|
| 1 | +# RFC: Support multiple tool calls via Action wrapper abstraction |
| 2 | + |
| 3 | +**Status**: In Review |
| 4 | +**Created**: 10/15/2025 |
| 5 | +**Authors**: @Darktex, @pankit-eng |
| 6 | +**RFC ID**: 002 |
| 7 | + |
| 8 | +## Summary |
| 9 | + |
| 10 | +This RFC proposes treating environment actions as tool calls, introducing a standardized pattern where each action represents a discrete, named operation with typed parameters. This approach aligns OpenEnv with modern LLM agent frameworks while maintaining type safety and providing better introspection capabilities for agent training and debugging. |
| 11 | + |
| 12 | +Instead of arbitrary `Action` subclasses with domain-specific fields, actions would follow a tool-call pattern with a `tool_name` and structured `parameters`, making the framework more composable and easier to integrate with tool-using agents. |
| 13 | + |
| 14 | +## Motivation |
| 15 | + |
| 16 | +### Problem Statement |
| 17 | + |
| 18 | +Current action design in OpenEnv treats actions as dataclasses: |
| 19 | + |
| 20 | +```python |
| 21 | +@dataclass |
| 22 | +class CodeAction(Action): |
| 23 | + code: str |
| 24 | + |
| 25 | +@dataclass |
| 26 | +class BashAction(Action): |
| 27 | + command: str |
| 28 | + cwd: Optional[str] = None |
| 29 | +``` |
| 30 | + |
| 31 | +This approach has several limitations: |
| 32 | + |
| 33 | +1. **Lack of Introspection**: No standard way to discover what actions an environment supports |
| 34 | +2. **LLM Integration Friction**: Modern LLM agents use tool-calling patterns with JSON schemas, requiring translation layers |
| 35 | +3. **Inconsistent Patterns**: Each environment invents its own action structure without standardization |
| 36 | + |
| 37 | +### Goals |
| 38 | + |
| 39 | +1. **Standardize Action Structure**: Define a consistent pattern for representing actions as tool calls |
| 40 | +2. **Enable Tool Discovery**: Provide APIs to introspect available tools in an environment |
| 41 | +3. **Improve LLM Integration**: Native compatibility with tool-calling patterns used by Claude, GPT-4, and other models |
| 42 | +4. **Maintain Type Safety**: Preserve strong typing while adopting the tool-call pattern |
| 43 | +5. **Support Multi-Tool Environments**: Enable environments that expose multiple tools naturally |
| 44 | + |
| 45 | +## Design |
| 46 | + |
| 47 | +### Architecture Overview |
| 48 | + |
| 49 | +``` |
| 50 | +┌─────────────────────────────────────────────────────────┐ |
| 51 | +│ Agent/RL Code │ |
| 52 | +│ │ |
| 53 | +│ # Tool discovery │ |
| 54 | +│ tools = env.tools() │ |
| 55 | +│ # -> [ToolDefinition(name="execute_code", ...)] │ |
| 56 | +│ │ |
| 57 | +│ # Execute tool call │ |
| 58 | +│ action = ToolCallAction( │ |
| 59 | +│ tool_name="execute_code", │ |
| 60 | +│ parameters={"code": "print('Hello')"} │ |
| 61 | +│ ) │ |
| 62 | +│ observation = env.step(action) │ |
| 63 | +└─────────────────────────────────────────────────────────┘ |
| 64 | + │ HTTP |
| 65 | + ▼ |
| 66 | +┌─────────────────────────────────────────────────────────┐ |
| 67 | +│ Environment (Docker Container) │ |
| 68 | +│ │ |
| 69 | +│ class PythonCodeActEnv(Environment): │ |
| 70 | +│ │ |
| 71 | +│ @tool("execute_code") │ |
| 72 | +│ def execute_code(self, code: str) -> CodeResult: │ |
| 73 | +│ return self._executor.run(code) │ |
| 74 | +│ │ |
| 75 | +│ def step(self, action: ToolCallAction): │ |
| 76 | +│ tool_fn = self._get_tool(action.tool_name) │ |
| 77 | +│ result = tool_fn(**action.parameters) │ |
| 78 | +│ return self._make_observation(result) │ |
| 79 | +└─────────────────────────────────────────────────────────┘ |
| 80 | +``` |
| 81 | + |
| 82 | +### Core Abstractions |
| 83 | + |
| 84 | +#### 1. ToolCallAction |
| 85 | + |
| 86 | +```python |
| 87 | +from typing import Any, Dict |
| 88 | +from dataclasses import dataclass, field |
| 89 | + |
| 90 | +@dataclass(kw_only=True) |
| 91 | +class ToolCallAction(Action): |
| 92 | + """Action representing a tool call with name and parameters. |
| 93 | +
|
| 94 | + This is the standard action type for tool-based environments. |
| 95 | + Environments can support multiple tools by dispatching based on tool_name. |
| 96 | + """ |
| 97 | + |
| 98 | + tool_name: str |
| 99 | + parameters: Dict[str, Any] = field(default_factory=dict) |
