@@ -2183,23 +2183,54 @@ def test_mixed_col_index_dtype(using_infer_string):
21832183
21842184
21852185@pytest .mark .parametrize ("op" , ["add" , "sub" , "mul" , "div" , "mod" , "truediv" , "pow" ])
2186- def test_df_series_fill_value (op ):
2186+ def test_df_fill_value_operations (op ):
21872187 # GH 61581
2188- data = np .arange (50 ).reshape (10 , 5 )
2188+ input_data = np .arange (50 ).reshape (10 , 5 )
2189+ fill_val = 5
21892190 columns = list ("ABCDE" )
2190- df = DataFrame (data , columns = columns )
2191+ df = DataFrame (input_data , columns = columns )
21912192 for i in range (5 ):
21922193 df .iat [i , i ] = np .nan
21932194 df .iat [i + 1 , i ] = np .nan
21942195 df .iat [i + 4 , i ] = np .nan
21952196
2196- df_a = df .iloc [:, :- 1 ]
2197- df_b = df .iloc [:, - 1 ]
2198- nan_mask = df_a .isna ().astype (int ).mul (df_b .isna ().astype (int ), axis = 0 ).astype (bool )
2197+ df_base = df .iloc [:, :- 1 ]
2198+ df_mult = df .iloc [:, - 1 ]
2199+ mask = df .isna ().values
2200+ mask = mask [:, :- 1 ] & mask [:, [- 1 ]]
21992201
2200- df_result = getattr (df_a , op )(df_b , axis = 0 , fill_value = 5 )
2201- df_expected = getattr (df_a .fillna (5 ), op )( df_b . fillna ( 5 ), axis = 0 ). mask (
2202- nan_mask , np . nan
2203- )
2202+ df_result = getattr (df_base , op )(df_mult , axis = 0 , fill_value = fill_val )
2203+ df_expected = getattr (df_base .fillna (fill_val ), op )(
2204+ df_mult . fillna ( fill_val ), axis = 0
2205+ ). mask ( mask , np . nan )
22042206
22052207 tm .assert_frame_equal (df_result , df_expected )
2208+
2209+
2210+ # ! Currently implementing
2211+ # @pytest.mark.parametrize("input_data, fill_val",
2212+ # [
2213+ # (np.arange(50).reshape(10, 5), 5), #Numpy
2214+ # (pd.array(np.random.choice([True, False], size=(10, 5)),
2215+ # dtype="boolean"), True),
2216+ # ]
2217+ # )
2218+ # def test_df_fill_value_dtype(input_data, fill_val):
2219+ # # GH 61581
2220+ # columns = list("ABCDE")
2221+ # df = DataFrame(input_data, columns=columns)
2222+ # for i in range(5):
2223+ # df.iat[i, i] = np.nan
2224+ # df.iat[i + 1, i] = np.nan
2225+ # df.iat[i + 4, i] = np.nan
2226+
2227+ # df_base = df.iloc[:, :-1]
2228+ # df_mult = df.iloc[:, -1]
2229+ # mask = df.isna().values
2230+ # mask = mask[:, :-1] & mask[:, [-1]]
2231+
2232+ # df_result = df_base.mul(df_mult, axis=0, fill_value=fill_val)
2233+ # df_expected = (df_base.fillna(fill_val).mul(df_mult.fillna(fill_val),
2234+ # axis=0)).mask(mask, np.nan)
2235+
2236+ # tm.assert_frame_equal(df_result, df_expected)
0 commit comments