@@ -4735,6 +4735,14 @@ def set_gguf_parameters(self):
47354735class MambaModel (TextModel ):
47364736 model_arch = gguf .MODEL_ARCH .MAMBA
47374737
4738+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4739+ # Avoid using AutoConfig for hparams
4740+ hparams = kwargs .pop ("hparams" , None )
4741+ if hparams is None :
4742+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4743+ hparams = json .load (f )
4744+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4745+
47384746 def set_vocab (self ):
47394747 vocab_size = self .hparams ["vocab_size" ]
47404748 # Round vocab size to next multiple of 8
@@ -4809,6 +4817,100 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
48094817 return [(new_name , data_torch )]
48104818
48114819
4820+ @ModelBase .register ("Mamba2ForCausalLM" )
4821+ class Mamba2Model (TextModel ):
4822+ model_arch = gguf .MODEL_ARCH .MAMBA2
4823+
4824+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4825+ # Avoid using AutoConfig for hparams
4826+ # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
4827+ hparams = kwargs .pop ("hparams" , None )
4828+ if hparams is None :
4829+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4830+ hparams = json .load (f )
4831+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4832+
4833+ def set_vocab (self ):
4834+ vocab_size = self .hparams ["vocab_size" ]
4835+ # Round vocab size to next multiple of 16
4836+ pad_vocab = self .hparams .get ("pad_vocab_size_multiple" , 16 )
4837+ # pad using ceiling division
4838+ # ref: https://stackoverflow.com/a/17511341/22827863
4839+ vocab_size = - (vocab_size // - pad_vocab ) * pad_vocab
4840+ self .hparams ["vocab_size" ] = vocab_size
4841+
4842+ if (self .dir_model / "tokenizer.model" ).is_file ():
4843+ self ._set_vocab_sentencepiece ()
4844+ elif (self .dir_model / "tokenizer.model.v3" ).is_file ():
4845+ # mamba-codestral
4846+ raise NotImplementedError (f"Please rename { self .dir_model / 'tokenizer.model.v3' } to { self .dir_model / 'tokenizer.model' } " )
4847+ elif (self .dir_model / "tokenizer.json" ).is_file ():
4848+ self ._set_vocab_gpt2 ()
4849+ else :
4850+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
4851+ self ._set_vocab_builtin ("gpt-neox" , vocab_size )
4852+
4853+ def set_gguf_parameters (self ):
4854+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4855+ d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4856+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4857+ d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4858+ head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4859+ n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
4860+
4861+ rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4862+
4863+ # Fail early for models which don't have a block expansion factor of 2
4864+ # TODO: does this really matter?
4865+ assert d_inner == 2 * d_model
4866+ assert d_inner % head_dim == 0
4867+
4868+ self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
4869+ self .gguf_writer .add_embedding_length (d_model )
4870+ self .gguf_writer .add_feed_forward_length (0 ) # unused, but seemingly required when loading
4871+ self .gguf_writer .add_head_count (0 ) # unused, but seemingly required when loading
4872+ self .gguf_writer .add_block_count (self .block_count )
4873+ self .gguf_writer .add_ssm_conv_kernel (d_conv )
4874+ self .gguf_writer .add_ssm_inner_size (d_inner )
4875+ self .gguf_writer .add_ssm_state_size (d_state )
4876+ self .gguf_writer .add_ssm_time_step_rank (d_inner // head_dim )
4877+ self .gguf_writer .add_ssm_group_count (n_group )
4878+ self .gguf_writer .add_layer_norm_rms_eps (rms_norm_eps )
4879+ self .gguf_writer .add_file_type (self .ftype )
4880+
4881+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
4882+
4883+ if name .startswith ("model.backbone" ) or name .startswith ("model.lm_head" ):
4884+ # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
4885+ name = name .removeprefix ("model." )
4886+
4887+ if name .endswith (".dt_bias" ):
4888+ name = name .rpartition (".dt_bias" )[0 ] + ".dt_proj.bias"
4889+
4890+ new_name = self .map_tensor_name (name )
4891+
4892+ if self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_CONV1D , bid ):
4893+ data_torch = data_torch .squeeze ()
4894+ elif any (self .match_model_tensor_name (new_name , t , bid , suffix = "" ) for t in [
4895+ gguf .MODEL_TENSOR .SSM_A ,
4896+ gguf .MODEL_TENSOR .SSM_D ,
4897+ ]):
4898+ # unsqueeze A to use similar shape semantics as Mamba-1
4899+ # (D is also unsqueezed, but for more straightforward broadcast internally)
4900+ data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4901+ elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4902+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4903+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4904+ n_group = self .hparams .get ("n_groups" , 1 )
4905+ data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4906+
4907+ if name .endswith (".A_log" ):
4908+ logger .debug ("A_log --> A ==> " + new_name )
4909+ data_torch = - torch .exp (data_torch )
4910+
4911+ yield (new_name , data_torch )
4912+
4913+
48124914@ModelBase .register ("CohereForCausalLM" )
48134915class CommandR2Model (TextModel ):
48144916 model_arch = gguf .MODEL_ARCH .COMMAND_R
@@ -6569,12 +6671,20 @@ def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> st
65696671 # maybe we should fallback to text model's arch in that case, since not many models have both
65706672 text_config = hparams .get ("text_config" , {})
65716673 vision_config = hparams .get ("vision_config" , {})
6572- arch = hparams ["architectures" ][0 ]
6674+ arch = None
6675+ if (arches := hparams .get ("architectures" )) is not None and len (arches ) > 0 :
6676+ arch = arches [0 ]
6677+ elif "ssm_cfg" in hparams :
6678+ # For non-hf Mamba and Mamba2 models
6679+ arch = hparams ["ssm_cfg" ].get ("layer" , "Mamba" ) + "ForCausalLM"
6680+
65736681 # if "architectures" is found in the sub-config, use that instead
65746682 if model_type == ModelType .TEXT and text_config .get ("architectures" ) is not None :
65756683 arch = text_config ["architectures" ][0 ]
65766684 elif model_type == ModelType .MMPROJ and vision_config .get ("architectures" ) is not None :
65776685 arch = vision_config ["architectures" ][0 ]
6686+ if arch is None :
6687+ raise ValueError ("Failed to detect model architecture" )
65786688 return arch
65796689
65806690
0 commit comments