|
| 1 | +from matplotlib import pyplot as plt |
| 2 | +import tensorflow as tf |
| 3 | +from keras import backend as K |
| 4 | +from keras.layers import Input |
| 5 | +from keras.models import Model |
| 6 | +from IPython.display import SVG, display |
| 7 | +from keras.utils.vis_utils import model_to_dot |
| 8 | +import logging |
| 9 | +import numpy as np |
| 10 | +import dill as dpickle |
| 11 | +from annoy import AnnoyIndex |
| 12 | +from tqdm import tqdm |
| 13 | +from random import random |
| 14 | + |
| 15 | + |
| 16 | +def load_text_processor(fname='title_pp.dpkl'): |
| 17 | + """ |
| 18 | + Load preprocessors from disk. |
| 19 | +
|
| 20 | + Parameters |
| 21 | + ---------- |
| 22 | + fname: str |
| 23 | + file name of ktext.proccessor object |
| 24 | +
|
| 25 | + Returns |
| 26 | + ------- |
| 27 | + num_tokens : int |
| 28 | + size of vocabulary loaded into ktext.processor |
| 29 | + pp : ktext.processor |
| 30 | + the processor you are trying to load |
| 31 | +
|
| 32 | + Typical Usage: |
| 33 | + ------------- |
| 34 | +
|
| 35 | + num_decoder_tokens, title_pp = load_text_processor(fname='title_pp.dpkl') |
| 36 | + num_encoder_tokens, body_pp = load_text_processor(fname='body_pp.dpkl') |
| 37 | +
|
| 38 | + """ |
| 39 | + # Load files from disk |
| 40 | + with open(fname, 'rb') as f: |
| 41 | + pp = dpickle.load(f) |
| 42 | + |
| 43 | + num_tokens = max(pp.id2token.keys()) + 1 |
| 44 | + print(f'Size of vocabulary for {fname}: {num_tokens:,}') |
| 45 | + return num_tokens, pp |
| 46 | + |
| 47 | + |
| 48 | +def load_decoder_inputs(decoder_np_vecs='train_title_vecs.npy'): |
| 49 | + """ |
| 50 | + Load decoder inputs. |
| 51 | +
|
| 52 | + Parameters |
| 53 | + ---------- |
| 54 | + decoder_np_vecs : str |
| 55 | + filename of serialized numpy.array of decoder input (issue title) |
| 56 | +
|
| 57 | + Returns |
| 58 | + ------- |
| 59 | + decoder_input_data : numpy.array |
| 60 | + The data fed to the decoder as input during training for teacher forcing. |
| 61 | + This is the same as `decoder_np_vecs` except the last position. |
| 62 | + decoder_target_data : numpy.array |
| 63 | + The data that the decoder data is trained to generate (issue title). |
| 64 | + Calculated by sliding `decoder_np_vecs` one position forward. |
| 65 | +
|
| 66 | + """ |
| 67 | + vectorized_title = np.load(decoder_np_vecs) |
| 68 | + # For Decoder Input, you don't need the last word as that is only for prediction |
| 69 | + # when we are training using Teacher Forcing. |
| 70 | + decoder_input_data = vectorized_title[:, :-1] |
| 71 | + |
| 72 | + # Decoder Target Data Is Ahead By 1 Time Step From Decoder Input Data (Teacher Forcing) |
| 73 | + decoder_target_data = vectorized_title[:, 1:] |
| 74 | + |
| 75 | + print(f'Shape of decoder input: {decoder_input_data.shape}') |
| 76 | + print(f'Shape of decoder target: {decoder_target_data.shape}') |
| 77 | + return decoder_input_data, decoder_target_data |
| 78 | + |
| 79 | + |
| 80 | +def load_encoder_inputs(encoder_np_vecs='train_body_vecs.npy'): |
| 81 | + """ |
| 82 | + Load variables & data that are inputs to encoder. |
| 83 | +
|
| 84 | + Parameters |
| 85 | + ---------- |
| 86 | + encoder_np_vecs : str |
| 87 | + filename of serialized numpy.array of encoder input (issue title) |
| 88 | +
|
| 89 | + Returns |
| 90 | + ------- |
| 91 | + encoder_input_data : numpy.array |
| 92 | + The issue body |
| 93 | + doc_length : int |
| 94 | + The standard document length of the input for the encoder after padding |
| 95 | + the shape of this array will be (num_examples, doc_length) |
| 96 | +
|
| 97 | + """ |
| 98 | + vectorized_body = np.load(encoder_np_vecs) |
| 99 | + # Encoder input is simply the body of the issue text |
| 100 | + encoder_input_data = vectorized_body |
| 101 | + doc_length = encoder_input_data.shape[1] |
