diff --git a/Lab queries 9.sql b/Lab queries 9.sql new file mode 100644 index 0000000..e8fac3b --- /dev/null +++ b/Lab queries 9.sql @@ -0,0 +1,33 @@ +select * +from sakila.rental; + +create table sakila.rentals_may like sakila.rental; + +insert into sakila.rentals_may +select * +from sakila.rental +where month(rental_date) = 5; + +select * +from sakila.rentals_may; + +create table sakila.rentals_june like sakila.rental; +insert into sakila.rentals_june +select * from sakila.rental +where month(rental_date) = 6; +select * from sakila.rentals_june; + + +select customer_id, count(rental_id) as number_rentals +from sakila.rentals_may +group by customer_id +order by customer_id; + + +select customer_id, count(rental_id) as number_rentals +from sakila.rentals_june +group by customer_id +order by customer_id; + + + diff --git a/[lab-queries-9] Bruno.ipynb b/[lab-queries-9] Bruno.ipynb new file mode 100644 index 0000000..ddb4162 --- /dev/null +++ b/[lab-queries-9] Bruno.ipynb @@ -0,0 +1,1090 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "id": "7d83bb9e", + "metadata": {}, + "outputs": [], + "source": [ + "import pymysql\n", + "from sqlalchemy import create_engine\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bd7d1a0f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "········\n" + ] + } + ], + "source": [ + "import getpass\n", + "password = getpass.getpass()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6a5d5ab7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rental_idrental_dateinventory_idcustomer_idreturn_datestaff_idlast_update
012005-05-24 22:53:303671302005-05-26 22:04:3012006-02-15 21:30:53
122005-05-24 22:54:3315254592005-05-28 19:40:3312006-02-15 21:30:53
232005-05-24 23:03:3917114082005-06-01 22:12:3912006-02-15 21:30:53
342005-05-24 23:04:4124523332005-06-03 01:43:4122006-02-15 21:30:53
452005-05-24 23:05:2120792222005-06-02 04:33:2112006-02-15 21:30:53
........................
16039160452005-08-23 22:25:26772142005-08-25 23:54:2612006-02-15 21:30:53
16040160462005-08-23 22:26:474364742005-08-27 18:02:4722006-02-15 21:30:53
16041160472005-08-23 22:42:4820881142005-08-25 02:48:4822006-02-15 21:30:53
16042160482005-08-23 22:43:0720191032005-08-31 21:33:0712006-02-15 21:30:53
16043160492005-08-23 22:50:1226663932005-08-30 01:01:1222006-02-15 21:30:53
\n", + "

16044 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " rental_id rental_date inventory_id customer_id \\\n", + "0 1 2005-05-24 22:53:30 367 130 \n", + "1 2 2005-05-24 22:54:33 1525 459 \n", + "2 3 2005-05-24 23:03:39 1711 408 \n", + "3 4 2005-05-24 23:04:41 2452 333 \n", + "4 5 2005-05-24 23:05:21 2079 222 \n", + "... ... ... ... ... \n", + "16039 16045 2005-08-23 22:25:26 772 14 \n", + "16040 16046 2005-08-23 22:26:47 4364 74 \n", + "16041 16047 2005-08-23 22:42:48 2088 114 \n", + "16042 16048 2005-08-23 22:43:07 2019 103 \n", + "16043 16049 2005-08-23 22:50:12 2666 393 \n", + "\n", + " return_date staff_id last_update \n", + "0 2005-05-26 22:04:30 1 2006-02-15 21:30:53 \n", + "1 2005-05-28 19:40:33 1 2006-02-15 21:30:53 \n", + "2 2005-06-01 22:12:39 1 2006-02-15 21:30:53 \n", + "3 2005-06-03 01:43:41 2 2006-02-15 21:30:53 \n", + "4 2005-06-02 04:33:21 1 2006-02-15 21:30:53 \n", + "... ... ... ... \n", + "16039 2005-08-25 23:54:26 1 2006-02-15 21:30:53 \n", + "16040 2005-08-27 18:02:47 2 2006-02-15 21:30:53 \n", + "16041 2005-08-25 02:48:48 2 2006-02-15 21:30:53 \n", + "16042 2005-08-31 21:33:07 1 2006-02-15 21:30:53 \n", + "16043 2005-08-30 01:01:12 2 2006-02-15 21:30:53 \n", + "\n", + "[16044 rows x 7 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "connection_string = 'mysql+pymysql://root:' + password + '@localhost/sakila'\n", + "engine = create_engine(connection_string)\n", + "data = pd.read_sql_query('SELECT * FROM SAKILA.RENTAL', engine)\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "2cba561e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "rental_id int64\n", + "rental_date datetime64[ns]\n", + "inventory_id int64\n", + "customer_id int64\n", + "return_date datetime64[ns]\n", + "staff_id int64\n", + "last_update datetime64[ns]\n", + "dtype: object" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "da5a798a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rental_idrental_dateinventory_idcustomer_idreturn_datestaff_idlast_update
012005-05-24 22:53:303671302005-05-26 22:04:3012006-02-15 21:30:53
122005-05-24 22:54:3315254592005-05-28 19:40:3312006-02-15 21:30:53
232005-05-24 23:03:3917114082005-06-01 22:12:3912006-02-15 21:30:53
342005-05-24 23:04:4124523332005-06-03 01:43:4122006-02-15 21:30:53
452005-05-24 23:05:2120792222005-06-02 04:33:2112006-02-15 21:30:53
........................
115111532005-05-31 21:36:4427255062005-06-10 01:26:4422006-02-15 21:30:53
115211542005-05-31 21:42:092732592005-06-08 16:40:0912006-02-15 21:30:53
115311552005-05-31 22:17:1120482512005-06-04 20:27:1122006-02-15 21:30:53
115411562005-05-31 22:37:344601062005-06-01 23:02:3422006-02-15 21:30:53
115511572005-05-31 22:47:451449612005-06-02 18:01:4512006-02-15 21:30:53
\n", + "

