@@ -78,7 +78,7 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
7878 _entry ('mixnet_m' , 'MixNet-M' , '1907.09595' ),
7979 _entry ('mixnet_s' , 'MixNet-S' , '1907.09595' ),
8080 _entry ('mnasnet_100' , 'MnasNet-B1' , '1807.11626' ),
81- _entry ('mobilenetv3_100 ' , 'MobileNet V3-Large 1.0' , '1905.02244' ,
81+ _entry ('mobilenetv3_rw ' , 'MobileNet V3-Large 1.0' , '1905.02244' ,
8282 model_desc = 'Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching '
8383 'paper as closely as possible.' ),
8484 _entry ('resnet18' , 'ResNet-18' , '1812.01187' ),
@@ -108,11 +108,35 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
108108 model_desc = 'Ported from official Google AI Tensorflow weights' ),
109109 _entry ('tf_efficientnet_b4' , 'EfficientNet-B4 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 2 ,
110110 model_desc = 'Ported from official Google AI Tensorflow weights' ),
111- _entry ('tf_efficientnet_b5' , 'EfficientNet-B5 (AutoAugment )' , '1905.11946' , batch_size = BATCH_SIZE // 4 ,
111+ _entry ('tf_efficientnet_b5' , 'EfficientNet-B5 (RandAugment )' , '1905.11946' , batch_size = BATCH_SIZE // 4 ,
112112 model_desc = 'Ported from official Google AI Tensorflow weights' ),
113113 _entry ('tf_efficientnet_b6' , 'EfficientNet-B6 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ,
114114 model_desc = 'Ported from official Google AI Tensorflow weights' ),
115- _entry ('tf_efficientnet_b7' , 'EfficientNet-B7 (AutoAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ,
115+ _entry ('tf_efficientnet_b7' , 'EfficientNet-B7 (RandAugment)' , '1905.11946' , batch_size = BATCH_SIZE // 8 ,
116+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
117+ _entry ('tf_efficientnet_b0_ap' , 'EfficientNet-B0 (AdvProp)' , '1911.09665' ,
118+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
119+ _entry ('tf_efficientnet_b1_ap' , 'EfficientNet-B1 (AdvProp)' , '1911.09665' ,
120+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
121+ _entry ('tf_efficientnet_b2_ap' , 'EfficientNet-B2 (AdvProp)' , '1911.09665' ,
122+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
123+ _entry ('tf_efficientnet_b3_ap' , 'EfficientNet-B3 (AdvProp)' , '1911.09665' , batch_size = BATCH_SIZE // 2 ,
124+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
125+ _entry ('tf_efficientnet_b4_ap' , 'EfficientNet-B4 (AdvProp)' , '1911.09665' , batch_size = BATCH_SIZE // 2 ,
126+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
127+ _entry ('tf_efficientnet_b5_ap' , 'EfficientNet-B5 (AdvProp)' , '1911.09665' , batch_size = BATCH_SIZE // 4 ,
128+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
129+ _entry ('tf_efficientnet_b6_ap' , 'EfficientNet-B6 (AdvProp)' , '1911.09665' , batch_size = BATCH_SIZE // 8 ,
130+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
131+ _entry ('tf_efficientnet_b7_ap' , 'EfficientNet-B7 (AdvProp)' , '1911.09665' , batch_size = BATCH_SIZE // 8 ,
132+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
133+ _entry ('tf_efficientnet_b8_ap' , 'EfficientNet-B8 (AdvProp)' , '1911.09665' , batch_size = BATCH_SIZE // 8 ,
134+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
135+ _entry ('tf_efficientnet_cc_b0_4e' , 'EfficientNet-CondConv-B0 4 experts' , '1904.04971' ,
136+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
137+ _entry ('tf_efficientnet_cc_b0_8e' , 'EfficientNet-CondConv-B0 8 experts' , '1904.04971' ,
138+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
139+ _entry ('tf_efficientnet_cc_b1_8e' , 'EfficientNet-CondConv-B1 8 experts' , '1904.04971' ,
116140 model_desc = 'Ported from official Google AI Tensorflow weights' ),
117141 _entry ('tf_efficientnet_es' , 'EfficientNet-EdgeTPU-S' , '1905.11946' ,
118142 model_desc = 'Ported from official Google AI Tensorflow weights' ),
@@ -124,6 +148,18 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
124148 _entry ('tf_mixnet_l' , 'MixNet-L' , '1907.09595' , model_desc = 'Ported from official Google AI Tensorflow weights' ),
125149 _entry ('tf_mixnet_m' , 'MixNet-M' , '1907.09595' , model_desc = 'Ported from official Google AI Tensorflow weights' ),
