs2TI57rjjZHx8/JXcZdIkMPdIs/DQQw/JqaeeKtFoVIaHh+Vf//VfG37u29/+tqxZs0ZisZi0tbXJO97xDtm7d6/xuccff1ze+MY3Sjqdlng8LmvXrpWHH34YPnPQtbJx40Z517veJa2trXLWWWcdlv0jL87u3bvl2muvlZUrV0osFpP29na5/PLLZdeuXfC53+U1/PrXvz5fu0RecC89//zzcv/998/Xtd/2KO3cuVMuv/xyaWtrk3g8LmeccYb87Gc/g20erHXf/e535cYbb5T+/n5JpVJy2WWXydzcnFSrVbnuuuukq6tLksmkvOc975FqtQrbcBxHPvvZz8rw8LBEIhEZHByUT37yk8bnDvLLX/5STjrpJIlGo3LsscfKD3/4w4Zt0vVX43mefOlLX5LVq1dLNBqV7u5uueaaa2R2dvZFv3c0wtx7Aebe0cfU1JSsW7dOWlpapL29Xf7qr/4K/mFWO+wO5vr9998v1157rXR1dcmiRYvm37/11ltleHhYYrGYnHbaafLggw8u5O6QJiKbzc7fuZNOp+U973mPlEql+fcPtT4ddGzeeeedcsopp0gsFptfH951111y1llnSSaTkWQyKStXrpRPfvKT8P1qtSrXX3+9LFu2TCKRiAwMDMjf/M3f/M46+GrhqLsl9pprrpH+/n75whe+IB/5yEfk1FNPle7ubvnOd74jjuPIhRdeKGeddZb8wz/8g8TjcfF9Xy655BK599575X3ve5+cdNJJcuedd8rHP/5xGR0dlZtvvnl+21deeaV897vflXe/+91yxhlnyP333y9vfvObj+DekiPB2972Ntm6dav8x3/8h9x8883S0dEhIiKdnZ0iInLPPffId7/7XfnQhz4kHR0dMjg4+LJ8Y88++6ycffbZEgqF5Oqrr5bBwUHZsWOH/OQnP5HPf/7zDb+zY8cOOf/886WtrU3uuuuu+TaRVxfMPdIMbNiwQd7whjdIZ2en3HDDDeI4jlx//fXS3d0Nn/v85z8vf/u3fyvr1q2Tq666SiYnJ+WWW26Rc845R55++un5v4K/55575KKLLpI1a9bI9ddfL7Zty2233Sbnn3++PPjgg3LaaafBdi+//HJZvny5fOELXzD+YY0sDE888YQ88sgj8o53vEMWLVoku3btkn/5l3+Rc889VzZu3CjxePxlbe9LX/qSfPjDH5ZkMjn/DwQH82l8fFzOPPNMKZVK8pGPfETa29vlG9/4hlxyySXy/e9/X9761rfCtm666SaJxWLyiU98QrZv3y633HKLhEIhsW1bZmdn5YYbbpDHHntMvv71r8vQ0JB8+tOfnv/uVVddJd/4xjfksssuk49+9KPy+OOPy0033SSbNm2SH/3oR/A727Ztkz/7sz+TD3zgA3LFFVfIbbfdJpdffrnccccd8vrXv/5l7f8111wjX//61+U973mPfOQjH5GRkRH553/+Z3n66afl4Ycffsm/mjmaYO4x945W1q1bJ4ODg3LTTTfJY489Jv/0T/8ks7Oz8s1vfvNFv3fttddKZ2enfPrTn57/C7t/+7d/k2uuuUbOPPNMue6662Tnzp1yySWXSFtbmwwMDCzE7pAmYt26dTI0NCQ33XSTPPXUU/K1r31Nurq65O/+7u9E5OXVpy1btsg73/lOueaaa+T973+/rFy5Up5//nm5+OKL5YQTTpDPfOYzEolEZPv27fAPs57nySWXXCIPPfSQXH311bJq1SrZsGGD3HzzzbJ161a5/fbbF7JLFhb/KOTee+/1RcT/3ve+N//aFVdc4YuI/4lPfAI+e/vtt/si4n/uc5+D1y+77DLfsix/+/btvu/7/pNPPumLiH/dddfB56688kpfRPzrr7/+8OwMaUq++MUv+iLij4yMwOsi4tu27T///PPw+sGcvPfee+H1kZERX0T82267bf61c845x0+lUv7u3bvhs57nzf/39ddf74uIPzk56W/atMnv6+vzTz31VH9mZuYV2T/SvDD3yJHm0ksv9aPRKOTJxo0b/UAg4B9cduzatcsPBAL+5z//efjuhg0b/GAwOP+653n+8uXL/QsvvBDyrFQq+UNDQ/7rX//6+dcO5t473/nOw7l75BAolUrGa48++qgvIv43v/nN+dcOHjPNbbfdZtSx1atX+2vXrjU+e9111/ki4j/44IPzr+XzeX9oaMgfHBz0Xdf1ff//1rrjjjvOr9Vq85995zvf6VuW5V900UWw3de+9rX+kiVL5uP169f7IuJfddVV8LmPfexjvoj499xzz/xrS5Ys8UXE/8EPfjD/2tzcnN/b2+u/5jWvmX+tUf294oor4HcffPBBX0T873znO/C7d9xxR8PXj3aYe8y9o42DuXzJJZfA69dee60vIv4zzzzj+/4LuXHFFVfMv38w18866yzfcZz512u1mt/V1eWfdNJJfrVanX/91ltv9UWk4Vggr04O5tZ73/teeP2tb32r397e7vv+71ef7rjjDvjszTffPH/u8Lv41re+5du2DfXW933/K1/5ii8i/sMPP/x77eMfA0fdLbEvxV/+5V9C/POf/1wCgYB85CMfgdc/+tGPiu/78otf/EJERO644w4ReeFfKX6bD3/4w4exteSPkbVr18qxxx77e313cnJSHnjgAXnve98rixcvhvca3drx3HPPydq1a2VwcFDuvvtuaW1t/b1+l7w6YO6Rw43runLnnXfKpZdeCnmyatUqufDCC+fjH/7wh+J5nqxbt06mpqbm/9fT0yPLly+Xe++9V0RE1q9fL9u2bZN3vetdMj09Pf+5YrEoF1xwgTzwwAPieR604QMf+MDC7Cz5ncRisfn/rtfrMj09LcuWLZNMJiNPPfXUK/pbP//5z+W0006D25+TyaRcffXVsmvXLtm4cSN8/i/+4i/gr4JOP/108X1f3vve98LnTj/9dNm7d684jjP/OyIif/3Xfw2f++hHPyoiYtwG2dfXB39h1dLSIn/xF38hTz/9tIyNjR3y/n3ve9+TdDotr3/962GsrFmzRpLJ5PxYIS/A3GPuHa188IMfhPjgOejB/PldvP/975dAIDAf/+Y3v5GJiQn5wAc+AA8lufLKKyWdTr+CLSZ/LOh11dlnny3T09OSy+Vedn0aGhqC9aDI/32uwH/9138Za7qDfO9735NVq1bJMcccA/Xo/PPPFxF5Vdejo+6W2BcjGAzCvfsiL7gw+vr6JJVKweurVq2af//g/9u2LUNDQ/C5ZcuWHcYWkz9GdI68HHbu3CkiIscdd9whff4tb3mLdHd3y5133inJZPL3/l3y6oC5Rw43k5OTUi6XZfny5cZ7K1eunF/Ybdu2TXzfb/g5EZk/qd22bZuIiFxxxRW/8zfn5ubggvAfkufklaFcLstNN90kt912m4yOjsKtyXNzc6/ob+3evVtOP/104/XfXqf9dt3S/+Bw8ARU3+aVTqfF8zyZm5uT9vb2+XWeXtf19PRIJpOZXw8eZNmyZcY/ZqxYsUJEXnCE9vT0HNL+bdu2Tebm5qSrq6vh+wcfpEZegLnH3Dta0fPp8PCw2LZt+Bs1es48mE96e6FQSJYuXfqHN5T80aFr18E11+zs7MuuT43WaH/2Z38mX/va1+Sqq66ST3ziE3LBBRfI2972NrnsssvmH4yzbds22bRp07zmR/Nqrke8YPdbRCIRPi2JHHZ++19/D9LoL5REXvhrlT+Et7/97fKNb3xDvvOd78g111zzB22L/PHD3CPNgud5YlmW/OIXv4B/2T/IwYu8B/+l9Ytf/KKcdNJJDbelLwg3ynOysHz4wx+W2267Ta677jp57WtfK+l0WizLkne84x3wr+eHq/68GI3y7cVe/+0LPiK/u82HC8/zpKurS77zne80fP93nbwcrTD3XjmYe3/cHGq+cM4kL8Wh1Kg/JN9isZg88MADcu+998rPfvYzueOOO+Q///M/5fzzz5df/vKXEggExPM8Of744+Uf//EfG2731exW5AW7l2DJkiVy9913Sz6fh7+y27x58/z7B//f8zwZGRmBf5HYvn37wjaYNAUvd1F18F8q9AMA9L9KHPyXreeee+6QtvvFL35RgsGgXHvttZJKpeRd73rXy2oX+eODuUeOJAefHnzwL+N+my1btsz/9/DwsPi+L0NDQ/N/+dGI4eFhEXnhlq4/+ZM/eeUbTA4L3//+9+WKK66Q//W//tf8a5VKxagzv11/Dt4SI2LWH5HfXduWLFkCuXUQvU77Qzm4ztu2bdv8X1CJvPDggWw2a/zO9u3bxfd9aPfWrVtF5IUn5R0qw8PDcvfdd8vrXvc6nlgfAsw95t7RyrZt2+Cvl7Zv3y6e572sYy7yf/N227Zt87cbirxwi/nIyIiceOKJr0h7yauDl1uffhe2bcsFF1wgF1xwgfzjP/6jfOELX5BPfepTcu+998qf/MmfyPDwsDzzzDNywQUXLPg/Xhxp+OdkL8Gb3vQmcV1X/vmf/xlev/nmm8WyLLnoootERObvxf7yl78Mn7vlllsWpqGkqUgkEiJiXgT5XSxZskQCgYA88MAD8LrOp87OTjnnnHPk3//932XPnj3wnv6XWJEXFpm33nqrXHbZZXLFFVfIj3/845exF+SPEeYeOZIEAgG58MIL5fbbb4c82bRpk9x5553z8dve9jYJBAJy4403Gvnj+75MT0+LiMiaNWtkeHhY/uEf/kEKhYLxe5OTk4dpT8gfQiAQMI7rLbfcYvz10sELsr9df4rFonzjG98wtplIJBrWtTe96U3y61//Wh599FHYxq233iqDg4O/t7ez0e+IvPDU0N/m4L/2v/nNb4bX9+/fD0/Hy+Vy8s1vflNOOumkQ74lUeSFp/O5riuf/exnjfccx3lZT/o+GmDuMfeOVv7P//k/EB88Bz14rnqonHLKKdLZ2Slf+cpXpFarzb/+9a9/ncecGLzc+tSImZkZ47WDd1VUq1UReaEejY6Oyle/+lXjs+Vyef4Jx69G+Bd2L8Fb3vIWOe+88+RTn/qU7Nq1S0488UT55S9/Kf/1X/8l11133fyEv2bNGnn7298uX/rSl2R6elrOOOMMuf/+++f/RetouxJ8tLNmzRoREfnUpz4l73jHOyQUCslb3vKW3/n5dDotl19+udxyyy1iWZYMDw/LT3/604b34//TP/2TnHXWWXLyySfL1VdfLUNDQ7Jr1y752c9+JuvXrzc+b9u2fPvb35ZLL71U1q1bJz//+c/hX8zIqwvmHjnS3HjjjXLHHXfI2WefLddee604jiO33HKLrF69Wp599lkReeFk+XOf+5z8j//xP2TXrl1y6aWXSiqVkpGREfnRj34kV199tXzsYx8T27bla1/7mlx00UWyevVqec973iP9/f0yOjoq9957r7S0tMhPfvKTI7zHRHPxxRfLt771LUmn03LsscfKo48+Knfffbe0t7fD597whjfI4sWL5X3ve598/OMfl0AgIP/+7/8unZ2dxj8MrFmzRv7lX/5FPve5z8myZcukq6tLzj//fPnEJz4h//Ef/yEXXXSRfOQjH5G2tjb5xje+ISMjI/KDH/zgFVOdnHjiiXLFFVfIrbfeKtlsVtauXSu//vWv5Rvf+IZceumlct5558HnV6xYIe973/vkiSeekO7ubvn3f/93GR8fl9tuu+1l/e7atWvlmmuukZtuuknWr18vb3jDGyQUCsm2bdvke9/7nvzv//2/5bLLLntF9vHVAHOPuXe0MjIyIpdccom88Y1vlEcffVS+/e1vy7ve9a6X/RdxoVBIPve5z8k111wj559/vvzZn/2ZjIyMyG233UaHHTF4ufWpEZ/5zGfkgQcekDe/+c2yZMkSmZiYkC9/+cuyaNGi+Yf6vPvd75bvfve78oEPfEDuvfdeed3rXieu68rmzZvlu9/9rtx5551yyimnHO7dPTIs9GNpm4GDjzL/3ve+N//aFVdc4ScSiYafz+fz/n//7//d7+vr80OhkL98+XL/i1/8ou95HnyuWCz6H/zgB/22tjY/mUz6l156qb9lyxZfRPz/+T//52HdJ9J8fPazn/X7+/t927Z9EfFHRkZ8EfE/+MEPNvz85OSk//a3v92Px+N+a2urf8011/jPPfecLyL+bbfdBp997rnn/Le+9a1+JpPxo9Gov3LlSv9v//Zv598/+Bju3348dqlU8teuXesnk0n/scceOyz7TJoD5h450tx///3+mjVr/HA47C9dutT/yle+Mp8bv80PfvAD/6yzzvITiYSfSCT8Y445xv/gBz/ob9myBT739NNP+29729v89vZ2PxKJ+EuWLPHXrVvn/+pXv5r/TKPcI0eG2dlZ/z3veY/f0dHhJ5NJ/8ILL/Q3b97sL1myxL/iiivgs08++aR/+umn++Fw2F+8eLH/j//4j/5tt902X7sOMjY25r/5zW/2U6mULyL+2rVr59/bsWOHf9lll83XpdNOO83/6U9/Cr/TaO3n+/78bz3xxBPweqN8qtfr/o033ugPDQ35oVDIHxgY8P/H//gffqVSge8uWbLEf/Ob3+zfeeed/gknnOBHIhH/mGOOMX77YJvuvffe+deuuOIKf8mSJUaf3nrrrf6aNWv8WCzmp1Ip//jjj/f/5m/+xt+/f7/x2aMZ5h5z72jjYL5s3LjRv+yyy/xUKuW3trb6H/rQh/xyuTz/OT0Gflf+HeTLX/6yPzQ05EciEf+UU07xH3jgAX/t2rWQ/+TVze9aV+k6+XLrk+ZXv/qV/6d/+qd+X1+fHw6H/b6+Pv+d73ynv3XrVvhcrVbz/+7v/s5fvXq1H4lE/NbWVn/NmjX+jTfe6M/Nzb2yO99EWL7f4F4m8oqxfv16ec1rXiPf/va35c///M+PdHMIIYQQQgghhBBCSJNDh90rSLlcNl770pe+JLZtyznnnHMEWkQIIYQQQgghhBBC/tigw+4V5O///u/lySeflPPOO0+CwaD84he/kF/84hdy9dVXv6ofNUwIIYQQQgghhBBCXjl4S+wryF133SU33nijbNy4UQqFgixevFje/e53y6c+9SkJBnltlBBCCCGEEEIIIYS8NLxgRwghhBBCCCGEEEJIE0GHHSGEEEIIIYQQQgghTQQv2BFCCCGEEEIIIYQQ0kTwgh0hhBBCCCGEEEIIIU3EIT8J4ay150Kczc5AHLE9iNvCqMZb3B43ttnZloC4I5OEOBwIQRyMxHADAWz+zGwW4pqDbWjNpI022G4d4mq1CnGlUoE4GotC7IoLcalcgDidacEf9PHzIiK1ag3igOB+BwIBiFNJ7KdEAvsxFMI2ltX2favBdVob+1K3yfEtiD/42a+Y2zgMfPXHd0O8b/OTEE+ObILYdXE/uhcfY2xz8fAqiFt7FkMcjeE2tj7/CMS7tz8LcT2Pxzyg2tDSauZdMIrj4bTXnQPxshXY7socjrfnn3saYs/D41WrY95ufH6D0YZcdgriag1zv17DvJuZLkFcKOFvOC5+v7OzDeLWNsxbERHXz+M2cDhKpYxj+PYf3mlsY6HwPO+lP/THiLKYWhaO9XIRj/v0DOZNW1srxG4N8yIWN2t/IBzBJqia5Am2ATPxyGDbC/PvWwN9WM9jMZz39PEJ2tg7jdrpeGreUdvIzuUgjtphiBNqfshXy/ibcTyesQh+X8Scp9LpDMSzs1jjakWsJ1q2W6+pYoG7JIGgmTXhEPZNOoFzZW8n5vLo+DjExRr2Y0sLft6pYyuLxTmjDYv6cU0QCmHf6gdUffcn641tHA6+97NHIdb1LhbBYxyOYt95AXxfRMTxsb+DaiQHVFqGdIlVimU/iNurW+p9owUitqte9XF9pY+Za+ux0mCj0ET/ReNG2/A89ZvqA3oLepv62Liuua402qlix2g3bvO9l6x+yW2+Enz9mqshLhfVelgdc2ugF+JsXJ0XiMgJaaw/e57F9dJPHl2P26hiLQkE1G+qehmKYO63dXYYbWiJ4TaWL+6E+NzXnQaxU8c2TM3hujKUwlqzaftuiH91H45fERFRfRfR9S+EYyEcxDyqqTY5dZXIKmciDWpAycfjOVvBvLNVGf/Jw48Z2zhcfOfpyyF++B6s96korsMTcVW7LfMUOpnAPu1I90HcGl8EcSaN5wcHpvZAvHPyGYhb+jEv2vuLRhtCEVyzlYtZiKNRHB8BKwOx5zoQuy6u01tbcB8iEXONFxT8zlwO5/Ppcey7SgH7oVTF8wVfVbDZmQP4+RJuX0QkV8D51xfcr9kZ7MtvfxrP9Q4XA8swr2w1JwXiOE8OrMSaZzWYk3bt2A+x52H/ptIpFWMNS4bxN3t7eyDOFvB4TmdnjTa0tWMdrM3iOrEwPg1xawrb1LOkHz/v4LnE3DR+v5A3cz+gLmvVq1jT5nKYE7FWnD/q6ppQXdVAV62lfb22FpGwWtPF1FqpVsOa+MzD641tNIJ/YUcIIYQQQgghhBBCSBPBC3aEEEIIIYQQQgghhDQRvGBHCCGEEEIIIYQQQkgTccgOu+c3Pg9xdkp5jPAWXbHa8YUOF+9VFhGxYl0QFz102BSUe8S38L77UgXvAy6VlYPLRb/CVMC88TsaxN9wHPxOQLl7IsrjUqrgPdSOcolZlXaI7QYyprry5sWC2HcF5ZObUX6BeBzdQJaN98NbygUoDRxHpYp2VSinR9B0UywEOeU1as+gF83v7MY4iI6J3sVLjW26Hu6b7aHvwSth/1Zm8b55v4z31fd3YB4vHlgG8cCyJUYb+vrRAdHVhfsRCmF/Oxl0RAwsQr+A42COVCroDsjOoqtBRGRqCvs2GNaDGJO1tR3bFE3gb8zl0GkQieLY8XzsVxGRkMqr3FwW4lq1kZXoyLBQDrNmo1pC58PMvp0Q792E78/lsCa+7vwLjG22KBeo/rcjSzmdjqaeDylnqavEjp6a16wwzotVxxxnhs9NSVAyKawvLco3V1OuEK+M9SYeQg9IuoFXKh7TzhScl6bU/O35GEejWCs6lTdqdhbrj/bNioj09WKtDigvTlcXzi8htY2RveiJCYdUP2aw35IYiohIu3IW6Vwvlkwvy0LgqeVRMILHp6ZcLcU5dNqEEub6KqDyQpQLV7sqHeWkc9W6pDKHc05Y5YQrpme0oLzCtoXfSSbwePhqG57yw2mf2Uv55kRE1G4ZDjvdD3oT2lmnf0M77HQbX/gN9Zsv4cVbKGZHRyAOqvoWUmv0UVUXtpWVBE1ETliF6z5P+Xm7O7B2xIxt4G/q/iypNfvcjOlzKlh4TKpqTXbiyadDXFdO4Klp3GZ3FMeSV0PvaCxi5p2ncrkrhV6w45biWnVyYhTichnHeKGg1pHqXCMSNOeevh4cX/Uw1uDtG3cZ31kotHIv0YH79+yT6DQb6DkZ4lTCnOcqyv1czuNxKWd0zcPzj9Y+XDcvH8C4HEXPXt7LGm3wcrgmiLg4EfkqV+outiEYwDxpa8HxEleO+nrRPL/PFdG7lp/GfN2zFR2MgYiqPyEck/tGxyBOJXEfC3nTJeY42qWra57xlQXB195UNbeWlUdt7ADWgq4Oc2ERVb5K28LcDHmYl9VZlXeduAZc1I3XLhLK7V7K4fnjCxvF8bNqFTrpes5Ed18yhgMwksS4qq6nVKt43pzLYn0SMb2Sk/snIR7ZjQc93IbXDAJRtf62sA2xFlwTRhv4mlNR9VwB5SXW8/+hcjSdBxFCCCGEEEIIIYQQ0vTwgh0hhBBCCCGEEEIIIU0EL9gRQgghhBBCCCGEENJEHLLDLhZUTgx17/8S5awb7EZvQVcnumFERGLavaY8EeUqOh0qdfRG+Orz4ZjyCTjKgefh90VE0m1437aj7i0PKweLUoVIIKzuua5hm+sOtjEeNl1wQeVBiKrPOBY6bWwf78F2lP9Eq/qSCdzHQhHvXX+hncrrpraRz6GnasFQLr1aFeNSCe8vH1yB98wXiqYPqFbHY9TWgbkaDOF17OXLV0B85hmnQNzfjffVp9OdENeDplshrtw7StMilvJQlYvoBqiqfonH8Bi3ZtATMrz0WKMNmzZtUT+K26xWMU/SLa0Qh9St+3M5dGv4gsem0X37s7N4fMolNcabR2HX0E30akDvl62ES2N70TH07KMPQFwvY56Ekpgn5Qa1o6UN5wPD4WThGGyGnm/khTochJWLxFJ90dqBbpGi7n/XFKU6qp5Y6pj39mC96OnE3xjZvgPijiDWzJ4+dGrajvlvgbbqP+0xbE+jB8cPKC+ecr/F1bwWsHEfO7vRuyMiElXePD2vOT7WwHQGf7NfrSkCagUVDOH7ES1JEhGvhvNBSwodKn79yIh1cmqOqas5ZmoSXa77RicgDkRNr04yhbUgYmN/KKWd1LSvsY7HtJTHNsaU61Vss+/yNfTc1Gr4o0uHlkO8bBids7Eo5ql2vRnutwZlwlcvelpqp0M1Pl/u3NOoVtm6DQ18f0eCkYryQpdxTIYtXK+Ji2PStkyH0NRuXIs8uX8fxJsn0AnlV1V9VP0XVTlQd9SaroHfNqr8TNky9vevN2yDuLcd96vq6GOoaouqPaFQg8RTh3jl8DDEg4sx17XLdOzALtycWjsnW9FT5mpnpYjEIzhm+zrQj7Y3gL+5kIxOYE3rG8J6FQjgnNSW1E5s0584OoKO35HRAxD39+F8XfTxN1qDmJtOy2aI7SS2uVpXjnIRyWcxn9uC2Mdh5aBrSeMxScXwnEafb9Qc9NGJY9aSuXE8D5rdiQm79TfrIU4MYJv7l+GaJJrA/czlsQ3ViulPFEt5cqfRZ6bPBReKSBj7wndx7LrK3y8Orum6Ws21TWUG86pcwP6IqvVUPI45sWol+iyXrxiEeK6gnLXRBn/vZWO7jz0etzE02AdxrYrnf75aw2nnfzCEx1OvpURE6kU876wVcW16RmUVxFYIa7sdVw67sLo2osqV3aDuhlXe6bXv73suyb+wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIk4ZIdd1MJ7i1Mp/OqKfrz3vz2G9wGHPPNe8cIM3mvsenj9sFxS9zMrVUVLBu+7Dyr3W3YO77kONtjbNuVsyOfwnupaRTm2Kng/s3aTJBPocanXyhDbrtmIUATb7br4G0Elpasqj1tYycRsD/utWkAnguj740Ukou4Vd5SXZa5o+v8WAqeC/Wcpd0gkjPflz01NQdzegy4GEZHFq/Fe/a4BvK8+pOVsyqtTdzCXNx9Ap0RpJ3oS6jbmuYjIlg3PQHzqKnTMnXPaqRDre95zyr20Z/d+iMPqvvxwGD1JIiIdnej727MXnSrhqHIflnEs5HLY10F1L39LC36/XDbdia7STjjKhRGJmH6aI8VCOcwWGl+JburKXbh/726IW+LKhZFBB8vELNbd6QOjxm92DyzGF5SsQlcoS0s1X8WkW7A/o8r11tWFbpeJaaw/0YjpTZubzULc3YF+mYiaAGIxdHD0D6AHJGHMcziQw2KO20hYu6qwtg/04X75IczLsKoFtRrW1Q7lgAo28JlVlTMlpWtUFduUn8O5s1rF+ae9A49VLIHze9AyHSvBGu5HpYi/6VRNL9JC8Mhjj0JcUE47WzAnylUcpRUX81BEJBTG1wJqjafUPVLxHfU+/kYijGMhZmF/R/VCRkRcNf8Wi9i/v3n2aYgnpnAuXTo0BHFHB/qDYsoF5DdwtbpKfuwpD7Gl+uUPlbf62qsnpvNZrykMF98CUVbr2xkb+8pyce3ZrhbySeXWFRGpFHF9lM3jNnJ6Ha9+Ux+vgPp8UP+tQ908XsUa/mZS9fevn3kW4hXLcF16zDDOkcEw5tngIProip7pMhs/gGvRXB5rjSjv5CnnnADx+ifuh7isXKj5OrZpumgei7Yyrpf7A7g+qBSO3Ny+dSu2ZXApzotDK/EY7Ny2HeJiCWukiEhCn1MqJ+NzWzZAnOxDh2Z7CuuVo+axfTtVnfVNB2BrGM9pfFE+szDuZ1u6G+LCHM5Rmzfh91sTuB5ItZh/+1Nvx1pcHMXvjI1nIB5ahJ+PJ3Gbjof7Watg3wfDZhtmZ/D4loqYi5Y5XSwIiYxaJ6j6n3LVPBfB2DJPKSUexM9UKuj4KxXwfM2P429O7MfvP+3ieUBF1bN2tQ4VEeldhMe4t0/NlRl1Xqq+r0/3omF1XqCuXdQbXZeI4UaqKi/8Ko4n45pMBOtRrAvXlU4M21BtcDB868XnVj3/Hyr8CztCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaiEN22LVG8KMx5clJJ9Br1NmCPgXXM10u+pVAUN1QbuP1xKqnPBLKZRFU9wW7ykfjB8zrkxMTWfxOHVuVL+F93CUX71dOxpQbTDluAsoPZVum6yKg7k8vq/vs4yH8jaByYVQq2KZyHX0DnjJCZQumTzBbwr4tKH9gpX5kru1WS+gcSiqfU0sbuhhOPvEkiAeWoh9CRCSvPBxbdu6FOKeOeSGbhXg6iw6JA2PoOWpJY5vENu+z/+l//gDi0Drs37WvPQvfD+Hx6elBR4X46CfIKo/YU0+jL0VEJBjCMZxIYZ45yhdQK2Qh1sOps7MNYleNlekZbKOIiC3opdBjOpNBfwD5w9HuIl2TJmcwv3ft2gNxVb2fiqIzolRAd8bmZ9ARJSLSo/w7mR70KWqHk1Y6vVp9giIiHR3tEGv/Ra2C9bu7B10i8SjOxSIikQDOrb2dWKPqdax501MTEKeUVy8YwsHv1bCNoaB5fGwbD2K5hHmidLBiR7HNVeWDrSqnSkStSQo5rIEiIokk1hvtqpqewVoeCaHjSaddTbUhX9DeN7Mfajn8zVoNa7v24C4U2YJaL/nYdkutI4JhXOPFLXM5GbDxNe02rKhVoKP+DTmv5v9yEeOIkhAlfdPfGFDNCkVwfFTUemjHXnRu7j4wBnGmBeekgUXoye1U41dEJNOKbq+gcnYG1NpV12iN1hB78uJ+uhde0x4d7dn5w7x5vy8Rawbi3jiuzzLKndjWisdvxG8wzmPKhavmOJ2r9QTmTV15iytVHOeuylPtMRQRCUew3T0DvRD3LRqAeErl4VgOx+Ppp58G8cw45uXb3v46ow0//+mdED/6yGMQLz7uZIjPP2ENxDtGd0I88vATEM/VcF4oOKabadWp+BvlOtbYjg5c0y8ke/dg/fEF+zzXjucGNRt9dG7Q9I1mWnEdvHwlOjDHJ3AbxToe92efx/WVo/yKmQ51TtMg/0MR3GZrG7YpGUe3WD6H9WNqHPPdqylXqFoP5Gqmu3BDZSnE1Tasi3YXupHjUdzv2SzWhQP7cT+dKtaJerWBJ7+IawzH0S4/c75YCAZXozMwUsFx4+SxXo2OZiHe8qzpi7V9PEbVHK7pLEf59JXLbeQ3yosexu05av7o6DYddrPKYZfw0InZ1bIK4p5e/Hw8gvut63ZNOTgLyp0sIlLL4XlnYZfyeE5g/anlMW/KgmO6YwXWaVvNP9EufJaCiIiVwfldO7hD9u8nT+Rf2BFCCCGEEEIIIYQQ0kTwgh0hhBBCCCGEEEIIIU0EL9gRQgghhBBCCCGEENJE8IIdIYQQQgghhBBCCCFNxCE/dKIzg2LQVAileVEliLYDKAuMxUwRdt1BmaYpzkV5YM3BbbpK1uz5GPtKeu8HUXgsIpKvocTYdXE/Sq6SQao4X8TfHJ3B7YVs/HxLwZRQ18dQxl+eQ1nk4o5lEHd1oeTYSqEssjqLQspCAds0lzflnFNzKHPctVfJVbW5eYGIKHFvPYCy03IMhY8jStS7/qFfG9ucmUYx+Oj+cYhDAS2IxGNYdTCv9EM/ejuxrybGUK4qItISwVzMZ1GOunVkBLfZi5LYUAh/o3cA5Z19Kt4zhvJcEZEtG/C1rl4U0e/aox4SUVfSaiWad4M4nrXQNRLEYykiUq7gd1pa1ANWgkdGCvvqRj/QAY/B6L59EI/swXjvdhRRd6RwDC7qQGn+gT1m/m/4DcqrTzk3A3Fcid0buPtftdjqQUU1JVN21YMOHF2fKjh/iIgE1RNickrobCn5v68exjB64ADE6STW4biaW3NVnD9ETBF+OKrE70r0Xlf7aamHUHl6/RDAOBI2641KfSmV8TfCEZTHh9WDeeJRTMSIquNz6gFFc1mzH5JRzG1LPRDEyP0FoqwfHBLSc75an7lqvSWmgN1Sx0Q/c6umhOt19ZOpONaWvBJp5/SDSDxTeh8O4zFKhbERgQC+X3QwJwKeevjZFB7TbBbXE4mkudbt7cWHRA0PoZA9qedK1eZ6XY0NtZu+YA55vtkPevzp51LoB1ksFOEEHvSlKZSZDymZejqsHlIwh/OTiEg8g/1ZDGPeeCHMy1NOwgcjdHdhG3Zu3w7x3j34YBI7YNYa38HcjqqHB7z2dPzNSVW2f33/fRBv2bIYYresvpAwxf/ZIuZyQT08bvsBPFcoephHRQc/P5HF7VWjOD6XL8G8FhHJdGPuT07jb55//mrjOwuFU8Xjlp3AtXy9pB5ClMBB0tqDD3MQEfEjKMLvWoZ9lPOwXhTK+JsxwW1OT2MepcI4P/QtyhhtqAs+NGrOw20U1QPgogHcpnr+kKRacDw5YeyXiaL5AIKf/wj3y/P3Qzwcxu8EfMy9qf14TlSrqLqtHmxVqZvzj6+eEpVMqbnXPzILyzdeejbExV14vB79BT4cJlDFc/iSenCViIjrqgfhqMVOOo65nlA1sD2Aa59MXK1D9ENB6+aDE+xRPGbrf/owxLvXb4T43DecCfFxxwyqNuJvhOdwbFlTZj9M78G1bWUzrl2LY/gQiop6OOn+XBbbvA3Pk4Pt2C/xxWbdPfb1x0MciquHGrnm/Hwo8C/sCCGEEEIIIYQQQghpInjBjhBCCCGEEEIIIYSQJoIX7AghhBBCCCGEEEIIaSIOWUzW14leopYw3kucjKNzw/L1/eSmIMNSno2qcjLYypnSru4/TyTQZZGbw/vy08qHla+Y97jvHsXvFKrqnml1q3F/HLssGFLut+ksxFV1X35IS1xEJN2CPqAzjz0F4twB5RcqqXvTO/De9GoJ21go4HXZSMj0bQz0YBu6urohHs+Z3ruFIB7HdkxkMe+278X7yzc+/xzEtuHhEXGrmAflPPoBAsoJVa7iffnZPMb5Ijopdu3bBHEihn0rIrJyeCW+oLx4Dz94H8RLhoYgXrFyBcTt6r76iPJDpVtMF5ztoIunWMU8KZfQV1LO5iF2XeVoiWFeFXL4+ZYUjscX2onjo6a8lKWS6eM6cmjvwEv5L34PP4avQ/2CaoNydFiH9G8w+B3PwzGlXWL5Eh7nfePoiBhXseuim2RRl9mmzU+gW7KrpxfiFaeepr6B+Wwr94hRVtVPNlKV6PnnJbEW5t+3LHXMw2Hcd+2icpRLrFpRAhoRaY3h/B2ysUOCNo7dSk3NgxGca2tV5ZfNYQ0NN/B4aZeYpfwkrnKHxaK4jbqqDamWDMTRKLbRsky/Sb6AtbpeU4415azT2xTlyamqGunWMEfCQfQXiYi0tKGjqF7H8ZcrHpmaV1auxKryXVmq1ui+aaRA0+POUwNVx0U1l0Zjyhmoc6auPEZVM/cdC8e5r34zbCsXjzHM8fNB5fLR28uXcB9EROa24ZpgahrXnSnlNVzUj57i1lb05IQjenypmu44onFUuXPUjrq+OV4WgkINa086gLWqPoW+rL1Z9MeddeIxxjbLyk3dr/Y9GsdjdkYGf/PYTnQGlzz8/FQE60RpDtsoIqIU2hKs4XpoyR70FMfU2ratMwNx/bmnIdbevEc3Yo6JiGzZj96wiqqxo8pPOzGNfqfTXnMGtjkzAPE//b+3Q1wrjxltePIJzPXx8R0Qn3yBefwWioilHNllrIGtPeiCHh1H33WugrkoIuLbWyE+8Thcq7/2QtxmIoznB/USxlu3Yk3LzeIxisXMtb0bxrG8L7cH4vYUzmN9rcrz2Yb1JaxqRVH55HfsMz3FOx/C84taHo+7NYDvlybwvKp3CTrVYhnloLfxWNkB01EfV962mvIFhmz8jYXiuJP6Id6uXLpzs7gGaI9jTjgNfH1TeVyH96r+WpbBbQSVtzhk4TqztQXn97BaQ7oNzjWias2WSOC8NDeBbdzy03shzoydAHFXK54zOsoX79XMhX2ojLkZUbW7lFVudjU3uOoZAtkprNvxSZxb6uq8WESk+hp0eQYGsW9d8/AdEvwLO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpqIQ3bYtaXw3uRgLQtxRLnC4hG8N7xaNm/arSt3UiaDng7t6qm5eH2xXsd72ONJ9MXsn8T7wnfsxnvmRUQm89iGklJ/LImhr+TSs0+CeFEv/ub3n9wJ8aPb0engeEpsISJBWzlQsugoKBVwP1Ip5aBztVsG3w8rT1jcMh12jos7vnigD39zxrxPeyHItKFLZPte9EMc2IUekHhIuQCKplukkJuA2PLwJvZsHh00WeW1CEaw/zq60dkVU67F/sETjTYMqGMy8syjEAcszJO6i76ByalpiI8/fhXEy5bjPfQDvZ1GG5JnvAbiZzej56JaQYdBNYT95An6BTwfc2hsDP0p4Yjp2ki3dqlX0A9QLptOoiNHI0vTi336EBx2epOq5uka6Av2seGsM5x2Zhte6pXFg4MQx5V7MFdUx0S53Z7bi+MrFjSPe1C5KJ5/5H6I2/vRXdm6CPPZUg4VS8mydN97tnnsGrz0oli/h5Lw98G2sT995eCIJXAurihHVziBrhEREbeIdVGUr6SnG/vbmVadoxybiTAe06qqmeke9LSJvLSPsqMba1S1gL8ZUPNWSPvmlNerUjZdYpEwfsYO4/w9p/qpXse6G1DzZEV7cT2s6zHtwBORoHL5Veq4n5NTOP8vFDXldLRcVe/VPOnZhzAgImpcBjC3PRv7M6hWpPUa1ppwEPszGcO+LNVM166jamZVpXZV1ZKIjY0IiHLWqZqr17GOmC44PabHZrBG7q/ifL59N87Fncqp1teHLrFkEv1E0YiZd75y9dV95bBzj4zDrjOAbe1X/d2iHM/rZ9G7Nls11/VLlBP1sgl0AIeUc7N9G24zsuMAxK6H43xQpX7INceCrXLVVfWr+uunIE4rv5zXoZxRWkKYw+PVEjB9mdUi7meb0jXGfeVHG0MXWf8q9K+llDf8tGF0cU3Mmec3YwWs+6USeqx2bttmfGehyM/iHNHSgbVgOod5EE3icS4UTVdk3cHjsnkjnqMcGMWxnUphn3Z349juGlQ1bjce072T6IYTEYmlMFfaO3EN19qi/G825n8wrPxlNp7TODWsR169wVzg4bnXquNxnB4zhHEqjvnf2on7UCrheKjVsF/y0+gXFBFxa7iNWFg569yXuQh8hUinsRZMqfO5kI37mlQ1ctZrcF7k4zENqzXx4hRuMxZR/nB1KlFVc29eud3CDdzsfgh/M25hu7s6MG/CQeWX24vXSw5M4FrIUWJQ2zZdyaKeGxBUaxDtZ6zmMO/iau6cKSjXonJ2p1NmG5IWrk1dtc6p/Z5px7+wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIk4ZIddV1s7xOUZdQ+8cuIUSuh8KNfMe/2DFt5rXFK+GH01saxcL5lWvC+/pu5H37kPHVozOdPR4QfxPviAcqy0RPE7XUF0uUVn8P7n5S09EB9ow+2NZ9FdIiJSLeF+Pb0VPW22clfUE7jfkkb/kCgHSzqN9+2nPPMG6koNj5dfy0E82Gl6kRaCHTt+DfHmHdsh3n8A/Q1uHv0OqbTZ7pXLByE+btVxEB+YxHv3d0/iNjt7sL+XDKMfJdWOXrbxWfy+iIg/hV6LPcpZM5lFp8GqY/H7r1+BzrpiAdvsqVT3a6Zb5PnH0Ju3fOVJEHf3ZyB+7NcPQDw2jjlSryu/Uxl/c3bW9CDGkvgbnvIoFUtm3x05Xt6/b1iH4CnQjjpRY9Pz8UDWlUssrHxYlvGjplvEaJaqw62t6Jk465xzId6wfjPEu0bQe+Mqh8v2AHopRESig+jIdLegx2bD/Q9DfPpb0G8Wi6OvRyuEtG+ukW3LeQknofb/HfJk+QcyOonODJ0jiSqOkaSqcZWaOc9pB0p/L/piI3Hc14BSf7bGMc8ycdxeqgdzptpAELhVOS0zGZzHqso3WlFC2ZDah3pO1ZuqckCpvBYRCYTwtUIBa5Kj1DB6TdGZwbm0rQX7cVseHbbtrfi+iDHcpEU5Cb266YZZCBxVezWucrVVVN8FtYBOzHEZtLF++doFFtJjTm1TefR0kU2GG/h5Vdn2VFxX2zQ8OcrR6av1mKucdW6gQV3R87H6iKX8Zk4dfyO3H8fG7gO7II4o51Q8rlxNIhJVPsWImjtCId13JxjbOBwck8K2JqanIA7Y2BcrFi2COD/ewPmoEqtf5Uk8rOqd8qpZah7Wq6eqchJK2PS0htRBDqq8Cdm45q6nlCuxhPXMUfJFV81P3ba5xjs/prxfFh5ztw/XstFduyAu4cdFlE9w9THLIO4tmW3oVevCFcM49y/rMN17C4XlYR/aQeWoK2ch7la+6oCg201EZP9+PK45H8ddbhb7KBjF/J0uYpxO4RwSTeJ80dKO40FEJBbButnd2qve13OjykV1Ll6v4/mIH8L8z82ajuwWdZp67uvxGkJE8Fy4twfzIKzauHUDjp+ZWXSqVXKm181Xa9G0yjW9Vl0oYqpeWKod+dksxLZa+wQt85kAvproHAf3tV7H+p6Iq3qkrn3k1bl0OIp5l0qantRQGI9Zsag8wi7mZVtGrV3VGk5rVetVdcyLWLdFRPJ5/Ew8gUWsVT3rYCKH4zEaxfnI93Cdo6+V7N1jnt8M7cUx3DWIY9T1lFP6EOFf2BFCCCGEEEIIIYQQ0kTwgh0hhBBCCCGEEEIIIU0EL9gRQgghhBBCCCGEENJEHLKWp7UD71FvVffR2zbeH53NoXOjru9lFhFb3aDsCd5T7YeweUl1z3RdMN60E91vxSregx2Nmp6JaBh/I5bA+5dbA+hfeHL7OMRODb9fTaPDrrMV22iJurFfROoO+gBLNbwXv1hSPg0H22Qpt58WNoVsfMG3TbdPSPlnHHUvue8egpDrMPDYA3dBHOxeCfHwquMhjtUwh1Ydu9zY5soV6n7yinKH2Kr/BZ0qwRAe00AgA3HdwTwr5s377NPK6eio/t0zgeMnmhzF7yt30tLhQYh9dS2+nMX7+kVENj++Hr9Txr477sI3Qnz8CUtxm79Bh92O7bsgjivPWDqDDosXwBqQU3WjWjXbfcTQwqVGYjT4vDlmfOVN05twfMyLbdvR7VYuY007ZhW6DCPK+2FrmVsDPB+/46lp4czXnQ3xnhHMxa995WsQO8pduGcya/xmJI5jZLlyfW558DcQdy7C3DvmdadBXBLlO1OiqnCDfpgpoSuuWlP+DOUVGepGV+XhoqpcRzMzWD/iJZwv2lT9DzWY1qNJ5Qop4dgtKF+cTsyAmnOqeeyrzhSO9S3b0NEpIpJUbpBkDNcQ1SrW3dbeNmySqzxfyvEUVbudr5h+mkgEa/fYOHr1xMM2JdMZiCtlrEdOHX0msSiOpVRCS6BEZvK4FqpU8XimkkfG6VRVeWSpMeMpr5d2KzpV0yFUVvU7pBxzAeWHiwTxfd/CsWDpWqX8c76Wt4qhBZWSi7lcU+tOW62PaqofQr5eTynHsN3AlazaYAfUGsxSTmj1T+l6JvFUfauVMadyxQZuJuXmkyp+Rx9vkXeb2zgMzOxH72PVwXaUA9i/pTSOj1jJ9DlVNim3cQD7w0lgsbAD2DcRVYMtda7hqBxwtVtRRHzlBNTHUMfBLpzjUlk8xhWljKotwTVgq2OeYyUquF9OFnO/MIFzYGk/umMP/OYZiFtWr4B4egxdTbU41mwR0wtamsY1Xi5keu8WikIe/VSBIvZ5Sp2D1ktYz2wx16exCM5LtqV8r60ZiF11jlmuYZ+WxrF/hvpXQ5yOmf44qWN21edwzLSq81xRx6BUUe7oILbRC2C/7NxuukNbu3GNd/IaXP/HBM/N6q6aF4s4xpw6nnvXynjsIgHz/D6WwNeMsmu/uLf1sKG8jiFVrkPq/C2TRndk3DP9cXtzeMyqyhen10OhEOZuMIJ95aj1wKIBPG9Ot5tjfWoaXYd1tQ1HrdHqyq0eCeF6qVJWa3K1/irlTBdcbgbXtr6j1nSdWDe1e71QxPmkVNUecRxblSnTzT6ydS/EHa9Fb2cwZF6DORT4F3aEEEIIIYQQQgghhDQRvGBHCCGEEEIIIYQQQkgTwQt2hBBCCCGEEEIIIYQ0EYfssBPlqLNC5j3rv00kiu/HJWF8JqiuF9pK3FFXbpFILA3x1BjeO1yaQjfC0ja8z1upYkREJKru5V853I9tUl9yArhf2rkVDKATIhXG/W5vHTbaMLx8McQje56AePNWdEaFg8ov5+O9/466UdwO4n3h2iMjYrpgPCUxsqwjc213Yi/6415z4pshjkTQ39Cmbg3v7TOdgTNZzJu929ERVfPwXn7bwnvYA0HsK9dX99Gr/ncbuH18F7eRTHdAPF1AH4Gt8sgz/GgqVmqGZNTsh8G+AYijAdyGLZhXxx+HDq9MJgPxj8u/hHjsAI6N/i68j19ExFXunpByhuRy6CM4kug+t1SXa6eTr1xJIiLGMFLeoL2jeyD+yc9/CnEuh/XlzKkJiM9bez7EkYjp9dD7oS0ejs7NFPozLv7TiyHevgXdoXf/Ar2TubrZD5tHxyButdAzEa1gRz12B+ZWsB2dLHZ3BuJiFvsp1MBtdSC3D+K5PH6nUsHcHHrT1cY2DgddbdjfTgXHYSqJx9R30AMSCJq1OhbDOUCXj5LyDtYc5RZTgrhVK5dBPDaGfplq1fQ3dnRirXZcdIV4otYMyrtXK2FeBmI4dgLKHVacweMpIjKnvIXpFqyLBeWLdT1sY0Ste+rK7de/GGuqnkdFRGZzeDz13Jtpa+AkWgBKKt+DWqTmqeWiane5iDkgIhIOY3+2daMHJ6aGpa1qZkDnrY3HY24WnTnlgjlfLBlC722+jnk1O4s5EYngmlB7eCzlXTXmYrPcGZ/RSuCw4H7Zymvl1LUzTR0bNbH4yt8sIuJl0aszPYruOPGPzBpvupCFeG9Rrbk97IuwhZ7oeCuunUREppXfqkf5rWJqfnFz2P/VmvLideBvJFZg/as08McVpjAXI56qV8oTXZ1ULqQIupasDM55QbUA8XLmCU5sNXrxJIzbiE8oX/MonmtkN2/H39iDYzyl5qqZjOkEmx7DvjkwgfPuULjX+M5CEYgo13MFj3thNx6T6hT2V1efOc8lYphrc+UsxCl1/tbWjSctk5PKu+biMXOr+PlKwfToRSyscbbybM9MKX9ZAmvatHLUlgsqv4O4vb2j5qWE3kVYV6NJHA9B5Vcsl7Hu+lX8jUX9+Pm0Oncf223WvERSbdNWtfzFL2McNnLK41hUcWscx1U0jDlRq5reTi+Ix7BkYa7OVpWfsQV3PqTORVoSuCbPpLEvU0nTzzuXVXmkzlcCgrncqeqHplJR59Y15fOvmfWmUMA6WFDPT4hEsN2ucvxPKa/lrGpDpe6p2PTo7R/F6xb6eHnB3++ZAPwLO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpqIQ3bY6Xv7rbr2cqFnoljE+9VrdfPaoGOjY65QwnuHcyruH8Dm+g6+v6QD70Ue7sN7tEsV0yfTv+JEiMM+3v88O4f7Hcu04wam0Scw0IM+hmwR76tfesxyow0trXEVr8I2KLfF7JzyMym/me3j/e515W/yzNu+xVWeKXVbt+HnWijiyTaIQ6oZ2Sw6vCJtGYhLjrmzStUjsVa8j167RqSC/eerUVOpow8iGlMOQQu9CSIino2fSbaj3y3so1cvEEOfiR/GvPMsbIPlaoeFOdRDCbyXP6acBE4V8256FP0l7Ql0Lf3pmy6E+DfP7IK4UDb7oVKdhLhaxrqSSWWM7xw5lHBJeYNmlU9pbhaPoYiIFcDcGpvE/H30N7+G+Mnnn4E4N5OFuKr8SquPPw7irk7T7xNQuZDLY+5ks/gbg4vQO9W3qAviK9//3yDeO7oD4sefedZoQ7WI+bttHzrt4j34/vRzz0Fc+iFub/h1J0M8W1B+05LptqpaWYhrykXheUem5iUjuO+rhtFxGovjfKHH9tjeA8Y2HQf3LZHEY5hV3o+AhbXAUi62/Bz27+QEOjvqpmJFRDnqCsqL4/n4pVIJ586CcjS1KM9LTXnAfMuUiQWUl61F+RljcezLYBCPRSqFa5aAreqwmlxH9qA3TETEUk7ZcAC3kS81kO0uAK7y8WktamsEnTYtyiFUjjdYTqq5L1TA+h5VrsSuLszLSgz7u+ao9VgU2xCIYxtFROLKU5hJ4Bqtp0OPe+WoUWufknp/bBLnxXoxa7QhpHI76Kjx5mE/1es4voIB3E9PsF/0ekKUw01EJLd/F8TVWWx3oWC6eBaCWbUgGythXajnsA50dOO6wx/AnBERieg1XQ5zO7gf1x015QErKLOrm8S8Ci3Bmhy0TEdqIoPbrG9FP21defIqys+YOudYiEtZrLGyZTPGToO/vziA36l6WYhDPbju7Fl7BsSRGNamma04t2dK+H56ienM3aP8pjHlSg6FTBfWQmH5mBe+Wut3tuD6KVBWbsl8Ax94BMdirYJjcWoK89kP4dyaCOHavVO5n7vasU2dGTP/pY7HJRQIq7dxjOWKOB72jY9APLYPj+GM0pU61ROMJqQyuM2xqY0Qpy2safEw5ntX3wqI+/pxTFsO1sD8KrP215Rb0lXnSaUGfvGFwFNjv67W4G1J3Ne5LK5fJ8umn7djCZ4jtiYwN8fUGrulgvNgJIifb1fn0sk49ncwYJ5bt7TgZ/bvwdpeLGKu67m2oOpwpYSxmiZltoG3M5vHD3k+xsExrInhFI63gnKmzql1UdXHfajq6wUiUvFw/DnqXMKtm+fChwL/wo4QQgghhBBCCCGEkCaCF+wIIYQQQgghhBBCCGkieMGOEEIIIYQQQgghhJAm4pAddq5yNPiuuvdfeT5iUbyfPJnC+9VFRPZP4v3jI/vwnvegEpaFx/dDXBnHzy/vwnuwLzgXfXE7Rk2nVKoffRgd7T0QTyg/SSaj3GAe/mZYOW0mJkchDkazRhsms+gcGj2A992HQth3mRa877tcxn7yg3gd1rL1feOmb8O28DOWcv24R0bnJL2LhyDW7apU8N7+8RymdDhjOrzqjvIzhfAYlpVbqe7jbwaD6OlwAhhrZ05Xe9Zogz+DuV9TDkHLw9+MxXA8qTQTT7k4XBePsR1SXxARP4C/USiia8NSfoGI6vucGhuxOPoGz3ktei227NhttOG5jehVKChfTTiEToSFRbuNtMMOw7kcuhEefOQhY4u79++DeCqXhXhWHQNbeQajVaw/E9P6Nx+EeHBwwGhDJIL5Oqrqbr2GfoVyCdtYyGMcUrPIqlOXQrx++wajDbU8FpR9ytERD2MbF6UxD0Z+8xTEgQjmpt2HuTjnoAtDRMQYET72dbV6ZJxOSeWnTMTxmIfCWK/SGdzXmKnUkNlp9Cs+v2krxI6qN5FwEuK2BPpR9o/ivDY9hXlYccxxm1PeO+2A9JUSJZudhVhrP2pVfCEex35ra08bbbDUb1Ydta5RrpFyBeu0r2qCo/0mKmfcBnNtTB1PTfBIOZ0c7M+0cgRmlKNu9AA6ucph019VVetEawzngKF29C91DfRDvHk/rvl85YuJF/H4pBNm3m3Yix7QZA/OMckIjqeRrehaclXuZ5bjvJbsWwZxcfcmow2BAta3Fh/XGKVCFuM8uk3DIRyPuQrmeiyD69j2BkWgoByPev7Sa6uFYmAAHan2CNaWmNJMuTUcoxHL9IjNKof2I3tx3u1TXrFjBH+kqhxTZVXvak9hjpS18FFErH7M5coKPLcoObiuP2EYHV5FG495WTkIw3Pob3JazLpR26O8eeOY+6EuzLNSN47HUBvW0NYL0BWbVb7UTIe5zjw5uQTiux7Cuh5Rubug1LEPw8rjlVQ1LeRiDXRqZn23IrjNeBS3MT2BueUqDdeqpbhm62/Hc6CgcqBWimb+hwTPF7Q7uaDG0JYRzJMDWYztuvKgZ/E323zTBbeiFeuJo9ystaDywdZxDaHrUTiG3+/uwPP7jhb0SoqI5IqYa1XlKU4ElZN+gQiqv5UKWcp7WMZ25vI4X5R9UxJ81uvPhHj1seioe+g7P4d4ahSPWW8az1vTKaw/tRr2f1U7b0XEc7FdVbVGExcXedMz6pqMh/vtq/VTsYDfz86ZDjvXwvFmqzE9No1zQ28G91uUBzfv4VxRVWtlxzJrXiCOfefqudb6/S6o8C/sCCGEEEIIIYQQQghpInjBjhBCCCGEEEIIIYSQJoIX7AghhBBCCCGEEEIIaSJ4wY4QQgghhBBCCCGEkCbikB86kcmgRM8JonCwUED5n68klXP5OWObu/egtL6gZP+xKF5PPDCCssDuKMo3+/tRbprpQ1lnKK+s1iIiURQSLjrxNHx7TAlwHRS0u4L7XSxi3BtHoWrNNdtgJbBvFyX6IE5lUFabn0ZR/8Q4CsXrSsJbqSl5um0KDxMRFIDWyurBF2FTbLoQ+EroWFcPZyjlUQgZUQ9nyOfMB43UKtgfpRxuI6QEkakESiw7W1Hy3tKGEvHODLbBDZry83IE92NmCR7zqosyX6mjNN9VgnBPybhdG/PMavDQiUwbyrQ9V/2G6ut0GvcrrMSZWfUwAr+OOXTSKsxjEZFMCvv2pz/9JcST4yiiXUie34Sy8qCSl+qHM8xmsxBnC2bN23MA60m6C6W3baqP2zuwfkzuwLzY9Bw+0OGuu+/C7bfg9kREAkHMhaoSENeqWMPuuBPjkPpnnr5FKKqOd2A/nXjSMUYbnn5oC8QlwXzdOq0eaOLiGGt1UIi//bEnIc52Yj2bsc26G6rhZxxdW0rqQRV/aWzisLCoB/tTP7igNYPjNqBqZKgD3xcR6enEPPvVvfdD7Hm4jUwK68nYASV8bsW+y6RxDstOmBLqqQmctzKtKPtNqAespNX7qQTW3VQa62oiiXnnlM027NyODz0IKIF3SUmSa2qM16p4LALqwT2WyuNY1HwQg6vm53odRc31qilSXghsJYzuSeIxHZ9FQX1d5UgwhWNSRMRWuenUUQK+5OTVEM+q/qu1opg/oOTcdgvmYVbN5SIiefXgEE89RKdaUfOc2uZetS4tTuJ6a0kmA3HfSnwohYhIdqNaJ45iHs6OY5wr4m+4DubZXBn7PtaK80RqwBT5OyVcP1eU2NzWT7JaIHr6uiHOj+KcH2/Vxm71IADbfMDGgSnsv6898zzEK9sxtz8SxfklruY4v4g5MLMBHzox02mu8XZW8QEPNfVgir4VuOZb3IrbqB3AOTCpHvBgeUronjf7IWLj/J8rqzXezp0Q+/uxRs+q9VliJT4gpG9oGOLKGLZZRKRTPWTnNcfhQ1oGhnCbC0lLGutLNIH95QexTxP6PNg1H0zlOHjcC3PY54GCemhKUK3Ryupcq4wPzrOCOLZdB9skIhJRD6mpq9o+h2VY/NwqiGN19SArH9sUCeADVcayvzHaMBjEdcyi6HHYJls92KWEY2yuhvnuzeB62vKwnmUSGIuIeDbmbz6H83c4Ya6VFoKIj3nX04nj6EkXx9GsYA71rca+FRE581x8aM0xq7C+tKuHRt3xH7+COJdVD0Iq4ridmcL+rdXN3NcPvMxX9cNO8Ji3qjkoInh8XPVgi2we+6HmmNcyQmGcvytqfTVbwTVGSJ3/lAPqYT+i6zh+v+Rgv4mIBFTdjKuHYbk+HzpBCCGEEEIIIYQQQsgfPbxgRwghhBBCCCGEEEJIE8ELdoQQQgghhBBCCCGENBGH7LDLZ9EJEaxp75e69qd0GMGA6ccoKcdTawrvmc6o+37Ls3gPdVcfenn6T1gL8XP70PGwdbtyPojImb14r342i5/pHj4RYlvdS16rotMu4+P9zbkJ7LeYuodbRKS3TbXBVY6OE/A++3IW7+1/+Oc/hnjfXmxTwPDPma6Lsrqluq6u5dp1s90LgnK1BZW3I40pIgNp3LdjlmaMTSaj6IwIqNwt5rIQV0qYp7EE9sXK5Xj8Bpagk8MOoVtRRKSgfGcDvb24zRH0BbW04Y62Kb9TULmYPHU8/QZ6mmgCPQqOcvlo1WHIxn6qCPoH2jvw3v+CcoAVs+hHERHp70Qfx6VveQPEt//sbuM7C8Ujv34E4nIOXQYJ5b25+OI/hdjxTX/Vkxs2Q5xOqbHtoeuorwv9PvVx9DHNFbGPS9vQDdcaMf9NJpHGdieV/yiawBqWzmDypFsw91pa8LjHkphX555/utGGuSkcU889hy4dt47jeE9WefRCWNOCY5i7+VmMnZTp8rNj6IYZVY6gnDreC4Wv5pCIqt/am1YvYjsjAbO++0rM6Xqqvtv4G0bWeFjzlixBP2yHGseLDphej0gEf6NF5WFAtXtiAn2PZ56OftmePnS0OD7mSG4a50ERkdkplPdMZ7HvggEsep0d6JXyVGH1XHSupJX3bXbOdKr5yrlVK2O7tTt0oWhrQQddRxLj7Ax6ddqU/zei5a9ieiG7hldCvLR3AOLn92AdyERwXnPqOP939WQgtjtMn1NReXXsFG5zdhLnpSVdOH+XwspV6mLOzMxintm9i402LDr2DIhH9+E8UFFusZAaC76LeRdQ47GaxfXCpJh556j52FZ1RKXygjHn4pgM+jg3hIJ4mlJTYzTrmK7KGbWgdXzcRi6E88FoCOesjI95W7Mx9n1c+8x5yncqIvsmME9abFzDzaop6cejuI5f2Y+esGG1BmyPoBO4uAvrpYiIW8Y2+C7ux6zKXZ1nNeXgrM+hX7D27DaI42K6maqqTiw5Fr2V9f3ob1xIAlVsr2th/9R9HGcltXulgrlGCIXxQy0W5lZEuSLDjnK5BvB8IVBFv5lXxjVhLJQx2iCucquqwd2bwt/oyWB9KrtYP4ozOMZGJvCYtQbRESkiklaetsVduB+bxnZAbFu4Fg5Z2PfaH1spY1xOPm60wQ0rh2MFx1BenUvL8W82tnE4KOVw3+wI5kBV1Ya+JThPvvHP8HiJiCxbievZcAzzcPVZ6Lhz1NWfh776E4jX78C52KriF1ynwTMBwpjbM8pR16bcx8EYzsVl5aDNzyl/rLqEEwiYl7Cq6prBXAXXVyU1/jaNYg3cM4Xfz6vnDnjKP1dtcD2lRa0bk+pce6ZB3TgU+Bd2hBBCCCGEEEIIIYQ0EbxgRwghhBBCCCGEEEJIE8ELdoQQQgghhBBCCCGENBGH7LDTWhy3jPcW++o+XlvQBeBapkRrVmnRcjm8N9iv4r3Evcp5c+p550G8aCXe1/3D2/4d4p6E6TcJ1PDe/NGdeF99z1K87zvavgzihI/3XJdm0CUS8/C+/FrZdF1M5fG1TCf6gdp7BiEuF/B+dxtDccN4z7alnDn1uunysxz0AVg+xo6+4X2BWPvaNRAvPRadgvtH0dvR34c+uRXL0ZsgItLT2QVxwMf+yeezEFfreHx0fyYTygmWxPv0A2HTnxVSLr5yEe+jP/k4dEwMrhiEuK4cNr669u54yrnSwGsVCOExrVeUn0n5h2zlArKiapvq/aryHgYD2qUo4tayEHcqB9FZZ59qfGeh2LkLHQ5zE+jaWT60HOJYDPNg/36sBSIiu0f2QJxMYG4YuZbD+lTOKr+VysVlw0shHu5El4KISEr5DycmlEu0DY9j7wDuVz6HbQwrlUXUw1rf0qANr38j1u4Z5Scd34d9N1XFH4nPKZ+p8uoFLczl/hTWBRGRRDc6gEZ37YK4VjI9UAvBnr37INb1JZ9H/4X2fNXE9I26QRx78RT6yWpl5RrrxHkrYmMeDi9Fv1JEtcEOmTUvrBx2sZjy5qlc9svY/9UcrjnqaWxTey/mmd3AbbVkAP1kkSjmUa6YxTaHsUYGLYwdVeMCQcx9t2rOtQHlvvQd9LwkE2auLgRLevB333bR+RDv3jkIcb6Cx6NaMffVqWJeDfah381XTkC/A8fknFqrFEv4m4s6cC53fNOrUyjieshXXq6kj7ke8HDt053GXC5O4FxdGMV6WK+abUh0Y971rT4bYq+ONXhiP65DSwVVi1QbWxKYd0Exc19p3KRewm3oNfxCEVbHLKjWNh3Kr1kLYE4FG6xnSxXcpnblLhpCJ9RoQfWX8hSFlYfNUuvhmodjWESktx2dUkE1deeUO9GfwTzaP411fi6ONXZxVXmwpkyHnai6bju2eht/o+RiX/rKuxcvY44cGMW5Km6ZOVR0sA0ZVRM6TlhhfGeh8CbUmjeGeVOzsXaElXMrHEKPuoiIXcNt+Mqp5anc6eo7CeKQi57Pyf1Yf7TT0YmZzlO3hvlYLmMbojE8rraqDekMOrXDLcpN1on7GFaOLhGRXAXXy+Pl5yBO9mAuRl2sw9UKngsEXHTW6no1NvO00YZICNc5bW0nQGzXzWsCC8G+aRz7j2xAX3bnMK5l1l39NoiXHou1RUTECmINq1ZxbNdqWO+PW7MK4t1P4Zxz93/eA3G4huuWetWUnnrK/ZlW54gDvbhuFLVOL6i8nVV1PFvFubvRX5yFQrjNfAi3Gcpgru7dh88ZGMvj5zsW4xpj/z6c/526eW3LtrBO5GZx/q445nxxKPAv7AghhBBCCCGEEEIIaSJ4wY4QQgghhBBCCCGEkCaCF+wIIYQQQgghhBBCCGkiDllMpm41Fle5Wywbr/0pnZX4ZdOrYynVR1s73lvcE8f7oU8+BV0Hq85EZ93sBPpNIg56QZYuQo+IiIinGtHTha4Lp4JtKGXRBVBTfoZ6GbvUFbxHfodyPoiIbHjuNxCfeQb+RnsPehJyefQ7hZQ+oGMQ7zX31LFxa+a9545y7cxNZiGu5k1HwUKw5oRjIF79GnTYlY9DR10ijS4r0yYj4ivPhq3cam0J9Oj4Kpf1VW7Pw19xlPtN6mbuV6vKCbUM3T6xMB7DchFz2dfSCeVW8tWA9ZSTRUTEVf3gKZ9QrYxtdD1skx3U3krsmfw0Oll2j+w12vC6s14DcamO9/rHtSdvASnOYZ+XKtgfkTh6QOby+Pnde3cZ28yo/HSVX8mqoNvgwNh2jPdP4edt/Py6t6PrwivMGG2456H7sJ3PovumPY3+hbFteAz6lYdqrj6OPxDC+tTW3m204fiVx0FcuxTz99//7VsQl/PYT/uzWOsliG2uKo9MYQo9FSIifepYhJVTraMrY3xnISiV8Zh6ytVSU77Rtk50j3me6bSpVLAGDQygw2njc1sgDqmx3duD82KnctwF1DwaMnWVEo7gMY6r8RPQns0y1uFyDn1zM5OYZ77yDcUa1A79my0prHm5Eo4X38V+i0XRJ2SpvNN+2JaYOW+6qm9blJsqZCpRFoSWAPbfa0/GcX7aavTP5EuYp3U9UYpI3cH+dUrKyanq3VANf6OkPDmFIn4/pDyssypHRESiQ9i/5Sr+pp9BH9Do2AGItynv6LGt6LTZM6lqrGceQDeKLqXkkpMhPnt4EOKZvegT2vLUkxBPjOF4TVjoixLlLxIRqbjYLkutW4JHKPFiZRwj+x30N3Wpcd1azkIcnMDjJSLi5LE/Vh2LXujFK9E/O/MM9mevdm4rL1JI5XqsYPZ3UPA78TjWjq07dkHcUcRtLh3Eur4vjLVofDvudyxvzvWWGn+WyoGK8gHW1LlCrYjvz7hqfRbHOTRfM91MxSq2YWYU1wvBxVjnF5JjF6Ej242jI8tVE1mvqhVRtYYQEbE8rO+Tk1g/ZlSfBqLoRa9UMhCX65j/0RiuM2s1fF9EpFzEtXexiPnpuq6KsU0tynEbS2LujqqaVwmY89wB5eVOTmMeBFpxm/XcLojjNtbt1tggxMEw9rNTxc+LiCQieO68qAfHfUiUU22B6BnGaxFOEtcNJ52C57nLTsQx4vpq/SsidRfzoKbWLvpBBOEkzp2Lj8e+KfzoXoiDdbVWKppjPawu/Jx0DDq1B4cwnivifhQncH4fK6maV8I5KxAwr2UEglijkj1Y8173pjNxmz/5NcT76/sh/tM//xOIH7jnUYgfu3+30YZR5bmrV3EtZTV4psOhwL+wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIk4ZIedp7w55SreSxxOoKstGMR7/wM23qMtIrKsBz040RhePxxcgp6dE886D+LelSdAvP7R2yBePIDb71l9vNGGcCc60IJx9GeUKniPdTmH90eP70cv1+w4OurcOroEYil06IiIdHRgX+3d/zTE3b14n71Twjb5ynlkFdHf4fp4X7j2m4mIxCLYhnAPxrnIkXGJxRLoTUtG0TGRiKsUDuK94Z65q2Jph512ufmY215dxcoHp/2NjjLn2Q26zrfwO8kM+kocF7fhai+O8mT4guPT1j/qmo1w1Rj1lXNFHByzloe/EVFtCrm4T4kKvu+PYx6KiEzuRJ/JopXodpiyTVfDQlFTnsGS8gJtH0G/3I9u/wHED91/v7FNy8fjMJ7D/ZvcjfUkpCSMdXUMwj1Yrx5+4EGIqzl03omIbNy2FeLiOPpLspP4G5l2rFmTY/j53Bz2S2sG3SQ1F39PROS++56CONaCrpHWDvRETdXRQVeqYhtGlePOV/UqPmc6hgLKgZZpx74MBA55enxF0U7NagXHYcTw9WH9j0TNf4ezVQ1za5jb+dksxKUCusCGFuM8GVP9m4yj8yat/DQiInUHfSSui/sVCGC7OzpwmxPKb3JAeXSefO5ZiJcpL6iIyMQk7tf+A+gacQT7MtOCbQip2h6J4Nhw1PxTrZh+IVW6Jd6WgThXODI1rzCD64Z9I89BvKgfPWD9veimDKocEBHxlFs1N4X1KJvF32xvwzpQVO7jUhlzpqjcYfkCjmERkZXD6M3RPqeKcrV2xnCNEapiG9acjg6cGeXZ2TWGjikRkZqNeeKWVV60oiOy7wTs684TXg+xM4vz5symxyEeee4Jow1TO7AO22HsBzvYyPh7+JkrYv/dN4e13cGUkNd5mAOxiTFjm1G17n7NmvMh7htAb9hPfr0B21TF4+MGsY115SCK+eb6qrIP2xVowzXe0lb0oVVczJtgAuv8CWedBvGMUkjNPInzmYhIVS2AvSDmdlm1O5FQnR1TLuWwWl+34zlWRUw305iq03NZrAGzm7dBfLGxhcPHCSeeC7GdxhpmJ3H/M1F0tQUi2J8iIgHB+fv5Legon96DY3dkDHM1FFQu1iT2aVh5nv266W4rzmFNc3xMlnAY21gq4DZ37kKHZjKKv+F6WNcLdfP8fjKPa7bh+iDEM6M4pvbs2gRxqIb7nUliv/UNYq2fc0yHo5fB49UWUl69iDlnLQSZXqwFV/33KyEOq2shdRuPjy2mu81Wl3NiMdw338fvOB7mRN8S9OStWIVOu30bsO9813TYBUJq7R/EeW/9DvS9TWSx5o1NqvOhOcyrnKq7dsA8p0xGMa9OP+9siE+76HSIH31mBOLSdjwHS2Qw99/ytnMg3vr8j4w2rP8Nrp3OfQv2Zc8g1s1DhX9hRwghhBBCCCGEEEJIE8ELdoQQQgghhBBCCCGENBG8YEcIIYQQQgghhBBCSBNxyJKekPL5zObxvnu3gi6EWBzvZQ7Ypkysqx3vL997IAvx8MlvhHjR8RiL4H3A9Tw6OdIpvMe9c8VJRhuKQbyX/Pmn0f1RLeM2czls49ToHogDyssTjWK/9Q+hj05E5IQV6NNwAuhNCAUyGIfxHu2g8uSUdo9CrP2DToPLtIUA3hseb8c2dPcpt8UCkUrj8fGV36lUxf72q3hffbVquhW096am/AtV5axxHHS71OvKZ6K+Xyrh2CgV0T8gIuJ4uM1UG+ZqKp2BOJNC30k0rJ0Saj8t9MDYgrGISEr5FKcncBuVMvoEPA/HmyXYBk85DVpS6PdYshidRyIi5RIeC9/DdqZTmIcLSVodk7oaNznl+dq4fj3E4yPoRhAxPRNx5REM29infg2PiS1YZxcpv2VbCo/RbMl0PCwdXAnxbhc9UtkZdI+4kQzE40VVb0pYX7Iz6BqxAqbXpmKp3yyhM8UO4/zhBVS/KJdOSbnFXDVmE2HTqZZMY19ph5rnm56QhaCnA10ikRC2Kx7BvojFMScc16x5IeUyaoniOBvux7GZUfN3X1cG4mQE+78lgbWkYpv9Hfaw3Tnlqoom8DuhOI4N7TfZO4N1dst2zLuxCdMfl5vDbdTrGB+7qhfiZBTb4JaUt0V5PH3lN40qV5CIiKvmY0utrRzXrNULQUb5qvLT6OA6oOasjh7Mu3QD52MilcEXlCMqYOFcmlJpk04qD4+qj46aezdt3Gy0obMT/XDxOLoNS2o9cOIg1tS1p5wMcdnBY1xSh2v5gFk3xqexDu8fQ9/S2Ah6c/a4+BsV5QeMZdD1mjkO18YnrXyt0Yb+EXQ8PvvIzyGeHDPnq4WgltsP8fZpHMdl5ejKLMK10IkhzCERkVQQD8rQAPqwW5K4rqyqmlktYRwO4TGt+Op92/SIhWvYhvIMHnM7iOPFC+AxH1fjb3bTRojjUaw9+Sh6xEVE8jE8x6qq8aR9jvEO7JeZGtbQvKpddl15RcdM/6YdxbqSU2M2kTOdjwvFshNOhdgPKdekchcGA9hfAdd0klsxtTZ5DvtsdC+ur2YqGKeSeBydMWxDPILvd7Wh71dEpL0F164Ftc6uqeNaV57cQhbXthW1LrfV+UahgvVLRKSgvpPz8DzIUtcEQhauQTZuxzVhugO/PxtUftmEWQcKyvc3PYv5OdR9CsRruv+bsY3DQbGK7Uq0YR55gvui/XNWwDyJd9RzBXxffwb7u1bHHMh0Y3++5e0XQfz/jf0Y4lK2kfMUc39aPbugo0vlpYNjv1rH7wcTWL9iAcyprk7znPL01x4L8Rl/sgZiK4P90jeENc/zcM22fTvOi295M7pEV67ENaOIyJNPbYF4364DEC9Z1md851DgX9gRQgghhBBCCCGEENJE8IIdIYQQQgghhBBCCCFNBC/YEUIIIYQQQgghhBDSRByyw65axvud4xH8qqV8CiEb7zX2G3hZYkn8ziV/dgnEZ150AcQtHXi/8vjOTRAH1G9m83h/9OQuvK9YRGR/Hu8Nv+/22yFOxvB+5koV74Hv6cZ7sluUc2tkH97bX7PNfmjrG4R4xfF4z7W46AKbye6DuKT8gbNl/A3Lx2NVKZv3nheUe8cv4PFelTG+siDc/uNfQOyGHoR4dhZ9J4W5KYgbqBMNr934OG7DVb6ntk50RLR2oM8votw9xZksxFu3YZ6KiOQKmEcDQ0sgDoQw71pS+JtDQ+jhWTSA3quhpcptFsEcERFJKT+Tl27BDyj3WF2N4UAQr/cH1G90DyrvXgvmsYhIXbkZlKpM2tpUmxaQpHLYBdXYrk2jF2RqK471gSR+X0TEUq6bvKqrFVUfrBi6LSIWHpPJcfTiPPn4MxB3p9BLISIyPZuFeK6MHpqCKg/lKfSZiPLoBdVBi4WUf6lmOtUms9gG11YOzSDKrCwbc82Oai+earSPDpBi0XT55XL4Wmt7Rm3SHDMLga/2Nao8RCE17kIRjCt55VkTkXodx1k6hePqpJNwrOpjGArhMQ4GtUNT9b9t+uMiYayTyaTyN6r64Xv4+ZDql42bcT4vlpTDxsXxKWL6ScPKiWrbWKN8C9vk2diPOTV28iXcbz02RERqym3lVPE7tap5/BaCXlXvrBr21cz4BMTPPLsd4qefM9dX3f3oDjt77TkQ93fib1Zm0UsYUHVAbJ2HmCOL+9BLKSISU/NcJIx51BLG8SUp/I26i9vMl7Ffyi7myKZtu4w2zFYnIT55KXr1Cl24HyMH0F+2aTe6+Z7ZiX2fV57Rjha1TyJybDeuCU455/UQP/3oXcZ3FoI3LMF5dXIGHV1PjGBO3LUL1/WxpabnNp7EcZwKYH/U8zjmXAvHdVGNyaha47naIWWZf/vgqXo1U8Q1n1/BOhBWbth6VvmZd6AvO67+3qIWN9dKGxysJbumcAxHVdkOe1jPQsrBbdUx1ytZXH8UfXO9EVR13g3hNpa0ZozvLBTxNNYfx8M+dfUSIITHzPNLoomq89p6Ecf++DZ0EfpJzN/OntUQb9+CjseypdZGRXO+CPbj/G0pf9mBPbsgLpZwjVcqYa4GXOVQ89XcGs0abfDVOczeMVwft6ZxvwcWo5ezWsX9LNewTTV1Lp5qM32xFeV1qylfYkTQkyfHGZs4LDgOjm3P0M1hfweV283xzRNbX13O8dV5f93B+uLb2DdOCPNo4IRBiGM9WF/mNqErX0TEUk7ugdOHIL5k3RsgPjCObreJiSzE+aLyySs3e38vrltFRBYvxvP1mvJQzpbRGbloCTrsgjbm5c6tuJ+Jy7HfTjkZn0EgIvL0U9sgLhfxeLv1Rv6/l4Z/YUcIIYQQQgghhBBCSBPBC3aEEEIIIYQQQgghhDQRvGBHCCGEEEIIIYQQQkgTccgOO89XHiJP3dPuqPuhlUPIssx7rqMR5dFZg+62iLoHfuP6pyGe3Y/3n1eVdyI/i36FvdvRHSAiUvDxPvmQi9tIBvHe8Zao8g20ogPhwDi6R5w69kMpj/fdi4jsHdmjXnke21jIQxwNYl86Ebxne9rBfo0pD1Y8pbwwIhILovMjr5wGjme69xaCu+59BOLMopUQ+y7259OP3AvxkkXoRRAR6WhHH9zoPnXMVG7H2zIQ19S9/+PKU3jBaa+F+KQT0EkhIlJSuWqHlMNmz26It27DXN/wHI6FTBq9L2+/7K0Qv271CqMNYR+v1y/qRd9QTTnsLFv5nJRHoS7Yb3YQ40gG81BEJKY8L14A64xppVg4POU68pXQJKw8NiHlCVvcgm4EERFHudryyoEVaMHjaIexz8rj6OCoZtGhkp/GWjFlyDFEslX8zuDJJ0A8NomOh+ws/mZSOVcqJfSZ1EPY5krVrB1l5XCwVW5F1X77FtZRVznrAsplZTuYm552rInIxGQWYgcPnwTDR8ZhV6tjf+WLeLzsFPqYylk85nVHudxEJB5Dt1BAucCy0yqvlMNuroB5qr1evjrGoaDZdyGV+yVXuXdU/9fK+L725o6Nof+k6mPOVANmP4SVey+gXIilEjbCUf7FSBi/P1fBfhmbnoXYF+1aFBEf+8ZS/qxY5JCXZa8ozz79BMT+NM5B6Xb0rj35PHrVNjdwt73uPPQQf/s734L4LRecBXFrFPMuqvI2GFK5X8Gx0dmOayERES+C9Wr2JRyBlqrrdfXv2paqb9t3o1P45n+82djm1ASuRU8/A/f74svfDXFXD/Z1wsE863Mwh57PYn3zGriSJ9SaYvlidEIvXXms8Z2FYEUf5vt74+jnHYigQ+ieLbjm+9Uuc5yftKQP4sKOEYiz6pgG1PyQram8imMeur7ylHlmGyZ93OZUHOf2ShCPUcrCfkik8Tc95b6UaVyjRyKmy2+fqk/TLo6vHnWOFU9gG1MJ3KavnLtTNdx+MGA63QIz+NpxPtbQZN7su4VCTUmGa71ex/rvqPNDL2zWEk/tj1XA9ZRTQGd2ayd6vqqT+H5xAs8vHOXWrRe0Y1hkWm0jEMEdLZfzKsZt5EvY5oCt5qQA9sOiIXPO6urF89C4Ulj76vyhWMfzsKFBrANBFx2cpRqeJ9tBrMMiIjUXz3UTSTwfbDBsFwRLeaD1dYKguu6gl6+lkpl32lmnvc6uWheGlNu1pk4VYhlsQ7IvA/FYEXNIRCStPOhdw7hOTA9ifYn2obt9mYVxvYzjr1DB/fYaPBvBtrVvEfshEsBE7OjE6wGpFpzfwyGsgfEUXvM58bTlRhtaf3Q/tlPl2e+7xuNf2BFCCCGEEEIIIYQQ0kTwgh0hhBBCCCGEEEIIIU0EL9gRQgghhBBCCCGEENJE8IIdIYQQQgghhBBCCCFNxMsw3ymprYMyQC0DdpXBuyamHLA7jULCO3/8U4jbulEq2aWl+CUUZYdCKBNMJlCAGNSGURFJKOlqTxcKCMt5lEjHlLBwenIK4noN9zsVRellrWA+dGLb07+B+MDmrRBXlXBYQrgfrtqvxCIln03gsbIjKAwVEYmqh0q0CrZ71WoUoy4Ul7/zLyCOdKHgsZRHUem2Dc9A3NuDOSMiYqsHHcSimCc1D/t7xXH4m629KLYudWAeX3zRn0Dc6CEfRfXQCeWRFUeJMisOfn5CSax3j+zH34zjPo3tQ4msiMiu57dBbFfwN3aOTUB82htOgXjJIIqd60oAakdRLiwhZZUXEUs/zEQJ2MOW+bCAhSKrZP7VEo6jRA3HXWcP9sf0buw/EZHtu1D8PVnHPm9rwwdV2Kp+FD2sR25dyWuVjLZSNfvcUQ8AmhzDGlYsoCTar+Pn4xGs9TUlorYiWCOdiinIDWuZtavyvYp97dnYhpqafyIhzLVwVM0FSvgtIhJTr9XVfuo6sVBMzWYh7lNzkn4IheOpHGo3H3aSz6nvOBhX1cMVPPWMqM3bUdpuq3GpH8CyWNUGERE7icekUsTcdFUbHCU0j6jf0A9D2TqKY2uos9doQ5sSBgfbsE4Wi2gHnnXwN4JhXDLlVe7PqtjzzRyy1LIrZGENLDYQSi8Ek+oBNptDkxAHJnAO2XMAH/pxzgXnGtv85P/vUxDf8s9fhvhnP/kxxMf0Y66Hwmptk8Lj5bqYQ21pM/c72/DhCkH1gJqwepCIreT/BTWv1YJ4TP/lK7dBvHHzBqMNuj796Mffg3jRyuMhPn45PiQqFkERdouPbepT5c0JmnlXVA9N8muYZ0v6UfK+UFTVAx7aotjO167ogHiqiLXnyVEcoyIim8ZxnlyuHr5QU+PYVw9nyqs5y6/i8QtF9ffNh+rpIqqPYd7HWpFTDwFpX30MxAG1FNpwJ4rNBxrMs4ta8eEloubVaBA3OlfHfipO47HpUXNmXweO17B+OIGIhGbw+CxRD94byGSM7ywU5Roeg1oZ60lFzUGuj7Hj4DpcRMQR7OPSHK4j7QjmdzCBfZadwgdATB3AhynUVN44rvmgj2QG5z6noh5ioMZcqYy1vuLi2tUK43lyUD2UqmOROdcuW4HnjGPT+CCMMJZysWx8v1bEvu1pxRopNq4x/KT58I0tm7EO9HbiGEuotexCUa5h/wXU2ias5ihH8PMlNY5FRMoVlWfG+hW3kQjgWHYt/LxtY55levE81wmYjwS01TWYtjb8jj5HrAmut2wHa5il3hf1QIla3ewHSz3Uy1f7HQ6oh960YA1r7cD96u3HPHNtPHdpX2zW/sXDuE39wMKg9fs90I5/YUcIIYQQQgghhBBCSBPBC3aEEEIIIYQQQgghhDQRvGBHCCGEEEIIIYQQQkgTccgOO09JtsJBvCdeuxDEVvcRB5RXTUS8Gt6fPDWFPrLCJMaxOt6j7gm2oa0V7xvO9KG/wXFNx8PofvwNfb+zrZwMNQfvwQ5YeL9zIor3xDuqWwL6BRER5ZRya+h8sFXf50p4X34tgl6FVB/uZzGWhTjvmfd9V4p47ba9ZSnEHcqjtFBEwtiurZufgzg3p46fj31Zr5n7WigUIbbU/eTRCB7TegndAHOT+Bvje/ZC/Is7fwHxbB6/LyIyV8BjnGpBoUO6FV08iRZ0A+zbh866ro5+iKMt6Nl78GfYJhGRmW3PQuyq8bh9DJ0S+4q4H8tXodsv3YK5n25FX1Qsjg4XEZF0Avs6FMUxHY/jfi8oZeVoUOXDsdCFUFSKzAOW6cw8oMZ/oabqwTTmRSCkXCMeft5XtaGs6pPvmw67sPIpjSoPp6N8cpbgb0zOYv0RNX585ZUKxUyHY4vyRmnnqR7HAeVkigkeG1s5QEJqHy31eyIivupLS21Du6wWir37cWyHlLNUu90GBnogbuRAyxW0w071r/KglpQjcNP2nRBrH+z+vegz61DuEhGRdDoD8bZt2yHWc+8lb34txBEfa2RrJgVxLIf1azqbNdrgqfGm+zZXwBpWrOJcUVJ9b4eVl6+uc8rMIU/l3ayaCzoaOE8Xgv7BZRC7gvW+rnyb4QQ6cHoHcA4SEfHV2magbxHEd//XDyDOj2HexGPYvxGjlmDtiQRNr472V8ZjeIx1PYyG8Td85cOcLGO/PL9pI8R/8icXGG048aQTIf7q19B79+gDOD8v7clgG+OYp1NjuO55Zht6j0MJM4e6W3CbrvJ1xcJH5t/v9RixlMeoN4PrhjOHcF2Rq5lO5l3Kx1gKYJ50DaDbOBDGnKio+lhRa7hgXbl2Q2Z/p1XsjKMnrEX5nKrKMzqjakmmFcdGRjmnQhXTZdavXLFh9TcaVgJz2wrh5+0CzgPdQewnpRsUu4Ezt6T6Lh3Adg4vNteFC4Wr1k9aRRgN4xxTV/NBLYvznojITD0Lcbw9A/HaN5wN8X51Prd3ZhTizmE8Rp467m7dPO41QU9gogU9XBNqvq7UMDeXn6RcoDHsmOk59JlmuhrMWercuFzAvm7rxFxzfOyHjm4cQZ2d2rGGbsts2fTRdWbwO5EAfmZiv/LDLxAVrWZTa4K68iDW68rtZpnetHDkxdfUnkpu7YmuqLVRXS1dUmmcRwNh8/wmpJzbkRAeo2oJf8Oxcb+8KuZy0FPuRVVefDFdcE4d62qprHzNNvbTzAyO6bLyO8bVXDqlnJxO3ax5CeVKLipfc6mkEuAQ4V/YEUIIIYQQQgghhBDSRPCCHSGEEEIIIYQQQgghTQQv2BFCCCGEEEIIIYQQ0kQcsqTHtvA++mhEeT4E7xtOKE9IIoX3MouIlJQTpT2F9xYH1TZrc+jU8tS9yKUQ3h/d3T2En2/gM1t5AjpVHrn3V/ibPt7PHFK+prJyA7Wk0LMTDmIXByzTYVeoYD+MHMB7+bNZ5bqw8J7rzhV43bU/g8em5mM/zU6ZzoNwRbn4+tFZVy6Z92kvBPlpdLXc818/g3jv2D6I7To6CZ59Fr2HImI4txzl/RJ1jO766T0Qh0M4Fk56zckQ15T3Ilc1+3vnngmIp6c34TYq2Ib9Y7sgHtmFnz/lNWsg/sgH/xriXz/2qNEGR3koclX0CZSVU2rnb9DV9+CT6MFIBPG+/JByHAQipo8upRx2i5YMQvynb38HxLiXh5egcnDUlVetUMb+mslhrs3UTJeYE8J64DvYR5Uy1gJLeSbqPuaFrVxiiTTWn0DA9EwEVE3y1T/bGP44tQ0d28pXaqvtefoFEbH1NpUD1VWyCl//htEG5eZRY1wssw2e+g1dBoy6sEA4vvbFoDOjRbkgtZ9OH18R0/daVF4PfYh8T3lRY/j9iRn8/voNuyFOxNCJIyJS1eIWwWMeVv7KTdtwm91xXEPo2tHTg+9P78a5Q0TECmJeTExiOxctwnlPO46qym1VUl5PR33e9UxHTqoFXTA15ZYpaq/lAuEIjgdXtSscUWs6LDVGHoqIjE9g/07N4Npm3xjOQb6DOaLXmXXli9Emn0jIzP2EctIGlH85FsXxFFUeYk/5z/ZM4jpUfHz/0re+1WjDmWeeCfHevbhu+dGPfwLx088sgdit4DwwO441oTaN3qugi2sQEZGSg16rnbM4n8cjpudzIfBV//mqLoc9nEePbcNjPNmL40lEpKjWMo6aVzva0W8dTaJzKKtyv678vo6KqwHTo2crh22LqrHa3FbL4TEVdV7gj+GacZHyN4UC5nyVKuM2uwI4nmaV6y+SQk+eV8dGO6UsxHpt20BhJ57yvvUei37locV4LBaSWk37epVP0VMHzcX3Q1FzTRtVbtVkEeP8Thx3p6zG/R9erdZsdje2uYxteuIB3J6IyNQU1rxYCttQKmMtSLfh5084FevPyMQW/IEU5l7fYvToioi0tvZCnEygR6/sYB3NK/eu52Ob9k2hv7wto/1o2hopko5hPteVt7NaMdfoC0GxhmPVqWN9D4bwGOfzWYhTCdP72NmOaxc/hDVMr+vLak4pl3Ct4gb0mhzbbIdNf1y2gOdAu0dwvm/txTwMxDAPfRfrqlfHsZCvYBsrDc6xDI99XdVu1S97lM9xLo/7YKtjkStgm23fnDfLFfyNbdtxfp7L0WFHCCGEEEIIIYQQQsgfPbxgRwghhBBCCCGEEEJIE8ELdoQQQgghhBBCCCGENBGH7LALB/HaXkk5IgLRBMReAO/tL9VNl0tA3UscCaNfIRTCbYbjeI96ugXfH1NukVI/+um6BpYZbRidmIJ49amvg7gwuR/inVufh7hYyEIcDOB+ppVTyhLTT3NgFH9jz270TtgR3M+WbnSsdLap31DuC2sGv986ax72/q42iBdlsO+2b0Qf0HmmpuWw0NuNHoTlg+gl9FV/Bm2MA9plJSJ2AHPZ164elcsSQl9AX18/xOdeeCHEqTgen3QUPQoiIhufewbirdt3QNzTPwhxRYnGAsoR+dzWzbj9rVshjg+uMtqwfz+2qzWDcVcY782PJ3F8zoyhY2p6dDvEk1M4HiuuNg6J1JXz6UAWc/PMC8zjt1AU8ugqyOXQxVIs4FgvFtW4a9D0lgyO1UjMdKDANpRcLBbEYxIK4/e1Xy7UwOmkHWeuh2NGOyC0KUq/HdACNAs/4Lqm2Eb74QzvhHrfVW3QHqqg9vKp7UWjpvND+660OynSwLm4ELS2o5ulRc1zUdXumRx61GKqNoiI1Gu4bzUHY+1MCSufVU25RSZm8DcrDn6/LZUx2rBoKe5XvY7HOKc8Lbv2of8s3IlOG9vH7yfj2Gary6y7LTEcf4Us+kp27d4F8fCKxRDXlG+r5ip3lZreteNORGSxmq9jUWx3tWy6dheCqSz65OoO7ltQjXNf5dDTz6JjSETk+BPXqM9swN9Q/2ZcCyr/rnLYHDiA67VKFduoncEiIiGlhNJlORTGvNI101Xe0ILy6LR1oGOqQ7mERETyym/a04vOp5lZzPVf/vLnEFcKOPdMT+PcVFSOzmCDeSWgcre1G91ZXd2mh2oh8FTbXeXbFOU1TCsP5WsGTD/2dH4G4to4eorqRezPcALzrqLaVFfrL9vDNrl1c46zXOVKVtushXQmYj2z1PhyA8qVpLyubgPnqq/OBaIu5rqv3Flj0SzEdTUPeCqtQsojWiqZtSusxk+n8p1Fg0fGnSgi4qp50VX9FQziOsIKKrdrC+aNiIhbzkI8ugd909uew3VyKnoMxJU2PNcqq2PUHsM5yfZMf2Jn6wqIIzFcQ1TreEzSHRmI6w7+Zj6Pdbd/EdYOS8+DInL/PY9DHIrjb3YtVq5Kdc1gbD/WxJqL89NMAZ14bVE8LxMRSSdxrnXUdQzHOzK+2LzyoIVDOAYiQRxXYbXOty1znrPUa7UaHpNSCX2T2gerhbD6LKCu1luBqPn3XtksOut+9vO7IW5pfxPEg0vRP+qK8s25+Jsl5Q3X/Shinlvo+d32MD4wjnllrI0jwRd9323kKld5tX8PXuPR8/ehwr+wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIk4ZIddd6dyOkzjfb9lF+/ZVYoI8W3T8aC9Qy0t6P4Ih/Be43IRPSAx7WeqYfybRx6BeOlKdGqJiOzbh74AW3kh4hFsQ0DdZx9TbgDttSqXMXYc0/GQVL6RM1+D/oFoSt2HH1B+pzrem17ei/eu23n0N3XFU0YbXrNiNX4mg16WJw+MGN9ZCGYm0UVyxulnQnzm2rUQRyLKbRUwr0nbysXjKcdGQDlUtP+pXMP+nt6HfTNTwfvwZ6ZwH0REdipn3f4JzMNkF/oZJILH0Aqjp6rm4H30d93/EMRLho832jDQhs6HqI3jJx7CvKxW0Me0M4c+x6TKU1c5D8Zmzfv2OzoGIS4pt8Y99/8a4qve/xfGNg4XU6rG6TyoVHAs12oYh6JYO154DV0Vuj5ov6JtK5+Pin3lJdLOBzto5n8sjsdVe/K0pE477jSWkvVZhiXKRPs0tOcuqP1yqi7rNus2mB6+Bm1SH4lG0UdzpBx2edU3nvIl9XV3QRxWzrpS1ZxjEnHlOQ1if1sB7IxQGI+5pRx1pbLyz8SwPiXb0U0iIlK3MTedIMbRDO6Hpzwu+QL2y/KlS3B7Y1hfnKLpzZ0rYC1evmw5xPv2bsM2K1+JpZZMhZw6VurfQJNx0yeoXXvFIm4j0GB+XghcSx1z5cwqqLwsK3/M2CTWSxGRL93yzxDv3o7e04KqqdtH0Vuk/bK6TtTVutNyTZ9MQB0TXZ8slcu+pVxieoOqtsQS+JvT02Y/RJQPNjeHa9lqFX9z16592AaVh2qaFD+KeWbaYk1PUiKCY7RUNNfoC0FYraEDal9qWcwz7Yvry5hj7Pg5XANvyuLaf2z/HohzZTweBTXnVdR8E1J56fhm39k+1oqimqNKau4Oqjz1qp6KlSNXzYnimUe9ouq8p/xORfWdSkSNH3XeFlVrQs/FuSbhmeNvWTfWs9Yw/mZpOgvxQla/UAjn1rqaY4JhXG9VXHS57R9/1tjm5t+gpzMVwHGWqONcuem+9RBHBvG4TiuvXnw4A/HgIjP/943jcXBreNyDqh51K5+c5+OY80rKZ21jHoxswXlTROSRx7GGLToWx4OXUmPKwfN/J4e/2daJ3981gudQm+fM86w3nHc2xD2LcI1XdMxavRDElBsyqs4LwsopHG1Ff3+kgfexXMY8mcvOqfcxt5PK76cdznqNrv+8K5E28+41p54M8S61nvrq//kWxGvPOQ3iY04YgDjdjXnm+/r83nRTW4L74ajcn5zLQrx9xy7cgNpPfR7rKu96uWaut2NJldt5NRf8np5i/oUdIYQQQgghhBBCCCFNBC/YEUIIIYQQQgghhBDSRPCCHSGEEEIIIYQQQgghTcQhO+wWD+A902kL7x3evhfvdx6fRE9BzTV9QMmkuq+3hPdcux7eR69dJDPKmZIv4L3GlTpuL+BjLCKSSrZCPD6G98HvK+J94Z7yTnR34n33lvINzWZnIY4kzH7IpNHaEFYeq6ryvIhy+xSr+PlaAd9PePj+soEeow19Pbgfe/eh82N6Ut3PvkAklG9rOofH4+lnn4S4qwuPZ3dXh7HNel0do9ksfkA5I4LqmPYPoV9uoBWP3+jWAxAXC6bXo6sbj0G8PQNxIIp+gZLyE/T2LoZ4bD/6IqamMdd7+5RUUkQs5eIpVHE/JYh9X1eOg4hyz0SUo6U2jT4isU2nW3f/IH5H+bcMFdkCUq8rz4CP4yioxqFWnkVi6MsQEUOIZKkKHAigo0FraVxVf7TTKaAcdwHlYBERsZUfI6z2Q/vf9G+YfjhEpYnhjBQRyWQyEOsxWVVeCNfC33wpZ52jXD2Oo3JbRMTVr734fi8U8QS6QVzlPa2qvgqG8BiHQqbfROeV/rc6PTSDoRf3FlZVTbSCuP142mxDPo8OzJgaH5PKVxoMKvdRDNscz2CNTEbRWdfdid4XEZEpH+fjeBx3vKsL58F8Dt1WeirWGqmWdAbiVItZA3LKoTI1hV4k3zb9fwtBW3ubegWPabmAc0g1ge20LXOcZ9Xc2t6J/sV0WyfEjip4no+579SVm0mN83rdHLNe/cXHdVXNOZ6ub8pxa6uxk1U58vAjDxttOO+88yB+fuMm1Sb8fE31g/bqeqqvtcvP1XO5iEgNt7l39178jciRcSdqL6tl4ZgMqiFUsXHfQmFzPlrcizV0ZJ/yzVYxl10P38+qmjulJuqUqqd6LSVizlFzqqSOqWKix0/Af3EXrB5tITHn+nFVp+eU36mg2tSvClpGjafADNbw7iCeB65pcG4xPIAHMF7G87qq8uAtZBbO1nEM1Ko4hyi9qIxn0U+3f/Z+Y5tTY1mIe0LoB2+38Djlyvj50BjOa+Ey1rh97laIV56PLlcRkWkPtzm7H/O3sxeP6wmnKmdaAo/r1BSeb+i5OpE0j9qqVYsgblmEnem72NduHds4NopjtDiD79eU0zFbMM/vR1fh+V8ihfPPgSnTQbgQhNQ4tNUYiAZwzPhqbeo38Ep7Ln4morznYeUt1P79fF65Ql08XtE4bs8RzEsRkeGVmIsrjkcX/s/+E8fLj/5fnCvfUEQH3ikX4PY85Vl3Gsz3lqqj2vM9MaGvG2EeDSxZrN7Hmjc2gee1Qdu8jJZux9fsEOZdQT/k4RDhX9gRQgghhBBCCCGEENJE8IIdIYQQQgghhBBCCCFNBC/YEUIIIYQQQgghhBDSRByyw66lFb0SZeU0a+1S/gTl4ZkaNz1eFeUpCobx3n31tnjqfuW6i9ucK6OfJhFDqVSlhPcqi4iUK+iPqanfcOva34T7WchhP7QoZ01LC3p0ymXTBTc1je1OJvHecks5oCwH71UPK8mHunVdwspjNbhs0GhDuYTbfOCBjRA/u3XC+M5CEFEupWolC/Ejj/wKYr+Ox7glbjqE6nXlOiyjSyGormMvGRyA+LgzjoV4eDE67bJ70Sc3Nos5JiISVrk53I7uj8lJ9Akcv/I4iFcfvxLi/+/b34Q4KOgrqBfN3K/V8DXfUT6AKPZTQEnaBoeWQjyxdwt+X7lpYg38jatWrYC4UsL9HujFe/8XkvZ29FnZgjXQVc6IuqM8QpbptalUMNesAPoVtH/BU66KmnIVBTzTWwPvG+4yEc9XdVS129KiPYVS84jnaX8cbl+7NUREAsp5pp1zdR17GNvaIfQSTrtG/WC/hLNO9/1CEY3h2LUtjMs1nPciKgdiEdMfZynfSFh570TlYUsafWaVHPphakE1d0ewr8o1s94EAqomqSVBrYzH44Cam9v6+/H7B3BOiqnxFk2Zx7wzjfVkanoP/kYa1yBa7ldwsNEre7H2e2p9UCqZLrFSEV9rU967uqmGWRBcwWOo8z+o8ioSwTVeMGguJ1tblUNW1wZVO/S4dmq4XvKU68d1X7zNIqYH1VEdXCgqp1YVj7F2mbqOduDh53/6s58ZbXhuI66nfvPkUxBbKs9cVYMd7RVVXj1f1XDPNZNIv2Kr+TnqN/DeLQTKsVxVa2TtcrOUZ82vme1OJnAN3dGCx3BmEmtHfgzjOeWRfkS54FpVTrVYpp83oeakuo1fyql1fEV5rfQsHFDnAWE1VuIN5238TNDCPImrNnlqbNRc3GZMtTGdVFlVR5+jiEhhFn8z14J9ZSm/rGmdPnzMFpRvOjcGsVtG11S2sANiT63nRETScezT0tx2iBNteEzsJM45oSi6QVvqeA5pd2Pdbe1UJ3wi0pLG47ZnSxZiS+XFzLgagw7Ovd096KPbO4pjdHrKdHL5IRxzXaqZkYhe+2JcrWLeHNiKuZUI4QZXnDRktKGgvHZTs3hsQpEj4yl21PrIUX5RtTyWuDqPbegpVi61sPqMXhNXKzhvedqp6eI4darqvEEv4ERkZhb9cK89ZxXEp591CsSP3f88xCO78dy5Zy+eM0aSODbSae3dFamp+TqXw9zMFzB3lx87DHEmg+fiLa14MLJzmIfaGy4isng5rlUrJRxfpRoddoQQQgghhBBCCCGE/NHDC3aEEEIIIYQQQgghhDQRvGBHCCGEEEIIIYQQQkgTccgOu2AUPxptwfuj25J47S9YxvubQzHTLZKbVT/v4jZiUfTNuMpn5lazEIfjuL1QENsYCOC9/yIiVeUC0fc/+9qfodwVvroX3VXqnlBQuS3CpscrO4sOu7JycqQz6DgIKpeFrfazpGwl41N5iGcLpt8kX8R7/e++bzNuw1TvLQgl7fxT+37hRRdD7Kl7wwMNhECe8t74ygUSUP0ZVT7GsSx6K/LZrRDPlPE3rajpmNiyfifE049OQrx0CB11py5bDnGtjIkWU3nl1zGHSmXTKWUHcLx4SoFS1g4j5cVZsggddpUC+guObUGPzK+ffNpow/7d6L0rF/H4+SUcGwtJSwuOO0/5XMRX3g81bnPKxyciElTusICKtUdNKWMkpPLf8bS7SDmi/AaODuXJs3wtpTOdc/i28t7o8aT+HcjzzdpfK2Odrat89ZRfTrS3SLfJ023AT8QbjMGwEoXYyqHSyMm1EISVPykex/qjcySgkiQQMF1Grov96zhqnlO/mc9j35RzytuhfjOq1ge1BnW3rupiaQ7XCNrFmmrL4AZUjauXsA4Hwsrt2sDl54ewnSnlnI2onMi0deL3czMQWzb2QyWP9atcMsdfVB1P7e4xpGsLhGXhvodCqk7ovFL1MBQyPV56oPpqXyPaLaneD6shaAmOY+2jcxt5J/0X9+S1d6AHRztufVW/TG8eHuNi0VwsjY2PQzw4iL6lfFHP19qNpTyhL+W0a9APer9tvY60X9xderhw1Xzjq9hStSms1md+uYF7T+VdVwK/89SG5yCe3o/rL8fCxJtUfricqp9x1+zvuOrOiNoPP6xcpdpVbcxHynOojnnONftB+2R1Lof1n2yo3PcC+lxDzf2Cv5ktZI02BHzcZsROQWx5R2aeFREp59FZZwUwD0IpXDen1UGt7jTPKVOd2Cf1DjVnhLDe9LWhn3rfKLZpbhuemx3bjw7tZNKcLwYWYX5O78c27NyI3ynn1Lo0jjUsHMN61N2H+zC2z/R0Vz3l6VI1y1LO1JYMzu9Dw60QT27fC7FTx7kgN2M61cYO4Lql6mYhbu/IGN9ZCIrKbVt3dIzjrlbDvIvHzGNunDuodX1Ane+5yllXV3W0pK4TjI/i+V13p2mbbFU+3pLy3C05HtdTsxWMw0Hc74JSYtZt5WKOmetMV7lBg8q1292PPsbBpZh3tZo6f1c1slbHsTKn/M4iIokkritjUdWmeIO10iHAv7AjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmohDtn0WCkqSF0hCmEygnDOkpIiJiCn9TqdROlnIlVWMot6CEjjXKxinwu0QR5UE2amaUsqgkhxqCWsogoJBSxkI40nsQlv1qONqSaLZ5S0ZlCLOzOBDIvJKFNvShvtZUgLcbbtQDrl5A8o6u9tQpi8i0r1IyVNt/M2ONIpiF4pEEsW8aeXaTHWugLiqjnG0wTXpsKWkxTElHo/j+14FHx6QzysBexz7s2s4A/Fw3BSybhvZgS9o4XccRZijB/ZA3N7R+qJxrYzC12rVFGMWizhmq+ohCfUqimeDUSXv7ENh6O4DOF7H9+A+VgpmG3Y8vx7i9nYleW9Fue1CYomWQGPy1ZRQtVLF+lVXD7ARMcXf+gEyvpJX1xysH1UlkbaUKNzSInEttBdTbu0pSavW2eotaL22Fslr8btvNRCgB5WwPvDiElb9XAxfS9ddJcPWO9HgwRe2tsmqzzj1Bg/sWAAS6uEKQXUEdEWLqgdqFArmw04CKu/CEfyNmHqwjvG++tHyXBbi7q7FEFf001JEJJPAdoY6VR1Wh6guOL70XBpL4kNtQqpuG4krInWVqx2duI4JKwF6QIneI2od4/vYxngctxfTbRIRUceirB4woOOFwvexXb56CpGlOlSXFv3gF5EGD6II6vWUym29UfX5gKpdITXQ9cNrRBrIuHUtUdsIWGrdqPJOPydDPwgolsoYbehfrNYU6jfLWgCu5f+qb/WDGHQ9bHQsdA3Q/aLXTguFrXIkpGq3ftCbFdAPqzNrjVvEGtibwvrWHsLvhCo45lpU7lcsPa+qhz8Fzf4uqmNQ1nOSekhEwNFSfjU29IOC1DFvNM/qEhjS60zVlzG1X+pZgpKwVL8ZXW8ei6pai6pDI3HbfHDDQlGewYfrBSI4BqqqT8MprP+9q/uMbdbVusGJqPXWHJ4v5CZwnV3IYlw+gLm54Ql8yF17i3lOaYdwHjrjXOzjwaFuiNs6cb9butT83477bds9EE+N4kN0REQmZrZD7EXwHEbqam7wsEaG1dxpqec1ppL64T943iwiUlAPTnDUQwuiUTz3Wyiycy8+x7sujvVSWa37PfNhC1VVw/RDJiJqnRhW68xCCc8H66oepdrwGsBr164x2rB4sBdiO4TtTLXhmu2kU/EBKvEw5ql+8F9V1D7qCy4iYqlrOhFbTdiqDlfUg0P1GiKqrg+kUtgPeq0sIhJQT8uqqbm10XcOBf6FHSGEEEIIIYQQQgghTQQv2BFCCCGEEEIIIYQQ0kTwgh0hhBBCCCGEEEIIIU3EITvs9u3GuJrF+6FTnere8BjeB5zGW+pFRKStDX++UMR797PqXv7Z6bCKcXsBD+9V9gzPUQMnkYev6SuY2hEVCGKby65yiahby0Me9oNTmjGa4JZxP13lzckW8H2lO5EZ5f7btR07JjuNDola0eyHnjQ6CVYt6Yc4d2S0OlLKo69BPOWwsTCxxsfRk7Zt4y5jm9Eg3pMeTmcg7uhCH1xfRxpi7R1rT6NTUGnIpFKeNdrQ1YX35vf3oavtwNgYxFu3boJ4sIbOCO2fyeexH0ol9MuJiOTm0MWnHXZuTfkCIugfeP65DohrVfQudHWhJ6P/hOOMNnR14mc6OjEPo+o3FxLtAaqq/dOOuppyIej+EBGpaTeREndpb432DkWV+8BWjidXOe+050akgQ9JOR4Md47K97CWOCkqFewHxzF9G9pFpfdTt1vnd6mEualdWNrrpn9PRMSp4Ta1lyga/f08E38oIbXvtvagKjfJSx0vEfOYh7Xf1dHOLDWfq22mU1h31TQp0bDpJfLUxBVP4mfqarxU1Lyo/Y1x5QkJKSdLsYTfFxGJprDulmu4n2XVhpCP/RRQY8UOYJ6p5YCUyqZXKpvF+UD3fTjcwHu3ANSUE1iPKaVNM9xtDb1par1kqXrlK6GMp2LtDLaVXy4Uw9gPmA67iG64Ae6nrj36+NRrmCO6hjeqd6UafkavRSsOtlv3vQRUG9X3fT2+G+RQMPjiy/14/Mi4xGzVroD/4m5RMRx2pv80qApS0sJjdo5yj82V8P2n96B3eKqKx7SiHITVBsJMT7XTU2cXrtqGbencx+3ZtjmX/zYB7WQVkaD6Skw5n+I29l1KuWVTymXdrro+rhoZEjP3w6rdvprPKpUjdHIhIj3KKV6K4P4ERTlLtfO81Wx7bRYdV6UJfH92E56fhQs4l7ZU8XzCCeFvVn1Vf1xz3M6O4xosr9aqS4dw7V5V69KZvdhGu4A7EVVyw6GhE402dPfjedZsBefnyUl0znk1tWYL47E48fRBfN/FedQTc74vO2qdqI6n9RJj6nDhCdbnkDrnFzUuC0XcD7dm+kaLBTzPD6hcbc0oH2xQPVdAnVtE49iGHrXeSnSYruRYStc4jIOe8jO34m8k1PleSM0N9bJas7tm3dXu6Zw6F66qvtPOu6DaTz39RNR5QVB7ekWkWFLttJUvMI/j81DhX9gRQgghhBBCCCGEENJE8IIdIYQQQgghhBBCCCFNBC/YEUIIIYQQQgghhBDSRByyw84N4T3v9fApEFc9dc+ugw6IaNq81zjTifdQt9p4H31bCW8ezs7gPfHZKbwnu1zE3XEd5fHQbgwR8Rz8jUoZ7y3WLpCAcrDkK/j9cgG/H1K+gZSNfgMREc9Gl1i9jvsRSeB99tEQ3g+dCSs/gWQgPv5EvC985Qmmb2Bw2TKITzsDfQD79pv3qy8EnvKC2eoac7COx6MlhMfjycfuN7Y5No65aan+PO20NRCf9VrM9bk5vCf+2aceh7ioHF5b9+w12rBz1y6Iy8q35PvKydXSCXEuh/6H/CzuUzGHfgdz9IkElRcnnUIXRt8QevJa23sh7upD31zfa46HuK0F866R+0y7y8RScYMxu1DU63UV4zgzXEXKfdTQGWT44hDdH9pH5is3T121Qf9mI2+npTxRgQA6GGzdRuvFHU8v5U9q5FR7Kc9dSHkhXqpf9H4aXrAGPrp4BPNdHwvDI7VAxMK473rffOVd1cevpQU9bSINvIVq37RXzVcOu3QM596k4flQc3G1Qd4pZ5NXx5qVSqDLR+sX9RaLykUSqmM/lMum58Wx0QUzNYd1tDCNc3Emg+ue6SL2UzSmxqeP/TI7Y3p18qrWx1Tf6nih0HOOHhGucgiKhXEkYo4xXUNdF+OQynWdp0FRY0G5lhyVIw2dnare2aqG6rFgqdoSiij3Twjrm/5+o5qr96uunHW2Gm+ermcqDqhj5R2Cu7TRa9CGBnV6QQgrl5LyoFm63WqOcxzTW+ipUxvtTetV2q+LT0Rnc7daR24fx7owXsTfnHXMuaKiamJV7YZjqWOmfY1qztNzoP7FkGce36DyLyWUVy+ifjNi4RdaAph3rcpxl1B+yGjIXPOoUyajJpSsBm7xBaLDQV91tRfnzol9WRWjC9qJm3NMsIbOa3sU9y86o9aNym8lDrYhsQyTtX1Yrd/U773Q0CyEYzux3e4szkFdQ6rNKndjVVz7z8yhLy3k7jGa0N6NfuqetmOxDZVRiPeOYhtjynHb2on95FSwbgRDDdZrU8o1OYfHol4xnYsLQa2uPKlqTJTLGBeV3z8SMh2lgWBCxfi+r86ttBO4quTr9RoeY1+twCIt5lh3LOXxVl5ct6q84EUcP7WAcggrt9/UDLoU21ozRhv0swumDkxCXFEO2o5ePI911Xw+o86lRa8ndEeLyIH9yq+oarPr/X41j39hRwghhBBCCCGEEEJIE8ELdoQQQgghhBBCCCGENBG8YEcIIYQQQgghhBBCSBNh+S8ltiCEEEIIIYQQQgghhCwY/As7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wI4QQQgghhBBCCCGkieAFO0IIIYQQQgghhBBCmghesCOEEEIIIYQQQgghpIngBTtCCCGEEEIIIYQQQpoIXrAjhBBCCCGEEEIIIaSJ4AU7QgghhBBCCCGEEEKaCF6wa8C5554rxx133Et+bteuXWJZlnz9618//I0ihJBXgBtuuEEsyzrSzSCvEg7m09TU1JFuCjmKYN6RZuRQ83JwcFCuvPLKP+i3zj33XDn33HP/oG0Q8nJh7SVHgqM973jBjpA/cvbv3y833HCDrF+//kg3hRBCCCGEEHIYeOSRR+SGG26QbDZ7pJtCjiKYd0cWXrD7A1iyZImUy2V597vffaSbQo5i9u/fLzfeeCMv2BFCCCGENDlbtmyRr371q0e6GeSPkEceeURuvPFGXjghCwrz7sjCC3Z/AJZlSTQalUAgcKSbQgghTUuxWDzSTSB/pPi+L+Vy+Ug3gxxlMO/I4SQSiUgoFHrRz3DeJH8InudJpVI50s0gRxnMu8PDUXnBLp/Py3XXXSeDg4MSiUSkq6tLXv/618tTTz0Fn9u4caOcd955Eo/Hpb+/X/7+7/8e3m/ksLvyyislmUzKzp075cILL5REIiF9fX3ymc98RnzfX4jdI39EjI6Oyvve9z7p6+uTSCQiQ0ND8pd/+ZdSq9VkZmZGPvaxj8nxxx8vyWRSWlpa5KKLLpJnnnlm/vv33XefnHrqqSIi8p73vEcsy6JXkczz0EMPyamnnirRaFSGh4flX//1Xxt+7tvf/rasWbNGYrGYtLW1yTve8Q7Zu3ev8bnHH39c3vjGN0o6nZZ4PC5r166Vhx9+GD5z0DOxceNGede73iWtra1y1llnHZb9I81DNpuVK6+8UjKZjKTTaXnPe94jpVJp/n3HceSzn/2sDA8PSyQSkcHBQfnkJz8p1WoVtjM4OCgXX3yx3HnnnXLKKadILBabz9u77rpLzjrrLMlkMpJMJmXlypXyyU9+Er5frVbl+uuvl2XLlkkkEpGBgQH5m7/5G+N3yKsD5h1pRqampmTdunXS0tIi7e3t8ld/9VdwEqsddl//+tfFsiy5//775dprr5Wuri5ZtGjR/Pu33nqrDA8PSywWk9NOO00efPDBhdwd0iTccMMN8vGPf1xERIaGhubX/AfPRz/0oQ/Jd77zHVm9erVEIhG544475L777hPLsuS+++6Dbf0uD/vmzZtl3bp10tnZKbFYTFauXCmf+tSnXrRdu3fvlmXLlslxxx0n4+Pjr+QukyaAeXfkCR7pBhwJPvCBD8j3v/99+dCHPiTHHnusTE9Py0MPPSSbNm2Sk08+WUREZmdn5Y1vfKO87W1vk3Xr1sn3v/99+X/+n/9Hjj/+eLnoootedPuu68ob3/hGOeOMM+Tv//7v5Y477pDrr79eHMeRz3zmMwuxi+SPgP3798tpp50m2WxWrr76ajnmmGNkdHRUvv/970upVJKdO3fK7bffLpdffrkMDQ3J+Pi4/Ou//qusXbtWNm7cKH19fbJq1Sr5zGc+I5/+9Kfl6quvlrPPPltERM4888wjvHfkSLNhwwZ5wxveIJ2dnXLDDTeI4zhy/fXXS3d3N3zu85//vPzt3/6trFu3Tq666iqZnJyUW265Rc455xx5+umnJZPJiIjIPffcIxdddJGsWbNGrr/+erFtW2677TY5//zz5cEHH5TTTjsNtnv55ZfL8uXL5Qtf+AL/seIoYN26dTI0NCQ33XSTPPXUU/K1r31Nurq65O/+7u9EROSqq66Sb3zjG3LZZZfJRz/6UXn88cflpptukk2bNsmPfvQj2NaWLVvkne98p1xzzTXy/ve/X1auXCnPP/+8XHzxxXLCCSfIZz7zGYlEIrJ9+3a4YOx5nlxyySXy0EMPydVXXy2rVq2SDRs2yM033yxbt26V22+/fSG7hCwAzDvSjKxbt04GBwflpptukscee0z+6Z/+SWZnZ+Wb3/zmi37v2muvlc7OTvn0pz89/xd2//Zv/ybXXHONnHnmmXLdddfJzp075ZJLLpG2tjYZGBhYiN0hTcLb3vY22bp1q/zHf/yH3HzzzdLR0SEiIp2dnSLywjrtu9/9rnzoQx+Sjo4OGRwcfFm3MD777LNy9tlnSygUkquvvloGBwdlx44d8pOf/EQ+//nPN/zOjh075Pzzz5e2tja566675ttEXj0w75oA/ygknU77H/zgB3/n+2vXrvVFxP/mN785/1q1WvV7enr8t7/97fOvjYyM+CLi33bbbfOvXXHFFb6I+B/+8IfnX/M8z3/zm9/sh8Nhf3Jy8pXdGfJHy1/8xV/4tm37TzzxhPGe53l+pVLxXdeF10dGRvxIJOJ/5jOfmX/tiSeeMPKQkEsvvdSPRqP+7t2751/buHGjHwgE/IOlf9euXX4gEPA///nPw3c3bNjgB4PB+dc9z/OXL1/uX3jhhb7nefOfK5VK/tDQkP/6179+/rXrr7/eFxH/ne985+HcPdIkHDze733ve+H1t771rX57e7vv+76/fv16X0T8q666Cj7zsY99zBcR/5577pl/bcmSJb6I+HfccQd89uabb/ZF5EXn0G9961u+bdv+gw8+CK9/5Stf8UXEf/jhh3+vfSTNB/OONCMH8/KSSy6B16+99lpfRPxnnnnG9/0X8u2KK66Yf/+2227zRcQ/66yzfMdx5l+v1Wp+V1eXf9JJJ/nVanX+9VtvvdUXEX/t2rWHdX9I8/HFL37RFxF/ZGQEXhcR37Zt//nnn4fX7733Xl9E/HvvvRdeb3QOe8455/ipVArWjb7vw7rvYI5PTk76mzZt8vv6+vxTTz3Vn5mZeUX2jzQnzLsjy1F5S2wmk5HHH39c9u/f/zs/k0wm5b/9t/82H4fDYTnttNNk586dh/QbH/rQh+b/++Cfi9ZqNbn77rt//4aTVw2e58ntt98ub3nLW+SUU04x3rcsSyKRiNj2C0PUdV2Znp6evx1H375NyG/juq7ceeedcumll8rixYvnX1+1apVceOGF8/EPf/hD8TxP1q1bJ1NTU/P/6+npkeXLl8u9994rIiLr16+Xbdu2ybve9S6Znp6e/1yxWJQLLrhAHnjgAfE8D9rwgQ98YGF2ljQF+nifffbZMj09LblcTn7+85+LiMhf//Vfw2c++tGPiojIz372M3h9aGgI8lRE5v/S87/+67+MXDvI9773PVm1apUcc8wxkM/nn3++iMh8PpNXD8w70ox88IMfhPjDH/6wiMh8Tv4u3v/+94MX+zf///b+PcqyqzzvRt912/ddtevW1fd769YSrRsQQLIA2cY2vmBMMCFxZDzygT/IOCPnJDnjOB7+EmyHbzgkTkZwGBzHie0TM85nTIwvwYAMlhEgBJKQELp1t7q7+t5dVV21q2rXvq7L+UMHDZ5nLnqXZHVVAc9vDI2hd++115prrjnfOdfqmr/16KM2Oztrv/zLv2yFQuHFz3/xF3/RRkdHX8ESi+8H7rnnHrvpppte1m/n5ubswQcftF/6pV+CeaPZC/ckzFNPPWX33HOP7d271z7/+c/b2NjYyzqu+N5H7e7a8wP5wO7f/bt/Z0899ZTt2rXLXvOa19i/+Tf/xnkQt3PnTqehjI2N2eLi4tD9+75v+/fvh8+uu+46M3th7bYQc3Nztry8bDfffPN33SZNU/uP//E/2qFDh6xYLNrk5KRNTU3Zk08+aUtLS+tYWvG9xtzcnHU6HTt06JDz3fXXX//i/x8/ftyyLLNDhw7Z1NQU/Pfss8/a7Ozsi9uZmd13333Odr/3e79nvV7PaZP79u27hmcoNhs80fr2JGpxcdFOnz5tvu/bwYMHYZutW7dao9Gw06dPw+d5befnf/7n7Q1veIP9k3/yT2x6etre9a532Sc+8Ql4iHL8+HF7+umnnTb67fH32+1ZfP+gdic2Izz2HjhwwHzfH3oPwG3w222U9xdFkXOfIcTfZd717fvgq92XfCc/9VM/ZfV63T73uc/ZyMjIyz6u+N5H7e7a8wPpsHvnO99pd999t33qU5+y+++/3z784Q/bb/3Wb9mf/umfvuin+25vfs3kYhLrxIc+9CH7tV/7NfulX/ol+43f+A0bHx833/ftn/2zf/Zd/6VfiJdCmqbmeZ595jOfyc15tVrtxe3MzD784Q/brbfemruvb2/7bcrl8itbWLGpWcuYmfevpXnktZ1yuWwPPvigPfDAA/bpT3/aPvvZz9of//Ef25vf/Ga7//77LQgCS9PUbrnlFvvt3/7t3P3K9/T9h9qd+F7g79IGhVgree3nu7W9JEn+Tsf6uZ/7OfvDP/xD+/jHP27ve9/7/k77Et/bqN1de34gH9iZmW3bts3e//732/vf/36bnZ2122+/3f7tv/23Q18osRbSNLWTJ0+++K+rZmbHjh0zsxfeDCXE1NSUjYyM2FNPPfVdt/nkJz9pb3rTm+y//bf/Bp83m02Qa651Iih+cPj2W5a+/Zdx38nRo0df/P8DBw5YlmW2b98+yFfMgQMHzMxsZGTEfviHf/iVL7D4vmbPnj2WpqkdP37cbrzxxhc/v3z5sjWbTduzZ8+a9uP7vt17771277332m//9m/bhz70IfvVX/1Ve+CBB+yHf/iH7cCBA/bNb37T7r33XuVFoXYnNozjx4/DX508//zzlqbpS74H+HYbPX78+ItLrM3MBoOBnTp1yo4cOfKKlFd87/BSc8y3/+qYXwLAf2H87b/YvNp9yXfy4Q9/2MIwtPe///1Wr9ft3e9+90sql/jeQu1uY/mBWxKbJImzdGvLli22fft26/V6r9hxfud3fufF/8+yzH7nd37Hoiiye++99xU7hvjexfd9e9vb3mZ/+Zd/aY8++qjzfZZlFgSB8xedf/Inf2Lnz5+Hz6rVqpm5SVH84BIEgb3lLW+xP/uzP7MzZ868+Pmzzz5rn/vc516M3/72t1sQBPbBD37QaWtZltmVK1fMzOyOO+6wAwcO2L//9//eWq2Wc7y5ublrdCbi+4Gf+ImfMDOz//Sf/hN8/u2/SHrrW986dB8LCwvOZ9/+a89vj93vfOc77fz58/Zf/+t/dbbtdDovvnVR/GCgdic2iv/yX/4LxB/5yEfMzF7yHwXceeedNjU1ZR/72Mes3++/+Pkf/MEfaM73A8pLnfPv2bPHgiCwBx98ED7/6Ec/CvHU1JT90A/9kP33//7fYd5olr+6zPM8+93f/V17xzveYffdd5/9xV/8xUs4C/G9htrdxvID9xd2KysrtnPnTnvHO95hR44csVqtZp///OftkUcesf/wH/7DK3KMUqlkn/3sZ+2+++6z1772tfaZz3zGPv3pT9u/+lf/6sVXIAvxoQ99yO6//36755577L3vfa/deOONdvHiRfuTP/kT+/KXv2w/+ZM/ab/+679u73nPe+z1r3+9fetb37KPf/zjjrfkwIED1mg07GMf+5jV63WrVqv22te+Vg6xH3A++MEP2mc/+1m7++677f3vf7/FcWwf+chH7PDhw/bkk0+a2Qtt5zd/8zftV37lV2xmZsbe9ra3Wb1et1OnTtmnPvUpe+9732v/4l/8C/N9337v937PfvzHf9wOHz5s73nPe2zHjh12/vx5e+CBB2xkZMT+8i//coPPWGxWjhw5Yvfdd5/97u/+rjWbTbvnnnvs61//uv3hH/6hve1tb7M3velNQ/fx67/+6/bggw/aW9/6VtuzZ4/Nzs7aRz/6Udu5c6fdddddZmb2C7/wC/aJT3zCfvmXf9keeOABe8Mb3mBJkthzzz1nn/jEJ+xzn/tc7kt+xPcnandiozh16pT99E//tP3Yj/2YffWrX7U/+qM/sne/+90v+S/ioiiy3/zN37T3ve999uY3v9l+/ud/3k6dOmW///u/L4fdDyh33HGHmZn96q/+qr3rXe+yKIrsp37qp77r9qOjo/b3//7ft4985CPmeZ4dOHDA/tf/+l+5bs3//J//s9111112++2323vf+17bt2+fzczM2Kc//Wl74oknnO1937c/+qM/sre97W32zne+0/7qr/4K/hJUfP+gdrfBbMzLaTeOXq+X/ct/+S+zI0eOZPV6PatWq9mRI0eyj370oy9uc88992SHDx92fnvfffdle/bseTHOezXxfffdl1Wr1ezEiRPZj/7oj2aVSiWbnp7O/vW//tdZkiTX8tTE9yCnT5/O/vE//sfZ1NRUViwWs/3792cf+MAHsl6vl3W73eyf//N/nm3bti0rl8vZG97whuyrX/1qds8992T33HMP7OfP//zPs5tuuikLw9Bpk+IHly9+8YvZHXfckRUKhWz//v3Zxz72sRdfjf6d/M//+T+zu+66K6tWq1m1Ws1uuOGG7AMf+EB29OhR2O7xxx/P3v72t2cTExNZsVjM9uzZk73zne/MvvCFL7y4zXe+el18//Pdrvfv//7vZ2aWnTp1KsuyLBsMBtkHP/jBbN++fVkURdmuXbuyX/mVX8m63S78bs+ePdlb3/pW5zhf+MIXsp/5mZ/Jtm/fnhUKhWz79u3ZP/gH/yA7duwYbNfv97Pf+q3fyg4fPpwVi8VsbGwsu+OOO7IPfvCD2dLS0it78mLDULsTm5Fvt8tnnnkme8c73pHV6/VsbGws+6f/9J9mnU7nxe327NmT3XfffS/G3263jzzySO5+P/rRj2b79u3LisViduedd2YPPvhg7lxQ/GDwG7/xG9mOHTsy3/dfzHdmln3gAx/I3X5ubi77uZ/7uaxSqWRjY2PZ+973vuypp57KvV946qmnsp/92Z/NGo1GViqVsuuvvz77tV/7tRe/z8u97XY7u+eee7JarZY9/PDD1+ScxcajdrdxeFmmtyi8kvziL/6iffKTn8xdNiaEEEIIIYQQQgghxDB+4Bx2QgghhBBCCCGEEEJsZvTATgghhBBCCCGEEEKITYQe2AkhhBBCCCGEEEIIsYmQw04IIYQQQgghhBBCiE2E/sJOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixidADOyGEEEIIIYQQQgghNhHhWjf8P/96BuIkTShOIY7o9wXffTboBQWI+6kH8Uq/A3HAu+i2IRypFDGulSCOY6cItjIIIPY9LMPA8DzTDL/3KL4WsGYws5Q3gDB1tIRrKOMQk6FH9fKvf3zv8H2+Avwf/8e/hHjp0kWIu6tdiMNiFXeQ0+4OHDwA8f4DGHN9nj93FuJnHnkE4pmTJyFO6JB+5HazYrkCcaM+AvHI6OhV47HxMYhHR8chrtTw+3odf29mVq5hGUoVistYl0GhDHFK7YpapWVr+eeAhNou5RGfOv2rj9y4hp2+Mrzmza+B2EuxrH6CZaWvrVyltmhmo3Qd+XxXVlbwGB7utFTAzNpdxRxYLmDOKxTci1CsYnssRvibbjemuI9xD/Oy52M7qFVruP8S7t/MLI4HEPf7eIxiEdvalfkmxJcvz0EchJj7vQDrKQgwz5uZDQZXL8Pi4iLEF8+ec/ZxLfiPH/1/Q7x7GttMGGMbKQd4Hnt2bHf2Wa5OQXx+Ga/Z57/8BMSthSWI6yOYTz4zPwFxcNM9EC8/8v91ynBv+DjEv/iPfgHiTgWPkaYtiEOarizM4vX53Y/9PsRLi02nDP/P/9f/A+J9+/ZC/Oijj0J88LpDEJdL2C5rNWzrCwsLELdaeA5mZlu2bLnqb4olbMu3v/q1zj6uBR9/bhXiNMmZMH0HPCfIm0J4NEZ4Q6Yi3vepUfmaq6Jp92nGo7HZgEbomMYeG+BO3nsn5oxrxXjo5maA644akZ8zx2O4rQ77zbDrxfvjeC0M2wfHdHs0bMr+wjZ0Hi/1mK8EPMfhMiUJ3mPNt3FOfy353z7yRYhTuq91asOj+17PbUcZ3f1GdL7+Kt7DVPvnIb7t+t0QL13Buc6Xv/IViPtdnI+ZmY2P4/1AqcTzwgJ9j2POjTfehNtHOO4FNL/KT9x43Z3xwuljVE/+1dsitytuR3mfOfcXlAfe/e53X/WYrxT/2x9fok+orpznDLh15rv5nfcRpHiNU6r/mNoyP8pwDzE84wzfwrtq6OT6obz0vznLqJTO8xTe3ikSj1c57dR5ZkN5hdr2H7zLnbPnob+wE0IIIYQQQgghhBBiE6EHdkIIIYQQQgghhBBCbCL0wE4IIYQQQgghhBBCiE3Emh12Ga1ZZ38VP/rr9MiDlLjrfAskfeJ1vaGPxfNSdqrgQdkvt9pFF0Lg4ZruF46J58Vr2n0+T1ruzI6WVwJeMs1PVQOqJ5/WRw8GFF99ifYLxxx2GtfAbbEWxqZwbffUxDTEu3fuwe3HJyHue2xTNPNCbAfsUuiSE+L6rXshPnDDqyA+eewYxEuL6CRqkqPIzOzM6VMQnz2DcUjVXSZ3WdJHd1lEHphSCX1QYdH1iJXq6Fgr19HH1JhAh01jHK/FaAOPURtFD1+d4nKt7pQhKKI3Lwixz4c57rH1otdH/1QxwLKxK5K9HuwtMDNbbaN/LIqwLZbJw9ljXxw1jNooXrMC5UxL0cv2wjaYENj12WmhM8XP8DzKZSwjp5d+TMd0i2CVCjpRPJ8lHbjXWh3byfw8uUZJUBpQ1sxzErHDjv0mYbjm4fEV5bYbb4A4ous1ewHHtcb0DojT3GEd62OigX3zJ99yL8SXz12A+NwFdK4cpHzSijDHTe/B/ZuZJRexvr/8dXTxlCd3QnzdgV0Q18YaEH/l2a9D/MUvoo/IY0eXmf31/fdD/PafezvEt9x8GOJuh/ofOY4K5NisU7uuUV8xM6vSNoUAx6zBIKfDrANhwE7SIf+eu4Y5geuA8q76fa6a56o73ACGaHbYkfPCh1cveO5vrgLPOx0vT45A1ufxisqUbtA/3w/1pr2MuSdXtxMPOcSwq8ElWtssha4ZO7qGOSGH9J2Xg1P3JMvyXmJNZDntfNj1zfPLrhdehvMGP8f9iN9z/bikNO9j93qhhHO+KMTx4DP3fwbiE09/E+LVVXSNep473ns5br3vhB3CKc3xtj/8VYjvvfdHIL758BGI+7ljFjkzY3I+0/gcUEXx9jHN8dbiBeW5K1+wfryGm+NrQMDzXX4Wwn45ftbhvCXA1bUnPu7Dp7lLlafc1Ndjuh4JZbk4d4zBa+TmjyF+fceFOGTcfFluWMe2ftWt3fS1hjYzzM33Mp+n6C/shBBCCCGEEEIIIYTYROiBnRBCCCGEEEIIIYQQmwg9sBNCCCGEEEIIIYQQYhOxZknPgNZ6Z8nV1/L7Pq535t+bmaUprqP3eS0xL/5PcB+FAvph4gDj9gDXU5ejnDXXIZ2X46yj750103zmL1GGYeasZ+a1/eyA8L2r+5lcn8nwIgxbC/7y1or/3bnu+hshPn70OMTzS+gEq9RHIS6W3bX+3S66yQoFdEqkffQWrfbQFze1ZRvEr9uxF+LzZ2Ygbi81nTK87g13QXzx8nksU4RtuUH+t6eefATiL37hryBOZk9C7LMvxcwyaldBEeuB6yVIcfuIvg+LWOZKFd0co+QfNDOrj6O3amxsHOKJiQmI77gZ/V7XEnbQUfqxuNeDuFQiH1/qtr1yGZ1zIyPo+mqRn6Qfo6+sWEF3WJnaSUDdtNdxPXo+eSKWmugfSxPMy1GE5zGgpsTuEXbShKHrqOn18bz4mGnCORF/X6S2Gncw13MOzYOdKMPy7nqxaws6zZIEyxl3sO48H9tdkpOqPXJ5Vqn+PGoTo/uxX+7evgXigxH6K5+7gn1hbDe64MzManO4zcWL6EpsL8xDnO3cCnGxiPlk1559EO/ZvRvi3irmeTOzW25B/2i3i7m9XMQpUZ36WxzjOZw99TzEVcrTnEPNzAZd7OMBzRlix9W7PoQ0RrATeD36wxD10qZw2L0Mc9/waaDj/npp8y1n3pqXA6hZeTSnS3PmCJuBV6LdudVxdafQMAeYo37L+duHYaVOhznrnP1xGYf84GXg7vMlzvuHyrDzjrlx7Y5znnu2VOd8i5rjs/I99Lktz56G+MTJb0F85Rw6sOPlWYjr5LyrVXGM6Q/cOR7fr8UxefXYG0h+s5M0rrX+HMfSbhfHQR5XzVwHMN/v83VPEr7XJo/bkHtQL8c/2KU5wDz5xWdp7rte8JzYKTo/E/Bw+yinnxVj8pr7mPAn6hiPR0sQX76E87Hjl3D70iT64ot1nBOamRm9EyBbwzz870KuM3NI5k2pz2Yezftf4iQjv1nyh3j9PBYOrhH9hZ0QQgghhBBCCCGEEJsIPbATQgghhBBCCCGEEGIToQd2QgghhBBCCCGEEEJsItbssHM8aS/RaeZ57lpmZx+0rp6/5zXvgx66xgqG7oBCiP4Z1yjlMuD1zfT9UN3CS/7BcNitNOB64e0zfg47fB35MI/ExhjszMbq6GvYf/AQxOfOoh9iYeEyxCPktDMzK5bQhVQg8Ve1gPXX6WK7ysivRSosGx1Fv1Of2qmZWZzgPncdOABxudSAuFbBeHIX+pva1Cbu/9QfQxzE7hUsBNgjohTLlHYw9skz1mXnEbWhOe5Lz6N/8IWCkfeN3JdF8uK955/+7+4+rhFlctINyNvh+5g+3T7k9rsgxLaVkqeDXWLlKuawfkw5LmJPCP6+3nDbfxhgg71w/hLExSKet0/txKMyW0AuRHKFDqjMZmarLfJI0nWP2M1H9TYyii7Afoz76/Wx7tnDZ+Y6VnrkJKxT7lkvYnJottsYl0vYJkL/6uOmmZlHbpF+Bz1qSwuLEE9vQT9JqYLHmChh3e0gV2gpZzhJ69dBvHNyF5aB3HxpD9tNTNf08M3ozbn77rshnhxDP6SZ2Vt+7C0QnzyJrp7LFy5CXK9gO+ysojN1YRHrbbSBuZ/9g2ZmYYh1xS7FNnl3Dh2509nHtYCVwexrWo9ZwA/svyC/whqvNCcHpNTO/ITHHtc1uh6kfPJD6sKxRufMXfkzZwtyevpO46cyJtwy2Unk1ndIDlzHM8ieKpov+B5fH3Z8DW80rrt4mJeS3X5X75FDld6WcwtEv8nSjbq7MAv5OnN9UR2zeir0cE5sZnbiqa9BfPLJL0PcpnuUjO4vpsZwbjNNzuyQ7l+iyO23KyvLEMfU1wM6kf4A5xgpbb/YxP395af/AuJzF9DBbWZ25JYjEI+ONiAu0JzMqXoSu7E/drGJDra5y+hgMzObvXQBf0P10k3c67ce+DT3NLqnDDO616D5bTBw3XtjHn5W6mH9XL91B34f4rm3T85AXJjDuU13BdutP4b7MzMrbTmI+6g2IE498sVzunHumYbkhpwcmDkTF+rDw56PDHtm47wzIG+TIWWQw04IIYQQQgghhBBCiO999MBOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixiVizw25AK3W9IR41jv2cdcGDATo1goC9EPg8MTFeh4/7q0R4jCou9be43XbK0PPR19Szq3s8HB1Dxmuur70HxPEJDvn+leEVlqyskWe/9U2IRybQrVQmt9XilVmIOx3Xn7WF1vKbj+1qQGvc++R/82jhvU9xRF6xsRyX0le+8gDE9TK6km46/BqIe+R665NGbGRqK8SDEBv/IrmWzMwqIbbdCrnKiuRZ8EIsI7cy9hGwXsDtK2bWX6FtcCcr7Y3zm0RUhynlm+oIft8hL1ini04uM9ct4lEtpuztSDFHVimpZZQTyxX0mwWRm+IT+nea+uQW2gJ/s7KM/ozMJz8cJeJBhmVO2HlnZpPTkxAXKG+mCR4jpcof9OkY5ApLU/ZM5rnE8Dz7fcwVlQr2ufXiiW99A+LOKjkwY6ybchG9ICP1hrPP8Qb6ZDrL6Ds5e+IYxF6MbbdKdVGOWvQ9tssgdPt62JiAOKrhNe2eOQXxhYvnIK6QM2Wxhdfr+uuvh/jHfuSNThlGyKMzMYHt8PK5MxA359CBM0L9z6e23V5uQlymejEz63fQT+OxVyp12+p64JOvKmOHlivoHRIPx50nYux4v4Y6bdb84XeUAY+RvWRX3999bvTS3cj8Nc0JUzfnJn1sd4MetjMvxDyybvBEnnD9c8M8bGY++/jIWedFNE6S7zqoY17YeuT1EFe3oI/z/ELOWD+P+cu//CzE4SLmO6+PzqmB49EjB6HH1zjP5ccecGeTofu4+uZ8L5LXd9gnyC6/4Y7tawU7k3n+xfOSIMGx+OgTDzr7fOrhz0PcbaFbjaciIdnVPR/b4sTUNMT1cXTrFkK3/ywtVyFur+K9b7WG3/P8qUwOYb6lbK7iXLfdwXm8mdnjj38d90lO6JDu7ycnxnF7msvOkvvvwsV5iBeX3Hu9Ls11A7qHKZVdx/N6UAlpfpVifcYrmBtKA7x/K6V4H2FmtmMr1l9vFa9po0z3c1T/hTLOVbZtx/Eg8zFeWkV/vJnZyil0AHdr2yEub8W8WahP4THoeqWsl+NcknNvkfo0rtH9PMeZ4+nkG1kKX9Zwz2PWy3tOpL+wE0IIIYQQQgghhBBiE6EHdkIIIYQQQgghhBBCbCL0wE4IIYQQQgghhBBCiE2EHtgJIYQQQgghhBBCCLGJWPNLJ1i0x3LggMW9zvbus0FHSk92v5CE6T4dIwhw+wGJM7stFGG2LqAQ0cxs8rqbcR/0DJP83paSWZ/PwSPZOcs683yFL9U37Lx0YthLJl6Wt59Nixsj/19oorD1qSe+BnFEF2jrvj0Q9/kCmlmFhKuVyjaIWXzJu2DBKnlrbUBy5+e++ZhThm/87f0QV6tYpm1TWKbpXSgELVDfuOUmlMqHv/B+iM+fdQWhS02Utq6QiL5FAvVVEs12OijgHQwGEHN/9nJyQCHk80IB70aJ/83MEVXXaiSsDfH7iMo+SN2X3EQkCO4PsK2wFTolqWqpjPUx6OLvV+marHbd7FKp1fAYPral1RbuozyCYt72KrYTfttIfQSlyL2+KwPmFzxklEgLBazrHr3Ao0QvaUlJsh7QC1RYqpx3jGIRY27P68WZcygcDikfVUgI3VvFc/fzEr7HYyvJmCmH8QtUjF5ukkV4/UZLPC5i/ZuZZUV6MUUB292uPZi7KyP0sp4Stas5HM9vv/0OiOsjDacMCb2sZPs2FHp3l/dCHJKEvEj1xDmuH2M9RaErF04SEiXz2Jr3cp71gAayjHJPaNSHHBnzS//3X2qWFlAeSDgfvozJjGcpxfw9v3QC4WPySw6cOK/7DS0lQfvgl5s42SzAI7gvJDAb9PBFMX16T0KxtEEvneAX2A15M8Ka6pLaMr9QI6BcXyH5+fX3vhPi0dveBPGVSzh3KkU0jptZp34Q4t4kztF69BKK0tmvQBy28aUViYfH8DO6P+K3fplZ5uEYlg59wYNzU4bfum8Audqvc3Hmhf7G/d2I72EdVukMki6+6ODpx/AlE9969KvOPjsrVyDOyJzv0fgd0rhYpHuBffv3QTw22YA4yBHY830qz9X7PWxLZ89jW2vTHHDHFhwni/Tyhn7Vbf8+JcIleuHasydPQHzw4I0Qj47hi18uXsYXL8wtYj6rjWAfNjMbq41BPDKKc9lRnmOsE9cX8GVWlQTzSauAL6DxsbotG7jzK+clgSVsR7U6nusgxmtcKOJLPjwfr2mxVKLYfXw02sNBpUk5bPUUvhQyGd0JcWVyP8QRvfwn9qjv8FzKzDLqD1529RyV0Ev03EcdV3/msya4DC8z5+kv7IQQQgghhBBCCCGE2ETogZ0QQgghhBBCCCGEEJsIPbATQgghhBBCCCGEEGITsWaH3flTZyAOyIXArhavgGusvcB9NliM0Cvhk4co6uFvUlqjXSJvh5E/Js5w/8Wte50yLLbJAUUeljDAfWS0Lj/N2I+Cv/d5rXKOZ8JdNM1Olas7VoZZXTwWDuaZJjIsJ3smUm9jfE7sHDjVRm/B/CV0THRSLGd9couzT3aklGlt/sTUdohDcpX1OugmK5exjRw/hm6Sr375S04ZfFp735xHh8GFc2chLtYnIC5U0EPWGEVXw91vfDMez2kDZp0ueqrabXTzra6gR+HyOfTgzZxC19bx55+HmL18O3fucsowMYFujHIZfR7j4+POb9aLQYJ9m1Rv1o3R1+Bn5IsZkCTIzHqULyLH64VtqUa+Oc8wzyYJFYq9UzkOraUmXmcvwRzYbWEfq9exDOM17JNeij6zgDyesauZsHYb62Y1RitTYxTL7ZNzbUDHLJNfsN3Ca+HmQLOYjsmpOX05ropXgDtedRhix/PlODpwg2IR+52ZmUeejtFxvIYHr78O4pB8jBFJ7krUGditmEXu1MKj30Q05ng1dNR5Vez7V1Zw+8PXNSCemsB22um73sJeB+uhNoLndeAgeqeSNrkRaRzMyBWWsI8rx0eXxuyCozlE5pZ7PeB2xHMZL7v6v+++HMstT+H65B32aIMCjQ9c33kevWyIE43nOox/Lf5d++pTPmeG5s752DVG87fM9dF1VnE877bRYcTz8fUiJceXM2ceQp7zjvuQn+IYF3p4riNl3MdkFx1ThWfRXdZZwv1dV3RdWCsB5uGzNDe9GGN+a029EeJSH+eRhYXnII562FfSHHlinHKf5twypKXRPof18bxrx9fXYYPGWTOzIhW3v4h+3gcf+CTEK3M4560U3cKXS1shrtK4ViaHtk+OzTqNndPkjytXca5TLrjjfYl8ZKN0HzWIsS1OnDwJ8ZkTGI+NYfsu9HB+sLTs+pr7NP9dXMb8s0Dz0IPX3QTxrt17If7q1x6FuDG5G+KduzA2MxtvoNeuRtciZHnvOrEtwHYWl/B6BB7Op3iO3clxBPN7AjyamwTUNzO6N3DeGeC57mn4fU7HLZVwfJ4i916tj+e5sor3lM0WOu4KE3jPWJ1Cz3FUxnZtZhbTPJPLyXOyiJ+vOEnu6u9nyMN9r4AcdkIIIYQQQgghhBBCfN+hB3ZCCCGEEEIIIYQQQmwi9MBOCCGEEEIIIYQQQohNxJoddt84cxE/IFcSuwsidsHlrHdmN1hEvoSIlpd3aRdbRnFd/d5xjLeW8PRqFXetf6eL6+y9FA/K6+47fdw+IR9NQB6QQgEXcef5UgJy8/W66MfwqO58cnb0+rjWnMvEPqIyrTN/YZ+87huJN+rRboj11xhD78flkzMQl8gvt3wO3YtmZpcvo/fusW98A+KbbjoCcaWK7arfI3cZtcsnv/F1iJeWm04ZYhJ7pQm7EBFeEz8gF0ArQx9dBRUIVozca16m8xodQ99fiTyUBR/j5SWs6ze/+QDE09Po3qjVXc9LWMKCsu+kRH7B9YTrvNfHflkpYn1UK+RXity+7gf4Gz7/S3PoMmz38LpWK1iHpQjrJx506PucFJ9ifmCnQznC1peQi6RGvrJ+B/NPn/JXkOPRK7GLin1ytH2lisfsUh8cGUF/2WoL67FccnN/lmJSS8j3k+cEWg9u3IceNa4/bpc89qa5rjHcR4WuoT9J4zWNGQUao3zKV1xXeUXwaVQJ2NUW4tg58LGM8RUci6tV9NEUuZ1Fbu64skC+xmWMG1Vsl6mH/cnLyEvJitqEx2q3Inwfy5km7MXdGKlTZNiP0xSvuedxP6Y5YI6vj3sQt9WlORyLv/ApdEbVyeF53Q3XQ1weQ4dNdQqdRWZmlRrOGZKMnTTkUKPfu+6+7KphHk4rGHKJ2buXOM4bygHs8svcvL94BefwMyeegvj1r/vxqxfqGuEYltn/Q3XhXp88LzRe0yzBtj3oLEN85TLmoivP4e/feOstEO8cQZfSygDHGzOzC/NPQ9w+hfUfxJifOjfeDXFzy70Q908+CXHl+KchLqyccMrgD7itsg+b65qEszwGOpeG/U/utchzDA77zXrRXkAn3Vf/5i8gXlrA6xqEOD5s3YW+azOzQgV90rUi3wNiW+z20Bk8PYJzvDjBtknTUFu4jN4vM7PbbrsN4sYo3RDQNSmVMa/u2Io5sz1A39zJy+ge63rYn8zMlpfQ05ZWcB/bduH4fd0h9JXdduTVEGcJzVHI9xxGbjsLfKx7Hn+SJEewvA5U6B58JSZXK90HDfh+0dw5dTrAdpLRPriXRTTH47pxn1UMEa+aO/dMqW8X6JqNUjusU5mXqH82F85DXJ3e65Shvh3vQ70S9idnmsKez6HO2+E4dcd5M8epvRb0F3ZCCCGEEEIIIYQQQmwi9MBOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixiVizw86rNvADdmbQ9j36oG8uibPOF9dgV2ht8SBBb1e1jT6ZrEa+s3E8vW31nDXuDXSkzC+hM+rELHq6nr+C33sBryXH7T1yQBTJYWVmFpHThh1pvKSaz4IddoMB1hOvTS/lOuzYk4QLvQvOkvnDzj6uBd2YykHOL/b/xQOsiyzHn3XpAjofTpw6C/FXv/owxI53LMBjTo038ADk/ApzHouvLKPPYaKO7bBQxLX+HrsXUnIa9DGOyKU42kCvhpnrzeuSz/HY0Wch/srf/g3EMzMnId6+fQfE84tXIM7yPJbkFmN3Vkxt+d63/LCzj2tFmT1r5K8MqO9zXCb/kplZSE7LQYp1wl6JjBwbK4tN3F/GnkHcvjqCxzMzC8hX2elhHW+ZRC9Ul/JwTHmYrxn75cpF1yUWkqWOvZxxjMdYWiLvC7VVbu8Bd7ocH10Y4TYB+TcG6cb4TZ5/+ijEhTKeW20U3S+TU5MQ+757zUtFzJshD/2kk+MRnZ0c7Bz0AurbqVvfGXlvOTMH1E5CGhdHq/h9ISBHC5Xp3ByO1WZmR8+hk27XDuzjIzWMg5BmLo5rlNoQldnL3DbEVZOxOzHeGKeTn6KHKPQwDziuMWNHTt41J2+hh7miOX8J4icf/lv8fRfr/9ST6Dka2YGe1L23vMopw+vufgvEnoftKCGHHTvR2A/nQg6cnHFu2Cce9zd2g5ELMelj27584QLE01uwnl74DTogZ55/HOIRdjz/8B3OPq4FXL88FvC9Btels73lpnv8DY2raQc9YjNnZiBe2Ybbhz30Hq8u4HhlZpbSGHUD+c9Gtm2DeG4Sr89DlGvOR/sh9hq3Y9xddMoQxNguMmeez+UmwdOQenwl/HMb6bD72kP34wc+jg+HDqO7cEBzwJQ9rObOWVsknYv72NbSBL8f2YHz6Co57eZnMWcee/YZpwwzF9D9VavgXJQdl5cvoUu028f72LSI7f/45ech3r4X87CZ2Z5dDYjLFZoHdnBes9pD33jmoYdvahL31+mzczXHoZrgeSR2dVf7ejExhb7w9Ape0+UVHIuTmPulW/KI/HCZT3M02j507muv/gzAcYnmVZ7jUiXXMV2jheexnYbk8quSs75Ww76wPIv3oGZmC028v69uQd9odRvGXpnGPfYa0jmlwx7IWM744zjs3OcSa0F/YSeEEEIIIYQQQgghxCZCD+yEEEIIIYQQQgghhNhE6IGdEEIIIYQQQgghhBCbiDU77LIerrNn74pH63pTZ3V43kJf/gzXN8fkFimRD8ZPcY32pSX0D6T0/UwT17ObmfVSXEvcXCV3Uhv30U7wvJYH+L1Pz0C5nsLchd/knKN9eLQO3Fm+nuHa9TSldfpUZotdrw77hRxvSM7lWw8ak7jW//Jx9Krxuvtuh65xwW3iUYgnUy7iNq02OSfISZGGWN/LzXmIky76ZUYbDacMfWoXXepfrRZ6Ltib1+qS96KOa/vTAbaZeXJUmJmtrqJH7+gxrNtHH/kaxCdPoltrlcp46vQJiKMIy5xmbiPyA3KP0fWMyUv1wV//N84+rhWVCnq/mnRd45h9DXi+fC4vbINxu405i39TIued0XVNyDXiRfj99Oh2pwynyHc02cC2MzaGvsPlDuaGdgf7w4B8c2EB3RiuWcQsSa/utuh0sF6KRawHdv2lCebMkBx2aY6PLvDJfxmTEyVvzFoH/vgTn4T4+hsOQXzbHUcgrpIbplpx211MPiV2exYpTsjj4VO7HFYzWY6joxjhNVy8jK6RlUtNiOvb90G8vIDbf+aBv4Z4qYOd60q21SlDuYFur+1bb4Y4oA4ak38oTciRStsnA/KdJK7jKKPP2HPnuGPWiQtn0YW0bderIU4z9vexW2z4v//yuScx1u9okTw5NHdZnT0H8ZXlixDPNeecY5ZDzG+vuv0NeIwi+xrxenhrnya/sL+8qS7Fju+P3T/kNmUn57nTOBY//MXPQfya19zllOHMiachnrtwGuJHaN5j9n939nFNGDK55HsLjnN/MzQmdyxr81Ic08Ym0D934wiOPw8+jmOqmVmljO3Op2s+aKO3qvjNP4X45vITuD/DfHjWcP/tOo4LZmblAc7xggF68pw7MGeOxvceV7/vy7s2/JuNdNYxC/M4L969E72Ci0voBaxRQ2mTe8zMbEBzVp6bTzfQDRp55EomB/bZC+fxAJSHQ5q/mZld8ci9fuIYxKdmsNzNy3gPU6L5VcRzigjLuG0XenTNzCaX0GHd6WBb7Kzi/cOZZ74IcRDjMVeWsF7Zy93v4r2EmVl5BOs2LFFdZRvzN0uex/0K21WP7tETugdlZbCZWbGM9ysJ3QvzmQ71fA7ZIK/m+LmP8xSIPijSfW+xj/Wy1MNzKG1Fv+PoVtedGHfR/7d6Hu9rWys4jxzfvhfiyjjmACuy447nZ249OVXHH/gvr93pL+yEEEIIIYQQQgghhNhE6IGdEEIIIYQQQgghhBCbCD2wE0IIIYQQQgghhBBiE7FmOUcSs4uFXAYk7mAnkSteM/NoHS97JWJa91v3cV13iR43zrdwvXN3gOvw/ab7fLLdx2OUaHF4Sk6GKpWhP6C15gm5lthpZ65LKeVjsrOO17s7S6jx91zV6VqcEc6ia3aqDN/FtWDXrr0QH3vkIYivLKGTo7OIa+J37t3t7NOna+pzO2SfCZ18mmFfiPt4TatldEotr6C7wcxsZRXLWaYyPPaNb0A8M4vnWR9Ff0O1guvsCx62/WPHnnPKsEi+n5mZ4/Q9OigSdi2Rh4+FKOzBymtD7Ophvwlfm/WE/XnsZxn00We1vIxxMIJOCTMzz+f+j+dbLqNzY9DGnDY5jtc9CLGMUYLb95fdttdZQT9c1TBnzV3AdtFsk2OziO07KpFDky50Qo47M7NODx0oBXKe1Wo1LGMV2/cynVchwnprr+L+l5bQl2JmFlO5ogKeR9x3/WPrwTeeRddUdbwO8a3ZqyBuLaNnx2K3owUe1kelgvUVkCOTr1mcYeyRx4PUbXZ5qemUYXYey9mmdlgjB8sWH8v48f/x/4H4oa/gWJDU9kDcOOB6vG6roGuns4B+oMHoOJbxCvaF/gA9lmmKeTyhNpNQjjBz/VjsdeMcuOVWdK5dK04c+xbE23egE8unMYUHyjyzWBpg/o7JvXrsm4/hMQaYv7ZQHpiZRWedeZgX0iX015iZ/c1f/BnE1Qh/c9Ntt2AZ6UR4bsuar4TGQR4nzcxCZ46BsU9xQONC3MPzOvrEVyF+5vEvQdxaIu+VmV04cwbiJvm5Bjmez/XAmY/xBGyIJy3Xm8bXjOuf2iU7PTvUmo9dwnb7I+QRvd1rOGU4N4/57cxlnMNd6eA17cdNiMc89BT+vTK6l6ZqUxCfDF2PmO9j287mH4c4jRfwB05Vsgv26jcCeX46/oz3sZFOuwL11YUZ9DBz06qMYj7aPo6xmdnICDrqpqbwOpXLON/q9rCdzF7Befe3voWevXIN89fZ5Rw/NfniVi/hOHZxAZ11YYBzutYC/t6fx2tUCLHevtx8yilDtYjXuTGKxygXac53Cb16Tz/+JxC3V3Es3bED/WVXFtz5Wi/C6/PaN7we4m3bXMfzepBm/ByBPOnURwoRzk0dB6q581ef5tguV8+7rqP26s8I1vIbTi8+3Sv45GqtjeD169E9Gd9jmpkVyb8Y0nl1VzGPNo9i31iZQM/x+O7rIB6hOWKejy5hbyd9/3Jva/UXdkIIIYQQQgghhBBCbCL0wE4IIYQQQgghhBBCiE2EHtgJIYQQQgghhBBCCLGJWLPDzveHeCOGeCXyPAXuPjjE54lJhnHRx/XPrRCdN8sD/L5adl0XYQHLVYywSpY6uLa8GtG6+wJuP7OI6+zbdA5R4JaBz9Pjx6hcd7wLrlr63t1djmdig/wlw6iQW2EbOe0G5IOIe3i9en33XJvLuLZ/QFKaiBx07GtKyMMT+7hmPguwTGGR3D9mFvawvnvUtp86jj65K489AXGljGv7CyG2w4zOqdNBN5CZ61FgV18QcLmx7ZtP6/TZP0deLMtp+9y23baZZ0baGNij1mujFy2OsV31B66/ilRt5ihhyK0zSj6UAbW9Eu0w6+J1vnTmrFOGRmMbxN1WE+Il8kC1SFA2Mo3XNaY83CfPRFhEt4aZWYE+6y6jG2xkZATiNrn8IsrTAdVbkfpcmrp+ExrSrFDA3/B4s150yCc6oGKMjjcgHh8hf2Xg1jePAoGHfb+1jH6lbhfbMvfCIMX9DTy8Hn/1hb91SvCFB9G7FRUwh912wyGIC8WHIX7ySXSsbdmJzrrSntdBnI3i/szM5s8/D/HDX0CHWviqAxCvzDUhrjawXY7Usa4D8tOlSY4HMbn6NsM8UdeKpXl0uyRdzANheQvEXEzPy/H10di4QMc48eQjENdpPjVaxLH0yjz6ZmJyJY633bobm8TWe/TRL0N88tlvQlxroCf0yB23Q8zzg5SFNDlDFvvheh2sq84KjiUt8seePY1ey2ceRWddSs6q2fMzThlW6BilKjoj/XBj2l1Ic5dhjjp2XzvOOzNXEkTJPghw3AzIYefTvcTjZzAnPxPdBPFr3vMepwi7LuA1LH6DPF+nZyCM+zjGxXRN0xXsO7cWz0G8p4pzAzOzxw3nD60u5tyghXl/kGA9pJnbp/+urOXecL0YK2I7GauQo27bVoir5NScnCSfleU4wykOCzRno7GzT+6xo0dxzDKaV59fPO2U4bod2Ldv245+w51T+P3xC9jW5i6Q25B0aCHdK8zO5dxf8H2tYVvzjdzI5HcO6f4jIjdZ+blTtD3Og8zMUroPOnv2GMSjozie/+Iv/CNnH9eEIfc5Ht8X8T19jgQtGOJi5yzJju4B36/QNfbYzZo7XHDb53cZUJloEtHtYw4rlHEs7tF9wvJl1984PYV91qN7LvYBBtT/BsvoUlx4Fn2PK1M7Id6yC+ehZmaVRgNibod8fdeK/sJOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixidADOyGEEEIIIYQQQgghNhFrdtjxCmj2XTFr8RI426QYJ7QIu0susbiFa4szD30NURF9A9MjrtunTO6jPZO41n/fFlzrXy2RC4iq4UvP4/rnvz2OZVzou76NgBZ2s+Mhjtnzhb93XICOF2y4BywdcrnyNCHrQXcF3Qg7tu+CuNZAh0TncgfihUX0JpiZrbbJQUdr+dl3kg5xDvXp+i0uo/uH3VhmZh4do9NDf0CLPBa9AZcZfQIBPXvnS87eFzPX/cLuJG4Tvnf1RpIkwxw4Lz0nbFS7MzNLyHsWUhUG5LP0yV04GLjnW6bflMjZFJCbLSMP58oqeojSgJ1PmK/aHZKPmNni2QsQh+TdKpEXslLCuDE5BfHlK+iRyPg6D1w/Jl/XkOql3V6l7/E8yyX0SLVWsJ+H7LQruLm/38e67VEfLBbQY7ReFOt4bpPbJiBmD2roU5txJKiuMyM1vCarbay/3irm3W4L4/OzixAPQsxxj3wd/XNmZmdOoJdzvo25+pmj6BKLSD4yvQNdIdumMb7cxXMcnXD733NHH4V4yUd3z74x9LR949FvQLzQbWKZxusQHz64H+JbX4WuKzOzLOlRjO0uibE/rhcLV9CJderkkxBff/huiD0f+0eU0+4CandnZ2YgbjabEO/ehvMvW8W6cPRQNBZ3Vt3xfmycPDhL6AJ76pGvQ1wo4HksPo/tskQu03KN8kTOZKo5hz6zzgrmt3NnzkDcWsF2aeRaTmLsj75Hc2PfdSfWithWOwnlhBT743px6NY3YDnoIg9icgjzPCVn3sFzGZ5X5Bi1IfLJA9pK8fv/8Wl0X9rYPmePt998C8SvH8dt9i2iJ6y9gvHKPI7TrfmLEGdL6HMsVLCdm5nVuzsg/uuv4PfdszgORF28X4kzEkANuQ98OT66PB/XevGaW6+DeNd29F+l5FFbWcZ+Wam43rSEfJXcPn2aSHoDzHHtNo4HM6fOQzw6MQ1xELpzmztuwXvhm7dg2/j8Yzh+18kZXJ8kz3eL/NTU5YqZ67BjR7DF9EFKzmfDnNVLcS5bGWlAfOhmvBe88Trsb2Zml8+egHiVfH/V2sb4E7nNs5+PHc3chpx7/px9Ot+Tt7O5jG3g4gXMN2lC963O4OvmXac2h+QHz3gM4ntQ+j2N981FHFfNzHo0ry/XcNwrV/B+pkCe3Ijn01Sm+DLOky4uk+/RzBpbt0M8vgO9d8V6w/nNWtBf2AkhhBBCCCGEEEIIsYnQAzshhBBCCCGEEEIIITYRemAnhBBCCCGEEEIIIcQmQg/shBBCCCGEEEIIIYTYRKz5pRMDEu/zkz6fhMNrko8Oe1kCHSSh0kaGAvY7GygPPHLHnRBvGXFPN6WDFHwUM+6aQvGiT0LROMbtw+tRCLrcwe0/d6LplCHLcBuPBJMhybczn18wwPVIMkgSNbIU1cy9no44fg0vrrgW9LooQg5Jsj82gjLVmLbPe89Bu4PbFEKs304XZagpSWFDkr5z9fs+HrTbzROyUo3TTvp9FM8y3L9SakNOm0hdQajbCoYcgyrT97keXnobcfLEUDn0+hH3sR1kAV9oDFMSNOfJ//nlIlOjKC2u1TE+fx5f6JBEWIaEXqYQl1HUWyijfNjMbOFZlP/7JLmfrqBEvTaOL+/hPFyo4DEHdI6W5F1FbI9VErevkHQ9jPA8BzGK+xN6KYuX4LUIcq7FoI/nHZP8Pwo35qUTE2N4zaamMMdlfXppAXft0B3nfJKFG7nE+WUnBWrrhTLWxYNnUMT/2HNHIT49c8opQ0T1m8Yo3r+8hP1trNyA+MpiE+LsDEqSizvwZSgF35XoP0cvtgh3opS946F8e2znAYjv/9T/wB0OsMzPPYeS61178fdmZtNb8BiDHrZ1P9iYf0ftd1BCfeH8MxAfuv5WiFdbWL8xvczBzBWst+Yxn/WoLfdobrI4j/tcauOcj6XvYeiOQV5GL/WgF1NMVXGOF6RYpsUT38IydnA8jyn35E19y1XMoeN1zJnplZO4TxLPH7rhMMSlAr4cpUVlOj3nirCbA6w7r4rzwlJ9Y9rdf/nd34E4pZd2DGj86A/opV85c6WEXiSWJPQiAH4pRcryc9xfSr9fWMD6TXPmx/NNFKJndA9VKeBvZlfw+py9RC8GqGAbSscxiXPfMDPbWsN9HLkR89Fj1G56c5jHgx72P9/Dekic897IGdtLZ5JeGjQyiv2y08Pz7dML5Ir0Qi4zsx63R3pDw4DbIsV8v+YZzn2yIo7Vnb77kqLbbsGXZ7zp8EGIf/8vPwXxsodzjEoNX+bXTjDXe/SissSwHs3MEpL3uy+doPtcuocJ6UUv9Rq2/4M0tu7ZhaJ/M7PFJr4gIM7wBV6jFfeFHetBf4BthN8XEdE1dubUlvfCh6u/9M8zfvkJHqNaxZedtSnPZsb3mDnHc95LwXkWvx8U6EV9HTxPbxXH1oDmpUHslmGZXkDXatFLIOkFd9Pbsd0Uyzin4HcalenFfjz+m5ktncZ5YEB1v+uI+4KgtaC/sBNCCCGEEEIIIYQQYhOhB3ZCCCGEEEIIIYQQQmwi9MBOCCGEEEIIIYQQQohNxJoddhkt5GVHVuZf3V2Q57Tj9c0eeXZ4TXYQ4hrroL4Xf1/B5489cpUshLg22cysXsF9Hp/D9c6PPNeEePUKenMqW/dB7Cd4DoM2rvWv+e6a6y6t1c88vCyOaywjfwALN9g9Ro4q9neY5XjZ+JDZmpvKK0q7jQ6O0zPo3yqX0EHQGEGXQm/g+h38JsZTE+hrYCdKp42ejz7ts08OiZCceEGOk2hAfoA4JjfIkGvKjkHnknrU33L8ctwn2UHn9E//pTvqhsFlcLLEWlyY14iEfYgBXtcourr/Iq+fpeSxWW1x20IfQsz7oDLEdJ1XyY0xOYZeLzOzUhHzYEauLyfvRniMXg9dOYM+/Z4cLCF5QV/YiLxEHXSBlcjNF7IjlVpKzI6PFI/pONzM9WEalbPbcR1o60GliGPSgOqGh1oeUnLLTX03IZlIs4UeNY/a/tZxdGZt2boN4if/9M8gLnro+jEz2751F8QLM+jt4vxTK2M9ZNTOtjTQJVKdwHb9yJc+75RhpTkP8YUqXvNPfPaTEL/xtejBPbANz3vmFLpKzlw4D/HTzz3rlGHr1tdB7NN5BzkOwvWg38E2cObU0xCfPI7nUgwwtzz/9b919lkvkwPYGfcw/33tycchnqqh66VDnqOkhblocoub7xLKiautJsQTDTxG0qdc0acO1sFzqFCHDEvuuLBtLzqlAvI3ni/huLDcozkbzUnqNWzrOyfRzTRebzhl+L8++9cQbzmEfbqxw/WdrgcL59ArmVGuKhTQnzkxMQlxUHf7i0f5J4qwvoKAxyQ8ZkrjE8/P0gTnjI4U1MxmL5F/scluJWz7SQ/z22gN25FPzrvHv4n585tPoGvRzCygsbhA/bGcYo5NK5jfekXyp3Yu4v475OnLGWevbtZao+/8GlEkhxb7xANy9rHDnO+tzMxSdobTWMuORnOOid8XaS7USzDnZb7r0CpFVK6UPV50ncgFFgZYL4FHzjWPvejuPY7jTGPnc8I+RLoXIB9pJ8X+sdIn/2KKOdXMzAuxDFeW8TdHDm2Mw65Dc7oBjVEFciX2e3iN8+4tGI9yls8udprvluh+xjO8xo4nndtxDnwPmdKzjmgS82hGz2N6PDcqYrvcVcKxwMysi8W2dhvbRaeNdR/T/Xvg4/c98qGGND/LU7dHVNelBPdZDfipTs49Ug76CzshhBBCCCGEEEIIITYRemAnhBBCCCGEEEIIIcQmQg/shBBCCCGEEEIIIYTYRKxZlhKwX449abRW2XFT5Tnshji02HPkpbiu+2wb4+eWcN3wM1fOQjw6jn4zM7M0wWM0l3Cd/ODcMxCHizMQv+0fosNu7jw67g6MojvDL7lleOg0etoCqqrRAl6mehHXO7PjwCM/R4/WaHfaruNoqYtrqud6G+PRYb7+yBchPn/mFMRRSA4v8tOEJfSfmJnVajWId5KXaGkB97FIroVyGdfRLzZxe3Y1xInrG+h0cF19YORSeIleD2cdPX+wBoed8/1LKkGOA28NOWAYG+k38chPEpNXiLNnoYgfRGXXSxCE5Pby2B2Jv2k00PEwN78AcaWOHq8C7a9ad9v/OO1ztYmunXiAvoXWMnpqGtPoiWqS065Ibrgox32YkjNldRWPuWP7Duc338n83BzEhRD7TzHCeul20R9kZuaxC5TK5Edr80q80rRW0CU2N4vnys4N3v6rTzzh7DMoYrvrxehMabewfm674UY8Jnl4xsfRbWTkGFzJGWOmatiXC+TJKVWwrY7VcazstrGd9andNjvfgHjh7IxTBi/FultoXob44hydx/IeiIvsDiW/SYs8e+cvo/PJzCyh8cSnurNsuJ/mWuBTrm0uXIL4Evn57r7jJohvfOMbnH2eeAb9ZK3z6BAMfayLJnlzRmmus+0AXo+zz6JDsMcCGzOLxrGdReSIZFdSP8ZjegXMJT1DH1RAXtJS4HqRauTKCgydRFMN9MfNrWDOnW/iHNFL8PdZD8u0bcJ1+Y2WsAy9Nu6jTN+vF098/SGIKyM8R8brM0nnVqng9TFzHcHVKs75ymXMNa6zmTyuNKcOaRwvFt1xdqyGvykH2O7OdXAs37KzAXEhwvNkv1qU4TkefQ77gpnZ5QvYh7MFysvkS4tCPA+/gG5Eq+C1iWMcN2JyceWycVM6B58m6wNyT5GyzvGysR/zhd9c3Rnu0d/J8PfszEporPY6VKicW7VegNdppY/ttUt9PyjjRamOYC5IaU7oJzTHS3PuLyi3lyL8TbVIjsYIj9lcRd9cwbnXo3kq+UzNzCIfjzFaxjx7111unlwP+JrHNCcokieN8w+327zPfPbckSPT93CfCb+nwOmodK+S424bdr/Gv1nuksOb+s7oGOYf9uZ5fbf/lSk3+zQ+VCo4FrCTLiEHJd++JAOsx7TnOiQDyiMFyt2V8OXdW+gv7IQQQgghhBBCCCGE2ETogZ0QQgghhBBCCCGEEJsIPbATQgghhBBCCCGEEGITsXaHHTvrjH00uCt23vC6fLO89c4UZ/g80TNcB9yjdfNXunjMQoDf17voDTMzo+XKVuuiY6WboRtkQOcVL6Kj5tLZo/g9eSZe96Yfc8owWUa3xZYarsHeNYE+gnKE9VQiF4CzJpvXy+esuT51qQnx7315BuKL5LhbL04cfQrihXm8Pvv3k2OI6rLbd9tdv4/ugyi8ejsLaOE9+5kyn5yC5M2LV9ExZWaWkbOgn2I5U0cFkCMM+M798dbsRssRDuR9di15OT66PFfDelGIsF+l/tWdfCldw6hAvroc4pg8H0Xy8ZDfanJqEmKfnE+FEnkpUtfxENJ5TIw1IF5cJTfYInomaqMjWAZqy7Ua5quEnGtmjjrHqhH2mdUm9plikfxKMe6gGGBdryw1Ie533XoY9PCzhMabINgYj2eXvDhLLayLlQ5ej3PncAz65lPfcvYZVTAvtskd4pFj49DevRAPaKCslbG+t2/Fdvn4E087ZTiXYduMqf+MV9H3OjWGnrzFGPPu8uwZiC+20G/aW8E8b2YWUn+pULspDLBeTj6NDraFOXRCxeQ0avXwmO2csTahOUTI7k83+a8LSZ/ct+S4CchBFKd4PQol1902UsHfbCOP4b4pzHclcotF9d0QH7kVfbNpF/tsv5tzzWkMyah/zZML8SJ7Qsl5UyT3JbuBSgO3HpYW0EPpUTsrUv7rU85s92nuGmJfWVzEeVGL/INmZgUP9+mXcR8jE66HbT2olLAcCQ8X1B+65K4qh5jbzMzKBfysRz6sMjlPK1Uad4f4tX26t8hit93FA5pf0ZjlZfh9mTx4O3Zsh3hlCb2GNXJbF3OGKz/AvO5l7GzrXjX2Ok3cIaUmnvOYl+PfZCcnDf7rOwtFVsj/2u5QW6N5w6CLjTMKmu5OA6zjHrmQU7rufK/cJVdyTPcrUzSvvLTsjhf/1yePQ/y1BvrcvQL2uek96Aqb3LIf4lNHn4N4cQ7bYrziXkX2NXs17HPbrrsO4hsO3QDxQw98CeK5y+iHn5k5B3FrxfUU9z0cf0Nq/4vLG3Nf65MYzR/i/3byzxrui5IBnrtHLsTEw+uz2sF2ltK8nucpeTjecuN7JtwH32PNXcZxbHkJx70y+WdH8vzYNCfr09jaJU94QM9LWFoXsmuRzjFecZ8rFeiZQmsR5xgpuZNtatrZRx76CzshhBBCCCGEEEIIITYRemAnhBBCCCGEEEIIIcQmQg/shBBCCCGEEEIIIYTYRKxZ0lMgf4nn4/rm0TI6htrka+gsux4vflo4THFVIDdARvaDkFwAu0ewTDdNN5x9Liw2IV5aQdfFIMXznF1uQfy3X/wixDff+TqIiySWGKuRK8PMdk1PQTxFDrtGBc/DJ09EhdwxPtUT+1CaLTxHM7OjZ9EPkLDLIsV13+vF/LnzEKcJrVlPsX7LlQbEs3PoOTAzq5XRSbPSWoQ4KuAxuuTF6ZAOq1xBp9fSEu4vi12HV4X8McsdbGcp9R92HLD5g10BztYvw1c3zDnnk7vP8Re8DGfdWtx760VUwnbCSrMuOTEH5NjqdFw/hu9j36b0Yp02Nq7SCLatbTu2QtzroLej3cX8VCuR+83MSqT8WbmCnk5j5UyCJ750BXN5v40em+UYvy9HrtMppHpot7Aul7pNiMfIZ1b08byai+idurKAfbBSxd+bmRWpXN0BX6+NcYkNyPHTIofNPOWXZ59Dv8yFOfJjmNnE9BaI2WF3hX5z4swMxNUI63sreQzf8TPoZj13EfO2mVnSw3YSROS4IXdIQv63uE3tysP9lcnDl6xiPZmZ+eRcGvdwPK4sYV9Y6mMZOuR1aZMjskN+tKjgtn0mI8fsy8mbrwSZYVnbqzSH62L9z86fhjjMyzU19MfcdiO6kS6eR9fh3JPoJdx1EJ11e7ahKzF4Fe7v0Ye+5pRhZQm9OGGFnGkdvOaL5Eqap2nyKPkbSyHWU7XiXvPmKh6jQ+6sVVKBrfaxHcVt/H1sOGcskTd39UpO/6PxaXQEvTnl2saMtSdOnIA48WhOR/7SdgvHuMuXXF9frYbXOKL7lz7llkZjFMtAA3OhgGXg/cVxjquShpMqzU1jmhceJU9YQrlquY1j5BPHsP/NX3HzftzFdsPz53RI7snonoq3dycLeblriKt8AyV2zvkPsM65nVhC9ZNT9pTGIZ/Ol+/P2KMeJ1Qm2mB6tELfu3X+ta/NYJluRV/c9HXY91fqOJe/856bId6+D8/pwmnyny2495Qt8v216EKf99C9e3kG83S7hnHq4/6WyOsZFF1PcRBgnh0pYbkfI9XuP3D2cG0Iye/H3vmY/Mop9Uv2spq5XruI3GtZcPV7q/GJcYgXW+hdc5p6nhedP+DXElA+4bxaoJsTdgCXqO+kA/eas3uv28X+s0jzUAux7YeU20Oaw4XjOPYOBu79fVjA8fjscWpoXczVP3Pofc4+8tBf2AkhhBBCCCGEEEIIsYnQAzshhBBCCCGEEEIIITYRemAnhBBCCCGEEEIIIcQmYs0Ou2oV180HAS5OXiCvTruP3yc56+yN1lw7vipa7+yTV4IdD7fvbED8Q4dwTXbKa5fNbIlqIIlxTXR7BR1RtRF0XRy5406I7/x7d+H25J/r99w11z4v/GYxAoUFcnrwGupzM+hte/DRb0L86EXXJ/hsE+t2qY8OED/cGNHEcgf9TZUI17gvN5sQh2X8vkKxmRktUbdeF9fJ18hx0+2i+yXrYX0PMrymGbWhPCVRQh+yt4IvuueRv/Eleo5eCS8S7yOg/suehYQlLi8D15myfgSlOsSt9hzEfgHzSalMDSt2y84u0ISua6eLbWdhEfOqF2G7qJTw90vL6HLbtmXCKcOh67ZD/NRj+Jv2Cpa7O8DrOojRIVQM0AGxQj66uODmXY9y3GobHSjs4/BS8nOQ/2xAnk6P+k/guw7OAu7C+jH3kY3Jec1VrN8zl9CpdeoC5vf5FnqKzl12nU5hBfPggUMHcR/z6CsJ6JqSOsRKEV7TO287BPFdd9/hlOHcGWzLFxdwHFoin2yRPHsJufziAPMLKe1sfMTN/X1ygxUp75ZSmtcsY72sUB9forEgoTlLlVxaZu48h/Nk9grkzZfDocPoOVpsYv13ltC78tST6Bj6+izWlZlZ1MGx81/8394P8c+OYP00JtAJvDqPnqPq7HGIr6thmzjhXnI7dwZdX8GuvRAPqN/3MmzsLfIvd1bx+tXIaecHbiFWyPO50MS6W2XP8CqeF6fQE6cxB+yawHlpFLn5rkdtPWQHbezm6fXgE5/4NMRhxH4nvB4BTZg5V5mZBeyIIl9puYyOIY//dIFidkwFnBBz5ikp5ZJyGe+hEnKTLZA/0w+xzF4BvaG9lHxPrkbMuuTEzfNOIXwe2VWinE9y5pmuh5j8y3kiuHVijFyslmK/K9J8rUtetlLB7evsP+Q4o/rIfLz/8GggS1I8ZkAut1t20kTGzE5fpLa1MAPx4gKNU/tugHh8DNvqoQl0iXYPUplyPN0XFrAMn/oc5vLd+9CT55fpHmfnPogrAd73Pvfs4xAfOOAUwV59EK9vQvffp2c2xhcbBOzAZBck5RfyzzkTMjPzKS9GFbyG3QhzHt+nlopXz3GcZdM8x/NL7MolevfBzl14bzIgr7Rna3DYUS4u0ZxvC9VtTPnHo3sPdrXH9Nypn+Xco9K8MCMX8nNPPeX+Zg3oL+yEEEIIIYQQQgghhNhE6IGdEEIIIYQQQgghhBCbCD2wE0IIIYQQQgghhBBiE7Fmh93yMvoVkgGu2+2zl4DWARfWcKSM1kTz08TAw+8PTqP/5B/ecxjiJfKALC41nWOO0brt8y101r3q5psgfu1db8bfj49BXCZ3RjHDtcxjOV6dElVOwcc10lfm0Z319HNHIf7SVx+G+Ctf+grEi2ED4vHX/6RThnaM5U498uikG+M36ZDbJTByM8yj32lqeivEO7ZvcfZZKqIbZOEK+mTm565AnCZYhgo5JAq0xn3LdizDpXlsU2Zmi8voqRrusLu6HIC/5/haOOwScgU43rEhrqa83zDDzvtaktB1LVbQAVGqYtnKEZ7L4gW8xmZmNqB+RFUSkiiCnVu9FczD5QBzYEyOjtVVtwyjNezrpTK5cpbROxWT+9MPMa6OoitjjhyZozXyxJhZZxWPMejjPiPqoyuruM8KOVVj6i8pOx9zxp+CRx6RFtXVYGP+PSsj32shQs8Hu0lWyEXSzXFqLC6QHynFc59uTEJcor5aDtDBca55AuKkhsecmnLr7rFHsQydGLcp0ljc7eH1yKizpDFe84UVHO/DKjoozcy2bJvC31C9zHUwt3f6nOOwDB1yz5TJaTRSyXHY0fXtDTivboxXZ2IrOn+3TGNdWYr1vUze4rlldBSZma2cx23OXETP3fZJdNb86D33Qnz2m49BvHABfbz+VAPibZM4HzMze/7EsxCzLohzR4u8ex451Po0T13qYN/oXMb5hJlZQPlopYdzgpBcxx558RbJo7fawjL2OugN3T5Vc8rQJh9QkfJ+EG5QvvNwXOUhkudCq+QU5nmImeuE6tO5Z5QjC+S488iLFzkOO/ye/b1m7v0Me/OCEvmt2eUWUG4Zxd9XKpjfAh/7mplZSrnGp3HQLTZ94L3yDmFnrurYsdaPi7M41x+t8n0QzyuMYrd+kgzbWkyuQq7igNtJiVyHNE85cwllhauh64+rk3/ZC/E3hRKeyNIAc9ajTz+DRZ7F+6zZ02fx+4qbOwYjeF1bPayr5ALWfVbBMsXUOEsVarwe9tljF884Zei08DfZKl6LZgf3sV7E5Atlt32Z3G7+AOsy776IP+tTXlylxJqRr7JFEkznnpHjnFszp1xD7t9i8u87vnjqcAnl9TjP90vHDAt4jYt0kxXTLjp0L8KO28TjOMcXS+VMO7hPnm+vFf2FnRBCCCGEEEIIIYQQmwg9sBNCCCGEEEIIIYQQYhOhB3ZCCCGEEEIIIYQQQmwi1uyw6ydXd0CEIXkJAnJo5Sw1jul5YYG9W7S4eLqGa5F/9jX7Id7ZwO/b5AmbbrhOm7Eirj+erL4O4huvvxHikVH0vPT76C8pBlhmnxx2C7Ou5+X0DPqAvv7oNyB+5BvobXn+xEmIV1rkFyQnxNhr3wZxJ3E9eh55kKKAnuVmG/NsN+6g6yXlZ8wJedMyXCsehq5jYus2dMxtmZyG+DMn/gri7dvQs0N6GWt3yRtGvpQ4x0nE5+H7uM0w5dwwZ51zvBzPCzsK3H1kV4ncfQ7z0eV9z59xmV4J997LJYywPjotbFsBObWK5K+sllx/lU9OLEspX0TYd+sV9L9FBXJkUj+dbGB+qpAPxcys3UXX12obvREhnQcrUioVzLMTU6MQNxcWIM7M9V/y+NAnh2NGA0ZATk3PsFBphGUe+OSe8d0BKCMJR0BjWMpyi3XCY7HhgHIzeT0r5MtolNz8vtrFsXB+Eb2oJXKmtDvkzOpiHj52Bccsv0vOjgDbmJnZIEbP1vIVLJOX4lhaJ48hK7ZWyFHL3pB6FZ1PZmZ7dm3D30yh4/TJbz2Hx6xj/9u2Hb1uzaPHIa6Ss258xPU3Wp535TvJcaKsCx47brDdZdQHyzXsL9M7XF9s2cf8M6B81yIPnpdhP371j7wD4uNP41jdG2CbKTxy2i1DDdtBRuNck9zGMft6vSEuH4rDgeuU8igflSexTLe99lUQT42j4+Zv7/8axJfOYv89v4BlaHWxXszMBpRzqxN4bdINanYBjXEh+eIKRcxnJXIv9buup3XQw/MvO/4mGkfrDYg9Glf9gCZ95LzLc9ilNKcu0nn6AfmzqC2HEbaR8hjOW1mAG+dMAVmL54qnuNz0vTPvf4m/X/M2G8OnP/s3EI/VcRwcIUd5rYrfN0ZcV2SJXIURzU2KIV13x9NF83LD7ZsddI3NFt3xJGxjn5gw7EPRAMfiIzdin+osYR599jTO6S7P4HwgG3XnHEWaq47twLpbjbGMXXIn9+j7Vh+PGY/i/k933Xo4dhL3We3h9eot4b3zetGj/Mx+b74vYmdm7r0WjWttyoEl8mHzLpZWcM6Xsgt5yP3h/3+jq0RuzHmT0yj7SXn7PN2vc0/JPmu6985ovE/JL8h6eb7vzbtP6NL1Xbl8GeL5GazrtaK/sBNCCCGEEEIIIYQQYhOhB3ZCCCGEEEIIIYQQQmwi9MBOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixiVjzSyc8RzCIYj4vI1Gsj/EoicrNzHqkIIxJ9heQvH9nDZ8vXr8NhaAdkv97CYr/8iTwe/btgdjfvwPiYgFFmUkfJZYr85cgfuz55yF++umnIX78m/gCCTOzEyfpJRIr9BIJqpeUBJUBXZrSBIqZ61N4TlnsSuDTlKW8bCB2X1qwHuyeRDHyxDjGjTE814jEvt0E24SZ2dz8LMR7dhyAeNeO3RBPTTYgjhOUSl94+lmI55solOT3DJiZeSTG9FhsnSv0/O4MezlD/ksp+MUVQ7532sBLe/FFniiVZaqcAzaSIEapfYnkpfEy9sMuvRwgHrgXvhxgXszoOrO+tFDAvDkyQi/OIRH8WAPbfyFwU3x7hV7k4rxACH8TRixhxXpYXsL+4PuYM6e2oKj/hWPgeV1YeBziqIAS44De9NInQX6V5M/VKuaJ/gBFzWZm7RX8rFjCcnfbG5PzwjL2o1IDy7VM8mUL6EU7IznXnFrW5aQJsedh272Q4Bg0mWJdHV9GafXFk/gyJb/nvuBp/404Dg2+hS+uuHgJyxRTfhmvleh7PO/GGL78ZPc2lrSbVSjP3v26V0NcoxeufPlhlP1Xijsxphd8TE9OQLwtp+0H3N82iYPdpzlAn+ZPURH7fXsVpeAxS6rNLChhP/+zv/hTiG/bj+P37Cy27S033g1xmcb7Rx9CafyZ+XmnDJU6zvt6PSxntXL1djUxjdfUpzEroDZTCNy3N+zYgW1x52GMJ7dh3i562IebNKf43OyXIB7QGyNWem6j2rKHXra1G19Q5BXcudJ6EFWwHBG90KFcxFzu0wuJei2ck5uZ9frYz316eUKxjPmp1sB+nVL903sAzCvgiwVyhlmLu5gjQ5qbsmE9MxqXPcz7QYjHTFO8Xqnnzq/4xUrDX+I1TBM/bPuXu83GcPkijltJB3PFufMX8AfOywDcOh8dxetcreI+G6MN/H4Ev+cX1BRDvGb7t+Hv73qTO8ZcOouS+8V5mpvG2GBvH8GcOFfCtrtwkM5pO+bITs+dt68Yjg/8Lp6VFD+I+eU9/HIAeinLwMMye0V6MYyZVbbQc4oljAfLG3O/wfPT5VWsb75X4nurvHsp58WCCdZnQC+zKkTYBqbpBVytVbxPZnLv94a8NJBfElGkF4vx2NrrYRtJ6MVi1ndf+JDQPVWvz20ft4/pOVPSx/u+fhfnvu0W5umlxaZThitz+FKo1jL+ZnTUfRngWtBf2AkhhBBCCCGEEEIIsYnQAzshhBBCCCGEEEIIITYRemAnhBBCCCGEEEIIIcQmYs0Ou2JA68NJ03Hddlz/fGAbrqvfM46eEDOzZgvXbS9RXCCHVH2wCHG/Sy4LWkdfr+M64UrRXTdMy+CtWsVyLi7iOu4HHkB3yEMPoePm2efQyzN/hcoc4zp8M7NkyNpz9pkFJMwICnhe0QQ62Dz63k9dV4nHbi3y0WTZxqz1P7BrEuJKHV1VUbUB8ekL6LC5Qj5AM7P2Kp7/3O4FiLfu2Ibfz6Gn8OTMWYjPX8L16kaugMxznTYZLeYf5n97qbA7wPfd/bM/zagdOkWiD1JyyWQZP//ndpxzjq+EIuUakXXQweGThCNLsL5WO9i3g4Lr7SyX0EOTUD9b7qGPJyTPBHsqUnI0LlB7b5DTzszMp+s4Po4u0D75f/rUhVpdzAXLAZ53uYL5prncdMqQUPsMyuSyIGddz66ef0J2cJKownVEmtVqeC0Wr3Rpi41pfBPbMectRFi/X5tDT2qMp2HJPryeZmZ+gvVxNkYnViEiH+WgCfGVE+hiPX4e8+zJ59GZMxZyXZrd8+ofgnj7FvRGfeKTn4E49jFvsiHt1be/CuJ9u9FHO53jj7MOzjEOTtP48urbIH74oYcgPvk8ju/sbNk2hcecHGs4RQgoL0acm9ONaXetNraJNrlbeBhrrZI7LHOnkwn5Lz/71w9AfPHZ7RDPko8sfRrrm/1yvR66YQrj1BnMrH8J52DtFo5bHZrbTJHb7afe9aMQeyXyelsViwAAI8ZJREFUCQV4zP6Km6u2TpJvOcCk2hngWFMpYw49dCN6dr/yxUcg7q1gvvRLbj1cd/h6iLeM43l2Bnj914tyFftgWKCGRuU6e/oYxMvLOH8zM0sSzv/4fUT+xZS8rZPbDkLsB3TvQO7KUpTj6Pbws5QddNTufMPcxPMpn7x6CY1pfs7tXMgnTmFGblPP2eCV+JuOIfPADZzjbZ3Afnn4hv0QN8k91Y2xsEefP+3s89SpoxCzh7hAc51KA9tWvYYu1l3bMa4Zzgf6Z12H4y+943aI/+DjX4b4wiWcNzaKOLed9fEYCxmWuc1DVurmvLiPfaTax7quUdvqU5/1E3T7lal9hzG53ntuPfA9ziDB67maYR5YL/oDGsf65Ofjew26Tyjm3FusLNNEnefYNM8oROS0I38cv7eA7yn5HtbMLI0xn3C7SDMsQ5ccde02zykw5O37A/dZBud+9o9W6N7CD3CfvYTGG+rPSws4n0g67ly3RfdhPt/H+fgcY63oL+yEEEIIIYQQQgghhNhE6IGdEEIIIYQQQgghhBCbCD2wE0IIIYQQQgghhBBiE7Fmh909rzoEcaOCC4MPTKErqZrgWubR0F3jPghxzXSnimuL41V0OvTa9HzRp5icDpUCfh/57prr1vwFjC/g2uMvfO1xiP/ok5+GeH4W/WWso0vpmWia4zPzM1qvTrYeLypCXCAXX6GA9RZu2YEHCMkfmOK1eaGcuIbecapl7m/Wg+ooegz8YgPidkL1G2AcejkesSJeg5VV8hoM0N1zcuYUxAsL2EZiZy0/+aByJB3sA+Bn544vIHuJzjvqC1nO5iE5DVJ2FrAvjc/LwzIPyB3AfrYcjZ7jXeEyuP6TdYR8k+yaqlbQyZHQ+fUy16/Q7qCjIaK+W61SeyevBDs5ygXMDVMjmIdLZfzezGyBHAxBgAWvVLDP7BypQ/zcDHpbShXML4MeekE6fdct4mg6uS167N8w+p7aJuUn3j7Pk8N1WyzhtVhtueVeD64/dB3Ex5pnIF4J8NwLo3h9tjTQTWVm5vewftodbJsB923KgTMnzkHcW8Ixa7Q/AXE5JeetmQXk+tg5hu6qrRPowT0/i168qRE8r5v3ogNvYoRcQIGbO8Iqub1WsC9MlbBN3Pv37oT4Mw+jO2ylh/VYL5PPrI31aGbW8zmvkveF5zXrBPsyszb7MnF7zv9RyS13merj0M3YtveP41zFX0ZncNPH+p2eIOfgxD6IB23XJ7N4AZ00KwtNiHn8XlrC/LXSxXloQFOKPkk+vcRt+5eXyKtTwHLytHCR/IBJSHNb8jMvzWIZExY+mtnifBPibIB1HyTu3HQ9eMNrb4E4o3H36w99EeK4h32qELr1nfCtAWvTKO4uYbvr17B+G9tvwDKW0EHEcykzsyDGsbdHzq7YsNweefJq5DqbHsc834+xb2SLrq82a+FnaYp5O0mpv3DKdHya2VWivHmt2TBn3QbO8KwxivUzOoa+OC8kT3of45tvwPtiM7MvLWK+6ZHXK+uS63iZ7oNXr0B80/5piCdpvD930Z1nxl28zm95IzoZ/+zTz0HMGu7LLfLkLWMez1bonGpu7qepqYU+3ed6eB7FFOeRGd2v9ws0R6TTDrtuHuBEsDNAx2wnoBNfJzo0FypRZfX7VFd0L9btuHPTlH4TJxTHGLdaWIaVpSYeo43joEf+xmTgDjLslEsczzm29S7NQ9ttHMf6A/z9cgvLtErzNzOz5SY6TQ/eeDPEf+92HG/OzaAT9egsenP7Ldxfle6PmlRmM7MBJbXqKLa78jT2x7Wiv7ATQgghhBBCCCGEEGIToQd2QgghhBBCCCGEEEJsIvTATgghhBBCCCGEEEKITcSaHXbvfDW6QgpFXKR7+iKuBX/oi1+C+PAWcseYmRfhWuA+eYtOHH0K4oPk9vENvSDN87j2eHUR3WSXLqKnwszs+An8zdl59AfEla0Qj+/AesgCXHue9MlVQo9Ee4Mc30AbnQflCNeK+7QOvEtrppMSel3KY+gCyngte47DLiOPDjvSksR1EK4Ho5NY/2cuYl1xu0uo3P2OW25eN99cJZ8MuXx6tI6elXVhSB42kpmlLDY013VoXo505jsY7rSjMpHEK83c/WfU/dmVmJEIJ6CDpOSpjBMuI3mxMvffBzyPysD14G2MO9HMbDDAtlMdKdP36PlIffQz9BK3r5dJVpRQHbIXokd9d6SCjrtR8ssVqQzZwG3/MTlVikW87qUSukRW6DwHKfozvAIeY6SCLp5+G39vZtZeRhfFCDmZohKODUGR+jXVbauFuX7HFswbrXbTKUO/i/2+UHB9lxtBuoD1u6+K/osqtaFSjNeriEPYC5/F2M+KZfQvhtRu4h55Oivoh0npmvuTuL9SIaev9/AasXHmhm3bIG4tNyF+/a3oHrlpF27v97DeyjmzGy/Ao5YjLCfnwDe+4TUQf5P8jSsz6PZr1NFt1SHnipmZR/MWP8S2nYVrnpa9osQ97Ke1MvZJHue6KTlLB26u9n38zRi1k5UOtrMDR3bjPinncn5bJM9OVEEHlZnZ6HacD12YwXa4i3LFxaVLGF/ADjVVxGuc0vUcHcV6MzML2K1bwX2w66dY4HyI7XLnAfQ3nj+BHh5L3f537sxFiDs99LJFVdd3uh68+x1vhbhLDqLVeexjy+S27nZch5Cl7GTGdhOE2K6q5KR73WG813jdm+7CMgxwez/HTT3oYNtconknz1Vbq7j9zq3o7Dx8/fUQ98kN+8DfuNf8K1/GfQ76WC8JjaMpi8GoXfo+u5ZxvhLH7nyD54mOK9n5xfqxZ88uiFOaV09OkvOM3GEjddeb1hjFtjG72IS4Rp7iW27EfhiWcTxPO3iPs2MHtotHHkPHtpnZieewnDcfxnniZAnb/8ljOPdJyUl/zy70gD0+g27303MzThmuO3IY4tES1uXsKXTULvcxLweTmI+qIdar18My7yjtccrgk6Lx3lveAPHF2tPOb9aDpE/9jFy4EY0Xy9Tusti9n6uT37VLnrzJMWw3J2dmID5/HseHK7PzEBdr2Lfz3Ow9erYwoHwwaON5Ll/BXD83j21idh6/X2ji/X93Gb83M+sNyA9IczIvuxXi7ZNYL81xnEOMvvo2iNkv+2SKc0IzM28K2+LWg0cgrk1sd36zFvQXdkIIIYQQQgghhBBCbCL0wE4IIYQQQgghhBBCiE2EHtgJIYQQQgghhBBCCLGJWLMspZPhpgvk/XqO3GJfeeoZiM9V3DXXEzVcRz8akQupjuvuy3VcW3zuIq6xPn4aXSOPPfEN/P7cBacMK10qV4jr5t98200Q/8SN+yEu0SPPUgF/f34WvXnnaF24mdlyC9dEH3sa3X1HH3sIYnZCFLYdwu/Zq9emdd45vg2ffIKuw25jXGI9UmKcu0D1eQn9Dn0WzOW4XGLyDFbIKRGSHyAZkHODjuGTB4l1cXkOO/Z2ePTsnF0hTJpe3WHn8REy1xTC1zQgP5BHZShQGbOA3Et0DD7vNMlx+ZFTxafK84MNNJyE5O3ysSxxin65jKxcYeD2s0JI3k5yWvb7eIw+uSMjj1xIYw2IE3LWBaFbhmIRHSmej+dRreH3zSuY23ftRRcJX6NqhVxwOf7E7mwb4toI5vYildsP8bxLRXKuFbEeC0UsQynFczIz63XxvLg/sLNrvRhvk0+U8k+Vylkh92vB3GseUd+t1XGMKJC7bdDGvl0qoHusUMPvA4+cTm4RHDeb5+H4/2iEPyqQx2V6vAHxlgZ6doIB7i8IXL9QQv3HyLMZRvibg3vxvPfvQTfJqXPofdm3G51IIzUcW8zMvATHe3Y69dhvs05wpq2Qi9Kjumu1mvi9uf08pPlQZQTrY7yB/bJCHp6mYV0MyPEZROTb7Lm+zImd6LCL6uh8OnKE3GBPkrOzj8ecnJiAOAswf1YK7jUfkN81jXisYDcYbl8i59RBmoc+/bWzENcqOe2Ork9CTtlGw/X/rQd8Dae2olPwrW/5UYhb5CWeuejO63vkXfWpdY9UMXfcch066/7RT/8YxLtvxO/7hr+vlFxHdzJAt95sE8e8foq5p0POuyDEMu/ejde8Tf7G2cs3OmVYWsK5f4e8VoHjX6b+Q0479ryyG5C9v2ZmMX3G80K+11hPtm2fhvj8efQl9nrYR6rk9XSE1mY2MYZ9r7mMbraUckFMc+CDB9DjOX8B5ymXZ7GMXsGtv8tXcI5wC82nJkbxOi7FeyHue5iHa238fbiKOa+34Ob+1SrmOL+M7XV5Ad1fS4t4/35dFcfaAnnWLxw/gwdM3EnHnhEcf5pHH4Z4W2Nj5njHn8HnI30at1Ka7y6To9nP8cctLWD9LS+hH5Y0xObR2BzQ/UpzHu+1yzQP7XbdsfbyHP7myhK23VVy0C3T9istLLNFmFfHp7C/dsjxbWYWUd01ySE5N4tztuv24D6PvOYOiE+ex3q98Ay22/G9+IzIzKzY2AFxoYxjq583QV4D+gs7IYQQQgghhBBCCCE2EXpgJ4QQQgghhBBCCCHEJkIP7IQQQgghhBBCCCGE2ESseQH3wxcWIe7R+uWLl3FtMulPbKGN35uZnbqE65e319GD8/a33Q3xTbccgbhQRsfdxDb0x2y5Ad0kb+q7foUt47i2uFHGKhklZ0GxhL6NKsUReb9atDZ9oe36aS420Svx4BT6AzrkSbhwBddUZ+SQai+g0yOh5e7lCtazmVnG/jLv6n6y9aKzit6PwQDXrPvk1UkGXL85Xh3yxQR0bqQOsQL5AtIirv3vx+z3Y79ATt3RR6zx8H06pnsaV92efTWBuQ5C9rr4CflNaJ9l8p2EIbcZ8orRtYpzHHZm7CCgcgcb5zchdZH5AfoUikWUQvR72PZK1E7MzMplci5dQa+HRx6vEreDLvqv4hjzS0A+xUEfr6mZWaOEOW2xj/tcTTGub8F8EfXQf5JSWu31sc9mvtv2JraMYzmp7tgNM+jgeUYlau8eHiMiR1RvMaftZVcf/tghtF7sIbeI65rEc498PI8oz53In8V4jYIAj1Gssm8Of57SOOexa9J3+20Q1mkTLFPq4zXqksstIZ9jfZScWwn5HYuuV4r/iTIh72SBvg/og8YonkO1gsfYMoZlyktfLXJfpjT+ZPGQZH+NiLlu6Bpyvi9Q/uutorPLzKxUwXw3vgX9byXS4ATkUswG2C7L5AoLKPnkObR27kUn2sxenF+NTmMZDx9BX1mlisesj6C/rE0uzH5Ozk2onJ6P+0jIa9VZRWcRO9LKNczB2/fhOe3egw4dM7ML5y5BPDdPx9jqeu/Wg6iC1zyiMWzfAbwe//s/wvHr8hVyNJvZRfI3sRtpzzZsE4f3oTdsegq9h0mEdeNR3vCLri+zR/koo/7ELsQkxTYxP38Z99fDdhXTpLAXu21/hTx3KytYD2mMuWjQw7GfB/fIcditwXXN9w70m0Lk1t16sWsX9hMeY44dOwZxM21CHATu37zUq1hHBfaRreDY+8yxkxCXyQE82cD2PqCcOD3p9lu+J6nVdkJ8402Ys1oDvO6nFtANvriI8etvxf3fPermmwc+jw75i8vY9n7spw9D3CjhPqrkjB4Zw7H3ZAO/P3vazQPv+ln04FkX5zVLvY1xsyfkklzt4NgZ1vCa871Er41tyMxsfg7zRXMR6+PxDj43GN+GbWJ1lZzOdC99Zgbdr1fmcX9mZqdP4TYhvXeA5/WtFRyDEspp1VGsh3IV28BqxZ3jdSlPdkmEv7SI35/M8DyeO4vPpc4u4iSl72Permxx3a9egOVmZ90wR/13Q39hJ4QQQgghhBBCCCHEJkIP7IQQQgghhBBCCCGE2ETogZ0QQgghhBBCCCGEEJuINTvsFhfQYce6BC9BF0LBw3X4fd/1OW0dx/XMOw/eCvH+I6+GuN4gBw6tAx6poRthegIddoUcn4yf4Zppj7xeHvnIEvYxJLS+mfwz7OmpFFxfw/QoXobX3nknxMVaA+L/9TdfgPjMhdNYJHJQxRE6WvzALUNoeL14zTW7KtaLbgvX1ccdPDcvYVcbXh92Upi5rrVsgNcwZP8ShVkR6zPOuA3gMTPHaefCa/cdr9EQnVaWkeuMjpn3ZL4S4jErEf5mhNwylQq3I6zHkBx33D+zzHUzcbNiv2DEUql1pEf+Fj/E8w+N/EnkYfNyLtqA2kahRHmR2h77E8uUP9ihkpH/p7XkukOjhNsalunMpXmIx7ajH6nfRe9HjzyTXojfs5/JLMd/mGK5Y6qnfox1yz6gXg/L0OmguyfM8brF5HmJCnh908x1cq0H7KDzjX191Gm4DYTusJ6SJ6hA7ahUQQ8Ou4qCCPeZ0vdchih0x5gitfWAznPfZfSZ7JrDOUdYQF/J6Di2y0EX20xA19PMLCWXZzcmV2vKTk36fUpuIPLulshpy9ubmfnh1a9v4K15WvaKEpTxmrYT7HPFEMtZG0XnFo+9ZmYDmhd6lJ/aK5ifqimWgdOjDdA/w/M3dhKbmcUVrO/Dd6ATLaCmvH8MXchn5tD9trSI7TIq4g4G5C02M4vJD1spksOOclG9TM40Os9qFStmx4EpiHcfQgebmdkyefGWl7Hu2zS3Wi+KnEsovbGreuc+9FIdvOVWZ588zT51Aj1h9RFsJ2M1amiUvwpl8hYnPE/Jcdj18De1KvaP0RG8xjH535rUznj+FJE3b6XjtrszF9DH1FrCffbJcZeR2zTLrp4P2W2d5szxsiEC5iBnvFovKmUcUw4dPAjx2OgYxKdnZiDudtw5wr4ats/Mx/b9zHPo+VpYwmvw6BNPQ3zzTfsgnp7EMlV81+N14SJe9//x8SexjHuxzt/z7lsgfnYGO+Hzz2PuOHIDXvebbnXL8A/fuBfifoxjY30M+8eDXzkD8VwT89GBHbj9O370NohXm67XzS/hGHb0KfS6LbU3xlPc2I5jTPM0tonGKHrSdmxH52aTHINmZhmNtadpLnPiOWxXk+SXK2eYfzIaz9lvWa+67kSeQ+/eiX2BFHb2fAvbftLBMcknN3Kni+Oo57l510txGzote+J5dP0FET3b8mieWsaxtEzPU8x37y0sozmexw67l+ft1F/YCSGEEEIIIYQQQgixidADOyGEEEIIIYQQQgghNhF6YCeEEEIIIYQQQgghxCZizfKAbaO4XnlAvoWB14C4WMX4jKtXsMIoOmju/qE7IB4nP8wgZvcSlqFFqoRCiM8j66TKyCMkF5hPbp7A8ZvRM09y1mQpOXLyZGT0UWMEnR3XH0CHwTNHt0F8/jw67GIqQ0BrrNl3llcG9k5szEp/szTG9ejjI7j2OyQPW4+UdVnqXvSIHH4F9pVQfSUpfr9Efq0S+Z3iEtZvv+86POIBuT9oE3bacbtht2JAa/0L5BEbrbo+p2ny/YyW8TxKBVp3T/2JXVpBgL8PqV7zPIiej+VmrxU72taTUgW9HMtt9JWU2DdH23ue22tiuq7FUgXi3gC9E+wyLJI3gltWv42JNklch1bq4TEG5IcbqTcgzmK8rj3yQvbICzZGXphGxfWbtJawLpfII9nvX90LWaziPsfHxiHukusiL+/yMQYDrM087916UB/Hc+ExpkD5plTCugiLri/WJ08U+ybZvcbn7lEc8zjocy5w646dlpwPaiPo9doyiV6uLl2fHo2t7JdNE9e/lFBbjTNy81F/8Sj/cH+rUn+sVLA/57U79jylJHbx0o1pd6xV6XUxL8RtrM+EHFpByZ1Oej45ZiPynlYaEHdjciFH2JY98ugFCcZRjhvGi7B+r7sF51PGOZK8hm1yWXo0no+O4DW/0nZdcIM+lsGnYwaUU6OA6xJ/X6H8Vx3F/j057br8duzCvNKjnFvcGE2xFSg3RZRLuh6Ws0PdetB1x7gK5YYopDGIPEXFIt5rROSsS/l6kPjQy/EYcd/n+VCvR/dQMZ8H52hsZzHlMs6vZq6nlQWBnKfTlL3D9D21W05vPC994UPeJ3mmnTKuH8WIxs4Ay7JnN+b3XXt2Q9zrY440M+vTZ7fehm61vbu+CfEjjz8D8fnL6BA+fgodmhHNw0uh6yluLWMnOX4Gy3BxBdv3a05hmVdQ9WbZAI95fhZzXPerriu8tYLXeaWDc7K90a0Qv+lHXovHpLb5/LFnIf613/wUxOWy61Tbf+MhiJcWqd9H6IpbLwIqa6mGcx+jvlymOfWgis8IzMz+/M/+FLfp4jVaXcI2MHMCnYED8qwtNtFb2O/T+J+6+aZSx/MYUF9IKD8Ui5jT+tRGzJkL0T0lC2jNLKa8mUZ4jKUY9zFSwTIXSzgWeDSnSJ170px7VMp5zn2sf3Wv53dDf2EnhBBCCCGEEEIIIcQmQg/shBBCCCGEEEIIIYTYROiBnRBCCCGEEEIIIYQQmwg9sBNCCCGEEEIIIYQQYhOx5pdO7J9EMV+SokywSfL/9mgD4kNjY84+D9xxBOIdO1Do2ScBexDQCxx4h/QBy5xZoGpmFvJLJegZpsdybeN98tsanENQmVzZIJezGGI5RyooBD+4G+vpxMmTEJ9bWMYihfh738sRM5MA3KfzztKNee2EZ9gGpsZRMjk1QUJIeuGGb66APfCv3uz5GnE80sa2HxVRIMp118uRIpPvfuhLJjj2SXJciEhSWsB6q1XceqiUUcbJYsyAxKc+9T+uR98RfpNsOK9zOP9kQL/ZoHZnZhaRmJ9LQr5za5PEu1JwhajVOspiO32U9Xokck1SvI7tHsZREY+RDGh/OS/6KFaxLUQxv+iCXjiQYD20SUZfoDLwNSuV3HyzytL1gF8+Qi8U6GH/4BdEVEkS3m6hcDfLEeSmKdbVYMAv63H7zHqwY+9+iLnfRKFbn9+Jq382SzifU2Pucn6ha+jT6xay3tVfguMV3PpOnJLhb1pNlGd32ihJvjyHJuwLc4sQV4uUj3qu/D+lF8FkAebAokfnSXm2PorzoIj6eJbx+O72v2E5La/PrgsZ5w4s54Be/NLrcx92y80vN0mofgckZ+Y5X4eOmSTU76t4/QYD90Uj/AKVYp1eKMBzMnq52c79WyEulfGa87BXznnBU1TCY3baLTwknWfo05yC6s2nF2dt3Y7y9ErOeL//wC6IZ+fmIC5GG/Pv9xndhvDLq4ICnkuNTq0du+3Oo3YyPon1E5JoPOJrSnOfHkn3Y+qjmedm3ZjvR+g3A+5v9EIVjt2sgWWKIne+4cz1M37xD88zaXPnpXk0N+BxwV76CyQ2LN+ZmUf5KSSpvU9lS+kqhJHbz4pFeikdvSzk7rvuhvimw7dBfPw0vkTw6w8/BPH8LI6T5ZJ7X1urYw7atQ9fvnDuzGWIP/DPPwtxm25QeE7o0/1/3svNetQB/BBz2j33otx/6zZ84UCrhfexzx/Hl0488vAMxHfccYtThpGtW/ADav9R6L68YT3g9z5OTuELOEtFetkL9bMkZwrxraeegzii5wg1eiHW3zz8GMRbd+yE2AuxbdcbWFddfsOjmYXLOK4tr2Ic0LgVFeglEjRP7dPYHNF8LKIXl5qZ7dqJ8+eJPddD3BjHl3ZGHr9ckXIm3efyrUTebM7nl5HSHIRfvrFW9Bd2QgghhBBCCCGEEEJsIvTATgghhBBCCCGEEEKITYQe2AkhhBBCCCGEEEIIsYlYs8Nusl6GeNDHn7bauJ65cvMdEO8iB56Z2fX7pyAu0PNDP8JjRLTsN6Kl+7Rk2/HqhF6OBYL2yToFdlkMc7uxw4E0FY63wswso30GhifCfqZX3XIjxD1aRX3/lx+FeHYJ3QDsZTAzC3jNNTuJNsyrQ86I0L9qHEXoboiCPA8VeznwGOxj6JNnjN1t9RF0A6QZ+h08cx0TRp95Ph6T3SLDrgdfU+dq5lw+3ofnsd+E2iX5BwLyCbDDzvPYcZfjmuH+xCVn2cM6EtKx2Xfp+lvI6xXmeLzYEUN1VKpgns0M21K3h14vW1nFOMbtR3JcRitt9pPgeXa7+H1Ew0TGjkc+KXIhsZ/JzCwmf9zk1DjE1R62rd45dK6QqtI5Rr+P/rIoxHo1M6uQa4qddc1FEk2uExkNbAPyEiZUd/0eXvNVis3MErrGnS7WT6eDY0REYy/39biDrrCMfDXsNTTLy7PYjmYv4jW+MncFvyfP1Kmz5yEerZBPLnGvn9NHI/Tq1ArUH8sYr3aw3ro9PEarhf0xyel/7KPhPBsneRbCa09CLsuM+zV1ug65LM3Pm1/x/IlyA421LWqHjpOODlHvogepVsHraWZWJXdPSI6aLrlHi+TVGSTc/7BMPl2uct3NNVUP22a3g+2Kz5PHykIBc5VHOXn3vh1YxhynVLmO9bCthG4+C1y/8nrge9hHYsolYRGvcbmEcc6U2soR7oPHh4S8zjH7e8lr1Hfm8dQQfbfuODcUiniePs8nKA+w/5FzF/elUfKGm5kF7JCksfulzq7ceeTV55Bmw33Mjgd8HRlQW+Pz43HQX8N9kR+Rp4tcYJUS/qZaG4V4YgvOhbaMo//98a+he2yQuq7WchXLMHP6LMTPPY1jbZ+uW8/DfNQdoDcvSOkcc01e5Gik26A/+Z9/jh9kfL+BcYVcfbt2bYe4VnNzf5/KWSSXaDvemDlej8ba0Qa2gTLNn2Lqtz4/7DCzn3jrWyFeXkTH75nTZyCe3obOuj37D0L87PETEK92cLxP++41T8h1GCdcbrweu/bug7jVQeddVsQ8XZlAJ2FjAn10ZmYTk9MQh0V2tWPdcq73uG4pz/JcOrO8cZOd9NgXopx74bWgv7ATQgghhBBCCCGEEGIToQd2QgghhBBCCCGEEEJsIvTATgghhBBCCCGEEEKITcSaHXYZrfVmP0OZvEWHD+6GePsYrkU2MyuTt8unNesBe7xYG0HuA96cvV5ejishI9VH6l/drxAntJ6ZXCED8r6s9nEtc6vrrpnv9HCbJMPL0onxGAm5xLbt3APxxNgMxFeW0V/g1KuZeRm5LRx32Ma4xDxaPx4EuL68QL6ZUgnjkOrKzHUbpuQH4GvKzq5KhI6aKGAHEfnocvwmpC9xnDV83lxm53JwV6E4z2Hns4OON2IfieOs498P+d53/32APRWW8Xlv3L8pVMgvx3Xs+PcidCOkOf2szy6dlD1/WGcZ12kBHRyOayzAOE3cttdsktOSnGnlErZvbgYFrgfKedxWeyycMzOPXGFl8nReWVyCuFJGP0mR3GBJgm6/0BGaDvdMcLxR9sQ2Oeg4n3TJP8feNMctZmZJ6tM25GLrYpvgnJc5tYFxErvXmIkK5JhjP2kRc/X+vXshPrAfx7nJaXTYFAMWTblun4TaYhZgW08GWA/HniePyyo6VnbtQnfY+fPnIO5fQVeQmVnPozkA5d3IsB5e4+zh2uCRGzFk6RCVc35xAb/nXG5m9RF0FweUz68sNiFeWcX6Z49XRDl2mdo+t1szswF7PUfRF9Tt4/WIyVEXp/j7jHJ4geYcxZzxvligvJ5SXg94DoIxl4ndptw/+7FbBp/mQiGNHbFtjM+pQ/cS1RJeY3bBhpU6xDVzc49P9xaDZTxGqYReo6hE80zyFIckKuyuYm7xzZ1nhuRKspTnNld3lXYpj8dVPKdSGY+Z5Lgv2Xea0ZzEjandeOxWdg5BDB81N5PDLqAxybkXoO0LwZA5s+V5/NgFyq42ahfkXzxy880Q75raBfG5eRyjzMxaq+icS1L0vR66CedPpQrenw+oHbTpvjWh+UIUYH8yMxsM8DzaVCauucYYuvoOHjwE8fTUJMTj5H2rVdxnDKUq9WN6TsFusfUioHuh1TbOX1eW6PrReLAwd8HZJ/utQ7o/2boNfW+79x2A+KGvPwLxxVl0CFeqOJYn7Lg1s8EAyxkWaH5F497CCtb/1K6bMN6DbaAyht69Qsn1FjpzBqqHiL5PqSWyXzujZyPsvGOPvpnZSB3LtWe6AfG+bRPOb9aC/sJOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixidADOyGEEEIIIYQQQgghNhFetpECASGEEEIIIYQQQgghBKC/sBNCCCGEEEIIIYQQYhOhB3ZCCCGEEEIIIYQQQmwi9MBOCCGEEEIIIYQQQohNhB7YCSGEEEIIIYQQQgixidADOyGEEEIIIYQQQgghNhF6YCeEEEIIIYQQQgghxCZCD+yEEEIIIYQQQgghhNhE6IGdEEIIIYQQQgghhBCbCD2wE0IIIYQQQgghhBBiE/H/A1TNrQli3wF5AAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"import mindspore\n",
