88BATCH_SIZE = 256 * NUM_GPU
99
1010
11- def _entry (model_name , paper_model_name , paper_arxiv_id , batch_size = BATCH_SIZE , ttp = False , args = dict ()):
11+ def _entry (model_name , paper_model_name , paper_arxiv_id , batch_size = BATCH_SIZE ,
12+ ttp = False , args = dict (), model_desc = None ):
1213 return dict (
1314 model = model_name ,
15+ model_description = model_desc ,
1416 paper_model_name = paper_model_name ,
1517 paper_arxiv_id = paper_arxiv_id ,
1618 batch_size = batch_size ,
@@ -46,7 +48,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
4648 #_entry('ens_adv_inception_resnet_v2', 'Ensemble Adversarial Inception V3'),
4749 _entry ('fbnetc_100' , 'FBNet-C' , '1812.03443' ),
4850 _entry ('gluon_inception_v3' , 'Inception V3' , '1512.00567' ),
49- _entry ('gluon_resnet18_v1b' , 'ResNet-18' , '1812.01187' ),
51+ _entry ('gluon_resnet18_v1b' , 'ResNet-18' , '1812.01187' , model_desc = 'Ported from GluonCV Model Zoo' ),
5052 _entry ('gluon_resnet34_v1b' , 'ResNet-34' , '1812.01187' ),
5153 _entry ('gluon_resnet50_v1b' , 'ResNet-50' , '1812.01187' ),
5254 _entry ('gluon_resnet50_v1c' , 'ResNet-50-C' , '1812.01187' ),
@@ -79,7 +81,9 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
7981 _entry ('mixnet_m' , 'MixNet-M' , '1907.09595' ),
8082 _entry ('mixnet_s' , 'MixNet-S' , '1907.09595' ),
8183 _entry ('mnasnet_100' , 'MnasNet-B1' , '1807.11626' ),
82- _entry ('mobilenetv3_100' , 'MobileNet V3(1.0)' , '1905.02244' ),
84+ _entry ('mobilenetv3_100' , 'MobileNet V3(1.0)' , '1905.02244' ,
85+ model_desc = 'Trained from scratch in PyTorch with RMSProp, exponential LR decay, and hyper-params matching'
86+ ' paper as closely as possible.' ),
8387 _entry ('nasnetalarge' , 'NASNet-A Large' , '1707.07012' , batch_size = BATCH_SIZE // 4 ),
8488 _entry ('pnasnet5large' , 'PNASNet-5' , '1712.00559' , batch_size = BATCH_SIZE // 4 ),
8589 _entry ('resnet18' , 'ResNet-18' , '1812.01187' ),
@@ -90,7 +94,13 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
9094 #_entry('resnet101', , ), # same weights as torchvision
9195 #_entry('resnet152', , ), # same weights as torchvision
9296 _entry ('resnext50_32x4d' , 'ResNeXt-50 32x4d' , '1812.01187' ),
93- _entry ('resnext50d_32x4d' , 'ResNeXt-50-D 32x4d' , '1812.01187' ),
97+ _entry ('resnext50d_32x4d' , 'ResNeXt-50-D 32x4d' , '1812.01187' ,
98+ model_desc = """'D' variant (3x3 deep stem w/ avg-pool downscale)
99+ Trained with:
100+ * SGD w/ cosine LR decay
101+ * Random-erasing (gaussian per-pixel noise)
102+ * Label-smoothing
103+ """ ),
94104 #_entry('resnext101_32x8d', ), # same weights as torchvision
95105 _entry ('semnasnet_100' , 'MnasNet-A1' , '1807.11626' ),
96106 _entry ('senet154' , 'SENet-154' , '1709.01507' ),
@@ -103,17 +113,28 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
103113 _entry ('seresnext50_32x4d' , 'SE-ResNeXt-50 32x4d' , '1709.01507' ),
104114 _entry ('seresnext101_32x4d' , 'SE-ResNeXt-101 32x4d' , '1709.01507' ),
105115 _entry ('spnasnet_100' , 'Single-Path NAS' , '1904.02877' ),
106- _entry ('tf_efficientnet_b0' , 'EfficientNet-B0 (AutoAugment)' , '1905.11946' ),
107- _entry ('tf_efficientnet_b1' , 'EfficientNet-B1 (AutoAugment)' , '1905.11946' ),
108- _entry ('tf_efficientnet_b2' , 'EfficientNet-B2 (AutoAugment)' , '1905.11946' ),
109- _entry ('tf_efficientnet_b3' , 'EfficientNet-B3 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 2 ),
110- _entry ('tf_efficientnet_b4' , 'EfficientNet-B4 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 2 ),
111- _entry ('tf_efficientnet_b5' , 'EfficientNet-B5 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 4 ),
112- _entry ('tf_efficientnet_b6' , 'EfficientNet-B6 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ),
113- _entry ('tf_efficientnet_b7' , 'EfficientNet-B7 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ),
114- _entry ('tf_efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ),
115- _entry ('tf_efficientnet_em' , 'EfficientNet-EdgeTPU-M' , '1905.11946' ),
116- _entry ('tf_efficientnet_el' , 'EfficientNet-EdgeTPU-L' , '1905.11946' , batch_size = BATCH_SIZE // 2 ),
116+ _entry ('tf_efficientnet_b0' , 'EfficientNet-B0 (AutoAugment)' , '1905.11946' ,
117+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
118+ _entry ('tf_efficientnet_b1' , 'EfficientNet-B1 (AutoAugment)' , '1905.11946' ,
119+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
120+ _entry ('tf_efficientnet_b2' , 'EfficientNet-B2 (AutoAugment)' , '1905.11946' ,
121+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
122+ _entry ('tf_efficientnet_b3' , 'EfficientNet-B3 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 2 ,
123+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
124+ _entry ('tf_efficientnet_b4' , 'EfficientNet-B4 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 2 ,
125+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
126+ _entry ('tf_efficientnet_b5' , 'EfficientNet-B5 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 4 ,
127+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
128+ _entry ('tf_efficientnet_b6' , 'EfficientNet-B6 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ,
129+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
130+ _entry ('tf_efficientnet_b7' , 'EfficientNet-B7 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ,
131+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
132+ _entry ('tf_efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ,
133+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
134+ _entry ('tf_efficientnet_em' , 'EfficientNet-EdgeTPU-M' , '1905.11946' ,
135+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
136+ _entry ('tf_efficientnet_el' , 'EfficientNet-EdgeTPU-L' , '1905.11946' , batch_size = BATCH_SIZE // 2 ,
137+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
117138 _entry ('tf_inception_v3' , 'Inception V3' , '1512.00567' ),
118139 _entry ('tf_mixnet_l' , 'MixNet-L' , '1907.09595' ),
119140 _entry ('tf_mixnet_m' , 'MixNet-M' , '1907.09595' ),
@@ -144,6 +165,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
144165 # Run the benchmark
145166 ImageNet .benchmark (
146167 model = model ,
168+ model_description = m .get ('model_description' , None ),
147169 paper_model_name = m ['paper_model_name' ],
148170 paper_arxiv_id = m ['paper_arxiv_id' ],
149171 input_transform = input_transform ,
0 commit comments