@@ -19,9 +19,27 @@ def compute_knee_frequency(knee, exponent):
1919 -------
2020 float
2121 Frequency value, in Hz, of the knee occurs.
22+
23+ Notes
24+ -----
25+ The knee frequency is an estimate of the frequency in spectrum at which the spectrum
26+ moves from the plateau region to the exponential decay.
27+
28+ This approach for estimating the knee frequency comes from [1]_ (see [2]_ for code).
29+
30+ Note that this provides an estimate of the knee frequency, but is not, in the general case,
31+ a precisely defined value. In particular, this conversion is based on the case of a Lorentzian
32+ with exponent = 2, and for other exponent values provides a non-exact approximation.
33+
34+ References
35+ ----------
36+ .. [1] Gao, R., van den Brink, R. L., Pfeffer, T., & Voytek, B. (2020). Neuronal timescales
37+ are functionally dynamic and shaped by cortical microarchitecture. Elife, 9, e61277.
38+ https://doi.org/10.7554/eLife.61277
39+ .. [2] https://github.com/rdgao/field-echos/blob/master/echo_utils.py#L64
2240 """
2341
24- return knee ** (1. / exponent )
42+ return knee ** (1. / exponent )
2543
2644
2745def compute_time_constant (knee_freq ):
@@ -36,9 +54,20 @@ def compute_time_constant(knee_freq):
3654 -------
3755 float
3856 Calculated time constant value, tau, given the knee frequency.
57+
58+ Notes
59+ -----
60+ This approach for estimating the time constant comes from [1]_ (see [2]_ for code).
61+
62+ References
63+ ----------
64+ .. [1] Gao, R., van den Brink, R. L., Pfeffer, T., & Voytek, B. (2020). Neuronal timescales
65+ are functionally dynamic and shaped by cortical microarchitecture. Elife, 9, e61277.
66+ https://doi.org/10.7554/eLife.61277
67+ .. [2] https://github.com/rdgao/field-echos/blob/master/echo_utils.py#L65
3968 """
4069
41- return 1. / (2 * np .pi * knee_freq )
70+ return 1. / (2 * np .pi * knee_freq )
4271
4372
4473def compute_fwhm (std ):
0 commit comments