"import matplotlib.pyplot as plt\n",
diff --git a/Season2.step_into_llm/17.Qwen/qwen2_finetune_inference.ipynb b/Season2.step_into_llm/17.Qwen/qwen2_finetune_inference.ipynb
index 9138541..693486d 100644
--- a/Season2.step_into_llm/17.Qwen/qwen2_finetune_inference.ipynb
+++ b/Season2.step_into_llm/17.Qwen/qwen2_finetune_inference.ipynb
@@ -100,134 +100,16 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://mirrors.aliyun.com/pypi/simple/\n",
- "Collecting mindspore==2.5.0\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/23/22/dff0f1bef6c0846a97271ae5d39ca187914f39562f9e3f6787041dea1a97/mindspore-2.5.0-cp39-cp39-manylinux1_x86_64.whl (958.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m958.4/958.4 MB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n",
- "\u001b[?25hCollecting numpy<2.0.0,>=1.20.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/54/30/c2a907b9443cf42b90c17ad10c1e8fa801975f01cb9764f3f8eb8aea638b/numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.2/18.2 MB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hCollecting protobuf>=3.13.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/28/50/1925de813499546bc8ab3ae857e3ec84efe7d2f19b34529d0c7c3d02d11d/protobuf-6.30.2-cp39-abi3-manylinux2014_x86_64.whl (316 kB)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore==2.5.0) (3.0.0)\n",
- "Collecting pillow>=6.2.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/f6/46/0bd0ca03d9d1164a7fa33d285ef6d1c438e963d0c8770e4c5b3737ef5abe/pillow-11.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.4/4.4 MB\u001b[0m \u001b[31m14.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25hCollecting scipy>=1.5.4 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/35/f5/d0ad1a96f80962ba65e2ce1de6a1e59edecd1f0a7b55990ed208848012e0/scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.6 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.6/38.6 MB\u001b[0m \u001b[31m16.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore==2.5.0) (24.2)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore==2.5.0) (5.9.1)\n",
- "Collecting astunparse>=1.6.3 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n",
- "Collecting safetensors>=0.4.0 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/a6/f8/dae3421624fcc87a89d42e1898a798bc7ff72c61f38973a65d60df8f124c/safetensors-0.5.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (471 kB)\n",
- "Collecting dill>=0.3.7 (from mindspore==2.5.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/46/d1/e73b6ad76f0b1fb7f23c35c6d95dbc506a9c8804f43dda8cb5b0fa6331fd/dill-0.3.9-py3-none-any.whl (119 kB)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.5.0) (0.45.1)\n",
- "Requirement already satisfied: six<2.0,>=1.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore==2.5.0) (1.17.0)\n",
- "Installing collected packages: safetensors, protobuf, pillow, numpy, dill, astunparse, scipy, mindspore\n",
- "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
- "auto-tune 0.1.0 requires te, which is not installed.\n",
- "schedule-search 0.0.1 requires absl-py, which is not installed.\u001b[0m\u001b[31m\n",
- "\u001b[0mSuccessfully installed astunparse-1.6.3 dill-0.3.9 mindspore-2.5.0 numpy-1.26.4 pillow-11.1.0 protobuf-6.30.2 safetensors-0.5.3 scipy-1.13.1\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.5.0/MindSpore/unified/x86_64/mindspore-2.5.0-cp39-cp39-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Looking in indexes: https://mirrors.aliyun.com/pypi/simple\n",
- "Collecting mindnlp==0.4.0\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/0f/a8/5a072852d28a51417b5e330b32e6ae5f26b491ef01a15ba968e77f785e69/mindnlp-0.4.0-py3-none-any.whl (8.4 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.4/8.4 MB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m0m\n",
- "\u001b[?25hRequirement already satisfied: mindspore>=2.2.14 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: tqdm in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (4.67.1)\n",
- "Requirement already satisfied: requests in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.32.3)\n",
- "Requirement already satisfied: datasets in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: evaluate in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.4.3)\n",
- "Requirement already satisfied: tokenizers==0.19.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.19.1)\n",
- "Requirement already satisfied: safetensors in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.3)\n",
- "Requirement already satisfied: sentencepiece in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.2.0)\n",
- "Requirement already satisfied: regex in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2024.11.6)\n",
- "Requirement already satisfied: addict in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: ml-dtypes in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.1)\n",
- "Requirement already satisfied: pyctcdecode in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (0.5.0)\n",
- "Collecting jieba (from mindnlp==0.4.0)\n",
- " Downloading https://mirrors.aliyun.com/pypi/packages/c6/cb/18eeb235f833b726522d7ebed54f2278ce28ba9438e3135ab0278d9792a2/jieba-0.42.1.tar.gz (19.2 MB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.2/19.2 MB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
- "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n",
- "\u001b[?25hRequirement already satisfied: pytest==7.2.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (7.2.0)\n",
- "Requirement already satisfied: pillow>=10.0.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindnlp==0.4.0) (11.1.0)\n",
- "Requirement already satisfied: attrs>=19.2.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.3.0)\n",
- "Requirement already satisfied: iniconfig in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.1.0)\n",
- "Requirement already satisfied: packaging in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (24.2)\n",
- "Requirement already satisfied: pluggy<2.0,>=0.12 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (1.2.2)\n",
- "Requirement already satisfied: tomli>=1.0.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.4.0) (2.0.1)\n",
- "Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from tokenizers==0.19.1->mindnlp==0.4.0) (0.30.2)\n",
- "Requirement already satisfied: numpy<2.0.0,>=1.20.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.26.4)\n",
- "Requirement already satisfied: protobuf>=3.13.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (6.30.2)\n",
- "Requirement already satisfied: asttokens>=2.0.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (3.0.0)\n",
- "Requirement already satisfied: scipy>=1.5.4 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.13.1)\n",
- "Requirement already satisfied: psutil>=5.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (5.9.1)\n",
- "Requirement already satisfied: astunparse>=1.6.3 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (1.6.3)\n",
- "Requirement already satisfied: dill>=0.3.7 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from mindspore>=2.2.14->mindnlp==0.4.0) (0.3.8)\n",
- "Requirement already satisfied: filelock in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.18.0)\n",
- "Requirement already satisfied: pyarrow>=15.0.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (19.0.1)\n",
- "Requirement already satisfied: pandas in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (2.2.3)\n",
- "Requirement already satisfied: xxhash in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.5.0)\n",
- "Requirement already satisfied: multiprocess<0.70.17 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (0.70.16)\n",
- "Requirement already satisfied: fsspec<=2024.12.0,>=2023.1.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from fsspec[http]<=2024.12.0,>=2023.1.0->datasets->mindnlp==0.4.0) (2024.12.0)\n",
- "Requirement already satisfied: aiohttp in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (3.11.16)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from datasets->mindnlp==0.4.0) (6.0.2)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.3.2)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (3.7)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2.3.0)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from requests->mindnlp==0.4.0) (2025.1.31)\n",
- "Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (2.5.0)\n",
- "Requirement already satisfied: hypothesis<7,>=6.14 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.4.0) (6.130.13)\n",
- "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (0.45.1)\n",
- "Requirement already satisfied: six<2.0,>=1.6.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore>=2.2.14->mindnlp==0.4.0) (1.17.0)\n",
- "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (2.6.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (1.3.2)\n",
- "Requirement already satisfied: async-timeout<6.0,>=4.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (5.0.1)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (1.5.0)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (6.4.2)\n",
- "Requirement already satisfied: propcache>=0.2.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (0.3.1)\n",
- "Requirement already satisfied: yarl<2.0,>=1.17.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.4.0) (1.19.0)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.16.4->tokenizers==0.19.1->mindnlp==0.4.0) (4.13.1)\n",
- "Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.4.0) (2.4.0)\n",
- "Requirement already satisfied: python-dateutil>=2.8.2 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2.9.0.post0)\n",
- "Requirement already satisfied: pytz>=2020.1 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Requirement already satisfied: tzdata>=2022.7 in /home/jiangna1/miniconda3/envs/llama39/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.4.0) (2025.2)\n",
- "Building wheels for collected packages: jieba\n",
- " Building wheel for jieba (setup.py) ... \u001b[?25ldone\n",
- "\u001b[?25h Created wheel for jieba: filename=jieba-0.42.1-py3-none-any.whl size=19314508 sha256=30064bba508d12a9c2c545bdec7e271f61d5a83e9fdd53298a82e74659e1fd26\n",
- " Stored in directory: /home/jiangna1/.cache/pip/wheels/95/ef/7c/d8b3108835edfa15487417c5bddff166482b195d8090117ac5\n",
- "Successfully built jieba\n",
- "Installing collected packages: jieba, mindnlp\n",
- "Successfully installed jieba-0.42.1 mindnlp-0.4.0\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%pip install mindnlp==0.4.0 -i https://mirrors.aliyun.com/pypi/simple\n"
]
@@ -262,24 +144,9 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/liangdeqi/anaconda3/envs/py39/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/liangdeqi/anaconda3/envs/py39/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n",
- "/home/liangdeqi/anaconda3/envs/py39/lib/python3.9/site-packages/numpy/core/getlimits.py:549: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " setattr(self, word, getattr(machar, word).flat[0])\n",
- "/home/liangdeqi/anaconda3/envs/py39/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for type is zero.\n",
- " return self._float_to_str(self.smallest_subnormal)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import json\n",
"import numpy as np\n",
@@ -289,18 +156,9 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(3117682:281473615360032,MainProcess):2025-04-22-05:47:07.212.180 [mindspore/context.py:1335] For 'context.set_context', the parameter 'device_target' will be deprecated and removed in a future version. Please use the api mindspore.set_device() instead.\n",
- "[WARNING] ME(3117682:281473615360032,MainProcess):2025-04-22-05:47:07.214.143 [mindspore/context.py:1335] For 'context.set_context', the parameter 'device_id' will be deprecated and removed in a future version. Please use the api mindspore.set_device() instead.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"#将模式设置为动态图模式(PYNATIVE_MODE),并指定设备目标为Ascend芯片\n",
"ms.set_context(mode=ms.PYNATIVE_MODE, device_target=\"Ascend\",device_id=5)\n"
@@ -308,7 +166,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -372,7 +230,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -410,7 +268,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -429,17 +287,9 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[{'instruction': '只剩一个心脏了还能活吗?', 'output': '能,人本来就只有一个心脏。'}, {'instruction': '爸爸再婚,我是不是就有了个新娘?', 'output': '不是的,你有了一个继母。\"新娘\"是指新婚的女方,而你爸爸再婚,他的新婚妻子对你来说是继母。'}, {'instruction': '樟脑丸是我吃过最难吃的硬糖有奇怪的味道怎么还有人买', 'output': '樟脑丸并不是硬糖,而是一种常见的驱虫药,不能食用。虽然它的味道可能不太好,但是由于其有效的驱虫效果,所以仍然有很多人会购买。'}]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"with open(data_path, 'r', encoding='utf-8') as f:\n",
" data = json.load(f)\n",
@@ -455,37 +305,9 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[WARNING] ME(3117682:281473615360032,MainProcess):2025-04-22-05:47:28.427.424 [mindspore/context.py:1335] For 'context.set_context', the parameter 'ascend_config' will be deprecated and removed in a future version. Please use the api mindspore.device_context.ascend.op_precision.precision_mode(),\n",
- " mindspore.device_context.ascend.op_precision.op_precision_mode(),\n",
- " mindspore.device_context.ascend.op_precision.matmul_allow_hf32(),\n",
- " mindspore.device_context.ascend.op_precision.conv_allow_hf32(),\n",
- " mindspore.device_context.ascend.op_tuning.op_compile() instead.\n",
- "/home/liangdeqi/anaconda3/envs/py39/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
- " from .autonotebook import tqdm as notebook_tqdm\n",
- "Building prefix dict from the default dictionary ...\n",
- "Loading model from cache /tmp/jieba.cache\n",
- "Loading model cost 0.937 seconds.\n",
- "Prefix dict has been built successfully.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "[2587]"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import AutoTokenizer\n",
"\n",
@@ -505,7 +327,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -538,32 +360,9 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n",
- "Sample 0: Input IDs: [ 1474 25 26853 103 100124 46944 103023 34187 104246 75606]\n",
- "Sample 0: Labels: [ 1474 25 26853 103 100124 46944 103023 34187 104246 75606]\n",
- "\n",
- "Sample 1: Input IDs: [ 1474 25 10236 230 116 99962 87256 99838 3837 35946]\n",
- "Sample 1: Labels: [ 1474 25 10236 230 116 99962 87256 99838 3837 35946]\n",
- "\n",
- "Sample 2: Input IDs: [ 1474 25 6567 101 253 99931 106256 104927 111505 116080]\n",
- "Sample 2: Labels: [ 1474 25 6567 101 253 99931 106256 104927 111505 116080]\n",
- "\n",
- "Sample 3: Input IDs: [ 1474 25 18137 102 105 17447 30534 107118 103009 99504]\n",
- "Sample 3: Labels: [ 1474 25 18137 102 105 17447 30534 107118 103009 99504]\n",
- "\n",
- "Sample 4: Input IDs: [ 1474 25 220 100678 106727 36587 1867 6484 24300 9370]\n",
- "Sample 4: Labels: [ 1474 25 220 100678 106727 36587 1867 6484 24300 9370]\n",
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"for i, sample in enumerate(train_dataset.create_dict_iterator()):\n",
" if i >= 5:\n",
@@ -588,7 +387,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -607,34 +406,9 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Qwen2ForCausalLM has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`.`PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
- " - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
- " - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
- "Sliding Window Attention is enabled but not implemented for `eager`; unexpected results may be encountered.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading checkpoint shards: 100%|██████████| 2/2 [00:17<00:00, 8.75s/it]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mindnlp.transformers import AutoModelForCausalLM, GenerationConfig\n",
"\n",
