diff --git a/.ipynb_checkpoints/Lab-Sql-9-checkpoint.ipynb b/.ipynb_checkpoints/Lab-Sql-9-checkpoint.ipynb
new file mode 100644
index 0000000..989fcbd
--- /dev/null
+++ b/.ipynb_checkpoints/Lab-Sql-9-checkpoint.ipynb
@@ -0,0 +1,768 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "2509c211",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "········\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Importing libraries\n",
+ "import pymysql\n",
+ "from sqlalchemy import create_engine\n",
+ "import pandas as pd\n",
+ "import getpass # To get the password without showing the input\n",
+ "password = getpass.getpass()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "0e421dc4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create a Python connection with SQL database\n",
+ "connection_string = 'mysql+pymysql://root:' + password + '@localhost/bank'\n",
+ "engine = create_engine(connection_string)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "769411ec",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rental_id | \n",
+ " rental_date | \n",
+ " inventory_id | \n",
+ " customer_id | \n",
+ " return_date | \n",
+ " staff_id | \n",
+ " last_update | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 2005-05-24 22:53:30 | \n",
+ " 367 | \n",
+ " 130 | \n",
+ " 2005-05-26 22:04:30 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 2005-05-24 22:54:33 | \n",
+ " 1525 | \n",
+ " 459 | \n",
+ " 2005-05-28 19:40:33 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 2005-05-24 23:03:39 | \n",
+ " 1711 | \n",
+ " 408 | \n",
+ " 2005-06-01 22:12:39 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 2005-05-24 23:04:41 | \n",
+ " 2452 | \n",
+ " 333 | \n",
+ " 2005-06-03 01:43:41 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 2005-05-24 23:05:21 | \n",
+ " 2079 | \n",
+ " 222 | \n",
+ " 2005-06-02 04:33:21 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 1151 | \n",
+ " 1153 | \n",
+ " 2005-05-31 21:36:44 | \n",
+ " 2725 | \n",
+ " 506 | \n",
+ " 2005-06-10 01:26:44 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1152 | \n",
+ " 1154 | \n",
+ " 2005-05-31 21:42:09 | \n",
+ " 2732 | \n",
+ " 59 | \n",
+ " 2005-06-08 16:40:09 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1153 | \n",
+ " 1155 | \n",
+ " 2005-05-31 22:17:11 | \n",
+ " 2048 | \n",
+ " 251 | \n",
+ " 2005-06-04 20:27:11 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1154 | \n",
+ " 1156 | \n",
+ " 2005-05-31 22:37:34 | \n",
+ " 460 | \n",
+ " 106 | \n",
+ " 2005-06-01 23:02:34 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1155 | \n",
+ " 1157 | \n",
+ " 2005-05-31 22:47:45 | \n",
+ " 1449 | \n",
+ " 61 | \n",
+ " 2005-06-02 18:01:45 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1156 rows × 7 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rental_id rental_date inventory_id customer_id \\\n",
+ "0 1 2005-05-24 22:53:30 367 130 \n",
+ "1 2 2005-05-24 22:54:33 1525 459 \n",
+ "2 3 2005-05-24 23:03:39 1711 408 \n",
+ "3 4 2005-05-24 23:04:41 2452 333 \n",
+ "4 5 2005-05-24 23:05:21 2079 222 \n",
+ "... ... ... ... ... \n",
+ "1151 1153 2005-05-31 21:36:44 2725 506 \n",
+ "1152 1154 2005-05-31 21:42:09 2732 59 \n",
+ "1153 1155 2005-05-31 22:17:11 2048 251 \n",
+ "1154 1156 2005-05-31 22:37:34 460 106 \n",
+ "1155 1157 2005-05-31 22:47:45 1449 61 \n",
+ "\n",
+ " return_date staff_id last_update \n",
+ "0 2005-05-26 22:04:30 1 2006-02-15 21:30:53 \n",
+ "1 2005-05-28 19:40:33 1 2006-02-15 21:30:53 \n",
+ "2 2005-06-01 22:12:39 1 2006-02-15 21:30:53 \n",
+ "3 2005-06-03 01:43:41 2 2006-02-15 21:30:53 \n",
+ "4 2005-06-02 04:33:21 1 2006-02-15 21:30:53 \n",
+ "... ... ... ... \n",
+ "1151 2005-06-10 01:26:44 2 2006-02-15 21:30:53 \n",
+ "1152 2005-06-08 16:40:09 1 2006-02-15 21:30:53 \n",
+ "1153 2005-06-04 20:27:11 2 2006-02-15 21:30:53 \n",
+ "1154 2005-06-01 23:02:34 2 2006-02-15 21:30:53 \n",
+ "1155 2005-06-02 18:01:45 1 2006-02-15 21:30:53 \n",
+ "\n",
+ "[1156 rows x 7 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Importing rentals_may table from SQL\n",
+ "rentals_may = pd.read_sql_query(\"SELECT * FROM SAKILA.RENTALS_MAY\", engine)\n",
+ "rentals_may"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "df241aa3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rental_id | \n",
