diff --git a/keras_contrib/applications/nasnet.py b/keras_contrib/applications/nasnet.py index 7259747d7..ba68110c8 100644 --- a/keras_contrib/applications/nasnet.py +++ b/keras_contrib/applications/nasnet.py @@ -590,7 +590,7 @@ def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1), weight_decay=5e-5, id=None): '''Adds 2 blocks of [relu-separable conv-batchnorm] - # Arguments: + # Args: ip: input tensor filters: number of output filters per layer kernel_size: kernel size of separable convolutions @@ -629,7 +629,7 @@ def _adjust_block(p, ip, filters, weight_decay=5e-5, id=None): or situations where the output number of filters needs to be changed - # Arguments: + # Args: p: input tensor which needs to be modified ip: input tensor whose shape needs to be matched filters: number of output filters to be matched @@ -687,7 +687,7 @@ def _adjust_block(p, ip, filters, weight_decay=5e-5, id=None): def _normal_A(ip, p, filters, weight_decay=5e-5, id=None): '''Adds a Normal cell for NASNet-A (Fig. 4 in the paper) - # Arguments: + # Args: ip: input tensor `x` p: input tensor `p` filters: number of output filters @@ -750,7 +750,7 @@ def _normal_A(ip, p, filters, weight_decay=5e-5, id=None): def _reduction_A(ip, p, filters, weight_decay=5e-5, id=None): '''Adds a Reduction cell for NASNet-A (Fig. 4 in the paper) - # Arguments: + # Args: ip: input tensor `x` p: input tensor `p` filters: number of output filters diff --git a/keras_contrib/callbacks/snapshot.py b/keras_contrib/callbacks/snapshot.py index d624a9f7c..d50358842 100644 --- a/keras_contrib/callbacks/snapshot.py +++ b/keras_contrib/callbacks/snapshot.py @@ -22,7 +22,7 @@ class SnapshotModelCheckpoint(Callback): Should be used with the cosine annealing learning rate schedule to save the weight just before learning rate is sharply increased. - # Arguments: + # Args: nb_epochs: total number of epochs that the model will be trained for. nb_snapshots: number of times the weights of the model will be saved. fn_prefix: prefix for the filename of the weights. @@ -55,7 +55,7 @@ def __init__(self, nb_epochs, nb_snapshots, init_lr=0.1): """ Initialize a snapshot callback builder. - # Arguments: + # Args: nb_epochs: total number of epochs that the model will be trained for. nb_snapshots: number of times the weights of the model will be saved. init_lr: initial learning rate