@@ -23483,7 +23483,7 @@ \section*{Appendix: Algorithmic Subtyping}
2348323483 then \SubtypeNE{T_0}{T_1} if{}f \SubtypeNE{S_i}{T_1} for some $i$.
2348423484\item
2348523485 \textbf{Positional Function Types:}
23486- $T_0$ is
23486+ If $T_0$ is
2348723487
2348823488 \code{$U_0$ \FUNCTION<%
2348923489 $X_0$\,\EXTENDS\,$B_{00}$, \ldots, $X_k$\,\EXTENDS\,$B_{0k}$>(%
@@ -23497,7 +23497,7 @@ \section*{Appendix: Algorithmic Subtyping}
2349723497 $S_0$\,$y_0$, \ldots, $S_p$\,$y_p$, %
2349823498 [$S_{p+1}$\,$y_{p+1}$, \ldots, $S_q$\,$y_q$])}
2349923499
23500- such that each of the following criteria is satisfied,
23500+ then \SubtypeNE{T_0}{T_1} if{}f each of the following criteria is satisfied,
2350123501 where the $Z_i$ are fresh type variables with bounds
2350223502 $B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
2350323503
@@ -23512,7 +23512,7 @@ \section*{Appendix: Algorithmic Subtyping}
2351223512 \end{itemize}
2351323513\item
2351423514 \textbf{Named Function Types:}
23515- $T_0$ is
23515+ If $T_0$ is
2351623516
2351723517 \code{%
2351823518 $U_0$ \FUNCTION<$X_0$\,\EXTENDS\,$B_{00}$, \ldots, %
@@ -23530,7 +23530,7 @@ \section*{Appendix: Algorithmic Subtyping}
2353023530 \{$r_{1,n+1}$\,$S_{n+1}$\,$y_{n+1}$, \ldots, $r_{1q}$\,$S_q$\,$y_q$\})}
2353123531
2353223532 where $r_{1j}$ is empty or \REQUIRED{} for $j \in n+1 .. q$
23533- and the following criteria are all satisfied,
23533+ then \SubtypeNE{T_0}{T_1} if{}f the following criteria are all satisfied,
2353423534 where \List{Z}{1}{k} are fresh type variables with bounds
2353523535 $B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
2353623536
0 commit comments