@@ -746,86 +746,83 @@ def resnetv2_152x2_bit_teacher_384(pretrained=False, **kwargs):
746746
747747@register_model
748748def resnetv2_50 (pretrained = False , ** kwargs ):
749- return _create_resnetv2 (
750- 'resnetv2_50' , pretrained = pretrained ,
751- layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d , ** kwargs )
749+ model_args = dict (layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d )
750+ return _create_resnetv2 ('resnetv2_50' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
752751
753752
754753@register_model
755754def resnetv2_50d (pretrained = False , ** kwargs ):
756- return _create_resnetv2 (
757- 'resnetv2_50d' , pretrained = pretrained ,
755+ model_args = dict (
758756 layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d ,
759- stem_type = 'deep' , avg_down = True , ** kwargs )
757+ stem_type = 'deep' , avg_down = True )
758+ return _create_resnetv2 ('resnetv2_50d' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
760759
761760
762761@register_model
763762def resnetv2_50t (pretrained = False , ** kwargs ):
764- return _create_resnetv2 (
765- 'resnetv2_50t' , pretrained = pretrained ,
763+ model_args = dict (
766764 layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d ,
767- stem_type = 'tiered' , avg_down = True , ** kwargs )
765+ stem_type = 'tiered' , avg_down = True )
766+ return _create_resnetv2 ('resnetv2_50t' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
768767
769768
770769@register_model
771770def resnetv2_101 (pretrained = False , ** kwargs ):
772- return _create_resnetv2 (
773- 'resnetv2_101' , pretrained = pretrained ,
774- layers = [3 , 4 , 23 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d , ** kwargs )
771+ model_args = dict (layers = [3 , 4 , 23 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d )
772+ return _create_resnetv2 ('resnetv2_101' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
775773
776774
777775@register_model
778776def resnetv2_101d (pretrained = False , ** kwargs ):
779- return _create_resnetv2 (
780- 'resnetv2_101d' , pretrained = pretrained ,
777+ model_args = dict (
781778 layers = [3 , 4 , 23 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d ,
782- stem_type = 'deep' , avg_down = True , ** kwargs )
779+ stem_type = 'deep' , avg_down = True )
780+ return _create_resnetv2 ('resnetv2_101d' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
783781
784782
785783@register_model
786784def resnetv2_152 (pretrained = False , ** kwargs ):
787- return _create_resnetv2 (
788- 'resnetv2_152' , pretrained = pretrained ,
789- layers = [3 , 8 , 36 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d , ** kwargs )
785+ model_args = dict (layers = [3 , 8 , 36 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d )
786+ return _create_resnetv2 ('resnetv2_152' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
790787
791788
792789@register_model
793790def resnetv2_152d (pretrained = False , ** kwargs ):
794- return _create_resnetv2 (
795- 'resnetv2_152d' , pretrained = pretrained ,
791+ model_args = dict (
796792 layers = [3 , 8 , 36 , 3 ], conv_layer = create_conv2d , norm_layer = BatchNormAct2d ,
797- stem_type = 'deep' , avg_down = True , ** kwargs )
793+ stem_type = 'deep' , avg_down = True )
794+ return _create_resnetv2 ('resnetv2_152d' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
798795
799796
800797# Experimental configs (may change / be removed)
801798
802799@register_model
803800def resnetv2_50d_gn (pretrained = False , ** kwargs ):
804- return _create_resnetv2 (
805- 'resnetv2_50d_gn' , pretrained = pretrained ,
801+ model_args = dict (
806802 layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = GroupNormAct ,
807- stem_type = 'deep' , avg_down = True , ** kwargs )
803+ stem_type = 'deep' , avg_down = True )
804+ return _create_resnetv2 ('resnetv2_50d_gn' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
808805
809806
810807@register_model
811808def resnetv2_50d_evob (pretrained = False , ** kwargs ):
812- return _create_resnetv2 (
813- 'resnetv2_50d_evob' , pretrained = pretrained ,
809+ model_args = dict (
814810 layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = EvoNorm2dB0 ,
815- stem_type = 'deep' , avg_down = True , zero_init_last = True , ** kwargs )
811+ stem_type = 'deep' , avg_down = True , zero_init_last = True )
812+ return _create_resnetv2 ('resnetv2_50d_evob' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
816813
817814
818815@register_model
819816def resnetv2_50d_evos (pretrained = False , ** kwargs ):
820- return _create_resnetv2 (
821- 'resnetv2_50d_evos' , pretrained = pretrained ,
817+ model_args = dict (
822818 layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = EvoNorm2dS0 ,
823- stem_type = 'deep' , avg_down = True , ** kwargs )
819+ stem_type = 'deep' , avg_down = True )
820+ return _create_resnetv2 ('resnetv2_50d_evos' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
824821
825822
826823@register_model
827824def resnetv2_50d_frn (pretrained = False , ** kwargs ):
828- return _create_resnetv2 (
829- 'resnetv2_50d_frn' , pretrained = pretrained ,
825+ model_args = dict (
830826 layers = [3 , 4 , 6 , 3 ], conv_layer = create_conv2d , norm_layer = FilterResponseNormTlu2d ,
831- stem_type = 'deep' , avg_down = True , ** kwargs )
827+ stem_type = 'deep' , avg_down = True )
828+ return _create_resnetv2 ('resnetv2_50d_frn' , pretrained = pretrained , ** dict (model_args , ** kwargs ))
0 commit comments