|
| 1 | +""" |
| 2 | +06: Fitting Models over Time |
| 3 | +============================ |
| 4 | +
|
| 5 | +Use extensions of the model object to fit power spectra across time. |
| 6 | +""" |
| 7 | + |
| 8 | +################################################################################################### |
| 9 | + |
| 10 | +# sphinx_gallery_thumbnail_number = 2 |
| 11 | + |
| 12 | +# Import the time & event model objects |
| 13 | +from specparam import SpectralTimeModel, SpectralTimeEventModel |
| 14 | + |
| 15 | +# Import Bands object to manage oscillation band definitions |
| 16 | +from specparam import Bands |
| 17 | + |
| 18 | +# Import helper utilities for simulating and plotting spectrograms |
| 19 | +from specparam.sim import sim_spectrogram |
| 20 | +from specparam.plts.spectra import plot_spectrogram |
| 21 | + |
| 22 | + |
| 23 | +################################################################################################### |
| 24 | +# Parameterizing Spectrograms |
| 25 | +# --------------------------- |
| 26 | +# |
| 27 | +# So far we have seen how to use spectral models to fit individual power spectra, as well as |
| 28 | +# groups of power spectra. In this tutorial, we extent this to fitting groups of power |
| 29 | +# spectra that are organized across time / events. |
| 30 | +# |
| 31 | +# Specifically, here we cover the :class:`~specparam.SpectralTimeModel` and |
| 32 | +# :class:`~specparam.SpectralTimeEventModel` objects. |
| 33 | +# |
| 34 | +# Fitting Spectrograms |
| 35 | +# ~~~~~~~~~~~~~~~~~~~~ |
| 36 | +# |
| 37 | +# For the goal of fitting power spectra that are organized across adjacent time windows, |
| 38 | +# we can consider that what we are really trying to do is to parameterize spectrograms. |
| 39 | +# |
| 40 | +# Let's start by simulating an example spectrogram, that we can then parameterize. |
| 41 | +# |
| 42 | + |
| 43 | +################################################################################################### |
| 44 | + |
| 45 | +# Create & plot an example spectrogram |
| 46 | +n_pre_post = 50 |
| 47 | +freq_range = [3, 25] |
| 48 | +ap_params = [[1, 1.5]] * n_pre_post + [[1, 1]] * n_pre_post |
| 49 | +pe_params = [[10, 1.5, 2.5]] * n_pre_post + [[10, 0.5, 2.]] * n_pre_post |
| 50 | +freqs, spectrogram = sim_spectrogram(n_pre_post * 2, freq_range, ap_params, pe_params, nlvs=0.1) |
| 51 | + |
| 52 | +################################################################################################### |
| 53 | + |
| 54 | +# Plot our simulated spectrogram |
| 55 | +plot_spectrogram(freqs, spectrogram) |
| 56 | + |
| 57 | +################################################################################################### |
| 58 | +# SpectralTimeModel |
| 59 | +# ----------------- |
| 60 | +# |
| 61 | +# The :class:`~specparam.SpectralTimeModel` object is an extension of the SpectralModel objects |
| 62 | +# to support parameterizing neural power spectra that are organized across time (spectrograms). |
| 63 | +# |
| 64 | +# In practice, this object is very similar to the previously introduced spectral model objects, |
| 65 | +# especially the Group model object. The time object is a mildly updated Group object. |
| 66 | +# |
| 67 | +# The main differences with the SpectralTimeModel from previous model objects are that the |
| 68 | +# data it accepts and parameterizes should be organized as as array of power spectra over |
| 69 | +# time windows - basically as a spectrogram. |
| 70 | +# |
| 71 | + |
| 72 | +################################################################################################### |
| 73 | + |
| 74 | +# Initialize a SpectralTimeModel model, which accepts all the same settings as SpectralModel |
| 75 | +ft = SpectralTimeModel() |
| 76 | + |
| 77 | +################################################################################################### |
| 78 | +# Defining Oscillation Bands |
| 79 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 80 | +# |
| 81 | +# Before we start parameterizing power spectra we need to set up some guidance on how to |
| 82 | +# organize the results - most notably the peaks. Within the object, the Time model does fit |
| 83 | +# and store all the peaks it detects. However, without some definition of how to store and |
| 84 | +# visualize the peaks, the object cannot visualize the results across time. |
| 85 | +# |
| 86 | +# We can therefore use the :class:`~.Bands` object to define oscillation bands of interest. |
| 87 | +# By doing so, the Time model object will organize peaks based on these band definitions, |
| 88 | +# so we can plot, for example, alpha peaks across time windows. |
| 89 | +# |
| 90 | + |
| 91 | +################################################################################################### |
| 92 | + |
| 93 | +# Define a bands object to organize peak parameters |
| 94 | +bands = Bands({'alpha' : [7, 14]}) |
| 95 | + |
| 96 | +################################################################################################### |
| 97 | +# |
| 98 | +# Now we are ready to fit our spectrogram! As with all model objects, we can fit the models |
