@@ -198,7 +198,7 @@ search_post_1: |-
198198 let results: SearchResults<Movie> = client
199199 .index("movies")
200200 .search()
201- .with_query("American ninja")
201+ .with_query("american ninja")
202202 .execute()
203203 .await
204204 .unwrap();
@@ -255,6 +255,13 @@ async_guide_filter_by_ids_1: |-
255255 .await
256256 .unwrap();
257257async_guide_filter_by_statuses_1 : |-
258+ let mut query = TasksQuery::new(&client);
259+ let tasks = query
260+ .with_statuses(["failed"])
261+ .execute()
262+ .await
263+ .unwrap();
264+ async_guide_filter_by_statuses_2 : |-
258265 let mut query = TasksQuery::new(&client);
259266 let tasks = query
260267 .with_statuses(["failed", "canceled"])
@@ -1823,3 +1830,124 @@ reset_localized_attribute_settings_1: |-
18231830 .reset_localized_attributes()
18241831 .await
18251832 .unwrap();
1833+ basic_security_tutorial_listing_1 : |-
1834+ let client = Client::new("http://localhost:7700", Some("MASTER_KEY"));
1835+ client
1836+ .get_keys()
1837+ .await
1838+ .unwrap();
1839+ basic_security_tutorial_admin_1 : |-
1840+ let client = Client::new("http://localhost:7700", Some("DEFAULT_ADMIN_API_KEY"));
1841+ let task = client
1842+ .create_index("medical_records", Some("id"))
1843+ .await
1844+ .unwrap();
1845+ basic_security_tutorial_search_1 : |-
1846+ let client = Client::new("http://localhost:7700", Some("DEFAULT_SEARCH_API_KEY"));
1847+ let index = client.index("medical_records");
1848+ index
1849+ .search()
1850+ .with_query("appointments")
1851+ .execute::<MedicalRecord>()
1852+ .await
1853+ .unwrap();
1854+ get_embedders_1 : |-
1855+ let embedders = index.get_embedders().await.unwrap();
1856+ reset_embedders_1 : |-
1857+ index.reset_embedders().await.unwrap();
1858+ get_similar_post_1 : |-
1859+ let results = index
1860+ .similar_search("TARGET_DOCUMENT_ID", "EMBEDDER_NAME")
1861+ .execute()
1862+ .await
1863+ .unwrap();
1864+ index_settings_tutorial_api_get_setting_1 : |-
1865+ let searchable_attributes: Vec<String> = index
1866+ .get_searchable_attributes()
1867+ .await
1868+ .unwrap();
1869+ index_settings_tutorial_api_put_setting_1 : |-
1870+ let task = index
1871+ .set_searchable_attributes(["title", "overview"])
1872+ .await
1873+ .unwrap();
1874+ index_settings_tutorial_api_task_1 : |-
1875+ let task_status = index.get_task(&task).await.unwrap();
1876+ negative_search_1 : |-
1877+ let results = index.search()
1878+ .with_query("-escape")
1879+ .execute()
1880+ .await
1881+ .unwrap();
1882+ negative_search_2 : |-
1883+ let results = index.search()
1884+ .with_query("-\"escape room\"")
1885+ .execute()
1886+ .await
1887+ .unwrap();
1888+ related_results_embedder_1 : |-
1889+ let embedders = HashMap::from([(
1890+ String::from("movies-text"),
1891+ Embedder {
1892+ source: EmbedderSource::OpenAi,
1893+ api_key: Some(String::from("OPENAI_API_KEY")),
1894+ model: Some(String::from("text-embedding-3-small")),
1895+ document_template: Some(String::from("A movie titled '{{doc.title}}' released in {{ doc.release_date }}. The movie genres are: {{doc.genres}}. The story is about: {{doc.overview|truncatewords: 20}}")),
1896+ ..Embedder::default()
1897+ }
1898+ )]);
1899+ movies.set_embedders(&embedders)
1900+ .await
1901+ .unwrap();
1902+ related_results_search_1 : |-
1903+ let results = movies.search()
1904+ .with_query("batman")
1905+ .with_hybrid("EMBEDDER_NAME", 0.5)
1906+ .execute()
1907+ .await
1908+ .unwrap();
1909+ related_results_similar_1 : |-
1910+ let results = movies.similar_search("192", "EMBEDDER_NAME")
1911+ .execute()
1912+ .await
1913+ .unwrap();
1914+ search_parameter_guide_hybrid_1 : |-
1915+ let results = index
1916+ .search()
1917+ .with_query("kitchen utensils")
1918+ .with_hybrid("EMBEDDER_NAME", 0.9)
1919+ .execute()
1920+ .await
1921+ .unwrap();
1922+ search_parameter_guide_vector_1 : |-
1923+ let results = index
1924+ .search()
1925+ .with_vector(&[0.0, 1.0, 2.0])
1926+ .with_hybrid("EMBEDDER_NAME", 1.0)
1927+ .execute()
1928+ .await
1929+ .unwrap();
1930+ search_parameter_reference_retrieve_vectors_1 : |-
1931+ let results = index
1932+ .search()
1933+ .with_query("kitchen utensils")
1934+ .with_retrieve_vectors(true)
1935+ .with_hybrid("EMBEDDER_NAME", 0.5)
1936+ .execute()
1937+ .await
1938+ .unwrap();
1939+ update_embedders_1 : |-
1940+ let embedders = HashMap::from([(
1941+ String::from("default"),
1942+ Embedder {
1943+ source: EmbedderSource::OpenAi,
1944+ api_key: Some(String::from("OPEN_AI_API_KEY")),
1945+ model: Some(String::from("text-embedding-3-small")),
1946+ document_template: Some(String::from("A document titled '{{doc.title}}' whose description starts with {{doc.overview|truncatewords: 20}}")),
1947+ ..Embedder::default()
1948+ }
1949+ )]);
1950+ let task = index
1951+ .set_embedders(&embedders)
1952+ .await
1953+ .unwrap();
0 commit comments