diff --git a/lab_sql_7.ipynb b/lab_sql_7.ipynb
new file mode 100644
index 0000000..89fcde5
--- /dev/null
+++ b/lab_sql_7.ipynb
@@ -0,0 +1,851 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a93ae413",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create a Python connection with SQL database and retrieve the results of the last two queries in sql file as dataframes.\n",
+ "# Hint: You can store the results from the two queries in two separate dataframes.\n",
+ "\n",
+ "# Write a function that checks if customer borrowed more or less films in the month of June as compared to May.\n",
+ "# Hint: For this part, you can create a join between the two dataframes created before, using the merge function available for pandas dataframes. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "f8e81b34",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import pymysql\n",
+ "from sqlalchemy import create_engine"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "1f33781a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "········\n"
+ ]
+ }
+ ],
+ "source": [
+ "import getpass\n",
+ "password = getpass.getpass()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "fea6ab84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "connection_string = 'mysql+pymysql://root:' + password + '@localhost/sakila'\n",
+ "engine = create_engine(connection_string)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "a69c861b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rental_id | \n",
+ " rental_date | \n",
+ " inventory_id | \n",
+ " customer_id | \n",
+ " return_date | \n",
+ " staff_id | \n",
+ " last_update | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 2005-05-24 22:53:30 | \n",
+ " 367 | \n",
+ " 130 | \n",
+ " 2005-05-26 22:04:30 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 2005-05-24 22:54:33 | \n",
+ " 1525 | \n",
+ " 459 | \n",
+ " 2005-05-28 19:40:33 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 2005-05-24 23:03:39 | \n",
+ " 1711 | \n",
+ " 408 | \n",
+ " 2005-06-01 22:12:39 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 2005-05-24 23:04:41 | \n",
+ " 2452 | \n",
+ " 333 | \n",
+ " 2005-06-03 01:43:41 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 2005-05-24 23:05:21 | \n",
+ " 2079 | \n",
+ " 222 | \n",
+ " 2005-06-02 04:33:21 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 16039 | \n",
+ " 16045 | \n",
+ " 2005-08-23 22:25:26 | \n",
+ " 772 | \n",
+ " 14 | \n",
+ " 2005-08-25 23:54:26 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 16040 | \n",
+ " 16046 | \n",
+ " 2005-08-23 22:26:47 | \n",
+ " 4364 | \n",
+ " 74 | \n",
+ " 2005-08-27 18:02:47 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 16041 | \n",
+ " 16047 | \n",
+ " 2005-08-23 22:42:48 | \n",
+ " 2088 | \n",
+ " 114 | \n",
+ " 2005-08-25 02:48:48 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 16042 | \n",
+ " 16048 | \n",
+ " 2005-08-23 22:43:07 | \n",
+ " 2019 | \n",
+ " 103 | \n",
+ " 2005-08-31 21:33:07 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 16043 | \n",
+ " 16049 | \n",
+ " 2005-08-23 22:50:12 | \n",
+ " 2666 | \n",
+ " 393 | \n",
+ " 2005-08-30 01:01:12 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
16044 rows × 7 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rental_id rental_date inventory_id customer_id \\\n",
+ "0 1 2005-05-24 22:53:30 367 130 \n",
+ "1 2 2005-05-24 22:54:33 1525 459 \n",
+ "2 3 2005-05-24 23:03:39 1711 408 \n",
+ "3 4 2005-05-24 23:04:41 2452 333 \n",
+ "4 5 2005-05-24 23:05:21 2079 222 \n",
+ "... ... ... ... ... \n",
+ "16039 16045 2005-08-23 22:25:26 772 14 \n",
+ "16040 16046 2005-08-23 22:26:47 4364 74 \n",
+ "16041 16047 2005-08-23 22:42:48 2088 114 \n",
+ "16042 16048 2005-08-23 22:43:07 2019 103 \n",
+ "16043 16049 2005-08-23 22:50:12 2666 393 \n",
+ "\n",
+ " return_date staff_id last_update \n",
+ "0 2005-05-26 22:04:30 1 2006-02-15 21:30:53 \n",
+ "1 2005-05-28 19:40:33 1 2006-02-15 21:30:53 \n",
+ "2 2005-06-01 22:12:39 1 2006-02-15 21:30:53 \n",
+ "3 2005-06-03 01:43:41 2 2006-02-15 21:30:53 \n",
+ "4 2005-06-02 04:33:21 1 2006-02-15 21:30:53 \n",
+ "... ... ... ... \n",
+ "16039 2005-08-25 23:54:26 1 2006-02-15 21:30:53 \n",
+ "16040 2005-08-27 18:02:47 2 2006-02-15 21:30:53 \n",
+ "16041 2005-08-25 02:48:48 2 2006-02-15 21:30:53 \n",
+ "16042 2005-08-31 21:33:07 1 2006-02-15 21:30:53 \n",
+ "16043 2005-08-30 01:01:12 2 2006-02-15 21:30:53 \n",
+ "\n",
+ "[16044 rows x 7 columns]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = pd.read_sql_query('select * from sakila.rental', engine)\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "7c124ce0",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " rental_count | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 197 | \n",
+ " 8 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 109 | \n",
