Skip to content

Commit 3d9c8a6

Browse files
committed
Add support for new AMP checkpointing support w/ amp.state_dict
1 parent ba3c97c commit 3d9c8a6

File tree

3 files changed

+38
-18
lines changed

3 files changed

+38
-18
lines changed

timm/models/helpers.py

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ def load_checkpoint(model, checkpoint_path, use_ema=False):
2929

3030

3131
def resume_checkpoint(model, checkpoint_path):
32-
optimizer_state = None
32+
other_state = {}
3333
resume_epoch = None
3434
if os.path.isfile(checkpoint_path):
3535
checkpoint = torch.load(checkpoint_path, map_location='cpu')
@@ -40,7 +40,9 @@ def resume_checkpoint(model, checkpoint_path):
4040
new_state_dict[name] = v
4141
model.load_state_dict(new_state_dict)
4242
if 'optimizer' in checkpoint:
43-
optimizer_state = checkpoint['optimizer']
43+
other_state['optimizer'] = checkpoint['optimizer']
44+
if 'amp' in checkpoint:
45+
other_state['amp'] = checkpoint['amp']
4446
if 'epoch' in checkpoint:
4547
resume_epoch = checkpoint['epoch']
4648
if 'version' in checkpoint and checkpoint['version'] > 1:
@@ -49,7 +51,7 @@ def resume_checkpoint(model, checkpoint_path):
4951
else:
5052
model.load_state_dict(checkpoint)
5153
logging.info("Loaded checkpoint '{}'".format(checkpoint_path))
52-
return optimizer_state, resume_epoch
54+
return other_state, resume_epoch
5355
else:
5456
logging.error("No checkpoint found at '{}'".format(checkpoint_path))
5557
raise FileNotFoundError()

timm/utils.py

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,12 @@
1111
import logging
1212
import numpy as np
1313
from collections import OrderedDict
14+
try:
15+
from apex import amp
16+
has_apex = True
17+
except ImportError:
18+
amp = None
19+
has_apex = False
1420

1521
from torch import distributed as dist
1622

@@ -50,7 +56,7 @@ def __init__(
5056
self.max_history = max_history
5157
assert self.max_history >= 1
5258

53-
def save_checkpoint(self, model, optimizer, args, epoch, model_ema=None, metric=None):
59+
def save_checkpoint(self, model, optimizer, args, epoch, model_ema=None, metric=None, use_amp=False):
5460
assert epoch >= 0
5561
worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None
5662
if (len(self.checkpoint_files) < self.max_history
@@ -59,7 +65,7 @@ def save_checkpoint(self, model, optimizer, args, epoch, model_ema=None, metric=
5965
self._cleanup_checkpoints(1)
6066
filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension
6167
save_path = os.path.join(self.checkpoint_dir, filename)
62-
self._save(save_path, model, optimizer, args, epoch, model_ema, metric)
68+
self._save(save_path, model, optimizer, args, epoch, model_ema, metric, use_amp)
6369
self.checkpoint_files.append((save_path, metric))
6470
self.checkpoint_files = sorted(
6571
self.checkpoint_files, key=lambda x: x[1],
@@ -77,7 +83,7 @@ def save_checkpoint(self, model, optimizer, args, epoch, model_ema=None, metric=
7783

7884
return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch)
7985

80-
def _save(self, save_path, model, optimizer, args, epoch, model_ema=None, metric=None):
86+
def _save(self, save_path, model, optimizer, args, epoch, model_ema=None, metric=None, use_amp=False):
8187
save_state = {
8288
'epoch': epoch,
8389
'arch': args.model,
@@ -86,6 +92,8 @@ def _save(self, save_path, model, optimizer, args, epoch, model_ema=None, metric
8692
'args': args,
8793
'version': 2, # version < 2 increments epoch before save
8894
}
95+
if use_amp and 'state_dict' in amp.__dict__:
96+
save_state['amp'] = amp.state_dict()
8997
if model_ema is not None:
9098
save_state['state_dict_ema'] = get_state_dict(model_ema)
9199
if metric is not None:
@@ -106,11 +114,11 @@ def _cleanup_checkpoints(self, trim=0):
106114
logging.error("Exception '{}' while deleting checkpoint".format(e))
107115
self.checkpoint_files = self.checkpoint_files[:delete_index]
108116

