|
| 1 | +from heapq import heapify, heappop, heappush |
| 2 | +from math import sqrt |
| 3 | +from typing import List |
| 4 | + |
| 5 | +# time complexity: O(nlogk) |
| 6 | +# space complexity: O(k) |
| 7 | +class Solution: |
| 8 | + def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]: |
| 9 | + maxHp = [(-(x ** 2 + y ** 2), x, y) for x, y in points[:k]] |
| 10 | + heapify(maxHp) |
| 11 | + for currX, currY in points[k:]: |
| 12 | + dist = -(currX ** 2 + currY ** 2) |
| 13 | + if dist > maxHp[0][0]: |
| 14 | + heappop(maxHp) |
| 15 | + heappush(maxHp, (dist, currX, currY)) |
| 16 | + |
| 17 | + return [[x, y] for _, x, y in maxHp] |
| 18 | + |
| 19 | +# time complexity: O(nlogn) |
| 20 | +# space complexity: O(k) |
| 21 | +class Solution: |
| 22 | + def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]: |
| 23 | + minHeap = [(sqrt(x**2 + y**2), x, y) for x, y in points] |
| 24 | + heapify(minHeap) |
| 25 | + result = [] |
| 26 | + while k: |
| 27 | + _, currX, currY = heappop(minHeap) |
| 28 | + result.append([currX, currY]) |
| 29 | + k -= 1 |
| 30 | + return result |
| 31 | + |
| 32 | +# time complexity: O(n) |
| 33 | +# space complexity: O(n) |
| 34 | +class Solution: |
| 35 | + def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]: |
| 36 | + distances = [self.distance(point) for point in points] |
| 37 | + remaining = [i for i in range(len(points))] |
| 38 | + left, right = 0, max(distances) |
| 39 | + |
| 40 | + closest = [] |
| 41 | + while k: |
| 42 | + mid = (left + right) // 2 |
| 43 | + closer, farther = self.splitDis(remaining, distances, mid) |
| 44 | + if len(closer) > k: |
| 45 | + remaining = closer |
| 46 | + right = mid |
| 47 | + else: |
| 48 | + k -= len(closer) |
| 49 | + closest.extend(closer) |
| 50 | + remaining = farther |
| 51 | + left = mid |
| 52 | + return [points[i] for i in closest] |
| 53 | + |
| 54 | + def splitDis(self, remaining: List[int], distances: List[float], |
| 55 | + mid: int) -> List[List[int]]: |
| 56 | + closer, farther = [], [] |
| 57 | + for index in remaining: |
| 58 | + if distances[index] <= mid: |
| 59 | + closer.append(index) |
| 60 | + else: |
| 61 | + farther.append(index) |
| 62 | + return [closer, farther] |
| 63 | + |
| 64 | + def distance(self, point: List[int]) -> float: |
| 65 | + return point[0] ** 2 + point[1] ** 2 |
| 66 | + |
| 67 | +# time complexity: O(n) |
| 68 | +# space complexity: O(1) |
| 69 | +class Solution: |
| 70 | + def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]: |
| 71 | + return self.quickSelect(points, k) |
| 72 | + |
| 73 | + def quickSelect(self, points: List[List[int]], k: int) -> List[List[int]]: |
| 74 | + left, right = 0, len(points) - 1 |
| 75 | + pivotIdx = len(points) |
| 76 | + while pivotIdx != k: |
| 77 | + pivotIdx = self.partition(points, left, right) |
| 78 | + if pivotIdx < k: |
| 79 | + left = pivotIdx |
| 80 | + else: |
| 81 | + right = pivotIdx - 1 |
| 82 | + |
| 83 | + return points[:k] |
| 84 | + |
| 85 | + def partition(self, points: List[List[int]], left: int, right: int) -> int: |
| 86 | + pivot = self.choosePivot(points, left, right) |
| 87 | + pivotDis = self.distance(pivot) |
| 88 | + while left < right: |
| 89 | + if self.distance(points[left]) >= pivotDis: |
| 90 | + points[left], points[right] = points[right], points[left] |
| 91 | + right -= 1 |
| 92 | + else: |
| 93 | + left += 1 |
| 94 | + |
| 95 | + if self.distance(points[left]) < pivotDis: |
| 96 | + left += 1 |
| 97 | + return left |
| 98 | + |
| 99 | + def choosePivot(self, points: List[List[int]], left: int, right: int) -> List[int]: |
| 100 | + return points[left + (right - left) // 2] |
| 101 | + |
| 102 | + def distance(self, point: List[int]) -> int: |
| 103 | + return point[0] ** 2 + point[1] ** 2 |
| 104 | + |
| 105 | +points = [[1, 3], [-2, 2]] |
| 106 | +k = 1 |
| 107 | +print(Solution().kClosest(points, k)) |
| 108 | +points = [[3, 3], [5, -1], [-2, 4]] |
| 109 | +k = 2 |
| 110 | +print(Solution().kClosest(points, k)) |
0 commit comments