| 99 | +# with the `fit` method, or fit, plot, and print with the `report` method. |
| 100 | +# |
| 101 | + |
| 102 | +################################################################################################### |
| 103 | + |
| 104 | +# Fit the spectrogram and print out report |
| 105 | +ft.report(freqs, spectrogram, peak_org=bands) |
| 106 | + |
| 107 | +################################################################################################### |
| 108 | +# |
| 109 | +# In the above, we can see that the Time object measures the same aperiodic and periodic |
| 110 | +# parameters as before, now organized and plotted across time windows. |
| 111 | +# |
| 112 | + |
| 113 | +################################################################################################### |
| 114 | +# Parameterizing Repeated Events |
| 115 | +# ------------------------------ |
| 116 | +# |
| 117 | +# In the above, we parameterized a single spectrogram reflecting power spectra over time windows. |
| 118 | +# |
| 119 | +# We can also go one step further - parameterizing multiple spectrograms, with the same |
| 120 | +# time definition, which can be thought of as representing events (for example, examining |
| 121 | +# +/- 5 seconds around an event of interest, that happens multiple times.) |
| 122 | +# |
| 123 | +# To start, let's simulate multiple spectrograms, representing our different events. |
| 124 | +# |
| 125 | + |
| 126 | +################################################################################################### |
| 127 | + |
| 128 | +# Simulate a collection of spectrograms (across events) |
| 129 | +n_events = 3 |
| 130 | +spectrograms = [] |
| 131 | +for ind in range(n_events): |
| 132 | + freqs, cur_spect = sim_spectrogram(n_pre_post * 2, freq_range, ap_params, pe_params, nlvs=0.1) |
| 133 | + spectrograms.append(cur_spect) |
| 134 | + |
| 135 | +################################################################################################### |
| 136 | + |
| 137 | +# Plot the set of simulated spectrograms |
| 138 | +for cur_spect in spectrograms: |
| 139 | + plot_spectrogram(freqs, cur_spect) |
| 140 | + |
| 141 | +################################################################################################### |
| 142 | +# SpectralTimeEventModel |
| 143 | +# ---------------------- |
| 144 | +# |
| 145 | +# To parameterize events (multiple spectrograms) we can use the |
| 146 | +# :class:`~specparam.SpectralTimeEventModel` object. |
| 147 | +# |
| 148 | +# The Event is a further extension of the Time object, which can handle multiple spectrograms. |
| 149 | +# You can think of it as an object that manages a Time object for each spectrogram, and then |
| 150 | +# allows for collecting and examining the results across multiple events. Just like the Time |
| 151 | +# object, the Event object can take in a band definition to organize the peak results. |
| 152 | +# |
| 153 | +# The Event object has all the same attributes and methods as the previous model objects, |
| 154 | +# with the notably update that it accepts as data to parameterize a 3d array of spectrograms. |
| 155 | +# |
| 156 | + |
| 157 | +################################################################################################### |
| 158 | + |
| 159 | +# Initialize the spectral event model |
| 160 | +fe = SpectralTimeEventModel() |
| 161 | + |
| 162 | +################################################################################################### |
| 163 | + |
| 164 | +# Fit the spectrograms and print out report |
| 165 | +fe.report(freqs, spectrograms, peak_org=bands) |
| 166 | + |
| 167 | +################################################################################################### |
| 168 | +# |
| 169 | +# In the above, we can see that the Event object mimics the layout of the Time report, with |
| 170 | +# the update that since the data are now averaged across multiple event, each plot now represents |
| 171 | +# the average value of each parameter, shaded by it's standard deviation. |
| 172 | +# |
| 173 | +# When examining peaks across time and trials, there can also be a variable presence of if / when |
| 174 | +# peaks of a particular band are detected. To quantify this, the Event report also includes the |
| 175 | +# 'presence' plot, which reports on the % of events that have a detected peak for the given |
| 176 | +# band definition. Note that only time windows with a detected peak contribute to the |
| 177 | +# visualized data in the other periodic parameter plots. |
| 178 | +# |
| 179 | + |
| 180 | +################################################################################################### |
| 181 | +# Conclusion |
| 182 | +# ---------- |
| 183 | +# |
| 184 | +# Now we have explored fitting power spectrum models and running these fits across time |
| 185 | +# windows, including across multiple events. Next we dig deeper into how to choose and tune |
| 186 | +# the algorithm settings, and how to troubleshoot if any of the fitting seems to go wrong. |
| 187 | +# |
0 commit comments