|
| 1 | +# Copyright (c) Microsoft Corporation. |
| 2 | +# Licensed under the MIT License. |
| 3 | +import unittest |
| 4 | + |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +from onnxscript import ir |
| 8 | +from onnxscript.rewriter import rewrite, testing |
| 9 | +from onnxscript.rewriter.rules.common import ( |
| 10 | + affine_conv_fusion_rule, |
| 11 | + conv_affine_fusion_rule, |
| 12 | +) |
| 13 | + |
| 14 | + |
| 15 | +class FuseConvAffineTest(unittest.TestCase): |
| 16 | + def clone_model(self, model: ir.Model) -> ir.Model: |
| 17 | + return ir.from_proto(ir.to_proto(model)) |
| 18 | + |
| 19 | + def test_conv_affine_fusion(self): |
| 20 | + tape = ir.tape.Tape() |
| 21 | + x = ir.Input( |
| 22 | + "x", shape=ir.Shape([1, 3, 32, 32]), type=ir.TensorType(ir.DataType.FLOAT) |
| 23 | + ) |
| 24 | + w = tape.initializer(ir.tensor(np.ones((3, 3, 3, 3), dtype=np.float32), name="w")) |
| 25 | + b = tape.initializer(ir.tensor(np.ones((3,), dtype=np.float32), name="b")) |
| 26 | + scale = tape.initializer(ir.tensor(np.array([2.0], dtype=np.float32), name="scale")) |
| 27 | + offset = tape.initializer(ir.tensor(np.array([3.0], dtype=np.float32), name="offset")) |
| 28 | + |
| 29 | + conv_out = tape.op("Conv", [x, w, b], attributes={"pads": [1, 1, 1, 1]}) |
| 30 | + mul_out = tape.op("Mul", [conv_out, scale]) |
| 31 | + z = tape.op( |
| 32 | + "Add", |
| 33 | + [mul_out, offset], |
| 34 | + output=ir.Input( |
| 35 | + "z", |
| 36 | + shape=ir.Shape([1, 3, 32, 32]), |
| 37 | + type=ir.TensorType(ir.DataType.FLOAT), |
| 38 | + ), |
| 39 | + ) |
| 40 | + |
| 41 | + model = ir.Model( |
| 42 | + ir.Graph( |
| 43 | + inputs=[x], |
| 44 | + outputs=[z], |
| 45 | + nodes=tape.nodes, |
| 46 | + initializers=tape.initializers, |
| 47 | + opset_imports={"": 17}, |
| 48 | + ), |
| 49 | + ir_version=8, |
| 50 | + ) |
| 51 | + rewritten_model = self.clone_model(model) |
| 52 | + rewritten_model = rewrite( |
| 53 | + rewritten_model, |
| 54 | + pattern_rewrite_rules=[conv_affine_fusion_rule], |
| 55 | + ) |
| 56 | + # Check that Mul and Add are fused into Conv |
| 57 | + self.assertEqual(model.graph.num_nodes() - 2, rewritten_model.graph.num_nodes()) |
| 58 | + |
| 59 | + # Check that the results are numerically equal |
| 60 | + rng = np.random.default_rng(42) |
| 61 | + inputs = [ |
| 62 | + rng.random((1, 3, 32, 32), dtype=np.float32), |
| 63 | + ] |
| 64 | + testing.assert_numerically_equal(model, rewritten_model, inputs) |
| 65 | + |
| 66 | + def test_affine_conv_fusion_without_pad(self): |
| 67 | + tape = ir.tape.Tape() |
| 68 | + x = ir.Input( |
| 69 | + "x", shape=ir.Shape([1, 3, 32, 32]), type=ir.TensorType(ir.DataType.FLOAT) |
| 70 | + ) |
| 71 | + w = tape.initializer(ir.tensor(np.ones((3, 3, 3, 3), dtype=np.float32), name="w")) |
| 72 | + b = tape.initializer(ir.tensor(np.ones((3,), dtype=np.float32), name="b")) |
| 73 | + scale = tape.initializer(ir.tensor(np.array([2.0], dtype=np.float32), name="scale")) |
| 74 | + offset = tape.initializer(ir.tensor(np.array([3.0], dtype=np.float32), name="offset")) |
| 75 | + |
| 76 | + mul_out = tape.op("Mul", [x, scale]) |
| 77 | + z = tape.op( |
| 78 | + "Add", |
| 79 | + [mul_out, offset], |
| 80 | + output=ir.Input( |
| 81 | + "z", |
| 82 | + shape=ir.Shape([1, 3, 32, 32]), |
| 83 | + type=ir.TensorType(ir.DataType.FLOAT), |
| 84 | + ), |
| 85 | + ) |
| 86 | + conv_out = tape.op("Conv", [z, w, b], attributes={"pads": [0, 0, 0, 0]}) |
| 87 | + |
| 88 | + model = ir.Model( |
| 89 | + ir.Graph( |
| 90 | + inputs=[x], |
| 91 | + outputs=[conv_out], |
| 92 | + nodes=tape.nodes, |
| 93 | + initializers=tape.initializers, |
| 94 | + opset_imports={"": 17}, |
| 95 | + ), |
| 96 | + ir_version=8, |
| 97 | + ) |
| 98 | + rewritten_model = self.clone_model(model) |
| 99 | + rewritten_model = rewrite( |
| 100 | + rewritten_model, |
| 101 | + pattern_rewrite_rules=[affine_conv_fusion_rule], |
| 102 | + ) |
| 103 | + # Check that Mul and Add are fused into Conv |
| 104 | + self.assertEqual(model.graph.num_nodes() - 2, rewritten_model.graph.num_nodes()) |
| 105 | + |
| 106 | + # Check that the results are numerically equal |
| 107 | + rng = np.random.default_rng(42) |
| 108 | + inputs = [ |
| 109 | + rng.random((1, 3, 32, 32), dtype=np.float32), |
| 110 | + ] |
| 111 | + testing.assert_numerically_equal(model, rewritten_model, inputs) |
| 112 | + |
| 113 | + |
| 114 | +if __name__ == "__main__": |
| 115 | + unittest.main() |
0 commit comments