+ " 7 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 506 | \n",
+ " 7 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 19 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 53 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 515 | \n",
+ " 580 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 516 | \n",
+ " 582 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 517 | \n",
+ " 590 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 518 | \n",
+ " 595 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 519 | \n",
+ " 599 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
520 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id rental_count\n",
+ "0 197 8\n",
+ "1 109 7\n",
+ "2 506 7\n",
+ "3 19 6\n",
+ "4 53 6\n",
+ ".. ... ...\n",
+ "515 580 1\n",
+ "516 582 1\n",
+ "517 590 1\n",
+ "518 595 1\n",
+ "519 599 1\n",
+ "\n",
+ "[520 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Check the number of rentals for each customer for May\n",
+ "\n",
+ "# Create temporary table\n",
+ "create_table_query = '''\n",
+ "CREATE TEMPORARY TABLE sakila.rentals_may AS\n",
+ "SELECT \n",
+ " customer_id, \n",
+ " COUNT(rental_id) AS rental_count\n",
+ "FROM \n",
+ " sakila.rental\n",
+ "WHERE \n",
+ " MONTH(rental_date) = 5\n",
+ "GROUP BY \n",
+ " customer_id\n",
+ "ORDER BY \n",
+ " rental_count DESC\n",
+ "'''\n",
+ "\n",
+ "engine = create_engine(connection_string)\n",
+ "with engine.connect() as connection:\n",
+ " connection.execute(create_table_query)\n",
+ "\n",
+ "# Query the temporary table to get the data\n",
+ "select_query = 'SELECT * FROM sakila.rentals_may'\n",
+ "\n",
+ "rentals_may = pd.read_sql_query(select_query, engine)\n",
+ "rentals_may"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "b45cfe27",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " rental_count | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 31 | \n",
+ " 11 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 454 | \n",
+ " 10 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 213 | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 267 | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 295 | \n",
+ " 9 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 585 | \n",
+ " 549 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 586 | \n",
+ " 555 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 587 | \n",
+ " 564 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 588 | \n",
+ " 580 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 589 | \n",
+ " 598 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
590 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id rental_count\n",
+ "0 31 11\n",
+ "1 454 10\n",
+ "2 213 9\n",
+ "3 267 9\n",
+ "4 295 9\n",
+ ".. ... ...\n",
+ "585 549 1\n",
+ "586 555 1\n",
+ "587 564 1\n",
+ "588 580 1\n",
+ "589 598 1\n",
+ "\n",
+ "[590 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Check the number of rentals for each customer for June\n",
+ "\n",
+ "# Create temporary table\n",
+ "create_table_query2 = '''\n",
+ "CREATE TEMPORARY TABLE sakila.rentals_june AS\n",
+ "SELECT \n",
+ " customer_id, \n",
+ " COUNT(rental_id) AS rental_count\n",
+ "FROM \n",
+ " sakila.rental\n",
+ "WHERE \n",
+ " MONTH(rental_date) = 6\n",
+ "GROUP BY \n",
+ " customer_id\n",
+ "ORDER BY \n",
+ " rental_count DESC\n",
+ "'''\n",
+ "\n",
+ "engine = create_engine(connection_string)\n",
+ "with engine.connect() as connection:\n",
+ " connection.execute(create_table_query2)\n",
+ "\n",
+ "# Query the temporary table to get the data \n",
+ "select_query2 = 'SELECT * FROM sakila.rentals_june'\n",
+ "\n",
+ "# Corrected variable name\n",
+ "rentals_june = pd.read_sql_query(select_query2, engine)\n",
+ "rentals_june"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "5315a6e9",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " rental_count_may | \n",
+ " rental_count_june | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 197 | \n",
+ " 8.0 | \n",
+ " 8.0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 109 | \n",
+ " 7.0 | \n",
+ " 5.0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 506 | \n",
+ " 7.0 | \n",
+ " 5.0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 19 | \n",
+ " 6.0 | \n",
+ " 3.0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 53 | \n",
+ " 6.0 | \n",
+ " 5.0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 593 | \n",
+ " 335 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | 594 | \n",
+ " 370 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | 595 | \n",
+ " 487 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | 596 | \n",
+ " 555 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " | 597 | \n",
+ " 598 | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
598 rows × 3 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id rental_count_may rental_count_june\n",
+ "0 197 8.0 8.0\n",