| 102 | + print(f'Shape of encoder input: {encoder_input_data.shape}') |
| 103 | + return encoder_input_data, doc_length |
| 104 | + |
| 105 | + |
| 106 | +def viz_model_architecture(model): |
| 107 | + """Visualize model architecture in Jupyter notebook.""" |
| 108 | + display(SVG(model_to_dot(model).create(prog='dot', format='svg'))) |
| 109 | + |
| 110 | + |
| 111 | +def free_gpu_mem(): |
| 112 | + """Attempt to free gpu memory.""" |
| 113 | + K.get_session().close() |
| 114 | + cfg = K.tf.ConfigProto() |
| 115 | + cfg.gpu_options.allow_growth = True |
| 116 | + K.set_session(K.tf.Session(config=cfg)) |
| 117 | + |
| 118 | + |
| 119 | +def test_gpu(): |
| 120 | + """Run a toy computation task in tensorflow to test GPU.""" |
| 121 | + config = tf.ConfigProto() |
| 122 | + config.gpu_options.allow_growth = True |
| 123 | + session = tf.Session(config=config) |
| 124 | + hello = tf.constant('Hello, TensorFlow!') |
| 125 | + print(session.run(hello)) |
| 126 | + |
| 127 | + |
| 128 | +def plot_model_training_history(history_object): |
| 129 | + """Plots model train vs. validation loss.""" |
| 130 | + plt.title('model accuracy') |
| 131 | + plt.ylabel('accuracy') |
| 132 | + plt.xlabel('epoch') |
| 133 | + plt.plot(history_object.history['loss']) |
| 134 | + plt.plot(history_object.history['val_loss']) |
| 135 | + plt.legend(['train', 'test'], loc='upper left') |
| 136 | + plt.show() |
| 137 | + |
| 138 | + |
| 139 | +def extract_encoder_model(model): |
| 140 | + """ |
| 141 | + Extract the encoder from the original Sequence to Sequence Model. |
| 142 | +
|
| 143 | + Returns a keras model object that has one input (body of issue) and one |
| 144 | + output (encoding of issue, which is the last hidden state). |
| 145 | +
|
| 146 | + Input: |
| 147 | + ----- |
| 148 | + model: keras model object |
| 149 | +
|
| 150 | + Returns: |
| 151 | + ----- |
| 152 | + keras model object |
| 153 | +
|
| 154 | + """ |
| 155 | + encoder_model = model.get_layer('Encoder-Model') |
| 156 | + return encoder_model |
| 157 | + |
| 158 | + |
| 159 | +def extract_decoder_model(model): |
| 160 | + """ |
| 161 | + Extract the decoder from the original model. |
| 162 | +
|
| 163 | + Inputs: |
| 164 | + ------ |
| 165 | + model: keras model object |
| 166 | +
|
| 167 | + Returns: |
| 168 | + ------- |
| 169 | + A Keras model object with the following inputs and outputs: |
| 170 | +
|
| 171 | + Inputs: |
| 172 | + 1: the embedding index for the last predicted word, or the <Start> indicator |
| 173 | + 2: the last hidden state, or in the case of the first word the hidden state from the encoder |
| 174 | +
|
| 175 | + Outputs: |
| 176 | + 1. Prediction (class probabilities) for the next word |
| 177 | + 2. The hidden state of the decoder, to be fed back into the decoder at the next time step |
| 178 | +
|
| 179 | + Implementation Notes: |
| 180 | + ---------------------- |
| 181 | + Must extract relevant layers and reconstruct part of the computation graph |
| 182 | + to allow for different inputs as we are not going to use teacher forcing at |
| 183 | + inference time. |
| 184 | +
|
| 185 | + """ |
| 186 | + # the latent dimension is the same throughout the architecture so we are going to |
| 187 | + # cheat and grab the latent dimension of the embedding because that is the same as what is |
| 188 | + # output from the decoder |
| 189 | + latent_dim = model.get_layer('Decoder-Word-Embedding').output_shape[-1] |
| 190 | + |
| 191 | + # Reconstruct the input into the decoder |
| 192 | + decoder_inputs = model.get_layer('Decoder-Input').input |
| 193 | + dec_emb = model.get_layer('Decoder-Word-Embedding')(decoder_inputs) |
| 194 | + dec_bn = model.get_layer('Decoder-Batchnorm-1')(dec_emb) |
| 195 | + |
| 196 | + # Instead of setting the intial state from the encoder and forgetting about it, during inference |
