11#:include "common.fypp"
2- #:set RC_KINDS_TYPES = REAL_KINDS_TYPES[0:2]
2+ #:set R_KINDS_TYPES = REAL_KINDS_TYPES[0:2]
33#:set CI_KINDS_TYPES = INT_KINDS_TYPES + CMPLX_KINDS_TYPES[0:2]
44module stdlib_specialfunctions_gamma
55 use iso_fortran_env, only : qp => real128
@@ -14,7 +14,7 @@ module stdlib_specialfunctions_gamma
1414 integer(int32), parameter :: max_fact_int32 = 13_int32
1515 integer(int64), parameter :: max_fact_int64 = 21_int64
1616
17- #:for k1, t1 in RC_KINDS_TYPES
17+ #:for k1, t1 in R_KINDS_TYPES
1818 ${t1}$, parameter :: tol_${k1}$ = epsilon(1.0_${k1}$)
1919 #:endfor
2020 real(qp), parameter :: tol_qp = epsilon(1.0_qp)
@@ -62,12 +62,12 @@ module stdlib_specialfunctions_gamma
6262 !! Lower incomplete gamma function
6363 !!
6464 #:for k1, t1 in INT_KINDS_TYPES
65- #:for k2, t2 in RC_KINDS_TYPES
65+ #:for k2, t2 in R_KINDS_TYPES
6666 module procedure ingamma_low_${t1[0]}$${k1}$${k2}$
6767 #:endfor
6868 #:endfor
6969
70- #:for k1, t1 in RC_KINDS_TYPES
70+ #:for k1, t1 in R_KINDS_TYPES
7171 module procedure ingamma_low_${t1[0]}$${k1}$
7272 #:endfor
7373 end interface lower_incomplete_gamma
@@ -78,12 +78,12 @@ module stdlib_specialfunctions_gamma
7878 !! Logarithm of lower incomplete gamma function
7979 !!
8080 #:for k1, t1 in INT_KINDS_TYPES
81- #:for k2, t2 in RC_KINDS_TYPES
81+ #:for k2, t2 in R_KINDS_TYPES
8282 module procedure l_ingamma_low_${t1[0]}$${k1}$${k2}$
8383 #:endfor
8484 #:endfor
8585
86- #:for k1, t1 in RC_KINDS_TYPES
86+ #:for k1, t1 in R_KINDS_TYPES
8787 module procedure l_ingamma_low_${t1[0]}$${k1}$
8888 #:endfor
8989 end interface log_lower_incomplete_gamma
@@ -94,12 +94,12 @@ module stdlib_specialfunctions_gamma
9494 !! Upper incomplete gamma function
9595 !!
9696 #:for k1, t1 in INT_KINDS_TYPES
97- #:for k2, t2 in RC_KINDS_TYPES
97+ #:for k2, t2 in R_KINDS_TYPES
9898 module procedure ingamma_up_${t1[0]}$${k1}$${k2}$
9999 #:endfor
100100 #:endfor
101101
102- #:for k1, t1 in RC_KINDS_TYPES
102+ #:for k1, t1 in R_KINDS_TYPES
103103 module procedure ingamma_up_${t1[0]}$${k1}$
104104 #:endfor
105105 end interface upper_incomplete_gamma
@@ -110,12 +110,12 @@ module stdlib_specialfunctions_gamma
110110 !! Logarithm of upper incomplete gamma function
111111 !!
112112 #:for k1, t1 in INT_KINDS_TYPES
113- #:for k2, t2 in RC_KINDS_TYPES
113+ #:for k2, t2 in R_KINDS_TYPES
114114 module procedure l_ingamma_up_${t1[0]}$${k1}$${k2}$
115115 #:endfor
116116 #:endfor
117117
118- #:for k1, t1 in RC_KINDS_TYPES
118+ #:for k1, t1 in R_KINDS_TYPES
119119 module procedure l_ingamma_up_${t1[0]}$${k1}$
120120 #:endfor
121121 end interface log_upper_incomplete_gamma
@@ -126,12 +126,12 @@ module stdlib_specialfunctions_gamma
126126 !! Regularized (normalized) lower incomplete gamma function, P
127127 !!