126150 _entry ('tf_mixnet_s' , 'MixNet-S' , '1907.09595' , model_desc = 'Ported from official Google AI Tensorflow weights' ),
151+ _entry ('tf_mobilenetv3_large_100' , 'MobileNet V3-Large 1.0' , '1905.02244' ,
152+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
153+ _entry ('tf_mobilenetv3_large_075' , 'MobileNet V3-Large 0.75' , '1905.02244' ,
154+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
155+ _entry ('tf_mobilenetv3_large_minimal_100' , 'MobileNet V3-Large Minimal 1.0' , '1905.02244' ,
156+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
157+ _entry ('tf_mobilenetv3_small_100' , 'MobileNet V3-Small 1.0' , '1905.02244' ,
158+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
159+ _entry ('tf_mobilenetv3_small_075' , 'MobileNet V3-Small 0.75' , '1905.02244' ,
160+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
161+ _entry ('tf_mobilenetv3_small_minimal_100' , 'MobileNet V3-Small Minimal 1.0' , '1905.02244' ,
162+ model_desc = 'Ported from official Google AI Tensorflow weights' ),
127163
128164 ## Cadene ported weights (to remove if Cadene adds sotabench)
129165 _entry ('inception_resnet_v2' , 'Inception ResNet V2' , '1602.07261' ),
@@ -154,18 +190,87 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
154190 # _entry('wide_resnet101_2', , ),
155191
156192 ## Facebook WSL weights
157- _entry ('ig_resnext101_32x8d' , 'ResNeXt-101 32x8d' , '1805.00932' ),
158- _entry ('ig_resnext101_32x16d' , 'ResNeXt-101 32x16d' , '1805.00932' ),
159- _entry ('ig_resnext101_32x32d' , 'ResNeXt-101 32x32d' , '1805.00932' , batch_size = BATCH_SIZE // 2 ),
160- _entry ('ig_resnext101_32x48d' , 'ResNeXt-101 32x48d' , '1805.00932' , batch_size = BATCH_SIZE // 4 ),
193+ _entry ('ig_resnext101_32x8d' , 'ResNeXt-101 32x8d' , '1805.00932' ,
194+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
195+ _entry ('ig_resnext101_32x16d' , 'ResNeXt-101 32x16d' , '1805.00932' ,
196+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
197+ _entry ('ig_resnext101_32x32d' , 'ResNeXt-101 32x32d' , '1805.00932' , batch_size = BATCH_SIZE // 2 ,
198+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
199+ _entry ('ig_resnext101_32x48d' , 'ResNeXt-101 32x48d' , '1805.00932' , batch_size = BATCH_SIZE // 4 ,
200+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
201+
161202 _entry ('ig_resnext101_32x8d' , 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)' , '1805.00932' ,
162- ttp = True , args = dict (img_size = 288 )),
203+ ttp = True , args = dict (img_size = 288 ),
204+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
163205 _entry ('ig_resnext101_32x16d' , 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)' , '1805.00932' ,
164- ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 2 ),
206+ ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 2 ,
207+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
165208 _entry ('ig_resnext101_32x32d' , 'ResNeXt-101 32x32d (288x288 Mean-Max Pooling)' , '1805.00932' ,
166- ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 4 ),
209+ ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 4 ,
210+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
167211 _entry ('ig_resnext101_32x48d' , 'ResNeXt-101 32x48d (288x288 Mean-Max Pooling)' , '1805.00932' ,
168- ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 8 ),
212+ ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 8 ,
213+ model_desc = 'Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research' ),
214+
215+ ## Facebook SSL weights
216+ _entry ('ssl_resnet18' , 'ResNet-18' , '1905.00546' ,
217+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
218+ _entry ('ssl_resnet50' , 'ResNet-50' , '1905.00546' ,
219+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
220+ _entry ('ssl_resnext50_32x4d' , 'ResNeXt-50 32x4d' , '1905.00546' ,
221+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
222+ _entry ('ssl_resnext101_32x4d' , 'ResNeXt-101 32x4d' , '1905.00546' ,
223+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
224+ _entry ('ssl_resnext101_32x8d' , 'ResNeXt-101 32x8d' , '1905.00546' ,
225+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
226+ _entry ('ssl_resnext101_32x16d' , 'ResNeXt-101 32x16d' , '1905.00546' ,
