@@ -271,77 +271,82 @@ The batching is configurable by ``write_options``\ :
271271
272272.. code-block :: python
273273
274- import rx
275- from rx import operators as ops
274+ from datetime import datetime, timedelta
276275
277- from influxdb_client import InfluxDBClient, Point, WriteOptions
278- from influxdb_client.client.write_api import SYNCHRONOUS
276+ import pandas as pd
277+ import rx
278+ from pytz import UTC
279+ from rx import operators as ops
279280
280- _client = InfluxDBClient(url = " http://localhost:8086" , token = " my-token" , org = " my-org" )
281- _write_client = _client.write_api(write_options = WriteOptions(batch_size = 500 ,
282- flush_interval = 10_000 ,
283- jitter_interval = 2_000 ,
284- retry_interval = 5_000 ,
285- max_retries = 5 ,
286- max_retry_delay = 30_000 ,
287- exponential_base = 2 ))
281+ from influxdb_client import InfluxDBClient, Point, WriteOptions
288282
289- """
290- Write Line Protocol formatted as string
291- """
292- _write_client.write(" my-bucket" , " my-org" , " h2o_feet,location=coyote_creek water_level=1.0 1" )
293- _write_client.write(" my-bucket" , " my-org" , [" h2o_feet,location=coyote_creek water_level=2.0 2" ,
294- " h2o_feet,location=coyote_creek water_level=3.0 3" ])
283+ _client = InfluxDBClient(url = " http://localhost:8086" , token = " my-token" , org = " my-org" )
284+ _write_client = _client.write_api(write_options = WriteOptions(batch_size = 500 ,
285+ flush_interval = 10_000 ,
286+ jitter_interval = 2_000 ,
287+ retry_interval = 5_000 ,
288+ max_retries = 5 ,
289+ max_retry_delay = 30_000 ,
290+ exponential_base = 2 ))
295291
296- """
297- Write Line Protocol formatted as byte array
298- """
299- _write_client.write(" my-bucket" , " my-org" , " h2o_feet,location=coyote_creek water_level=1.0 1" .encode() )
300- _write_client.write(" my-bucket" , " my-org" , [" h2o_feet,location=coyote_creek water_level=2.0 2" .encode() ,
301- " h2o_feet,location=coyote_creek water_level=3.0 3" .encode() ])
292+ """
293+ Write Line Protocol formatted as string
294+ """
295+ _write_client.write(" my-bucket" , " my-org" , " h2o_feet,location=coyote_creek water_level=1.0 1" )
296+ _write_client.write(" my-bucket" , " my-org" , [" h2o_feet,location=coyote_creek water_level=2.0 2" ,
297+ " h2o_feet,location=coyote_creek water_level=3.0 3" ])
302298
303- """
304- Write Dictionary-style object
305- """
306- _write_client.write(" my-bucket" , " my-org" , {" measurement" : " h2o_feet" , " tags" : {" location" : " coyote_creek" },
307- " fields" : {" water_level" : 1.0 }, " time" : 1 })
308- _write_client.write(" my-bucket" , " my-org" , [{" measurement" : " h2o_feet" , " tags" : {" location" : " coyote_creek" },
309- " fields" : {" water_level" : 2.0 }, " time" : 2 },
310- {" measurement" : " h2o_feet" , " tags" : {" location" : " coyote_creek" },
311- " fields" : {" water_level" : 3.0 }, " time" : 3 }])
299+ """
300+ Write Line Protocol formatted as byte array
301+ """
302+ _write_client.write(" my-bucket" , " my-org" , " h2o_feet,location=coyote_creek water_level=1.0 1" .encode())
303+ _write_client.write(" my-bucket" , " my-org" , [" h2o_feet,location=coyote_creek water_level=2.0 2" .encode(),
