|
| 1 | +--- |
| 2 | +comments: true |
| 3 | +difficulty: Medium |
| 4 | +edit_url: https://github.com/doocs/leetcode/edit/main/solution/0700-0799/0790.Domino%20and%20Tromino%20Tiling/README_EN.md |
| 5 | +tags: |
| 6 | + - Dynamic Programming |
| 7 | +--- |
| 8 | + |
| 9 | +<!-- problem:start --> |
| 10 | + |
| 11 | +# [790. Domino and Tromino Tiling](https://leetcode.com/problems/domino-and-tromino-tiling) |
| 12 | + |
| 13 | +[中文文档](/solution/0700-0799/0790.Domino%20and%20Tromino%20Tiling/README.md) |
| 14 | + |
| 15 | +## Description |
| 16 | + |
| 17 | +<!-- description:start --> |
| 18 | + |
| 19 | +<p>You have two types of tiles: a <code>2 x 1</code> domino shape and a tromino shape. You may rotate these shapes.</p> |
| 20 | +<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0700-0799/0790.Domino%20and%20Tromino%20Tiling/images/lc-domino.jpg" style="width: 362px; height: 195px;" /> |
| 21 | +<p>Given an integer n, return <em>the number of ways to tile an</em> <code>2 x n</code> <em>board</em>. Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> |
| 22 | + |
| 23 | +<p>In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.</p> |
| 24 | + |
| 25 | +<p> </p> |
| 26 | +<p><strong class="example">Example 1:</strong></p> |
| 27 | +<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0700-0799/0790.Domino%20and%20Tromino%20Tiling/images/lc-domino1.jpg" style="width: 500px; height: 226px;" /> |
| 28 | +<pre> |
| 29 | +<strong>Input:</strong> n = 3 |
| 30 | +<strong>Output:</strong> 5 |
| 31 | +<strong>Explanation:</strong> The five different ways are show above. |
| 32 | +</pre> |
| 33 | + |
| 34 | +<p><strong class="example">Example 2:</strong></p> |
| 35 | + |
| 36 | +<pre> |
| 37 | +<strong>Input:</strong> n = 1 |
| 38 | +<strong>Output:</strong> 1 |
| 39 | +</pre> |
| 40 | + |
| 41 | +<p> </p> |
| 42 | +<p><strong>Constraints:</strong></p> |
| 43 | + |
| 44 | +<ul> |
| 45 | + <li><code>1 <= n <= 1000</code></li> |
| 46 | +</ul> |
| 47 | + |
| 48 | +<!-- description:end --> |
| 49 | + |
| 50 | +## Solutions |
| 51 | + |
| 52 | +<!-- solution:start --> |
| 53 | + |
| 54 | +### Solution 1: Dynamic Programming |
| 55 | + |
| 56 | +First, we need to understand the problem. The problem is essentially asking us to find the number of ways to tile a $2 \times n$ board, where each square on the board can only be covered by one tile. |
| 57 | + |
| 58 | +There are two types of tiles: `2 x 1` and `L` shapes, and both types of tiles can be rotated. We denote the rotated tiles as `1 x 2` and `L'` shapes. |
| 59 | + |
| 60 | +We define $f[i][j]$ to represent the number of ways to tile the first $2 \times i$ board, where $j$ represents the state of the last column. The last column has 4 states: |
| 61 | + |
| 62 | +- The last column is fully covered, denoted as $0$ |
| 63 | +- The last column has only the top square covered, denoted as $1$ |
| 64 | +- The last column has only the bottom square covered, denoted as $2$ |
| 65 | +- The last column is not covered, denoted as $3$ |
| 66 | + |
| 67 | +The answer is $f[n][0]$. Initially, $f[0][0] = 1$ and the rest $f[0][j] = 0$. |
| 68 | + |
| 69 | +We consider tiling up to the $i$-th column and look at the state transition equations: |
| 70 | + |
| 71 | +When $j = 0$, the last column is fully covered. It can be transitioned from the previous column's states $0, 1, 2, 3$ by placing the corresponding tiles, i.e., $f[i-1][0]$ with a `1 x 2` tile, $f[i-1][1]$ with an `L'` tile, $f[i-1][2]$ with an `L'` tile, or $f[i-1][3]$ with two `2 x 1` tiles. Therefore, $f[i][0] = \sum_{j=0}^3 f[i-1][j]$. |
