|
5 | 5 | public class Solution { |
6 | 6 | public long countSubstrings(String s) { |
7 | 7 | int n = s.length(); |
8 | | - long ans = 0; |
9 | 8 | int[] p3 = new int[n]; |
10 | 9 | int[] p7 = new int[n]; |
11 | 10 | int[] p9 = new int[n]; |
| 11 | + computeModArrays(s, p3, p7, p9); |
| 12 | + long[] freq3 = new long[3]; |
| 13 | + long[] freq9 = new long[9]; |
| 14 | + long[][] freq7 = new long[6][7]; |
| 15 | + int[] inv7 = {1, 5, 4, 6, 2, 3}; |
| 16 | + return countValidSubstrings(s, p3, p7, p9, freq3, freq9, freq7, inv7); |
| 17 | + } |
| 18 | + |
| 19 | + private void computeModArrays(String s, int[] p3, int[] p7, int[] p9) { |
12 | 20 | p3[0] = (s.charAt(0) - '0') % 3; |
13 | 21 | p7[0] = (s.charAt(0) - '0') % 7; |
14 | 22 | p9[0] = (s.charAt(0) - '0') % 9; |
15 | | - for (int i = 1; i < n; i++) { |
| 23 | + for (int i = 1; i < s.length(); i++) { |
16 | 24 | int dig = s.charAt(i) - '0'; |
17 | 25 | p3[i] = (p3[i - 1] * 10 + dig) % 3; |
18 | 26 | p7[i] = (p7[i - 1] * 10 + dig) % 7; |
19 | 27 | p9[i] = (p9[i - 1] * 10 + dig) % 9; |
20 | 28 | } |
21 | | - long[] freq3 = new long[3]; |
22 | | - long[] freq9 = new long[9]; |
23 | | - long[][] freq7 = new long[6][7]; |
24 | | - int[] inv7 = {1, 5, 4, 6, 2, 3}; |
25 | | - for (int j = 0; j < n; j++) { |
| 29 | + } |
| 30 | + |
| 31 | + private long countValidSubstrings( |
| 32 | + String s, |
| 33 | + int[] p3, |
| 34 | + int[] p7, |
| 35 | + int[] p9, |
| 36 | + long[] freq3, |
| 37 | + long[] freq9, |
| 38 | + long[][] freq7, |
| 39 | + int[] inv7) { |
| 40 | + long ans = 0; |
| 41 | + for (int j = 0; j < s.length(); j++) { |
26 | 42 | int d = s.charAt(j) - '0'; |
27 | 43 | if (d != 0) { |
28 | | - if (d == 1 || d == 2 || d == 5) { |
29 | | - ans += (j + 1); |
30 | | - } else if (d == 4) { |
31 | | - if (j == 0) { |
32 | | - ans += 1; |
33 | | - } else { |
34 | | - int num = (s.charAt(j - 1) - '0') * 10 + d; |
35 | | - ans += (num % 4 == 0 ? (j + 1) : 1); |
36 | | - } |
37 | | - } else if (d == 8) { |
38 | | - if (j == 0) { |
39 | | - ans += 1; |
40 | | - } else if (j == 1) { |
41 | | - int num = (s.charAt(0) - '0') * 10 + 8; |
42 | | - ans += (num % 8 == 0 ? 2 : 1); |
43 | | - } else { |
44 | | - int num3 = (s.charAt(j - 2) - '0') * 100 + (s.charAt(j - 1) - '0') * 10 + 8; |
45 | | - int num2 = (s.charAt(j - 1) - '0') * 10 + 8; |
46 | | - ans += ((num3 % 8 == 0 ? (j - 1) : 0) + (num2 % 8 == 0 ? 1 : 0) + 1); |
47 | | - } |
48 | | - } else if (d == 3 || d == 6) { |
49 | | - ans += (p3[j] == 0 ? 1L : 0L) + freq3[p3[j]]; |
50 | | - } else if (d == 7) { |
