1414</ div >
1515
1616< div class ="home ">
17- <!-- < div class="materials-wrap">
17+ < div class ="materials-wrap ">
1818 < div class ="module-header "> Spring 2022 Assignments</ div >
1919 < div class ="materials-item ">
2020 <!-- (To be released) Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected Neural Network -->
21- < a href ="assignments2023/assignment1/ "> Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected
22- Neural Network</ a >
23- </ div >
24- < div class ="materials-item ">
25- (To be released) Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Pytorch &
26- Network Visualization -->
27- <!-- <a href="assignments2023/assignment2/">Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Pytorch & Network Visualization</a> -->
28- </ div >
29- < div class ="materials-item ">
30- (To be released) Assignment #3: Image Captioning with RNNs and Transformers, Network Visualization,
31- Generative Adversarial Networks, Self-Supervised Contrastive Learning
32- <!-- <a href="assignments2023/assignment3/">Assignment #3: Image Captioning with RNNs and Transformers, Generative Adversarial Networks, Self-Supervised Contrastive Learning</a> -->
33- </ div >
34- </ div>
21+ < a href ="assignments2023/assignment1/ "> Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected
22+ Neural Network</ a >
23+ </ div >
24+ < div class ="materials-item ">
25+ (To be released) Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Pytorch &
26+ Network Visualization -->
27+ <!-- <a href="assignments2023/assignment2/">Assignment #2: Fully Connected and Convolutional Nets, Batch Normalization, Dropout, Pytorch & Network Visualization</a> -->
28+ </ div >
29+ < div class ="materials-item ">
30+ (To be released) Assignment #3: Image Captioning with RNNs and Transformers, Network Visualization,
31+ Generative Adversarial Networks, Self-Supervised Contrastive Learning
32+ <!-- <a href="assignments2023/assignment3/">Assignment #3: Image Captioning with RNNs and Transformers, Generative Adversarial Networks, Self-Supervised Contrastive Learning</a> -->
33+ </ div >
34+ </ div >
3535
36- <!-- <div class="materials-wrap">
36+ <!-- <div class="materials-wrap">
3737 <div class="module-header">Spring 2021 Assignments</div>
3838 <div class="materials-item">
3939 <a href="assignments2021/assignment1/">Assignment #1: Image Classification, kNN, SVM, Softmax, Fully Connected Neural Network</a>
4646 Generative Adversarial Networks, Self-Supervised Contrastive Learning</a>
4747 </div>
4848 </div> -->
49- <!--
49+ <!--
5050 <div class="materials-item">
5151 <a href="assignments2019/assignment2/">
5252 Assignment #2: Fully Connected Nets, Batch Normalization, Dropout,
6060 with LSTMs, Network Visualization, Style Transfer, Generative Adversarial Networks
6161 </a>
6262 </div> -->
63- <!--
63+ <!--
6464 <div class="module-header">Spring 2018 Assignments</div>
6565
6666 <div class="materials-item">
8484 </div>
8585 -->
8686
87- <!--
87+ <!--
8888 <div class="module-header">Winter 2016 Assignments</div>
8989
9090 <div class="materials-item">
108108 </div>
109109 -->
110110
111- <!--
111+ <!--
112112 <div class="module-header">Winter 2015 Assignments</div>
113113
114114 <div class="materials-item">
130130 </div>
131131 -->
132132
133- < div class ="module-header "> Module 0: Preparation</ div >
133+ < div class ="module-header "> Module 0: Preparation</ div >
134134
135- < div class ="materials-item ">
136- < a href ="setup-instructions/ ">
137- Software Setup
138- </ a >
139- </ div >
135+ < div class ="materials-item ">
136+ < a href ="setup-instructions/ ">
137+ Software Setup
138+ </ a >
139+ </ div >
140140
141- < div class ="materials-item ">
142- < a href ="python-numpy-tutorial/ ">
143- Python / Numpy Tutorial (with Jupyter and Colab)
144- </ a >