304+ " h2o_feet,location=coyote_creek water_level=3.0 3" .encode()])
312305
313- """
314- Write Data Point
315- """
316- _write_client.write(" my-bucket" , " my-org" , Point(" h2o_feet" ).tag(" location" , " coyote_creek" ).field(" water_level" , 4.0 ).time(4 ))
317- _write_client.write(" my-bucket" , " my-org" , [Point(" h2o_feet" ).tag(" location" , " coyote_creek" ).field(" water_level" , 5.0 ).time(5 ),
318- Point(" h2o_feet" ).tag(" location" , " coyote_creek" ).field(" water_level" , 6.0 ).time(6 )])
306+ """
307+ Write Dictionary-style object
308+ """
309+ _write_client.write(" my-bucket" , " my-org" , {" measurement" : " h2o_feet" , " tags" : {" location" : " coyote_creek" },
310+ " fields" : {" water_level" : 1.0 }, " time" : 1 })
311+ _write_client.write(" my-bucket" , " my-org" , [{" measurement" : " h2o_feet" , " tags" : {" location" : " coyote_creek" },
312+ " fields" : {" water_level" : 2.0 }, " time" : 2 },
313+ {" measurement" : " h2o_feet" , " tags" : {" location" : " coyote_creek" },
314+ " fields" : {" water_level" : 3.0 }, " time" : 3 }])
319315
320- """
321- Write Observable stream
322- """
323- _data = rx \
324- .range(7 , 11 ) \
325- .pipe(ops.map(lambda i : " h2o_feet,location=coyote_creek water_level={0} .0 {0} " .format(i)))
316+ """
317+ Write Data Point
318+ """
319+ _write_client.write(" my-bucket" , " my-org" ,
320+ Point(" h2o_feet" ).tag(" location" , " coyote_creek" ).field(" water_level" , 4.0 ).time(4 ))
321+ _write_client.write(" my-bucket" , " my-org" ,
322+ [Point(" h2o_feet" ).tag(" location" , " coyote_creek" ).field(" water_level" , 5.0 ).time(5 ),
323+ Point(" h2o_feet" ).tag(" location" , " coyote_creek" ).field(" water_level" , 6.0 ).time(6 )])
326324
327- _write_client.write(" my-bucket" , " my-org" , _data)
325+ """
326+ Write Observable stream
327+ """
328+ _data = rx \
329+ .range(7 , 11 ) \
330+ .pipe(ops.map(lambda i : " h2o_feet,location=coyote_creek water_level={0} .0 {0} " .format(i)))
328331
329- """
330- Write Pandas DataFrame
331- """
332- _now = pd.Timestamp().now(' UTC' )
333- _data_frame = pd.DataFrame(data = [[" coyote_creek" , 1.0 ], [" coyote_creek" , 2.0 ]],
334- index = [now, now + timedelta(hours = 1 )],
335- columns = [" location" , " water_level" ])
332+ _write_client.write(" my-bucket" , " my-org" , _data)
336333
337- _write_client.write(bucket.name, record = data_frame, data_frame_measurement_name = ' h2o_feet' ,
338- data_frame_tag_columns = [' location' ])
334+ """
335+ Write Pandas DataFrame
336+ """
337+ _now = datetime.now(UTC )
338+ _data_frame = pd.DataFrame(data = [[" coyote_creek" , 1.0 ], [" coyote_creek" , 2.0 ]],
339+ index = [_now, _now + timedelta(hours = 1 )],
340+ columns = [" location" , " water_level" ])
339341
340- """
341- Close client
342- """
343- _write_client.__del__ ()
344- _client.__del__ ()
342+ _write_client.write(" my-bucket" , " my-org" , record = _data_frame, data_frame_measurement_name = ' h2o_feet' ,
343+ data_frame_tag_columns = [' location' ])
344+
345+ """
346+ Close client
347+ """
348+ _write_client.__del__ ()
349+ _client.__del__ ()
345350
346351.. marker-batching-end
347352
0 commit comments