@@ -235,14 +235,12 @@ Returns a logical value that is true if the input matrix is square, and false ot
235235program demo_is_square
236236 use stdlib_linalg, only: is_square
237237 implicit none
238- real :: A_true (2,2), A_false (3,2)
238+ real :: A (2,2), B (3,2)
239239 logical :: res
240- A_true = reshape([1., 2., 3., 4.], shape(A_true))
241- A_false = reshape([1., 2., 3., 4., 5., 6.], shape(A_false))
242- res = is_square(A_true)
243- !res = .true.
244- res = is_square(A_false)
245- !res = .false.
240+ A = reshape([1., 2., 3., 4.], shape(A))
241+ B = reshape([1., 2., 3., 4., 5., 6.], shape(B))
242+ res = is_square(A) ! returns .true.
243+ res = is_square(B) ! returns .false.
246244end program demo_is_square
247245```
248246
@@ -275,14 +273,12 @@ Note that nonsquare matrices may be diagonal, so long as `a_ij = 0` when `i /= j
275273program demo_is_diagonal
276274 use stdlib_linalg, only: is_diagonal
277275 implicit none
278- real :: A_true (2,2), A_false (2,2)
276+ real :: A (2,2), B (2,2)
279277 logical :: res
280- A_true = reshape([1., 0., 0., 4.], shape(A_true))
281- A_false = reshape([1., 0., 3., 4.], shape(A_false))
282- res = is_diagonal(A_true)
283- !res = .true.
284- res = is_diagonal(A_false)
285- !res = .false.
278+ A = reshape([1., 0., 0., 4.], shape(A))
279+ B = reshape([1., 0., 3., 4.], shape(B))
280+ res = is_diagonal(A) ! returns .true.
281+ res = is_diagonal(B) ! returns .false.
286282end program demo_is_diagonal
287283```
288284
@@ -314,14 +310,12 @@ Returns a logical value that is true if the input matrix is symmetric, and false
314310program demo_is_symmetric
315311 use stdlib_linalg, only: is_symmetric
316312 implicit none
317- real :: A_true (2,2), A_false (2,2)
313+ real :: A (2,2), B (2,2)
318314 logical :: res
319- A_true = reshape([1., 3., 3., 4.], shape(A_true))
320- A_false = reshape([1., 0., 3., 4.], shape(A_false))
321- res = is_symmetric(A_true)
322- !res = .true.
323- res = is_symmetric(A_false)
324- !res = .false.
315+ A = reshape([1., 3., 3., 4.], shape(A))
316+ B = reshape([1., 0., 3., 4.], shape(B))
317+ res = is_symmetric(A) ! returns .true.
318+ res = is_symmetric(B) ! returns .false.
325319end program demo_is_symmetric
326320```
327321
@@ -353,14 +347,12 @@ Returns a logical value that is true if the input matrix is skew-symmetric, and
353347program demo_is_skew_symmetric
354348 use stdlib_linalg, only: is_skew_symmetric
355349 implicit none
356- real :: A_true (2,2), A_false (2,2)
350+ real :: A (2,2), B (2,2)
357351 logical :: res
358- A_true = reshape([0., -3., 3., 0.], shape(A_true))
359- A_false = reshape([0., 3., 3., 0.], shape(A_false))
360- res = is_skew_symmetric(A_true)
361- !res = .true.
362- res = is_skew_symmetric(A_false)
363- !res = .false.
352+ A = reshape([0., -3., 3., 0.], shape(A))
353+ B = reshape([0., 3., 3., 0.], shape(B))
354+ res = is_skew_symmetric(A) ! returns .true.
355+ res = is_skew_symmetric(B) ! returns .false.
364356end program demo_is_skew_symmetric
365357```
366358
@@ -392,14 +384,12 @@ Returns a logical value that is true if the input matrix is Hermitian, and false
392384program demo_is_hermitian
393385 use stdlib_linalg, only: is_hermitian
394386 implicit none
395- complex :: A_true (2,2), A_false (2,2)
387+ complex :: A (2,2), B (2,2)
396388 logical :: res
397- A_true = reshape([cmplx(1.,0.), cmplx(3.,-1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A_true))
398- A_false = reshape([cmplx(1.,0.), cmplx(3.,1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A_false))
399- res = is_hermitian(A_true)
400- !res = .true.
401- res = is_hermitian(A_false)
402- !res = .false.
389+ A = reshape([cmplx(1.,0.), cmplx(3.,-1.), cmplx(3.,1.), cmplx(4.,0.)], shape(A))
390+ B = reshape([cmplx(1.,0.), cmplx(3.,1.), cmplx(3.,1.), cmplx(4.,0.)], shape(B))
391+ res = is_hermitian(A) ! returns .true.
392+ res = is_hermitian(B) ! returns .false.
403393end program demo_is_hermitian
404394```
405395
@@ -435,14 +425,12 @@ Specifically, upper triangular matrices satisfy `a_ij = 0` when `j < i`, and low
435425program demo_is_triangular
436426 use stdlib_linalg, only: is_triangular
437427 implicit none
438- real :: A_true (3,3), A_false (3,3)
428+ real :: A (3,3), B (3,3)
439429 logical :: res
440- A_true = reshape([1., 0., 0., 4., 5., 0., 7., 8., 9.], shape(A_true))
441- A_false = reshape([1., 0., 3., 4., 5., 0., 7., 8., 9.], shape(A_false))
442- res = is_triangular(A_true,'u')
443- !res = .true.
444- res = is_triangular(A_false,'u')
445- !res = .false.
430+ A = reshape([1., 0., 0., 4., 5., 0., 7., 8., 9.], shape(A))
431+ B = reshape([1., 0., 3., 4., 5., 0., 7., 8., 9.], shape(B))
432+ res = is_triangular(A,'u') ! returns .true.
433+ res = is_triangular(B,'u') ! returns .false.
446434end program demo_is_triangular
447435```
448436
@@ -478,13 +466,11 @@ Specifically, upper Hessenberg matrices satisfy `a_ij = 0` when `j < i-1`, and l
478466program demo_is_hessenberg
479467 use stdlib_linalg, only: is_hessenberg
480468 implicit none
481- real :: A_true (3,3), A_false (3,3)
469+ real :: A (3,3), B (3,3)
482470 logical :: res
483- A_true = reshape([1., 2., 0., 4., 5., 6., 7., 8., 9.], shape(A_true))
484- A_false = reshape([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape(A_false))
485- res = is_hessenberg(A_true,'u')
486- !res = .true.
487- res = is_hessenberg(A_false,'u')
488- !res = .false.
471+ A = reshape([1., 2., 0., 4., 5., 6., 7., 8., 9.], shape(A))
472+ B = reshape([1., 2., 3., 4., 5., 6., 7., 8., 9.], shape(B))
473+ res = is_hessenberg(A,'u') ! returns .true.
474+ res = is_hessenberg(B,'u') ! returns .false.
489475end program demo_is_hessenberg
490476```
0 commit comments