+ "1 109 7.0 5.0\n",
+ "2 506 7.0 5.0\n",
+ "3 19 6.0 3.0\n",
+ "4 53 6.0 5.0\n",
+ ".. ... ... ...\n",
+ "593 335 NaN 1.0\n",
+ "594 370 NaN 1.0\n",
+ "595 487 NaN 1.0\n",
+ "596 555 NaN 1.0\n",
+ "597 598 NaN 1.0\n",
+ "\n",
+ "[598 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "joined_rentals = rentals_may.merge(rentals_june, on='customer_id', suffixes=('_may', '_june'), how='outer')\n",
+ "joined_rentals"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "id": "1cbbe8c5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " rental_count_may | \n",
+ " rental_count_june | \n",
+ " rentals_difference | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 197 | \n",
+ " 8.0 | \n",
+ " 8.0 | \n",
+ " borrowed_same_in_june | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 109 | \n",
+ " 7.0 | \n",
+ " 5.0 | \n",
+ " borrowed_less_in_june | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 506 | \n",
+ " 7.0 | \n",
+ " 5.0 | \n",
+ " borrowed_less_in_june | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 19 | \n",
+ " 6.0 | \n",
+ " 3.0 | \n",
+ " borrowed_less_in_june | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 53 | \n",
+ " 6.0 | \n",
+ " 5.0 | \n",
+ " borrowed_less_in_june | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 515 | \n",
+ " 580 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " borrowed_same_in_june | \n",
+ "
\n",
+ " \n",
+ " | 516 | \n",
+ " 582 | \n",
+ " 1.0 | \n",
+ " 3.0 | \n",
+ " borrowed_more_in_june | \n",
+ "
\n",
+ " \n",
+ " | 517 | \n",
+ " 590 | \n",
+ " 1.0 | \n",
+ " 5.0 | \n",
+ " borrowed_more_in_june | \n",
+ "
\n",
+ " \n",
+ " | 518 | \n",
+ " 595 | \n",
+ " 1.0 | \n",
+ " 2.0 | \n",
+ " borrowed_more_in_june | \n",
+ "
\n",
+ " \n",
+ " | 519 | \n",
+ " 599 | \n",
+ " 1.0 | \n",
+ " 4.0 | \n",
+ " borrowed_more_in_june | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
512 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id rental_count_may rental_count_june rentals_difference\n",
+ "0 197 8.0 8.0 borrowed_same_in_june\n",
+ "1 109 7.0 5.0 borrowed_less_in_june\n",
+ "2 506 7.0 5.0 borrowed_less_in_june\n",
+ "3 19 6.0 3.0 borrowed_less_in_june\n",
+ "4 53 6.0 5.0 borrowed_less_in_june\n",
+ ".. ... ... ... ...\n",
+ "515 580 1.0 1.0 borrowed_same_in_june\n",
+ "516 582 1.0 3.0 borrowed_more_in_june\n",
+ "517 590 1.0 5.0 borrowed_more_in_june\n",
+ "518 595 1.0 2.0 borrowed_more_in_june\n",
+ "519 599 1.0 4.0 borrowed_more_in_june\n",
+ "\n",
+ "[512 rows x 4 columns]"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Function to compare rental counts for May and June\n",
+ "def compare_rentals(df):\n",
+ " # Create a new column to indicate the comparison result\n",
+ " df['rentals_difference'] = df.apply(\n",
+ " lambda row: 'borrowed_more_in_june' if row['rental_count_june'] > row['rental_count_may'] else (\n",
+ " 'borrowed_less_in_june' if row['rental_count_june'] < row['rental_count_may'] else 'borrowed_same_in_june'), axis=1)\n",
+ " return df\n",
+ "\n",
+ "rentals_diff = compare_rentals(joined_rentals)\n",
+ "rentals_diff = rentals_diff.dropna()\n",
+ "rentals_diff"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/lab_sql_7.sql b/lab_sql_7.sql
new file mode 100644
index 0000000..39c4e2a
--- /dev/null
+++ b/lab_sql_7.sql
@@ -0,0 +1,46 @@
+-- Create a table rentals_may to store the data from rental table with information for the month of May.
+create temporary table sakila.rentals_may as
+select *
+from sakila.rental
+where month(rental_date) = 5;
+
+select *
+from sakila.rentals_may;
+
+-- Create a table rentals_june to store the data from rental table with information for the month of June.
+create temporary table sakila.rentals_june as
+select *
+from sakila.rental
+where month(rental_date) = 6;
+
+select *
+from sakila.rentals_june;
+
+-- Check the number of rentals for each customer for May.
+select customer_id, count(rental_id)
+from sakila.rentals_may
+group by customer_id
+order by count(rental_id) desc;
+
+-- Check the number of rentals for each customer for June.
+select customer_id, count(rental_id)
+from sakila.rentals_june
+group by customer_id
+order by count(rental_id) desc;
+
+-- Join temporary tables for May and June.
+
+CREATE TEMPORARY TABLE sakila.joined_rentals as
+SELECT m.customer_id, m.rental_id as rental_id_may, j.rental_id as rental_id_june
+FROM sakila.rentals_may m
+LEFT JOIN sakila.rentals_june j
+ ON m.customer_id = j.customer_id;
+
+select customer_id,count(rental_id_may) as rentals_may , count(rental_id_may) as rentals_june,
+case
+ when count(rental_id_june) > count(rental_id_may) then 'borrowed_more_in_june'
+ when count(rental_id_june) < count(rental_id_may) then 'borrowed_less_in_june'
+ when count(rental_id_june) = count(rental_id_may) then 'borrowed_same_in_june'
+end as rentals_difference
+from sakila.joined_rentals
+group by customer_id;