|
| 1 | +<p>Given two positive integers <code>num1</code> and <code>num2</code>, find the positive integer <code>x</code> such that:</p> |
| 2 | + |
| 3 | +<ul> |
| 4 | + <li><code>x</code> has the same number of set bits as <code>num2</code>, and</li> |
| 5 | + <li>The value <code>x XOR num1</code> is <strong>minimal</strong>.</li> |
| 6 | +</ul> |
| 7 | + |
| 8 | +<p>Note that <code>XOR</code> is the bitwise XOR operation.</p> |
| 9 | + |
| 10 | +<p>Return <em>the integer </em><code>x</code>. The test cases are generated such that <code>x</code> is <strong>uniquely determined</strong>.</p> |
| 11 | + |
| 12 | +<p>The number of <strong>set bits</strong> of an integer is the number of <code>1</code>'s in its binary representation.</p> |
| 13 | + |
| 14 | +<p> </p> |
| 15 | +<p><strong class="example">Example 1:</strong></p> |
| 16 | + |
| 17 | +<pre> |
| 18 | +<strong>Input:</strong> num1 = 3, num2 = 5 |
| 19 | +<strong>Output:</strong> 3 |
| 20 | +<strong>Explanation:</strong> |
| 21 | +The binary representations of num1 and num2 are 0011 and 0101, respectively. |
| 22 | +The integer <strong>3</strong> has the same number of set bits as num2, and the value <code>3 XOR 3 = 0</code> is minimal. |
| 23 | +</pre> |
| 24 | + |
| 25 | +<p><strong class="example">Example 2:</strong></p> |
| 26 | + |
| 27 | +<pre> |
| 28 | +<strong>Input:</strong> num1 = 1, num2 = 12 |
| 29 | +<strong>Output:</strong> 3 |
| 30 | +<strong>Explanation:</strong> |
| 31 | +The binary representations of num1 and num2 are 0001 and 1100, respectively. |
| 32 | +The integer <strong>3</strong> has the same number of set bits as num2, and the value <code>3 XOR 1 = 2</code> is minimal. |
| 33 | +</pre> |
| 34 | + |
| 35 | +<p> </p> |
| 36 | +<p><strong>Constraints:</strong></p> |
| 37 | + |
| 38 | +<ul> |
| 39 | + <li><code>1 <= num1, num2 <= 10<sup>9</sup></code></li> |
| 40 | +</ul> |
0 commit comments