109-
def save_recovery(self, model, optimizer, args, epoch, model_ema=None, batch_idx=0):
117+
def save_recovery(self, model, optimizer, args, epoch, model_ema=None, use_amp=False, batch_idx=0):
110118
assert epoch >= 0
111119
filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension
112120
save_path = os.path.join(self.recovery_dir, filename)
113-
self._save(save_path, model, optimizer, args, epoch, model_ema)
121+
self._save(save_path, model, optimizer, args, epoch, model_ema, use_amp=use_amp)
114122
if os.path.exists(self.last_recovery_file):
115123
try:
116124
logging.debug("Cleaning recovery: {}".format(self.last_recovery_file))

train.py

Lines changed: 20 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,8 @@
3838
help='Initialize model from this checkpoint (default: none)')
3939
parser.add_argument('--resume', default='', type=str, metavar='PATH',
4040
help='Resume full model and optimizer state from checkpoint (default: none)')
41+
parser.add_argument('--no-resume-opt', action='store_true', default=False,
42+
help='prevent resume of optimizer state when resuming model')
4143
parser.add_argument('--num-classes', type=int, default=1000, metavar='N',
4244
help='number of label classes (default: 1000)')
4345
parser.add_argument('--gp', default='avg', type=str, metavar='POOL',
@@ -189,12 +191,6 @@ def main():
189191

190192
data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)
191193

192-
# optionally resume from a checkpoint
193-
optimizer_state = None
194-
resume_epoch = None
195-
if args.resume:
196-
optimizer_state, resume_epoch = resume_checkpoint(model, args.resume)
197-
198194
if args.num_gpu > 1:
199195
if args.amp:
200196
logging.warning(
@@ -205,8 +201,6 @@ def main():
205201
model.cuda()
206202

207203
optimizer = create_optimizer(args, model)
208-
if optimizer_state is not None:
209-
optimizer.load_state_dict(optimizer_state)
210204

211205
use_amp = False
212206
if has_apex and args.amp:
@@ -216,6 +210,22 @@ def main():
216210
logging.info('NVIDIA APEX {}. AMP {}.'.format(
217211
'installed' if has_apex else 'not installed', 'on' if use_amp else 'off'))
218212

213+
# optionally resume from a checkpoint
214+
resume_state = {}
215+
resume_epoch = None
216+
if args.resume:
217+
resume_state, resume_epoch = resume_checkpoint(model, args.resume)
218+
if resume_state and not args.no_resume_opt:
219+
if 'optimizer' in resume_state:
220+
if args.local_rank == 0:
221+
logging.info('Restoring Optimizer state from checkpoint')
222+
optimizer.load_state_dict(resume_state['optimizer'])
223+
if use_amp and 'amp' in resume_state and 'load_state_dict' in amp.__dict__:
224+
if args.local_rank == 0:
225+
logging.info('Restoring NVIDIA AMP state from checkpoint')
226+
amp.load_state_dict(resume_state['amp'])
227+
resume_state = None
228+
219229
model_ema = None
220230
if args.model_ema:
221231
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
@@ -363,7 +373,7 @@ def main():
363373
save_metric = eval_metrics[eval_metric]
364374
best_metric, best_epoch = saver.save_checkpoint(
365375
model, optimizer, args,
366-
epoch=epoch, model_ema=model_ema, metric=save_metric)
376+
epoch=epoch, model_ema=model_ema, metric=save_metric, use_amp=use_amp)
367377

368378
except KeyboardInterrupt:
369379
pass
@@ -456,7 +466,7 @@ def train_epoch(
456466
if saver is not None and args.recovery_interval and (
457467
last_batch or (batch_idx + 1) % args.recovery_interval == 0):
458468
saver.save_recovery(
459-
model, optimizer, args, epoch, model_ema=model_ema, batch_idx=batch_idx)
469+
model, optimizer, args, epoch, model_ema=model_ema, use_amp=use_amp, batch_idx=batch_idx)
460470

461471
if lr_scheduler is not None:
462472
lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)

0 commit comments

Comments
 (0)