|
| 1 | +# Copyright (c) Microsoft Corporation. |
| 2 | +# Licensed under the MIT License. |
| 3 | +"""Fuses successive Min/Max patterns in ONNX graphs. |
| 4 | +
|
| 5 | +Supported transformations: |
| 6 | +- Min(Min(X, c1, c2, ...), d1, d2, ...) → Min(X, fused_const) |
| 7 | +- Max(Max(X, c1, c2, ...), d1, d2, ...) → Max(X, fused_const) |
| 8 | +- Min(Max(X, lb1, lb2, ...), ub1, ub2, ...) → Clip(X, lb, ub) |
| 9 | +- Max(Min(X, ub1, ub2, ...), lb1, lb2, ...) → Clip(X, lb, ub) |
| 10 | +
|
| 11 | +Where: |
| 12 | + - fused_const is the reduction (min or max) over all constant inputs. |
| 13 | + - For Clip fusion: |
| 14 | + * All constant inputs must be scalars. |
| 15 | + * The effective lower bound is the maximum of all lower-bound constants. |
| 16 | + * The effective upper bound is the minimum of all upper-bound constants. |
| 17 | +
|
| 18 | + For the case of Max(Min(X, upper_bound), lower_bound): |
| 19 | + * The rule applies only if lower_bound ≤ upper_bound. |
| 20 | +
|
| 21 | +General constraints: |
| 22 | + - The first input may be any tensor. |
| 23 | + - All other inputs must be constant tensors (from Constant nodes or initializers). |
| 24 | +""" |
| 25 | + |
| 26 | +import abc |
| 27 | +import functools |
| 28 | +from typing import ClassVar |
| 29 | + |
| 30 | +import numpy as np |
| 31 | +import onnx_ir as ir |
| 32 | + |
| 33 | +from onnxscript.rewriter._basics import MatchResult |
| 34 | +from onnxscript.rewriter._rewrite_rule import RewriteRuleClassBase, RewriteRuleSet |
| 35 | + |
| 36 | + |
| 37 | +class _FuseMinMaxBase(RewriteRuleClassBase, abc.ABC): |
| 38 | + """Base class for Min/Max fusion rewrites. |
| 39 | +
|
| 40 | + Constraints: |
| 41 | + - All inputs except the first must be constants (from Constant nodes or initializers). |
| 42 | + - If ``need_scalars`` is True (Clip fusion), all constants must be scalars. |
| 43 | + - If ``check_bounds`` is True (Clip fusion in the pattern Max(Min(X, upper_bound), lower_bound)), lower_bound ≤ upper_bound. |
| 44 | + """ |
| 45 | + |
| 46 | + need_scalars: ClassVar = False |
| 47 | + check_bounds: ClassVar = False |
| 48 | + |
| 49 | + @abc.abstractmethod |
| 50 | + def compute_constants( |
| 51 | + self, |
| 52 | + first_node: ir.Node, |
| 53 | + second_node: ir.Node, |
| 54 | + input_name: str = "", |
| 55 | + ) -> list[tuple[ir.Tensor, str]]: ... |
| 56 | + |
| 57 | + def rewrite(self, op, x, out1, out2): |
| 58 | + first_node = out1.producer() |
| 59 | + second_node = out2.producer() |
| 60 | + |
| 61 | + # Compute new constants for the fused op |
| 62 | + constants = self.compute_constants(first_node, second_node, x.name) |
| 63 | + |
| 64 | + initializers = [op.initializer(constant, name=name) for constant, name in constants] |
| 65 | + |
| 66 | + return op.op( |
| 67 | + self.op_type, |
| 68 | + inputs=[x, *initializers], |
| 69 | + ) |
| 70 | + |
| 71 | + def _is_scalar(self, v: np.ndarray) -> bool: |
| 72 | + return np.isscalar(v) or np.size(v) == 1 |
| 73 | + |
| 74 | + def check(self, context, out1, out2, **_): |
| 75 | + """Condition to check if we need to replace the pattern. |
| 76 | +
|
| 77 | + Conditions: |
| 78 | + - The min and max input nodes must not be graph inputs. |
| 79 | + - These inputs (except the first) must be constant values (from Constant nodes or initializers). |
| 80 | + - In the case of Min(Max) and Max(Min) patterns: |
| 81 | + * All inputs must be scalars (as Clip requires scalars). |
