|
| 1 | +# Import necessary libraries |
| 2 | +import tensorflow as tf |
| 3 | +from tensorflow.keras.preprocessing.image import ImageDataGenerator |
| 4 | +from tensorflow.keras.models import Sequential |
| 5 | +from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense |
| 6 | + |
| 7 | +# Set up data directories |
| 8 | +train_dir = 'train' |
| 9 | +test_dir = 'test' |
| 10 | + |
| 11 | +# Data Preprocessing |
| 12 | +train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) |
| 13 | +test_datagen = ImageDataGenerator(rescale=1./255) |
| 14 | + |
| 15 | +train_generator = train_datagen.flow_from_directory(train_dir, target_size=(64, 64), batch_size=32, class_mode='binary') |
| 16 | +test_generator = test_datagen.flow_from_directory(test_dir, target_size=(64, 64), batch_size=32, class_mode='binary') |
| 17 | + |
| 18 | +# Build a Convolutional Neural Network (CNN) model |
| 19 | +model = Sequential() |
| 20 | +model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu')) |
| 21 | +model.add(MaxPooling2D(pool_size=(2, 2))) |
| 22 | +model.add(Conv2D(64, (3, 3), activation='relu')) |
| 23 | +model.add(MaxPooling2D(pool_size=(2, 2))) |
| 24 | +model.add(Flatten()) |
| 25 | +model.add(Dense(units=128, activation='relu')) |
| 26 | +model.add(Dense(units=1, activation='sigmoid') |
| 27 | + |
| 28 | +# Compile the model |
| 29 | +model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
| 30 | + |
| 31 | +# Train the model |
| 32 | +model.fit(train_generator, steps_per_epoch=len(train_generator), epochs=10, validation_data=test_generator, validation_steps=len(test_generator)) |
| 33 | + |
| 34 | +# Evaluate the model |
| 35 | +test_loss, test_accuracy = model.evaluate(test_generator, steps=len(test_generator)) |
| 36 | +print("Test accuracy: {:.2f}%".format(test_accuracy * 100)) |
| 37 | + |
| 38 | +# Save the model |
| 39 | +model.save('cat_dog_classifier.h5') |
0 commit comments