128128 #:for k1, t1 in INT_KINDS_TYPES
129- #:for k2, t2 in RC_KINDS_TYPES
129+ #:for k2, t2 in R_KINDS_TYPES
130130 module procedure regamma_p_${t1[0]}$${k1}$${k2}$
131131 #:endfor
132132 #:endfor
133133
134- #:for k1, t1 in RC_KINDS_TYPES
134+ #:for k1, t1 in R_KINDS_TYPES
135135 module procedure regamma_p_${t1[0]}$${k1}$
136136 #:endfor
137137 end interface regularized_gamma_p
@@ -142,12 +142,12 @@ module stdlib_specialfunctions_gamma
142142 !! Regularized (normalized) upper incomplete gamma function, Q
143143 !!
144144 #:for k1, t1 in INT_KINDS_TYPES
145- #:for k2, t2 in RC_KINDS_TYPES
145+ #:for k2, t2 in R_KINDS_TYPES
146146 module procedure regamma_q_${t1[0]}$${k1}$${k2}$
147147 #:endfor
148148 #:endfor
149149
150- #:for k1, t1 in RC_KINDS_TYPES
150+ #:for k1, t1 in R_KINDS_TYPES
151151 module procedure regamma_q_${t1[0]}$${k1}$
152152 #:endfor
153153 end interface regularized_gamma_q
@@ -158,12 +158,12 @@ module stdlib_specialfunctions_gamma
158158 ! Incomplete gamma G function.
159159 ! Internal use only
160160 !
161- #:for k1, t1 in RC_KINDS_TYPES
161+ #:for k1, t1 in R_KINDS_TYPES
162162 module procedure gpx_${t1[0]}$${k1}$ !for real p and x
163163 #:endfor
164164
165165 #:for k1, t1 in INT_KINDS_TYPES
166- #:for k2, t2 in RC_KINDS_TYPES
166+ #:for k2, t2 in R_KINDS_TYPES
167167 module procedure gpx_${t1[0]}$${k1}$${k2}$ !for integer p and real x
168168 #:endfor
169169 #:endfor
@@ -176,7 +176,7 @@ module stdlib_specialfunctions_gamma
176176 ! Internal use only
177177 !
178178 #:for k1, t1 in INT_KINDS_TYPES
179- #:for k2, t2 in RC_KINDS_TYPES
179+ #:for k2, t2 in R_KINDS_TYPES
180180 module procedure l_gamma_${t1[0]}$${k1}$${k2}$
181181 #:endfor
182182 #:endfor
@@ -372,7 +372,7 @@ contains
372372
373373
374374 #:for k1, t1 in INT_KINDS_TYPES
375- #:for k2, t2 in RC_KINDS_TYPES
375+ #:for k2, t2 in R_KINDS_TYPES
376376
377377 impure elemental function l_gamma_${t1[0]}$${k1}$${k2}$(z, x) result(res)
378378 !
@@ -555,7 +555,7 @@ contains
555555
556556
557557
558- #:for k1, t1 in RC_KINDS_TYPES
558+ #:for k1, t1 in R_KINDS_TYPES
559559 #:if k1 == "sp"
560560 #:set k2 = "dp"
561561 #:elif k1 == "dp"
@@ -701,7 +701,7 @@ contains
701701
702702
703703 #:for k1, t1 in INT_KINDS_TYPES
704- #:for k2, t2 in RC_KINDS_TYPES
704+ #:for k2, t2 in R_KINDS_TYPES
705705 impure elemental function gpx_${t1[0]}$${k1}$${k2}$(p, x) result(res)
706706 !
707707 ! Approximation of incomplete gamma G function with integer argument p.
@@ -840,7 +840,7 @@ contains
840840
841841
842842
843- #:for k1, t1 in RC_KINDS_TYPES
843+ #:for k1, t1 in R_KINDS_TYPES
844844 impure elemental function ingamma_low_${t1[0]}$${k1}$(p, x) result(res)
845845 !
846846 ! Approximation of lower incomplete gamma function with real p.
@@ -877,7 +877,7 @@ contains
877877
878878
879879 #:for k1, t1 in INT_KINDS_TYPES
880- #:for k2, t2 in RC_KINDS_TYPES
880+ #:for k2, t2 in R_KINDS_TYPES
881881 impure elemental function ingamma_low_${t1[0]}$${k1}$${k2}$(p, x) &
882882 result(res)
883883 !
