|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +""" |
| 8 | +Weight Sync Sandbox |
| 9 | +
|
| 10 | +A minimal test environment focused exclusively on testing the weight synchronization |
| 11 | +mechanism between RLTrainer and Generator. |
| 12 | +
|
| 13 | +Usage: |
| 14 | + python -m tests.sandbox.weight_sync.main --config tests/sandbox/weight_sync/qwen3_1_7b.yaml |
| 15 | +""" |
| 16 | + |
| 17 | +import asyncio |
| 18 | +import time |
| 19 | + |
| 20 | +import torch |
| 21 | +import torchstore as ts |
| 22 | +from forge.actors._torchstore_utils import rdma_enabled |
| 23 | +from forge.actors.generator import Generator |
| 24 | +from forge.actors.trainer import RLTrainer |
| 25 | +from forge.controller.provisioner import init_provisioner, shutdown |
| 26 | +from forge.observability.metric_actors import get_or_create_metric_logger |
| 27 | +from forge.types import LauncherConfig, ProvisionerConfig |
| 28 | +from forge.util.config import parse |
| 29 | +from omegaconf import DictConfig |
| 30 | +from vllm.transformers_utils.tokenizer import get_tokenizer |
| 31 | + |
| 32 | + |
| 33 | +def generate_random_batch( |
| 34 | + local_batch_size: int, |
| 35 | + request_len: int, |
| 36 | + response_len: int, |
| 37 | + vocab_size: int = 32000, |
| 38 | + device: str = "cuda", |
| 39 | + dp_size: int = 1, |
| 40 | +): |
| 41 | + """ |
| 42 | + Generate random input and target tensors for a single training step. |
| 43 | + Creates one batch per data parallel rank. |
| 44 | + """ |
| 45 | + inputs = [] |
| 46 | + targets = [] |
| 47 | + |
| 48 | + # Create one batch for each data parallel rank |
| 49 | + for _ in range(dp_size): |
| 50 | + request = torch.randint( |
| 51 | + 1, |
| 52 | + vocab_size, |
| 53 | + (local_batch_size, request_len), |
| 54 | + dtype=torch.long, |
| 55 | + device=device, |
| 56 | + ) |
| 57 | + response = torch.randint( |
| 58 | + 1, |
| 59 | + vocab_size, |
| 60 | + (local_batch_size, response_len), |
| 61 | + dtype=torch.long, |
| 62 | + device=device, |
| 63 | + ) |
| 64 | + |
| 65 | + # Create padding mask |
| 66 | + padding_mask = torch.rand((local_batch_size, response_len), device=device) > 0.1 |
| 67 | + |
| 68 | + ref_logprobs = ( |
| 69 | + -torch.abs(torch.randn((local_batch_size, response_len), device=device)) |
| 70 | + - 1.0 |
| 71 | + ) |
| 72 | + advantages = torch.randn((local_batch_size, 1), device=device) |
| 73 | + input_tokens = torch.cat([request, response], dim=1) |
| 74 | + inputs.append({"tokens": input_tokens}) |
| 75 | + targets.append( |
| 76 | + { |
| 77 | + "response": response, |
| 78 | + "ref_logprobs": ref_logprobs, |
| 79 | + "advantages": advantages, |
| 80 | + "padding_mask": padding_mask, |
| 81 | + } |
| 82 | + ) |
| 83 | + |
| 84 | + return inputs, targets |
| 85 | + |
| 86 | + |
| 87 | +async def main(cfg: DictConfig): |
| 88 | + local_batch_size = cfg.get("local_batch_size", None) |
| 89 | + assert local_batch_size is not None, "local_batch_size must be specified" |
| 90 | + |
| 91 | + request_len = cfg.get("max_req_tokens", 64) |
| 92 | + response_len = cfg.get("max_res_tokens", 64) |
| 93 | + model_name = cfg.get("model") |
| 94 | + |
| 95 | + print(f"Loading tokenizer for model: {model_name}") |
| 96 | + tokenizer = get_tokenizer(model_name) |
| 97 | + vocab_size = tokenizer.vocab_size |
| 98 | + print(f"Detected vocab size: {vocab_size}") |
| 99 | + |
| 100 | + trainer_dp_degree = cfg.trainer.parallelism.get("data_parallel_shard_degree", 1) |
| 101 | + dp_size = trainer_dp_degree if trainer_dp_degree != -1 else 1 |
| 102 | + |
| 103 | + # ---- Global setups ---- # |
| 104 | + provisioner = None |
| 105 | + if cfg.get("provisioner", None) is not None: |
| 106 | + provisioner = await init_provisioner( |
