Skip to content

Commit ecfb96f

Browse files
authored
Update README.md
1 parent 89b58a1 commit ecfb96f

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

README.md

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ Below examples include the intense usage of industry-hot frameworks (i.e. Pytorc
3434
<hr>
3535

3636
- ## Machine Learning
37-
*Library / Tools: Keras, Tensorflow, fast.ai, pandas, numpy, xgboost, lightgbm, scikit-learn, optuna, Seaborn, Matplotlib*
37+
Library / Tools: Keras, Tensorflow, fast.ai, pandas, numpy, xgboost, lightgbm, scikit-learn, optuna, Seaborn, Matplotlib
3838

3939

4040
### [Tabular data / Collaborative filtering](https://github.com/hyunjoonbok/Python-Projects/blob/master/Fast.ai/(Fast.ai)%20Neural%20Net%20Tabular%20data.ipynb):
@@ -68,7 +68,7 @@ Below examples include the intense usage of industry-hot frameworks (i.e. Pytorc
6868
<hr>
6969

7070
- ## Deep Learning
71-
*Library / Tools: Pytorch, cv2, Keras, fast.ai, pandas, numpy, Pandas, Matplotlib*
71+
Library / Tools: Pytorch, cv2, Keras, fast.ai, pandas, numpy, Pandas, Matplotlib
7272

7373
### [Image Restoration_and_Enhancement using Generative Adversarial Network(GANs)](https://github.com/hyunjoonbok/Python-Projects/blob/master/Fast.ai/(Fast.ai)%20%5BNew%5D%20GAN%20-%20Image%20Restoration_and_Enhancement.ipynb):
7474
<p>
@@ -112,7 +112,7 @@ Below examples include the intense usage of industry-hot frameworks (i.e. Pytorc
112112
<hr>
113113

114114
- ## Time Series
115-
*Library / Tools: Keras, Tensorflow, fast.ai, pandas, numpy, xgboost, lightgbm, scikit-learn, optuna, Seaborn, Matplotlib*
115+
Library / Tools: Keras, Tensorflow, fast.ai, pandas, numpy, xgboost, lightgbm, scikit-learn, optuna, Seaborn, Matplotlib
116116

117117
### [(Kaggle) Sales Prediction on store items](https://github.com/hyunjoonbok/Python-Projects/blob/master/Fast.ai/(Fast.ai)%20TimeSeries%20-%20Sales%20Prediction.ipynb):
118118
<p>
@@ -131,7 +131,7 @@ Below examples include the intense usage of industry-hot frameworks (i.e. Pytorc
131131

132132

133133
- ## NLP/TextClassification
134-
*Library / Tools: Pytorch, transformers, fast.ai, tqdm, pandas, numpy, pygments, google_play_scraper, albumentations, joblib, xgboost, lightgbm, scikit-learn, optuna, Seaborn, Matplotlib*
134+
Library / Tools: Pytorch, transformers, fast.ai, tqdm, pandas, numpy, pygments, google_play_scraper, albumentations, joblib, xgboost, lightgbm, scikit-learn, optuna, Seaborn, Matplotlib
135135

136136
### [Text Classification_final (Language Model)](https://github.com/hyunjoonbok/Python-Projects/blob/master/Fast.ai/(Fast.ai)%20Neural%20Net%20Tabular%20data.ipynb):
137137
<p>
@@ -167,13 +167,14 @@ Below examples include the intense usage of industry-hot frameworks (i.e. Pytorc
167167
<hr>
168168

169169
- ## Micellenous
170+
Library / Tools: pandas, numpy, elasticsearch, datetime
171+
170172
### [ElasticSearch connections with Python](https://github.com/hyunjoonbok/Python-Projects/blob/master/ATG_work/%5BATG%5D%20ElasticSearch%20connections%20with%20Python-v2.ipynb):
171173
<p>
172174
Use of Python language to pull data directly from ELK stack. Origianlly came in to JSON format, convert it to Dataframe and do simple EDA / Visualization.
173175
</p>
174176
December 10, 2019
175177

176-
*Library / Tools: pandas, numpy, elasticsearch, datetime*
177178

178179
<hr>
179180

0 commit comments

Comments
 (0)