+ " rental_date | \n",
+ " inventory_id | \n",
+ " customer_id | \n",
+ " return_date | \n",
+ " staff_id | \n",
+ " last_update | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1158 | \n",
+ " 2005-06-14 22:53:33 | \n",
+ " 1632 | \n",
+ " 416 | \n",
+ " 2005-06-18 21:37:33 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1159 | \n",
+ " 2005-06-14 22:55:13 | \n",
+ " 4395 | \n",
+ " 516 | \n",
+ " 2005-06-17 02:11:13 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1160 | \n",
+ " 2005-06-14 23:00:34 | \n",
+ " 2795 | \n",
+ " 239 | \n",
+ " 2005-06-18 01:58:34 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1161 | \n",
+ " 2005-06-14 23:07:08 | \n",
+ " 1690 | \n",
+ " 285 | \n",
+ " 2005-06-21 17:12:08 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1162 | \n",
+ " 2005-06-14 23:09:38 | \n",
+ " 987 | \n",
+ " 310 | \n",
+ " 2005-06-23 22:00:38 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 2306 | \n",
+ " 3465 | \n",
+ " 2005-06-21 22:10:01 | \n",
+ " 1488 | \n",
+ " 510 | \n",
+ " 2005-06-30 21:35:01 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2307 | \n",
+ " 3466 | \n",
+ " 2005-06-21 22:13:33 | \n",
+ " 371 | \n",
+ " 226 | \n",
+ " 2005-06-25 21:01:33 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2308 | \n",
+ " 3467 | \n",
+ " 2005-06-21 22:19:25 | \n",
+ " 729 | \n",
+ " 543 | \n",
+ " 2005-06-27 00:03:25 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2309 | \n",
+ " 3468 | \n",
+ " 2005-06-21 22:43:45 | \n",
+ " 2899 | \n",
+ " 100 | \n",
+ " 2005-06-30 01:49:45 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2310 | \n",
+ " 3469 | \n",
+ " 2005-06-21 22:48:59 | \n",
+ " 4087 | \n",
+ " 181 | \n",
+ " 2005-06-28 19:32:59 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2311 rows × 7 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rental_id rental_date inventory_id customer_id \\\n",
+ "0 1158 2005-06-14 22:53:33 1632 416 \n",
+ "1 1159 2005-06-14 22:55:13 4395 516 \n",
+ "2 1160 2005-06-14 23:00:34 2795 239 \n",
+ "3 1161 2005-06-14 23:07:08 1690 285 \n",
+ "4 1162 2005-06-14 23:09:38 987 310 \n",
+ "... ... ... ... ... \n",
+ "2306 3465 2005-06-21 22:10:01 1488 510 \n",
+ "2307 3466 2005-06-21 22:13:33 371 226 \n",
+ "2308 3467 2005-06-21 22:19:25 729 543 \n",
+ "2309 3468 2005-06-21 22:43:45 2899 100 \n",
+ "2310 3469 2005-06-21 22:48:59 4087 181 \n",
+ "\n",
+ " return_date staff_id last_update \n",
+ "0 2005-06-18 21:37:33 2 2006-02-15 21:30:53 \n",
+ "1 2005-06-17 02:11:13 1 2006-02-15 21:30:53 \n",
+ "2 2005-06-18 01:58:34 2 2006-02-15 21:30:53 \n",
+ "3 2005-06-21 17:12:08 1 2006-02-15 21:30:53 \n",
+ "4 2005-06-23 22:00:38 1 2006-02-15 21:30:53 \n",
+ "... ... ... ... \n",
+ "2306 2005-06-30 21:35:01 1 2006-02-15 21:30:53 \n",
+ "2307 2005-06-25 21:01:33 2 2006-02-15 21:30:53 \n",
+ "2308 2005-06-27 00:03:25 2 2006-02-15 21:30:53 \n",
+ "2309 2005-06-30 01:49:45 1 2006-02-15 21:30:53 \n",
+ "2310 2005-06-28 19:32:59 1 2006-02-15 21:30:53 \n",
+ "\n",
+ "[2311 rows x 7 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Importing rentals_june table from SQL\n",
+ "rentals_june = pd.read_sql_query(\"SELECT * FROM SAKILA.RENTALS_JUNE\", engine)\n",
+ "rentals_june"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "3e0acf5c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " number_of_rentals | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 130 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 459 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 408 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 333 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 222 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 515 | \n",
+ " 191 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 516 | \n",
+ " 351 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 517 | \n",
+ " 10 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 518 | \n",
+ " 136 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 519 | \n",
+ " 61 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
520 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id number_of_rentals\n",
+ "0 130 2\n",
+ "1 459 1\n",
+ "2 408 3\n",
+ "3 333 1\n",
+ "4 222 5\n",
+ ".. ... ...\n",
+ "515 191 2\n",
+ "516 351 1\n",
