|
| 1 | +#!/usr/bin/env python3 |
| 2 | +"""Play TextArena Wordle with a hosted LLM via Hugging Face Inference Providers. |
| 3 | +
|
| 4 | +This script mirrors the structure of the Kuhn Poker inference sample but targets |
| 5 | +the Wordle environment. We deploy the generic TextArena server (wrapped in |
| 6 | +OpenEnv) inside a local Docker container and query a single hosted model using |
| 7 | +the OpenAI-compatible API provided by Hugging Face's router. |
| 8 | +
|
| 9 | +Prerequisites |
| 10 | +------------- |
| 11 | +1. Build the TextArena Docker image:: |
| 12 | +
|
| 13 | + docker build -f src/envs/textarena_env/server/Dockerfile -t textarena-env:latest . |
| 14 | +
|
| 15 | +2. Set your Hugging Face token:: |
| 16 | +
|
| 17 | + export HF_TOKEN=your_token_here |
| 18 | +
|
| 19 | +3. Run this script:: |
| 20 | +
|
| 21 | + python examples/wordle_inference.py |
| 22 | +
|
| 23 | +By default we ask the DeepSeek Terminus model to play ``Wordle-v0``. Adjust the |
| 24 | +``MODEL`` constant if you'd like to experiment with another provider-compatible |
| 25 | +model. |
| 26 | +""" |
| 27 | + |
| 28 | +from __future__ import annotations |
| 29 | + |
| 30 | +import os |
| 31 | +import re |
| 32 | +from typing import Iterable, List |
| 33 | + |
| 34 | +from openai import OpenAI |
| 35 | + |
| 36 | +from envs.textarena_env import TextArenaAction, TextArenaEnv |
| 37 | +from envs.textarena_env.models import TextArenaMessage |
| 38 | + |
| 39 | +# --------------------------------------------------------------------------- |
| 40 | +# Configuration |
| 41 | +# --------------------------------------------------------------------------- |
| 42 | + |
| 43 | +API_BASE_URL = "https://router.huggingface.co/v1" |
| 44 | +API_KEY = os.getenv("API_KEY") or os.getenv("HF_TOKEN") |
| 45 | + |
| 46 | +MODEL = "openai/gpt-oss-120b:novita" |
| 47 | +MAX_TURNS = 8 |
| 48 | +VERBOSE = True |
| 49 | + |
| 50 | +SYSTEM_PROMPT = ( |
| 51 | + "You are an expert Wordle solver." |
| 52 | + " Always respond with a single guess inside square brackets, e.g. [crane]." |
| 53 | + " Use lowercase letters, exactly one five-letter word per reply." |
| 54 | + " Reason about prior feedback before choosing the next guess." |
| 55 | + " Words must be 5 letters long and real English words." |
| 56 | + " Do not not include any other text in your response." |
| 57 | + " Do not repeat the same guess twice." |
| 58 | +) |
| 59 | + |
| 60 | + |
| 61 | +# --------------------------------------------------------------------------- |
| 62 | +# Helpers |
| 63 | +# --------------------------------------------------------------------------- |
| 64 | + |
| 65 | +def format_history(messages: Iterable[TextArenaMessage]) -> str: |
| 66 | + """Convert TextArena message history into plain text for the model.""" |
| 67 | + |
| 68 | + lines: List[str] = [] |
| 69 | + for message in messages: |
| 70 | + tag = message.category or "MESSAGE" |
| 71 | + lines.append(f"[{tag}] {message.content}") |
| 72 | + return "\n".join(lines) |
| 73 | + |
| 74 | + |
| 75 | +def extract_guess(text: str) -> str: |
| 76 | + """Return the first Wordle-style guess enclosed in square brackets.""" |
| 77 | + |
| 78 | + match = re.search(r"\[[A-Za-z]{5}\]", text) |
| 79 | + if match: |
| 80 | + return match.group(0).lower() |
| 81 | + # Fallback: remove whitespace and ensure lowercase, then wrap |