| 72 | + |
| 73 | +When $j = 1$, the last column has only the top square covered. It can be transitioned from the previous column's states $2, 3$ by placing a `2 x 1` tile or an `L` tile. Therefore, $f[i][1] = f[i-1][2] + f[i-1][3]$. |
| 74 | + |
| 75 | +When $j = 2$, the last column has only the bottom square covered. It can be transitioned from the previous column's states $1, 3$ by placing a `2 x 1` tile or an `L'` tile. Therefore, $f[i][2] = f[i-1][1] + f[i-1][3]$. |
| 76 | + |
| 77 | +When $j = 3$, the last column is not covered. It can be transitioned from the previous column's state $0$. Therefore, $f[i][3] = f[i-1][0]$. |
| 78 | + |
| 79 | +We can see that the state transition equations only involve the previous column's states, so we can use a rolling array to optimize the space complexity. |
| 80 | + |
| 81 | +Note that the values of the states can be very large, so we need to take modulo $10^9 + 7$. |
| 82 | + |
| 83 | +The time complexity is $O(n)$, and the space complexity is $O(1)$. Where $n$ is the number of columns of the board. |
| 84 | + |
| 85 | +<!-- tabs:start --> |
| 86 | + |
| 87 | +#### Python3 |
| 88 | + |
| 89 | +```python |
| 90 | +class Solution: |
| 91 | + def numTilings(self, n: int) -> int: |
| 92 | + f = [1, 0, 0, 0] |
| 93 | + mod = 10**9 + 7 |
| 94 | + for i in range(1, n + 1): |
| 95 | + g = [0] * 4 |
| 96 | + g[0] = (f[0] + f[1] + f[2] + f[3]) % mod |
| 97 | + g[1] = (f[2] + f[3]) % mod |
| 98 | + g[2] = (f[1] + f[3]) % mod |
| 99 | + g[3] = f[0] |
| 100 | + f = g |
| 101 | + return f[0] |
| 102 | +``` |
| 103 | + |
| 104 | +#### Java |
| 105 | + |
| 106 | +```java |
| 107 | +class Solution { |
| 108 | + public int numTilings(int n) { |
| 109 | + long[] f = {1, 0, 0, 0}; |
| 110 | + int mod = (int) 1e9 + 7; |
| 111 | + for (int i = 1; i <= n; ++i) { |
| 112 | + long[] g = new long[4]; |
| 113 | + g[0] = (f[0] + f[1] + f[2] + f[3]) % mod; |
| 114 | + g[1] = (f[2] + f[3]) % mod; |
| 115 | + g[2] = (f[1] + f[3]) % mod; |
| 116 | + g[3] = f[0]; |
| 117 | + f = g; |
| 118 | + } |
| 119 | + return (int) f[0]; |
| 120 | + } |
| 121 | +} |
| 122 | +``` |
| 123 | + |
| 124 | +#### C++ |
| 125 | + |
| 126 | +```cpp |
| 127 | +class Solution { |
| 128 | +public: |
| 129 | + const int mod = 1e9 + 7; |
| 130 | + |
| 131 | + int numTilings(int n) { |
| 132 | + long f[4] = {1, 0, 0, 0}; |
| 133 | + for (int i = 1; i <= n; ++i) { |
| 134 | + long g[4] = {0, 0, 0, 0}; |
| 135 | + g[0] = (f[0] + f[1] + f[2] + f[3]) % mod; |
| 136 | + g[1] = (f[2] + f[3]) % mod; |
| 137 | + g[2] = (f[1] + f[3]) % mod; |
| 138 | + g[3] = f[0]; |
| 139 | + memcpy(f, g, sizeof(g)); |
| 140 | + } |
| 141 | + return f[0]; |
| 142 | + } |
| 143 | +}; |
| 144 | +``` |
| 145 | + |
| 146 | +#### Go |
| 147 | + |
| 148 | +```go |
| 149 | +func numTilings(n int) int { |
| 150 | + f := [4]int{} |
| 151 | + f[0] = 1 |
| 152 | + const mod int = 1e9 + 7 |
| 153 | + for i := 1; i <= n; i++ { |
| 154 | + g := [4]int{} |
| 155 | + g[0] = (f[0] + f[1] + f[2] + f[3]) % mod |
| 156 | + g[1] = (f[2] + f[3]) % mod |
| 157 | + g[2] = (f[1] + f[3]) % mod |
| 158 | + g[3] = f[0] |
| 159 | + f = g |
| 160 | + } |
| 161 | + return f[0] |
| 162 | +} |
| 163 | +``` |
| 164 | + |
| 165 | +<!-- tabs:end --> |
| 166 | + |
| 167 | +<!-- solution:end --> |
| 168 | + |
| 169 | +<!-- problem:end --> |
0 commit comments