|
| 1 | +from keras import layers, models |
| 2 | +import numpy as np |
| 3 | +import tensorflow as tf |
| 4 | + |
| 5 | +def build_unet(size=300, basef=64, maxf=512, encoder='resnet50', pretrained=True): |
| 6 | + input = layers.Input((size, size, 3)) |
| 7 | + |
| 8 | + encoder_model = make_encoder(input, name=encoder, pretrained=pretrained) |
| 9 | + |
| 10 | + crosses = [] |
| 11 | + |
| 12 | + for layer in encoder_model.layers: |
| 13 | + # don't end on padding layers |
| 14 | + if type(layer) == layers.ZeroPadding2D: |
| 15 | + continue |
| 16 | + idx = get_scale_index(size, layer.output_shape[1]) |
| 17 | + if idx is None: |
| 18 | + continue |
| 19 | + if idx >= len(crosses): |
| 20 | + crosses.append(layer) |
| 21 | + else: |
| 22 | + crosses[idx] = layer |
| 23 | + |
| 24 | + x = crosses[-1].output |
| 25 | + for scale in range(len(crosses)-2, -1, -1): |
| 26 | + nf = min(basef * 2**scale, maxf) |
| 27 | + x = upscale(x, nf) |
| 28 | + x = act(x) |
| 29 | + x = layers.Concatenate()([ |
| 30 | + pad_to_scale(x, scale, size=size), |
| 31 | + pad_to_scale(crosses[scale].output, scale, size=size) |
| 32 | + ]) |
| 33 | + x = conv(x, nf) |
| 34 | + x = act(x) |
| 35 | + |
| 36 | + x = conv(x, 6) |
| 37 | + x = layers.Activation('softmax')(x) |
| 38 | + |
| 39 | + return models.Model(input, x) |
| 40 | + |
| 41 | +def make_encoder(input, name='resnet50', pretrained=True): |
| 42 | + if name == 'resnet18': |
| 43 | + from classification_models.keras import Classifiers |
| 44 | + ResNet18, _ = Classifiers.get('resnet18') |
| 45 | + model = ResNet18( |
| 46 | + weights='imagenet' if pretrained else None, |
| 47 | + input_tensor=input, |
| 48 | + include_top=False |
| 49 | + ) |
| 50 | + elif name == 'resnet50': |
| 51 | + from keras.applications.resnet import ResNet50 |
| 52 | + model = ResNet50( |
| 53 | + weights='imagenet' if pretrained else None, |
| 54 | + input_tensor=input, |
| 55 | + include_top=False |
| 56 | + ) |
| 57 | + elif name == 'resnet101': |
| 58 | + from keras.applications.resnet import ResNet101 |
| 59 | + model = ResNet101( |
| 60 | + weights='imagenet' if pretrained else None, |
| 61 | + input_tensor=input, |
| 62 | + include_top=False |
| 63 | + ) |
| 64 | + elif name == 'resnet152': |
| 65 | + from keras.applications.resnet import ResNet152 |
| 66 | + model = ResNet152( |
| 67 | + weights='imagenet' if pretrained else None, |
| 68 | + input_tensor=input, |
| 69 | + include_top=False |
| 70 | + ) |
| 71 | + elif name == 'vgg16': |
| 72 | + from keras.applications.vgg16 import VGG16 |
| 73 | + model = VGG16( |
| 74 | + weights='imagenet' if pretrained else None, |
| 75 | + input_tensor=input, |
| 76 | + include_top=False |
| 77 | + ) |
| 78 | + elif name == 'vgg19': |
| 79 | + from keras.applications.vgg19 import VGG19 |
| 80 | + model = VGG19( |
| 81 | + weights='imagenet' if pretrained else None, |
| 82 | + input_tensor=input, |
| 83 | + include_top=False |
| 84 | + ) |
| 85 | + else: |
| 86 | + raise Exception(f'unknown encoder {name}') |
| 87 | + |
| 88 | + return model |
| 89 | + |
| 90 | +def get_scale_index(in_size, l_size): |
| 91 | + for i in range(8): |
| 92 | + s_size = in_size // (2 ** i) |
| 93 | + if abs(l_size - s_size) <= 4: |
| 94 | + return i |
| 95 | + return None |
| 96 | + |
| 97 | +def pad_to_scale(x, scale, size=300): |
| 98 | + expected = int(np.ceil(size / (2. ** scale))) |
| 99 | + diff = expected - int(x.shape[1]) |
| 100 | + if diff > 0: |
| 101 | + left = diff // 2 |
| 102 | + right = diff - left |
| 103 | + x = reflectpad(x, (left, right)) |
| 104 | + elif diff < 0: |
| 105 | + left = -diff // 2 |
| 106 | + right = -diff - left |
| 107 | + x = layers.Cropping2D(((left, right), (left, right)))(x) |
| 108 | + return x |
| 109 | + |
| 110 | +def reflectpad(x, pad): |
| 111 | + return layers.Lambda(lambda x: tf.pad(x, [(0, 0), pad, pad, (0, 0)], 'REFLECT'))(x) |
| 112 | + |
| 113 | +def upscale(x, nf): |
| 114 | + x = layers.UpSampling2D((2, 2))(x) |
| 115 | + x = conv(x, nf, kernel_size=(1, 1)) |
| 116 | + return x |
| 117 | + |
| 118 | +def act(x): |
| 119 | + x = layers.BatchNormalization()(x) |
| 120 | + x = layers.LeakyReLU(0.2)(x) |
| 121 | + return x |
| 122 | + |
| 123 | +def conv(x, nf, kernel_size=(3, 3), **kwargs): |
| 124 | + padleft = (kernel_size[0] - 1) // 2 |
| 125 | + padright = kernel_size[0] - 1 - padleft |
| 126 | + if padleft > 0 or padright > 0: |
| 127 | + x = reflectpad(x, (padleft, padright)) |
| 128 | + return layers.Conv2D(nf, kernel_size=kernel_size, padding='valid', **kwargs)(x) |
0 commit comments