|
| 1 | +from .consts import ALPHABET_SMALL |
| 2 | +from .utils import * |
| 3 | +import random |
| 4 | + |
| 5 | + |
| 6 | +class Vector: |
| 7 | + @staticmethod |
| 8 | + def random(num=5, position_range=[10], mode=0, **kwargs): |
| 9 | + # mode 0=unique 1=repeatable 2=float |
| 10 | + if(num > 1000000): |
| 11 | + raise Exception("num no more than 1e6") |
| 12 | + if(not list_like(position_range)): |
| 13 | + raise Exception("the 2nd param must be a list, whose length = 1st param") |
| 14 | + dimension = len(position_range) |
| 15 | + offset = [] |
| 16 | + vector_space = 1 |
| 17 | + for i in range(0, dimension): |
| 18 | + if(list_like(position_range[i])): |
| 19 | + if(position_range[i][1] < position_range[i][0]): |
| 20 | + raise Exception("max should larger than min") |
| 21 | + offset.insert(i, position_range[i][0]) |
| 22 | + position_range[i] = position_range[i][1] - offset[i] |
| 23 | + else: |
| 24 | + offset.insert(i, 0) |
| 25 | + if(position_range[i] <= 0): |
| 26 | + raise Exception("the difference must more than 0") |
| 27 | + vector_space *= (position_range[i] + 1) |
| 28 | + result = [] |
| 29 | + |
| 30 | + if(mode == 2 or mode == 1): |
| 31 | + for i in range(0, num): |
| 32 | + tmp = [] |
| 33 | + for j in range(0, dimension): |
| 34 | + one_num = random.randint(0,position_range[j]) if mode == 1 else random.uniform(0,position_range[j]) |
| 35 | + tmp.insert(j, one_num + offset[j]) |
| 36 | + result.insert(i, tmp) |
| 37 | + |
| 38 | + elif((mode == 0 and vector_space > 5 * num)): |
| 39 | + num_set = set([]) |
| 40 | + rand = 0; |
| 41 | + for i in range(0, num): |
| 42 | + while True: |
| 43 | + rand = random.randint(0, vector_space - 1); |
| 44 | + if(not rand in num_set): |
| 45 | + break |
| 46 | + # Todo: 这边效率如何?我认为是logn级别的检查 |
| 47 | + num_set.add(rand) |
| 48 | + tmp = Vector.get_vector(dimension, position_range, rand) |
| 49 | + for j in range(0, dimension): |
| 50 | + tmp[j] += offset[j] |
| 51 | + result.insert(i, tmp) |
| 52 | + |
| 53 | + |
| 54 | + else: |
| 55 | + # 生成0~vector_space的所有向量空间 |
| 56 | + rand_arr = [i for i in range(0, vector_space)] |
| 57 | + random.shuffle(rand_arr) |
| 58 | + for i in range(0, num): |
| 59 | + tmp = Vector.get_vector(dimension, position_range, rand_arr[i]) |
| 60 | + for j in range(0, dimension): |
| 61 | + tmp[j] += offset[j] |
| 62 | + result.insert(i, tmp) |
| 63 | + return result |
| 64 | + |
| 65 | + @staticmethod |
| 66 | + def get_vector(dimension, position_range, hashnum): |
| 67 | + tmp = [] |
| 68 | + for i in range(0, dimension): |
| 69 | + tmp.insert(i, hashnum % (position_range[i] + 1)) |
| 70 | + hashnum //= (position_range[i] + 1) |
| 71 | + return tmp |
0 commit comments