@@ -211,6 +211,7 @@ enum llm_arch {
211211 LLM_ARCH_INTERNLM2,
212212 LLM_ARCH_MINICPM,
213213 LLM_ARCH_GEMMA,
214+ LLM_ARCH_STARCODER2,
214215 LLM_ARCH_UNKNOWN,
215216};
216217
@@ -238,6 +239,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
238239 { LLM_ARCH_INTERNLM2, "internlm2" },
239240 { LLM_ARCH_MINICPM, "minicpm" },
240241 { LLM_ARCH_GEMMA, "gemma" },
242+ { LLM_ARCH_STARCODER2, "starcoder2" },
241243};
242244
243245enum llm_kv {
@@ -779,6 +781,24 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
779781 { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
780782 },
781783 },
784+ {
785+ LLM_ARCH_STARCODER2,
786+ {
787+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
788+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
789+ { LLM_TENSOR_OUTPUT, "output" },
790+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
791+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
792+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
793+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
794+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
795+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
796+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
797+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
798+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
799+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
800+ },
801+ },
782802 {
783803 LLM_ARCH_UNKNOWN,
784804 {
@@ -3320,6 +3340,16 @@ static void llm_load_hparams(
33203340 default: model.type = e_model::MODEL_UNKNOWN;
33213341 }
33223342 } break;
3343+ case LLM_ARCH_STARCODER2:
3344+ {
3345+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
3346+ switch (hparams.n_layer) {
3347+ case 30: model.type = e_model::MODEL_3B; break;
3348+ case 32: model.type = e_model::MODEL_7B; break;
3349+ case 40: model.type = e_model::MODEL_15B; break;
3350+ default: model.type = e_model::MODEL_UNKNOWN;
3351+ }
3352+ } break;
33233353 default: (void)0;
33243354 }
33253355
@@ -4490,6 +4520,56 @@ static bool llm_load_tensors(
44904520 layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
44914521 }
44924522 } break;
4523+ case LLM_ARCH_STARCODER2:
4524+ {
4525+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4526+
4527+ // output
4528+ {
4529+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
4530+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
4531+
4532+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
4533+ // if output is NULL, init from the input tok embed
4534+ if (model.output == NULL) {
4535+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4536+ ml.n_created--; // artificial tensor
4537+ ml.size_data += ggml_nbytes(model.output);
4538+ }
4539+
4540+ }
4541+
4542+ for (int i = 0; i < n_layer; ++i) {
4543+ ggml_context * ctx_layer = ctx_for_layer(i);
4544+ ggml_context * ctx_split = ctx_for_layer_split(i);
4545+
4546+ auto & layer = model.layers[i];
4547+
4548+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
4549+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
4550+
4551+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
4552+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
4553+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
4554+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
4555+
4556+ // optional bias tensors
4557+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
4558+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
4559+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
4560+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
4561+
4562+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
4563+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
4564+
4565+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
4566+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
4567+
4568+ // optional bias tensors
4569+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
4570+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
4571+ }
4572+ } break;
44934573 default:
44944574 throw std::runtime_error("unknown architecture");
44954575 }
@@ -7559,6 +7639,120 @@ struct llm_build_context {
75597639
75607640 return gf;
75617641 }
7642+
7643+ struct ggml_cgraph * build_starcoder2() {
7644+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
7645+
7646+ const int64_t n_embd_head = hparams.n_embd_head_v;
7647+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7648+ GGML_ASSERT(n_embd_head == hparams.n_rot);
7649+
7650+ struct ggml_tensor * cur;
7651+ struct ggml_tensor * inpL;
7652+
7653+ inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
7654+ cb(inpL, "inp_embd", -1);
7655+
7656+ // inp_pos - contains the positions
7657+ struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
7658+ cb(inp_pos, "inp_pos", -1);
7659+
7660+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
7661+ struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
7662+ cb(KQ_mask, "KQ_mask", -1);
7663+
7664+ for (int il = 0; il < n_layer; ++il) {
7665+ struct ggml_tensor * inpSA = inpL;
7666+
7667+ // norm
7668+ cur = llm_build_norm(ctx0, inpL, hparams,
7669+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
7670+ LLM_NORM, cb, il);
7671+ cb(cur, "attn_norm", il);
7672+
7673+ // self-attention
7674+ {
7675+ // compute Q and K and RoPE them
7676+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
7677+ cb(Qcur, "Qcur", il);
7678+ if (model.layers[il].bq) {
7679+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
7680+ cb(Qcur, "Qcur", il);
7681+ }
7682+
7683+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
7684+ cb(Kcur, "Kcur", il);
7685+ if (model.layers[il].bk) {
7686+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
7687+ cb(Kcur, "Kcur", il);
7688+ }
7689+
7690+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
7691+ cb(Vcur, "Vcur", il);
7692+ if (model.layers[il].bv) {
7693+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
7694+ cb(Vcur, "Vcur", il);
7695+ }
7696+
7697+ Qcur = ggml_rope_custom(
7698+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
7699+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
7700+ ext_factor, attn_factor, beta_fast, beta_slow
7701+ );
7702+ cb(Qcur, "Qcur", il);
7703+
7704+ Kcur = ggml_rope_custom(
7705+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
7706+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
7707+ ext_factor, attn_factor, beta_fast, beta_slow
7708+ );
7709+ cb(Kcur, "Kcur", il);
7710+
7711+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
7712+ model.layers[il].wo, model.layers[il].bo,
7713+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
7714+ cb(cur, "kqv_out", il);
7715+ }
7716+
7717+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
7718+ cb(ffn_inp, "ffn_inp", il);
7719+
7720+ // feed-forward network
7721+
7722+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
7723+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
7724+ LLM_NORM, cb, il);
7725+ cb(cur, "ffn_norm", il);
7726+
7727+ cur = llm_build_ffn(ctx0, cur,
7728+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
7729+ NULL, NULL,
7730+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
7731+ NULL,
7732+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
7733+ cb(cur, "ffn_out", il);
7734+ cur = ggml_add(ctx0, cur, ffn_inp);
7735+ cb(cur, "l_out", il);
7736+
7737+ // input for next layer
7738+ inpL = cur;
7739+ }
7740+
7741+ cur = inpL;
7742+
7743+ cur = llm_build_norm(ctx0, cur, hparams,
7744+ model.output_norm, model.output_norm_b,
7745+ LLM_NORM, cb, -1);
7746+ cb(cur, "result_norm", -1);
7747+
7748+ // lm_head
7749+ cur = ggml_mul_mat(ctx0, model.output, cur);
7750+ cb(cur, "result_output", -1);
7751+
7752+ ggml_build_forward_expand(gf, cur);
7753+
7754+ return gf;
7755+ }
75627756};
75637757
75647758static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -7705,6 +7899,10 @@ static struct ggml_cgraph * llama_build_graph(
77057899 {
77067900 result = llm.build_gemma();
77077901 } break;
7902+ case LLM_ARCH_STARCODER2:
7903+ {
7904+ result = llm.build_starcoder2();
7905+ } break;
77087906 default:
77097907 GGML_ASSERT(false);
77107908 }
@@ -12084,6 +12282,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
1208412282 case LLM_ARCH_QWEN2:
1208512283 case LLM_ARCH_PHI2:
1208612284 case LLM_ARCH_GEMMA:
12285+ case LLM_ARCH_STARCODER2:
1208712286 return LLAMA_ROPE_TYPE_NEOX;
1208812287
1208912288 // all model arches should be listed explicitly here
0 commit comments