@@ -23648,7 +23648,7 @@ \section*{Appendix: Algorithmic Subtyping}
2364823648 then \SubtypeNE{T_0}{T_1} if{}f \SubtypeNE{S_i}{T_1} for some $i$.
2364923649\item
2365023650 \textbf{Positional Function Types:}
23651- $T_0$ is
23651+ If $T_0$ is
2365223652
2365323653 \code{$U_0$ \FUNCTION<%
2365423654 $X_0$\,\EXTENDS\,$B_{00}$, \ldots, $X_k$\,\EXTENDS\,$B_{0k}$>(%
@@ -23662,7 +23662,7 @@ \section*{Appendix: Algorithmic Subtyping}
2366223662 $S_0$\,$y_0$, \ldots, $S_p$\,$y_p$, %
2366323663 [$S_{p+1}$\,$y_{p+1}$, \ldots, $S_q$\,$y_q$])}
2366423664
23665- such that each of the following criteria is satisfied,
23665+ then \SubtypeNE{T_0}{T_1} if{}f each of the following criteria is satisfied,
2366623666 where the $Z_i$ are fresh type variables with bounds
2366723667 $B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
2366823668
@@ -23677,7 +23677,7 @@ \section*{Appendix: Algorithmic Subtyping}
2367723677 \end{itemize}
2367823678\item
2367923679 \textbf{Named Function Types:}
23680- $T_0$ is
23680+ If $T_0$ is
2368123681
2368223682 \code{%
2368323683 $U_0$ \FUNCTION<$X_0$\,\EXTENDS\,$B_{00}$, \ldots, %
@@ -23695,7 +23695,7 @@ \section*{Appendix: Algorithmic Subtyping}
2369523695 \{$r_{1,n+1}$\,$S_{n+1}$\,$y_{n+1}$, \ldots, $r_{1q}$\,$S_q$\,$y_q$\})}
2369623696
2369723697 where $r_{1j}$ is empty or \REQUIRED{} for $j \in n+1 .. q$
23698- and the following criteria are all satisfied,
23698+ then \SubtypeNE{T_0}{T_1} if{}f the following criteria are all satisfied,
2369923699 where \List{Z}{1}{k} are fresh type variables with bounds
2370023700 $B_{0i}[Z_0/X_0, \ldots, Z_k/X_k]$:
2370123701
0 commit comments