File tree Expand file tree Collapse file tree 2 files changed +6
-6
lines changed Expand file tree Collapse file tree 2 files changed +6
-6
lines changed Original file line number Diff line number Diff line change @@ -37,7 +37,7 @@ def _as_list(value) -> List:
3737def _data_period (index ) -> Union [pd .Timedelta , Number ]:
3838 """Return data index period as pd.Timedelta"""
3939 values = pd .Series (index [- 100 :])
40- return values .diff ().median ()
40+ return values .diff ().dropna (). median ()
4141
4242
4343class _Array (np .ndarray ):
Original file line number Diff line number Diff line change @@ -1157,11 +1157,11 @@ def run(self, **kwargs) -> pd.Series:
11571157 if start < len (self ._data ):
11581158 try_ (broker .next , exception = _OutOfMoneyError )
11591159
1160- # Set data back to full length
1161- # for future `indicator._opts['data'].index` calls to work
1162- data ._set_length (len (self ._data ))
1160+ # Set data back to full length
1161+ # for future `indicator._opts['data'].index` calls to work
1162+ data ._set_length (len (self ._data ))
11631163
1164- self ._results = self ._compute_stats (broker , strategy )
1164+ self ._results = self ._compute_stats (broker , strategy )
11651165 return self ._results
11661166
11671167 def optimize (self ,
@@ -1414,7 +1414,7 @@ def geometric_mean(returns):
14141414 # our risk doesn't; they use the simpler approach below.
14151415 annualized_return = (1 + gmean_day_return )** annual_trading_days - 1
14161416 s .loc ['Return (Ann.) [%]' ] = annualized_return * 100
1417- s .loc ['Volatility (Ann.) [%]' ] = np .sqrt ((day_returns .var (ddof = 1 ) + (1 + gmean_day_return )** 2 )** annual_trading_days - (1 + gmean_day_return )** (2 * annual_trading_days )) * 100 # noqa: E501
1417+ s .loc ['Volatility (Ann.) [%]' ] = np .sqrt ((day_returns .var (ddof = int ( bool ( day_returns . shape )) ) + (1 + gmean_day_return )** 2 )** annual_trading_days - (1 + gmean_day_return )** (2 * annual_trading_days )) * 100 # noqa: E501
14181418 # s.loc['Return (Ann.) [%]'] = gmean_day_return * annual_trading_days * 100
14191419 # s.loc['Risk (Ann.) [%]'] = day_returns.std(ddof=1) * np.sqrt(annual_trading_days) * 100
14201420
You canβt perform that action at this time.
0 commit comments