| 82 | + For Max(Min) pattern: |
| 83 | + * The lower bound must be less than or equal to the upper bound. |
| 84 | +
|
| 85 | + Returns: |
| 86 | + MatchResult: |
| 87 | + Success if we need to replace the pattern, Failure otherwise. |
| 88 | + """ |
| 89 | + del context # Not used |
| 90 | + check_result = MatchResult() |
| 91 | + |
| 92 | + first_node = out1.producer() |
| 93 | + second_node = out2.producer() |
| 94 | + |
| 95 | + # Ensure all inputs except the first are constants |
| 96 | + for input_ in first_node.inputs[1:] + second_node.inputs[1:]: |
| 97 | + if ir.convenience.get_const_tensor(input_) is None: |
| 98 | + return check_result.fail(f"{input_.name} is not a constant.") |
| 99 | + |
| 100 | + # If scalars are required (Clip fusion), enforce scalar-ness |
| 101 | + if self.need_scalars and not self._is_scalar(input_.const_value.numpy()): |
| 102 | + return check_result.fail(f"{input_.name} is not a scalar.") |
| 103 | + |
| 104 | + if self.need_scalars and self.check_bounds: |
| 105 | + # For Clip fusion in the case of Max(Min(X, upper_bound), lower_bound): check that lower_bound <= upper_bound |
| 106 | + lower_bound, upper_bound = self.compute_constants(first_node, second_node) |
| 107 | + if lower_bound[0].numpy() > upper_bound[0].numpy(): |
| 108 | + return check_result.fail( |
| 109 | + f"Invalid bounds: lower bound ({lower_bound[0].numpy()}) is greater " |
| 110 | + f"than upper bound ({upper_bound[0].numpy()})." |
| 111 | + ) |
| 112 | + |
| 113 | + return check_result |
| 114 | + |
| 115 | + |
| 116 | +class FuseSuccessiveMin(_FuseMinMaxBase): |
| 117 | + """Replaces ``Min(Min(X, c1, c2, ...), d1, d2, ...)`` with ``Min(X, fused_const)``. |
| 118 | +
|
| 119 | + Constraints: |
| 120 | + - All inputs except the first must be constants (from Constant nodes or initializers). |
| 121 | + """ |
| 122 | + |
| 123 | + op_type: ClassVar = "Min" |
| 124 | + |
| 125 | + def compute_constants( |
| 126 | + self, |
| 127 | + first_node: ir.Node, |
| 128 | + second_node: ir.Node, |
| 129 | + input_name: str = "", |
| 130 | + ) -> list[tuple[ir.Tensor, str]]: |
| 131 | + inputs = first_node.inputs[1:] + second_node.inputs[1:] |
| 132 | + values = [input_.const_value.numpy() for input_ in inputs] |
| 133 | + return [(ir.tensor(functools.reduce(np.minimum, values)), f"{input_name}_min")] |
| 134 | + |
| 135 | + def pattern(self, op, x): |
| 136 | + return op.Min( |
| 137 | + op.Min(x, _allow_other_inputs=True, _outputs=["out1"]), |
| 138 | + _allow_other_inputs=True, |
| 139 | + _outputs=["out2"], |
| 140 | + ) |
| 141 | + |
| 142 | + |
| 143 | +class FuseSuccessiveMax(_FuseMinMaxBase): |
| 144 | + """Replaces ``Max(Max(X, c1, c2, ...), d1, d2, ...)`` with ``Max(X, fused_const)``. |
| 145 | +
|
| 146 | + Constraints: |
| 147 | + - All inputs except the first must be constants (from Constant nodes or initializers). |
| 148 | + """ |
| 149 | + |
| 150 | + op_type: ClassVar = "Max" |
| 151 | + |
| 152 | + def compute_constants( |
| 153 | + self, |
| 154 | + first_node: ir.Node, |
| 155 | + second_node: ir.Node, |
| 156 | + input_name: str = "", |
| 157 | + ) -> list[tuple[ir.Tensor, str]]: |
| 158 | + inputs = first_node.inputs[1:] + second_node.inputs[1:] |
| 159 | + values = [input_.const_value.numpy() for input_ in inputs] |
| 160 | + return [(ir.tensor(functools.reduce(np.maximum, values)), f"{input_name}_max")] |
| 161 | + |
| 162 | + def pattern(self, op, x): |
| 163 | + return op.Max( |
