|
| 1 | +submodule (stdlib_quadrature) stdlib_quadrature_gauss |
| 2 | + use stdlib_kinds, only: sp, dp, qp |
| 3 | + use stdlib_functions, only: legendre, dlegendre |
| 4 | + implicit none |
| 5 | + |
| 6 | + real(dp), parameter :: PI = acos(-1._dp) |
| 7 | + real(dp), parameter :: tolerance = 4._dp * epsilon(1._dp) |
| 8 | + integer, parameter :: newton_iters = 100 |
| 9 | + |
| 10 | +contains |
| 11 | + |
| 12 | + pure module subroutine gauss_legendre_fp64 (x, w, interval) |
| 13 | + real(dp), intent(out) :: x(:), w(:) |
| 14 | + real(dp), intent(in), optional :: interval(2) |
| 15 | + |
| 16 | + associate (N => size(x)-1 ) |
| 17 | + select case (N) |
| 18 | + case (0) |
| 19 | + x = 0._dp |
| 20 | + w = 2._dp |
| 21 | + case (1) |
| 22 | + x = [-sqrt(1._dp/3._dp), sqrt(1._dp/3._dp)] |
| 23 | + w = [1._dp, 1._dp] |
| 24 | + case default |
| 25 | + block |
| 26 | + integer :: i,j |
| 27 | + real(dp) :: leg, dleg, delta |
| 28 | + |
| 29 | + do i = 0, int(floor((N+1)/2._dp)-1) |
| 30 | + x(i+1) = -cos((2*i+1)/(2._dp*N+2._dp) * PI) |
| 31 | + do j = 0, newton_iters-1 |
| 32 | + leg = legendre(N+1,x(i+1)) |
| 33 | + dleg = dlegendre(N+1,x(i+1)) |
| 34 | + delta = -leg/dleg |
| 35 | + x(i+1) = x(i+1) + delta |
| 36 | + if ( abs(delta) <= tolerance * abs(x(i+1)) ) exit |
| 37 | + end do |
| 38 | + x(N-i+1) = -x(i+1) |
| 39 | + |
| 40 | + dleg = dlegendre(N+1,x(i+1)) |
| 41 | + w(i+1) = 2._dp/((1-x(i+1)**2)*dleg**2) |
| 42 | + w(N-i+1) = w(i+1) |
| 43 | + end do |
| 44 | + |
| 45 | + if (mod(N,2) == 0) then |
| 46 | + x(N/2+1) = 0.0 |
| 47 | + |
| 48 | + dleg = dlegendre(N+1, 0.0_dp) |
| 49 | + w(N/2+1) = 2._dp/(dleg**2) |
| 50 | + end if |
| 51 | + end block |
| 52 | + end select |
| 53 | + end associate |
| 54 | + |
| 55 | + if (present(interval)) then |
| 56 | + associate ( a => interval(1) , b => interval(2) ) |
| 57 | + x = 0.5*(b-a)*x+0.5*(b+a) |
| 58 | + w = 0.5*(b-a)*w |
| 59 | + end associate |
| 60 | + end if |
| 61 | + end subroutine |
| 62 | + |
| 63 | + pure module subroutine gauss_legendre_lobatto_fp64 (x, w, interval) |
| 64 | + real(dp), intent(out) :: x(:), w(:) |
| 65 | + real(dp), intent(in), optional :: interval(2) |
| 66 | + |
| 67 | + associate (N => size(x)-1) |
| 68 | + select case (N) |
| 69 | + case (1) |
| 70 | + x = [-1._dp, 1._dp] |
| 71 | + w = [ 1._dp, 1._dp] |
| 72 | + case default |
| 73 | + block |
| 74 | + integer :: i,j |
| 75 | + real(dp) :: leg, dleg, delta |
| 76 | + |
| 77 | + x(1) = -1._dp |
| 78 | + x(N+1) = 1._dp |
| 79 | + w(1) = 2._dp/(N*(N+1._dp)) |
| 80 | + w(N+1) = 2._dp/(N*(N+1._dp)) |
| 81 | + |
| 82 | + do i = 1, int(floor((N+1)/2._dp)-1) |
| 83 | + x(i+1) = -cos( (i+0.25_dp)*PI/N - 3/(8*N*PI*(i+0.25_dp))) |
| 84 | + do j = 0, newton_iters-1 |
| 85 | + leg = legendre(N+1,x(i+1)) - legendre(N-1,x(i+1)) |
| 86 | + dleg = dlegendre(N+1,x(i+1)) - dlegendre(N-1,x(i+1)) |
| 87 | + delta = -leg/dleg |
| 88 | + x(i+1) = x(i+1) + delta |
| 89 | + if ( abs(delta) <= tolerance * abs(x(i+1)) ) exit |
| 90 | + end do |
| 91 | + x(N-i+1) = -x(i+1) |
| 92 | + |
| 93 | + leg = legendre(N, x(i+1)) |
| 94 | + w(i+1) = 2._dp/(N*(N+1._dp)*leg**2) |
| 95 | + w(N-i+1) = w(i+1) |
| 96 | + end do |
| 97 | + |
| 98 | + if (mod(N,2) == 0) then |
| 99 | + x(N/2+1) = 0.0 |
| 100 | + |
| 101 | + leg = legendre(N, 0.0_dp) |
| 102 | + w(N/2+1) = 2._dp/(N*(N+1._dp)*leg**2) |
| 103 | + end if |
| 104 | + end block |
| 105 | + end select |
| 106 | + end associate |
| 107 | + |
| 108 | + if (present(interval)) then |
| 109 | + associate ( a => interval(1) , b => interval(2) ) |
| 110 | + x = 0.5*(b-a)*x+0.5*(b+a) |
| 111 | + w = 0.5*(b-a)*w |
| 112 | + end associate |
| 113 | + end if |
| 114 | + end subroutine |
| 115 | +end submodule |
0 commit comments