| 197 | + # we are not doing teacher forcing, so we will have to have a feedback loop from predictions back into |
| 198 | + # the GRU, thus we define this input layer for the state so we can add this capability |
| 199 | + gru_inference_state_input = Input(shape=(latent_dim,), name='hidden_state_input') |
| 200 | + |
| 201 | + # we need to reuse the weights that is why we are getting this |
| 202 | + # If you inspect the decoder GRU that we created for training, it will take as input |
| 203 | + # 2 tensors -> (1) is the embedding layer output for the teacher forcing |
| 204 | + # (which will now be the last step's prediction, and will be _start_ on the first time step) |
| 205 | + # (2) is the state, which we will initialize with the encoder on the first time step, but then |
| 206 | + # grab the state after the first prediction and feed that back in again. |
| 207 | + gru_out, gru_state_out = model.get_layer('Decoder-GRU')([dec_bn, gru_inference_state_input]) |
| 208 | + |
| 209 | + # Reconstruct dense layers |
| 210 | + dec_bn2 = model.get_layer('Decoder-Batchnorm-2')(gru_out) |
| 211 | + dense_out = model.get_layer('Final-Output-Dense')(dec_bn2) |
| 212 | + decoder_model = Model([decoder_inputs, gru_inference_state_input], |
| 213 | + [dense_out, gru_state_out]) |
| 214 | + return decoder_model |
| 215 | + |
| 216 | + |
| 217 | +class Seq2Seq_Inference(object): |
| 218 | + def __init__(self, |
| 219 | + encoder_preprocessor, |
| 220 | + decoder_preprocessor, |
| 221 | + seq2seq_model): |
| 222 | + |
| 223 | + self.pp_body = encoder_preprocessor |
| 224 | + self.pp_title = decoder_preprocessor |
| 225 | + self.seq2seq_model = seq2seq_model |
| 226 | + self.encoder_model = extract_encoder_model(seq2seq_model) |
| 227 | + self.decoder_model = extract_decoder_model(seq2seq_model) |
| 228 | + self.default_max_len_title = self.pp_title.padding_maxlen |
| 229 | + self.nn = None |
| 230 | + self.rec_df = None |
| 231 | + |
| 232 | + def generate_issue_title(self, |
| 233 | + raw_input_text, |
| 234 | + max_len_title=None): |
| 235 | + """ |
| 236 | + Use the seq2seq model to generate a title given the body of an issue. |
| 237 | +
|
| 238 | + Inputs |
| 239 | + ------ |
| 240 | + raw_input: str |
| 241 | + The body of the issue text as an input string |
| 242 | +
|
| 243 | + max_len_title: int (optional) |
| 244 | + The maximum length of the title the model will generate |
| 245 | +
|
| 246 | + """ |
| 247 | + if max_len_title is None: |
| 248 | + max_len_title = self.default_max_len_title |
| 249 | + # Seed For _start_ token |
| 250 | + raw_tokenized = self.pp_body.transform([raw_input_text]) |
| 251 | + body_encoding = self.encoder_model.predict(raw_tokenized) |
| 252 | + # we want to save the encoder's embedding before its updated by decoder |
| 253 | + # because we can use that as an embedding for the enocder's input |
| 254 | + # (the issue body) |
| 255 | + original_body_encoding = body_encoding |
| 256 | + state_value = np.array(self.pp_title.token2id['_start_']).reshape(1, 1) |
| 257 | + |
| 258 | + decoded_sentence = [] |
| 259 | + stop_condition = False |
| 260 | + while not stop_condition: |
| 261 | + preds, st = self.decoder_model.predict([state_value, body_encoding]) |
| 262 | + |
| 263 | + # We are going to ignore indices 0 (padding) and indices 1 (unknown) |
| 264 | + # Argmax will return the integer index corresponding to the |
| 265 | + # prediction + 2 b/c we chopped off first two |
| 266 | + pred_idx = np.argmax(preds[:, :, 2:]) + 2 |
| 267 | + |
| 268 | + # retrieve word from index prediction |
| 269 | + pred_word_str = self.pp_title.id2token[pred_idx] |
| 270 | + |
| 271 | + if pred_word_str == '_end_' or len(decoded_sentence) >= max_len_title: |
| 272 | + stop_condition = True |
| 273 | + break |