+ "517 10 1\n",
+ "518 136 1\n",
+ "519 61 1\n",
+ "\n",
+ "[520 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Checking the number of rentals for each customer for May\n",
+ "query_may = \"select customer_id, count(*) as number_of_rentals \\\n",
+ "from sakila.rentals_may \\\n",
+ "group by customer_id\"\n",
+ "\n",
+ "number_of_rentals_may = pd.read_sql_query(query_may, engine)\n",
+ "number_of_rentals_may"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "60dd7178",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " number_of_rentals | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 416 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 516 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 239 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 285 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 310 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 585 | \n",
+ " 412 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 586 | \n",
+ " 335 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 587 | \n",
+ " 226 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 588 | \n",
+ " 22 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 589 | \n",
+ " 126 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
590 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id number_of_rentals\n",
+ "0 416 5\n",
+ "1 516 6\n",
+ "2 239 5\n",
+ "3 285 3\n",
+ "4 310 6\n",
+ ".. ... ...\n",
+ "585 412 1\n",
+ "586 335 1\n",
+ "587 226 2\n",
+ "588 22 1\n",
+ "589 126 1\n",
+ "\n",
+ "[590 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Checking the number of rentals for each customer for June\n",
+ "query_june = \"select customer_id, count(*) as number_of_rentals \\\n",
+ "from sakila.rentals_june \\\n",
+ "group by customer_id\"\n",
+ "\n",
+ "number_of_rentals_june = pd.read_sql_query(query_june, engine)\n",
+ "number_of_rentals_june"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "id": "475f2018",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Writing a function that checks if customer borrowed more or less films in the month of June as compared to May\n",
+ "def check_customer(customer_id):\n",
+ " if number_of_rentals_june[number_of_rentals_june[\"customer_id\"] == customer_id].iloc[0,1] > number_of_rentals_may[number_of_rentals_may[\"customer_id\"] == customer_id].iloc[0,1]:\n",
+ " print(\"Customer borrowed more films in June than May\")\n",
+ " elif number_of_rentals_june[number_of_rentals_june[\"customer_id\"] == customer_id].iloc[0,1] < number_of_rentals_may[number_of_rentals_may[\"customer_id\"] == customer_id].iloc[0,1]:\n",
+ " print(\"Customer borrowed more films in May than June\")\n",
+ " else:\n",
+ " print(\"Customer borrowed the same amount of films in May and June\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "id": "c27ef760",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer borrowed more films in June than May\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Applying the function to the customer_id == 100\n",
+ "check_customer(100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "id": "59221aff",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer borrowed more films in May than June\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Applying the function to the customer_id == 150\n",
+ "check_customer(150)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "id": "2ce8e568",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer borrowed the same amount of films in May and June\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Applying the function to the customer_id == 70\n",
+ "check_customer(70)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Lab-Sql-9.ipynb b/Lab-Sql-9.ipynb
new file mode 100644
index 0000000..989fcbd
--- /dev/null
+++ b/Lab-Sql-9.ipynb
@@ -0,0 +1,768 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "2509c211",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "········\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Importing libraries\n",
+ "import pymysql\n",
+ "from sqlalchemy import create_engine\n",
+ "import pandas as pd\n",
+ "import getpass # To get the password without showing the input\n",