| 164 | + op.Max(x, _allow_other_inputs=True, _outputs=["out1"]), |
| 165 | + _allow_other_inputs=True, |
| 166 | + _outputs=["out2"], |
| 167 | + ) |
| 168 | + |
| 169 | + |
| 170 | +class FuseMaxMinToClip(_FuseMinMaxBase): |
| 171 | + """Replaces ``Min(Max(X, lb1, lb2, ...), ub1, ub2, ...)`` with ``Clip(X, lb, ub)``. |
| 172 | +
|
| 173 | + Constraints: |
| 174 | + - All inputs except the first must be constants (from Constant nodes or initializers). |
| 175 | + - All constant inputs must be scalars. |
| 176 | + - The effective lower bound is ``max(lb1, lb2, ...)``. |
| 177 | + - The effective upper bound is ``min(ub1, ub2, ...)``. |
| 178 | + """ |
| 179 | + |
| 180 | + op_type: ClassVar = "Clip" |
| 181 | + need_scalars: ClassVar = True |
| 182 | + |
| 183 | + def compute_constants( |
| 184 | + self, |
| 185 | + first_node: ir.Node, |
| 186 | + second_node: ir.Node, |
| 187 | + input_name: str = "", |
| 188 | + ) -> list[tuple[ir.Tensor, str]]: |
| 189 | + lower_bound = np.max([input_.const_value.numpy() for input_ in first_node.inputs[1:]]) |
| 190 | + upper_bound = np.min([input_.const_value.numpy() for input_ in second_node.inputs[1:]]) |
| 191 | + return [ |
| 192 | + (ir.tensor(lower_bound), f"{input_name}_min"), |
| 193 | + (ir.tensor(upper_bound), f"{input_name}_max"), |
| 194 | + ] |
| 195 | + |
| 196 | + def pattern(self, op, x): |
| 197 | + return op.Min( |
| 198 | + op.Max(x, _allow_other_inputs=True, _outputs=["out1"]), |
| 199 | + _allow_other_inputs=True, |
| 200 | + _outputs=["out2"], |
| 201 | + ) |
| 202 | + |
| 203 | + |
| 204 | +class FuseMinMaxToClip(_FuseMinMaxBase): |
| 205 | + """Replaces ``Max(Min(X, ub1, ub2, ...), lb1, lb2, ...)`` with ``Clip(X, lb, ub)``. |
| 206 | +
|
| 207 | + Constraints: |
| 208 | + - All inputs except the first must be constants (from Constant nodes or initializers). |
| 209 | + - All constant inputs must be scalars. |
| 210 | + - The effective lower bound is ``max(lb1, lb2, ...)``. |
| 211 | + - The effective upper bound is ``min(ub1, ub2, ...)``. |
| 212 | + - Requires ``lower_bound <= upper_bound``. |
| 213 | + """ |
| 214 | + |
| 215 | + op_type: ClassVar = "Clip" |
| 216 | + need_scalars: ClassVar = True |
| 217 | + check_bounds: ClassVar = True |
| 218 | + |
| 219 | + def compute_constants( |
| 220 | + self, |
| 221 | + first_node: ir.Node, |
| 222 | + second_node: ir.Node, |
| 223 | + input_name: str = "", |
| 224 | + ) -> list[tuple[ir.Tensor, str]]: |
| 225 | + upper_bound = np.min([input_.const_value.numpy() for input_ in first_node.inputs[1:]]) |
| 226 | + lower_bound = np.max([input_.const_value.numpy() for input_ in second_node.inputs[1:]]) |
| 227 | + return [ |
| 228 | + (ir.tensor(lower_bound), f"{input_name}_min"), |
| 229 | + (ir.tensor(upper_bound), f"{input_name}_max"), |
| 230 | + ] |
| 231 | + |
| 232 | + def pattern(self, op, x): |
| 233 | + return op.Max( |
| 234 | + op.Min(x, _allow_other_inputs=True, _outputs=["out1"]), |
| 235 | + _allow_other_inputs=True, |
| 236 | + _outputs=["out2"], |
| 237 | + ) |
| 238 | + |
| 239 | + |
| 240 | +min_min_rule = FuseSuccessiveMin().rule() |
| 241 | +max_max_rule = FuseSuccessiveMax().rule() |
| 242 | +min_max_rule = FuseMinMaxToClip().rule() |
| 243 | +max_min_rule = FuseMaxMinToClip().rule() |
| 244 | + |
| 245 | + |
| 246 | +rules = RewriteRuleSet( |
| 247 | + [ |
| 248 | + min_min_rule, |
| 249 | + max_max_rule, |
| 250 | + min_max_rule, |
| 251 | + max_min_rule, |
| 252 | + ] |
| 253 | +) |
0 commit comments