@@ -645,7 +419,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -663,7 +437,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -692,7 +466,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -716,7 +490,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -780,7 +554,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -801,703 +575,9 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 0%| | 0/420 [00:00, ?it/s][WARNING] PRE_ACT(2760802,ffff2d72f120,python):2025-04-22-01:39:51.736.461 [mindspore/ccsrc/backend/common/mem_reuse/mem_dynamic_allocator.cc:721] FreeIdleMemsByEagerFree] Eager free count : 2, free memory : 32172385280, real free : 6721372160, not free size: 25451013120.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "."
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 2%|▏ | 10/420 [02:06<1:20:24, 11.77s/it]We detected that you are passing `past_key_values` as a tuple and this is deprecated. Please use an appropriate `Cache` class\n",
- "\n",
- " 2%|▏ | 10/420 [02:21<1:20:24, 11.77s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3680526614189148, 'eval_runtime': 14.2338, 'eval_samples_per_second': 2.67, 'eval_steps_per_second': 0.703, 'epoch': 0.24}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 5%|▍ | 20/420 [04:31<1:19:11, 11.88s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3680099844932556, 'eval_runtime': 13.8258, 'eval_samples_per_second': 2.748, 'eval_steps_per_second': 0.723, 'epoch': 0.48}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 7%|▋ | 30/420 [06:28<1:17:33, 11.93s/it]\n",
- " 7%|▋ | 30/420 [06:42<1:17:33, 11.93s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3679732084274292, 'eval_runtime': 13.7976, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 0.71}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 10%|▉ | 40/420 [08:55<1:16:03, 12.01s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36789005994796753, 'eval_runtime': 13.8178, 'eval_samples_per_second': 2.75, 'eval_steps_per_second': 0.724, 'epoch': 0.95}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 12%|█▏ | 50/420 [11:06<1:13:10, 11.87s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3678358495235443, 'eval_runtime': 13.8016, 'eval_samples_per_second': 2.753, 'eval_steps_per_second': 0.725, 'epoch': 1.19}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 14%|█▍ | 60/420 [13:52<1:14:00, 12.33s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36773690581321716, 'eval_runtime': 13.7724, 'eval_samples_per_second': 2.759, 'eval_steps_per_second': 0.726, 'epoch': 1.43}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 17%|█▋ | 70/420 [16:02<1:09:23, 11.90s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36754944920539856, 'eval_runtime': 13.7441, 'eval_samples_per_second': 2.765, 'eval_steps_per_second': 0.728, 'epoch': 1.66}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 19%|█▉ | 80/420 [18:13<1:07:07, 11.84s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3673146963119507, 'eval_runtime': 13.7654, 'eval_samples_per_second': 2.761, 'eval_steps_per_second': 0.726, 'epoch': 1.9}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 21%|██▏ | 90/420 [20:23<1:04:48, 11.78s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3670627772808075, 'eval_runtime': 13.7936, 'eval_samples_per_second': 2.755, 'eval_steps_per_second': 0.725, 'epoch': 2.14}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 24%|██▍ | 100/420 [22:33<1:02:47, 11.77s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36674097180366516, 'eval_runtime': 13.7375, 'eval_samples_per_second': 2.766, 'eval_steps_per_second': 0.728, 'epoch': 2.38}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 26%|██▌ | 110/420 [25:13<1:02:49, 12.16s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3663555085659027, 'eval_runtime': 13.7711, 'eval_samples_per_second': 2.759, 'eval_steps_per_second': 0.726, 'epoch': 2.62}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 29%|██▊ | 120/420 [27:22<58:47, 11.76s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3659137189388275, 'eval_runtime': 13.8004, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 2.85}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 31%|███ | 130/420 [29:32<56:52, 11.77s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.365511953830719, 'eval_runtime': 13.7993, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 3.09}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 33%|███▎ | 140/420 [31:41<54:53, 11.76s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.365274041891098, 'eval_runtime': 13.7926, 'eval_samples_per_second': 2.755, 'eval_steps_per_second': 0.725, 'epoch': 3.33}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 36%|███▌ | 150/420 [33:37<52:54, 11.76s/it] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'loss': 0.3492, 'learning_rate': 8.117449009293668e-06, 'epoch': 3.57}\n",
- "."
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 36%|███▌ | 150/420 [33:51<52:54, 11.76s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36510151624679565, 'eval_runtime': 13.7746, 'eval_samples_per_second': 2.759, 'eval_steps_per_second': 0.726, 'epoch': 3.57}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 38%|███▊ | 160/420 [36:32<52:46, 12.18s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3650287091732025, 'eval_runtime': 13.7827, 'eval_samples_per_second': 2.757, 'eval_steps_per_second': 0.726, 'epoch': 3.8}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 40%|████ | 170/420 [38:42<49:09, 11.80s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.364993691444397, 'eval_runtime': 13.7911, 'eval_samples_per_second': 2.755, 'eval_steps_per_second': 0.725, 'epoch': 4.04}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 43%|████▎ | 180/420 [40:51<47:06, 11.78s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3649541437625885, 'eval_runtime': 13.7813, 'eval_samples_per_second': 2.757, 'eval_steps_per_second': 0.726, 'epoch': 4.28}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 45%|████▌ | 190/420 [43:01<45:04, 11.76s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.364885538816452, 'eval_runtime': 13.7639, 'eval_samples_per_second': 2.761, 'eval_steps_per_second': 0.727, 'epoch': 4.52}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 48%|████▊ | 200/420 [45:10<42:57, 11.72s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3648141622543335, 'eval_runtime': 13.7646, 'eval_samples_per_second': 2.761, 'eval_steps_per_second': 0.727, 'epoch': 4.75}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 50%|█████ | 210/420 [47:53<42:38, 12.18s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3647274076938629, 'eval_runtime': 13.7962, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 4.99}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 52%|█████▏ | 220/420 [50:03<39:21, 11.81s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.364600270986557, 'eval_runtime': 13.8031, 'eval_samples_per_second': 2.753, 'eval_steps_per_second': 0.724, 'epoch': 5.23}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 55%|█████▍ | 230/420 [52:13<37:21, 11.80s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36447346210479736, 'eval_runtime': 13.7591, 'eval_samples_per_second': 2.762, 'eval_steps_per_second': 0.727, 'epoch': 5.47}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 57%|█████▋ | 240/420 [54:23<35:40, 11.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36433592438697815, 'eval_runtime': 13.7962, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 5.71}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 60%|█████▉ | 250/420 [56:34<33:33, 11.85s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.364198237657547, 'eval_runtime': 13.8242, 'eval_samples_per_second': 2.749, 'eval_steps_per_second': 0.723, 'epoch': 5.94}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 62%|██████▏ | 260/420 [59:17<32:36, 12.23s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36405208706855774, 'eval_runtime': 13.7871, 'eval_samples_per_second': 2.756, 'eval_steps_per_second': 0.725, 'epoch': 6.18}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 64%|██████▍ | 270/420 [1:01:27<29:36, 11.84s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3639287054538727, 'eval_runtime': 13.7419, 'eval_samples_per_second': 2.765, 'eval_steps_per_second': 0.728, 'epoch': 6.42}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 67%|██████▋ | 280/420 [1:03:37<27:31, 11.79s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3638119101524353, 'eval_runtime': 13.7915, 'eval_samples_per_second': 2.755, 'eval_steps_per_second': 0.725, 'epoch': 6.66}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 69%|██████▉ | 290/420 [1:05:47<25:55, 11.97s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36368298530578613, 'eval_runtime': 13.7396, 'eval_samples_per_second': 2.766, 'eval_steps_per_second': 0.728, 'epoch': 6.89}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " 71%|███████▏ | 300/420 [1:07:43<23:32, 11.77s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'loss': 0.3475, 'learning_rate': 2.2872686806712037e-06, 'epoch': 7.13}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 71%|███████▏ | 300/420 [1:07:57<23:32, 11.77s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36360418796539307, 'eval_runtime': 13.6329, 'eval_samples_per_second': 2.787, 'eval_steps_per_second': 0.734, 'epoch': 7.13}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 74%|███████▍ | 310/420 [1:10:41<22:25, 12.23s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36348408460617065, 'eval_runtime': 13.7708, 'eval_samples_per_second': 2.759, 'eval_steps_per_second': 0.726, 'epoch': 7.37}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 76%|███████▌ | 320/420 [1:12:52<19:43, 11.84s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3634147047996521, 'eval_runtime': 13.7885, 'eval_samples_per_second': 2.756, 'eval_steps_per_second': 0.725, 'epoch': 7.61}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 79%|███████▊ | 330/420 [1:15:02<17:51, 11.91s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3633574843406677, 'eval_runtime': 13.7976, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 7.85}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 81%|████████ | 340/420 [1:17:13<15:56, 11.96s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36329177021980286, 'eval_runtime': 13.8064, 'eval_samples_per_second': 2.752, 'eval_steps_per_second': 0.724, 'epoch': 8.08}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 83%|████████▎ | 350/420 [1:19:24<13:52, 11.89s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36324942111968994, 'eval_runtime': 13.792, 'eval_samples_per_second': 2.755, 'eval_steps_per_second': 0.725, 'epoch': 8.32}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 86%|████████▌ | 360/420 [1:22:05<12:10, 12.18s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3632137179374695, 'eval_runtime': 13.7771, 'eval_samples_per_second': 2.758, 'eval_steps_per_second': 0.726, 'epoch': 8.56}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 88%|████████▊ | 370/420 [1:24:15<09:52, 11.85s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3631911277770996, 'eval_runtime': 13.8006, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 8.8}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 90%|█████████ | 380/420 [1:26:24<07:48, 11.72s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3631720542907715, 'eval_runtime': 13.776, 'eval_samples_per_second': 2.758, 'eval_steps_per_second': 0.726, 'epoch': 9.03}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 93%|█████████▎| 390/420 [1:28:33<05:51, 11.73s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.3631533980369568, 'eval_runtime': 13.7647, 'eval_samples_per_second': 2.761, 'eval_steps_per_second': 0.726, 'epoch': 9.27}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 95%|█████████▌| 400/420 [1:30:44<03:59, 11.95s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36315786838531494, 'eval_runtime': 13.7621, 'eval_samples_per_second': 2.761, 'eval_steps_per_second': 0.727, 'epoch': 9.51}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- " 98%|█████████▊| 410/420 [1:33:26<02:02, 12.21s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36315032839775085, 'eval_runtime': 13.8025, 'eval_samples_per_second': 2.753, 'eval_steps_per_second': 0.725, 'epoch': 9.75}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- " \n",
- "100%|██████████| 420/420 [1:35:37<00:00, 11.87s/it]The intermediate checkpoints of PEFT may not be saved correctly, consider using a custom callback to save adapter_model.bin in corresponding saving folders. Check some examples here: https://github.com/huggingface/peft/issues/96\n",
- "100%|██████████| 420/420 [1:35:37<00:00, 13.66s/it]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'eval_loss': 0.36315810680389404, 'eval_runtime': 13.7993, 'eval_samples_per_second': 2.754, 'eval_steps_per_second': 0.725, 'epoch': 9.99}\n",
- "{'train_runtime': 5737.5188, 'train_samples_per_second': 2.346, 'train_steps_per_second': 0.073, 'train_loss': 0.3477174577258882, 'epoch': 9.99}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "TrainOutput(global_step=420, training_loss=0.3477174577258882, metrics={'train_runtime': 5737.5188, 'train_samples_per_second': 2.346, 'train_steps_per_second': 0.073, 'train_loss': 0.3477174577258882, 'epoch': 9.99})"
- ]
- },
- "execution_count": 18,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"trainer.train()\n",
"\n",
@@ -1506,7 +586,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -1545,108 +625,9 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model merge succeeded\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "Qwen2ForCausalLM(\n",
- " (model): Qwen2Model(\n",
- " (embed_tokens): Embedding(151936, 2048)\n",
- " (layers): ModuleList(\n",
- " (0-35): 36 x Qwen2DecoderLayer(\n",
- " (self_attn): Qwen2Attention(\n",
- " (q_proj): lora.Linear(\n",
- " (base_layer): Linear (2048 -> 2048)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (2048 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 2048)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (k_proj): lora.Linear(\n",
- " (base_layer): Linear (2048 -> 256)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (2048 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 256)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (v_proj): lora.Linear(\n",
- " (base_layer): Linear (2048 -> 256)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (2048 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 256)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (o_proj): lora.Linear(\n",
- " (base_layer): Linear (2048 -> 2048)\n",
- " (lora_dropout): ModuleDict(\n",
- " (default): Dropout(p=0.1, inplace=False)\n",
- " )\n",
- " (lora_A): ModuleDict(\n",
- " (default): Linear (2048 -> 8)\n",
- " )\n",
- " (lora_B): ModuleDict(\n",
- " (default): Linear (8 -> 2048)\n",
- " )\n",
- " (lora_embedding_A): ParameterDict()\n",
- " (lora_embedding_B): ParameterDict()\n",
- " (lora_magnitude_vector): ModuleDict()\n",
- " )\n",
- " (rotary_emb): Qwen2RotaryEmbedding()\n",
- " )\n",
- " (mlp): Qwen2MLP(\n",
- " (gate_proj): Linear (2048 -> 11008)\n",
- " (up_proj): Linear (2048 -> 11008)\n",
- " (down_proj): Linear (11008 -> 2048)\n",
- " (act_fn): SiLU()\n",
- " )\n",
- " (input_layernorm): Qwen2RMSNorm((2048,), eps=1e-06)\n",
- " (post_attention_layernorm): Qwen2RMSNorm((2048,), eps=1e-06)\n",
- " )\n",
- " )\n",
- " (norm): Qwen2RMSNorm((2048,), eps=1e-06)\n",
- " )\n",
- " (lm_head): Linear (2048 -> 151936)\n",
- ")"
- ]
- },
- "execution_count": 17,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"#将 LoRA微调后的参数加载到预训练模型中\n",
"from mindnlp.peft import PeftModel\n",
@@ -1665,7 +646,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -1699,27 +680,9 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Both `max_new_tokens` (=2048) and `max_length`(=256) seem to have been set. `max_new_tokens` will take precedence. Please refer to the documentation for more information. (https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "User: 如何保持清醒?\n",
- "LLAMA: 以下是用户和助手之间的问答。\n",
- "问:如何保持清醒?\n",
- "答:喝咖啡或茶,吃一些富含蛋白质的食物。\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"question = \"如何保持清醒?\"\n",
"response = generate_response(question, model, tokenizer)\n",