+ "password = getpass.getpass()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "0e421dc4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create a Python connection with SQL database\n",
+ "connection_string = 'mysql+pymysql://root:' + password + '@localhost/bank'\n",
+ "engine = create_engine(connection_string)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "769411ec",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rental_id | \n",
+ " rental_date | \n",
+ " inventory_id | \n",
+ " customer_id | \n",
+ " return_date | \n",
+ " staff_id | \n",
+ " last_update | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 2005-05-24 22:53:30 | \n",
+ " 367 | \n",
+ " 130 | \n",
+ " 2005-05-26 22:04:30 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 2005-05-24 22:54:33 | \n",
+ " 1525 | \n",
+ " 459 | \n",
+ " 2005-05-28 19:40:33 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 2005-05-24 23:03:39 | \n",
+ " 1711 | \n",
+ " 408 | \n",
+ " 2005-06-01 22:12:39 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 2005-05-24 23:04:41 | \n",
+ " 2452 | \n",
+ " 333 | \n",
+ " 2005-06-03 01:43:41 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 2005-05-24 23:05:21 | \n",
+ " 2079 | \n",
+ " 222 | \n",
+ " 2005-06-02 04:33:21 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 1151 | \n",
+ " 1153 | \n",
+ " 2005-05-31 21:36:44 | \n",
+ " 2725 | \n",
+ " 506 | \n",
+ " 2005-06-10 01:26:44 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1152 | \n",
+ " 1154 | \n",
+ " 2005-05-31 21:42:09 | \n",
+ " 2732 | \n",
+ " 59 | \n",
+ " 2005-06-08 16:40:09 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1153 | \n",
+ " 1155 | \n",
+ " 2005-05-31 22:17:11 | \n",
+ " 2048 | \n",
+ " 251 | \n",
+ " 2005-06-04 20:27:11 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1154 | \n",
+ " 1156 | \n",
+ " 2005-05-31 22:37:34 | \n",
+ " 460 | \n",
+ " 106 | \n",
+ " 2005-06-01 23:02:34 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1155 | \n",
+ " 1157 | \n",
+ " 2005-05-31 22:47:45 | \n",
+ " 1449 | \n",
+ " 61 | \n",
+ " 2005-06-02 18:01:45 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1156 rows × 7 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rental_id rental_date inventory_id customer_id \\\n",
+ "0 1 2005-05-24 22:53:30 367 130 \n",
+ "1 2 2005-05-24 22:54:33 1525 459 \n",
+ "2 3 2005-05-24 23:03:39 1711 408 \n",
+ "3 4 2005-05-24 23:04:41 2452 333 \n",
+ "4 5 2005-05-24 23:05:21 2079 222 \n",
+ "... ... ... ... ... \n",
+ "1151 1153 2005-05-31 21:36:44 2725 506 \n",
+ "1152 1154 2005-05-31 21:42:09 2732 59 \n",
+ "1153 1155 2005-05-31 22:17:11 2048 251 \n",
+ "1154 1156 2005-05-31 22:37:34 460 106 \n",
+ "1155 1157 2005-05-31 22:47:45 1449 61 \n",
+ "\n",
+ " return_date staff_id last_update \n",
+ "0 2005-05-26 22:04:30 1 2006-02-15 21:30:53 \n",
+ "1 2005-05-28 19:40:33 1 2006-02-15 21:30:53 \n",
+ "2 2005-06-01 22:12:39 1 2006-02-15 21:30:53 \n",
+ "3 2005-06-03 01:43:41 2 2006-02-15 21:30:53 \n",
+ "4 2005-06-02 04:33:21 1 2006-02-15 21:30:53 \n",
+ "... ... ... ... \n",
+ "1151 2005-06-10 01:26:44 2 2006-02-15 21:30:53 \n",
+ "1152 2005-06-08 16:40:09 1 2006-02-15 21:30:53 \n",
+ "1153 2005-06-04 20:27:11 2 2006-02-15 21:30:53 \n",
+ "1154 2005-06-01 23:02:34 2 2006-02-15 21:30:53 \n",
+ "1155 2005-06-02 18:01:45 1 2006-02-15 21:30:53 \n",
+ "\n",
+ "[1156 rows x 7 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Importing rentals_may table from SQL\n",
+ "rentals_may = pd.read_sql_query(\"SELECT * FROM SAKILA.RENTALS_MAY\", engine)\n",
+ "rentals_may"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "df241aa3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rental_id | \n",
+ " rental_date | \n",
+ " inventory_id | \n",
+ " customer_id | \n",
+ " return_date | \n",
+ " staff_id | \n",
+ " last_update | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1158 | \n",
+ " 2005-06-14 22:53:33 | \n",
+ " 1632 | \n",
+ " 416 | \n",
+ " 2005-06-18 21:37:33 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1159 | \n",
+ " 2005-06-14 22:55:13 | \n",
+ " 4395 | \n",
+ " 516 | \n",
+ " 2005-06-17 02:11:13 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1160 | \n",
+ " 2005-06-14 23:00:34 | \n",
+ " 2795 | \n",
+ " 239 | \n",
+ " 2005-06-18 01:58:34 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 1161 | \n",
