Skip to content

Commit e90cb8c

Browse files
committed
Small README updates
1 parent 55ae091 commit e90cb8c

File tree

4 files changed

+14
-3
lines changed

4 files changed

+14
-3
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -202,6 +202,7 @@ Please note we are not currently accepting pull requests or issues on this repos
202202
The [utils/](utils) folder contains utilities libraries and scripts that are used across the other code examples. This includes:
203203

204204
* [utils/examples_tests](utils/examples_tests) - Common Python helper functions for the repository's unit tests
205+
* [utils/benchmarks](utils/benchmarks) - Common Python helper functions for running benchmarks on the IPU in different frameworks
205206

206207
<br>
207208

gnn/cluster_gcn/tensorflow2/README.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,15 @@
11
# Cluster GCN model
22

3+
Run our Cluster GCN training on arXiv dataset on Paperspace.
4+
<br>
5+
[![Gradient](https://assets.paperspace.io/img/gradient-badge.svg)](https://console.paperspace.com/github/gradient-ai/Graphcore-Tensorflow2?machine=Free-IPU-POD16&container=graphcore%2Ftensorflow-jupyter%3A2-amd-2.6.0-ubuntu-20.04-20220804&file=%2Fget-started%2Frun_cluster_gcn_notebook.ipynb)
6+
37
## Table of contents
48

59
1. [Introduction](#intro)
610
2. [Prepare environment](#environment)
711
3. [Datasets](#datasets)
8-
1. [PPI](#ppi)
12+
1. [PPI](#ppi)
913
2. [Reddit](#reddit)
1014
3. [arXiv](#arxiv)
1115
4. [Products](#products)

gnn/tgn/tensorflow1/README.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,9 @@
11
# TGN: Temporal Graph Networks
22

3-
An implementation of the [TGN](https://arxiv.org/abs/2006.10637) in TensorFlow 1 for IPU.
4-
3+
An implementation of [TGN](https://arxiv.org/abs/2006.10637) in TensorFlow 1 for IPU. <br><br>
4+
Run our Temporal Graph Networks on JODIE Wikipedia dataset on Paperspace.
5+
<br>
6+
[![Gradient](https://assets.paperspace.io/img/gradient-badge.svg)](https://console.paperspace.com/github/gradient-ai/Graphcore-Tensorflow1?machine=Free-IPU-POD16&container=graphcore%2Ftensorflow-jupyter%3A1-amd-2.6.0-ubuntu-18.04-20220804&file=%2Fget-started%2FTrainingTGN.ipynb)
57

68
## About
79

nlp/bert/pytorch/README.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,10 @@ This directory contains an implementation of BERT models in PyTorch for the IPU,
55
1. BERT for pre-training - `run_pretraining.py`
66
2. BERT for SQuAD - `run_squad.py`
77

8+
Run our BERT-L Fine-tuning on SQuAD dataset on Paperspace.
9+
<br>
10+
[![Gradient](https://assets.paperspace.io/img/gradient-badge.svg)](https://console.paperspace.com/github/gradient-ai/Graphcore-PyTorch?machine=Free-IPU-POD16&container=graphcore%2Fpytorch-jupyter%3A2.6.0-ubuntu-20.04-20220804&file=%2Fget-started%2FFine-tuning-BERT.ipynb)
11+
812
## Environment setup
913

1014
First, install the Poplar SDK following the instructions in the Getting Started guide for your IPU system. Make sure to source the `enable.sh` scripts for Poplar and PopART.

0 commit comments

Comments
 (0)