51 | | - ans += (p7[j] == 0 ? 1L : 0L); |
52 | | - for (int m = 0; m < 6; m++) { |
53 | | - int idx = ((j % 6) - m + 6) % 6; |
54 | | - int req = (p7[j] * inv7[m]) % 7; |
55 | | - ans += freq7[idx][req]; |
56 | | - } |
57 | | - } else if (d == 9) { |
58 | | - ans += (p9[j] == 0 ? 1L : 0L) + freq9[p9[j]]; |
59 | | - } |
| 44 | + ans += countDivisibilityCases(s, j, d, p3, p7, p9, freq3, freq9, freq7, inv7); |
60 | 45 | } |
61 | 46 | freq3[p3[j]]++; |
62 | 47 | freq7[j % 6][p7[j]]++; |
63 | 48 | freq9[p9[j]]++; |
64 | 49 | } |
65 | 50 | return ans; |
66 | 51 | } |
| 52 | + |
| 53 | + private long countDivisibilityCases( |
| 54 | + String s, |
| 55 | + int j, |
| 56 | + int d, |
| 57 | + int[] p3, |
| 58 | + int[] p7, |
| 59 | + int[] p9, |
| 60 | + long[] freq3, |
| 61 | + long[] freq9, |
| 62 | + long[][] freq7, |
| 63 | + int[] inv7) { |
| 64 | + long ans = 0; |
| 65 | + if (d == 1 || d == 2 || d == 5) { |
| 66 | + ans += (j + 1); |
| 67 | + } else if (d == 4) { |
| 68 | + ans += countDivisibilityBy4(s, j); |
| 69 | + } else if (d == 8) { |
| 70 | + ans += countDivisibilityBy8(s, j); |
| 71 | + } else if (d == 3 || d == 6) { |
| 72 | + ans += (p3[j] == 0 ? 1L : 0L) + freq3[p3[j]]; |
| 73 | + } else if (d == 7) { |
| 74 | + ans += countDivisibilityBy7(j, p7, freq7, inv7); |
| 75 | + } else if (d == 9) { |
| 76 | + ans += (p9[j] == 0 ? 1L : 0L) + freq9[p9[j]]; |
| 77 | + } |
| 78 | + return ans; |
| 79 | + } |
| 80 | + |
| 81 | + private long countDivisibilityBy4(String s, int j) { |
| 82 | + if (j == 0) return 1; |
| 83 | + int num = (s.charAt(j - 1) - '0') * 10 + (s.charAt(j) - '0'); |
| 84 | + return num % 4 == 0 ? j + 1 : 1; |
| 85 | + } |
| 86 | + |
| 87 | + private long countDivisibilityBy8(String s, int j) { |
| 88 | + if (j == 0) return 1; |
| 89 | + if (j == 1) { |
| 90 | + int num = (s.charAt(0) - '0') * 10 + 8; |
| 91 | + return (num % 8 == 0 ? 2 : 1); |
| 92 | + } |
| 93 | + int num3 = (s.charAt(j - 2) - '0') * 100 + (s.charAt(j - 1) - '0') * 10 + 8; |
| 94 | + int num2 = (s.charAt(j - 1) - '0') * 10 + 8; |
| 95 | + return (num3 % 8 == 0 ? j - 1 : 0) + (num2 % 8 == 0 ? 1 : 0) + 1; |
| 96 | + } |
| 97 | + |
| 98 | + private long countDivisibilityBy7(int j, int[] p7, long[][] freq7, int[] inv7) { |
| 99 | + long ans = (p7[j] == 0 ? 1L : 0L); |
| 100 | + for (int m = 0; m < 6; m++) { |
| 101 | + int idx = ((j % 6) - m + 6) % 6; |
| 102 | + int req = (p7[j] * inv7[m]) % 7; |
| 103 | + ans += freq7[idx][req]; |
| 104 | + } |
| 105 | + return ans; |
| 106 | + } |
67 | 107 | } |
0 commit comments