|
4 | 4 |
|
5 | 5 | <!-- vim-markdown-toc GFM --> |
6 | 6 |
|
7 | | - * [`trapz` - integrate sampled values using trapezoidal rule](#trapz---integrate-sampled-values-using-trapezoidal-rule) |
8 | | - * [Syntax](#syntax) |
9 | | - * [Arguments](#arguments) |
10 | | - * [Return value](#return-value) |
11 | | - * [Example](#example) |
12 | | - * [`trapz_weights` - trapezoidal rule weights for given abscissas](#trapz_weights---trapezoidal-rule-weights-for-given-abscissas) |
13 | | - * [Syntax](#syntax-1) |
14 | | - * [Arguments](#arguments-1) |
15 | | - * [Return value](#return-value-1) |
16 | | - * [Example](#example-1) |
| 7 | +* [`trapz` - integrate sampled values using trapezoidal rule](#trapz---integrate-sampled-values-using-trapezoidal-rule) |
| 8 | + * [Syntax](#syntax) |
| 9 | + * [Arguments](#arguments) |
| 10 | + * [Return value](#return-value) |
| 11 | + * [Example](#example) |
| 12 | +* [`trapz_weights` - trapezoidal rule weights for given abscissas](#trapz_weights---trapezoidal-rule-weights-for-given-abscissas) |
| 13 | + * [Syntax](#syntax-1) |
| 14 | + * [Arguments](#arguments-1) |
| 15 | + * [Return value](#return-value-1) |
| 16 | + * [Example](#example-1) |
17 | 17 | * [`simps` - integrate sampled values using Simpson's rule (to be implemented)](#simps---integrate-sampled-values-using-simpsons-rule-to-be-implemented) |
18 | | - * [Syntax](#syntax-2) |
19 | | - * [Arguments](#arguments-2) |
20 | | - * [Return value](#return-value-2) |
21 | | - * [Example](#example-2) |
| 18 | + * [Syntax](#syntax-2) |
| 19 | + * [Arguments](#arguments-2) |
| 20 | + * [Return value](#return-value-2) |
| 21 | + * [Example](#example-2) |
22 | 22 | * [`simps_weights` - Simpson's rule weights for given abscissas (to be implemented)](#simps_weights---simpsons-rule-weights-for-given-abscissas-to-be-implemented) |
23 | | - * [Syntax](#syntax-3) |
24 | | - * [Arguments](#arguments-3) |
25 | | - * [Return value](#return-value-3) |
26 | | - * [Example](#example-3) |
| 23 | + * [Syntax](#syntax-3) |
| 24 | + * [Arguments](#arguments-3) |
| 25 | + * [Return value](#return-value-3) |
| 26 | + * [Example](#example-3) |
27 | 27 |
|
28 | 28 | <!-- vim-markdown-toc --> |
29 | 29 |
|
@@ -100,7 +100,7 @@ end program |
100 | 100 |
|
101 | 101 | ``` |
102 | 102 |
|
103 | | -# `simps` - integrate sampled values using Simpson's rule (to be implemented) |
| 103 | +## `simps` - integrate sampled values using Simpson's rule (to be implemented) |
104 | 104 |
|
105 | 105 | Returns the Simpson's rule integral of an array `y` representing discrete samples of a function. The integral is computed assuming either equidistant abscissas with spacing `dx` or arbitary abscissas `x`. |
106 | 106 |
|
@@ -134,7 +134,7 @@ If the size of `y` is two, the result is the same as if `trapz` had been called |
134 | 134 |
|
135 | 135 | TBD |
136 | 136 |
|
137 | | -# `simps_weights` - Simpson's rule weights for given abscissas (to be implemented) |
| 137 | +## `simps_weights` - Simpson's rule weights for given abscissas (to be implemented) |
138 | 138 |
|
139 | 139 | Given an array of abscissas `x`, computes the array of weights `w` such that if `y` represented function values tabulated at `x`, then `sum(w*y)` produces a Simpson's rule approximation to the integral. |
140 | 140 |
|
|
0 commit comments