145- </ div >
146- <!--
141+ < div class ="materials-item ">
142+ < a href ="python-numpy-tutorial/ ">
143+ Python / Numpy Tutorial (with Jupyter and Colab)
144+ </ a >
145+ </ div >
146+ <!--
147147 <div class="materials-item">
148148 <a href="terminal-tutorial/">
149149 Terminal.com Tutorial
150150 </a>
151151 </div>
152152-->
153- <!-- <div class="materials-item">
153+ <!-- <div class="materials-item">
154154 <a href="https://github.com/cs231n/gcloud">
155155 Google Cloud Tutorial
156156 </a>
157157 </div> -->
158- <!-- <div class="materials-item">
158+ <!-- <div class="materials-item">
159159 <a href="aws-tutorial/">
160160 AWS Tutorial
161161 </a>
162162 </div> -->
163163
164- <!-- hardcoding items here to force a specific order -->
165- < div class ="module-header "> Module 1: Neural Networks</ div >
164+ <!-- hardcoding items here to force a specific order -->
165+ < div class ="module-header "> Module 1: Neural Networks</ div >
166166
167- < div class ="materials-item ">
168- < a href ="classification/ ">
169- Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits
170- </ a >
171- < div class ="kw ">
172- L1/L2 distances, hyperparameter search, cross-validation
167+ < div class ="materials-item ">
168+ < a href ="classification/ ">
169+ Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits
170+ </ a >
171+ < div class ="kw ">
172+ L1/L2 distances, hyperparameter search, cross-validation
173+ </ div >
173174 </ div >
174- </ div >
175175
176- < div class ="materials-item ">
177- < a href ="linear-classify/ ">
178- Linear classification: Support Vector Machine, Softmax
179- </ a >
180- < div class ="kw ">
181- parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo
176+ < div class ="materials-item ">
177+ < a href ="linear-classify/ ">
178+ Linear classification: Support Vector Machine, Softmax
179+ </ a >
180+ < div class ="kw ">
181+ parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo
182+ </ div >
182183 </ div >
183- </ div >
184184
185- < div class ="materials-item ">
186- < a href ="optimization-1/ ">
187- Optimization: Stochastic Gradient Descent
188- </ a >
189- < div class ="kw ">
190- optimization landscapes, local search, learning rate, analytic/numerical gradient
185+ < div class ="materials-item ">
186+ < a href ="optimization-1/ ">
187+ Optimization: Stochastic Gradient Descent
188+ </ a >
189+ < div class ="kw ">
190+ optimization landscapes, local search, learning rate, analytic/numerical gradient
191+ </ div >
191192 </ div >
192- </ div >
193193
194- < div class ="materials-item ">
195- < a href ="optimization-2/ ">
196- Backpropagation, Intuitions
197- </ a >
198- < div class ="kw ">
199- chain rule interpretation, real-valued circuits, patterns in gradient flow
194+ < div class ="materials-item ">
195+ < a href ="optimization-2/ ">
196+ Backpropagation, Intuitions
197+ </ a >
198+ < div class ="kw ">
199+ chain rule interpretation, real-valued circuits, patterns in gradient flow
200+ </ div >
200201 </ div >
201- </ div >
202202
203- < div class ="materials-item ">
204- < a href ="neural-networks-1/ ">
205- Neural Networks Part 1: Setting up the Architecture
206- </ a >
207- < div class ="kw ">
208- model of a biological neuron, activation functions, neural net architecture, representational power
203+ < div class ="materials-item ">
204+ < a href ="neural-networks-1/ ">
205+ Neural Networks Part 1: Setting up the Architecture
206+ </ a >
207+ < div class ="kw ">
208+ model of a biological neuron, activation functions, neural net architecture, representational power
209+ </ div >
209210 </ div >
210- </ div >
211211
212- < div class ="materials-item ">
213- < a href ="neural-networks-2/ ">
214- Neural Networks Part 2: Setting up the Data and the Loss
215- </ a >
216- < div class ="kw ">
217- preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions
212+ < div class ="materials-item ">
213+ < a href ="neural-networks-2/ ">
214+ Neural Networks Part 2: Setting up the Data and the Loss
215+ </ a >
216+ < div class ="kw ">
217+ preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions
218+ </ div >
218219 </ div >
219- </ div >
220220
221- < div class ="materials-item ">
222- < a href ="neural-networks-3/ ">
223- Neural Networks Part 3: Learning and Evaluation
224- </ a >
225- < div class ="kw ">
226- gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods,
227- Adagrad/RMSprop, hyperparameter optimization, model ensembles
221+ < div class ="materials-item ">
222+ < a href ="neural-networks-3/ ">
223+ Neural Networks Part 3: Learning and Evaluation
224+ </ a >
225+ < div class ="kw ">
226+ gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods,
227+ Adagrad/RMSprop, hyperparameter optimization, model ensembles
228+ </ div >
228229 </ div >
229- </ div >
230230
231- < div class ="materials-item ">
232- < a href ="neural-networks-case-study/ ">
233- Putting it together: Minimal Neural Network Case Study
234- </ a >
235- < div class ="kw ">
236- minimal 2D toy data example
231+ < div class ="materials-item ">
232+ < a href ="neural-networks-case-study/ ">
233+ Putting it together: Minimal Neural Network Case Study
234+ </ a >
235+ < div class ="kw ">
236+ minimal 2D toy data example
237+ </ div >
237238 </ div >
238- </ div >
239239
240- < div class ="module-header "> Module 2: Convolutional Neural Networks</ div >
240+ < div class ="module-header "> Module 2: Convolutional Neural Networks</ div >
241241
242- < div class ="materials-item ">
243- < a href ="convolutional-networks/ ">
244- Convolutional Neural Networks: Architectures, Convolution / Pooling Layers
245- </ a >
246- < div class ="kw ">
247- layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies,
248- computational considerations
242+ < div class ="materials-item ">
243+ < a href ="convolutional-networks/ ">
244+ Convolutional Neural Networks: Architectures, Convolution / Pooling Layers
245+ </ a >
246+ < div class ="kw ">
247+ layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies,
248+ computational considerations
249+ </ div >
249250 </ div >
250- </ div >
251251
252- < div class ="materials-item ">
253- < a href ="understanding-cnn/ ">
254- Understanding and Visualizing Convolutional Neural Networks
255- </ a >
256- < div class ="kw ">
257- tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons
252+ < div class ="materials-item ">
253+ < a href ="understanding-cnn/ ">
254+ Understanding and Visualizing Convolutional Neural Networks
255+ </ a >
256+ < div class ="kw ">
257+ tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons
258+ </ div >
258259 </ div >
259- </ div >
260260
261- < div class ="materials-item ">
262- < a href ="transfer-learning/ ">
263- Transfer Learning and Fine-tuning Convolutional Neural Networks
264- </ a >
265- </ div >
261+ < div class ="materials-item ">
262+ < a href ="transfer-learning/ ">
263+ Transfer Learning and Fine-tuning Convolutional Neural Networks
264+ </ a >
265+ </ div >
266266
267- < div class ="module-header "> Student-Contributed Posts</ div >
267+ < div class ="module-header "> Student-Contributed Posts</ div >
268268
269- < div class ="materials-item ">
270- < a href ="choose-project/ ">
271- Taking a Course Project to Publication
272- </ a >
273- < a href ="rnn/ ">
274- Recurrent Neural Networks
275- </ a >
276- </ div >
269+ < div class ="materials-item ">
270+ < a href ="choose-project/ ">
271+ Taking a Course Project to Publication
272+ </ a >
273+ < a href ="rnn/ ">
274+ Recurrent Neural Networks
275+ </ a >
276+ </ div >
277277
278278</ div >
279279</ div>
0 commit comments