@@ -113,6 +113,122 @@ for energy in energies:
113113 ))
114114#+end_src
115115
116+ ** Energy resolution
117+
118+ #+begin_src jupyter-python
119+ fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(15, 6))
120+
121+ fig.suptitle(PLOT_TITLE)
122+
123+ axs = np.ravel(np.array(axs))
124+
125+ sigmas_rel_FWHM_cb = {}
126+ fractions_below = {}
127+
128+ for ix, energy in enumerate(energies):
129+ for use_clusters in [False, True]:
130+ energy_value = float(energy.replace("GeV", "").replace("MeV", "e-3"))
131+ if use_clusters:
132+ clf_label = "leading cluster"
133+ else:
134+ clf_label = "sum all hits"
135+ def clf(events):
136+ if use_clusters:
137+ return ak.drop_none(ak.max(events["EcalEndcapNClusters.energy"], axis=-1)) / energy_value
138+ else:
139+ return ak.sum(events["EcalEndcapNRecHits.energy"], axis=-1) / energy_value
140+ e_pred = clf(e_eval[energy])
141+
142+ plt.sca(axs[ix])
143+ counts, bins, patches = plt.hist(e_pred, weights=np.full_like(e_pred, 1.0 / ak.num(e_pred, axis=0)), bins=np.linspace(0.01, 1.01, 101), label=rf"$e^-$ {clf_label}", hatch=None if use_clusters else r"xxx", alpha=0.8 if use_clusters else 1.)
144+ plt.title(f"{energy}")
145+
146+ e_over_p = (bins[1:] + bins[:-1]) / 2
147+ import scipy.stats
148+ def f(x, n, beta, m, loc, scale):
149+ return n * scipy.stats.crystalball.pdf(x, beta, m, loc, scale)
150+ p0 = (np.sum(counts[10:]), 2., 3., 0.95, 0.05)
151+
152+ try:
153+ import scipy.optimize
154+ par, pcov = scipy.optimize.curve_fit(f, e_over_p[5:], counts[5:], p0=p0, maxfev=10000)
155+ except RuntimeError:
156+ par = None
157+ plt.plot(e_over_p, f(e_over_p, *par), label=rf"Crystal Ball fit", color="tab:green" if use_clusters else "green", lw=0.8)
158+
159+ def summarize_fit(par):
160+ _, _, _, loc_cb, scale_cb = par
161+ # Calculate FWHM
162+ y_max = np.max(f(np.linspace(0., 1., 100), *par))
163+ f_prime = lambda x: f(x, *par) - y_max / 2
164+ x_plus, = scipy.optimize.root(f_prime, loc_cb + scale_cb).x
165+ x_minus, = scipy.optimize.root(f_prime, loc_cb - scale_cb).x
166+ color = "cyan" if use_clusters else "orange"
167+ plt.axvline(x_minus, ls="--", lw=0.75, color=patches[0].get_facecolor(), label=r"$\mu - $FWHM")
168+ plt.axvline(x_plus, ls=":", lw=0.75, color=patches[0].get_facecolor(), label=r"$\mu + $FWHM")
169+ fwhm = (x_plus - x_minus) / loc_cb
170+ sigma_rel_FWHM_cb = fwhm / 2 / np.sqrt(2 * np.log(2))
171+
172+ cutoff_x = loc_cb - fwhm
173+ fraction_below = np.sum(counts[e_over_p < cutoff_x]) / ak.num(e_pred, axis=0)
174+
175+ return sigma_rel_FWHM_cb, fraction_below
176+
177+ sigma_rel_FWHM_cb, fraction_below = summarize_fit(par)
178+ sigmas_rel_FWHM_cb.setdefault(clf_label, {})[energy] = sigma_rel_FWHM_cb
179+ fractions_below.setdefault(clf_label, {})[energy] = fraction_below
180+
181+ plt.legend()
182+ plt.xlabel("$E/p$", loc="right")
183+ plt.ylabel("Event yield", loc="top")
184+
185+ fig.savefig(output_dir / f"resolution_plots.pdf", bbox_inches="tight")
186+ plt.show()
187+ plt.close(fig)
188+
189+ plt.figure()
190+ energy_values = np.array([float(energy.replace("GeV", "").replace("MeV", "e-3")) for energy in energies])
191+
192+ for clf_label, sigma_rel_FWHM_cb in sigmas_rel_FWHM_cb.items():
193+ sigma_over_e = np.array([sigma_rel_FWHM_cb[energy] for energy in energies]) * 100 # convert to %
194+
195+ def f(energy, stochastic, constant):
196+ return np.sqrt((stochastic / np.sqrt(energy)) ** 2 + constant ** 2)
197+ cond = energy_values >= 0.5
198+ try:
199+ import scipy.optimize
200+ par, pcov = scipy.optimize.curve_fit(f, energy_values[cond], sigma_over_e[cond], maxfev=10000)
201+ except RuntimeError:
202+ par = None
203+ stochastic, constant = par
204+
205+ plt.plot(
206+ energy_values,
207+ sigma_over_e,
208+ marker=".",
209+ label=f"{clf_label}"
210+ )
211+ plt.plot(
212+ energy_values[cond],
213+ f(energy_values[cond], *par),
214+ color="black",
215+ ls="--",
216+ lw=0.5,
217+ label=f"{clf_label}, ${np.ceil(stochastic * 10) / 10:.1f}\% / \sqrt{{E}} \oplus {np.ceil(constant * 10) / 10:.1f}\%$",
218+ )
219+ plt.plot(
220+ energy_values,
221+ np.sqrt((1 / energy_values) ** 2 + (1 / np.sqrt(energy_values)) ** 2 + 1 ** 2),
222+ color="black", label=r"YR requirement $1\% / E \oplus 2.5\% / \sqrt{E} \oplus 1\%$",
223+ )
224+ plt.title(INPUT_PATH_FORMAT)
225+ plt.legend()
226+ plt.xlabel("Energy, GeV", loc="right")
227+ plt.ylabel(r"$\sigma_{E} / E$ derived from FWHM, %", loc="top")
228+ plt.savefig(output_dir / f"resolution.pdf", bbox_inches="tight")
229+ plt.show()
230+ #+end_src
231+
116232** Pion rejection
117233
118234#+begin_src jupyter-python
0 commit comments