227+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
228+
229+ _entry ('ssl_resnet50' , 'ResNet-50 (288x288 Mean-Max Pooling)' , '1905.00546' ,
230+ ttp = True , args = dict (img_size = 288 ),
231+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
232+ _entry ('ssl_resnext50_32x4d' , 'ResNeXt-50 32x4d (288x288 Mean-Max Pooling)' , '1905.00546' ,
233+ ttp = True , args = dict (img_size = 288 ),
234+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
235+ _entry ('ssl_resnext101_32x4d' , 'ResNeXt-101 32x4d (288x288 Mean-Max Pooling)' , '1905.00546' ,
236+ ttp = True , args = dict (img_size = 288 ),
237+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
238+ _entry ('ssl_resnext101_32x8d' , 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)' , '1905.00546' ,
239+ ttp = True , args = dict (img_size = 288 ),
240+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
241+ _entry ('ssl_resnext101_32x16d' , 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)' , '1905.00546' ,
242+ ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 2 ,
243+ model_desc = 'Semi-Supervised pre-training on YFCC100M dataset by Facebook Research' ),
244+
245+ ## Facebook SWSL weights
246+ _entry ('swsl_resnet18' , 'ResNet-18' , '1905.00546' ,
247+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
248+ _entry ('swsl_resnet50' , 'ResNet-50' , '1905.00546' ,
249+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
250+ _entry ('swsl_resnext50_32x4d' , 'ResNeXt-50 32x4d' , '1905.00546' ,
251+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
252+ _entry ('swsl_resnext101_32x4d' , 'ResNeXt-101 32x4d' , '1905.00546' ,
253+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
254+ _entry ('swsl_resnext101_32x8d' , 'ResNeXt-101 32x8d' , '1905.00546' ,
255+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
256+ _entry ('swsl_resnext101_32x16d' , 'ResNeXt-101 32x16d' , '1905.00546' ,
257+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
258+
259+ _entry ('swsl_resnet50' , 'ResNet-50 (288x288 Mean-Max Pooling)' , '1905.00546' ,
260+ ttp = True , args = dict (img_size = 288 ),
261+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
262+ _entry ('swsl_resnext50_32x4d' , 'ResNeXt-50 32x4d (288x288 Mean-Max Pooling)' , '1905.00546' ,
263+ ttp = True , args = dict (img_size = 288 ),
264+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
265+ _entry ('swsl_resnext101_32x4d' , 'ResNeXt-101 32x4d (288x288 Mean-Max Pooling)' , '1905.00546' ,
266+ ttp = True , args = dict (img_size = 288 ),
267+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
268+ _entry ('swsl_resnext101_32x8d' , 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)' , '1905.00546' ,
269+ ttp = True , args = dict (img_size = 288 ),
270+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
271+ _entry ('swsl_resnext101_32x16d' , 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)' , '1905.00546' ,
272+ ttp = True , args = dict (img_size = 288 ), batch_size = BATCH_SIZE // 2 ,
273+ model_desc = 'Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research' ),
169274
170275 ## DLA official impl weights (to remove if sotabench added to source)
171276 _entry ('dla34' , 'DLA-34' , '1707.06484' ),
@@ -189,6 +294,17 @@ def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
189294 _entry ('res2next50' , 'Res2NeXt-50' , '1904.01169' ),
190295 _entry ('dla60_res2net' , 'Res2Net-DLA-60' , '1904.01169' ),
191296 _entry ('dla60_res2next' , 'Res2NeXt-DLA-60' , '1904.01169' ),
297+
298+ ## HRNet official impl weights
299+ _entry ('hrnet_w18_small' , 'HRNet-W18-C-Small-V1' , '1908.07919' ),
300+ _entry ('hrnet_w18_small_v2' , 'HRNet-W18-C-Small-V2' , '1908.07919' ),
301+ _entry ('hrnet_w18' , 'HRNet-W18-C' , '1908.07919' ),
302+ _entry ('hrnet_w30' , 'HRNet-W30-C' , '1908.07919' ),
303+ _entry ('hrnet_w32' , 'HRNet-W32-C' , '1908.07919' ),
304+ _entry ('hrnet_w40' , 'HRNet-W40-C' , '1908.07919' ),
305+ _entry ('hrnet_w44' , 'HRNet-W44-C' , '1908.07919' ),
306+ _entry ('hrnet_w48' , 'HRNet-W48-C' , '1908.07919' ),
307+ _entry ('hrnet_w64' , 'HRNet-W64-C' , '1908.07919' ),
192308]
193309
194310for m in model_list :
0 commit comments