| 107 | + ProvisionerConfig(launcher_config=LauncherConfig(**cfg.provisioner)) |
| 108 | + ) |
| 109 | + else: |
| 110 | + provisioner = await init_provisioner() |
| 111 | + |
| 112 | + metric_logging_cfg = cfg.get("metric_logging", {}) |
| 113 | + mlogger = await get_or_create_metric_logger(process_name="Controller") |
| 114 | + await mlogger.init_backends.call_one(metric_logging_cfg) |
| 115 | + |
| 116 | + # Initialize torchstore |
| 117 | + await ts.initialize(strategy=ts.ControllerStorageVolumes()) |
| 118 | + |
| 119 | + print("=" * 80) |
| 120 | + print(f"Model: {model_name}") |
| 121 | + print(f"Local batch size: {local_batch_size}") |
| 122 | + print( |
| 123 | + f"Sequence length: {request_len + response_len} ({request_len} + {response_len})" |
| 124 | + ) |
| 125 | + print(f"Data parallel size: {dp_size}") |
| 126 | + print(f"Is RDMA available? {rdma_enabled()}") |
| 127 | + print("=" * 80 + "\n") |
| 128 | + |
| 129 | + # Initialize trainer and generator |
| 130 | + print("Initializing trainer and generator...") |
| 131 | + init_start = time.time() |
| 132 | + |
| 133 | + trainer, policy = await asyncio.gather( |
| 134 | + RLTrainer.options(**cfg.actors.trainer).as_actor( |
| 135 | + **cfg.trainer, |
| 136 | + loss=lambda *args, **kwargs: torch.tensor( |
| 137 | + 1.0, requires_grad=True, device="cuda" |
| 138 | + ), |
| 139 | + ), |
| 140 | + Generator.options(**cfg.actors.policy).as_actor(**cfg.policy), |
| 141 | + ) |
| 142 | + |
| 143 | + init_time = time.time() - init_start |
| 144 | + print(f"Finished initialization in ({init_time:.2f}s)") |
| 145 | + |
| 146 | + # Run one training step to create weight delta |
| 147 | + print("Running single training step...") |
| 148 | + step_start = time.time() |
| 149 | + |
| 150 | + inputs, targets = generate_random_batch( |
| 151 | + local_batch_size=local_batch_size, |
| 152 | + request_len=request_len, |
| 153 | + response_len=response_len, |
| 154 | + vocab_size=vocab_size, |
| 155 | + dp_size=dp_size, |
| 156 | + ) |
| 157 | + |
| 158 | + await trainer.train_step.call(inputs, targets) |
| 159 | + step_time = time.time() - step_start |
| 160 | + print(f"Finished train step in ({step_time:.2f}s)\n") |
| 161 | + |
| 162 | + # Test push_weights |
| 163 | + print("Pushing weights from trainer to store...") |
| 164 | + push_start = time.time() |
| 165 | + |
| 166 | + await trainer.push_weights.call(policy_version=1) |
| 167 | + |
| 168 | + push_time = time.time() - push_start |
| 169 | + print(f"Finished weights push in ({push_time:.2f}s)\n") |
| 170 | + |
| 171 | + # Test update_weights |
| 172 | + print("Updating generator weights from store...") |
| 173 | + update_start = time.time() |
| 174 | + |
| 175 | + await policy.update_weights.call(version=1) |
| 176 | + |
| 177 | + update_time = time.time() - update_start |
| 178 | + print(f"Updated generator weights ({update_time:.2f}s)\n") |
| 179 | + |
| 180 | + # TODO - ideally we have the capability to check forward passes between |
| 181 | + # the trainer/generator to verify correctness. This would require adding |
| 182 | + # forward capabilities to both trainer/generator actors. |
| 183 | + |
| 184 | + # Summary |
| 185 | + print("=" * 80) |
| 186 | + print("Results") |
| 187 | + print("=" * 80) |
| 188 | + print(f"Push time: {push_time:.2f}s") |
| 189 | + print(f"Update time: {update_time:.2f}s") |
| 190 | + print(f"Total sync time: {push_time + update_time:.2f}s") |
| 191 | + print("=" * 80 + "\n") |
| 192 | + |
| 193 | + # Cleanup |
| 194 | + print("Shutting down...") |
| 195 | + await shutdown() |
| 196 | + print("Shutdown complete.") |
| 197 | + |
| 198 | + |
| 199 | +if __name__ == "__main__": |
| 200 | + |
| 201 | + @parse |
| 202 | + def _main(cfg): |
| 203 | + asyncio.run(main(cfg)) |
| 204 | + |
| 205 | + _main() |
0 commit comments