| 100 | +``` |
| 101 | + |
| 102 | +#### 2. ToolDefinition |
| 103 | + |
| 104 | +```python |
| 105 | +from typing import Any, Callable, Dict, List |
| 106 | +from dataclasses import dataclass |
| 107 | + |
| 108 | +@dataclass |
| 109 | +class ToolParameter: |
| 110 | + """Definition of a tool parameter.""" |
| 111 | + |
| 112 | + name: str |
| 113 | + type: str # JSON Schema type: "string", "number", "boolean", "object", "array" |
| 114 | + description: str |
| 115 | + required: bool = True |
| 116 | + default: Any = None |
| 117 | + |
| 118 | +@dataclass |
| 119 | +class ToolDefinition: |
| 120 | + """Specification of a tool that can be called in an environment. |
| 121 | +
|
| 122 | + This follows the format used by Claude, OpenAI, and other LLM providers |
| 123 | + for function calling, making it easy to pass directly to model APIs. |
| 124 | + """ |
| 125 | + |
| 126 | + name: str |
| 127 | + description: str |
| 128 | + parameters: List[ToolParameter] |
| 129 | + |
| 130 | + def to_json_schema(self) -> Dict[str, Any]: |
| 131 | + """Convert to JSON Schema format for LLM tool calling.""" |
| 132 | + return { |
| 133 | + "name": self.name, |
| 134 | + "description": self.description, |
| 135 | + "input_schema": { |
| 136 | + "type": "object", |
| 137 | + "properties": { |
| 138 | + p.name: { |
| 139 | + "type": p.type, |
| 140 | + "description": p.description, |
| 141 | + } |
| 142 | + for p in self.parameters |
| 143 | + }, |
| 144 | + "required": [p.name for p in self.parameters if p.required], |
| 145 | + }, |
| 146 | + } |
| 147 | +``` |
| 148 | + |
| 149 | +#### 3. Enhanced Environment Interface |
| 150 | + |
| 151 | +```python |
| 152 | +from typing import List, Optional |
| 153 | + |
| 154 | +class Environment(ABC): |
| 155 | + """Base class for all environment servers.""" |
| 156 | + |
| 157 | + @abstractmethod |
| 158 | + def reset(self) -> Observation: |
| 159 | + """Reset the environment and return initial observation.""" |
| 160 | + pass |
| 161 | + |
| 162 | + @abstractmethod |
| 163 | + def step(self, action: Action) -> Observation: |
| 164 | + """Take a step in the environment.""" |
| 165 | + pass |
| 166 | + |
| 167 | + @property |
| 168 | + @abstractmethod |
| 169 | + def state(self) -> State: |
| 170 | + """Get current environment state.""" |
| 171 | + pass |
| 172 | + |
| 173 | + def tools(self) -> List[ToolDefinition]: |
| 174 | + """Return list of available tools in this environment. |
| 175 | +
|
| 176 | + For backward compatibility, environments that don't implement |
| 177 | + tool-based actions can return an empty list. |
| 178 | + """ |
| 179 | + return [] |
| 180 | +``` |
| 181 | + |
| 182 | +### Key Design Decisions |
| 183 | + |
| 184 | +#### Decision 1: Unified Action Type vs. Per-Tool Action Classes |
| 185 | + |
| 186 | +**Chosen Approach**: Use a single `ToolCallAction` class with `tool_name` and `parameters` fields rather than creating separate action classes per tool. |
| 187 | + |
| 188 | +**Rationale**: |
| 189 | +- **Simplicity**: Single action type is easier to understand and work with |
| 190 | +- **Flexibility**: Adding new tools doesn't require new action classes |
| 191 | +- **LLM Compatibility**: Matches the structure used by for MCP tool calling |
| 192 | +- **Type Safety**: JSON Schema validation can still enforce parameter types |
| 193 | +- **Composability**: Multi-tool environments work naturally |
| 194 | + |
| 195 | +**Trade-offs**: |
| 196 | +- Advantages: |
| 197 | + - Less boilerplate (no action class per tool) |
| 198 | + - Natural support for dynamic tool sets |
| 199 | +- Disadvantages: |
| 200 | + - Tool Parameters are `Dict[str, Any]` instead of strongly-typed fields |
| 201 | + |
| 202 | +#### Decision 2: Tool Discovery via `tools()` Method |
| 203 | + |
| 204 | +**Chosen Approach**: Add a `tools()` method to the `Environment` base class that returns `List[ToolDefinition]`. |
| 205 | + |
| 206 | +**Rationale**: |
| 207 | +- **Introspection**: Agents can discover what actions are available |
| 208 | +- **LLM Integration**: Tool definitions can be passed directly to LLM APIs |
| 209 | +- **Documentation**: Self-documenting environments via decorator pattern for declaring tools. |
| 210 | + |
| 211 | + |
| 212 | +## Examples |
| 213 | + |
