@@ -708,6 +708,9 @@ def negative(input: VSA_Model) -> VSA_Model:
708708def soft_quantize (input : Tensor ):
709709 """Applies the hyperbolic tanh function to all elements of the input tensor.
710710
711+ .. warning::
712+ This function does not take the VSA model class into account.
713+
711714 Args:
712715 input (Tensor): input tensor.
713716
@@ -717,12 +720,15 @@ def soft_quantize(input: Tensor):
717720
718721 Examples::
719722
720- >>> x = functional.random_hv(2, 3)
721- >>> y = functional.bundle(x[0], x[1])
723+ >>> x = torchhd.random_hv(2, 6)
724+ >>> x
725+ tensor([[ 1., 1., -1., 1., 1., 1.],
726+ [ 1., -1., -1., -1., 1., -1.]])
727+ >>> y = torchhd.bundle(x[0], x[1])
722728 >>> y
723- tensor([0., 2., 0.])
724- >>> functional .soft_quantize(y)
725- tensor([0. 0000, 0.9640, 0.0000])
729+ tensor([ 2., 0., - 2., 0., 2., 0.])
730+ >>> torchhd .soft_quantize(y)
731+ tensor([ 0.9640, 0. 0000, - 0.9640, 0.0000, 0.9640, 0.0000])
726732
727733 """
728734 return torch .tanh (input )
@@ -731,6 +737,9 @@ def soft_quantize(input: Tensor):
731737def hard_quantize (input : Tensor ):
732738 """Applies binary quantization to all elements of the input tensor.
733739
740+ .. warning::
741+ This function does not take the VSA model class into account.
742+
734743 Args:
735744 input (Tensor): input tensor
736745
@@ -740,12 +749,15 @@ def hard_quantize(input: Tensor):
740749
741750 Examples::
742751
743- >>> x = functional.random_hv(2, 3)
744- >>> y = functional.bundle(x[0], x[1])
752+ >>> x = torchhd.random_hv(2, 6)
753+ >>> x
754+ tensor([[ 1., 1., -1., 1., 1., 1.],
755+ [ 1., -1., -1., -1., 1., -1.]])
756+ >>> y = torchhd.bundle(x[0], x[1])
745757 >>> y
746- tensor([ 0., -2., -2 .])
747- >>> functional .hard_quantize(y)
748- tensor([ 1., -1., -1.])
758+ tensor([ 2., 0., -2., 0., 2., 0 .])
759+ >>> torchhd .hard_quantize(y)
760+ tensor([ 1., -1., -1., -1., 1., -1. ])
749761
750762 """
751763 # Make sure that the output tensor has the same dtype and device
0 commit comments