+ " 2005-06-14 23:07:08 | \n",
+ " 1690 | \n",
+ " 285 | \n",
+ " 2005-06-21 17:12:08 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 1162 | \n",
+ " 2005-06-14 23:09:38 | \n",
+ " 987 | \n",
+ " 310 | \n",
+ " 2005-06-23 22:00:38 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 2306 | \n",
+ " 3465 | \n",
+ " 2005-06-21 22:10:01 | \n",
+ " 1488 | \n",
+ " 510 | \n",
+ " 2005-06-30 21:35:01 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2307 | \n",
+ " 3466 | \n",
+ " 2005-06-21 22:13:33 | \n",
+ " 371 | \n",
+ " 226 | \n",
+ " 2005-06-25 21:01:33 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2308 | \n",
+ " 3467 | \n",
+ " 2005-06-21 22:19:25 | \n",
+ " 729 | \n",
+ " 543 | \n",
+ " 2005-06-27 00:03:25 | \n",
+ " 2 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2309 | \n",
+ " 3468 | \n",
+ " 2005-06-21 22:43:45 | \n",
+ " 2899 | \n",
+ " 100 | \n",
+ " 2005-06-30 01:49:45 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ " | 2310 | \n",
+ " 3469 | \n",
+ " 2005-06-21 22:48:59 | \n",
+ " 4087 | \n",
+ " 181 | \n",
+ " 2005-06-28 19:32:59 | \n",
+ " 1 | \n",
+ " 2006-02-15 21:30:53 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2311 rows × 7 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rental_id rental_date inventory_id customer_id \\\n",
+ "0 1158 2005-06-14 22:53:33 1632 416 \n",
+ "1 1159 2005-06-14 22:55:13 4395 516 \n",
+ "2 1160 2005-06-14 23:00:34 2795 239 \n",
+ "3 1161 2005-06-14 23:07:08 1690 285 \n",
+ "4 1162 2005-06-14 23:09:38 987 310 \n",
+ "... ... ... ... ... \n",
+ "2306 3465 2005-06-21 22:10:01 1488 510 \n",
+ "2307 3466 2005-06-21 22:13:33 371 226 \n",
+ "2308 3467 2005-06-21 22:19:25 729 543 \n",
+ "2309 3468 2005-06-21 22:43:45 2899 100 \n",
+ "2310 3469 2005-06-21 22:48:59 4087 181 \n",
+ "\n",
+ " return_date staff_id last_update \n",
+ "0 2005-06-18 21:37:33 2 2006-02-15 21:30:53 \n",
+ "1 2005-06-17 02:11:13 1 2006-02-15 21:30:53 \n",
+ "2 2005-06-18 01:58:34 2 2006-02-15 21:30:53 \n",
+ "3 2005-06-21 17:12:08 1 2006-02-15 21:30:53 \n",
+ "4 2005-06-23 22:00:38 1 2006-02-15 21:30:53 \n",
+ "... ... ... ... \n",
+ "2306 2005-06-30 21:35:01 1 2006-02-15 21:30:53 \n",
+ "2307 2005-06-25 21:01:33 2 2006-02-15 21:30:53 \n",
+ "2308 2005-06-27 00:03:25 2 2006-02-15 21:30:53 \n",
+ "2309 2005-06-30 01:49:45 1 2006-02-15 21:30:53 \n",
+ "2310 2005-06-28 19:32:59 1 2006-02-15 21:30:53 \n",
+ "\n",
+ "[2311 rows x 7 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Importing rentals_june table from SQL\n",
+ "rentals_june = pd.read_sql_query(\"SELECT * FROM SAKILA.RENTALS_JUNE\", engine)\n",
+ "rentals_june"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "3e0acf5c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " number_of_rentals | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 130 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 459 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 408 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 333 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 222 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 515 | \n",
+ " 191 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 516 | \n",
+ " 351 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 517 | \n",
+ " 10 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 518 | \n",
+ " 136 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 519 | \n",
+ " 61 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
520 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id number_of_rentals\n",
+ "0 130 2\n",
+ "1 459 1\n",
+ "2 408 3\n",
+ "3 333 1\n",
+ "4 222 5\n",
+ ".. ... ...\n",
+ "515 191 2\n",
+ "516 351 1\n",
+ "517 10 1\n",
+ "518 136 1\n",
+ "519 61 1\n",
+ "\n",
+ "[520 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Checking the number of rentals for each customer for May\n",
+ "query_may = \"select customer_id, count(*) as number_of_rentals \\\n",
+ "from sakila.rentals_may \\\n",
+ "group by customer_id\"\n",
+ "\n",
+ "number_of_rentals_may = pd.read_sql_query(query_may, engine)\n",
