@@ -4,8 +4,8 @@ program example_eigh
44 implicit none
55
66 integer :: i
7- real , allocatable :: A(:,:),lambda(:),v (:,:)
8- complex , allocatable :: cA(:,:),cv (:,:)
7+ real , allocatable :: A(:,:),lambda(:),vectors (:,:)
8+ complex , allocatable :: cA(:,:),cvectors (:,:)
99
1010 ! Decomposition of this symmetric matrix
1111 ! NB Fortran is column-major -> transpose input
@@ -15,24 +15,24 @@ program example_eigh
1515
1616 ! Note: real symmetric matrices have real (orthogonal) eigenvalues and eigenvectors
1717 allocate (lambda(3 ),v(3 ,3 ))
18- call eigh(A, lambda, vectors= v )
18+ call eigh(A, lambda, vectors= vectors )
1919
2020 print * , ' Real matrix'
2121 do i= 1 ,3
2222 print * , ' eigenvalue ' ,i,' : ' ,lambda(i)
23- print * , ' eigenvector ' ,i,' : ' ,v (:,i)
23+ print * , ' eigenvector ' ,i,' : ' ,vectors (:,i)
2424 end do
2525
2626 ! Complex hermitian matrices have real (orthogonal) eigenvalues and complex eigenvectors
2727 cA = A
2828
2929 allocate (cv(3 ,3 ))
30- call eigh(cA, lambda, vectors= cv )
30+ call eigh(cA, lambda, vectors= cvectors )
3131
3232 print * , ' Complex matrix'
3333 do i= 1 ,3
3434 print * , ' eigenvalue ' ,i,' : ' ,lambda(i)
35- print * , ' eigenvector ' ,i,' : ' ,cv (:,i)
35+ print * , ' eigenvector ' ,i,' : ' ,cvectors (:,i)
3636 end do
3737
3838end program example_eigh
0 commit comments