1156 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " rental_id rental_date inventory_id customer_id \\\n", + "0 1 2005-05-24 22:53:30 367 130 \n", + "1 2 2005-05-24 22:54:33 1525 459 \n", + "2 3 2005-05-24 23:03:39 1711 408 \n", + "3 4 2005-05-24 23:04:41 2452 333 \n", + "4 5 2005-05-24 23:05:21 2079 222 \n", + "... ... ... ... ... \n", + "1151 1153 2005-05-31 21:36:44 2725 506 \n", + "1152 1154 2005-05-31 21:42:09 2732 59 \n", + "1153 1155 2005-05-31 22:17:11 2048 251 \n", + "1154 1156 2005-05-31 22:37:34 460 106 \n", + "1155 1157 2005-05-31 22:47:45 1449 61 \n", + "\n", + " return_date staff_id last_update \n", + "0 2005-05-26 22:04:30 1 2006-02-15 21:30:53 \n", + "1 2005-05-28 19:40:33 1 2006-02-15 21:30:53 \n", + "2 2005-06-01 22:12:39 1 2006-02-15 21:30:53 \n", + "3 2005-06-03 01:43:41 2 2006-02-15 21:30:53 \n", + "4 2005-06-02 04:33:21 1 2006-02-15 21:30:53 \n", + "... ... ... ... \n", + "1151 2005-06-10 01:26:44 2 2006-02-15 21:30:53 \n", + "1152 2005-06-08 16:40:09 1 2006-02-15 21:30:53 \n", + "1153 2005-06-04 20:27:11 2 2006-02-15 21:30:53 \n", + "1154 2005-06-01 23:02:34 2 2006-02-15 21:30:53 \n", + "1155 2005-06-02 18:01:45 1 2006-02-15 21:30:53 \n", + "\n", + "[1156 rows x 7 columns]" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "start_date = '2005-05-01 00:00:00'\n", + "end_date = '2005-05-31 23:59:59'\n", + "\n", + "may_rentals = data[(data['rental_date'] >= start_date) & (data['rental_date'] <= end_date)]\n", + "may_rentals" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "2553d1a8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
customer_idmay_rentals_count
012
121
232
353
463
.........
5155944
5165951
5175966
5185972
5195991
\n", + "

520 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " customer_id may_rentals_count\n", + "0 1 2\n", + "1 2 1\n", + "2 3 2\n", + "3 5 3\n", + "4 6 3\n", + ".. ... ...\n", + "515 594 4\n", + "516 595 1\n", + "517 596 6\n", + "518 597 2\n", + "519 599 1\n", + "\n", + "[520 rows x 2 columns]" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "may_rentals_count = may_rentals.groupby('customer_id')['rental_id'].count().reset_index()\n", + "may_rentals_count.columns = ['customer_id', 'may_rentals_count']\n", + "may_rentals_count" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "7029ec9e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rental_idrental_dateinventory_idcustomer_idreturn_datestaff_idlast_update
115611582005-06-14 22:53:3316324162005-06-18 21:37:3322006-02-15 21:30:53
115711592005-06-14 22:55:1343955162005-06-17 02:11:1312006-02-15 21:30:53
115811602005-06-14 23:00:3427952392005-06-18 01:58:3422006-02-15 21:30:53
115911612005-06-14 23:07:0816902852005-06-21 17:12:0812006-02-15 21:30:53
116011622005-06-14 23:09:389873102005-06-23 22:00:3812006-02-15 21:30:53
........................
346234652005-06-21 22:10:0114885102005-06-30 21:35:0112006-02-15 21:30:53
346334662005-06-21 22:13:333712262005-06-25 21:01:3322006-02-15 21:30:53
346434672005-06-21 22:19:257295432005-06-27 00:03:2522006-02-15 21:30:53
346534682005-06-21 22:43:4528991002005-06-30 01:49:4512006-02-15 21:30:53
346634692005-06-21 22:48:5940871812005-06-28 19:32:5912006-02-15 21:30:53
\n", + "