@@ -917,7 +917,7 @@ contains
917917
918918
919919
920- #:for k1, t1 in RC_KINDS_TYPES
920+ #:for k1, t1 in R_KINDS_TYPES
921921 impure elemental function l_ingamma_low_${t1[0]}$${k1}$(p, x) result(res)
922922
923923 ${t1}$, intent(in) :: p, x
@@ -954,7 +954,7 @@ contains
954954
955955
956956 #:for k1, t1 in INT_KINDS_TYPES
957- #:for k2, t2 in RC_KINDS_TYPES
957+ #:for k2, t2 in R_KINDS_TYPES
958958 impure elemental function l_ingamma_low_${t1[0]}$${k1}$${k2}$(p, x) &
959959 result(res)
960960
@@ -986,7 +986,7 @@ contains
986986
987987
988988
989- #:for k1, t1 in RC_KINDS_TYPES
989+ #:for k1, t1 in R_KINDS_TYPES
990990 impure elemental function ingamma_up_${t1[0]}$${k1}$(p, x) result(res)
991991 !
992992 ! Approximation of upper incomplete gamma function with real p.
@@ -1024,7 +1024,7 @@ contains
10241024
10251025
10261026 #:for k1, t1 in INT_KINDS_TYPES
1027- #:for k2, t2 in RC_KINDS_TYPES
1027+ #:for k2, t2 in R_KINDS_TYPES
10281028 impure elemental function ingamma_up_${t1[0]}$${k1}$${k2}$(p, x) &
10291029 result(res)
10301030 !
@@ -1066,7 +1066,7 @@ contains
10661066
10671067
10681068
1069- #:for k1, t1 in RC_KINDS_TYPES
1069+ #:for k1, t1 in R_KINDS_TYPES
10701070 impure elemental function l_ingamma_up_${t1[0]}$${k1}$(p, x) result(res)
10711071
10721072 ${t1}$, intent(in) :: p, x
@@ -1104,7 +1104,7 @@ contains
11041104
11051105
11061106 #:for k1, t1 in INT_KINDS_TYPES
1107- #:for k2, t2 in RC_KINDS_TYPES
1107+ #:for k2, t2 in R_KINDS_TYPES
11081108 impure elemental function l_ingamma_up_${t1[0]}$${k1}$${k2}$(p, x) &
11091109 result(res)
11101110
@@ -1145,7 +1145,7 @@ contains
11451145
11461146
11471147
1148- #:for k1, t1 in RC_KINDS_TYPES
1148+ #:for k1, t1 in R_KINDS_TYPES
11491149 impure elemental function regamma_p_${t1[0]}$${k1}$(p, x) result(res)
11501150 !
11511151 ! Approximation of regularized incomplete gamma function P(p,x) for real p
@@ -1180,7 +1180,7 @@ contains
11801180
11811181
11821182 #:for k1, t1 in INT_KINDS_TYPES
1183- #:for k2, t2 in RC_KINDS_TYPES
1183+ #:for k2, t2 in R_KINDS_TYPES
11841184 impure elemental function regamma_p_${t1[0]}$${k1}$${k2}$(p, x) result(res)
11851185 !
11861186 ! Approximation of regularized incomplete gamma function P(p,x) for integer p
@@ -1216,7 +1216,7 @@ contains
12161216
12171217
12181218
1219- #:for k1, t1 in RC_KINDS_TYPES
1219+ #:for k1, t1 in R_KINDS_TYPES
12201220 impure elemental function regamma_q_${t1[0]}$${k1}$(p, x) result(res)
12211221 !
12221222 ! Approximation of regularized incomplete gamma function Q(p,x) for real p
@@ -1251,7 +1251,7 @@ contains
12511251
12521252
12531253 #:for k1, t1 in INT_KINDS_TYPES
1254- #:for k2, t2 in RC_KINDS_TYPES
1254+ #:for k2, t2 in R_KINDS_TYPES
12551255 impure elemental function regamma_q_${t1[0]}$${k1}$${k2}$(p, x) result(res)
12561256 !
12571257 ! Approximation of regularized incomplet gamma function Q(p,x) for integer p
0 commit comments