| 274 | + decoded_sentence.append(pred_word_str) |
| 275 | + |
| 276 | + # update the decoder for the next word |
| 277 | + body_encoding = st |
| 278 | + state_value = np.array(pred_idx).reshape(1, 1) |
| 279 | + |
| 280 | + return original_body_encoding, ' '.join(decoded_sentence) |
| 281 | + |
| 282 | + |
| 283 | + def print_example(self, |
| 284 | + i, |
| 285 | + body_text, |
| 286 | + title_text, |
| 287 | + url, |
| 288 | + threshold): |
| 289 | + """ |
| 290 | + Prints an example of the model's prediction for manual inspection. |
| 291 | + """ |
| 292 | + |
| 293 | + print('\n\n==============================================') |
| 294 | + print(f'============== Example # {i} =================\n') |
| 295 | + print(url) |
| 296 | + print(f"Issue Body:\n {body_text} \n") |
| 297 | + |
| 298 | + print(f"Original Title:\n {title_text}") |
| 299 | + |
| 300 | + emb, gen_title = self.generate_issue_title(body_text) |
| 301 | + print(f"\n****** Machine Generated Title (Prediction) ******:\n {gen_title}") |
| 302 | + |
| 303 | + if self.nn: |
| 304 | + # return neighbors and distances |
| 305 | + n, d = self.nn.get_nns_by_vector(emb.flatten(), n=3, |
| 306 | + include_distances=True) |
| 307 | + neighbors = n[1:] |
| 308 | + dist = d[1:] |
| 309 | + |
| 310 | + if min(dist) <= threshold: |
| 311 | + cols = ['issue_url', 'issue_title', 'body'] |
| 312 | + dfcopy = self.rec_df.iloc[neighbors][cols].copy(deep=True) |
| 313 | + dfcopy['dist'] = dist |
| 314 | + similar_issues_df = dfcopy.query(f'dist <= {threshold}') |
| 315 | + |
| 316 | + print("\n**** Similar Issues (using encoder embedding) ****:\n") |
| 317 | + display(similar_issues_df) |
| 318 | + |
| 319 | + |
| 320 | + def demo_model_predictions(self, |
| 321 | + n, |
| 322 | + issue_df, |
| 323 | + threshold=1): |
| 324 | + """ |
| 325 | + Pick n random Issues and display predictions. |
| 326 | +
|
| 327 | + Input: |
| 328 | + ------ |
| 329 | + n : int |
| 330 | + Number of issues to display from issue_df |
| 331 | + issue_df : pandas DataFrame |
| 332 | + DataFrame that contains two columns: `body` and `issue_title`. |
| 333 | + threshold : float |
| 334 | + distance threshold for recommendation of similar issues. |
| 335 | +
|
| 336 | + Returns: |
| 337 | + -------- |
| 338 | + None |
| 339 | + Prints the original issue body and the model's prediction. |
| 340 | + """ |
| 341 | + # Extract body and title from DF |
| 342 | + body_text = issue_df.body.tolist() |
| 343 | + title_text = issue_df.issue_title.tolist() |
| 344 | + url = issue_df.issue_url.tolist() |
| 345 | + |
| 346 | + demo_list = np.random.randint(low=1, high=len(body_text), size=n) |
| 347 | + for i in demo_list: |
| 348 | + self.print_example(i, |
| 349 | + body_text=body_text[i], |
| 350 | + title_text=title_text[i], |
| 351 | + url=url[i], |
| 352 | + threshold=threshold) |
| 353 | + |
| 354 | + def prepare_recommender(self, vectorized_array, original_df): |
| 355 | + raise NotImplementedError |
| 356 | + # TODO: verify vectorized_array == original_df |
| 357 | + self.rec_df = original_df |
| 358 | + emb = self.encoder_model.predict(x=vectorized_array, |
| 359 | + batch_size=vectorized_array.shape[0]//100) |
| 360 | + |
| 361 | + f = emb.shape[1] |
| 362 | + self.nn = AnnoyIndex(f) |
| 363 | + logging.warning('Adding embeddings') |
| 364 | + for i in tqdm(range(len(emb))): |
| 365 | + self.nn.add_item(i, emb[i]) |
| 366 | + logging.warning('Building trees for similarity lookup.') |
| 367 | + self.nn.build(80) |
| 368 | + return self.nn |
| 369 | + |
| 370 | + def set_recsys_data(self, original_df): |
| 371 | + raise NotImplementedError |
| 372 | + self.rec_df = original_df |
| 373 | + |
| 374 | + def set_recsys_annoyobj(self, annoyobj): |
| 375 | + raise NotImplementedError |
| 376 | + self.nn = annoyobj |
0 commit comments