| 82 | + cleaned = re.sub(r"[^a-zA-Z]", "", text).lower() |
| 83 | + if len(cleaned) >= 5: |
| 84 | + return f"[{cleaned[:5]}]" |
| 85 | + return "[dunno]" |
| 86 | + |
| 87 | + |
| 88 | +def make_user_prompt(prompt_text: str, messages: Iterable[TextArenaMessage]) -> str: |
| 89 | + """Combine the TextArena prompt and feedback history for the model.""" |
| 90 | + |
| 91 | + history = format_history(messages) |
| 92 | + return ( |
| 93 | + f"Current prompt:\n{prompt_text}\n\n" |
| 94 | + f"Conversation so far:\n{history}\n\n" |
| 95 | + "Reply with your next guess enclosed in square brackets." |
| 96 | + ) |
| 97 | + |
| 98 | + |
| 99 | +# --------------------------------------------------------------------------- |
| 100 | +# Gameplay |
| 101 | +# --------------------------------------------------------------------------- |
| 102 | + |
| 103 | +def play_wordle(env: TextArenaEnv, client: OpenAI) -> None: |
| 104 | + result = env.reset() |
| 105 | + observation = result.observation |
| 106 | + |
| 107 | + if VERBOSE: |
| 108 | + print("📜 Initial Prompt:\n" + observation.prompt) |
| 109 | + |
| 110 | + for turn in range(1, MAX_TURNS + 1): |
| 111 | + if result.done: |
| 112 | + break |
| 113 | + |
| 114 | + user_prompt = make_user_prompt(observation.prompt, observation.messages) |
| 115 | + |
| 116 | + response = client.chat.completions.create( |
| 117 | + model=MODEL, |
| 118 | + messages=[ |
| 119 | + {"role": "system", "content": SYSTEM_PROMPT}, |
| 120 | + {"role": "user", "content": user_prompt}, |
| 121 | + ], |
| 122 | + max_tokens=2048, |
| 123 | + temperature=0.7, |
| 124 | + ) |
| 125 | + |
| 126 | + raw_output = response.choices[0].message.content.strip() |
| 127 | + guess = extract_guess(raw_output) |
| 128 | + |
| 129 | + if VERBOSE: |
| 130 | + print(f"\n🎯 Turn {turn}: model replied with -> {raw_output}") |
| 131 | + print(f" Parsed guess: {guess}") |
| 132 | + |
| 133 | + result = env.step(TextArenaAction(message=guess)) |
| 134 | + observation = result.observation |
| 135 | + |
| 136 | + if VERBOSE: |
| 137 | + print(" Feedback messages:") |
| 138 | + for message in observation.messages: |
| 139 | + print(f" [{message.category}] {message.content}") |
| 140 | + |
| 141 | + print("\n✅ Game finished") |
| 142 | + print(f" Reward: {result.reward}") |
| 143 | + print(f" Done: {result.done}") |
| 144 | + |
| 145 | + |
| 146 | +# --------------------------------------------------------------------------- |
| 147 | +# Entrypoint |
| 148 | +# --------------------------------------------------------------------------- |
| 149 | + |
| 150 | +def main() -> None: |
| 151 | + if not API_KEY: |
| 152 | + raise SystemExit("HF_TOKEN (or API_KEY) must be set to query the model.") |
| 153 | + |
| 154 | + client = OpenAI(base_url=API_BASE_URL, api_key=API_KEY) |
| 155 | + |
| 156 | + env = TextArenaEnv.from_docker_image( |
| 157 | + "textarena-env:latest", |
| 158 | + env_vars={ |
| 159 | + "TEXTARENA_ENV_ID": "Wordle-v0", |
| 160 | + "TEXTARENA_NUM_PLAYERS": "1", |
| 161 | + }, |
| 162 | + ports={8000: 8000}, |
| 163 | + ) |
| 164 | + |
| 165 | + try: |
| 166 | + play_wordle(env, client) |
| 167 | + finally: |
| 168 | + env.close() |
| 169 | + |
| 170 | + |
| 171 | +if __name__ == "__main__": |
| 172 | + main() |
| 173 | + |
| 174 | + |
0 commit comments