|
| 1 | +<p>You are given three integers <code>start</code>, <code>finish</code>, and <code>limit</code>. You are also given a <strong>0-indexed</strong> string <code>s</code> representing a <strong>positive</strong> integer.</p> |
| 2 | + |
| 3 | +<p>A <strong>positive</strong> integer <code>x</code> is called <strong>powerful</strong> if it ends with <code>s</code> (in other words, <code>s</code> is a <strong>suffix</strong> of <code>x</code>) and each digit in <code>x</code> is at most <code>limit</code>.</p> |
| 4 | + |
| 5 | +<p>Return <em>the <strong>total</strong> number of powerful integers in the range</em> <code>[start..finish]</code>.</p> |
| 6 | + |
| 7 | +<p>A string <code>x</code> is a suffix of a string <code>y</code> if and only if <code>x</code> is a substring of <code>y</code> that starts from some index (<strong>including </strong><code>0</code>) in <code>y</code> and extends to the index <code>y.length - 1</code>. For example, <code>25</code> is a suffix of <code>5125</code> whereas <code>512</code> is not.</p> |
| 8 | + |
| 9 | +<p> </p> |
| 10 | +<p><strong class="example">Example 1:</strong></p> |
| 11 | + |
| 12 | +<pre> |
| 13 | +<strong>Input:</strong> start = 1, finish = 6000, limit = 4, s = "124" |
| 14 | +<strong>Output:</strong> 5 |
| 15 | +<strong>Explanation:</strong> The powerful integers in the range [1..6000] are 124, 1124, 2124, 3124, and, 4124. All these integers have each digit <= 4, and "124" as a suffix. Note that 5124 is not a powerful integer because the first digit is 5 which is greater than 4. |
| 16 | +It can be shown that there are only 5 powerful integers in this range. |
| 17 | +</pre> |
| 18 | + |
| 19 | +<p><strong class="example">Example 2:</strong></p> |
| 20 | + |
| 21 | +<pre> |
| 22 | +<strong>Input:</strong> start = 15, finish = 215, limit = 6, s = "10" |
| 23 | +<strong>Output:</strong> 2 |
| 24 | +<strong>Explanation:</strong> The powerful integers in the range [15..215] are 110 and 210. All these integers have each digit <= 6, and "10" as a suffix. |
| 25 | +It can be shown that there are only 2 powerful integers in this range. |
| 26 | +</pre> |
| 27 | + |
| 28 | +<p><strong class="example">Example 3:</strong></p> |
| 29 | + |
| 30 | +<pre> |
| 31 | +<strong>Input:</strong> start = 1000, finish = 2000, limit = 4, s = "3000" |
| 32 | +<strong>Output:</strong> 0 |
| 33 | +<strong>Explanation:</strong> All integers in the range [1000..2000] are smaller than 3000, hence "3000" cannot be a suffix of any integer in this range. |
| 34 | +</pre> |
| 35 | + |
| 36 | +<p> </p> |
| 37 | +<p><strong>Constraints:</strong></p> |
| 38 | + |
| 39 | +<ul> |
| 40 | + <li><code>1 <= start <= finish <= 10<sup>15</sup></code></li> |
| 41 | + <li><code>1 <= limit <= 9</code></li> |
| 42 | + <li><code>1 <= s.length <= floor(log<sub>10</sub>(finish)) + 1</code></li> |
| 43 | + <li><code>s</code> only consists of numeric digits which are at most <code>limit</code>.</li> |
| 44 | + <li><code>s</code> does not have leading zeros.</li> |
| 45 | +</ul> |
0 commit comments