| 214 | +### Example 1: Simple Single-Tool Environment |
| 215 | + |
| 216 | +```python |
| 217 | +from core.env_server import Environment, Observation, State, ToolCallAction |
| 218 | +from core.tools import PyExecutor |
| 219 | + |
| 220 | +class PythonCodeActEnv(Environment): |
| 221 | + """Environment for executing Python code via tool calls.""" |
| 222 | + |
| 223 | + def __init__(self): |
| 224 | + self._executor = PyExecutor() |
| 225 | + self._state = CodeState() |
| 226 | + |
| 227 | + @tool("execute_code", "Execute Python code and return stdout, stderr, and exit code") |
| 228 | + def execute_code(self, code: str) -> Dict[str, Any]: |
| 229 | + """Execute Python code. |
| 230 | +
|
| 231 | + Args: |
| 232 | + code: Python code to execute |
| 233 | +
|
| 234 | + Returns: |
| 235 | + Dict with stdout, stderr, and exit_code keys |
| 236 | + """ |
| 237 | + result = self._executor.run(code) |
| 238 | + return { |
| 239 | + "stdout": result.stdout, |
| 240 | + "stderr": result.stderr, |
| 241 | + "exit_code": result.exit_code, |
| 242 | + } |
| 243 | + |
| 244 | + def reset(self) -> Observation: |
| 245 | + self._state = CodeState(episode_id=str(uuid.uuid4())) |
| 246 | + return CodeObservation(stdout="", stderr="", exit_code=0) |
| 247 | + |
| 248 | + def step(self, action: Action) -> Observation: |
| 249 | + if not isinstance(action, ToolCallAction): |
| 250 | + raise ValueError(f"Expected ToolCallAction, got {type(action)}") |
| 251 | + |
| 252 | + # Dispatch to tool method |
| 253 | + if action.tool_name == "execute_code": |
| 254 | + result = self.execute_code(**action.parameters) |
| 255 | + reward = 1 if result["exit_code"] == 0 else -1 |
| 256 | + self._state.step_count += 1 |
| 257 | + return CodeObservation(reward=reward, **result) |
| 258 | + else: |
| 259 | + raise ValueError(f"Unknown tool: {action.tool_name}") |
| 260 | + |
| 261 | + @property |
| 262 | + def state(self) -> State: |
| 263 | + return self._state |
| 264 | +``` |
| 265 | + |
| 266 | + |
| 267 | +### Example 2: Client-Side Usage with LLM |
| 268 | + |
| 269 | +```python |
| 270 | +from anthropic import Anthropic |
| 271 | +from envs.coding_env import CodingEnv |
| 272 | + |
| 273 | +# Initialize environment |
| 274 | +env = CodingEnv.from_docker_image("coding-env:latest") |
| 275 | + |
| 276 | +# Get available tools |
| 277 | +tools = env.tools() # Returns List[ToolDefinition] |
| 278 | + |
| 279 | +# Convert to Claude's tool format |
| 280 | +claude_tools = [tool.to_json_schema() for tool in tools] |
| 281 | + |
| 282 | +# Initialize Claude client |
| 283 | +client = Anthropic() |
| 284 | + |
| 285 | +# Agent loop |
| 286 | +observation = env.reset() |
| 287 | +messages = [{"role": "user", "content": "Calculate fibonacci(10)"}] |
| 288 | + |
| 289 | +while not observation.done: |
| 290 | + # Get model response with tools |
| 291 | + response = client.messages.create( |
| 292 | + model="claude-3-5-sonnet-20241022", |
| 293 | + messages=messages, |
| 294 | + tools=claude_tools, |
| 295 | + ) |
| 296 | + |
| 297 | + # If model wants to use a tool |
| 298 | + if response.stop_reason == "tool_use": |
| 299 | + tool_use = response.content[0] |
| 300 | + |
| 301 | + # Create action from tool call |
| 302 | + action = ToolCallAction( |
| 303 | + tool_name=tool_use.name, |
| 304 | + parameters=tool_use.input, |
| 305 | + tool_call_id=tool_use.id, |
| 306 | + ) |
| 307 | + |
| 308 | + # Execute in environment |
| 309 | + observation = env.step(action) |
| 310 | + |
| 311 | + # Add tool result to messages |
| 312 | + messages.append({ |
| 313 | + "role": "assistant", |
| 314 | + "content": response.content, |
| 315 | + }) |
| 316 | + messages.append({ |
| 317 | + "role": "user", |
| 318 | + "content": [{ |
| 319 | + "type": "tool_result", |
| 320 | + "tool_use_id": tool_use.id, |
| 321 | + "content": str(observation), |
| 322 | + }], |
| 323 | + }) |
| 324 | + print(observation.reward) |
| 325 | + else: |
| 326 | + break |
| 327 | + |
| 328 | +env.close() |
| 329 | +``` |
| 330 | + |
| 331 | +## References |
| 332 | + |
| 333 | +- [Anthropic Tool Use Documentation](https://docs.anthropic.com/claude/docs/tool-use) |
| 334 | +- [OpenAI Function Calling](https://platform.openai.com/docs/guides/function-calling) |
| 335 | +- RFC 001: OpenEnv Framework Specification |
0 commit comments