2311 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " rental_id rental_date inventory_id customer_id \\\n", + "1156 1158 2005-06-14 22:53:33 1632 416 \n", + "1157 1159 2005-06-14 22:55:13 4395 516 \n", + "1158 1160 2005-06-14 23:00:34 2795 239 \n", + "1159 1161 2005-06-14 23:07:08 1690 285 \n", + "1160 1162 2005-06-14 23:09:38 987 310 \n", + "... ... ... ... ... \n", + "3462 3465 2005-06-21 22:10:01 1488 510 \n", + "3463 3466 2005-06-21 22:13:33 371 226 \n", + "3464 3467 2005-06-21 22:19:25 729 543 \n", + "3465 3468 2005-06-21 22:43:45 2899 100 \n", + "3466 3469 2005-06-21 22:48:59 4087 181 \n", + "\n", + " return_date staff_id last_update \n", + "1156 2005-06-18 21:37:33 2 2006-02-15 21:30:53 \n", + "1157 2005-06-17 02:11:13 1 2006-02-15 21:30:53 \n", + "1158 2005-06-18 01:58:34 2 2006-02-15 21:30:53 \n", + "1159 2005-06-21 17:12:08 1 2006-02-15 21:30:53 \n", + "1160 2005-06-23 22:00:38 1 2006-02-15 21:30:53 \n", + "... ... ... ... \n", + "3462 2005-06-30 21:35:01 1 2006-02-15 21:30:53 \n", + "3463 2005-06-25 21:01:33 2 2006-02-15 21:30:53 \n", + "3464 2005-06-27 00:03:25 2 2006-02-15 21:30:53 \n", + "3465 2005-06-30 01:49:45 1 2006-02-15 21:30:53 \n", + "3466 2005-06-28 19:32:59 1 2006-02-15 21:30:53 \n", + "\n", + "[2311 rows x 7 columns]" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "start_date = '2005-06-01 00:00:00'\n", + "end_date = '2005-06-30 23:59:59'\n", + "\n", + "june_rentals = data[(data['rental_date'] >= start_date) & (data['rental_date'] <= end_date)]\n", + "june_rentals" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "1c5c0d3a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
customer_idjune_rentals_count
017
121
234
346
455
.........
5855952
5865962
5875973
5885981
5895994
\n", + "

590 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " customer_id june_rentals_count\n", + "0 1 7\n", + "1 2 1\n", + "2 3 4\n", + "3 4 6\n", + "4 5 5\n", + ".. ... ...\n", + "585 595 2\n", + "586 596 2\n", + "587 597 3\n", + "588 598 1\n", + "589 599 4\n", + "\n", + "[590 rows x 2 columns]" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "june_rentals_count = june_rentals.groupby('customer_id')['rental_id'].count().reset_index()\n", + "june_rentals_count.columns = ['customer_id', 'june_rentals_count']\n", + "june_rentals_count" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "bf2763c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
customer_idmay_countjune_countcomparison
012.07.0More
121.01.0Equal
232.04.0More
351.05.0More
463.04.0More
...............
5925850.04.0More
5935910.03.0More
5945920.05.0More
5955980.01.0More
5965990.04.0More
\n", + "

597 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " customer_id may_count june_count comparison\n", + "0 1 2.0 7.0 More\n", + "1 2 1.0 1.0 Equal\n", + "2 3 2.0 4.0 More\n", + "3 5 1.0 5.0 More\n", + "4 6 3.0 4.0 More\n", + ".. ... ... ... ...\n", + "592 585 0.0 4.0 More\n", + "593 591 0.0 3.0 More\n", + "594 592 0.0 5.0 More\n", + "595 598 0.0 1.0 More\n", + "596 599 0.0 4.0 More\n", + "\n", + "[597 rows x 4 columns]" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "start_may = '2005-05-01 00:00:00'\n", + "end_may = '2005-05-31 00:00:00'\n", + "start_june = '2005-06-01 00:00:00'\n", + "end_june = '2005-06-30 23:59:59'\n", + "\n", + "def compare_rentals(data, start_may, end_may, start_june, end_june):\n", + "\n", + " may_rentals = data[(data['rental_date'] >= start_may) & (data['rental_date'] <= end_may)]\n", + " june_rentals = data[(data['rental_date'] >= start_june) & (data['rental_date'] <= end_june)]\n", + "\n", + " may_counts = may_rentals.groupby('customer_id').size().reset_index(name='may_count')\n", + " june_counts = june_rentals.groupby('customer_id').size().reset_index(name='june_count')\n", + "\n", + " merged_counts = pd.merge(may_counts, june_counts, on='customer_id', how='outer').fillna(0)\n", + "\n", + "\n", + " merged_counts['comparison'] = 'Equal'\n", + " merged_counts.loc[merged_counts['june_count'] > merged_counts['may_count'], 'comparison'] = 'More'\n", + " merged_counts.loc[merged_counts['june_count'] < merged_counts['may_count'], 'comparison'] = 'Less'\n", + "\n", + " return merged_counts\n", + "\n", + "result = compare_rentals(data, start_may, end_may, start_june, end_june)\n", + "\n", + "result\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ff79070", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "561bcb74", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}