@@ -56,6 +56,8 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
5656 model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
5757 _entry ('efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ,
5858 model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
59+ _entry ('efficientnet_em' , 'EfficientNet-EdgeTPU-M' , '1905.11946' ,
60+ model_desc = 'Trained from scratch in PyTorch w/ RandAugment' ),
5961
6062 _entry ('gluon_inception_v3' , 'Inception V3' , '1512.00567' , model_desc = 'Ported from GluonCV Model Zoo' ),
6163 _entry ('gluon_resnet18_v1b' , 'ResNet-18' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
@@ -111,8 +113,11 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
111113 model_desc = "'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
112114 "SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing" ),
113115
116+ _entry ('wide_resnet50_2' , 'Wide-ResNet-50' , '1605.07146' ),
117+
114118 _entry ('seresnet18' , 'SE-ResNet-18' , '1709.01507' ),
115119 _entry ('seresnet34' , 'SE-ResNet-34' , '1709.01507' ),
120+ _entry ('seresnet50' , 'SE-ResNet-50' , '1709.01507' ),
116121 _entry ('seresnext26_32x4d' , 'SE-ResNeXt-26 32x4d' , '1709.01507' ,
117122 model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck' ),
118123 _entry ('seresnext26d_32x4d' , 'SE-ResNeXt-26-D 32x4d' , '1812.01187' ,
@@ -121,6 +126,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
121126 model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.' ),
122127 _entry ('seresnext26tn_32x4d' , 'SE-ResNeXt-26-TN 32x4d' , '1812.01187' ,
123128 model_desc = 'Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered narrow stem, and avg-pool in downsample layers.' ),
129+ _entry ('seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
124130
125131 _entry ('skresnet18' , 'SK-ResNet-18' , '1903.06586' ),
126132 _entry ('skresnet34' , 'SK-ResNet-34' , '1903.06586' ),
@@ -139,6 +145,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
139145 _entry ('densenetblur121d' , 'DenseNet-Blur-121D' , '1904.11486' ,
140146 model_desc = 'DenseNet with blur pooling and deep stem' ),
141147
148+ _entry ('ese_vovnet19b_dw' , 'VoVNet-19-DW-V2' , '1911.06667' ),
142149 _entry ('ese_vovnet39b' , 'VoVNet-39-V2' , '1911.06667' ),
143150
144151 _entry ('tf_efficientnet_b0' , 'EfficientNet-B0 (AutoAugment)' , '1905.11946' ,
@@ -247,13 +254,13 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
247254 _entry ('inception_v4' , 'Inception V4' , '1602.07261' ),
248255 _entry ('nasnetalarge' , 'NASNet-A Large' , '1707.07012' , batch_size = BATCH_SIZE // 4 ),
249256 _entry ('pnasnet5large' , 'PNASNet-5' , '1712.00559' , batch_size = BATCH_SIZE // 4 ),
250- _entry ('seresnet50' , 'SE-ResNet-50' , '1709.01507' ),
251- _entry ('seresnet101' , 'SE-ResNet-101' , '1709.01507' ),
252- _entry ('seresnet152' , 'SE-ResNet-152' , '1709.01507' ),
253- _entry ('seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
254- _entry ('seresnext101_32x4d' , 'SE-ResNeXt-101 32x4d' , '1709.01507' ),
255- _entry ('senet154' , 'SENet-154' , '1709.01507' ),
256257 _entry ('xception' , 'Xception' , '1610.02357' , batch_size = BATCH_SIZE // 2 ),
258+ _entry ('legacy_seresnet50' , 'SE-ResNet-50' , '1709.01507' ),
259+ _entry ('legacy_seresnet101' , 'SE-ResNet-101' , '1709.01507' ),
260+ _entry ('legacy_seresnet152' , 'SE-ResNet-152' , '1709.01507' ),
261+ _entry ('legacy_seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
262+ _entry ('legacy_seresnext101_32x4d' , 'SE-ResNeXt-101 32x4d' , '1709.01507' ),
263+ _entry ('legacy_senet154' , 'SENet-154' , '1709.01507' ),
257264
258265 ## Torchvision weights
259266 # _entry('densenet121'),
@@ -443,12 +450,6 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
443450
444451]
445452
446- # FIXME debug sotabench dataset issues
447- from pprint import pprint
448- from glob import glob
449- pprint ([glob ('./**' , recursive = True )])
450- pprint ([glob ('./.data/vision/**' , recursive = True )])
451-
452453for m in model_list :
453454 model_name = m ['model' ]
454455 # create model from name
0 commit comments