+ "number_of_rentals_may"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "60dd7178",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " number_of_rentals | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 416 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 516 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 239 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 285 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 310 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 585 | \n",
+ " 412 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 586 | \n",
+ " 335 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 587 | \n",
+ " 226 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 588 | \n",
+ " 22 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 589 | \n",
+ " 126 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
590 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id number_of_rentals\n",
+ "0 416 5\n",
+ "1 516 6\n",
+ "2 239 5\n",
+ "3 285 3\n",
+ "4 310 6\n",
+ ".. ... ...\n",
+ "585 412 1\n",
+ "586 335 1\n",
+ "587 226 2\n",
+ "588 22 1\n",
+ "589 126 1\n",
+ "\n",
+ "[590 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Checking the number of rentals for each customer for June\n",
+ "query_june = \"select customer_id, count(*) as number_of_rentals \\\n",
+ "from sakila.rentals_june \\\n",
+ "group by customer_id\"\n",
+ "\n",
+ "number_of_rentals_june = pd.read_sql_query(query_june, engine)\n",
+ "number_of_rentals_june"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "id": "475f2018",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Writing a function that checks if customer borrowed more or less films in the month of June as compared to May\n",
+ "def check_customer(customer_id):\n",
+ " if number_of_rentals_june[number_of_rentals_june[\"customer_id\"] == customer_id].iloc[0,1] > number_of_rentals_may[number_of_rentals_may[\"customer_id\"] == customer_id].iloc[0,1]:\n",
+ " print(\"Customer borrowed more films in June than May\")\n",
+ " elif number_of_rentals_june[number_of_rentals_june[\"customer_id\"] == customer_id].iloc[0,1] < number_of_rentals_may[number_of_rentals_may[\"customer_id\"] == customer_id].iloc[0,1]:\n",
+ " print(\"Customer borrowed more films in May than June\")\n",
+ " else:\n",
+ " print(\"Customer borrowed the same amount of films in May and June\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "id": "c27ef760",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer borrowed more films in June than May\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Applying the function to the customer_id == 100\n",
+ "check_customer(100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "id": "59221aff",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer borrowed more films in May than June\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Applying the function to the customer_id == 150\n",
+ "check_customer(150)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "id": "2ce8e568",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Customer borrowed the same amount of films in May and June\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Applying the function to the customer_id == 70\n",
+ "check_customer(70)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Lab-Sql-9.sql b/Lab-Sql-9.sql
new file mode 100644
index 0000000..8f71316
--- /dev/null
+++ b/Lab-Sql-9.sql
@@ -0,0 +1,23 @@
+-- 1) Creating a table rentals_may to store the data from rental table with information for the month of May
+-- 2) Inserting values in the table rentals_may using the table rental, filtering values only for the month of May
+create table sakila.rentals_may as
+select *
+from sakila.rental
+where date_format(rental_date, "%M") = "May";
+
+-- 3) Creating a table rentals_june to store the data from rental table with information for the month of June
+-- 4) Inserting values in the table rentals_june using the table rental, filtering values only for the month of June
+create table sakila.rentals_june as
+select *
+from sakila.rental
+where date_format(rental_date, "%M") = "June";
+
+-- 5) Checking the number of rentals for each customer for May
+select customer_id, count(*) as number_of_rentals
+from sakila.rentals_may
+group by customer_id;
+
+-- 6) Checking the number of rentals for each customer for June
+select customer_id, count(*) as number_of_rentals
+from sakila.rentals_june
+group by customer_id;
\ No newline at end of file