|
| 1 | +"""Conversion functions for organizing model results into alternate representations.""" |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +from fooof import Bands |
| 6 | +from fooof.core.funcs import infer_ap_func |
| 7 | +from fooof.core.info import get_ap_indices, get_peak_indices |
| 8 | +from fooof.core.modutils import safe_import, check_dependency |
| 9 | +from fooof.analysis.periodic import get_band_peak |
| 10 | + |
| 11 | +pd = safe_import('pandas') |
| 12 | + |
| 13 | +################################################################################################### |
| 14 | +################################################################################################### |
| 15 | + |
| 16 | +def model_to_dict(fit_results, peak_org): |
| 17 | + """Convert model fit results to a dictionary. |
| 18 | +
|
| 19 | + Parameters |
| 20 | + ---------- |
| 21 | + fit_results : FOOOFResults |
| 22 | + Results of a model fit. |
| 23 | + peak_org : int or Bands |
| 24 | + How to organize peaks. |
| 25 | + If int, extracts the first n peaks. |
| 26 | + If Bands, extracts peaks based on band definitions. |
| 27 | +
|
| 28 | + Returns |
| 29 | + ------- |
| 30 | + dict |
| 31 | + Model results organized into a dictionary. |
| 32 | + """ |
| 33 | + |
| 34 | + fr_dict = {} |
| 35 | + |
| 36 | + # aperiodic parameters |
| 37 | + for label, param in zip(get_ap_indices(infer_ap_func(fit_results.aperiodic_params)), |
| 38 | + fit_results.aperiodic_params): |
| 39 | + fr_dict[label] = param |
| 40 | + |
| 41 | + # periodic parameters |
| 42 | + peaks = fit_results.peak_params |
| 43 | + |
| 44 | + if isinstance(peak_org, int): |
| 45 | + |
| 46 | + if len(peaks) < peak_org: |
| 47 | + nans = [np.array([np.nan] * 3) for ind in range(peak_org-len(peaks))] |
| 48 | + peaks = np.vstack((peaks, nans)) |
| 49 | + |
| 50 | + for ind, peak in enumerate(peaks[:peak_org, :]): |
| 51 | + for pe_label, pe_param in zip(get_peak_indices(), peak): |
| 52 | + fr_dict[pe_label.lower() + '_' + str(ind)] = pe_param |
| 53 | + |
| 54 | + elif isinstance(peak_org, Bands): |
| 55 | + for band, f_range in peak_org: |
| 56 | + for label, param in zip(get_peak_indices(), get_band_peak(peaks, f_range)): |
| 57 | + fr_dict[band + '_' + label.lower()] = param |
| 58 | + |
| 59 | + # goodness-of-fit metrics |
| 60 | + fr_dict['error'] = fit_results.error |
| 61 | + fr_dict['r_squared'] = fit_results.r_squared |
| 62 | + |
| 63 | + return fr_dict |
| 64 | + |
| 65 | +@check_dependency(pd, 'pandas') |
| 66 | +def model_to_dataframe(fit_results, peak_org): |
| 67 | + """Convert model fit results to a dataframe. |
| 68 | +
|
| 69 | + Parameters |
| 70 | + ---------- |
| 71 | + fit_results : FOOOFResults |
| 72 | + Results of a model fit. |
| 73 | + peak_org : int or Bands |
| 74 | + How to organize peaks. |
| 75 | + If int, extracts the first n peaks. |
| 76 | + If Bands, extracts peaks based on band definitions. |
| 77 | +
|
| 78 | + Returns |
| 79 | + ------- |
| 80 | + pd.Series |
| 81 | + Model results organized into a dataframe. |
| 82 | + """ |
| 83 | + |
| 84 | + return pd.Series(model_to_dict(fit_results, peak_org)) |
| 85 | + |
| 86 | + |
| 87 | +@check_dependency(pd, 'pandas') |
| 88 | +def group_to_dataframe(fit_results, peak_org): |
| 89 | + """Convert a group of model fit results into a dataframe. |
| 90 | +
|
| 91 | + Parameters |
| 92 | + ---------- |
| 93 | + fit_results : list of FOOOFResults |
| 94 | + List of FOOOFResults objects. |
| 95 | + peak_org : int or Bands |
| 96 | + How to organize peaks. |
| 97 | + If int, extracts the first n peaks. |
| 98 | + If Bands, extracts peaks based on band definitions. |
| 99 | +
|
| 100 | + Returns |
| 101 | + ------- |
| 102 | + pd.DataFrame |
| 103 | + Model results organized into a dataframe. |
| 104 | + """ |
| 105 | + |
| 106 | + return pd.DataFrame([model_to_dataframe(f_res, peak_org) for f_res in fit_results]) |
0 commit comments