66import numpy as np
77import pandas as pd
88
9- from larray .core .array import LArray
9+ from larray .core .array import Array
1010from larray .core .axis import Axis , AxisCollection
1111from larray .core .group import LGroup
1212from larray .core .constants import nan
@@ -74,7 +74,7 @@ def cartesian_product_df(df, sort_rows=False, sort_columns=False, fill_value=nan
7474
7575def from_series (s , sort_rows = False , fill_value = nan , meta = None , ** kwargs ):
7676 r"""
77- Converts Pandas Series into LArray .
77+ Converts Pandas Series into Array .
7878
7979 Parameters
8080 ----------
@@ -91,11 +91,11 @@ def from_series(s, sort_rows=False, fill_value=nan, meta=None, **kwargs):
9191
9292 Returns
9393 -------
94- LArray
94+ Array
9595
9696 See Also
9797 --------
98- LArray .to_series
98+ Array .to_series
9999
100100 Examples
101101 --------
@@ -137,13 +137,13 @@ def from_series(s, sort_rows=False, fill_value=nan, meta=None, **kwargs):
137137 name = decode (s .name , 'utf8' ) if s .name is not None else decode (s .index .name , 'utf8' )
138138 if sort_rows :
139139 s = s .sort_index ()
140- return LArray (s .values , Axis (s .index .values , name ), meta = meta )
140+ return Array (s .values , Axis (s .index .values , name ), meta = meta )
141141
142142
143143def from_frame (df , sort_rows = False , sort_columns = False , parse_header = False , unfold_last_axis_name = False ,
144144 fill_value = nan , meta = None , cartesian_prod = True , ** kwargs ):
145145 r"""
146- Converts Pandas DataFrame into LArray .
146+ Converts Pandas DataFrame into Array .
147147
148148 Parameters
149149 ----------
@@ -171,18 +171,18 @@ def from_frame(df, sort_rows=False, sort_columns=False, parse_header=False, unfo
171171 Metadata (title, description, author, creation_date, ...) associated with the array.
172172 Keys must be strings. Values must be of type string, int, float, date, time or datetime.
173173 cartesian_prod : bool, optional
174- Whether or not to expand the dataframe to a cartesian product dataframe as needed by LArray .
174+ Whether or not to expand the dataframe to a cartesian product dataframe as needed by Array .
175175 This is an expensive operation but is absolutely required if you cannot guarantee your dataframe is already
176176 well formed. If True, arguments `sort_rows` and `sort_columns` must be set to False.
177177 Defaults to True.
178178
179179 Returns
180180 -------
181- LArray
181+ Array
182182
183183 See Also
184184 --------
185- LArray .to_frame
185+ Array .to_frame
186186
187187 Examples
188188 --------
@@ -249,13 +249,13 @@ def from_frame(df, sort_rows=False, sort_columns=False, parse_header=False, unfo
249249
250250 axes = AxisCollection ([Axis (labels , name ) for labels , name in zip (axes_labels , axes_names )])
251251 data = df .values .reshape (axes .shape )
252- return LArray (data , axes , meta = meta )
252+ return Array (data , axes , meta = meta )
253253
254254
255255def df_aslarray (df , sort_rows = False , sort_columns = False , raw = False , parse_header = True , wide = True , cartesian_prod = True ,
256256 ** kwargs ):
257257 r"""
258- Prepare Pandas DataFrame and then convert it into LArray .
258+ Prepare Pandas DataFrame and then convert it into Array .
259259
260260 Parameters
261261 ----------
@@ -280,14 +280,14 @@ def df_aslarray(df, sort_rows=False, sort_columns=False, raw=False, parse_header
280280 If False, the array is assumed to be stored in "narrow" format: one column per axis plus one value column.
281281 Defaults to True.
282282 cartesian_prod : bool, optional
283- Whether or not to expand the dataframe to a cartesian product dataframe as needed by LArray .
283+ Whether or not to expand the dataframe to a cartesian product dataframe as needed by Array .
284284 This is an expensive operation but is absolutely required if you cannot guarantee your dataframe is already
285285 well formed. If True, arguments `sort_rows` and `sort_columns` must be set to False.
286286 Defaults to True.
287287
288288 Returns
289289 -------
290- LArray
290+ Array
291291 """
292292 # we could inline df_aslarray into the functions that use it, so that the original (non-cartesian) df is freed from
293293 # memory at this point, but it would be much uglier and would not lower the peak memory usage which happens during
0 commit comments